Total anti-symmetrische Quasigruppen

Bei der Untersuchung von Prüfziffersystemen über Quasigruppen stößt man auf die so genannten total anti-symmetrischen Quasigruppen. Bislang war ihre Existenz für alle Ordnungen $4k+2\geq 10$ ungeklärt. Ecker und Poch vermuteten 1986, dass es keine total anti-symmetrischen Quasigruppen der Ordnung $4...

Full description

Saved in:
Bibliographic Details
Main Author: Damm, Michael H.
Contributors: Gumm, H. Peter Prof. Dr. (Thesis advisor)
Format: Doctoral Thesis
Language:German
Published: Philipps-Universität Marburg 2004
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bei der Untersuchung von Prüfziffersystemen über Quasigruppen stößt man auf die so genannten total anti-symmetrischen Quasigruppen. Bislang war ihre Existenz für alle Ordnungen $4k+2\geq 10$ ungeklärt. Ecker und Poch vermuteten 1986, dass es keine total anti-symmetrischen Quasigruppen der Ordnung $4k+2$ gibt. In der vorliegenden Arbeit widerlegen wir diese Vermutung und entwickeln Konstruktionen für total anti-symmetrische Quasigruppen der Ordnung $n$ für alle $n\neq 2,6$. Per Computersuche weisen wir außerdem nach, dass Prüfziffersysteme über einer 2-Quasigruppe der Ordnung 10, ebenso wie Prüfziffersysteme über Gruppen der Ordnung 10, nicht alle (Sprung-)Zwillingsfehler oder Sprung-Transpositionen erkennen können. Als weiteres Ergebnis zeigen wir, dass die Klasse der total anti-symmetrischen Quasigruppen keine Varietät ist.
DOI:https://doi.org/10.17192/z2004.0516