Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules
Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2005
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
No Tags, Be the first to tag this record!
|
Internet
PDF Full TextCall Number: |
urn:nbn:de:hebis:04-z2005-01342 |
---|---|
Publication Date: |
2005-09-09 |
Source: |
Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., Kämper, J. (2005). Clustering of Gene Expression Data Using a Local Shape-Based Similarity Measure, Bioinformatics 21, 1069-1077. |
Date of Acceptance: |
2005-07-22 |
Downloads: |
32 (2025), 119 (2024), 49 (2023), 115 (2022), 71 (2021), 44 (2020), 36 (2019), 14 (2018) |
License: |
https://rightsstatements.org/vocab/InC-NC/1.0/ |
Access URL: |
https://archiv.ub.uni-marburg.de/diss/z2005/0134 https://doi.org/10.17192/z2005.0134 |