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Expert range maps (ExpRMs) are frequently used to inform species distributions, but 
often incomplete or missing for many species, particularly among plants and inver-
tebrates. Many species without ExpRMs also have too few occurrence records for 
reliable application of species distribution models (SDMs). Here we evaluate the per-
formance of commonly used range surrogates and recommend tools that can help fill 
this significant knowledge gap across a wide range of understudied taxa. Specifically, 
we explore an alternative range surrogate (ecoregional range maps; EcoRMs), assess its 
performance versus traditional approaches for 624 North American butterfly species, 
and outline its use alone and as part of SDMs. As an alternative range estimate, we 
use terrestrial ecoregions that represent a regionalization of biogeographical zones and 
we suggest geographical filters and simplifications that improve their performance. 
We show that consistently across different spatial scales and both in comparison with 
ExpRMs and SDMs, EcoRMs have an exceptionally high sensitivity and generally 
a high mean performance. Particularly for species with fewer than 100 occurrence 
records, EcoRMs outperform other range surrogates. The congruence of species rich-
ness patterns was also similar for all approaches. The use of EcoRMs as substitute for 
data-poor species without ExpRMs will strongly boost taxonomic coverage of range 
maps. Additionally, integrating EcoRMs as domains/masks/offsets into SDMs prom-
ises significant improvements to model accuracy. For butterflies alone, EcoRMs would 
thereby provide new range information for 17% and improve basic range information 
for 43% of all approximately nineteen thousand species. Other technical advantages 
of generating EcoRMs may also help to overcome issues of the availability, update-
ability, reproducibility, and circularity of ExpRMs, SDMs and minimum convex hulls 
(MCVs). In summary, ecoregion-based range maps offer a versatile tool for ecology 
and conservation of terrestrial taxa and the application of the EcoRM approach may 
prove similarly useful for freshwater and marine ecoregions.
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Introduction

Information about species’ geographical distribution is central 
to many ecological and evolutionary questions and under-
pins effective conservation decision‐making (Meyer  et  al. 
2015, Jetz et al. 2019, Oliver et al. 2021, Jetz et al. 2022). 
Ideally, distributional data for a species is contiguous in 
space and time and covers its entire global distribution, at a 
scale reasonable to inform conservation action and research 
(Jetz  et  al. 2019). Expert Range Maps (ExpRMs) arguably 
come closest to this standard (Rondinini et al. 2006). These 
maps of aggregated knowledge and field experience about a 
species range have been the most frequently used type of dis-
tributional data in global-scale biogeographical analyses, bio-
diversity research, and area-based conservation (Hurlbert and 
Jetz 2007, Herkt et al. 2017, Jung et al. 2021). Nevertheless, 
their limited taxonomic scope critically hampers conclusions 
about the vast majority of species on our planet (Dauby et al. 
2017).

A large number of ExpRMS have been developed by 
experts in support of IUCN Red List assessments, result-
ing in a compilation of ranges for approximately 115 000 
species (iucn.org retrieved 11 March 2022). Within IUCN 
specialists groups, experts draw simplified polygons around 
occurrence records and then refine and/or extend these 
polygons based on ecological knowledge of the species in 
concert with various map layers (IUCN Standards and 
Petitions Subcommittee 2022). Typically, many experts are 
involved in the generation and evaluation of range maps 
ensuring a high reliability and quality of IUCN ExpRMs. 
Other sources of ExpRMs, especially for plant and inverte-
brate taxa, include monographies of taxa as well as regional 
and global field guides (Scott 1997, Glassberg 2017, 
Marsh et al. 2022).

Over the last few years, an increasing effort has been put 
into mobilizing range maps from literature sources under 
metadata standards to not only make them publicly avail-
able but also for clarifying decisions of the production 
process (http://datazone.birdlife.org/species/requestdis or 
https://mol.org/datasets/?dt=range digitized expert ranges; 
Marsh  et  al. 2022). However, due in part to the immense 
work necessary to produce or digitize each ExpRM, their 
availability is often limited to more popular or well-studied 
taxa. Currently, comprehensive and high quality ExpRMs are 
available for a large proportion of vertebrate species (https://
www.iucnredlist.org/resources/spatial-data-download), 
whereas they are available only for a few selected plants and 
invertebrates subgroups and typically limited in their geo-
graphical extent (e.g. mol.org/patterns).

Species occurrence data, particularly from museum col-
lections and citizen science efforts, have grown rapidly 
in recent decades. The Global Biodiversity Information 
Facility hosts occurrence records for 1 723 634 animal 
and plant species (https://doi.org/10.15468/dl.w65qg6 
retrieved 11 March 2022). Approaches integrating 
ExpRMs with increasingly complete, spatially explicit, and 

readily available occurrence data promise unique advances 
for incorporating a significant proportion of all species on 
Earth into large-scale assessments on the status and trend of 
biodiversity. The IUCN has adopted two alternative inte-
grative approaches to address limitations of transparency 
and reproducibility of ExpRMs. First, hydro basin layers are 
used to infer species’ ranges from intersections with obser-
vation- and literature-based occurrence records. Although 
hydro basin-based ranges are limited to species affiliated 
with lotic (running) waters, this approach vastly improved 
the availability of baseline distributional data for the assess-
ment of species’ threat status of crabs, crayfishes, shrimps, 
and Odonata (https://www.iucnredlist.org/resources/spa-
tial-data-download). Secondly, given the lack of monitor-
ing data, simple non-parametric occurrence-based estimates 
such as minimum convex hulls (MCVs) have been proposed 
to determine the species extent of occurrence and the popu-
lation density therein, for assessments of a species’ threat 
status [Dauby  et  al. (2017); see also https://www.ala.org.
au/; IUCN Red List criterion B1 & B2; Schatz (2002)]. 
However, both alternatives do not resolve the internal struc-
ture of species’ ranges that result from barriers to disper-
sal, geological differences, and ecological gradients and are 
therefore likely to significantly overestimate the true species 
range in many cases (Burgman and Fox 2003). As a result, 
these range surrogates should be more sensitive (i.e. cover 
more suitable habitat or potential presences) but less pre-
cise (i.e. have a lower occupancy of suitable habitat) than 
ExpRMs, at least for data-rich species (Fig. 1).

Here we explore the use of terrestrial ecoregions as 
an alternative ExpRM surrogates, what we denominate 
‘Ecoregional Range Maps’ (EcoRMs). Ecoregions define 
the natural extent of areas with similar environmental con-
ditions and distinct ecological communities (Olson  et  al. 
2001). As proposed by Olson  et  al. in their foundational 
article, freshwater, marine, and terrestrial ecoregions have 
become baseline layers used in conservation efforts by the 
World Wildlife Fund and The Nature Conservancy as well 
as in assessments of the progress of conservation strategies 
(Dinerstein et al. 2017, 2020, Saura et al. 2017, Sayre et al. 
2020). In addition, particularly for vascular plants, amphib-
ians, reptiles, birds and mammals, ecoregions have served 
in initial efforts to both to map priority areas for ende-
mism and species richness (Kier  et  al. 2009) as well as to 
obtain surrogated of species distributions (World Wildlife 
Fund 2006). Being based on broad geological and ecologi-
cal zonation, ecoregions imply a high surrogacy value for 
species distributions of a broad spectrum of organisms but 
their congruence with single species distributions and bio-
diversity patterns has thus far not been evaluated.

Here, we statistically compare the sensitivity and precision 
of MCVs and EcoRMs based on predicted absence–presence  
information from ExpRMs and SDMs at the species-level 
as well as congruence in the resulting species richness pat-
terns. Sensitivity is interpreted as the ability of the range map 
to predict ‘true presences’, and precision as consistency of 
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performance for predicting species ‘true presence’ (positive 
predictive power, Fielding and Bell 1997). We use precision 
instead of specificity, which is usually paired with sensitiv-
ity, for evaluations because ExpRMs and our SDMs based 
on presence-only data are technically limited in their abil-
ity to inform about ‘true absences’. Thus, for the purposes of 
our analysis, only ‘true presences’, ‘false presences’ and ‘true 
absences’ were inferred using the appropriate comparator 

range map (ExpRM or SDM). In addition, we investigate 
the spatial dependence as well as the relationships of sensi-
tivities and precision with the number of underlying occur-
rence records. With these evaluations, we aim to inform 
applications about the potential of non-parametric, readily 
applicable, updateable, and occurrence-based alternatives to 
ExpRMs and SDMs for boosting the integration of data-
poor species into both conservation and ecological research.
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Figure1. Performance metrics of different range map types assessed against an expert range map (ExpRM) and a species distribution model 
(SDM) of a hypothetical species at coarse grain. Orange cells in the left panel (ExpRM) and black cells in the right panel (SDM) indicate 
the alternative true presences and white cells are true absences. Focal data types are the MCV and ecoregional range map (EcoRM). 
Sensitivity (true positive rate) is defined as the proportion of ‘true presences’ correctly identified, precision (positive predictive value) is the 
proportion of positive predictions that are correct, and the overall performance the arithmetic mean of these metrics - all with respect to the 
‘truth’ provided by the validation dataset. Cells are considered a ‘true presence’ when a range map covers more than 50% of their area. The 
scatterplot in the lower right corner provides a graphical representation of the performance statistics above. Inner circles of points indicate 
the basis of comparison (orange = ExpRM or black = SDM) and rings the respective range map type. In this example, the EcoRMs has high 
sensitivity and would be preferrable for applications wishing to minimize false absences while still offering good precision. In turn, MCVs 
or ExpRMs may be preferred for applications wishing to maximize precision (e.g. species conservation).
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Material and methods

Cleaning of occurrence records

Occurrence data for all 792 butterfly species of Canada 
and the USA (Pinkert  et  al. 2022) was downloaded from 
the Global Biodiversity Information Facility, query-
ing accepted names and synonyms in a full data export 
(https://doi.org/10.15468/dl.w65qg6 (1 July 2021) GBIF 
Occurrence Download https://doi.org/10.15468/dl.7radyr). 
Subsequently, species names were harmonized using the 
most recent taxonomy of butterflies (Pinkert  et  al. 2022). 
We removed presence records with date or coordinate issues 
(based on GBIF flags) resulting in 8 129 916 total records. 
In addition, 138 791 records were removed because they 
were located near country centroids, natural history institu-
tions, or GBIF headquarters using methods of the R-package 
‘CoordinateCleaner’ (www.r-project.org, Zizka et al. 2021) 
with default distance parameters. A total of 6 215 405 of 
the occurrences were located outside of the study domain 
(−48° to −175° longitude and 10°–83° latitude) or in seas. 
In addition, 571 604 spatio-temporal duplicates and 1 072 
records with a minimal interpoint distance of 500 km were 
removed. Finally, using a recent country checklist from 
Pinkert  et  al. (2022), 377 records were removed because 
they were more than 1000 km away from the borders of spe-
cies’ checklist countries, resulting in a final tally of 1 202 
667 records for 792 species. We applied an additional filter-
ing step for the data used to model species distributions to 
reduce memory requirements and limit the run time of the 
modeling procedure. Specifically, only for species with more 
than 5000 records (41 species), the occurrence data was suc-
cessively thinned by subsampling to one point per grid cell 
with grids of increasing grain size (1, 2, …, 32 km) until 
fewer than 5000 records remained. Note that, although fairly 
common practice in species distribution modeling, we did 
not remove records older than 1970 to facilitate comparabil-
ity with the literature-based ExpRMs (Marcer et al. 2022). 
To assess the overall data availability for butterfly species, all 
global butterfly occurrences records were cleaned using the 
above-mentioned filters except for limiting the extent and 
species set (order Lepidoptera excluding moth families).

Range map types

For comparisons of the performance, we used five range map 
types: Expert range maps, MCVs, original and simplified 
ecoregional range maps, and species distribution models.

Expert range maps (ExpRMs)
We compiled ExpRMs for 792 butterflies species of North 
America from Scott (1997) and Glassberg (2017). Data were 
georeferenced in shapefile format, quality controlled, taxo-
nomically harmonized using the most recent taxonomy of 
butterflies (Pinkert et al. 2022), and spatially merged using 
the R-package ‘rgdal‘ (www.r-project.org, Bivand  et  al. 
2023).

Minimum convex hulls (MCVs)
We used the cleaned occurrences and calculated MCVs in 
the R-package ‘adehabitatHR’ under default settings (www.r-
project.org, Calenge and Fortmann-Roe 2021). Given 
potentially strongly unreliable estimates arising from too few 
occurrence records, we excluded species with fewer than five 
records, resulting in a total of 662 species with MCVs. We 
did not use alpha-convex hulls because this approach requires 
careful tuning of a hyperparameter, α, for each species.

Ecoregional range maps (EcoRMs) – original and simplified
We intersected the cleaned occurrences with a standard ecore-
gion delineation to produce EcoRMs. For this study, we used 
the 846 terrestrial ecoregions from Dinerstein et al. (2017; 
downloaded at oneearth.org) as the most frequently used and 
globally consistent ecoregion definition. We generated two 
alternative sets of EcoRMs: ‘original’ EcoRMs, where ecore-
gional polygons intersecting the occurrence records were 
used, and ‘simplified’ EcoRMs where the outline of the ecore-
gion was smoothed. For data-rich species we removed ecore-
gions with only one or two records (those with ≤ 2 records/
ecoregion for species with 1000+ total records and those with 
only one record/ecoregion for species with 100+ records). For 
simplified EcoRMs, we smoothed the outline of the shape 
depending on whether 10 or less, 100 or less, 1000 or less, 
or more than 1000 records were available. For the first two 
cases, we buffered the occurrence records and masked them 
with a smoothed ecoregion outline (point buffer = 3/1 km; 
range buffer = 0.25/0.50 km; smooth = 25/50, respectively). 
For the last two cases, we buffered the selected polygons, filled 
holes of less than 50 km2 size and more strongly smoothed 
the outline (range buffer = 0.5/0.5 km; smooth = 50/100, 
respectively; for details see protocol and code in the archived 
data). We acknowledge that further refinements to these 
maps are possible, e.g. through the consideration of eleva-
tional ranges or measures of spatial distance (Huang  et  al. 
2021, Palacio et al. 2021). However, we herein focused on a 
simple and readily applicable approach to provide a solution 
most useful for poorly documented species and that avoids 
circularity with environmental niche models (e.g. SDMs).

Species distribution models (SDMs)
We generated maximum entropy SDMs (Phillips  et  al. 
2006) using the cleaned occurrences and 11 selected envi-
ronmental variables with functions of the R-package ‘dismo’ 
(www.r-project.org, ver. 4.1, Hijmans et al. 2021). Only 644 
species had both enough cleaned occurrence records to be 
modeled (i.e. > 5 records) and ExpRMs. Eleven covariates 
were used to produce the SDMs for each species, includ-
ing climate, topological, and productivity variables. Five 
climate variables describing annual and seasonality trends 
were selected from 19 biologically relevant variables (Bio1, 
Bio4, Bio10, Bio12, Bio15; CHELSA v2 current condition 
records; Karger  et  al. 2017, 2018). The average elevation 
and the coefficient of elevation variation were retrieved from 
Amatulli et al. (2018). Annual EVI (Enhanced Vegetation 
Index), Winter EVI, and Summer EVI were retrieved from 
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Tuanmu and Jetz (2015). Standard deviation of interan-
nual variation in MODIS-based cloud cover was taken from 
Wilson and Jetz (2016). All variables were cropped to the 
extent of the study area and resampled to a 1 km resolu-
tion using bilinear interpolation, if necessary. The modeling 
domain was set to a buffer of ± 5° longitude/latitude around 
the cleaned occurrence records. MaxEnt models were fitted 
using 10 000 randomly sampled background points as sug-
gested by Valavi et al. (2022) and default settings. Models 
were evaluated on a held-out test set consisting of 20% of 
the original presences and sampled pseudo-absences. For 
each species we projected the habitat suitability at 1 km res-
olution using the final model. A ODMAP standard report 
of our protocol (Zurell  et  al. 2020) is provided under the 
repository link. For each species the suitability of these pre-
dictions was then converted to binary presences, by using 
the 95% quantile of the suitability values extracted from the 
underlying occurrences records as presence threshold. SDMs 
with an exceptionally low AUC (< 0.5; 20 species) were 
excluded from further analyses. Most species with an AUC 
lower than 0.7 (13 species) were data-poor (Proosdij et al. 
2016) and we kept them for the analysis of the relationships 
of performance measures with data availability. Because 
Maxent is very robust to overfitting, we kept model results 
for all species although three species (Anatrytone mazai, 
Caria domitianus and Codatractus valeriana, with 8, 9 and 
10 records, respectively) had fewer records than predictor 
variables.

Performance assessment

We used both ExpRMs and SDMs as expectations for valida-
tion of each of the other range map types (including com-
paring ExpRMs and SDMs with one another). We took this 
approach due to the lack of reliable absence data for most spe-
cies at the continental scale and reflecting an interest in using 
EcoRMs and other surrogates as data- and computationally 
efficient alternatives to these two species range estimates. We 
resampled all five range map types for 624 butterfly species to 
grids with an approximate grain size of 25, 50, 100 and 200 
km using the R-packages ‘raster’, ‘sp’ and ‘sf ’ (www.r-project.
org, Pebesma et al. 2022a,b, Hijmans et al. 2023). For spe-
cies in southern parts of the study region MCVs, EcoRMs 
and SDMs typically extended into adjacent and potentially 
suitable regions (Fig. 2). Therefore, in the analyses of all spe-
cies, range maps were masked using country polygons for 
Mexico, the US and Canada (data from https://gadm.org/) 
as our expert range maps are limited to this extent. Following 
Sofaer et al. (2019), at the species-level we calculated the sen-
sitivity and precision in relation to ExpRMs and SDMs as 
detailed in Fig. 1. We chose to use precision over specificity 
because specificity is unreliable when using pseudoabsences 
and thus precision is commonly preferred in presence-only 
SDM analyses and similarly when building surrogates from 
presence-only data (Elith and Leathwick 2009). At the 
assemblage-level, aggregated distribution data was used to 
investigate the congruence of species richness patterns among 

data types with Spearman rank correlations and for mapping 
richness contrast.

All calculations of sensitivity and precision were repeated 
for range data aggregated to grain sizes of 25, 50, 100 and 
200 km to investigate the scale-dependence of our results. 
These analyses showed that sensitivity consistently decreased, 
and precision consistently increased with increasing grain 
size (Supporting information). However, the gain in preci-
sion was markedly stronger and the loss of sensitivity mark-
edly lower for a grain size of 100 km. We therefore focused 
the discussion and analyses of congruence of species richness 
patterns on this grain. Previous studies suggested that more 
than 50 records are generally sufficient to provide accurate 
SDM results (Proosdij  et  al. 2016), but such standard val-
ues are not available for other range surrogates and assume a 
high level of data cleaning. For each surrogate, we therefore 
evaluated the relationships of performance measures with the 
number of all available occurrence records after basic cleaning 
and harmonization.

Results

Example species

We exemplified comparisons across range map types for 
Typhedanus undulatus, a small-ranging butterfly species found 
from the southernmost parts of the USA over Mexico to 
Central America (Fig. 2). We find that when validated against 
the ExpRM, the SDM for T. undulatus had the highest mean 
sensitivity and precision (0.80). The MCV outperformed the 
simplified and the original EcoRM in terms of sensitivity 
(0.80, 0.77, 0.40). The simplified EcoRM outperformed the 
MCV and the original EcoRM in terms of precision (0.58, 
0.53, 0.56). When validated against the SDM, the simpli-
fied EcoRM for T. undulatus had the highest mean sensitivity 
and precision (0.67). The simplified ExpRM outperformed 
other approaches in terms of precision (0.84). The mean per-
formance was lowest for ExpRM and the original EcoRM 
(both 0.59). All approaches based on occurrence records 
highlighted areas beyond the ExpRM, including the Yucatán 
peninsula and Guatemala. The occurrence of T. undulatus in 
Florida and the Caribbean was only supported by the SDM, 
showcasing the need for integrating reasonable range offsets 
into species distribution modelling.

All species

Extending this assessment to all 624 species, we found that 
simplified EcoRMs consistently had a greater sensitivity than 
original EcoRMs, MCVs, and SDMs (0.96, 0.82, 0.79, 0.72, 
respectively; Fig. 3a). SDMs had a greater precision than 
MCVs, original and simplified EcoRMs (0.69, 0.63, 0.52 
and 0.46 respectively). The median of species’ mean perfor-
mance was similar for simplified EcoRMs, MCVs, SDMs, 
and original EcoRMs (0.71, 0.71, 0.70, 0.67).

Using SDMs as proxies of the true distribution of spe-
cies, simplified EcoRMs had a greater sensitivity than MCVs, 
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original EcoRMs, and ExpRMs (0.86, 0.68, 0.64, 0.44; 
Fig. 3b). ExpRMs had a greater precision than MCVs, origi-
nal and simplified EcoRMs (0.73, 0.68, 0.55, 0.51). The 
mean performance was similarly high for simplified EcoRMs 
and MCVs, and lowest for both SDMs and original EcoRMs 
(0.69, 0.68, 0.59, 0.59).

Sample and grain size dependence

The sensitivity and precision of the different types of range 
maps were generally positively correlated with the number 
of available occurrence records (Fig. 4). This analysis showed 
that for most measures and surrogates the performance was 
markedly higher above approximately 100 records per species. 
Based on this threshold, 43% of the 19 327 accepted butter-
fly species can be considered ‘data-poor species’. 17% may 
be considered ‘extremely data-poor species’ as they do not 
meet the minimum requirement for most range surrogates 

(five records). Using ExpRMs as proxies of the true distribu-
tion of species, the mean performance of SDMs for species 
with less than 100 occurrence records (i.e. data-poor species) 
was greater compared to that of simplified EcoRMs, MCVs, 
and original EcoRMs. Using SDMs as proxies of the true dis-
tribution of species, the mean performance was greater for 
simplified EcoRMs for species with less than 100 occurrence 
records compared to MCVs, original EcoRMs, and ExpRMs. 
Separate analyses for range maps aggregated to grain sizes of 
25, 50, 100 and 200 km revealed that the ranking of mean 
performance of ranges was generally consistent across spatial 
scales (Fig. 5, Supporting information).

Assemblage-level comparisons

The species richness patterns based on MCVs, as well as 
simplified and original EcoRMs were very similar (Fig. 6). 
The species richness pattern based on ExpRMs was most 

Figure 2. Range map types of an example species (Typhedanus undulatus, 99 records). ExpRMs and SDMs (top row) are used to calculate 
sensitivity (S), precision (P) and their mean (Fig. 1). All data were resampled to a grid of cells with a grain of approximately 100 km. Note 
that most range map types extend to central America. For the final analyses all data was, therefore, cropped to the boundaries of continental 
North America (Canada, US, Mexico) because ExpRMs are limited to this extent.
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congruent with that based on MCVs (Spearman’s rho = 0.91). 
Spatial comparisons against ExpRMs highlighted poten-
tial overestimations of species richness based on MCVs and 
EcoRMs in the southern central USA and northern cen-
tral Mexico. The species richness pattern based on SDMs 
was most congruent with that based on simplified EcoRMs 
(Spearman’s rho = 0.94), with potential overestimations of 
the former mainly in coastal areas of south-west US and 
Florida. ExpRMs and SDMs, both of which were used for 
calculating the performance measures interchangeably, were 
themselves highly congruent (0.89) but yielded different spe-
cies richness patterns in south-west US, Florida, and north-
ern Mexico. At a grain size of 100 km, range size estimates of 
MCVs, original EcoRMs and simplified EcoRMs were simi-
larly congruent with those based on ExpRMs (r = 0.87, 0.87, 
0.86; all p-values < 0.001) and SDMs (r = 0.93, 0.92, 0.92; 
Supporting information).

Discussion

Our results show that MCVs and ecoregional range maps 
(EcoRMs) perform similarly well in describing species dis-
tributions based on expert range maps (ExpRMs) or species 
distribution models (SDMs). EcoRMs consistently showed 
greater sensitivity and MCVs greater precision. The mean 
sensitivity and precision of both range estimates was similar 
across all species, but EcoRMs performed better than MCVs 
for data-poor species. The species richness pattern based 
on ExpRMs was most congruent with that from MCVs, 
whereas the species richness pattern based on SDMs was 
most congruent with that from simplified EcoRMs. Our 
results suggest that EcoRMs hold the promise to provide 
accurate and broadly available baseline range information 
for species, particularly data-poor ones, across a broad spec-
trum of taxa.

MCVs as range surrogates

For data-poor species and in the face of strong geographi-
cal biases in occurrence records, ExpRMs are likely the most 
accurate surrogate of species ranges. However, given the 
immense workload to produce ExpRMs, the limited number 
of experts available to inform them, and the sheer number of 
species on Earth, there is an increasing interest in automating 
and facilitating their production. Specifically, several recent 
studies use of MCVs or similar approaches to define the 
domain of species’ distribution in conservation assessments 
(Dauby et al. 2017, Huang et al. 2021, Palacio et al. 2021). 
Nevertheless, to our knowledge, their performance has not 
been evaluated before. The herein presented analyses of the 
species-level sensitivities and precision as well as the concor-
dance of MCVs with ExpRMs and SDMs provide the first 
empirical evaluation of this putative range surrogate. Our 
results show that MCVs are generally appropriate surrogates 
of species distribution and particularly useful for delimiting 
the most suitable part of a species range as indicated by their 
high precision. However, MCVs are particularly susceptible 
to sampling bias and may merge large parts of disjunct ranges 
resulting in a low sensitivity for detecting true occurrences 
(here either presences from ExpRMs or SDMs). In addi-
tion, we demonstrate that they are generally less appropriate 
for data-poor species (i.e. those with < 100 records), which 
highlights an important yet rarely considered limitation of 
MCVs. Given that the minimal data requirements of MCVs 
are similar to those of SDMs, which outperform the former, 
our results emphasize that MCVs provide a suboptimal sur-
rogate for the vast majority of species (Fig. 3).

Ecoregional ranges

Ecoregions represent generalized expert knowledge that were 
designed to and are used both for assemblage-level analyses 
(Olson  et  al. 2001, World Wildlife Fund 2006) and as a 

Figure 3. Scatterplots and boxplots of the sensitivity and precision of the five range map types for 624 North American butterfly species. 
Performance measures were calculated based on presence/absence information from (a) ExpRMs and (b) SDMs. Ranges were analyzed at a 
grain of approximately 100 km. Larger points highlight performance statistics for T. undulatus shown in Fig. 2.

 16000587, 2023, 12, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.06794 by U

niversitatsbibliothek, W
iley O

nline L
ibrary on [13/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 8 of 14

Figure 4. Sensitivity, precision, and mean performance of the five range map types for 624 North American butterfly species related to the 
number of cleaned occurrence records available. Performance measures were calculated based on presence/absence information from (a, c, 
e) ExpRMs and (b, d, f ) SDMs. Lines are spline-based smoothed regressions across species points (not shown) and semi-transparent areas 
indicate the 95% confidence interval of these regressions. For calculations and all other information see Fig. 3.
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Figure 6. Comparisons of different types of distributional data for 624 North American butterfly species. Scatterplots in the lower left tri-
angle show the relationships of species richness estimates based on ExpRMs, MCVs, simplified EcoRMs, original EcoRMs, SDMs and the 
occurrence records based on which the latter four range map types were calculated. Red lines are spline-based smoothed regressions and 
point color indicates the point density (light blue = low, dark blue = high). Values above scatterplots are Spearman rank coefficients calcu-
lated for pairs. Maps in the diagonal show species richness patterns and those in the upper triangle contrasts of scaled species richness pat-
terns of pairs. All data was resampled to a grid of cells with an approximate grain size of 100 km.
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substitute of other range map types such as SDMs or ExpRMs, 
but their potential surrogacy remains unevaluated. We dem-
onstrate that ecoregional ranges provide reliable estimates of 
species ranges as well as diversity patterns. Their additional 
technical advantages (e.g. reproducibility and actuality) sug-
gest a high potential for EcoRMs to provide reasonable range 
estimates for data-poor species as well as for improving the 
quality of other range estimates for well-documented spe-
cies. Ecoregional information is currently mainly used for 
biodiversity and conservation research at large geographi-
cal and taxonomic scales (Fritz et al. 2009, Dinerstein et al. 
2017). Here we show that EcoRMs yield diversity patterns 
comparable to those based on commonly used surrogates 
of species’ ranges, including SDMs and ExpRMs (Fig. 5). 
Our results thereby, provide support the appropriateness of 
using ecoregion-based diversity patterns in large-scale stud-
ies (Smith et al. 2018 for species-level analysis) and under-
line the general importance of the geoecological classification 
on which they are based (Olson et al. 2001). Moreover, the 
high performance of EcoRMs for species with less than 100 
occurrence records highlights their potential for incorporat-
ing data-poor species into large-scale analyses of diversity pat-
terns (e.g. hotspot analyses and protected area coverage) to 
boost taxonomic representation. Acknowledging their limita-
tions at finer scales, EcoRMs should be used for regions and 
taxa where ExpRMs are outdated or not available, or where 
primary occurrence data is limited or of poor quality.

We compared the sensitivity and precision of EcoRMs 
and MCVs using ExpRMs and SDMs as ‘true ranges’. Our 
performance evaluations indicate that both original and sim-
plified EcoRMs have a remarkably high sensitivity of detect-
ing species’ true distributions (Supporting information). 
The precision of original EcoRMs was consistently lower 
than for ExpRMs, SDMs or MCVs. For a minor loss in sen-
sitivity, spatial simplifications (i.e. removing very small frag-
ments and smoothing the outline) of EcoRMs resulted in a 
disproportionate gain in precision. Except for SDMs, the 
simplified EcoRMs consistently had a greater performance 
than other range estimate for species with less than 100 
records. Analyzing the scale dependence of range estimates, 
we confirmed that 200 km is the appropriate resolution of 
ExpRMs (Hurlbert and Jetz 2007), but that of simplified 
EcoRMs was twice as fine. Our analyses thereby provide 
strong support for species-level applications of ecoregional 
ranges, particularly for data-poor regions and taxa.

Applications

First, we argue that EcoRMs can be used to close an impor-
tant knowledge gap for data-poor species. Our results suggest 
that even for very data-poor species (< five records), EcoRMs 
provide relatively accurate range maps. Assessed against 
the global availability of occurrence records for butterflies, 
ExpRMs would allow incorporation of 17% of all known 
species into conservation and biodiversity research that have 
previously not been accounted for. Many of these species are 
rare and therefore a particular focus of conservation action 

(Lamoreux et al. 2006) because of their high risk of extinc-
tion (Courchamp et al. 2006).

Second, similarly to checklists for political or administra-
tive units, assignment of species to ecoregions will facilitate 
the incorporation of older (less spatially accurate) distribu-
tional data from the literature as well as data from invento-
ries at a coarse, yet geoecologically meaningful, grain. This 
checklist work would be facilitated by tools such as the 
‘ntbox’ (Osorio-Olvera et al. 2020), that allow users to over-
lay all available data, add species and regional information, 
and modify the synthesis range if needed. Integrative species 
ranges may, in turn, benefit initiatives such as the NatureServe 
Canada’s EBAR project that aims to archive metadata on the 
information and decisions underlying species range maps and 
collect expert reviews for the final range product (https://
www.natureserve.org/canada/ebar). An additional advantage 
of these range maps that stems from their reproducibility is 
the possibility to produce them for different periods of time, 
based on which range shifts, range contractions/extensions 
could be tracked (Araújo et al. 2002).

Third, EcoRMs could be routinely used as masks for SDMs 
to better delimitate dispersal barriers. SDMs are uniquely useful 
to resolve internal structures in data-rich species distributions 
(Hurlbert and White 2005, Rondinini et al. 2006, Herkt et al. 
2017). The geoecological delimitation of EcoRMs and their 
high sensitivity make them ideal masks for SDMs (note the out-
liers in Florida and the Caribbean in Fig. 2). Integrative models 
combining SDMs with range estimates such as the approach 
presented by Merow et al. (2017) may directly include EcoRM 
offsets to better define sampling regions for pseudo-absences 
and to evaluate the appropriateness of the range offset with 
different distance decay parameters. Other non-parametric 
attempts to resolve the internal structure of range maps using 
presence/absence data, elevational ranges, and measures of spa-
tial proximity (Huang  et  al. 2021, Palacio  et  al. 2021) ulti-
mately face the same limitations – of inaccurate and spatially 
biased occurrence data – as SDMs and even stronger limita-
tions of data availability due to a lack of absence information. 
The advantages of EcoRMs, particularly for data-poor species, 
suggest that the integration of ecoregional offsets into SDMs 
would likely improve models for 26% of all butterfly species, 
for example [i.e. species with ≥ 5 but < 100 records].

Limitations and extensions

Here, we chose a set of well-documented species from the US 
and Canada that had sufficient data for species distribution 
modeling and available expert range maps. North America 
is, however, classified into rather large ecoregions and it 
includes relatively weak geographical barriers for dispersal 
(Pinkert et al. 2017, Stelbrink et al. 2019). In the light of these 
limitations, we suggest three future avenues of technical eval-
uations. Firstly, analyses for tropical regions and widespread 
species may provide important insights into spatial variation 
of the performance of EcoRMs and its dependence on the 
range size of species. The performance of EcoRMs should be 
even higher in these regions and species, because ecoregions 
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are more fine-scaled as well as environmentally distinct in the 
tropics (Smith et al. 2020) and advantages such the adequate 
representation of disjunct ranges and delineation of biogeo-
graphical are likely most important in global-scale analyses. 
Secondly, through an improved availability of survey data 
future studies will help to incorporate performance metrics 
based on ‘true absences’ into evaluations of range surrogates 
as well as to define ecoregions, or part thereof, where species 
are likely absent. Thirdly, the evaluation framework presented 
in this study may be applied to different terrestrial taxa as 
well as freshwater and marine ecoregions to better under-
stand the general surrogacy of ecoregions. In the same vein, 
we encourage the integration of data on species turn-over and 
expert knowledge of a broader range of taxa into the continu-
ously developed ecoregional database to further improve and 
resolve the baseline layers (Olson et al. 2001, Dinerstein et al. 
2017).

For demonstration purposes, we in this study, focused 
on ecoregions developed by Olson et al. (2001) and refined 
by Dinerstein et al. (2017), both because they are the most 
frequently used type of regionalization in conservation and 
biodiversity research and because they exclusively rely on 
similarities of species communities rather than environmen-
tal information. The latter feature of ecoregions is particu-
larly relevant for integrating EcoRMs into SDMs, as a direct 
dependence on environmental data would introduce circular-
ity for niche estimation. However, our results also represent 
a proof of concept for the application of a wider range of 
regionalizations developed using remote sensing and envi-
ronmental data, such as global layers of ecological land units 
(Sayre  et  al. 2020) and classifications of mountain regions 
(Snethlage  et  al. 2022), for cases where circularity with 
niche estimation is not relevant. We acknowledge that, for 
instance, ecosystem land units are already available at a reso-
lution five times finer than that of ecoregions, they are readily 
updateable and technically allow for temporally continuous 
time-series data, whereby they would not only improve the 
availability of range data, but also data of improved spatial 
and temporal resolution.

Conclusion

The main goal of this study was to assess the performance 
of surrogates for species distributions to facilitate improve-
ments in building a reliable information basis for area-based 
conservation, threat assessments and biodiversity research. 
Although ExpRMs are still commonly used in conservation 
research and SDMs are increasingly used in large-scale bio-
diversity research, the availability of both range map types 
is critically limited to well-documented taxa (Jeliazkov et al. 
2022). An important yet seldom addressed information 
gap are the rare and poorly documented species (see also 
Marsh et  al. 2023). Any progress in closing this gap will 
disproportionately reduce regional and taxonomical biases 
in large-scale analyses. Our findings underline that EcoRMs 
are of high potential for both conservation and biodiversity 

research, including but not limited to applications for 
modelling species’ distributions and evaluating threat and 
diversity particularly for very data-poor species. The broader 
implications of our findings are that ecoregional informa-
tion provides a versatile tool with an immense potential to 
boost the taxonomic coverage in ecology and conservation. 
While this promises the effective use of the rapidly grow-
ing number of presence records, extended efforts to survey 
biodiversity systematically and repeatedly under meta-
data standards are essential to improve the quality of such 
applications.
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