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Random forest analysis of
midbrain hypometabolism using
[18F]-FDG PET identifies
Parkinson’s disease at the
subject-level
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Parkinson’s disease (PD) is currently diagnosed largely on the basis of expert
judgement with neuroimaging serving only as a supportive tool. In a recent
study, we identified a hypometabolic midbrain cluster, which includes parts
of the substantia nigra, as the best di�erentiating metabolic feature for PD-
patients based on group comparison of [18F]-fluorodeoxyglucose ([18F]-FDG)
PET scans. Longitudinal analyses confirmed progressive metabolic changes
in this region and, an independent study showed great potential of nigral
metabolism for diagnostic workup of parkinsonian syndromes. In this study, we
applied amachine learning approach to evaluatemidbrainmetabolismmeasured
by [18F]-FDG PET as a diagnostic marker for PD. In total, 51 mid-stage PD-
patients and 16 healthy control subjects underwent high-resolution [18F]-FDG
PET. Normalized tracer update values of the midbrain cluster identified by
between-group comparison were extracted voxel-wise from individuals’ scans.
Extracted uptake values were subjected to a random forest feature classification
algorithm. An adapted leave-one-out cross validation approach was applied
for testing robustness of the model for di�erentiating between patients and
controls. Performance of the model across all runs was evaluated by calculating
sensitivity, specificity and model accuracy for the validation data set and the
percentage of correctly categorized subjects for test data sets. The random forest
feature classification of voxel-based uptake values from the midbrain cluster
identified patients in the validation data set with an average sensitivity of 0.91
(Min: 0.82, Max: 0.94). For all 67 runs, in which each of the individuals was
treated once as test data set, the test data set was correctly categorized by
our model. The applied feature importance extraction consistently identified a
subset of voxels within the midbrain cluster with highest importance across all
runs which spatially converged with the left substantia nigra. Our data suggest
midbrain metabolism measured by [18F]-FDG PET as a promising diagnostic
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imaging tool for PD. Given its close relationship to PD pathophysiology and very
high discriminatory accuracy, this approach could help to objectify PD diagnosis
and enable more accurate classification in relation to clinical trials, which could
also be applicable to patients with prodromal disease.

KEYWORDS

Parkinson’s disease, imaging biomarker, machine learning, random forest, metabolic

imaging

1 Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder (Lau and de Breteler, 2006) and
characterized by a spread of α-synuclein containing Lewy bodies
and the loss of neuromelanin pigmented neurons in the substantia
nigra. The consequential depletion of dopaminergic transmission
to lateral nigral projection areas (Kish et al., 1988), and primarily
the posterior putamen, results in aberrant striato-thalamo-cortical
information processing causing motor symptoms like bradykinesia
or rigidity (Albin et al., 1989; DeLong, 1990). Diagnosing the
condition can yet be a challenge for physicians, as no reliable
biomarker is currently available and only clinical criteria can
be used (Postuma et al., 2015). Especially at early stages, when
symptoms were present for <5 years, a diagnostic accuracy of
only 53% in PD patients has been reported (Adler, 2014). Not
only does this limit disease management, but it also underlies
the dilemma that neuroprotective therapies are likely to fail if
used too late. Therefore, one of the main goals of PD research is
to find biomarkers that can be applied easily and early and are
as objective as possible (Adler, 2014). Future-oriented concepts
claim a biological staging system for PD continuum, whereby
degeneration of midbrain dopaminergic neurons represents a
crucial, universal feature of the disease.

Currently, there is no causative therapy for PD, but significant
efforts have been directed at neuroprotective therapies targeting
molecular pathways before disease onset. Nigral neurons are
highly energy consuming neural populations relying on effective
mitochondria which makes them vulnerable to exhaustion possibly
contributing to neurodegeneration (Braak et al., 2006b; Seibyl et al.,
2012). When patients experience motor symptoms, typically up to
70% of nigral neurons have already been depleted. Due to lack of
applicable α-synuclein tracers, no possibility exists to date for in
vivo examination of α-synuclein load (Fearnley and Lees, 1991).
However, there are indirect measures of nigral dopaminergic cell
loss, particularly in the field of molecular imaging. As a surrogate
marker for presynaptic dopaminergic activity, semiquantitative

Abbreviations: [18F]-FDG PET, [18F]-fluorodeoxyglucose positron emission

tomography; DD, disease duration; FWE, family-wise error; FWHM, full-

width at half-maxium; LEDD, levodopa equivalent daily dose; PD, Parkinson’s

disease; MMSE, Mini-Mental state examination; MNI, Montreal Neurological

Institute; SNpc, substantia nigra pars compacts; SNpr, substantia nigra pars

reticulata; UPDRS, unified Parkinson’s disease rating scale; VTA, ventral

tegmental area.

analysis of [123I]-FP-CIT-SPECT regularly serves as supportive
diagnostic tool. To enable diagnosis from a pathophysiological
rather than clinical perspective and demonstrate prospects for
reducing disease progression through interventions, indicators of
biological processes that are immediately applicable and show a
strong correlation with established neuropathological markers are
urgently needed, especially at early disease stages (Höglinger et al.,
2023).

Molecular imaging has been proposed to trace ongoing
disease-related processes and subclinical changes. In a recent
study applying [18F]-fluorodeoxyglucose PET([18F]-FDG
PET), which uses a labeled glucose analogon, we identified
a hypometabolic midbrain cluster as the best differentiating
metabolic feature for PD-patients compared to healthy controls
(Ruppert et al., 2020). The level of individual hypometabolism
was found to match contralateral motor symptoms. Subsequent
examinations of a subset of these patients over the course of
the disease confirmed progressive metabolic changes in this
region which were accompanied by worsened motor symptoms
(Steidel et al., 2022). An independent study reported nigral
metabolism in PD based on non-high-resolution [18F]-FDG PET
and demonstrated the great potential of nigral metabolism for
differential diagnostics of parkinsonian syndromes (Schröter
et al., 2022). Nigral hypometabolism was worse in entities
associated with most severe nigrostriatal pathology (Schröter et al.,
2022).

Hence, there is a growing body of evidence for the midbrain
as an important region to differentiate PD patients from healthy
controls based on metabolic group comparisons. Nevertheless,
for applications as diagnostic marker, the informative value of
the measure for the individual needs to be verified. In this
context, machine learning approaches are increasingly applied
to evaluate the discriminative accuracy of measures under
consideration. Several studies have conducted region-of-interest
wise machine learning analysis of [18F]-Desmethoxyfallypride
PET data extracted from either striatal structures or whole-
brain and revealed an accuracy of 59.7% or of about 70% for
differentiating between PD patients and atypical parkinsonism
(Segovia et al., 2015, 2017a). Studies focusing on [18F]-FDG
PET as diagnostic marker have rarely been carried out and
focused on whole brain scans, or an atlas-based parcellation
but did not include the midbrain region despite its crucial
role in neuropathology (Wu et al., 2019). In this study, we
evaluated midbrain metabolism derived by high-resolution [18F]-
FDG PET as a diagnostic marker for PD using random
forest analysis.
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2 Materials and methods

2.1 Participants

All participants provided informed consent to their data
analyses in conformation with the Declaration of Helsinki. The
study was confirmed by the local ethics committee (EK12-
265) and the Federal Bureau for Radiation Protection. In total,
25 healthy control subjects and 60 patients with clinically
established PD were enrolled. Patient recruitment was carried out
at the University Hospital of Cologne and affiliated neurology
practices, whereas healthy control participants were recruited via
advertising. Exclusion criteria were age < 40 years, suspected
atypical parkinsonian syndromes, advanced parkinsonism, i.e.,
Hoehn and Yahr stages >3 (Hoehn and Yahr, 1967), dementia,
neurological diseases other than PD, and any safety concerns
for MRI scanning. In order to exclude patients with dementia,
criteria published by the Movement Disorder Society including
a neuropsychological test battery and an assessment of the
patient’s ability to manage daily life (Emre et al., 2007) were
applied. The Mini-Mental State Examination (MMSE) was used
as cognitive screening tool (Folstein et al., 1975). Clinical
examination and functional imaging were conducted at the
Max Planck institute for Metabolism Research Cologne and the
University Hospital Cologne, Department of Neurology. Patients
were examined in the OFF state, defined as a 12-h period without
dopaminergic medication (Langston et al., 1992) (72 h in cases
of dopamine agonists). Levodopa-equivalent daily dose (LEDD)
was calculated for total antiparkinsonian medication based on
standard conventions (Tomlinson et al., 2010). Disease severity
was quantified by the Unified Parkinson’s Disease Rating Scale
(UPDRS) part III (Fahn et al., 1987).

Statistical analysis of demographical, clinical and behavioral
data was performed in R (R-project for statistical computing,
Vienna, Austria). Depending on the assumptions met, parametric
or non-parametric tests were performed. Results were considered
significant if p < 0.05.

2.2 [18F]-FDG PET acquisition and
preprocessing

All PET scans were acquired on an ECAT HRRT-PET-Scanner
(CTI) at the Max-Planck-Institute for Metabolism Research in
Cologne after overnight fasting andOFF dopaminergic medication.
Under standardized conditions (dimmed light, closed eyes, quiet
room) subjects were positioned along the kantho-meatal line.
Following a transmission scan, 185 MBq of the radioligand was
injected intravenously and tomographic images were acquired in
dynamic PET scans (60min). Using camera-specific filters, PET
data were corrected for attenuation and scattered radiation, and
reconstructed to 207 slices with a 256 × 256 matrix and 1.22mm
voxel size, creating one frame per 10min. Frames were realigned
for motion correction by rigid-body transformation and frames
numbered three to six were averaged into one static image for
further analysis. The data set used in the presented analysis has
been analyzed in previous publications from different research

perspectives (Greuel et al., 2020; Ruppert et al., 2020, 2021;
Steidel et al., 2022) and once in context of machine learning but
with a whole brain approach and in specific combination with
metabolomic data (Glaab et al., 2019).

Static PET scans were spatially normalized into
Montreal Neurological Institute (MNI) space in SPM12
(www.fil.ion.ucl.ac.uk/spm/software/spm12, Wellcome Trust
Center for Human Imaging, London) using an [18F]-FDG PET
template for elderly subjects (Della Rosa et al., 2014) and smoothed
with a Gaussian kernel of 6mm full-width at half-maximum
(FWHM). The midbrain cluster, reflecting hypometabolic regions
in our PD cohort and defining our regions of interest in the
current analysis, was derived by a voxel-wise group comparison
as specified in our previous work (Ruppert et al., 2020), with
the number of included subjects referring to all subjects with
[18F]-FDG-PET scans here (PD = 51, healthy controls = 16). PET
data were proportionally scaled with reference to the global mean
as implemented in SPM. Group comparisons were carried out via a
general linear model in SPM12. Results were considered significant
when p < 0.05 after family-wise error (FWE) rate correction at
cluster level (Figure 1).

Voxel-wise normalized (proportional scaling) uptake values
were extracted from the obtained midbrain cluster (Figure 1) for all
subjects with the region of interest toolbox Marsbar (Brett et al.,
2002). A class label column was added for supervised machine
learning with 0 for healthy control and 1 for PD class. To check
whether the approach also performs with a not data-driven region,
which would enable easier transferability to independent data sets,
we repeated the machine learning analysis with uptake measures
from an atlas-based midbrain region (Talairach-Daemon atlas,
WFU PickAtlas, RRID:SCR_007378) and with a whole brain gray
matter mask [ICBM 2009c non-linear symmetric, FSL (Collins
et al., 1999)].

2.3 Machine learning analysis

Extracted uptake values were subjected to machine learning
analyses, applying different feature classification algorithms. An
adapted leave-one-out cross validation approach with reassignment
of the training and validation test set (70:30) at every step was
applied for testing robustness of the model for differentiating
between patients and controls. First, we compared performance
of the most commonly applied machine learning classification
algorithms in our data set using PyCaret tool (https://pycaret.
org/) in python. Specifically, the following algorithms were tested:
Extra Tree Classifier, Naive Bayes, K Neighbors Classifier, Random
Forest Classifier, Logistic Regression, Ada Boost Classifier, Light
Gradient Boosting Machine, Dummy Classifier, Decision Tree
Classifier, Ridge Classifier, Linear Discriminant Analysis, Gradient
Boosting Classifier, Support-Vector-Machine—Linear Kernel, and
Quadratic Discriminant Analysis. The random forest ensemble
algorithm is one of the most widely applied machine learning
techniques for classification problems. It is an ensemble learning
method, which used a combination of decision trees to make
predictions. Each decision tree is trained based on a subset
of the data generated by Bootstrap-sampling. A prediction is
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FIGURE 1

Data-driven region of interest used for voxel-wise uptake extraction. Sagittal, coronal and axial view of the midbrain region of interest obtained by
voxel-wise group comparison of [18F]-FDG PET scans from 16 healthy controls and 51 PD patients (p < 0.01 after FWE cluster level correction, t =
6.46, cluster size = 376 voxels).

offered by every decision tree and the final prediction of the
model is driven by the majority of votes on the predictions
(cf. Figure 2). For hyperparameter tuning, the default option
in PyCaret was used which applies a random grid search.
Robustness and discriminatory performance of the model across
all runs was evaluated in four ways: (1) for model evaluation
we averaged performance measures across 67 runs with one
of the 67 subjects left out and dividing the remaining 66 in
respective training and validation data sets (70:30), (2) in each
of these runs a 10-fold nested cross-validation was performed
on the training data set with 1-fold serving as validation and 9-
fold serving as training data set per one of the 10 validations,
(3) in each of the 67 runs, an independent validation data
set was used to evaluate model performance by calculating
sensitivity and specificity for the resulting confusion matrix,
and (4) the percentage of correctly categorized subjects for test
data sets (the one not considered in training and validation
per run) with reference to movement disorder expert opinion.
Included subjects per training and validation data set can be
found on our GitHub repository (https://github.com/ruppertm/
Midbrain-FDG-PD.git). An evaluation of potential between-group
differences in clinical and demographic variables is reported in the
Supplementary material.

Feature importance reflects the relevance an individual feature
has for correct classification. Feature importance for individual
voxels was calculated according to the default settings implemented
in PyCaret which refers to the method in the scikit-learn library
(mean decrease impurity). Each voxel’s coordinates (in all three
axes) derived by Marsbar were transformed into MNI-space
coordinates using the provided transformation matrix. 3D displays
were created in MRIcroGL using the Marsbar coordinates and
feature importance values derived via the feature importance
analysis above. Spatial colocalization with dopaminergic midbrain
nuclei was verified using the Automated Anatomical Labeling
version 3 (AALv3) atlas. The code generated to analyze all
data is freely available on GitHub (https://github.com/ruppertm/
Midbrain-FDG-PD.git).

3 Results

3.1 Cohort characteristics

[18F]-FDG PET scans were available for 51 patients with
MRI (66.45 ± 8.53 years, 18 female) and 16 control subjects
(64.63 ± 8.33, 9 female) with no significant differences in terms
of age, sex and general cognitive performance (cf. Table 1).
The included patients were moderately affected with an average
UPDRS-III of 25.10 ± 9.54 points and 453.88 ± 244.72mg
LEDD. Detailed information on included participants (mean
± standard deviation) can be found in Table 1. Across all
runs, there were no between-group differences in terms of
age or motor severity between training and validation data set
(Supplementary material).

3.2 Random forest analysis

3.2.1 Classification based on midbrain [18F]-FDG
uptake

Across all runs, the random forest algorithm performed
best in most cases. Therefore, random forest classifier analysis
was applied to evaluate the diagnostic potential of midbrain
metabolism in our study. The random forest feature classification
of voxel-based uptake values from the 376 voxels spanning
midbrain cluster distinguished between the groups with an average
sensitivity of 0.91 (Min: 0.82, Max: 0.94) in the validation
data set (Table 2). For all 67 runs, in which each of the
individuals was treated once as test data set, the test data
set was correctly categorized by our model. The separately
performed analyses with uptake values from the midbrain atlas
region showed slightly lower sensitivity measures, and lower
specificity and accuracy (Table 2). Whole-brain analysis revealed
a slightly better sensitivity, but worse specificity and accuracy
(Table 2).
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FIGURE 2

Schematic representation of the data extraction process and random forest analysis. The subcortical region of interest was defined by a
between-group comparison of [18F]-FDG PET scans (middle top). Voxel-wise uptake values were extracted from that region for every subject from
normalized [18F]-FDG PET scans (top right) and subjected to random forest analysis using PyCaret. After importing the data, random forest model
was conducted on the data from all but one subject (each subject was left out once) with 10-fold cross-validation. The data set was splitted into a
training and validation data set (70:30) to derivate accuracy measures and the class of the removed subject was predicted based on that model. The
model’s accuracy measures, and each voxel’s feature importance were averaged across all runs and reassigned to voxel coordinates to enable 3D
representation of voxels with highest importance for class decision.

TABLE 1 Demographic, clinical and behavioral characteristics of the

[18F]-FDG PET cohort including all PD patients and healthy controls.

Groups HC (n = 16) PD (n = 51) Statistics p-value

Age (in years) 64.63± 8.33 66.45± 8.53 t = 0.75 0.455

Female (%) 9 (56.25%) 18 (35.29%) X2 = 1.44 0.231

DD (in years) - 4.56± 3.29 - -

UPDRS III total - 25.10± 9.54 - -

LEDD (in mg) - 453.88± 244.72 - -

MMSE 28.94± 1.00 28.37± 1.82 W = 351.5 0.392

Between-group comparison of numeric variables was performed via t-tests or Mann-Whitney

U tests. Dichotomous variables were compared via chi-square test. DD, disease duration; HC,

healthy control subjects; Levodopa equivalent daily dose; PD, Parkinson’s disease; MMSE,

Mini-Mental Status Examination.

3.2.2 Feature importance
Since our region of interest is closely related to PD

pathophysiology and we included individual voxels as features in
our model, the spatial location of features with greatest importance
for the class decision was of great interest. The applied feature
importance extraction consistently identified a subset of voxels
within themidbrain cluster with highest importance across all runs.
Among the top voxels with highest importance across all runs were

TABLE 2 Accuracy measures of the random forest classifier model based

on [18F]-FDG PET uptake for the data-driven region of interest, midbrain

atlas region, and whole brain gray matter.

Model
performance
(mean ± SD)

Accuracy Sensitivity Specificity

Midbrain
(data-driven)

0.83± 0.06 0.91± 0.03 0.67± 0.14

Midbrain (atlas) 0.82± 0.04 0.88± 0.05 0.63± 0.15

Whole brain
gray matter mask

0.76± 0.04 0.98± 0.03 0.10± 0.11

SD, standard deviation.

V70 (0.029, MNI: x = −8, y = −20, z = −22) and V148 (0.021,
MNI: x = 14, y = −18, z = −20, see Supplementary Table 1 for all
values). The two voxels with highest importance were localized in
the left ventrolateral tier of the midbrain cluster and next to the
atlas region substantia nigra pars compacts (SNpc) from AALv3
atlas (cf. Figure 3 top, Supplementary Figure S1). As indicated by
overlay plots in Supplementary Figure S1, there is a spatial overlap
between midbrain voxels with high importance and dopaminergic
midbrain nuclei. Among the nuclei with a spatial convergence were:
left SNpc, left substantia nigra pars reticulata (SNpr), left ventral
tegmental areas (VTA), right SNpc, right SNpr, and right VTA.
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The left SNpc was the atlas region that had the greatest spatial
overlap with left-sided voxels of highest importance (dark orange-
to-red color) (cf. Figure 3 top, Supplementary Figure S1). Voxels
with a feature importance above 0.008 overlapped exclusively with
the left SNpc. Right-sided voxels with highest importance were
localized more laterally. The separate analysis performed with an
atlas-based midbrain region revealed nearly identical coordinates
for voxels with highest feature importance (V332 MNI: x = −6,
y = −22, z = −20, see Supplementary Figure S2). Including whole
brain graymatter [18F]-FDG uptake per voxel in a separate analysis,
also indicated that our defined region is the most important region
for classification (cf. Supplementary Figure S3).

4 Discussion

In this study, we demonstrate the diagnostic potential of
midbrain [18F]-FDG uptake for PD. In a cohort of well-
characterized mild-to-moderately affected patients, we showed
that it may differentiate between patients and controls with high
precision. The presented analyses were motivated by the previous
description of the cohort, highlighting the hypometabolic midbrain
cluster as the region that exhibited the highest deficit in PD that
correlated with contralateral clinical severity (Ruppert et al., 2020)
and showed disease-related decline over time (Steidel et al., 2022).
In order to evaluate the informative value of [18F]-FDG uptake
within that region for the individual’s classification, a random forest
feature classification algorithm was applied with an adapted leave-
one-out cross validation approach. Across all runs, the individual
test data set was correctly categorized by our model. The applied
feature importance extraction consistently identified a subset of
voxels within themidbrain cluster with highest importance for class
decision across all runs, which spatially overlapped with the left
substantia nigra pars compacta. Our results confirm that [18F]-FDG
uptake in the midbrain is a promising neuroimaging feature with
spatial convergence to known pathophysiology that is feasible in
the individual patient and can be similarly applied to independent
cohorts using midbrain atlas regions.

The loss of dopaminergic cells in the midbrain is a
histopathological hallmark of PD and serves as neurobiological
correlate of its progression (Damier et al., 1999). However, the
significant denervation in the lateral substantia nigra prior to
the onset of symptoms in those affected has not been clinically
utilized due to a lack of suitable in-vivo examination techniques.
Notably, particular voxels within our region of interest hold
significant importance from a neurobiological viewpoint. There
is a spatial overlap of voxels with a feature importance above
0.008 located in the left SNpc, substantiating the hypothesis that
the observed hypometabolism might indicate a relationship to
degenerating nigral cells or lowered metabolic activity in these
naturally energy-demanding cells (Braak et al., 2006a; Seibyl et al.,
2012). Corresponding to our earlier analyses, a higher count of
voxels with increasing significance for class decision were located
in the left midbrain. Our results complement the previous studies
in the sense that exactly this region is suitable for the classification
of an individual with high precision.

Machine learning techniques are used to identify elusive
patterns that are difficult to detect using conventional statistical

methods and to test their predictive power at individual level (Peng
et al., 2020). Notably, despite certain efforts to apply machine
learning to [18F]-FDG-uptake for identifying-PD patients (Shen
et al., 2019; Wu et al., 2019), none have targeted the midbrain
region specifically. Another study has reported the identification of
critical diagnostic features in the midbrain based on deep-learning,
and claimed that this region, despite its crucial involvement in PD
pathophysiology, has not been considered in conventional [18F]-
FDG PET studies (Zhao et al., 2019). Yet, several parallels might be
drawn to previous attempts of applying machine learning to PET
data of PD cohorts. Wu et al. (2019) extracted radiomic features
from PET images using atlas regions excluding the midbrain (Wu
et al., 2019). Shen et al. (2019) followed an approach with Group
Lasso Sparse Deep Belief Network (GLS-DBN) for identifying PD
based on [18F]-FDG PET scans. Both studies report a diagnostic
accuracy comparable to our results (Shen et al., 2019; Wu et al.,
2019), but do not elaborate the importance of a specific subcortical
region that has a close association with the known pathology as
our results do. Another study has conducted a machine learning
analysis with the here presented [18F]-FDG PET data set but
focused on whole brain uptake for PD diagnosis. Our region
of interest-based approach revealed higher accuracy for the PET
modality (Glaab et al., 2019). In line with our findings, Segovia
and colleagues also reported a higher diagnostic accuracy with a
focus on specific disease-related regions of interest rather than
whole brain analysis in a dopaminergic PET study (Segovia et al.,
2015, 2017b). A combination of multiple imaging modalities,
supported by a specific focus on disease-related regions as in
the presented approach, could increase model performance and
could be crucial for tracking disease progression. Particularly, our
results may be of relevance for efforts of establishing objective
markers for a purely biological-based staging system for the
disease spectrum, as recently proposed and already established for
other neurodegenerative disorders (Chahine et al., 2023; Höglinger
et al., 2023). In the latter conceptual framework, degeneration of
dopaminergic neurons in the midbrain is a crucial feature evident
universally in PD syndromes (Chahine et al., 2023) and present
in both presumed retro- and anterograde spreading subtypes. This
fact and the recognized significance of FDG-PET patterns in PD
(Höglinger et al., 2023) lends our target an important status with
potential applicability within the framework.

Based on Schröter et al. (2022)’s findings, our approach may
additionally serve to distinguish between atypical Parkinson’s
syndromes and PD. The fact that the latter study reported
similar evidence for midbrain hypometabolism based on not high-
resolution PET data suggests that the presented approach is likely
to be replicated with standard clinical PET data and therefore easily
integrable into clinical practice.

4.1 Limitations

One limitation of this study is the small sample size, especially
in the healthy control group, which especially contributes to very
unbalanced validation data sets. The limited number of controls
was a deliberate decision in line with the specifications of the
Federal Office for Radiation Protection to include as few healthy
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FIGURE 3

Voxel-wise feature importance for the midbrain region of interest. Feature importance revealed by random forest classifier is shown in color scaled
3D representation for every voxel in the midbrain region of interest. Yellow color indicates minor feature importance; red color indicates high voxel
importance for class decision based on random forest classifier.

subjects as possible. The presence of unbalanced data and a
rather small sample size warrants some caution on generalizable
conclusions. In particular, unbalanced data may aid in more precise
identification of PD patients compared to healthy control subjects’
categorization since the individual model was likely trained on
a higher number of patients compared to controls. Subsequent
studies should therefore include larger sample sizes and equally
sized groups. However, the present study reveals initial implications
for the approach by applying an appropriate model for unbalanced
data. In addition, appropriate techniques like conducting an
ensemble of random forest analyses and evaluating the variability
of model performance across runs, internal 10-fold cross validation
and model evaluation based on respective validation data sets and
prediction for one independent subject were taken into account.
As a logical consequence of the preliminary work, however, the
study provides initial indications, and an interesting proximity to
neuropathology with accessibility on subject level, which could also
be applicable to patients with prodromal disease in future studies.

A major limitation of the present study is the absence of testing
the model on an external cohort, which would supplement the
generalizability of the results. We conducted the analysis with
high-resolution HRRT PET data to enable tracing back effects
on smallest midbrain structures in terms of pathophysiological
relevance. We have not tested our approach in an independent
sample, as there is no large public dataset of high-resolution PET
data. However, a more widespread availability of higher resolution
scanners in the future and amulticenter initiative for collecting data
may foster possibilities for an independent data set. In addition,
future projects could focus on the comparability with lower
resolution data as recent studies suggest that our approachmight be

feasible in non-high-resolution data that are more widely available.
Furthermore, our implementation of supervised learning relied on
the subjective evaluations of two independent clinical experts in
movement disorders, which may not always reflect the ground
truth, and should be supported bymore objective diagnostic criteria
as proposed by biological PD models, including molecular CSF
markers, evidence of rapid eye movement sleep behavior disorder
(RBD) and dopaminergic imaging, especially in prodromal stages.

4.2 Future perspectives

Similar to other studies using machine learning techniques,
there is a question about scalability or applicability of this relatively
simple measures in independent cohorts. Future studies could
validate the approach presented here in early or prodromal stages
of the disease, such as patients with RBD, as differences could
be expected according to the longitudinally observed midbrain
hypometabolism (Steidel et al., 2022). As recent studies highlight
a pivotal role for evidence of nigrostriatal degeneration also
in the pre-motor phase of the disease, our results may have
direct implications for the emerging field of early diagnostics
and identifying at-risk persons. The application of such kind of
in-vivo accessible, objective biomarkers is of greatest interest in
context of new therapeutic treatment strategies and paralleled
by the development of disease-modifying agents. As longitudinal
midbrain changes were demonstrated in mid-stage patients, future
studies should verify if midbrain hypometabolism can be identified
in prodromal stages like RBD-patients with high-resolution PET.
Identifying prodromal biomarkers may be helpful for identifying
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early disease stages, a crucial element for clinical trials of potential
neuroprotective drugs, antibody studies or cell-based therapies.

5 Conclusion

Midbrain metabolism measured by [18F]-FDG PET is a
promising imaging tool for detecting PD-related midbrain
degeneration on subject-level. Given its close relationship to PD
pathophysiology and very high sensitivity, this approach can
index midbrain degeneration and help to establish neurobiological
staging systems, addressing the nigrostriatal system.
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