Philipps-Universität Marburg TRPC5 Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg Spannungsabhängigkeit Patch clamp method Voltage Semtner, Marcus Semtner Marcus Klassische TRP-Kanäle (TRPC) sind Ca(2+)-permeable, unselektive Kationenkanäle, die durch PLC-abhängige Signalwege intrazellulär aktiviert werden. Obwohl die ersten Mitglieder dieser Subfamilie bereits vor über 15 Jahren kloniert wurden, sind sie auf funktioneller Ebene bisher nur unvollständig untersucht. Das Ziel dieser Arbeit bestand darin, die biophysikalischen Eigenschaften von TRPC5 im heterologen Expressionssystem mit Hilfe von molekularbiologischen und elektrophysiologischen Methoden im Detail zu studieren und mit denen anderer Vertreter der TRPC-Subfamilie zu vergleichen. TRPC5 wurde in der vorliegenden Arbeit als ein spannungsabhängig gesteuerter Kationenkanal herausgestellt, dessen Aktivität durch ein breites Spektrum an extrazellulären, positiv geladenen Elementarionen direkt moduliert werden kann. Die Permeation von mono- und divalenten Kationen durch TRPC5 ist unselektiv und wird durch Aminosäuren im Bereich zwischen der 5. und 6. Transmembrandomäne determiniert. Proton https://archiv.ub.uni-marburg.de/diss/z2011/0363/cover.png Patch-Clamp-Methode Pharmakologisches Institut 2011-05-12 ths Prof. Dr. Plant Timothy Plant, Timothy (Prof. Dr.) Elektrophysiologische Charakterisierung des klassischen TRP-Kanals TRPC5 Ionenkanal Permeation doctoralThesis 2010-12-09 2010 Proton Electrophysiological characterisation of the classical TRP channel TRPC5 Ion channel TRP channel https://doi.org/10.17192/z2011.0363 Medizin Classical TRP channels (TRPC) are Ca(2+)-permeable, unselective cation channels that are activated by PLC-dependent intracellular pathways. Although most members of this subfamily were cloned at least 10 years ago, functional data on some of their biophysical properties are still not available. The main aim of this study was to investigate the properties of TRPC5, and to compare them with those of other members of the TRPC subfamily. In the present study, TRPC5 was characterised to be a voltage-dependent channel that can be modulated directly by a multiplicity of extracellular elementary cations. The permeation of mono- or divalent cations through TRPC5 is unselective and determined by amino acids between the 5th and 6th transmembrane domain. monograph opus:3714 German TRP-Kanal Permeation application/pdf urn:nbn:de:hebis:04-z2011-03635 Natural sciences + mathematics Naturwissenschaften Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201 Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391, 85-100. Tominaga, M., Caterina, M., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. (1998). The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531-543 Odell, A. F., Scott, J. L., and Van Helden, D. F. (2005). Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280, 37974-37987 Nilius, B., Vennekens, R., Prenen, J., Hoenderop, J. G., Droogmans, G., and Bindels, R. J. (2001). The single pore residue Asp542 determines Ca 2+ permeation and Mg 2+ block of the epithelial Ca 2+ channel. J Biol Chem 276, 1020-1025. Riccio, A., Medhurst, A. D., Mattei, C., Kelsell, R. E., Calver, A. R., Randall, A. D., Benham, C. D., and Pangalos, M. N. (2002b). mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109, 95-104 Flemming, P. K., Dedman, A. M., Xu, S. Z., Li, J., Zeng, F., Naylor, J., Benham, C. D., Bateson, A. N., Muraki, K., and Beech, D. J. (2006). Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 281, 4977-4982 Watanabe, H., Davis, J. B., Smart, D., Jerman, J. C., Smith, G. D., Hayes, P., Vriens, J., Cairns, W., Wissenbach, U., Prenen, J., Flockerzi, V., Droogmans, G., Benham, C.D., and Nilius, B. (2002). Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277, 13569-13577. Benham, C. D., Hess, P., and Tsien, R. W. (1987). Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ Res 61, I10-16. Yoshida, T., Inoue, R., Morii, T., Takahashi, N., Yamamoto, S., Hara, Y., Tominaga, M., Shimizu, S., Sato, Y., and Mori, Y. (2006). Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2, 596-607 Cosens, D. J., and Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285-287. Li, H. S., Xu, X. Z., and Montell, C. (1999). Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24, 261-273. Obukhov, A. G., and Nowycky, M. C. (2005). A cytosolic residue mediates Mg 2+ block and regulates inward current amplitude of a transient receptor potential channel. J Neurosci 25, 1234-1239 Lucas, P., Ukhanov, K., Leinders-Zufall, T., and Zufall, F. (2003). A diacylglycerol- gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40, 551-561 Lettvin, J. Y., Pickard, W. F., McCulloch, W. S., and Pitts, W. (1964). A Theory of Passive Ion Flux through Axon Membranes. Nature 202, 1338-1339 Shi, N., Ye, S., Alam, A., Chen, L., and Jiang, Y. (2006). Atomic structure of a Na + - and K + -conducting channel. Nature 440, 570-574 Montell, C., Birnbaumer, L., Flockerzi, V., Bindels, R. J., Bruford, E. A., Caterina, M. J., Clapham, D. E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A. M., Schultz, G., Shimizu, N., and Zhu, M. X. (2002). A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9, 229-231. Ellinor, P. T., Yang, J., Sather, W. A., Zhang, J. F., and Tsien, R. W. (1995). Ca 2+ channel selectivity at a single locus for high-affinity Ca 2+ interactions. Neuron 15, 1121-1132 Llinas, R. R. (1982). Calcium in synaptic transmission. Sci Am 247, 56-65. Ebashi, S. (1972). Calcium ions and muscle contraction. Nature 240, 217-218. Clapham, D. E. (2007). Calcium signaling. Cell 131, 1047-1058 Pingle, S. C., Matta, J. A., and Ahern, G. P. (2007). Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol, 155-171 Gunthorpe, M. J., Smith, G. D., Davis, J. B., and Randall, A. D. (2001). Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflugers Arch 442, 668-674 Funayama, M., Goto, K., and Kondo, H. (1996). Cloning and expression localization of cDNA for rat homolog of TRP protein, a possible store-operated calcium (Ca 2+ ) channel. Brain Res Mol Brain Res 43, 259-266. Boulay, G., Zhu, X., Peyton, M., Jiang, M., Hurst, R., Stefani, E., and Birnbaumer, L. (1997). Cloning and expression of a novel mammalian homologue of Drosophila transient receptor potential (TRP) involved in calcium entry secondary to activation of receptors coupled by the G q class of G protein. Riccio, A., Mattei, C., Kelsell, R. E., Medhurst, A. D., Calver, A. R., Randall, A. D., Davis, J. B., Benham, C. D., and Pangalos, M. N. (2002a). Cloning and functional expression of human short TRP7, a candidate protein for store- operated Ca 2+ influx. J Biol Chem 277, 12302-12309. Brauchi, S., Orio, P., and Latorre, R. (2004). Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101, 15494-15499 Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W. F., Romanin, C., Zhu, M. X., and Groschner, K. (2000). Coassembly of Trp1 and Trp3 proteins generates diacylglycerol-and Ca 2+ -sensitive cation channels. J Biol Chem 275, 27799-27805. Chang, A. S., Chang, S. M., Garcia, R. L., and Schilling, W. P. (1997). Concomitant and hormonally regulated expression of trp genes in bovine aortic endothelial cells. FEBS Letters 415, 335-340 Aggarwal, S. K., and MacKinnon, R. (1996). Contribution of the S4 segment to gating charge in the Shaker K + channel. Neuron 16, 1169-1177 Zhou, J., Du, W., Zhou, K., Tai, Y., Yao, H., Jia, Y., Ding, Y., and Wang, Y. (2008). Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11 (7), 741-743 Smith, R. M., and Martell, A. E. (1975) Critical Stability Constants: Amines, 002, Plenum Press Striggow, F., and Ehrlich, B. E. (1996). Ligand-gated calcium channels inside and out. Curr Opin Cell Biol 8, 490-495. Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T., and Snyder, S. H. (2003). Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5, 1051 Tsvilovskyy, V. V., Zholos, A. V., Aberle, T., Philipp, S. E., Dietrich, A., Zhu, M. X., Birnbaumer, L., Freichel, M., and Flockerzi, V. (2009). Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137, 1415-1424 van Haasteren, G., Li, S., Muda, M., Susini, S., and Schlegel, W. (1999). Calcium signalling and gene expression. J Recept Signal Transduct Res 19, 481-492. Walker, R. L., Hume, J. R., and Horowitz, B. (2001). Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol 280, C1184-1192. Garcia, R. L., and Schilling, W. P. (1997). Differential expression of mammalian TRP homologues across tissues and cell lines. Biochemical and Biophysical Research Communications 239, 279-283 Otsuka, Y., Sakagami, H., Owada, Y., and Kondo, H. (1998). Differential localization of mRNAs for mammalian trps, presumptive capacitative calcium entry channels, in the adult mouse brain. Tohoku J Exp Med 185, 139-146. Wollmuth, L. P., and Sakmann, B. (1998). Different mechanisms of Ca 2+ transport in NMDA and Ca 2+ -permeable AMPA glutamate receptor channels. J Gen Physiol 112, 623-636 Diffusion-limited translocation mechanism of protein kinase C isotypes. Faseb J 15, 1634-1636 Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T., and Schultz, G. (1999). Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol Nature 397, 259-263 Sutton, K. A., Jungnickel, M. K., Wang, Y., Cullen, K., Lambert, S., and Florman, H.M. (2004). Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev Biol 274, 426-435 Riccio, A., Li, Y., Moon, J., Kim, K. S., Smith, K. S., Rudolph, U., Gapon, S., Yao, G. L., Tsvetkov, E., Rodig, S. J., Van't Veer, A., Meloni, E. G., Carlezon, W. A., Jr., Bolshakov, V. Y., and Clapham, D. E. (2009). Essential role for TRPC5 in amygdale function and fear-related behavior. Cell 137, 761-772 Li, Y., Jia, Y. C., Cui, K., Li, N., Zheng, Z. Y., Wang, Y. Z., and Yuan, X. B. (2005). Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived Neurotrophic factor. Nature 434, 894-898 Mederos y Schnitzler, M., Wäring, J., Gudermann, T., and Chubanov, V. (2008). Evolutionary determinants of divergent calcium selectivity of TRPM channels. Faseb J 22, 1540-1551 Venkatachalam, K., Ma, H. T., Ford, D. L., and Gill, D. L. (2001). Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J Biol Chem 276, 33980-33985. Liu, D., Zhang, Z., and Liman, E. R. (2005). Extracellular acid block and acid- enhanced inactivation of the Ca 2+ -activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains. J Biol Chem 280, 20691-20699 Ahern, G. P., Brooks, I. M., Miyares, R. L., and Wang, X. B. (2005). Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 25, 5109-5116 Knot, H. J., Zimmermann, P. A., and Nelson, M. T. (1996). Extracellular K + -induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K + channels. J Physiol 492 ( Pt 2), 419-430 Kiselyov, K., and Muallem, S. (1999). Fatty acids, diacylglycerol, Ins(1,4,5)P 3 receptors and Ca 2+ influx. Trends Neurosci. 22, 334-337 Strunecka, A., Strunecky, O., and Patocka, J. (2002). Fluoride plus aluminum: useful tools in laboratory investigations, but messengers of false information. Physiol Res 51, 557-564 Strübing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D. E. (2003). Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278, 39014-39019 Schaefer, M., Plant, T. D., Stresow, N., Albrecht, N., and Schultz, G. (2002). Functional differences between TRPC4 splice variants. J Biol Chem 277, 3752-3759. Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Mol Cell Neurosci 30, 207-217 Nilius, B., Talavera, K., Owsianik, G., Prenen, J., Droogmans, G., and Voets, T. (2005b). Gating of TRP channels: a voltage connection? J Physiol 567, 35-44 Garcia-Martinez, C., Morenilla-Palao, C., Planells-Cases, R., Merino, J. M., and Ferrer-Montiel, A. (2000). Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275, 32552-32558 Dietrich, A., Mederos, Y. S. M., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., Obst, M., Yildirim, E., Salanova, B., Kalwa, H., Essin, K., Pinkenburg, O., Luft, F. C., Gudermann, T., and Birnbaumer, L. (2005). Increased vascular smooth muscle contractility in TRPC6 -/-mice. Mol Cell Biol 25, 6980-6989 Kielland, J. (1937). Individual Activity Coefficients of Ions in Aqueous Solutions. Journal of the American Chemical Society 59, 1675–1678 Minke, B., Wu, C., and Pak, W. L. (1975). Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84-87. Halaszovich, C. R., Zitt, C., Jungling, E., and Luckhoff, A. (2000). Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275, 37423-37428. In vivo identification and manipulation of the Ca 2+ selectivity filter in the Drosophila transient receptor potential channel. J Neurosci 27, 604-615 Cavalie, A. (2007). Ionic channels formed by TRPC4. Handb Exp Pharmacol, 93-108 Eisenman, G., and Horn, R. (1983). Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol 76, 197-225 Freichel, M., Suh, S. H., Pfeifer, A., Schweig, U., Trost, C., Weissgerber, P., Biel, M., Philipp, S., Freise, D., Droogmans, G., Hofmann, F., Flockerzi, V., and Nilius, B. (2001). Lack of an endothelial store-operated Ca 2+ current impairs agonist-dependent vasorelaxation in TRP4 -/-mice. Nat Cell Biol 3, 121-127. Jung, S., Muhle, A., Schaefer, M., Strotmann, R., Schultz, G., and Plant, T. D. (2003). Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278, 3562-3571 Wettschureck, N., and Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiol Rev 85, 1159-1204 Yeh, B. I., Sun, T. J., Lee, J. Z., Chen, H. H., and Huang, C. L. (2003). Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J Biol Chem 278, 51044-51052 Ramanan, S. V., Fan, S. F., and Brink, P. R. (1992). Model invariant method for extracting single-channel mean open and closed times from heterogeneous multichannel records. J Neurosci Methods 42, 91-103. Penniston, J. T., and Enyedi, A. (1998). Modulation of the plasma membrane Ca 2+ pump. J Membr Biol 165, 101-109. Okada, T., Inoue, R., Yamazaki, K., Maeda, A., Kurosaki, T., Yamakuni, T., Tanaka, I., Shimizu, S., Ikenaka, K., Imoto, K., and Mori, Y. (1999). Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca 2+ -permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274, 27359-27370. Mizuno, M., Kitayama, S., Saishin, Y., Shimada, S., Morita, K., Mitsuhata, C., Kurihara, H., and Dohi, T. (1999). Molecular cloning and characterization of rat trp homologues from brain. Mol. Brain Res. 64, 41-51 Okada, T., Shimizu, S., Wakamori, M., Maeda, A., Kurosaki, T., Takada, N., Imoto, K., and Mori, Y. (1998). Molecular cloning and functional characterization of a novel receptor-activated TRP Ca 2+ channel from mouse brain. J. Biol. Chem. 273, 10279-10287 Zhu, X., Chu, P. B., Peyton, M., and Birnbaumer, L. (1995). Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373, 193-198 Vannier, B., Peyton, M., Boulay, G., Brown, D., Qin, N., Jiang, M., Zhu, X., and Birnbaumer, L. (1999). Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca 2+ entry channel. Proc Natl Acad Sci USA 96, 2060-2064 Beech, D. J., Muraki, K., and Flemming, R. (2004). Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559, 685-706 Begenisich, T. B., and Cahalan, M. D. (1980). Sodium channel permeation in squid axons: Reversal potential experiments. J Physiol 307, 217-242 Ohta, T., Imagawa, T., and Ito, S. (2008). Novel gating and sensitizing mechanism of capsaicin receptor (TRPV1): tonic inhibitory regulation of extracellular sodium through the external protonation sites on TRPV1. J Biol Chem 283, 9377-9387 Bonaventure, P., Guo, H., Tian, B., Liu, X., Bittner, A., Roland, B., Salunga, R., Ma, X. J., Kamme, F., Meurers, B., Bakker, M., Jurzak, M., Leysen, J. E., and Erlander, M. G. (2002). Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res 943, 38-47 Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., and Plant, T. D. (2000). OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2, 695-702. Owsianik, G., Talavera, K., Voets, T., and Nilius, B. (2005). Permeation and Selectivity of TRP Channels. Annu Rev Physiol Patapoutian, A., Peier, A. M., Story, G. M., and Viswanath, V. (2003). ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4, 529-539 Hesselager, M., Timmermann, D. B., and Ahring, P. K. (2004). pH Dependency and desensitization kinetics of heterologously expressed combinations of acid sensing ion channel subunits. J Biol Chem 279, 11006-11015 Li, C., Peoples, R. W., and Weight, F. F. (1996). Proton potentiation of ATP-gated ion channel responses to ATP and Zn 2+ in rat nodose ganglion neurons. Immke, D. C., and McCleskey, E. W. (2003). Protons open acid-sensing ion channels by catalyzing relief of Ca 2+ blockade. Neuron 37, 75-84 Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6, 702-720 Sayle, R. A., and Milner-White, E. J. (1995). RASMOL: biomolecular graphics for all. Trends Biochem Sci 20, 374 Bernstein, H. J. (2000). Recent changes to RasMol, recombining the variants. Trends Biochem Sci 25, 453-455 Fasolato, C., Innocenti, B., and Pozzan, T. (1994). Receptor-activated Ca 2+ influx: How many mechanisms for how many channels? Trends Pharmacol. Sci. 15, 77-83 Zhu, X., Jiang, M., and Birnbaumer, L. (1998). Receptor-activated Ca 2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Schaefer, M., Plant, T. D., Obukhov, A. G., Hofmann, T., Gudermann, T., and Schultz, G. (2000). Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275, 17517-17526. Plant, T. D., and Schaefer, M. (2005). Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 371, 266- 276 Wang, G. X., and Poo, M. M. (2005). Requirement of TRPC channels in netrin-1- induced chemotropic turning of nerve growth cones. Nature 434, 898-904 Misquitta, C. M., Mack, D. P., and Grover, A. K. (1999). Sarco/endoplasmic reticulum Ca 2+ (SERCA)-pumps: link to heart beats and calcium waves. Cell Calcium 25, 277-290. Voets, T., Talavera, K., Owsianik, G., and Nilius, B. (2005). Sensing with TRP channels. Nat Chem Biol 1, 85-92 Neher, E., and Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799-802. Sakmann, B., and Neher, E. (eds) (1983) Single-Channel Recording, first edition Ed., Plenum Press, New York Sather, W. A., and McCleskey, E. W. (2003). Permeation and selectivity in calcium channels. Annu Rev Physiol 65, 133-159 Blaustein, M. P., and Lederer, W. J. (1999). Sodium/calcium exchange: its physiological implications. Physiol Rev 79, 763-854. Yamada, H., Wakamori, M., Hara, Y., Takahashi, Y., Konishi, K., Imoto, K., and Mori, Y. (2000). Spontaneous single-channel activity of neuronal TRP5 channel recombinantly expressed in HEK293 cells. Neurosci Lett 285, 111-4. Mayer, C. J., van Breemen, C., and Casteels, T. (1972). The action of lanthanum and D600 on the calcium exchange in the smooth muscle cells of the guinea- pig Taenia coli. Pflugers Arch 337, 333-350 Caterina, M., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824 Putney, J. W., Jr. (2004). The enigmatic TRPCs: multifunctional cation channels. Trends Cell Biol 14, 282-286 Putney, J. W., Jr., and Bird, G. S. (1993). The inositol phosphate-calcium signalling system in nonexcitable cells. Endocr Rev 14, 610-631 Penner, R., and Fleig, A. (2007). The Mg 2+ and Mg 2+ -nucleotide-regulated channel- kinase TRPM7. Handb Exp Pharmacol, 313-328 Zhou, Y., and MacKinnon, R. (2003). The occupancy of ions in the K + selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333, 965-975 Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V., and Nilius, B. (2004). The principle of temperature-dependent gating in cold-and heat- sensitive TRP channels. Nature 430, 748-754 Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-242 Minke, B., and Selinger, Z. (1996). The roles of trp and calcium in regulating photoreceptor function in Drosophila. Curr Opin Neurobiol 6, 459-466 Edwards, C. (1982). The selectivity of ion channels in nerve and muscle. Neuroscience 7, 1335-1366 Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S.L., Chait, B. T., and MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280, 69-77 Inoue, R., Okada, T., Onoue, H., Hara, Y., Shimizu, S., Naitoh, S., Ito, Y., and Mori, Y. (2001). The transient receptor potential protein homologue TRP6 is the essential component of vascular α 1 -adrenoceptor-activated Ca 2+ - permeable cation channel. Circ Res 88, 325-332. Hardie, R. C., and Minke, B. (1992). The trp gene is essential for a light-activated Ca 2+ channel in Drosophila photoreceptors. Neuron 8, 643-651 Clapham, D. E., Runnels, L. W., and Strübing, C. (2001). The TRP ion channel family. Nat Rev Neurosci 2, 387-396. Sylvester, J. B., Mwanjewe, J., and Grover, A. K. (2001). Transient receptor potential protein mRNA expression in rat substantia nigra. Neurosci Lett 300, 83-86. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1, 165-170 Kwan, K. Y., Allchorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang, D. S., Woolf, C. J., and Corey, D. P. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277-289 Corey, D. P., Garcia-Anoveros, J., Holt, J. R., Kwan, K. Y., Lin, S. Y., Vollrath, M.A., Amalfitano, A., Cheung, E. L., Derfler, B. H., Duggan, A., Geleoc, G. S., Gray, P. A., Hoffman, M. P., Rehm, H. L., Tamasauskas, D., and Zhang, D.S. (2004). TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723-730 Zhu, X., Jiang, M., Peyton, M., Boulay, G., Hurst, R., Stefani, E., and Birnbaumer, L. (1996). Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca 2+ entry. Cell 85, 661-671 Wes, P. D., Chevesich, J., Jeromin, A., Rosenberg, C., Stetten, G., and Montell, C. (1995). TRPC1, a human homolog of a Drosophila store-operated channel. Strübing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D. E. (2001). TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645-655. Rychkov, G., and Barritt, G. J. (2007). TRPC1 Ca 2+ -permeable channels in animal cells. Handb Exp Pharmacol, 23-52 Liu, X., Singh, B. B., and Ambudkar, I. S. (2003). TRPC1 is required for functional store-operated Ca 2+ channels. Role of acidic amino acid residues in the S5- S6 region. J Biol Chem 278, 11337-11343 Beech, D. J. (2005). TRPC1: store-operated channel and more. Pflugers Arch 451, 53-60 Beech, D. J. (2007). Canonical transient receptor potential 5. Handb Exp Pharmacol, 109-123 TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6, 837-845 Jung, S., Strotmann, R., Schultz, G., and Plant, T. D. (2002). TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol 282, C347-359. Montell, C. (2005). TRP channels in Drosophila photoreceptor cells. J Physiol 567, 45-51 Cheng, H., Beck, A., Launay, P., Gross, S. A., Stokes, A. J., Kinet, J. P., Fleig, A., and Penner, R. (2007). TRPM4 controls insulin secretion in pancreatic beta- cells. Cell Calcium 41, 51-61 Bodding, M. (2007). TRPM6: A Janus-like protein. Handb Exp Pharmacol, 299-311 Groschner, K., Hingel, S., Lintschinger, B., Balzer, M., Romanin, C., Zhu, X., and Schreibmayer, W. (1998). Trp proteins form store-operated channels in human vascular endothelial cells. FEBS Lett. 437, 101-106 Xu, H., Ramsey, I. S., Kotecha, S. A., Moran, M. M., Chong, J. A., Lawson, D., Ge, P., Lilly, J., Silos-Santiago, I., Xie, Y., DiStefano, P. S., Curtis, R., and Clapham, D. E. (2002). TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181-186 Wissenbach, U., and Niemeyer, B. A. (2007). Trpv6. Handb Exp Pharmacol, 221- 234 Babes, A., Zorzon, D., and Reid, G. (2004). Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 20, 2276-2282 Singh, B. B., Lockwich, T. P., Bandyopadhyay, B. C., Liu, X., Bollimuntha, S., Brazer, S. C., Combs, C., Das, S., Leenders, A. G., Sheng, Z. H., Knepper, M. A., Ambudkar, S. V., and Ambudkar, I. S. (2004). VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca 2+ influx. Mol Cell 15, 635-646 Gunthorpe, M. J., Harries, M. H., Prinjha, R. K., Davis, J. B., and Randall, A. (2000). Voltage-and time-dependent properties of the recombinant rat vanilloid receptor (rVR1). J Physiol 525 Pt 3, 747-759 Nilius, B., Prenen, J., Droogmans, G., Voets, T., Vennekens, R., Freichel, M., Wissenbach,U., and Flockerzi, V. (2003). Voltage dependence of the Ca 2+ - activated cation channel TRPM4. J Biol Chem 278, 30813-30820 X-ray structure of a voltage-dependent K + channel. Nature 423, 33-41 Shim, S., Goh, E. L., Ge, S., Sailor, K., Yuan, J. P., Roderick, H. L., Bootman, M. D., Worley, P. F., Song, H., and Ming, G. L. (2005). XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8, 730-735 Zholos, A. V., and Bolton, T. B. (1996). A novel GTP-dependent mechanism of ileal muscarinic metabotropic channel desensitization. Br J Pharmacol 119, 997- 1012 Zholos, A. V., and Bolton, T. B. (1997). Effects of protons on muscarinic receptor cationic current in single visceral smooth muscle cells. Am J Physiol 272, G215-223 Zholos, A. V., and Bolton, T. B. (1994). G-protein control of voltage dependence as well as gating of muscarinic metabotropic channels in guinea-pig ileum. J Physiol 478 (Pt 2), 195-202 Dresviannikov, A. V., Bolton, T. B., and Zholos, A. V. (2006). Muscarinic receptor- activated cationic channels in murine ileal myocytes. Br J Pharmacol 149, 179-187 Elliott, A. C. (2001). Recent developments in non-excitable cell calcium entry. Cell Calcium 30, 73-93. Petersen, O. H., Tepikin, A., and Park, M. K. (2001). The endoplasmic reticulum: one continuous or several separate Ca 2+ stores? Trends Neurosci 24, 271- 276. Venkatachalam, K., and Montell, C. (2007). TRP channels. Annu Rev Biochem 76, 387-417 Philipp, S., Hambrecht, J., Braslavski, L., Schroth, G., Freichel, M., Murakami, M., Cavalie, A., and Flockerzi, V. (1998a). A novel capacitative calcium entry channel expressed in excitable cells. Embo J 17, 4274-4282 Traynelis, S. F., and Cull-Candy, S. G. (1991). Pharmacological properties and H + sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol 433, 727-763 Wells, G. B., and Tanaka, J. C. (1997). Ion selectivity predictions from a two-site permeation model for the cyclic nucleotide-gated channel of retinal rod cells. Biophys J 72, 127-140 Fenwick, E. M., Marty, A., and Neher, E. (1982). Sodium and calcium channels in bovine chromaffin cells. J Physiol 331, 599-635. Sinkins, W. G., Estacion, M., and Schilling, W. P. (1998). Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem J 331, 331-339. Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99, 7461-7466. Lee, S. Y., Lee, A., Chen, J., and MacKinnon, R. (2005). Structure of the KvAP voltage-dependent K + channel and its dependence on the lipid membrane. Proc Natl Acad Sci USA 102, 15441-15446 Opsahl, L. R., and Webb, W. W. (1994). Lipid-glass adhesion in giga-sealed patch- clamped membranes. Biophys J 66, 75-79 Lewis, C. A. (1979). Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol 286, 417-445 Reiser, J., Polu, K. R., Moller, C. C., Kenlan, P., Altintas, M. M., Wei, C., Faul, C., Herbert, S., Villegas, I., Avila-Casado, C., McGee, M., Sugimoto, H., Brown, D., Kalluri, R., Mundel, P., Smith, P. L., Clapham, D. E., and Pollak, M. R. (2005). TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37, 739-744 Eisenman, G. (1962). Cation selective glass electrodes and their mode of operation. Biophys J 2, 259-323 Zeng, F., Xu, S. Z., Jackson, P. K., McHugh, D., Kumar, B., Fountain, S. J., and Beech, D. J. (2004). Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol 559, 739-750 Jordt, S. E., Tominaga, M., and Julius, D. (2000). Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 97, 8134-8139. Zitt, C., Obukhov, A. G., Strübing, C., Zobel, A., Kalkbrenner, F., Lückhoff, A., and Schultz, G. (1997). Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. Journal of Cell Biology 138, 1333-1341 Liman, E. R., Corey, D. P., and Dulac, C. (1999). TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96, 5791-5796 Hess, P., Lansman, J. B., and Tsien, R. W. (1986). Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 88, 293-319 Control of P2X 2 channel permeability by the cytosolic domain. J Gen Physiol 120, 119-131 Zholos, A. V., Zholos, A. A., and Bolton, T. B. (2004). G-protein-gated TRP-like cationic channel activated by muscarinic receptors: effect of potential on single-channel gating. J Gen Physiol 123, 581-598 Jiang, J., Li, M., and Yue, L. (2005). Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126, 137-150 Kamouchi, M., Philipp, S., Flockerzi, V., Wissenbach, U., Mamin, A., Raeymaekers, L., Eggermont, J., Droogmans, G., and Nilius, B. (1999). Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J. Physiol. 518, 345-358 Warnat, J., Philipp, S., Zimmer, S., Flockerzi, V., and Cavalie, A. (1999). Phenotype of a recombinant store-operated channel: highly selective permeation of Ca 2+ . J Physiol 518 ( Pt 3), 631-638 Hoenderop, J. G., Vennekens, R., Muller, D., Prenen, J., Droogmans, G., Bindels, R. J., and Nilius, B. (2001). Function and expression of the epithelial Ca 2+ channel family: comparison of mammalian ECaC1 and 2. J Physiol 537, 747- 761. Matta, J. A., and Ahern, G. P. (2007). Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 585, 469-482 Obukhov, A. G., and Nowycky, M. C. (2008). TRPC5 channels undergo changes in gating properties during the activation-deactivation cycle. J Cell Physiol 216, 162-171 Yuan, J. P., Zeng, W., Huang, G. N., Worley, P. F., and Muallem, S. (2007). STIM1 heteromultimerizes TRPC channels to determine their function as store- operated channels. Nat Cell Biol 9, 636-645 Munsch, T., Freichel, M., Flockerzi, V., and Pape, H. C. (2003). Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci USA 100, 16065-16070 Li, M., Du, J., Jiang, J., Ratzan, W., Su, L. T., Runnels, L. W., and Yue, L. (2007). Molecular determinants of Mg 2+ and Ca 2+ permeability and pH sensitivity in TRPM6 and TRPM7 J Biol Chem 282, 25817-25830 Philipp, S., Cavalie, A., Freichel, M., Wissenbach, U., Zimmer, S., Trost, C., Marquart, A., Murakami, M., and Flockerzi, V. (1996a). A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. Embo J 15, 6166-6171 Gunthorpe, M. J., Benham, C. D., Randall, A., and Davis, J. B. (2002). The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23, 183-191. Voets, T., and Nilius, B. (2003). The pore of TRP channels: trivial or neglected? Cell Calcium 33, 299-302 Nilius, B., and Voets, T. (2005). TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 451, 1-10 Talavera, K., Yasumatsu, K., Voets, T., Droogmans, G., Shigemura, N., Ninomiya, Y., Margolskee, R. F., and Nilius, B. (2005). Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022-1025 Nilius, B., Prenen, J., Janssens, A., Owsianik, G., Wang, C., Zhu, M. X., and Voets, T. (2005a). The selectivity filter of the cation channel TRPM4. J Biol Chem 280, 22899-22906 Voets, T., Prenen, J., Vriens, J., Watanabe, H., Janssens, A., Wissenbach, U., Bodding, M., Droogmans, G., and Nilius, B. (2002). Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277, 33704- 33710 Voets, T., Owsianik, G., Janssens, A., Talavera, K., and Nilius, B. (2007a). TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3, 174-182 2011-08-08 TRPC5