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Abstract

Due to an ongoing energy transition, electricity networks are increasingly challenged by
situations where local electrical power demands are high but local generation is low and
vice versa. This finally leads to a growing number of technical problems. To solve these
problems in the short-term, the electrical power of load and generation must be adjusted
as available flexibility. In zonal electricity systems, one often discussed concept to utilize
flexibility is local flexibility markets. Based on auction theory, we provide a comprehensible
framework for the use of network-supportive flexibility in general. In this context, we discuss
the problem of matching supply and demand. We introduce three matching approaches that
can be applied and adapted for different network situations. In addition to a qualitative
description of the three approaches, we present a case study of an exemplary distribution
network and explore different scenarios to demonstrate the utility of the algorithms. We
compare the three approaches on a qualitative level with quantitative inputs from the case
study. The comparison considers the specific cost, flexible energy, ensured demand coverage,
data minimization, computational effort and the transferability of the three approaches.

Keywords: local flexibility markets, matching, multi-dimensional winner determination,
electricity network operation
JEL classification: D44, 194, Q41
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1. Introduction

Due to an ongoing energy transition, electricity networks are increasingly challenged by a
growing number of renewable energy plants as well as load technologies such as heat pumps
and electric vehicles. Situations where local electrical power demands are high but local
generation is low and vice versa can cause technical problems, such as congestion of lines
and transformers as well as over- or under-voltage. Such problems can be solved preventively,
through grid investments, or reactively, with different techniques of the network operation.
Measures of network operation can be divided into (i) adjustments of network assets and
(ii) adjustments of load and generation power; the latter adjustments are referred to as
network-supportive flexibility. There is an active debate on network-supportive flexibility,
especially concerning the European energy system. This debate addresses whether the use
of flexibility can sustainably replace network investments (e.g., |Spiliotis et al., 2016) and
which mechanisms should be used to give network operators access to flexible assets.

The local flexibility markets (LFM) approach is one of these mechanisms (Jin et al.
2020). On a conceptual level, LEFM involve a marketplace where the network operator rep-
resents a demander for network-supportive flexibility supplied by the flexible assets within
the concerned network. The design of such markets contains some challenging aspects, espe-
cially the definition of appropriate market processes and flexibility products (see Heilmann
et al, 2020). In this context, the concept of matching supply and demand must be defined.
Due to the high complexity of technical issues in the electric network, the question of how
to match supply and demand of network-supportive flexibility leads to a multidimensional
optimization problem that is also influenced by the possibility of complex bidding. The
matching is of outstanding importance because it ensures the efficient use of the required
flexibility that is central to a market approach in general.

The paper at hand discusses this problem and contributes to the current debate. Us-
ing a comprehensible auction model to facilitate network-supportive flexibility, we provide
three different matching approaches that can be applied and adapted for different network
situations and flexibility products[l] In addition to a qualitative description of the three ap-
proaches, we present a case study of an exemplary distribution network and explore different
scenarios to demonstrate the utility of the algorithms. We compare the three approaches
on a qualitative level with quantitative inputs from the case study. The comparison consid-
ers the following aspects of the matching outcomes: specific cost, flexible energy, ensured
demand coverage, data minimization, computational effort and the transferability of the
algorithms with respect to network issues and different flexibility mechanisms.

The remainder of this paper is organized as follows. Section [2| contains an overview
of the literature on network-supportive flexibility and auction design basics. In Section
Bl a model for the network-supportive use of flexibility that is based on auction design is
introduced. Section {] contains a conceptual discussion of the three matching approaches.
Sectionp] describes the design of the case study. The results from this study are presented
and discussed in Section [6] The paper closes with a conclusion in Section [7}

! Although following an auction approach, the underlying mechanism is not necessarily marketplace, but
can also be the legal obligation, e.g. of power plants to provide their network-supportive flexibility.
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2. Literature review

In the following section we provide an overview of relevant literature on matching supply
and demand for network-supportive flexibility. We first discuss the literature related to
network-supportive flexibility, especially in distribution networks. We then briefly introduce
some aspects of auction design that are the basis for our understanding of matching supply
and demand.

2.1. network-supportive flexibility

In last few years, there has been an active discussion on the use of flexibility for the
future energy system in general and for network-supportive measures specifically. Different
reviews and conceptual works on the topic consequently exist. |Villar et al| (2018) provide
a conceptual overview of flexibility products and markets for different use cases, including
congestion management and power quality control for distribution system operators (DSOs)
and transmission system operators (TSOs). [Khajeh et al.| (2019)) review recent research
related to flexible resources and potential trading structures at the TSO, DSO and customer
level in smart grids. |[Huang et al.| (2014) differentiate congestion management techniques
into direct and indirect control mechanisms. The latter comprise different market-based
mechanisms such as dynamic tariffs and flexibility service markets. Ramos et al.| (2016)
define LFMs as “long- or short-term trading actions for flexibility in a specific geographical
location, voltage level, and system operator (DSO and TSO), given by network conditions
or balancing needs, where participants in a relevant market can be aggregated to provide
flexibility services”. We focus on such LFM approaches, as they are a major aspect of the
current academic discussion. Jin et al. (2020) provide a broad review of LFM literature
and compare different congestion management methods, model formulations and solution
approaches. Schittekatte and Meeus (2020) and [Radecke et al. (2019) review and com-
pare different pioneering approaches to LEFM in Europe. Heilmann et al| (2020) provide a
framework for the product design of LFM.

In addition to these conceptual works, there are various studies that contain LEM ap-
proaches and related simulation studies. We give a chronological overview of some of these
works to show the currency of the topic. Kok (2012) presents a flexibility integration theme
based on optimized dynamic pricing. Ding et al.| (2013)) in connection with [Heussen et al.
(2013) and Zhang et al. (2013) propose an LEM approach for flexibility services based on a
clearing house concept. [Torbaghan et al. (2016]) formulate a complex optimization problem
to enable flexibility trading that contains day-ahead as well as intraday elements. Korn-
rumpf et al. (2016) provide a simulation study of flexibility provision that is also based
on two time horizons. Lamparter et al. (2016]) provide an agent-based market model that
matches supply and demand with a Vickrey-Clakes algorithm. Dauer| (2016|) discusses the
market design of local flexibility markets from a mechanism design point of view. A market
design containing uni- and bidirectional optimization approaches (without local considera-
tions) is defined and tested using simulation studies. Olivella-Rosell et al. (2018b) provide
a detailed LFM approach including a simulation test case. [Esmat et al.| (2018) describe the
optimization approach of an LFM considering rebound effects of the flexibility suppliers.

3
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Shen et al.| (2019) combine dynamic pricing, network configuration and flexibility products
in a complex congestion management approach. Niu et al. (2020) propose an optimization
model for coordinating ancillary services based on multi-flexibility measures. [Laur et al.
(2020) consider and evaluated a concept for DSO overload management using a two-part
tariff service market that is modeled as a three-stage stochastic market.

The works listed above mainly contain a brief description of the matching for a spe-
cific LFM approach. We abstract this point of view and interpret the problem of matching
network-supportive flexibility supply and demand as general tool for network operators’ con-
gestion management. Therefore, also other approaches for the utilization of flexibility (e.g.
Schermeyer et al., |2018)) are plausible. Nevertheless, auction theory provides a reasonable
basis for the problem of matching supply and demand. Therefore, in the following section,
we give an overview of the most important terms in the context of auction design.

2.2. Auction design basics

The term ”auction” describes a wide range of trading mechanisms that determine a
price for specific goods based on a competitive bidding process with explicit rules (McAfee
and McMillan, |1987). There are four standard auction types (ascending-bid, descending-
bid, first-price sealed-bid and second-price sealed-bid auctions) that sell a single good based
on the price only (Pham et al., 2015)). Since the theory of auction design has been part
of the academic literature for more than 30 years, there are various approaches for a more
detailed generic description of auctions (e.g. Wurman et al.,[2001} Teich et al.| 2004; |Abrache
et al., 2007; |[Parsons et al., 2011; |Pham et al., |2015). At a high level of abstraction, the
main auction design elements are the traded products, the organization and rules of the
bidding process, the matching E] and pricing. Each of these design elements contains different
aspects that increase potential design varieties in an exponential manner. To handle this
quasi-infinite design space, the academic literature has defined some classes of auctions with
similar properties. In the following paragraphs, we define the most important terms.

Multi-unit auctions contain more than one item of the traded good. In general, most
auctions for scalable commodities are multi-unit auctions. Cumpston and Khezr (2020)
provide a survey of related literature.

Reverse or procurement auctions entail a trading process in which one or more buyer can
ask for a specific good. Unlike in selling auctions, the auctioneer’s aim in reverse auctions
is to procure the lowest price. As a hybrid-form, two-sided auctions combine procurement
and selling auctions: their aim is to achieve the highest possible trading volume.

Combinatorial auctions contain all type of auctions where a complex bidding is possible
(Abrache et al., 2007). Complex bids can, for example be connected block bids (AND-bids),
optional OR-bids or exclusive optional XOR-bids. Such bid formats allow the supply side to
express preferences in complex bundle bids and allow the demand side to consider different
side conditions (Sandholm and Suri, 2006; Bichler et al., |2009). Combinatorial auctions

2In the academic literature of auction theory, the terms “winner determination” or “scoring rule” are
synonymous with matching supply and demand.
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increase the complexity of the matching problem (Sandholm) 2002)) and the related pricing
(Xia et al., [2004]).

MMultidimensional or multi-attribute auctions consider further product attributes for
matching in addition to the price of a good. Such attributes may include quality properties
of the traded good that would not be considered in a one-dimensional auction (Chetan
et al., [2019; Pham et al. [2015). Multidimensional attributes are often used for procurement
auctions in the public sector (de Smet, 2007). The consideration of multiple attributes leads
to highly complex matching (Branco,|1997). Different approaches to reduce the complexity of
the matching problem without losing the advantages of the additional attributes have been
discussed in the literature. These include scoring approaches (e.g., |Asker and Cantillon,
2008), techniques of multi-criteria decision making (e.g., |Cheng, 2008) and the approach of
pricing out the additional attributes (e.g., Thiel, |1988; [Teich et al.| 2006).

3. Techno-economic problem description — an auction perspective

As shown in Section , network-supportive flexibility is often discussed in the context
of LEFM. In the following section, we introduce a high-level auction model for the network-
supportive use of flexibility that is consistent with this market-based approach. In keep-
ing with basic auction principles, this model contains the components “bidding process,”
“matching” and “pricing”. The aim of the model is to provide a framework for solving a
technical problem within electricity networks by using the flexibility of suitable assets in the

network. Figure [l summarizes the auction model. We discuss the individual components
in the sections B.1] - 3.3

3.1. Participants

We first briefly describe the relevant participants within the auction model. These par-
ticipants must be subdivided into supply and demand sides. A detailed discussion of the
technical aspects of both sides of the market has been provided by |[Heilmann et al.| (2020)).

On the demand side, there is at least one network operator that faces technical network
problems. These problems may include congestion of lines and transformers and over- or
under-voltages. The network operator’s task is to solve these problems at the lowest possible
cost. If more than one interconnected network area is involved, the implicated network
operators can be interpreted as one demander. To ensure secure operation of the whole
network, a coordination of network operators can deemed mandatory (e.g., |Gerard et al.|
2016)).

On the supply side, any potential flexibility-providing asset can be integrated. Such
assets include controllable energy plants, storage batteries or demand-side management ap-
proaches. Flexibility suppliers can have one of two motivations. The first option is a legal
obligation that engages the supplier to provide flexibility in a regulated frameworkﬂ The
second option that is more consistent with the auction model is the marketing of flexibility

3Such a framework exists, for example, in the European electricity transmission system. This framework
is embedded in the national legislation of European countries.
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Figure 1: Generalized auction model for network-supportive use of flexibility

to pursue economic goals. This option implies voluntary participation. In this case, the
supplier must balance monetary interests and comfort requirements, especially for small
demand-side units (Petersen et al) [2012). In this context, aggregating the flexibility po-
tential of different units is important (Kouzelis et al. 2015)). Aggregation provides different
advantages, such as improvement of the forecast quality and availability of the provided flex-
ibility (Eurelectric, 2015). (Olivella-Rosell et al| (2018a)) discuss the optimization problem
from an aggregator’s point of view and provide a simulation study. However, the appro-
priate aggregation level is dependent on the number of available units. Highly aggregated
flexibility is thus not an option for local problems at low voltage levels. Miller et al.| (2019))
analyzed the sensitivity of different pooling formation options. Potential aggregation levels
can be based on grid topology (at local transformers and defined grid topology points) or
on a dynamic effectiveness evaluation. Further consumer requirements must be considered
when aggregating flexibility from distributed energy resources. According to
, these requirements can be quantified by control parameters to reach an optimum
demand response to market and grid conditions.

3.2. Product design and bidding

The auction model starts with a bidding process (see Figure , Step 1) that allows both
sides of the auction to express their individual preferences. On the demand side, this entails
a detailed description of the technical problem, including technical requirements for the
solution. These requirements contain information about a technical measure, the location

6
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within the network and the time . The supply side may have technical restrictions or other
preferences and can specify the offer priceﬂ of the provided flexibility (see Section [3.1).
There are two ways to address these demand-side and supply-side preferences. The first
possibility is to design suitable flexibility products. We follow the framework provided by
Heilmann et al| (2020): a flexibility product must contain a local attribute in order to
evaluate the flexibility in relation to a specific technical problem. The incorporation of
technical requirements and restrictions is optional within the product design. The second
possibility is the implementation of a complex bidding language, for example, with AND-,
OR- or XOR-bids (Abrache et all [2007; Bichler et al., 2009). The resulting combinatorial
bids can replace the technical rules or constraints of a flexibility product.

3.3. Matching and pricing

Based on the flexibility bids, the matching problem (see Figure , Step 2a) can be solved.
At a high level of abstraction, the problem involves the selection of flexibility bids that are
both suitable for the solution of all problems and at the lowest possible cost. The resulting
problem is a multidimensional optimization problem. In contrast to other multi-attribute
auctions that contain products with quality attributes, the location of an individual flexible
asset cannot be changed. Therefore, the concerned network structure must captured with
nonlinear side conditions. Because the cost of flexibility is considered, the matching is also
connected to the chosen pricing scheme (see Figure [I Step 2b). Different pricing schemes
and complex flexibility products or a complex bidding language lead to different detailed
matching problem formulations (Xia et al., [2004; |Abrache et al., [2007)). After the matching,
the auction model ends with the provision of the procured flexibility for the determined time
(see Figure[1] Step 3).

3.4. Advantages of the auction model

TThe application of the auction model provides some advantages compared to a purely
technical discussion of network-supportive flexibility. First, the model contains a comprehen-
sive description of the congestion management process, starting with the technical problem
identification and ending with the problem solution. Second, the steps of the process can be
considered separate design elements with interdependence. The complexity of the matching
approach, which is the core optimization problem of the auction model, is strongly dependent
on the chosen product design, the complexity of the bidding language and the selected pric-
ing scheme. Nevertheless, although the flexibility products determine the matching problem,
one does not need to consider whether the flexibility bids are based on a market process or
if they can be traced back to legal obligations of individual flexibility suppliers. Therefore,
the introduced auction model can be interpreted as a framework for allocating and using
flexibility for congestion management and not necessarily as a trading mechanism.

The auction model can be classified as multi-unit, multi-attribute (price and network
location) procurement auction with a high probability of combinatorial elements (based on

41f the price is not regulated due to legal provisions
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supply-side technical restrictions). Therefore, the resulting matching problem is a technoe-
conomic optimization problem of high complexity. Due to its complexity and nonlinearity,
this optimization problem is comparable to the optimization of topological network oper-
ation (e.g., Granelli et al., 2006) as well as network planning (e.g., Scheidler et al., 2018).
A decentralized optimization at the level of individual network operators is a reasonable
approach for optimizing the global network (Wang et al., 2017)).

4. Selected matching approaches

Matching is at the core of the generalized auction model. The model’s goal is to determine
the most efficient dispatch of flexibility. A comprehensive discussion of the optimal design of
the matching approach is beyond the scope of this paper. Examples of different optimization
approaches can be found in the literature highlighted Section For example, |Jin et al.
(2020)) provide a review of solution approaches based on the underlying model formulation.
In the following section, we introduce three selected matching approaches that are applicable
to different network situations but are also adjustable to different flexibility product designs
and bidding rules.

4.1. Merit order

The first optimization approach contains a heuristic algorithm that uses a merit order
list (MOL). The MOL contains all bids in the related network area sorted in ascending order
by the cost of their application. This heuristic uses power flow calculations to determine
the status of the concerned network and how it is impacted by individual bids. A problem
measurd’| summarizes all congestion problems to be solved.

The algorithm has two main steps. In the first step (see Figure [2)), a list of potential
solutions (a subset of the MOL) is selected using a hill-climbing approach. The lowest-cost
bid on the MOL is used as an input for a power flow calculation of a temporarily adjusted
network. If the problem measure of the temporary network is lower than that of the current
network, the bid is accepted as potential solution. The temporary network and its problem
measure are then stored as the current network. If the problem measure of the temporary
network is higher or equal to that of the current network, the bid and the temporary network
status are rejected and the next bid from the MOL is used. This step is reiterated until the
problem measure is zero or until every bid of the MOL has been used without reaching a
problem measure of zero. In the latter case, the list of bids has not lead to a solution that
solves all problems. If the problem measure is zero, the algorithm continues to the second
step.

After selecting a list of bids that solve all problems, the algorithm tries to reduce the list of
bids by searching for redundancyﬂ (see Figure . Each bid from the list of potential solutions

5The problem measure is generally a vector of all relevant network problems such as line congestion or
voltage problems. If the problem measure is equal to zero, all problems are solved.

SRedundancies in the list of potential solutions can occur if the last bid leads to a significant over-
fulfilment. In this case, the over-fulfilment can be reduced by removing smaller bids.

8
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Complete list
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sorted in descending order by the cost is used as an input for a power flow calculation of a
temporarily adjusted network. If the problem measure is still zero, the bid is obviously not
necessary and is therefore removed. If the measure changes, the bid is kept as part of the
final solution list.

The output of the algorithm is the list of solutions for one specific network situation. It
can be repeated for every relevant time step. In this basic representation, the algorithm does
not consider combinatorial bid elements but can be extended to include them (see Section
5.1.2).

4.2. Weighted merit order

The second optimization approach is an alternative version of the first approach. It also
uses power flow calculations and a problem measure of the concerned network to find a list
of bids that solves all problems. Unlike the first approach, the algorithm does not use the
MOL but instead preprocesses all bids to generate a weighted merit order list (wMOL).
The preprocessing step weights the cost of every bid with the technical effect and therefore
decreases the weight of bids that have only a small effect on the problem.

In this preprocessing step (see Figure [4)) every single bid is used as an input for a power
flow calculation of a temporarily adjusted network. If an individual bid improves the prob-
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lem measure of the network, “effective cost” can be calculated as the relation between the
problem measure improvement and the cost of the bid’s use.

Ef fective cost =

Cost of the bid

Problem measure without bid — Problem measure with bid

(1)

Bids that do not have a positive impact on the problem measure are not processed
o0 further. The wMOL is formed by sorting the list of evaluated bids in ascending order by

their effective cost.

In the next step (see Figur, the wMOL can be used to find a list of potential solutions.

This procedure is similar to the hill climbing method of the MOL-algorithm, but the wMOL
only uses bids that have a positive impact on the problem and therefore accepts all bids

o7s until the problem measure is zero. If all bids are used without achieving a problem measure
of zero, the wMOI has failed to solve all problems. The final redundancy check is the same

as that of the MOL-algorithm (see Figure [3]).
Like the MOL algorithm, the wMOL algorithm’s output is the list of solutions for one spe-

cific problem situation. The algorithm can be repeated for every relevant time step. Again,

280 in this basic representation the algorithm does not consider combinatorial bid elements but

11



Network model

While problem measure > 0:

Repeat for every bid in wMOL: Update network status
and add bid to list of | ---Input------- List of potential solutions,
potential solutions

Current network status
and problem measure
(initial problem measure > 0)

Perform power flow
calculation and
calculate problem
measure

Problem
measure
>0?

Continue with step
‘redundancy check'

Yes

Adjust flexible asset

Legend: Loop

Stored data

( Process step )

Start new iteration

Complete wMOL
iterated?

@ Inéut

Sort bids by
ascending

END:

List of weighted
flexibility bids

o solution foun

Figure 5: wMOL algorithm Step 2: find potential solutions using the wMOL

12



285

290

295

300

can be extended to consider them (see Section [5.1.2)).

4.3. Constrained optimization under consideration of effectiveness

The third approach is based on an integrated constrained optimization (Zeiselmair and
Koppl, 2021)). To reach an optimized solution, effectiveness-weighted supply bids are allo-
cated to demand bids over the whole considered time period. Therefore, cost is minimized
with simultaneous penalization of non-fulfillment. Unlike in both preceding approaches, the
power flow calculation is not an integral part of the constrained optimization itself (Zeisel-
mair et al. [2019; Koppl et al.l 2019). Instead, the impact of flexible power adjustment to
potential demands at all network connection points is evaluated in advance. The results of
this initial sensitivity evaluation are then used as input data for the optimization itself in
the form of linearized effectiveness functions, as described by |[Estermann et al. (2018)).

Similar approaches have been proposed by Vanet et al| (2015 that use a sensitivity
matrix for voltage control issues in low voltage networks. To find a global optimum of the
results, deterministic linear optimization is used, as described by the following objective
function.

o
+ . pt - . p- + —
@T, Z Z (C5 - Py +Cyy - Py) + Z Gij (djy + dy) (2)
ZJ’ i og=1 =1 =1
with

C{; >0 Costs for positive offer bid ¢ at time period j
C;: >0 Costs for negative offer bid ¢ at time period j
Pj’ >0 Contracted positive offer bid ¢ at time period j
P; =0 Contracted negative offer bid ¢ at time period j
Gi; >0 Penalty costs for non-fulfilment of demand !

db,d; € Rt Auxiliary variable for the absolute value of non-
fulfillment of demand [ at time period j

The effectiveness factors are part of the auxiliary variables dJr and d;;. A detailed de-
scription of the incorporation of these factors are presented in Zelselmalr and Koppl (2021)).
In addition to sensitivity, the algorithm is capable of considering additional constraintd’]
on both the supply and demand sides. Therefore, different forms of combinatorial bidding
can be implemented. Mathematically, these constraints are represented using additional
boundary conditions that are not discussed in this paper, but can be found in Zeiselmair,
and Koppl (2021)). Figure [6] describes the optimization process, including all relevant input
data.

"These include the divisibility of bids, power restriction (i.e., maximum or minimum requested power) as
well as time restrictions (e.g., minimum and maximum request duration, minimum time between two calls,
the total call duration during a day or the total number of calls per day).
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The integrated optimization approach is quite different from the first two approaches, so
its results may also differ (e.g., under-fulfillment is potentially possible). Further optimiza-
tion is not assessed step-wise for every time step but instead over the entire considered time
period. The following case study aims to evaluate the proposed approaches using realistic
conditions in order to compare them and to identify divergences.

5. Case study

To demonstrate and compare the three different matching approaches, we implemented
a case study based on a real medium-voltage network with different load and generation
scenarios. Overall, 12 sub-cases of supply and demand combinations were used to compare
the matching outcome of the three approaches. In the following section, we provide a brief
overview over the network settings by applying the generalized auction model introduced in
Section [3] We then describe the implemented experiment.

5.1. Auction model

5.1.1. Participants
The need for flexibility is based on the network conditions of a real medium-voltage
network. Figure [7] shows the medium-voltage network under investigation. It is a radial
line, 30 % of which consists of cables. The line represents a rural grid (long extensions) with
high photovoltaic (PV) generation and low consumption density (Estermann et al. 2020).
The topology and penetration of the network are based on the on-site conditions. There-
fore, the network can be described as follows.

e The network contains 66 nodes. Thirty of these nodes represent residential subnet-
works, seven nodes are connected to industrial facilities, four nodes are connected to
larger PV plants and one node with a biomass combined heat and power (CHP) plant.
The remaining 24 nodes represent topological points without generation or load.

e There are 494 smaller PV plants with a total of 7,830 kW electrical power allocated
in the residential subnetworks. Each PV plant has a nominal power between 2 and 30
kW.
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e There are 265 residential heat pumps (HP) with a total of 940 kW of electrical power
allocated in the residential subnetworks. Each HP has a nominal power between 2 and

6 kW.

e The nominal power of the four larger PV plants totals 1,100 kW. The nominal power
of the CHP is 400 kW.

e The nominal maximum load of the industrial loads is between 100 and 400 kW.

The flexibility supply is provided by the assets connected to the network. We make the
following assumptions to quantify the available flexibility:

e PV plants can reduce their current generation.

e The CHP can adjust generation either by reducing current generation or by increasing
generation until the nominal power is reached.

e HP loads can either reduce their current load or increase their load until their nominal
power is reached.

e o Industrial loads can either reduce or increase their load by up to 25 % of their
current load. An increase in load is only possible if the maximum load has not been
exceeded.

Each mentioned asset can provide flexibility that depends on the current operation status.

5.1.2. Product design and bidding process

We consider the flexibility demand of one day separated into 96 quarter hours. One
flexibility bidf| contains an amount of flexible power in one direction and related cost| for
the provided flexible energy in a specific quarter hour.

We assume that each asset can bid and provide its individual flexibility at each time and
that there are no catch-up effects within a day. In general, the provided flexibility can be
divided into smaller sub-bids. The different algorithms handle the divisibility of bids in a
different manner. The linear optimization can process each bid as continuously divisible.
The heuristic approaches require the definition of sub-bids that are connected via an XOR
relationshipm The allocation of these sub-bids is defined depending on the type of flexible
asset. The consideration of dividable bids is a basic form of combinatorial bidding. Other

8Note that the underlying flexibility product is not specified here (i.e., short-term products for every
quarter hour but also long-term products that are transformed into quarter-hour bids are conceivable; see
Heilmann et al., 2020]).

YWe assume that the costs are not negative because the flexibility is interpreted as a service for the
network operator. Real world bids could contain negative cost (e.g., if an increased load pays for its
consumed energy).

190nly one sub bid of a flexible asset can be accepted at the same time.
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Figure 8: Experiment design

combinatorial bid options that consider the bidders’ preferencesE] are not implemented in
this case study.

Optional to the individual, divisible bids, aggregated bids are considered. We assume
that the flexibility of every node can be aggregated separately for loads and generations.
Aggregated flexibility bids contain the summed flexible power and the weighted average of
the flexibility price.

5.1.3. Matching and pricing
We define the pricing scheme of the auction model as the pay-as-bid cost of energy. Every
accepted bid is remunerated for the provided flexible energy with the exact defined cost of

the bid.

5.2. FExperiment description

We transformed the described auction model into a simulation experiment that compares
the three different matching approaches. Figure [8| summarizes the setup of this experiment,
starting with the input data and ending with the evaluation of the results. In the following
subsections, we provide an overview over the used data and models as well as the model
specifications for the different cases. The results are discussed in Section [6]

5.2.1. Input data

The core of data used describe the network topology and penetration, as outlined in
Section [5.1.1} These data are complemented by load and generation profiles at quarter-hour
resolution. The load data are normalized standard load profiles for households and small
companies based on BDEW]| (2017) and normalized exemplary industrial load profiles from
the data set by [Huber et al. (2019)). Fifty normalized PV generation profiles for a sunny

HFor example, by defining technical restriction, such as maximal amount of flexibility requests per day,
maximal time of flexibility requests, et cetera.
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day have been generated that refer to solar panel alignment based on selected real-world
solar prediction data from the project region. Three-hundred exemplary, normalized HP
profiles are extracted from simulation data that capture several factors, such as the number
of persons per household or size, location and age of the building (see Miiller et al., 2019
based on Finfgeld and Fiebig| 2002).

5.2.2. Models and model configurations

We modeled the described network with the Python module ”pandapower” (see Thurner
et al.; 2018)) that provides power flow calculations and network analysis tools. Each flexibility
provider is modeled as a separate asset in the network that can be adjusted individually.
We distinguish two main network situations, namely the “high load” and the “high feed-in”
scenarios. These two scenarios are exemplary situations of extreme network states. In the
high load scenario, generation in the network is assumed to be zero and the loads are assumed
to follow high demand proﬁles.E In the high feed-in scenario, there is high generation from
PVs and also from the CHP in the network, and load is IOWH. Both scenarios differ in the
direction of the power flow: in the high load scenario, the network receives energy from the
upper network levels, and in the high feed-in scenario, energy gets fed back into the upper
network levels.

An effectiveness evaluation for the network is performed in advance for the matching
approach, “Constrained optimization under consideration of effectiveness.” This evaluation
considers the effect of flexibility on every node for each network asset.

5.2.3. Variation of supply and demand

The flexibility supply and demand can be determined based on the two network scenar-
ios. Because neither the high load nor the high feed-in scenario results in critical network
situations, the flexibility demand is generated by adapting the limit values of the lines’ ca-
pacityE. We implemented two limit values for each network case by taking 95 % and 90 %
of the maximum utilization of all lines. On the supply side the available flexibility potential
depends on the current operation status of each individual flexible asset (see Section .

Based on the flexibility potential, we implemented three different variants of flexibility

bidd™}

e The first variant is individual flexibility bids that are divisible depending on the pro-
viding technology.

e The second variant are individual, indivisible flexibility bids.

e The third variant are bids of flexibility aggregated at a node level and separated into
load and generation flexibility.

12This scenario can be interpreted as a cold and cloudy working day.

13This scenario can be interpreted as warm and sunny weekend day.

14 Ag a simplification; we only considered capacity problems and noT voltage problems.

15To determine complete flexibility bids, we assumed randomized flexibility cost for every flexible asset
between 1 and 250 € per MWh.
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Combining the two network scenarios with the two demand calculations and the three
different supply variants, 12 different cases for the case study can be defined. Table
provides an overview of the 12 cases and their corresponding network scenarios, the demand
limit values and the supply structures.

Case Network scenario Demand Supply
"HL_90_div” "high load” 90 percent limit  divisible bids
"HL_90_indiv” "high load” 90 percent limit indivisible bids
"HL_90_agg” "high load” 90 percent limit aggregated bids
"HL_95_div” "high load” 95 percent limit  divisible bids
"HL_95_indiv” "high load” 95 percent limit indivisible bids
"HL_95_agg” "high load” 95 percent limit aggregated bids
"HG_90_div”  "high generation” 90 percent limit  divisible bids
"HG_90.indiv” "high generation” 90 percent limit indivisible bids
"HG_ 90_agg” "high generation” 90 percent limit aggregated bids
"HG_95.div”  "high generation” 95 percent limit  divisible bids
"HG_95.indiv” ”high generation” 95 percent limit indivisible bids
"HG_95_agg”  "high generation” 95 percent limit aggregated bids

Table 1: Case study variations

For each of the cases, the three proposed approaches match supply and demand. The
evaluation of the results is presented in the next section.

6. Results and discussion

6.1. Quantitative results

To compare the three matching approaches, we evaluated the sum of the used flexible
energy (Figure @ and the mean energy cost (Figure . These values can be combined to
determine the total cost of the flexibility supply (Figure [L1).

The different scenarios result in different levels of flexible energy. These differences can
be explained by assumptions made in the different scenarios. When the different matching
algorithms are considered, the cases “HG_90_div 7, “HG_90_indiv 7 and “HG_90_agg” leads
to a substantial discrepancy between the linear optimization approach and the MOL and
wMOL approaches. A detailed evaluation of the results indicates that the flexibility demand
was not covered in the “HG_90_" cases by the linear optimization approach. This shortcom-
ing was a consequence of the combination of a high number of small demands and a limited
number of high demands in the considered time period. The optimizer thus attempted to
minimize penalty costs and selected the (permitted) under-fulfillment as the mathematically
optimal option (see Section .

In addition to the used flexible energy, the specific price per energy is the second com-
ponent used to calculate the overall flexibility cost. The aggregated bids generally lead to
higher specific cost of flexible energy, because the aggregated bids contain a high number
of individual bids that can contain high individual cost. The comparison between divisible
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and indivisible bids shows that divisible bids can improve the mean energy cost in specific
situations.

As a combination of used flexible energy and specific cost, the flexibility cost is the
target quantity that should be minimized by every approach. For the “HG_90_" cases the
cost of the linear optimization is substantially lower due to the under-fulfillment of the
requested flexible energy. For the other scenarios, the linear optimization does not generally
outperform the heuristic approaches. The direct comparison between the MOL and the
wMOL approach indicates that the latter can improve the cost slightly.

6.2. Qualitative discussion and outlook

The results of the case study demonstrate that each of the provided optimization ap-
proaches is in principle suitable for the matching of network-supportive flexibility. Nonethe-
less, the used algorithms represent basic implementations with the potential for expansion
and improvement. A concluding quantitative evaluation of the approaches is consequently
unreasonable. In the following subsections, we compare the approaches in a qualitative
manner by considering the following topics: specific cost, flexible energy, ensured demand
coverage, data minimization, computational effort and the transferability of the algorithms
regarding network issues and different flexibility mechanisms. Table summarizes the
qualitative comparison, rating the algorithms in the mentioned categories with the following
measure: “4”7 = advantages, “-“ = disadvantages and “0” = neutral.

6.2.1. Specific cost and flexible energy
As indicated by the quantitative results, no single algorithm tends to perform better or
worse than the others. Still, because they use the least expensive bids first, the heuristic
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Table 2: Qualitative comparison of matching approaches

approaches MOL and wMOL obtain lower specific costs than the linear optimization. The
linear optimization approach can counterbalance this by providing a smaller amount of
flexible energy.

6.2.2. Ensured demand coverage

Unlike the other two approaches, the linear optimization approach allows a deficit in
the demand of flexibility. Optimization includes all congestion within the considered time
periodE]. Even if a penalty term in the optimization equation forces contracting close to
demand, a deficit may occur under certain circumstances. In this case, the level of demand
varies among the grid components. Since bids affect several congestion, there are sometimes
high excess demands in individual grid components, which in turn are subject to the penalty
term. Thus, cost-optimal solutions can occur that do not completely cover all congestion.
Including a penalty term for the deficit but not for the excess coverage could be a remedy.

6.2.3. Data minimization

The wMOL and MOL approaches include the repeated execution of load flow calcula-
tions, so a complete network model must be available. Depending on the responsible for the
matching of network-supportive flexibility, these partly sensitive network data may be not
available. The linear optimization approach also requires load flow calculations to create the
effective values; thus, this method also requires a complete network model. However, this
step is carried out initially (see Figure @ and can therefore be transferred to a third party.

16in the case study, one day
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6.2.4. Computational effort

The main factors that determine computational effort are the necessity and quantity of
network calculations. While the linear optimization technique only uses network calcula-
tions initially, the MOL and wMOL algorithms calculate the network status several times
per optimization. The wMOL in particular runs one network calculation for every flexibil-
ity provider as a pre-processing step before conducting the optimization itself. Therefore,
the operation of the heuristic approaches has a high computational effort that grows with
added flexibility suppliers and more complex networks. owever, the complexity of the linear
optimization also depends on these factors.

Another aspect of the computational effort is which bidding structure leads to the lowest
computing time. Due to a substantially lower number of bids, the matching of aggregated
bids is significantly fasterﬂ than that of individual bids. Nevertheless, the overall cost of
flexibility also increases significantly.

6.2.5. Transferability (network)

The case study applies the three approaches to a medium-voltage line in different network
situations (see Table . Systematic obstacles to applying these approaches to other grid
areas, grid types or voltage levels cannot be identified. When scaling these approaches to
larger areas with a high number of problems and solution options, dividing the network
into self-contained electrical areas should be considered to save resources. However, any
conclusive statement on the proposed approaches’ compatibility with other networks requires
further investigations.

6.2.6. Transferability (mechanism)

The case study considers one specific flexibility bid setting (see Section . This
format is compatible with day-ahead network operation processes and can be adjusted to
arbitrary time slots. Moreover, the possibility of divisible bids was considered in the case
study. Still, the used bidding format does not include more complex combinatorial bidding
options, such as block bids or restrictions of use. All the introduced matching approaches
can generally be adjusted for such combinatorial elements. In addition to the bid structure,
the pricing scheme was defined as pay as bid for only positive prices. Other pricing schemes
could also be implemented['¥ but would also need further adjustments.

7. Conclusion

The present paper contributes to the current discussion on network supporting flexibility
by explicitly discussing the aspect of matching supply and demand. Although different

17An evaluation of the calculation time shows that matching individual bids needs up to 30 times more
time than the relevant aggregated matching.

8Note that negative prices under the premise of minimized cost could lead to a significantly higher amount
of flexible energy (than under the restriction of only positive cost) due to the local balancing of positive and
negative flexibility (as long as the overall cost decreases). We state that this should not be the target of
network-supportive flexibility.
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underlying mechanisms for the utilization of network supporting flexibility are plausible,
the use of flexibility can be modeled based on basic auction theory. This auction model
can be classified as a multi-unit, multi-attribute (price and network location) procurement
auction with a high probability of combinatorial elements. In general, the related matching
problem is a complex optimization problem that aims to solve all technical problems at the
lowest possible cost.

We introduced three different matching approaches, addressing transparency and repro-
ducibility of these algorithms. Two of the approaches are heuristic algorithms that use either
a merit order list or a weighted merit order list in combination with a hill climbing approach
to solve all problems by calculating the network status at different settings of flexibility
dispatch. The third approach transfers the technical problem into a linear optimization.
The network information is thus part of the optimization itself, and no additional network
calculation needs to be executed.

We presented a case study to demonstrate the utility of the three approaches and com-
pared them qualitatively with quantitative inputs. The comparison demonstrates that the
algorithms are generally suitable for the described problem. Individual differences between
the three approaches can be identified especially in the fields of ensured demand coverage,
data minimization and computational effort. Nevertheless, all three algorithms may be im-
proved, for example, with respect to their reliability and calculation effort. Future work
could apply the algorithms to other network situations or flexibility bidding formats.

Data Availability

Datasets related to this article can be found at http://dx.doi.org/10.17632/3rgw59mmpb5.1,
an open-source online data repository hosted at Mendeley Data (Heilmann, 2021)). We pro-
vide the code of the heuristic matching approaches (MOL and wMOL) and a synthetic
adjustable network model. The detailed description including an exemplary application
of the approach using constrained optimization under consideration of effectiveness can be
found in |[Zeiselmair and Koppl| (2021)). Note, that the real-word network can not be provided
due to data protection issues.
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