Untersuchungen zur Modulation der Ionenleitfähigkeit von P2X3-und P2X7-Rezeptoren durch extrazelluläre Phosphorylierung und Regulation der Rezeptorexpression in HEK 293-Zellen
In der vorliegenden Arbeit wurden an zwei Typen von ionotropen ATP-empfindlichen P2X-Rezeptoren (P2X3, P2X7) Experimente zu den folgenden zwei Fragestellungen durchgeführt. A. Regulation der Ionenleitfähigkeit des P2X3-Rezeptors durch Phosphorylierung einzelner Aminosäuren der extrazellulären Sch...
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | German |
Published: |
Philipps-Universität Marburg
2007
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
No Tags, Be the first to tag this record!
|
The whole-cell patch-clamp technique was used to record current responses to nucleotides and nucleosides in human embryonic kidney HEK293 cells transfected with the human purinergic P2X3 receptor. When guanosine 5'-O-(3-thiodiphosphate) was included into the pipette solution, UTP at concentrations that did not alter the holding current facilitated the alpha,beta-methylene ATP (alpha,beta-meATP)-induced current. ATP and GTP, but not UDP or uridine, had an effect similar to that of UTP. Compounds known to activate protein kinase C (PKC) acted like the nucleoside triphosphates investigated, whereas various PKC inhibitors invariably reduced the effects of both PKC activators and UTP. The substitution by Ala of Ser/Thr residues situated within PKC consensus sites of the P2X3 receptor ectodomain either abolished (PKC2 and PKC3; T134A, S178A) or did not alter (PKC4 and PKC6; T196A, S269A) the UTP-induced potentiation of the alpha,beta-meATP current. Both the blockade of ecto-protein kinase C activity and the substitution of Thr-134 or Ser-178 by Ala depressed the maximum of the concentration-response curve for alpha,beta-meATP without altering the EC50 values. Molecular simulation of the P2X3 receptor structure indicated no overlap between assumed nucleotide binding domains and the relevant phosphorylation sites PKC2 and PKC3. alpha,beta-meATP-induced currents through native homomeric P2X3 receptors of rat dorsal root ganglia were also facilitated by UTP. In conclusion, it is suggested that low concentrations of endogenous nucleotides in the extracellular space may prime the sensitivity of P2X3 receptors toward the effect of subsequently applied (released) higher agonistic concentrations. The priming effect of nucleotides might be attributable to a phosphorylation of PKC sites at the ectodomain of P2X3 receptors. The whole-cell patch-clamp technique was used to record current responses to nucleotides in HEK 293 cells transiently transfected with the human (h) P2X(3) receptor. When GDP-beta-S was included into the pipette solution, UTP at concentrations which did not alter the holding current, facilitated the alpha,beta-methylene ATP (alpha,beta-meATP)-induced current. The substitution of Ser/Thr residues situated within protein kinase C (PKC) consensus phosphorylation sites of the P2X(3) receptor ecto-domain by the neutral amino acid Ala either abolished (T134A, S178A) or did not alter (T196A, S269A) the UTP-induced potentiation of the alpha,beta-meATP current. The substitution of the same Ser/Thr residues in all four PKC sites by the negatively charged Asp prevented the potentiation by UTP. The Asp mutations abolished the first, fast offset time-constant, but did not alter, or in the case of S269D even increased, the second, slow offset time-constant; at the same time such mutations invariably increased the onset time-constant and massively depressed the peak current amplitude. None of the Ala mutations (with the exception of S269A) influenced the time-course of desensitisation or the peak current amplitude. It is concluded that constitutive activation of PKC sites at the ecto-domain of the hP2X(3) receptor both abolishes the UTP-induced potentiation of the alpha,beta-meATP current and accelerates its rate of desensitisation.