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Formalizing psychological 
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Despite the growing deployment of network representation to comprehend psychological 
phenomena, the question of whether and how networks can effectively describe the effects of 
psychological interventions remains elusive. Network control theory, the engineering study of 
networked interventions, has recently emerged as a viable methodology to characterize and guide 
interventions. However, there is a scarcity of empirical studies testing the extent to which it can be 
useful within a psychological context. In this paper, we investigate a representative psychological 
intervention experiment, use network control theory to model the intervention and predict its 
effect. Using this data, we showed that: (1) the observed psychological effect, in terms of sensitivity 
and specificity, relates to the regional network control theoretic metrics (average and modal 
controllability), (2) the size of change following intervention negatively correlates with a whole‑
network topology that quantifies the “ease” of change as described by control theory (control energy), 
and (3) responses after intervention can be predicted based on formal results from control theory. 
These insights assert that network control theory has significant potential as a tool for investigating 
psychological interventions. Drawing on this specific example and the overarching framework of 
network control theory, we further elaborate on the conceptualization of psychological interventions, 
methodological considerations, and future directions in this burgeoning field.

Networks are increasingly being utilized in psychological sciences to model complex psychological behaviors 
in relation to, and as a result of, interactions between psychological  components1,2. A psychological network is 
defined by nodes, which are identified with variables observed within a certain context (e.g., clinical symptoms 
of depression) and their connections, which indicate their  interactions2,3 e.g., rumination in relation with sleep 
quality. Such a simple conceptualization of psychological behavior has proven generative, advancing the field 
in several key areas. Examples include, among others, the study of mental disorders in terms of networks of 
 symptoms3, human interactions in social  psychology1,4–7, and cognitive  sciences8. Future applications could 
involve the prediction of relapses of mental disorders as well as contribute to developing novel psychotherapeutic 
 interventions9.

Yet, the network approach as currently used has a major limitation: networks are commonly modelled as 
static constructs i.e., they present a fixed representation of the psychological behavior. Consequently, networks 
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often fail to formalize “how much” the psychological variables change as a consequence of the interactions and 
external perturbations. Within a clinical case study, for example, the network approach offers insights into 
whether different symptoms are interrelated (e.g., rumination and sleep quality). However, it does not directly 
relate the “size” of change in one component (e.g., rumination) to the “size” of change in other variables (e.g., 
sleep quality). Examples like this are numerous and include virtually any study that contains an intervention 
such as controlled experiments with more than one  condition10.

Importantly, this and similar questions have been systematically addressed in the engineering  context11. 
Specifically, dynamical systems theory concerns how the interactions between the components in a network 
result in a complex  behavior12. And network control theory, a subset of dynamical systems theory, provides a 
mathematical foundation to relate observations (i.e., sleep quality) and interventions (i.e., experimental con-
dition)13,14. Within this framework, a psychological intervention is considered as any external stimulus (e.g., 
exposure to a task, medication, therapy, etc.) or alteration in conditions (e.g., change in the task parameters) that 
might influence the psychological construct being studied. The effect of such interventions is conceptualized as 
a temporal cascade of minor changes to the network variables (i.e., nodes, see Fig. 1 for a schematic example). 
From a conceptual standpoint, these models are generative; they mimic the behavior of network variables, such 
as the components of the specific psychological construct under investigation, as they respond to different condi-
tions. For example, given specific starting conditions, such as the present values of clinical symptoms of major 
depression, and a range of potential interventions such as sleep deprivations, these models offer a quantitative 
viewpoint to understand how the symptoms evolve (see Jamalabadi et al.15 for an example). In a similar vein, 
network control theory provides a framework of formulations to comprehend the “behavior” of these models and 
thus the phenomena they mathematically represent e.g. the clinical symptoms. By adhering to the methodology 
detailed within network control theory, at least three specific theoretical results can be inferred. First, network 
control theory facilitates a systematic theory-driven assessment of the general difficulty in inducing changes in 
the whole network (e.g., all symptoms) following alterations in a specific variable. Significantly, for estimating 
this category of measures, known as the "controllability," one does not require the precise details of the alteration 
to the target variable (details outlined formally in Sect. 4.3). Second, an estimation can be made regarding the 
overall challenge encountered when the network’s activity changes, or is intended to change, across various poten-
tial conditions. This estimation is quantified as the total "energy" and remains applicable even when the exact 
intervention is unspecified. Third, one could assimilate the whole temporal evolution of psychological behavior 
based on the psychological network and thus, predict further hypothetical intervention effects, potentially lead-
ing to novel intervention targets (see Lunansky et al.9 for a discussion on simulation based intervention design).

If control theory is going to inform interventions in psychological sciences, however, it must first be examined 
if and how the engineering concepts on which control theory is founded translate into the context of psycho-
logical networks. At a fundamental level, the idea is that an intervention, such as therapy or medication, influ-
ences various elements within a network, like thoughts or behaviors, in a manner that is proportional to both 
the intensity of the intervention and the of those elements (so-called locally linearizable  assumption11). Across 
engineering domains and more recently neurosciences, this fundamental concept has made analytical treatment 
of observed phenomena possible and has stimulated progress in various directions such as understanding the 
human brain under a wide range of neural  stimulation16–19.

Figure 1.  A schematic view of the data and network control theory approach to quantify and predict the 
effect of interventions. (A) Thirty participants answered eleven questions about their attitude towards the 
consumption of meat. Based on their responses, they are asked to contemplate certain scenarios that are 
designed to alter their opinion. After this “intervention”, the participants are once more asked the same 
questions and asked to draw a schematic of connections between the items. (B) The effect of interventions in 
the context of psychological networks can be understood in terms of network control theory. Each network 
structure dictates the possible transitions of network values (illustrated here in terms of the arrows). The 
geometry of these arrows relates to the network structure and the dynamic imposed on them and can be linear 
or nonlinear. Figure 1A adapted from Hoekstra et al35.
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Within the realm of psychology, progress has been somewhat gradual, primarily emphasizing the application 
of dynamical systems’ mathematical framework to better "characterize" observed phenomena. Yet, the current 
reports are encouraging. For instance, Hilbert and  Marchand20, within the context of educational psychology, 
discuss the potential role of dynamical systems in aligning theory, model and data. Within clinical psychology 
and the closely related psychiatric community, an increasing number of scientists are calling to use the dynami-
cal systems approach to better understand the course of mental  disorders3,15,21–23. Simulation studies using this 
approach in studying complicated  grief24, Post-Traumatic Stress Disorder (PTSD)9, and panic  disorder25 yield 
strongly consistent results with what is known from the literature. Recently, studies by Hahn et al.26 and Jamal-
abadi et al.15, leveraging longitudinal measurements from mobile phones, have indicated that depressive symptom 
fluctuations align with predictions from network control theory. Applied to Ecological Momentary Interven-
tions (EMI), Fechtelpeter et al.27 showed that the results from network control theory can provide insightful 
information on putative mechanisms of change. Further, network control theory has been used to study the 
brain-behavior constructs ranging from studies in the clinical setting such as  depression28,29, to cognitive con-
cepts such as  creativity30, and further to conceptual frameworks applied to psychological well-being31, clinical 
 psychology24, and networked  systems9,32.

Yet, these studies did not probe interventions (with the exception of Fechtelpeter et al.27). Subsequent dis-
cussions have considered the potential of network control theory for assessing psychological  interventions33, 
with use-cases encompassing momentary experience quantification, cognitive behavior therapy, and mental 
disorder  structuring24. Despite these optimistic developments, there remains a shortage of empirical testing of 
these theories. This deficiency is significant since while numerous models could theoretically ’explain’ behavior, 
effective and predictable intervention requires a model that aligns with the system’s inherent dynamics, namely 
the psychological construct. The "good regulator"  theorem34 underscores this point, insisting that a success-
ful regulator of a dynamical system must embody an accurate model of that system. Therefore, verifying a 
mathematical framework’s ability to predict and guide interventions becomes a pivotal benchmark for model 
credibility. Given the current dearth of formal theories in psychology that endorse the use of dynamical systems 
theory, the urgency of this empirical validation is heightened.

This study seeks to tackle this challenge by evaluating the efficacy of network control theory in psychological 
perturbations through a representative experiment designed to alter attitudes towards meat consumption (see 
Fig. 1A). Pertinent to our objectives in this paper, network models have previously been used to study attitudes 
and are shown to be psychometrically realistic  formalizations4,10,35. In this experiment, thirty healthy participants 
are asked about their attitudes toward eating meat using an 11-item questionnaire and are then subjected to 11 
psychological interventions that aim to change their attitude on each item separately (see Methods for details). 
After an intervention, one intervention per item, participants are asked again the same 11 questions. Here, we 
build dynamic network models of the experiment and aim to predict the item-wise effect of the psychological 
intervention for each participant. Furthermore, based on fundamental results in control theory that relate the 
required energy for control to the intervention outcome, we hypothesize that the success of the interventions 
(i.e., sensitivity) is negatively associated with the psychological energy barrier (i.e., control theoretic measure 
of intervention energy) that is further dictated by the interactions between the response to the 11 questions.

Results
Efficiency of the psychological intervention. Figure 2 depicts the sensitivity and specificity (Methods, 
Eqs. 1–3) across all eleven items, scenarios, and participants. Our results show that, on average, perturbation 
was sensitive and affected the responses in the desired direction (i.e., most values are positive). However, there 
is large variability across participants (0.86 ± 0.44) and items (0.86 ± 0.73; mean ± std). On the other hand, the 
specificity reveals a more complex structure. Specifically, for the variability across items, we observe that the 
data seem to show two different clusters indicating that the interventions have been more specific for some 
items compared to others (1.65 ± 1.36). Interestingly, and in contrast to the item level, the specificity of the inter-
ventions shows only one cluster on the participant level indicating comparable specificity of the interventions 
across participants. Furthermore, we observe that sensitivity and specificity show a narrower distribution across 
participants than items, suggesting that variations in the effectiveness of the intervention are more comparable 
across participants than items.

Network properties of intervention effects. A fundamental result in control theory relates the topo-
logical properties of the network of item-wise interactions ( A , Eq. 4) to the effect of interventions applied to 
that item. Specifically, average and modal controllability measure the general ability of one variable to influence 
the value of all other variables. Therefore, interventions targeting nodes with higher absolute average or modal 
controllability should, on average, prove more effective. Average controllability pertains to the overall response 
within the system following a perturbation to the related node. Consequently, we posit a positive correlation 
between an item’s average controllability and the intervention’s sensitivity across participants and items. This 
means that as the average controllability increases, the sensitivity to intervention also typically increases. In con-
trast, modal controllability measures the capacity to govern fast modes, also known as difficult-to-reach  states36. 
It is often inversely associated with average  controllability36, leading us to hypothesize a negative relationship 
with sensitivity. This means that higher modal controllability might be associated with less sensitivity in the 
system. Specificity, on the other hand, is concerned with how effective an intervention is relative to the average 
of all interventions. Therefore, we anticipate a positive relationship with average controllability and a negative 
relationship with modal controllability. In both instances, we expect these relationships not to be stronger than 
that with sensitivity. We estimated the controllability metrics once based on the individual subjective perceived 
causal networks (i.e., self-reconstructed networks, see Methods) and once based on a data-driven generative 
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model (see Methods for details) and assessed the correlation with the measures of sensitivity and specificity. 
Importantly, to avoid statistical biases due to the non-normal distribution of sensitivity and specificity metrics 
(Fig. 2)37, we use the rank correlation between controllability and perturbation effects. Our results (see Table 1) 
show that in both network models, average controllability correlates positively and modal controllability cor-
relates negatively with sensitivity. We observe similar relation to specificity. Noteworthy, the size of the relations 
(r-values) is lower for the self-constructed networks than for the generative model and they do not reach statisti-
cal significance, but they have the same signs as those based on data-driven models.

A mechanistic interpretation of intervention success. Having established that the network control 
theoretic metrics (i.e., average and modal controllability) contain meaningful information about the interven-
tion effect, here we asked if the intervention success relates to the network structure. We base our hypothesis 
on the results from control theory that relates intervention success (in terms of sensitivity and specificity) to 
the intervention energy (i.e., effort, possibility) that can be exerted from an item. In our data, since we have no 
objective metric of the intervention’s actual energy (i.e. if some scenarios are fundamentally more powerful or 
more effective than others), we assume comparable intervention energy for all interventions (i.e., all scenarios) 
and thus hypothesize that the sensitivity should be smaller if the minimum amount of required intervention 
energy (i.e., the energy needed basing on the networks) is larger (for details see Methods, Eqs. 7–9). To do so, 
we estimated the association between the theoretically required energy and the sensitivity of the intervention 
(see Methods). Our results show that the sensitivity of the intervention (i.e., the extent to which the interven-
tion works in the desired direction) is negatively associated with the theoretical energy (r-value = -0.22 ± 0.25; 
Fisher’s Method group level p-value = 7.32e-04) for the generative model. For the self-constructed networks, 
we also show statistically significant relation between sensitivity and energy (r-value = -0.13 ± 0. 25; Fisher’s 
Method group level p-value = 0.03) although the size of effect is smaller. Additionally, we find that the energy is 
negatively related to the specificity in both models, but the size of the effect is larger for the data-driven model 

Figure 2.  Sensitivity and specificity of interventions across items and participants. (A, B) Sensitivity is defined 
by the normalized changes in the responses (Methods, Eq. 2). Positive values indicate a change in the expected 
direction i.e., when the intervention was meant to reduce the rating, the subsequent rating after the intervention 
was indeed reduced and when the intervention was meant to increase the rating, the subsequent rating was 
indeed increased. (C, D) Specificity is defined by the relative absolute change of the intervened item compared 
to the average change of all the other items (Methods, Eq. 3). All specificity values are positive and higher values 
(of more than 1) indicating that perturbed items change more than the average of the other 10 items.

Table 1.  Kendal rank correlation between specificity/sensitivity and controllability measures (mean ± standard 
deviation across participants) with the number of significant tests shown in parentheses (n = 28 participants). 
Group-level significance was assessed using Fisher’s  Method38 (α < 0.05. Significant values are denoted with 
**P < 0.01 and ***P < 0.001.

Self-constructed Networks Model

AC MC AC MC

Sensitivity 0.07 ± 0.19 (n.s.) − 0.07 ± 0.17 (n.s.) 0.20 ± 0.27 (3**) − 0.19 ± 0.28 (4***)

Specificity 0.05 ± 0.22 (n.s.) − 0.03 ± 0.22 (n.s.) 0.18 ± 0.24 (3***) − 0.18 ± 0.24 (2***)
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(r = -0.16 ± 0.28; Fisher’s Method group-level p-value = 0.005; and r = -0.13 ± 0.16, Fisher’s Method group-level 
p-value = 0.05).

Finally, we tested if the model used in previous sections can predict the effect of interventions for every single 
item for every subject. Thereby, we simulated the model (Methods, Eq. 4) once based on the self-constructed 
and once based on the generative networks. We estimated prediction accuracy (ACC) in terms of the correlation 
between the predicted and observed responses after the intervention. Our results (Fig. 4) show that only the 
model correctly predicts the intervention effect (responses after the interventions); r = 0.84 ± 0.15[model]; and 
r = -0.04 ± 0.32 [self-constructed networks]).

Discussion
Psychological interventions—including behavioral and cognitive therapies—are strategies aimed at triggering 
meaningful shifts in human emotions, responses, and behaviors. Despite an extensive body of research address-
ing a wide array of these interventions and their effects on human experiences, a comprehensive, systematic 

Figure 3.  Network structure determines the success of psychological interventions. (A, B) Sensitivity is 
negatively associated with the network control theoretic estimation of the required energy to change the items 
only based on the generative model. (C, D) For both models (data-driven generative model as well as self-
constructed networks), specificity is negatively related to the required energy but to a lesser extent compared to 
sensitivity.

Figure 4.  The generative model of psychological intervention accurately predicts the responses to the 
intervention. (A, B) Correlations between the predicted and actual responses averaged over items and 
participants for self-constructed networks. (C, D) Correlations between the predicted and actual responses 
averaged over items and participants for the generative model.
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framework for evaluating these interventions has remained largely  elusive39. Recognizing the success of network 
representations in encapsulating various psychological phenomena, we employ network control theory as a tool 
to quantitatively examine the impact of interventions. Originating from engineering, network control theory 
offers a robust approach for studying the changes in networked systems, making it a promising foundation for 
uncovering the mechanisms driving psychological  interventions6,15,19,22. Despite theoretical discourse advocat-
ing its usage for bolstering our understanding of psychological constructs and  interventions24, empirical studies 
testing its validity remain scarce.

A pertinent example underpinning our study is a proof-of-concept psychological intervention task that aimed 
to modify attitudes towards meat consumption. We showed that the models provided by network control theory 
can predict the results of intervention on the level of the individual (Fig. 4), offer a mechanical account of why 
and how some of the interventions worked better than others (Fig. 3), and finally, used the model to show how 
sensitivity and specificity of the intervention relate to the network structure (Table 1). This work adds to the 
limited yet growing body of empirical evidence supporting the practical application of network control theory 
in psychological intervention studies.

Conceptualization of psychological interventions through network control theory. The start-
ing point to use network control theory to conceptualize and study psychological intervention is to build a 
mathematical model, specifically a dynamic  system11,24. This system outlines the interrelations between the psy-
chological variables involved in the construct under investigation—for instance, the responses to an 11-question 
survey—and the corresponding intervention, such as attitude-shifting scenarios. In the simplest case, the formu-
lation presumes a linear association between these variables and an additive intervention effect, which depends 
on how each psychological variable in the system is impacted by the intervention (Eq. 4, Methods). The deriva-
tion process essentially hinges on estimating two sets of parameters: a matrix representing the relationships 
among the psychological variables, and a second matrix that connects the intervention to these variables. With 
these two sets of parameters established (matrices A and B in Eq. 4, Methods), network control theory offers a 
set of mathematically grounded estimations for the potential impact of any intervention on the psychological 
variables. Such an intervention could take the form of a one-time perturbation, like the one utilized in this study, 
or a series of successive perturbations. Importantly, the context-independent nature of network control theory’s 
outcomes makes it a versatile framework for investigating psychological interventions across various contexts.

Importantly, even though interventions in our study were closely tied to the psychological variables (with a 
distinct intervention for each question in the 11-item questionnaire), this is not a mandatory criterion. The inter-
action between any given intervention and its effect on the psychological construct of interest can be captured 
using the same mathematical expression, merely adjusting the estimated parameters (matrices A and B) based 
on the collected  data40,41. In essence, the overarching framework of network control theory is versatile enough 
to encompass the combined impacts of various intervention types, whether they are instruction-based as in our 
study, stimuli used in a priming task, financial incentives, and so on. These can be conceptualized as singular or 
recurring perturbations on targeted variables, like the 11-item questionnaire in our work, or clinical symptoms 
of conditions such as major depression. Once the dynamical system is defined—highlighting the specific psy-
chological variables and interventions—and its parameters estimated (primarily matrices A and B in the linear 
scenario), one can gauge the intervention’s influence on the psychological variables. This enables us to forecast 
outcomes under new conditions and potentially design more efficient interventions.

In our study, we developed two linear dynamical systems to analyze attitude intervention. In the first approach, 
the system was designed based on the causal interactions perceived by the participants (self-constructed net-
works, Matrix A) and the supposition that each intervention affects precisely one attitude aspect (Matrix B). 
Conversely, the second approach entailed a data-driven methodology where we made no assumptions about 
matrices A and B and instead derived them from the data. Over a range of metrics (Figs. 2–4), we found that the 
data-driven model is, by a large margin, superior to the model based on self-constructed networks. From a con-
trol theoretical perspective, this observation suggests that the data-driven model we obtained here is a plausible 
internal model of the system we studied but the one based on self-constructed networks is not. We notice that 
this result corroborates the theoretical findings calling for mathematical models of psychological  behavior32,39,42: 
In the absence of models (for exceptions see Robinough et al.25), the generative models, for the time being at 
 least42,43, must be built based on data-driven approaches.

Methodological considerations. In general, a dynamical system can become extremely complex with 
many  nonlinearities44. However, many examples across a wide range of applications in physics, engineering, and 
neurosciences have shown that a linear model (such that the one in Eq. 4, Methods) can be sufficient to explain 
most phenomena at least in close vicinity to the initial  values11,45. This significantly simplifies the analytical treat-
ment of the phenomenon (here psychological intervention) and provides a large repertoire of results that would 
all follow from the generative model. By employing a linear dynamical model of the intervention, it becomes 
possible to estimate the energy needed (intervention power) to modify the state variables (i.e., the psychological 
parameters under study). Additionally, one can determine the relative average significance of each variable in 
influencing the others. Most importantly, this approach enables the design of interventions that are optimal in 
terms of required energy, deviation from initial values, or time  constraints11.

A crucial consideration in our study is the estimation of the model parameters. There is a rising inter-
est in data-driven methodologies for inferring data-driven models in psychology. In this paper, alongside a 
self-constructed model grounded in the perceived causal relations reported by participants, we employed a 
method based on the dynamic mode  decomposition40 (see Methods). Although beyond the scope of this paper, 
it would be intriguing to investigate whether alternative network identification tools might enhance our findings. 
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Techniques such as sparse identification of nonlinear dynamics (SINDy)46, which has proven highly successful 
in various key fields including  neuroscience41,45,47 as well as methods more frequently used in the psychological 
literature such as Gaussian graphical  models48 or Bayesian network  model49 could enhance our results (for a 
tutorial see Epskamp et al.43 and for critiques  see50). These techniques exhibit several fundamental differences 
in both the parameters they estimate and the methods they employ to calculate those  estimates51. For example, 
while methods like DMDc and SINDy concurrently estimate the full model, including both matrices A and B, 
approaches rooted in Bayesian estimation typically only provide an estimation for matrix A. In these cases, matrix 
B must either be defined based on the specific experimental conditions or estimated as a separate process. This 
distinction highlights the inherent differences in approach and underscores the need for careful consideration 
in selecting the appropriate method for a given analysis or application. This insight is particularly significant in 
shaping interventions based on a mathematical model. While a large number of, sometimes  conflicting52, data-
driven models could equally well describe a psychological phenomenon based on correlational  studies53 (i.e., 
mathematical equations that describe the observed data in terms of e.g. correlations, see Methods for formal 
definitions), models that are mechanistically grounded (i.e., have a working model of the internal dynamics) 
are better equipped to inform us about possible  interventions54,55. In this study, we assessed our methodology 
not only by comparing the model’s predictions to the actual observed data but also by analyzing the theoretical 
aspects of the model, particularly the relationship between the intervention energy estimation and the analysis’s 
sensitivity. While this approach lends substantial support to the models, we believe that the validation of the 
models requires further exploration and testing to ensure their robustness and applicability in various contexts. 
One approach to achieve this involves the application of control-theoretic intervention strategies to known 
underlying dynamics through simulation studies (as seen in the work by Lunansky et al.9). However, experimental 
work is also essential to define and establish the applicability of these methodologies (see Stocker et al.56 for an 
example of fundamental limitation in simulation studies), ensuring that they are not only theoretically sound 
but also practically useful and effective in various contexts.

Limitations and future directions. Finally, we mention three major limitations of our approach and the 
representative example we used in this paper. First, in most cases, a therapeutic or preventive intervention does 
not happen in one step and encompasses multiple repetitions. Examples include psychotherapy, meditations, 
medication, neural stimulation, neurofeedback, physical and activity therapy, and psychological  education57. 
Also, the use of hypothetical scenarios as intervening methodology is questionable. If and how our methodology 
would explain the effects of continued intervention should be addressed in further research. Related, the effect 
of an intervention is time-dependent. For instance, the effect of psychological priming is known to be mostly 
observable for a few minutes. In contrast, research on neurofeedback training and psychotherapy shows long-
lasting effects. How and if such temporal variation can be included in the methodology presented in this paper 
must be further investigated.

Lastly, it is important to mention that despite the encouraging results presented in this manuscript, our study 
employed a small sample size and was specifically designed to accommodate network models. Therefore, this 
should be considered a proof-of-concept study. In essence, control theory has a broad range of applications, 
even without a distinct intervention in place (e.g., Jamalabadi et al.58). The question of whether our findings can 
be generalized to other contexts, such as those with a more diverse sample or where the intervention cannot be 
linked to specific nodes, thus necessitating more intricate data-driven methodologies, remains a topic for future 
investigation.

Conclusion
In a variety of psychological subfields, networks have been proven to provide valuable in- and hind-sight into 
psychological behavior. In this paper, we demonstrated how such networks may be evaluated using network 
control theory, which is the engineering study of networks under intervention. In a representative case of attitude 
transformation, we demonstrated that the effects of the psychological intervention are heavily related to predic-
tions provided by known control theory results. We also compared the performance of data-driven generative 
models to that of self-constructed network models and found that data-driven models provide a more accurate 
depiction of the intervention effect. In sum, network control theory may offer a formal theory to assess the 
(network-dependent) effects of psychological interventions and guide the construction of interventions.

Methods
Dataset. We use a publicly available and freely downloadable dataset, published in 2018 under the Journal of 
Open Psychology  Data35. In short, thirty participants with ages ranging from 19 to 57 (median age 20 ± 9 years) 
were asked about their attitude toward eating meat (11 questions). The responses would be one of 6 possibili-
ties between “completely disagree” and “completely agree”. The participants were then asked to contemplate 11 
hypothetical scenarios one by one, corresponding to the 11 items in the questionnaire, which were designed to 
alter their opinion on each of the items (the list of questions and the scenarios are publicly available at http:// 
osf. io/ 8tm5f). For instance, if a participant had a negative opinion on the morality of eating meat (i.e. initial 
response between 1–3), the participants were prompted to imagine that morality is only defined for humans and 
not necessarily for animals. After each perturbation, the participants were then asked the same 11 questions and 
were further asked about their perceived the causal relation between the perturbed item and the other items in 
the questionnaire. The participants had to draw these relations in an empty network (see Fig. 1). In this paper, 
we used the answers to the 11 questions as the state variables in our models and the prompts are considered as 
perturbations since they are designed to change the psychological state that described the attitudes towards eat-
ing meat. Further, we use the subjectively perceived causal relations which have been drawn by the participants 

http://osf.io/8tm5f
http://osf.io/8tm5f
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to build dynamical systems (see sections "Derivation of networks" and "Network control theory and the effect of 
psychological perturbation").

Quantification of the effect of perturbation. To quantify if and how the perturbations change par-
ticipants’ responses, we define the perturbation effect ( e ) as the normalized difference between responses before 
and after perturbation for each subject and each scenario separately. We parametrize this effect further using 
two measures. First, we define the sensitivity of perturbation ( se ) as the signed net effect of the perturbation 
effect. That is, if the perturbation is meant to increase the value of the responses to a given question ( g = 1 ; 
i.e., make the participants agree more with that question), sensitivity is estimated as the perturbation effect. 
Otherwise, that is, if the perturbation is meant to decrease the value ( g = −1 ), the sensitivity is defined as the 
negation of the perturbation effect. This way, a positive and large sensitivity signals a successful perturbation. 
Second, we define specificity ( sp ) as the efficiency of the perturbation in changing the value of the response to the 
certain question for which the perturbation is designed. That is, if the perturbation works (high sensitivity) for 
more than one question, then the specificity is low. Equations 1–3 summarize these definitions mathematically 
where rij ∈ {1 : 6} represents responses of ith subject to jth question, where i ∈ {1 : 30} represent the participants, 
j ∈ {1 : 11} represent the items (see Fig. 1), and ri0 refers to the baseline response before the perturbations.

Network control theory and the effect of psychological perturbation. Following previous 
 work15,22, we assume the psychological behavior to follow a noise-free linear time-invariant model given by

where x(k) ∈ D11,D = {0, 1, 2, 3, 4, 5, 6} defines the attitude towards meat at time k (also called the state), A 
represents the interaction matrix (i.e., the networks and B is the input matrix that specifies how the intervention 
affects x (see section "Derivation of networks" for the estimation procedure), and u(k) corresponds to the inter-
vention parameters (for details see section "Dataset")40. Importantly, following previous  work15,26, we assume that 
A remains constant after intervention that we estimated once based on a data-driven methodology (see section 
"Derivation of networks") and once based on the subjectively perceived causal relation (see section "Dataset").

Based on this equation, we can compute the following metrics:

1. Controllability metrics Within the domain of network control, controllability metrics pertain to the charac-
teristics of network nodes that enable them to direct the functional dynamics of the network when subject 
to perturbations. Specifically, these metrics provide an estimation of the extent to which the values of other 
nodes would be affected if a particular node experiences an external or internal stimulation. Consequently, 
these metrics serve as a means to evaluate the efficacy of interventions, measuring their potential impact 
and are naturally sensitive to diverse metrics that define the effectiveness of interventions. The literature has 
proposed a wide array of controllability metrics, each possessing applicability in specific contexts. However, 
two metrics, namely average controllability and modal controllability, have garnered particular attention due 
to their beneficial mathematical properties and demonstrated sensitivity to various functional  properties45.

  Conceptually, average controllability is associated with the averaged interconnections between nodes, 
wherein nodes exhibiting higher average controllability are those for which interventions result in more 
pronounced changes around their current values. In contrast, modal controllability relates to the temporal 
modes of network changes following interventions on specific nodes. Statistically, average and modal con-
trollability display a negative  association36.

  In this paper, we focus on examining the state variables within the network, which correspond to the 
responses provided for 11 questions related to attitudes towards meat consumption (refer to section "Data-
set"). The central hypothesis is that interventions targeting nodes with higher average and modal controllabil-
ity are anticipated to yield a more substantial impact on the overall responses within the network, on average. 
In other words, by identifying nodes with elevated average and modal controllability, interventions can be 
strategically directed towards these influential nodes. Consequently, it is expected that these interventions 
will result in more significant changes in the responses across the network, given the heightened ability of 
these influential nodes to drive alterations in the overall system.

  Mathematically, the average controllability (AC) of node j is defined as:

(1)eij =
rij − ri0

ri0

(2)seij = eij × gij

(3)spij =

∥

∥eij
∥

∥

(

∑

k �=j �eik�
)

/10

(4)x(k + 1) = Ax(k)+ Bu(k)

(5)ACj = trace

(

∞
∑

i=0

AiBjB
T
j

(

AT
)i
)
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where A is the network under study and Bj the jth canonical vector. Modal controllability (MC) is calculated 
by:

where ξi and vji are the eigenvalues and eigenvectors of A.
2. Control energy In the field of network control, control energy serves as a quantitative measure of the effort 

required to manipulate the collective state of a system, as represented by Eq. 4. Within the scope of the 
specific intervention experiment examined in this paper, control energy represents the combined strength 
of the employed scenarios aimed at inducing changes in the system’s responses. As a result, interventions 
characterized by lower control energy are anticipated to bring about more substantial alterations, thus dem-
onstrating heightened sensitivity.

  To provide further clarification, interventions with lower control energy necessitate less exertion or inter-
vention power to achieve significant changes in the system’s responses. Consequently, these interventions 
are expected to have a greater impact and exhibit enhanced sensitivity, as they possess inherent efficiency 
in instigating significant modifications in the overall network dynamics. It is important to note that control 
energy is defined with respect to the transition between two states, specifically the responses to the 11 ques-
tions before and after the intervention. It relates to the overall structure of the network and does not pertain 
to individual nodes, unlike controllability metrics, which assess the influence of each individual node in the 
system.

  We computed the energy required to move from x0 = x(k = 0) to xT = x(k = K) based on perturba-
tion of the ith question as follows according to the quadratic control function that is the most widely used 
formalization in  literature59,60:

where u is the solution to the optimal control problem as  in26,61.

where K and ρ are free parameters quantifying the time to reach from x0 to xT and the relative importance 
of cost terms in Eq. (5).  Following62,63, we define K = 1 and ρ = 1 . To solve the optimal control Eqs. (5) and 
(6), we use a customized version of the code that is used elsewhere to study the brain as well as psychologi-
cal  dynamics15,26,61.

Derivation of networks. In this manuscript, we build the networks (i.e., A and B in Eq. 4) in two ways.

Self-reconstructed networks In these models, for each participant, A11×11 is defined to be equal to the individual 
perceived psychological interaction networks that each participant drew during the experiments (see section 
"Dataset" for a short and the original  publication35 for a detailed description). In all cases, U11×1 (see Eq. 4), is 
equal to a vector where all elements are zero except for the ith element (corresponding to the ith intervention, 
i ∈ {1, 2, . . . , 11} ), which is either +1 or −1 depending on the intention of the intervention (i.e., either to make 
the participants agree or to disagree with an item in the questionnaire ). Following the logic of the experiment, 
B11×11 is then set to be equal to a matrix where all elements all zeros except for B(i, i) which is equal to +1.
Data-driven Models In these models, we estimated A11×11 and B11×11 based on the data. Specifically, we used 
Dynamic Mode Decomposition with Control  (DMDc40) which is one of the most successful and robust 
data-algorithms in the literature and has several theoretical advantages that makes it interesting for our 
 study64: not only is it suitable for sparse data, but it can also be employed in nonlinear systems, thanks to its 
connections to the Koopman operator. In the most straightforward implementation which we used in this 
paper (see  Proctor40 for methodological considerations), defining X1 = [x1x2 . . . xm−1] , X2 = [x2x3 . . . xm] 
U = [u1, u2 . . . um−1] where xi = x(i) and u1 = u(k) , we can rewrite Eq. 4 and thus solve for A and B simul-
taneously as follows:

where † denotes Moore–Penrose  pseudoinverse61. In this paper, we estimated A and B for individually each 
subject separately where X1 was filled with the same initial state before the start of the interventions, X2 with 
the recorded responses following 11 interventions. Additionally, we configured and u11×1(i) such that all 

(6)MCj =

11
∑

i

[

1− ξ 2i (A)
]

v2ji

(7)E = uTu

(8)min
u

T
∑

0

[(xK − x(k))T (XK − x(k))+ ρu(k)Tu(k)],

(9)s.t.x(k + 1) = Ax(k)+ Bu(k), x(0) = x0 and x(T) = xT

(10)X2 = [AB]

[

X1

U

]

(11)[AB] = X2

[

X1

U

]†
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elements were set to zero, except for the specific entry corresponding to the active intervention, which was 
assigned a value of 1.

Data availability
The codes to replicate the simulations are publicly available at https:// osf. io/ r7xsz/. The data used in this study 
is publicly available at http:// osf. io/ 8tm5f.
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