Microscopic Theory of Linear and Nonlinear Terahertz Spectroscopy of Semiconductors

This Thesis presents a fully microscopic theory to describe terahertz (THz)-induced processes in optically-excited semiconductors. The formation process of excitons and other quasi-particles after optical excitation has been studied in great detail for a variety of conditions. Here, the formation pr...

Full description

Saved in:
Bibliographic Details
Main Author: Steiner, Johannes
Contributors: Kira, Mackillo (Prof.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2008
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This Thesis presents a fully microscopic theory to describe terahertz (THz)-induced processes in optically-excited semiconductors. The formation process of excitons and other quasi-particles after optical excitation has been studied in great detail for a variety of conditions. Here, the formation process is not modelled but a realistic initial many-body state is assumed. In particular, the linear THz response is reviewed and it is demonstrated that correlated quasi-particles such as excitons and plasmons can be unambiguously detected via THz spectroscopy. The focus of the investigations, however, is on situations where the optically-excited many-body state is excited by intense THz fields. While weak pulses detect the many-body state, strong THz pulses control and manipulate the quasi-particles in a way that is not accessible via conventional techniques. The nonlinear THz dynamics of exciton populations is especially interesting because similarities and differences to optics with atomic systems can be studied.
Physical Description:139 Pages
DOI:10.17192/z2009.0275