Toeplitz Operators on Semi-Simple Lie Groups

Let $G/K$ be a Hermitian symmetric space of non-compact type. We consider for the so-called minimal Olshanskii semigroup $\Gamma\subset G^C$, the C$^*$-algebra $T$ generated by all Toeplitz operators $T_f$ on the Hardy space $H^2(\Gamma)\subset L^2(G)$. We describe the construction of ideals of $T$...

Full description

Saved in:
Bibliographic Details
Main Author: Alldridge, Alexander
Contributors: Upmeier, Harald (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2004
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $G/K$ be a Hermitian symmetric space of non-compact type. We consider for the so-called minimal Olshanskii semigroup $\Gamma\subset G^C$, the C$^*$-algebra $T$ generated by all Toeplitz operators $T_f$ on the Hardy space $H^2(\Gamma)\subset L^2(G)$. We describe the construction of ideals of $T$ associated to boundary strata of the domain $\Gamma$.
Physical Description:254 Pages
DOI:10.17192/z2005.0511