Bismuth Amides Mediate Facile and Highly Selective Pn–Pn Radical-Coupling Reactions (Pn =N, P, As)

The controlled release of well-defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr2)3] readily release aminyl radicals [NAr2]C at ambient temperatur...

Full description

Saved in:
Bibliographic Details
Main Authors: Oberdorf, Kai, Hanft, Anna, Ramler, Jacqueline, Krummenacher, Ivo, Bickelhaupt, F. Matthias, Poater, Jordi, Lichtenberg, Crispin
Format: Article
Language:English
Published: Philipps-Universität Marburg 2023
Subjects:
Online Access:PDF Full Text
PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The controlled release of well-defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr2)3] readily release aminyl radicals [NAr2]C at ambient temperature in solution. These reactions yield the corresponding hydrazines, Ar2N-NAr2, as a result of highly selective N-N coupling. The exploitation of facile homolytic Bi-Pn bond cleavage for Pn-Pn bond formation was extended to higher homologues of the pnictogens (Pn =N–As): homoleptic bismuth amides mediate the highly selective dehydrocoupling of HPnR2 to give R2Pn-PnR2. Analyses by NMR and EPR spectroscopy, single-crystal X-ray diffraction, and DFT calculations reveal low Bi-N homolytic bond-dissociation energies, suggest radical coupling in the coordination sphere of bismuth, and reveal electronic and steric parameters as effective tools to control these reactions.
Physical Description:5 Pages
42 Pages
DOI:10.1002/anie.202015514