Einbettung von quasi-projektiven Mannigfaltigkeiten und effektive Resultate

In dieser Arbeit werden Geradenbündel, welche auf einer Zariski-offenen Teilmenge einer projektiven Mannigfaltigkeiten gewisse Positivitätseigenschaften besitzt, im Hinblick auf die Einbettung eben dieser Teilmenge in den komplexen projektiven Raum betrachtet. Als Positivitätseigenschaft benötigen w...

Full description

Saved in:
Bibliographic Details
Main Author: Aust, Holger
Contributors: Schumacher, Georg (Prof. Dr.) (Thesis advisor)
Format: Dissertation
Language:German
Published: Philipps-Universität Marburg 2009
Reine und Angewandte Mathematik
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In dieser Arbeit werden Geradenbündel, welche auf einer Zariski-offenen Teilmenge einer projektiven Mannigfaltigkeiten gewisse Positivitätseigenschaften besitzt, im Hinblick auf die Einbettung eben dieser Teilmenge in den komplexen projektiven Raum betrachtet. Als Positivitätseigenschaft benötigen wir eine singuläre hermitesche Metrik, welche im Inneren der projektiven Mannigfaltigkeit positive Krümmung und verschwindende Lelong-Zahlen besitzt. Dann kann die Zariski-offene Teilmenge durch ein Vielfaches des kanonischen Bündels und ein Vielfaches des Geradenbündels, welches singulär-positiv modulo Rand ist, eingebettet werden. Weiterhin beweisen wir ein effektives Resultat zur Jet-Erzeugung in isolierten Punkten, d.h. wir können die Vielfachheit des kanonischen Bündels auf 2 beschränken und explizit eine untere Schranke, welche nur von der Dimension der zugrundeliegende Mannigfaltigkeit, der Anzahl der Punkte und der entsprechenden Jet-Ordnung in diesen Punkten abhängt, für die Vielfachheit des singulär-positiven Geradenbündels aufstellen.
DOI:https://doi.org/10.17192/z2009.0702