Chemistry + allied sciences Chemie Ruthenium Kazmaier, U. Amino acids -Valuable organocatalysts in carbohydrate synthesis. Angew Chem Int Edit 44, 2186-2188, doi:DOI 10.1002/anie.200462873 (2005). Gong, L., Lin, Z., Harms, K. + Meggers, E. Isomerization-induced asymmetric coordination chemistry: from auxiliary control to asymmetric catalysis. Angewandte Chemie 49, 7955-7957, doi:10.1002/anie.201003139 (2010). Ji, S. M., Guo, H. M., Wu, W. T., Wu, W. H. + Zhao, J. Z. Ruthenium(II) Polyimine-Coumarin Dyad with Non-emissive (IL)-I-3 Excited State as Sensitizer for Triplet-Triplet Annihilation Based Upconversion. Angew Chem Int Edit 50, 8283-8286, doi:DOI 10.1002/anie.201008134 (2011). Lin, Z. et al. Asymmetric coordination chemistry by chiral-auxiliary-mediated dynamic resolution under thermodynamic control. Chemistry, an Asian journal 6, 474-481, doi:10.1002/asia.201000555 (2011). Kummer, D., Gaisser, K. E. + Seshadri, T. Contributions to Chemistry of Halosilane Adducts .10. Bis(2,2'-Bipyridine) Complexes of Silicon, Direct Synthesis, Structure, and Properties. Chem Ber-Recl 110, 1950-1962, doi:DOI 10.1002/cber.19771100539 (1977). Muller, R. + Dathe, C. Uber Silikone .67. Uber Organofluorsilane Und Organopentafluorosilikate. J Prakt Chem 22, 232-240, doi:DOI 10.1002/prac.19630220504 (1963). Kummer, D. + Koster, H. Contributions to Chemistry of Halogenosilane Adducts .4. [Si(Och3)2bipy2]Cl2 and [Si(Oh)2bipy2]Cl2. Bis-2,2'-Bipyridine Complexes of Silicon with Unexpected Properties. Z Anorg Allg Chem 398, 279-292, doi:DOI 10.1002/zaac.19733980308 (1973). Kummer, D. + Koster, H. Contributions to Chemistry of Halosilane Adducts .5. [Si Bipy3]Br4 a Novel Ionic Tris-2,2'-Bipyridine Complex of Silicon. Z Anorg Allg Chem 402, 297-304, doi:DOI 10.1002/zaac.19734020307 (1973). Kummer, D. + Seshadri, T. Contributions to Chemistry of Halogenosilane Adducts .8. Preparation and Properties of Cationic Bis-2,2'-Bipyridinesilicon Complexes, [Sicl2bipy2]2+ and [Sif2bipy2]2+. Z Anorg Allg Chem 428, 129-144, doi:DOI 10.1002/zaac.19774280118 (1977). Armitage, B. A. Cyanine dye-DNA interactions: Intercalation, groove binding, and aggregation. Top Curr Chem 253, 55-76, doi:Doi 10.1007/B100442 (2005). Vagg, R. S. + Williams, P. A. Chiral Metal-Complexes .1. Photochemical Inversion in Ternary Ru(Ii) Complexes of Diimines and L-Tryptophane. Inorg Chim a-Article 51, 61-65, doi:Doi 10.1016/S0020-1693(00)88318-8 (1981). Vagg, R. S. + Williams, P. A. Chiral Metal-Complexes .2. Light-Catalyzed Diastereoisomeric Equilibration in Aqueous-Solutions of Cis-[Ru(Phen)2(L-Serine)]+ and Its 2,2'-Bipyridyl Analog. Inorg Chim a-Article 52, 69-72, doi:Doi 10.1016/S0020-1693(00)88574-6 (1981). Bailly, C. + Henichart, J. P. DNA Recognition by Intercalator Minor-Groove Binder Hybrid Molecules. Bioconjugate Chem 2, 379-393, doi:Doi 10.1021/Bc00012a001 (1991). Jackson, B. A. + Barton, J. K. Recognition of base mismatches in DNA by 5,6-chrysenequinone diimine complexes of rhodium(III): A proposed mechanism for preferential binding in destabilized regions of the double helix. Biochemistry-Us 39, 6176-6182, doi:Doi 10.1021/Bi9927033 (2000). Chuit, C., Corriu, R. J. P., Reye, C. + Young, J. C. Reactivity of Pentacoordinate and Hexacoordinate Silicon-Compounds and Their Role as Reaction Intermediates. Chemical reviews 93, 1371-1448, doi:Doi 10.1021/Cr00020a003 (1993). Brunel, J. M. BINOL: A versatile chiral reagent. Chemical reviews 105, 857-897, doi:Doi 10.1021/Cr040079g (2005). Holmes, R. R. Comparison of phosphorus and silicon: Hypervalency, stereochemistry, and reactivity. Chemical reviews 96, 927-950, doi:Doi 10.1021/Cr950243n (1996). Erkkila, K. E., Odom, D. T. + Barton, J. K. Recognition and reaction of metallointercalators with DNA. Chemical reviews 99, 2777-2795, doi:Doi 10.1021/Cr9804341 (1999). Liu, H. L., Ohmori, Y., Kojima, M. + Yoshikawa, Y. Stereochemistry of six-coordinate octahedral silicon(IV) complexes containing 2,2 '-bipyridine. Journal of Coordination Ohmori, Y., Namba, M., Kuroda, Y., Kojima, M. + Yoshikawa, Y. Stereochemistry of 6-Coordinated Silicon Complexes .2. Optical Resolution of [Si(Alpha-Diimine)3]4+ (Alpha-Diimine = Bpy, Phen). Inorganic chemistry 31, 2299-2300, doi:Doi 10.1021/Ic00038a003 (1992). Mcnair, A. M. + Mann, K. R. Synthesis and Reactivity of [(Eta-5-C5h5)Ruleta-6-Arene)]Pf6, [(Eta-5-C5[Ch3]5)Ru(Eta-6-Arene)]Pf6 Complexes of Naphthalene, Anthracene, Pyrene, Chrysene, and Azulene -Kinetic-Studies of Arene Displacement-Reactions in Acetonitrile Solutions. Inorganic chemistry 25, 2519-2527, doi:Doi 10.1021/Ic00235a008 (1986). Sullivan, B. P., Salmon, D. J. + Meyer, T. J. Mixed Phosphine 2,2'-Bipyridine Complexes of Ruthenium. Inorganic chemistry 17, 3334-3341, doi:Doi 10.1021/Ic50190a006 (1978). Dupureur, C. M. + Barton, J. K. Structural studies of Lambda-and Delta-[Ru(phen)(2)dppz](2+) bound to d(GTCGAC)(2): Characterization of enantioselective intercalation. Inorganic chemistry 36, 33-43, doi:Doi 10.1021/Ic960738a (1997). Paw, W. + Eisenberg, R. Synthesis, characterization, and spectroscopy of dipyridocatecholate complexes of platinum. Inorganic chemistry 36, 2287-2293, doi:Doi 10.1021/Ic9610851 (1997). Schwab, P. F. H., Fleischer, F. + Michl, J. Preparation of 5-brominated and 5,5 '-dibrominated 2,2 '-bipyridines and 2,2 '-bipyrimidines. Journal of Organic Chemistry 67, 443-449, doi:Doi 10.1021/Jo010707j (2002). Andersson, J. + Lincoln, P. Stereoselectivity for DNA Threading Intercalation of Short Binuclear Ruthenium Complexes. Journal of Physical Chemistry B 115, 14768-14775, doi:Doi 10.1021/Jp2062767 (2011). Bis(1,10-Phenanthroline) Complexes of Silicon, Synthesis, Structure, and Properties. Chem Venkataramana, G. et al. 1,8-Pyrenylene-Ethynylene Macrocycles. Organic Letters 13, 2240-2243, doi:Doi 10.1021/Ol200485x (2011). Tamao, K. et al. Organofluorosilicates in Organic-Synthesis .12. Preparation of Organopentafluorosilicates and Their Cleavage Reactions by Halogens and N-Bromosuccinimide -Synthetic and Mechanistic Aspects. Organometallics 1, 355-368, doi:Doi 10.1021/Om00062a022 (1982). Fulmer, G. R. et al. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 29, 2176-2179, doi:Doi 10.1021/Om100106e (2010). Wang, A. H. J., Nathans, J., Vandermarel, G., Vanboom, J. H. + Rich, A. Molecular-Structure of a Double Helical DNA Fragment Intercalator Complex between Deoxy Cpg and a Terpyridine Platinum Compound. Nature 276, 471-474, doi:Doi 10.1038/276471a0 (1978). Wing, R. et al. Crystal-Structure Analysis of a Complete Turn of B-DNA. Nature 287, 755-758, doi:Doi 10.1038/287755a0 (1980). MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304-308, doi:Doi 10.1038/Nature07367 (2008). Song, H., Kaiser, J. T. + Barton, J. K. Crystal structure of Delta-[Ru(bpy)(2)dppz](2+) bound to mismatched DNA reveals side-by-side metalloinsertion and intercalation. Nat Chem 4, 615-620, doi:Doi 10.1038/Nchem.1375 (2012). Niyazi, H. et al. Crystal structures of Lambda-[Ru(phen)(2)dppz](2+) with oligonucleotides containing TA/TA and AT/AT steps show two intercalation modes. Nat Chem 4, 621-628, doi:Doi 10.1038/Nchem.1397 (2012). Chapter 6 References Gill, M. R. et al. A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nat Chem 1, 662-667, doi:Doi 10.1038/Nchem.406 (2009). Zeglis, B. M. + Barton, J. K. DNA base mismatch detection with bulky rhodium intercalators: synthesis and applications. Nature protocols 2, 357-371, doi:DOI 10.1038/nprot.2007.22 (2007). Shibasaki, M. + Matsunaga, S. Design and application of linked-BINOL chiral ligands in bifunctional asymmetric catalysis. Chemical Society reviews 35, 269-279, doi:Doi 10.1039/B506346a (2006). Zeglis, B. M., Pierre, V. C. + Barton, J. K. Metallo-intercalators and metallo-insertors. Chemical communications, 4565-4579, doi:Doi 10.1039/B710949k (2007). '-hydroxy-1,1 '-binaphthyl as a chiral auxiliary for asymmetric coordination chemistry. New J Chem 35, 788-793, doi:Doi 10.1039/C0nj00787k (2011). Gill, M. R. + Thomas, J. A. Ruthenium(II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics. Chemical Society reviews 41, 3179-3192, doi:Doi 10.1039/C2cs15299a (2012). Komor, A. C. + Barton, J. K. The path for metal complexes to a DNA target. Chemical communications 49, 3617-3630, doi:Doi 10.1039/C3cc00177f (2013). Allen, F. H. et al. Tables of Bond Lengths Determined by X-Ray and Neutron-Diffraction .1. Bond Lengths in Organic-Compounds. J Chem Soc Perk T 2, S1-S19, doi:Doi 10.1039/P298700000s1 (1987). Ohmori, Y., Kojima, M., Kashino, S. + Yoshikawa, Y. Silicon review2. Journal of Coordination Chemistry 39, 219-230, doi:10.1080/00958979608024330 (1996). Drake, A. F. Polarization Modulation -the Measurement of Linear and Circular-Dichroism. J Phys E Sci Instrum 19, 170-181, doi:Doi 10.1088/0022-3735/19/3/002 (1986). Kelley, S. O., Boon, E. M., Barton, J. K., Jackson, N. M. + Hill, M. G. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res 27, 4830-4837, doi:DOI 10.1093/nar/27.24.4830 (1999). Kummer, D. + Seshadri, T. Contributions to Chemistry of Halosilane Adducts .11. Curriculum Vitae Name: Fu, Chen Gender: Male Date of the birth: 30. 05. 1985 Email: fuchen0794@gmail.com ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ EDUCATION BACKGROUND 02. 2011~Present Ph.D. in Chemical Biology, Philipps-Universität Marburg Ph.D. thesis with Prof. Eric Meggers Research: Asymmetric synthesis of bioactive octahedral ruthenium complexes; Synthsis of octahedral silicon complexes as DNA binders and insertors. Kummer, D. + Seshadri, T. Preparation of [Sicl2bipy2](Clo4)2 by Oxidation of Sicl2bipy2. Foxon, S. P. et al. Synthesis, Characterization, and DNA Binding Properties of Ruthenium(II) Complexes Containing the Redox Active Ligand Benzo[i]dipyrido[3,2-a:2 ',3 Voronkov, M. G., Trofimova, O. M., Bolgova, Y. I. + Chernov, N. F. Hypervalent silicon-containing organosilicon derivatives of nitrogen heterocycles. Usp Khim+ 76, 885-906 (2007). Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg ths Prof. Dr. Meggers Eric Meggers, Eric (Prof. Dr.) https://doi.org/10.17192/z2014.0243 opus:5548 monograph doctoralThesis Chemie Silicon Complexes ppn:350678685 Beiträge zur asymmetrischen Synthese von Oktaedrische Ruthenium (II)-Komplexe und Bioactive sechsfach koordinierten Silicium-Komplexe https://archiv.ub.uni-marburg.de/diss/z2014/0243/cover.png Ruthenium 2014 urn:nbn:de:hebis:04-z2014-02431 This thesis mainly includes two parts: one is about the asymmetric synthesis of octahedral ruthenium complexes, and the other one is about the synthesis and investigation of the biological activities of octahedral silicon complexes. In the first part of this thesis, we started with a straightforward and economical method for the asymmetric synthesis of mononuclear ruthenium(II) complexes [Ru(pp)(pp’)(pp’’)](PF6)2 (pp = polypyridyl ligands) by using the readily available racemic starting material [Ru(pp)(pp’)Cl2] together with the natural amino acid L-proline. Next, we initially studied the asymmetric synthesis of dinuclear octahedral ruthenium(II) complexes, and synthesized an enantiomerically enriched dinuclear ruthenium complex for the first time. In the second part of this thesis, we developed the syntheses of hydrolytically stable octahedral silicon complexes, such as silicon arenediolate complexes, silicon arenediaminate complexes, enantiopure silicon BINOLate complexes, and silicon-ruthenium sandwich complexes. Furthermore, we investigated the biological activities of the octahedral silicon complexes and found that the silicon arenediolate complexes could be used as efficient DNA intercalators, while the bulky silicon-ruthenium sandwich complexes could detect mismatched DNA and serve as insertors. asymmetrische Synthese English Philipps-Universität Marburg Asymmetric Synthesis Fachbereich Chemie application/pdf Contributions to the Asymmetric Synthesis of Octahedral Ruthenium(II) Complexes and to Bioactive Hexacoordinate Silicon Complexes Silicium-Komplexe Diese Doktorarbeit ist aus zwei Teilen zusammengesetzt. Bei dem ersten Teil handelt sich um die asymmetrische Synthese oktaedrischer Rutheniumkomplexe und in dem zweiten Teil wurden die Synthese sowie die biologische Aktivität oktaedrischer Siliciumkomplexe erforscht. Ausgehend von leicht herstellbarem racemischem Material [Ru(pp)(pp’)Cl2] (pp = Polypyridylliganden) wurden in dem ersten Teil dieser Arbeit die einkernigen Ruthenium(II)komplexe [Ru(pp)(pp’)(pp’’)](PF6)2 mit dem kommerziell verfügbarem Naturstoff L-Prolin bei einer einfachen und kostengünstigen asymmetrischen Synthese hergestell. Bei der ersten Untersuchung von doppelkernigen Ruthenium(II)komplexe wurde zum ersten Mal ein enantiomerenreiner doppelkerniger Ru-Komplex synthetisiert. In dem zweiten Teil dieser Arbeit wurden oktaedrische hydrolysestabile Siliciumkomplexe z.B. Siliciumkomplexe mit Arendiolat- und Arendiaminatliganden, enantiomerenreine Silicium-BINOLat-Komplexe und Silicium-Ruthenium-Sandwichkomplexe, erfolgreich synthetisiert. Weiterhin wurde die biologische Aktivität oktaedrischer Siliciumkomplexe erforscht. Dabei wurde herausgefunden, dass die Siliciumkomplexe mit Arendiolatliganden als effiziente DNA-Interkalatoren dienen konnten. Außerdem konnten Silicium-Ruthenium Sandwichkomplexe Basenfehlpaarungen in Duplex DNA stabilisieren. 2014-05-14 2014-11-26 Fu, Chen Fu Chen