Two Faces of the Bi-O Bond: Photochemically and Thermally Induced Dehydrocoupling for Si-O Bond Formation
The diorgano(bismuth)alcoholate [Bi((C6H4CH2)2S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi-O bond cleavage under given reaction conditions. Using the de...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Philipps-Universität Marburg
2022
|
Subjects: | |
Online Access: | PDF Full Text PDF Full Text |
Tags: |
No Tags, Be the first to tag this record!
|
Summary: | The diorgano(bismuth)alcoholate [Bi((C6H4CH2)2S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi-O bond cleavage under given reaction conditions. Using the dehydrocoupling of silanes with either TEMPO or phenol as model reactions, the catalytic competency of 1-OPh has been investigated (TEMPO =(tetramethyl-piperidin-1-yl)-oxyl). Different reaction pathways can deliberately be addressed by applying photochemical or thermal reaction conditions and by choosing radical or closed-shell substrates (TEMPO vs. phenol). Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations. |
---|---|
Physical Description: | 6 Pages 11 Pages |
DOI: | 10.17192/es2022.0015 |