Diagonalizability of elements of a group algebra

Let G be a group and K a fields of characteristic 0. Let f be an element of the group algebra K[G]. Let X(f) be the matrix of the left-multiplication action of f on K[G]. We determine the eigenvalues and their multiplicities of X(f) when f is a central element of G, when f is an element of the desce...

Full description

Saved in:
Bibliographic Details
Main Author: Randriamaro, Hery
Contributors: Welker, Volkmar (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2012
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

Internet

PDF Full Text

Holdings details from
Call Number: urn:nbn:de:hebis:04-z2012-04681
Publication Date: 2012-05-18
Date of Acceptance: 2012-04-11
Downloads: 62 (2024), 106 (2023), 158 (2022), 47 (2021), 23 (2020), 27 (2019), 8 (2018)
License: https://rightsstatements.org/vocab/InC-NC/1.0/
Access URL: https://archiv.ub.uni-marburg.de/diss/z2012/0468
https://doi.org/10.17192/z2012.0468