Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds
The notions of stability of holomorphic vector bundles in the sense of Mumford-Takemoto and Hermitian-Einstein metrics in holomorphic vector bundles are adapted for canonically polarized framed manifolds, i. e. compact complex manifolds together with a smooth divisor admitting a certain projective e...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2009
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The notions of stability of holomorphic vector bundles in the sense of Mumford-Takemoto and Hermitian-Einstein metrics in holomorphic vector bundles are adapted for canonically polarized framed manifolds, i. e. compact complex manifolds together with a smooth divisor admitting a certain projective embedding. The main tool is the Poincaré metric, a special complete Kähler-Einstein metric on the complement of the divisor, whose asymptotic behaviour near the divisor is well-known due to results by Schumacher. The existence and uniqueness of Hermitian-Einstein connections in stable holomorphic vector bundles (Kobayashi-Hitchin correspondence) is proved in the setting of framed manifolds. |
---|---|
Physical Description: | 84 Pages |
DOI: | 10.17192/z2010.0073 |