Simultaneous determination of local thickness and composition for ternary III-V semiconductors by aberration-corrected STEM

Scanning transmission electron microscopy (STEM) is a suitable method for the quantitative characterization of nanomaterials. For an absolute composition determination on an atomic scale, the thickness of the specimen has to be known locally with high accuracy. Here, we propose a method to determine...

Full description

Saved in:
Bibliographic Details
Main Authors: Kükelhan, Pirmin, Beyer, Andreas, Firoozabadi, Saleh, Hepp, Thilo, Volz, Kerstin
Format: Article
Language:English
Published: Philipps-Universität Marburg 2019
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scanning transmission electron microscopy (STEM) is a suitable method for the quantitative characterization of nanomaterials. For an absolute composition determination on an atomic scale, the thickness of the specimen has to be known locally with high accuracy. Here, we propose a method to determine both thickness and composition of ternary III-V semiconductors locally from one STEM image as shown for the example material systems Ga(AsBi) and (GaIn)As. In a simulation study, the feasibility of the method is proven and the influence of specimen thickness and detector angles used is investigated. An application to an experimental STEM image of a Ga(AsBi) quantum well grown by metal organic vapour phase epitaxy yields an excellent agreement with composition results from high resolution X-ray diffraction.
Physical Description:31 Pages
DOI:10.17192/es2021.0022