Krümmung von höheren direkten Bildgarben auf dem Modulraum der stabilen Vektorbündel

Die höheren direkten Bildgarben von Familien von Hermite-Einstein-Vektorbündeln auf kompakten Kählermannigfaltigkeiten werden untersucht. Außerhalb einer echten analytischen Teilmenge der Basis induzieren diese Garben holomorphe Vektorbündel, die eine natürliche hermitesche Metrik tragen. Diese Metr...

Full description

Saved in:
Bibliographic Details
Main Author: Geiger, Thomas Wolfgang
Contributors: Schumacher, Georg (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:German
Published: Philipps-Universität Marburg 2013
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Die höheren direkten Bildgarben von Familien von Hermite-Einstein-Vektorbündeln auf kompakten Kählermannigfaltigkeiten werden untersucht. Außerhalb einer echten analytischen Teilmenge der Basis induzieren diese Garben holomorphe Vektorbündel, die eine natürliche hermitesche Metrik tragen. Diese Metriken sind Verallgemeinerungen der Weil-Petersson-Metrik der Basis und werden faserweise von den L2-Skalarprodukten harmonischer Formen induziert. Es werden die Krümmungen dieser Metriken berechnet und Bezüge zu Modulräumen stabiler Vektorbündel diskutiert. Dabei ist das Hauptwerkzeug die Hodge-Theorie in holomorphen Vektorbündeln über kompakten Kählermannigfaltigkeiten.
DOI:10.17192/z2013.0500