Krümmung von höheren direkten Bildgarben auf dem Modulraum der stabilen Vektorbündel
Die höheren direkten Bildgarben von Familien von Hermite-Einstein-Vektorbündeln auf kompakten Kählermannigfaltigkeiten werden untersucht. Außerhalb einer echten analytischen Teilmenge der Basis induzieren diese Garben holomorphe Vektorbündel, die eine natürliche hermitesche Metrik tragen. Diese Metr...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | German |
Published: |
Philipps-Universität Marburg
2013
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Die höheren direkten Bildgarben von Familien von Hermite-Einstein-Vektorbündeln auf kompakten Kählermannigfaltigkeiten werden untersucht. Außerhalb einer echten analytischen Teilmenge der Basis induzieren diese Garben holomorphe Vektorbündel, die eine natürliche hermitesche Metrik tragen. Diese Metriken sind Verallgemeinerungen der Weil-Petersson-Metrik der Basis und werden faserweise von den L2-Skalarprodukten harmonischer Formen induziert. Es werden die Krümmungen dieser Metriken berechnet und Bezüge zu Modulräumen stabiler Vektorbündel diskutiert. Dabei ist das Hauptwerkzeug die Hodge-Theorie in holomorphen Vektorbündeln über kompakten Kählermannigfaltigkeiten. |
---|---|
DOI: | 10.17192/z2013.0500 |