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Cryptocurrencies: A Copula based approach for asymmetric risk marginal allocations 

Vahidin Jeleskovici, Mirko Melonii & Zahid Irshad Younasii 

 

Abstract 

Given the increasing interest in cryptocurrencies shown by investors and researchers, and the 

importance of the potential loss scenarios resulting from investment/trading activities, this 

research provides market operators with a dynamic overview on the short-term portfolio tail 

risk contribution of six widely-traded cryptocurrencies. Considering the high volatility 

dynamics of the cryptocurrency market, realized volatility measures computed from different 

frames (1m, 5m, 15m, 30m, 1h) are included in the estimation of univariate GARCH models, 

to be used in combination with copula functions for VaR/ES Monte Carlo simulations. Even 

if results lack data frequency ordinality in terms of out-of-sample goodness, Bitcoin and 

Litecoin are generally recognized as the safest and riskiest currency respectively on an 

equally-weighted framework, reflecting how the contribution to portfolio returns is not 

representative of the real grade of risk diversification. 
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1. Introduction 

Considering cryptocurrency as a real asset is still a controversial topic (Cobert et al., 2018). However, in 

recent years the cryptocurrency market has observed a tremendous growth and quick rise in its market 

capitalization from $19 billion in February 2017 to $800 billion in December 2017.  Due to this 

explosive growth, cryptocurrencies are considered to be a new investment avenue (Aggarwal et al., 

2019; Ankenbrand & Bieri, 2018; Demir et al., 2018; Catania et al., 2019). Economists believe this 

growth to be a bubble based on sentiments and price fluctuations (Krugman, 2018, January). A shift in 

these factors coupled with a change in market trends have subsequently resulted in a drastic drop in 

bitcoin prices (Popken, 2018; Makadiya, 2018). According to previous research, the lack of intrinsic 

value, an unregulated cryptocurrency market and major cryptocurrency holdings by market participants 

are significant volatility factors in cryptocurrencies (Iinuma, 2017). 

This study aims to provide market operators with an evaluation of the daily risk of six widely-traded 

cryptocurrencies (Bitcoin, Binance, Ethereum, Litecoin, Ripple and Eos) based on the maximum 

possible short-term loss, i.e., 30 days. This kind of risk is also called “tail risk”, i.e., asymmetrical 

distributions which are more probable to have extreme results. The traditional standard deviation, even 

if easily applied, suffers from a variety of limitations which are not in line with the main findings on 

the cryptocurrency market. In fact, Alvarez-Ramirez (2017), Bariviera et al. (2017) and Phillip et al. 

(2018) found this type of market to have the following characteristics: fat-tails and skewness, 

autocorrelation, long memory in volatility, volatility heteroskedasticity and clustering and leverage 

effect.1 All these features are not supposed to be correctly captured by standard deviation which is only 

a model for elliptical distributions2. Moreover, standard deviation expresses the variability resulting 

from both downside and upside movements of returns, thus it is not able to provide investors with a 

concrete measure of losses (Basile & Ferrari, 2016). Considering the volatility in cryptocurrency prices, 

this analysis is conducted on a short-term framework, estimating the tail risk of daily volatility models 

optimized by the inclusion of high-frequency data (namely 1m, 5m, 15m, 30m and 1h). An intra-day 

perspective is justified by the fact that a higher frequency is rationally able to carry a higher grade of 

information which is more accurate in predicting the volatility dynamic, especially when it tends to 

change significantly and quickly (Summinga-Sonagadu & Narsoo, 2019). Given these circumstances, 

a model which just relies on low frequency data will return a dynamic which is too slow with respect to 

the dynamic actually present in the market. This study firstly discusses the risk of loss from a vertical 

point of view, namely considering the risk of the same asset with respect to different investment time 

horizons. Secondly, the risk of loss from a horizonal point of view is examined, i.e. the risk resulting 

from other cryptocurrencies. This study uses an equally weighted portfolio comprised of 

 
1 Leverage effect denotes a different volatility response to different type of shocks. 
2 Distributions with symmetrical frameworks and linear relationships between variables. 
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cryptocurrencies which gives each cryptocurrency the same relevance in terms of returns. A buy and 

hold strategy3 is applied to provide a more objective comparison while preventing managerial bias that 

could affect the portfolio risk-return profile. The marginal risk contribution of each asset is computed by 

using the Value at Risk (VaR) and Expected Shortfall (ES). They measure how much each crypto 

currency affects the overall tail risk given the contribution of the other assets within the same portfolio. 

Both VaR and ES are computed with a Monte Carlo simulation which sets up the use of copula functions 

and univariate ARMA-real GARCH models.. The contribution of this research is a clear understanding 

of all the risk conditions and diversification opportunities within the cryptocurrency market before 

entering it. This work is pertinent to banks, hedge funds and individual investors who want to 

understand the risk opportunities related to the cryptocurrency market in order to optimize/diversify 

their investments. Furthermore, the results of this study could be of use to entities forced to invest in 

risky assets in order to accumulate a certain amount of capital by a future date, e.g., pension funds. The 

before-mentioned investors might prefer to evaluate a risk measure that indicates the potential loss 

resulting from a long position rather than a measure which just expresses the variability around the 

expected performance, i.e., the standard deviation. Moreover, at the same time, they might want to know 

which cryptocurrency is the most suitable considering a defined time horizon. Marginal allocations can 

provide them with information about the level of risk from one asset compared to another. The proposed 

model can be used for simulation and risk management purposes, but also for asset allocation 

frameworks.   

The previous literature deals with either a few assets or with interactions between cryptocurrencies and 

other asset classes assuming often basic models. For example, Katsiampa (2018) analyzed the co-

movements between Bitcoin and Ethereum, modelling their dependence with a bivariate BEKK model. 

Bouri et al. (2017) and Bouri et al. (2017b) investigate the relationship between Bitcoin and respectively 

three commodity indices and indices representative of all the other asset classes (e.g. stocks, bonds, real 

estate) with ARMA and DCC-GARCH models (1,1). Aslanidis et al. (2019) applied a DCC-GARCH 

methodology (1,1) to model the joint dynamic of several cryptocurrencies with stocks, bonds and 

commodity prices from 2014 to 2018. Considering the different approaches just mentioned, the 

inexistence of a common practice with respect to multivariate models can be seen even though Aslanidis 

et al. (2019) found a DCC model to outperform the basic BEKK. This is due to the fact that dynamic 

models are able to capture the potential change in correlations resulting from both negative and positive 

market shocks. As for the employment of copulas, Boako et al. (2019) used vine-copulas to model the 

dependence between Bitcoin, Dash, Ether, Litecoin, Ripple and Stellar with data from 2015 to 2018. 

Furthermore, they also considered an AR (1) specification for the mean of each cryptocurrency and 

found that Archimedean copulas perform better than the Gaussian copula. Similar evidence (with a 

predominance of two specific types of Archimedean copulas) was found by Saha et al. (2018) which 

 
3 Once the starting weights are set, they are allowed to change over time depending on the new price level. 
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used vine-copulas to study the co-movements among Bitcoin, Ether, Litecoin and Ripple from 2015 to 

2018.  

The approach proposed here, called quasi-maximum likelihood, involves the usage of a given 

distribution for the GARCH computation and the subsequent fitting of alternative distributions on the 

residuals obtained. The distribution chosen for the first step is the Ged distribution. This choice was due 

to the fact that, in this way, it was possible to model residuals given the presence of  fat tails, which 

characterize the crypto-market as demonstrated by the already-mentioned Alvarez-Ramirez (2017), 

Bariviera et al. (2017) and Phillip et al. (2018) papers. The Ged distribution is then retained asa good 

proxy of the real distribution. 

It is important to note that the model selection concerning both GARCH (in terms of number of lags) 

and copulas (in terms of copula family) is implemented through procedures based on out-of-sample 

goodness measurements (e.g. walk forward cross validation), which are less likely to return overfitted 

results as they are not calculated on the training set. Finally, a copula-based model is expected to return 

highly flexible results with a good level of out-of-sample forecasts fitting. As for the contribution of each 

cryptocurrency with respect to the overall risk, they are supposed to reflect a different percentage of 

relevance (also different from the relevance that they have with respect to the portfolio return) and to 

change even considering a different time frame (testifying the importance of choosing the correct 

framework). Returns from lower frequencies, indeed, do not take into account what happens in the 

meantime, but, at the same time, might present a more stable intra-day variability, which could affect 

forecasts in a positive way. For this reason, expecting to have a unique result in term of frame might 

not be convenient. Also, the time horizon is retained to be a key factor, able to affect contributions and 

reveal smoothing effects (i.e. reducing the risk concentration referred to the riskiest cryprocurrencies or 

providing daily VaR/ES increasing less than proportionally). 

 

2. Methodology 

 

2.1. Var/ ES Term 

The two asymmetric risk measures used for this analysis are Value at Risk (VaR) and Expected Shortfall 

(ES). In particular, VaR quantifies the maximum achievable loss given a certain level of confidence 

and a specified time horizon (Sironi & Resti, 2007; Christoffersen, 2012). On the other hand, ES 

measures the expected return given that the return is more extreme than VaR. It is important to note that 

ES has a higher informative content since two distributions can have the same VaR, but a different 

probability to reach extremes quantiles. 

To determine how cryptocurrencies affect the VaR/ES of a portfolio, it is necessary to build a 

dynamic model which accounts for how the two indices vary over different time horizons. This 

instrument is called Term structure and can be built by crossing VaR or ES with the relative 
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maturity.  

For Term structure, a Monte Carlo simulation is chosen out of all the possible model due to the 

fact that simulation methods are generally highly accurate as they tend to smooth forecasts, 

increasing the reliability of long-term predictions.4 

 

 Returns are simulated using a location scale model: 

 

𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑍𝑡+1 (2.1) 

 

Here, both 𝜇t+1 and 𝜎t+1 need to be predicted. Considering the heteroskedasticity phenomenon and 

volatility clustering, it is not convenient to work with unconditional distributions (where moments 

remain fixed over time; Christoffersen, 2012). This model was chosen for two main reasons: 1) It is 

easy to compute; 2) It is particularly useful if combined with a univariate ARMA-GARCH model, 

which allows both the conditional volatility and the mean to be used as inputs; 3) It is possible to model 

the shape and the kurtosis of the return series by modifying the distribution of Z. 

 

2.2.  Conditional mean and conditional volatility. 

From a univariate point of view, it is necessary to create a model which is able to predict both the 

conditional mean and the conditional volatility for all the cryptocurrencies within the sample portfolio. 

This study focuses on thhe ARMA-real GARCH model from (Hansen et al., 2012; Equation 2.2), that 

is not only able to predict daily volatility by exploiting intra-day information, but is also able to include 

the leverage effect: 

 

𝑅𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡 , 𝑧𝑡~𝑖. 𝑖. 𝑑(0,1) 

log⁡(σ𝑡
2) = 𝜔 +∑𝛼𝑘

𝑞

𝑘=1

log(𝑟𝑡−𝑘) +∑𝛽𝑘

𝑝

𝑘=1

log(𝜎𝑡−𝑘
2 ) 

log(𝑟𝑡) = 𝜉 + 𝛿 log(𝜎𝑡
2) + τ(𝑧𝑡) + 𝑢𝑡, 𝑢𝑡~𝑁(0, 𝜆) 

 

τ(𝑧𝑡) = 𝜂1𝑧𝑡 + 𝜂2(𝑧𝑡
2 − 1) 

(2.2) 

 

 

 
4 The simplest model is the non-parametric one which assumes that historical returns are perfectively 
representative of the future ones. The semi-parametric approaches are aimed at estimating the parameters of 
a portion of the return distribution. Full-parametric models are based on the whole return distribution and 
make it possible to compute risk measures through closed formula. Simulation methods require the most 
computation but can lead to the most accurate results (Christoffersen, 2012). 
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As it can be noticed by the first line in Equation 2.2, a return in time “t” follows the location-scale 

model, while the conditional volatility is treated in logarithmic terms (second line). Here, the current 

state of innovation (or market shock) is not measured by the squared daily return (like in the standard 

GARCH), but by the log of 𝑟t–k, where 𝑟t–k is a measure of realized volatility. The realized volatility 

(which can be denoted by “RV”) of a generic day 𝑡, given regular-framed intra-day data with the 

frequency 𝑚, can easily be computed as shown in Equation 2.3:6 

 

𝑅𝑉𝑡 = ∑ 𝑅𝑚,𝑡
2

𝑀

𝑚=1

 (2.3) 

 

Rm,t is the return of the sub-period m in day t and M is the total number of sub-periods for that day. 

 

For this research, 1m, 5m, 15m, 30m and hourly data related to the period from 31 May 2018 to 30 July 

2019 are used to create different series for the realized volatility, to be exploited in an anchored walk 

forward cross validation procedure. All the GARCH are estimated considering the Ged distribution as 

starting assumption (since the distribution for standardized quantiles is fitted in a second step, it is not 

convenient to try several variants) and a maximum order of (5,5) for both the mean and volatility 

processes (to optimized during the process). Ged is retained to be able to return less-biased GARCH 

residuals (on which the real fitting procedure is later carried out), modelling the parameter that describe 

fat-tails. The walk forward procedure is implemented generating 5 different series of training and 

validation sets (as shown in Table 2.1). 

 

Insert here, table [2.1]. 

 

The conditional volatility forecasted through the models fitted on the training sets is compared with the 

one observable in the related validation set though the RMSE loss function: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑣𝑎𝑙
∑(𝑣𝑜𝑙 − 𝐸(𝑣𝑜𝑙))

2

𝑛𝑣𝑎𝑙

𝑖=1

 (2.4) 

 

The walk forward process implies that the RMSE values resulted from each pair of training and 

validation set shown in the previous Table need to be averaged, so that the best model could be 

considered the one minimizing the mean of all the past value of the loss function. This model will be 

optimized considering the final training set (31/05/2018 – 30/06/2019) to generate the forecasts needed 

to answer the research question. This approach is aimed at reducing the overfitting risk (potentially 

 
6 See Christoffersen (2012). 



7 

 

resulting from an in-sample selection criteria). 

 

2.4. Copula function and multivariate modelling 

On a multivariate point of view, it is necessary to estimate a dependence structure between the best-

fitting cryptocurrency distributions. This research exploits the informative content of copulas7. The 

combination between different marginal univariate distributions and the multivariate copula makes it 

possible to obtain new distributions with respect to the traditional ones (Delatte & Lopez, 2013). Inputs 

of copulas are represented by probabilities, which are uniformly distributed, and not by quantiles, thus 

they are not required to be normally distributed even setting a particular copula (Simard & Rémillard, 

2015). 

This study compares several types of copulas8 – Normal, t-Student, Gumbel, Clayton, Frank, Joe – in 

order to assess which one returns the best out-of-sample results (in terms of RMSE function between 

the predicted returns of each asset resulting from 10,000 simulations for each day included in the 

validation set and the effective ones: 

 

𝑅𝑀𝑆𝐸𝑐 =⁡√ ∑ ∑(𝑟𝑎𝑖 − 𝐸(𝑟𝑎𝑖))
2

𝑛𝑣𝑎𝑙

𝑖=1

𝑁𝑎𝑠𝑠𝑒𝑡

𝑎𝑠𝑠𝑒𝑡=1

 (2.5) 

 

𝑟𝑎𝑖 is the return of the a-th asset within the portfolio of the j-th day included in the validation set. 

The procedure follows a walk forward approach, like the GARCH models. After having fixed all the 

pairs of training and validation sets (already shown in Table 2.1), the RMSE resulting from each of them 

is averaged to the ones coming from the others. The best copula is the one which minimizes the final 

mean. 

Please note that all these models are estimated under the hypothesis of constant conditional 

correlations, i.e. assuming that the correlation between assets does not change over time. Copulas are 

then estimated just once (this assumption can be justified by the fact that this research deals with the 

very short term, but it was also due to limitations on the computational power exploitable). The  models 

were computed through the R package copula (Hofert et al., 2019). 

 

 
7 Copula functions are cumulative probability functions which link any given set of marginal distributions to construct a joint 

dependence structure (Patton, 2009; Jaworski et al., 2010; Christoffersen, 2012; Durante & Sempi, 2015) 
8 There are several types of copula families, but the ones considered for this research are (see Appendix A.2 for mathematical 

specifications): 1) Elliptical copulas and 2) Archimedean copulas. The first family is made up of Normal and t-Student 

copulas, which, being symmetrical, might not model in a proper way the tail of the multivariate distribution between assets. 

Moreover, elliptical distributions assume a linear dependence between two or more objects, so that the unknown parameters 

can be represented by Pearson’s correlations. This means that it could be hard to reach a convergence in a high dimensional 

multivariate framework (in presence of a high number of assets in the portfolio of interest). Archimedean copulas, on the 

other hand, can not only treat the symmetry differently according to the type of function chosen, but also simplify the 

optimization as they depend on a unique parameter 𝜆 (independently from the number of assets), which measures the strength 

of the dependence between series (not necessarily linear). This property, however, could also make them inappropriate in 

case of very high dimensions as the quality of final approximation could not be sufficiently satisfactory (Nelsen, 2007). 
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2.6. Marginal risk allocation: Euler and Kernel Methods 

The research question of this study is related to how much each cryptocurrency affect the overall risk 

of a loss. To provide investors with an answer, it is necessary to compute marginal risk allocations:9 

 

𝑅𝑖𝑠𝑘⁡𝑀𝑒𝑠𝑎𝑢𝑟𝑒𝑝 =∑𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙⁡𝑅𝑖𝑠𝑘𝑖

𝑁

𝑖=1

 (2.6) 

In literature, the main model used for such a purpose in the Eulerian one, which states that if the risk 

measure is a continuously differentiable function of the weights of each asset, it is possible to compute 

the risk measure as following:10 

 

𝑅𝑖𝑠𝑘⁡𝑀𝑒𝑠𝑎𝑢𝑟𝑒(𝑤) =∑𝑤𝑖

𝜕𝑅𝑖𝑠𝑘⁡𝑀𝑒𝑠𝑎𝑢𝑟𝑒

𝜕𝑤𝑖

𝑁

𝑖=1

 (2.7) 

 

𝑤 is intended to be the marginal risk allocation related to the generic i-th asset. As it can be noticed, 

this approach relies on the computation of the derivatives of the risk measure with respect to each 

weight. In case of standard deviation, they are quite easy to compute, but, in case of VaR and ES 

(calculated through a discrete simulation approach), it is impossible to obtain reliable results. First of 

all, a discrete approach does not guarantee a continuous function, so that derivatives should be 

approximated by discrete differences. Discrete differences, in turn, do not guarantee the respect of the 

additivity rule. Moreover, results of simulated discrete calculations are too volatile, meaning that a re-

simulation could change them significantly. Therefore, Eulerian marginal allocations cannot be used in 

combination with Monte Carlo simulations. Another approach could be taking the return (profit or loss) 

in correspondence to the portfolio VaR and ES as marginal allocations for each cryptocurrency:11 

 

𝑚𝑉𝑎𝑅𝑖 = 𝑤𝑖𝐸(𝑃𝐿𝑖|𝑃𝐿𝑝 = 𝑉𝑎𝑅𝑝) (2.8) 

  

𝑚𝐸𝑆𝑖 = 𝑤𝑖𝐸(𝑃𝐿𝑖|𝑃𝐿𝑝 ≤ 𝑉𝑎𝑅𝑝) (2.9) 

 

Considering an equally-weighted portfolio, this would guarantee the additivity rule for both the risk 

measures, but results would be still too volatile with respect to different simulations. In this sense 

Epperleine & Smillie (2006) and Epperleine & Smillie (2016) proposed two different kernel approaches 

aimed at smoothing the results and giving them a more consistent stability. Kernel functions are non-

parametric tools used to estimate a conditional expectation not knowing its functional form (Fan, 1993). 

Epperleine & Smillie (2006) suggests using the Nadaraya-Watson kernel regression (considering a 

 
9 This is also called additivity rule (Tasche, 2007). 
10 See Braga (2015). 
11 This result can be obtained by extending the Euler approach (Tasche, 2007). 
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locally constant conditional expectation)12 and starting from the loss function shown in Equation 2.10. 

The final marginal VaR estimator is the value of the unknown conditional expectation (A) which 

minimized the loss function given here by the following equation 2.11: 

 

𝐿𝑜𝑠𝑠(𝐴) =∑(𝑃𝐿𝑖
𝑗
− 𝐴)

2
𝐾(

𝑃𝐿𝑝
𝑗
− 𝑉𝑎𝑅𝑝

ℎ
)

𝑁

𝑗=1

 (2.10) 

  

𝑚𝑉𝑎𝑅𝑖 =

∑ 𝐾 (
𝑃𝐿𝑝

𝑗
− 𝑉𝑎𝑅

ℎ
)𝑃𝐿𝑖

𝑗𝑁
𝑗=1

∑ 𝐾(
𝑃𝐿𝑝

𝑗
− 𝑉𝑎𝑅

ℎ
)𝑁

𝑗=1

 (2.11) 

 

𝑁 is the number of simulations, 𝐾(./h) is the kernel function, 𝑃𝐿𝑝
𝑗

 the absolute portfolio profit/loss 

related to the j-th simulation, 𝑃𝐿𝑝
𝑗

the absolute i-th cryptocurrency profit/loss related to j-th simulation 

and ℎ the smoothing parameter of the kernel chosen (equal to 2,275𝜎𝑁
−(

1

5
)
. As it can be noticed, 

Equation 2.10 is a kernel-weighted average since 𝑃𝐿i has a weight equal to 𝐾, which is higher as the 

j-th simulation returns a profit profit/loss near the portfolio VaR. This kind of function has a smoothing 

power basing on the weighted average among different simulations, but it does not satisfy the additivity 

rule (depending on h). It is then necessary to apply a rescaling factor, equal to the portfolio Value at 

Risk as follows: 

𝑚𝑉𝑎𝑅𝑖 = 𝑉𝑎𝑅𝑝

∑ 𝐾(
𝑃𝐿𝑝

𝑗
− 𝑉𝑎𝑅

ℎ
)𝑃𝐿𝑖

𝑗𝑁
𝑗=1

∑ 𝐾(
𝑃𝐿𝑝

𝑗
− 𝑉𝑎𝑅

ℎ
)𝑁

𝑗=1

 (2.12) 

 

In light of the above, marginal Expected Shortfalls can be computed as the weighted average of all the 

profit/loss values in correspondence of scenarios leading to a more extreme loss than the portfolio VaR: 

 

𝑚𝐸𝑆𝑖(𝛼) = ∑
𝑤𝑗𝐸(𝑃𝐿𝑖|𝑃𝐿𝑝 = 𝑃𝐿𝑝

𝑗
)

1 − 𝛼

𝑘~𝑉𝑎𝑅𝑝

𝑗=1

 (2.13) 

  

Substituting 𝐸(𝑃𝐿i|𝑃𝐿p = 𝑃𝐿j ) with the kernel-averaged 𝑚𝑉𝑎𝑅i (considering at each j the j-th more 

extreme scenario as portfolio VaR), it is possible to obtain the following result: 

 

𝑚𝐸𝑆𝑖(𝛼) = ∑
𝑤𝑗𝑚𝑉𝑎𝑅𝑖

1 − 𝛼

𝑘~𝑉𝑎𝑅𝑝

𝑗=1

 (2.14) 

 

 

 
12 Where h is a smoothing parameter A kernel with subscript h is called “scaled kernel” and is defined as Kh(x) = 1/h K(x/h). 

Please note that the choice of h can strongly influence the final estimation (the lower h is, the less smoothed the resulting 

kernel distribution might be).  
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Epperleine & Sneille (2016), in order to keep the rescaling factor from affecting the statistical 

estimations, proposed another approach, in which the conditional expectation is no longer considered 

locally constant, but locally linear with respect to the portfolio profit/loss function: 

 

𝐿𝑜𝑠𝑠(𝐴, 𝐵) = 

∑(𝑃𝐿𝑖
𝑗
− (𝐴 + 𝐵𝑃𝐿𝑝

𝑗
))

2
𝐾(

𝑃𝐿𝑝
𝑗
− 𝑉𝑎𝑅𝑝

ℎ
)

𝑁

𝑗=1

 
(2.15) 

 

Once computed A and B which minimize the loss function (Fan, 1993), marginal VaR can be computed 

as shown in Equation 2.16 and marginal ES as shown in Equation 2.14. 

 

𝑚𝑉𝑎𝑅𝑖 = 𝐴𝑖
∗ + 𝐵𝑖

∗𝑉𝑎𝑅𝑝 (2.16) 

  

𝐴𝑖
∗ =∑

𝐾𝑗𝑆2 −𝐾𝑗𝑃𝐿𝑝
𝑗
𝑆1

𝑆0𝑆2 − 𝑆1
2

𝑁

𝑗=1

𝑃𝐿𝑖
𝑗
 (2.17) 

  

𝐵𝑖
∗ =∑

𝐾𝑗𝑃𝐿𝑝
𝑗
𝑆0 − 𝐾𝑗𝑆1

𝑆0𝑆2 − 𝑆1
2

𝑁

𝑗=1

𝑃𝐿𝑖
𝑗
 (2.18) 

  

𝐾𝑗 = 𝐾(
𝑃𝐿𝑝

𝑗
− 𝑉𝑎𝑅𝑝

ℎ
) (2.19) 

  

𝑆0 =∑𝐾𝑗

𝑁

𝑗=1

 (2.20) 

  

𝑆1 =∑𝐾𝑗𝑃𝐿𝑝
𝑗

𝑁

𝑗=1

 (2.21) 

  

𝑆2 =∑𝐾𝑗(𝑃𝐿𝑝
𝑗
)
2

𝑁

𝑗=1

 (2.22) 

 

Considering Equation 2.16 and that the sum of the profit/loss of all the cryptocurrencies for the j-th 

simulation is equal to the j-th portfolio profit/loss by definition, it can be easily verified that: 

 

∑𝐴𝑖
𝑖=1

= 0 

∑𝐵𝑖
𝑖=1

= 1 

(2.23) 

 

Combining Equation 2.23 with Equation 2.16, it is possible to verify the additivity rule on VaR (and on 

ES as extension; Equation 2.24) without the usage of rescaling factors. 
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∑𝑚𝑉𝑎𝑅𝑖
𝑖=1

= 𝑉𝑎𝑅𝑝 (2.24) 

 

The two approaches proposed by Epperlein & Smillie (which considered the Gaussian kernel in their 

estimations) are used and compared in terms of variability of results: 

 

𝐾(𝑥, ℎ) =
1

√2𝜋ℎ
𝑒
−
1
2
(
𝑥
ℎ
)
2

 (2.25) 

 

The gaussian kernel with a zero mean, designed to model the distribution of the difference between the 

portfolio P/L and its VaR, is particularly suitable as it is applied to estimate the weights to be assigned 

to each simulation. When the two measures are equal, the difference between them is equal to 0, in 

correspondence to which the gaussian curve reaches its maximum value. The weights tend to decrease 

when simulations are far from the portfolio VaR. 

The above-illustrated methodology is structured as to generate 5 different (one per frame) contributions 

for each cryptocurrency and with respect to VaR and ES at both 99% and 95% level of confidence.  

 

3. Data and descriptive statistics 

The current study takes into considerations six cryptoccurencies – Bitcoin, Binance, Ethereum, 

Litecoin, Ripple and Eos – chosen among the most traded ones on the binance platform considering the 

24h volumes. For the analysis, 1m, 5m, 15m, 30m, 1h and 1d data (price against Tether, USDT13) – 

from 31 May 2018 to 30 July 2019 were exploited in order to assess the incidence of the time frame on 

the final marginal risk allocations (retrieved through a Binance API). Data were first analysed in order 

to detect the presence of repetitions or missing values (to be filled through an interpolation method), 

but they did not show irregularities. The presence and the relevance of extreme returns were instead 

studied considering several alternatives of fat-tailed distributions.  Returns from 31 May 2018 to 30 

June 2019 was chosen to represent the training set; July 2019 was chosen as test set, through which 

carry out the forward-looking backtesting and evaluate the forecasts goodness of fitting. This period of 

time is considered to be sufficiently representative of the short trend (avoiding taking into consideration 

the “bubble crash” of the early 2018) and consistent with this kind of analysis. Assuming a portfolio 

starting with an investment of 100€ in each individual cryptocurrency (Figure 3.1), it can be noticed 

that Bitcoin, Ethereum, Litecoin, Ripple and Eos have a similar trend; Binance, on the other hand, seems 

to diverge showing a stronger increasing positive trend starting from February 2019. 

 

 
13 According to cryptocompare.com (last access: 02-08-2019), the trading volumes for all the pairs with Tether are 

significantly higher than the pairs with respect to fiat currencies (e.g. US Dollar). Moreover, the usage of stablecoins as base 

currency has already become a common practice for crypto-traders as their stability can help to hedge against volatile market 

phases.  
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  Figure 3.1. Cryptocurrencies daily prices May 2018-June2019 

 

To have a clearer vision, Table 3.1 shows the unconditional descriptive statistics of the training set for 

each cryptocurrency (31 May 2018 – 30 June 2019). It is possible to note how the return distributions 

tend to present different characteristics (despite the similarity shown in Figure 3.1). This fact makes it 

possible to assume a different risk contribution in terms of potential losses. Going into more detail, all 

the cryptocurrencies (except Bitcoin and Binance) have a negative median and mean (no Litecoin). In 

terms of variability, Eos, Ripple and Litecoin present a higher standard deviation. Bitcoin, on the other 

hand, seems to be the less risky asset in terms of erratic movement around the expected value, with the 

lowest standard deviation and the lowest variability range (max-min). As for the other measures, all the 

distributions are not symmetrical. Bitcoin, Binance, Ethereum and Eos show a negative skewness (in 

presence of which there is a longest tail for the negative returns). Litecoin and Ripple, contrary, are 

positively skewed (with a longer right tail for extreme quantiles). Given the skewness, and that each 

coin has a kurtosis higher than 3, the Jarque-Bera test (last row) returns an almost null p-value for all 

the assets. As consequence, none of cryptocurrencies can be considered normally distributed. This result 

justifies the usage of a copula-based simulated VaR and ES as measures of risk. In presence of shape 

and fat tails, indeed, standard deviation cannot be considered the only relevant risk factor. 

Insert here, table [3.1]. 

 

4. Results 

4.1. Univariate GARCH models for volatility 

Table 4.1 contains the order for both the volatility and mean processes and final RMSE value as out-

of-sample goodness of fitting measurements.Unfortunately, there is not a standard result in terms of 

which frame is the most suitable in terms of volatility forecasts: 1) 1m data are the best solution for 

Ethereum, Litecoin, Ripple and Eos; 2) 1h for Bitcoin and 3) 30m for Binance. As for the worst results, 

on the contrary, 15m data seem to be the less accurate time frequency (followed by 5m ones). Despite 

these evidences, the RMSE assumed by each frame for each cryptocurrency remains at a low level, 
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testifying a general adaptability of realized GARCH models with respect to conditional volatility 

predictions. This result, in accordance to literature, testifies how a combination between ARMA and 

GARCH can improve the quality of forecasts, even if extended to higher frequencies perspectives. 

Insert here, table [4.1]. 

 

4.2. Marginal Distributions 

Insert here, table [4.2]. 

Table 4.2 shows the significance of both the Kolmogorv-Smirnov test and the Uniformity test, 

highlighting how Ged and Skewed Ged are the most suitable density functions for all the frames 

considered. Indeed, they show the highest p-values: Skewed Ged for Bitcoin and Eos; Ged for Binance, 

Ethereum, Litecoin and Ripple. Even from a graphical point of view (QQ-plot14), these distributions 

seem to be the most similar to the empirical returns (although if in absence of an evident significant 

difference). Given their predominance, the above-mentioned probability functions were chosen as 

marginal distributions to be inserted in the multivariate copula.  

 

4.3. Copula function. 

The RMSE resulting from the out-of-sample forecasts are summarized in Table 4.3, where results tend 

to differ considering different time frames: 1) Gumbel copula for 1m and 15m data; 2) Joe copula for 

5m; 3) Clayton copula for 30m and 4) Frank copula for 1h.  

Archimedean copulas are always preferred to the Elliptical ones, testifying a higher accuracy for models 

which do not assume a priori linear dependencies among the assets within the same portfolio. Similar 

results, as already mentioned in the Introduction, have been already found in literature. Another 

important evidence is represented by the quality of 5m data. All the RMSE are indeed higher than the 

values obtained from the other frames. This could be related to the accuracy obtained for all the GARCH 

models (higher than the one resulting from a 15m frame, but still lower the other frequencies), capable 

to influence the multivariate forecasts. 1m data, contrary, have the lowest RMSE, showing a greater 

predictive power. However, while the RMSE for GARCH has been computed considering real out-of-

sample realized volatilities, here it is computed considering the expected return for each day (mean of 

all the simulations per period). 

Insert here, table [4.3]. 

 

4.4. Term Structure 

 
14 Please note that the plots are not shown given their huge numerosity (6 assets x 5 frames x 8 distributions = 240 plots). 
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After having optimized the copula models, 10,000 simulations have been carried out for each frame for 

the month of July 2019, in order to forecast daily multi-period Value at Risk and Expected Shortfall for 

both the 99% (Figure 4.1) and 95% (Figure 4.2) levels of confidence15. As can be seen, 5m data is 

generally the less defensive frame, returning lower asymmetrical risks for almost all the time horizons 

(indicating a reduced daily risk of losses for all the investment maturities). As for the other frequencies, 

15m, 30m and 1h data tend to assume similar values (especially for VaR), while 1m converges with 

them from below, but still maintains a lower level. This finding testifies how important choosing the 

right framework could be.  

 

Figure 4.1. VaR and ES 99% Term Structure 

 

 

Figure 4.2. VaR and ES 95% Term Structure 

Anyway, even if 1m data are the ones which best fit the prediction of the real returns from a multivariate 

point of view, they cannot be directly considered as the most reliable for asymmetrical risk prediction 

purposes. The reason is linked to the fact that the tails of a distribution could act differently from the 

mean according to the moments. The same evidence can be found in Table 4.4, which summarizes the 

risk measures week by week. 

Insert here, table [4.4]. 

 

4.5. Marginal risk contributions  

 
15 Please note that VaR was back-tested using frequency tests. None of them rejected the model proposed by this article. 
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Before showing the marginal allocations, it is necessary to have an understanding of what happens to 

the expected weights (computed as the  mean of all the simulations per day) for each cryptocurrency at 

each future investment maturity. As already explained in Sect. 2.6, a risk contribution depends directly 

on the weight of the related asset. Assuming a ceteris paribus framework for all the other parameters, 

an increase in the weight would lead to an increase in the risk contribution. Results are shown in Figure 

4.3, where it is possible to note that all the weights tend to be stable over time for each frequency. This 

finding allows us to proceed with the analysis, making it possible to compare risk allocations. 

 

Figure 4.3. Expected weights (July 2019) 

 

 

4.6. Locally –Constant Kernel at various tail risks. 

Figure 4.4 and Figure 4.5 in the (Figures Section)16 presents how different frames tend to modify the 

marginal contributions of each cryptocurrency on the tail risk measures. Focusing first on the evolution 

 
16 Respectively related to a level of confidence of 99% and 95%. 
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of the contributions over time for each frame, it is possible to note how they tend to assume a more 

stable shape as the time horizon increases for both VaR and ES and for each tail risk level (99% and 

95%).  

Looking at the longest time horizon (1 month) in Table 4.5 and Table 4.6 (Tables Section)17, even if all 

the frames return different contributions, they tend to respect the same ordinality for the riskiest 

cryptocurrencies. On a scale from the least to the riskiest one, cryptocurrencies generally follow this 

order (that is more stable in case of a 99% level of confidence): 1) BTC; 2) BNB; 3) XRP; 4) ETH; 5) 

EOS, 6) LTC. Looking at the shortest time horizon (overnight perspective), the ordinality seems to be 

completely different and more variable with respect to the different frequencies (and also with respect 

to different risk measures). However, the main difference between shorter and longer horizons is the 

level of concentration. It is also possible to note how the range between the least and the riskiest 

cryptocurrency tend to decrease after the overnight scenario. It means that time smooths the risk 

associated to each cryptocurrency, providing a portfolio with a risk time diversification. This is 

important evidence considering the standardized framework related to a trend in the weights, and it 

justifies the importance of studying the risk composition within a portfolio (being in line with the 

expectations): an asset might influence the portfolio return by a certain percentage, but affect the overall 

risk in a more severe way.  

Another interesting finding is highlighted in the overnight scenario in Table 4.6 (95% level of 

confidence), 1m, 15m and 30m data presents some negative percentages both in terms of Value at Risk 

and Expected Shortfall. A negative contribution leads to a strong diversification effect between the 

related asset and the combination of the others as its inclusion in the portfolio is certainly reducing the 

overall tail risk18.  

After examining the asymmetric risk marginal allocation of each cryptocurrency, it is possible to split 

the six cryptocurrencies into two groups: the leastless risky and the riskiest ones. The former is made 

up of Ripple, Binance (which have a minimum risk for overnight frameworks) and Bitcoin (which seem 

to be the safest currency in terms of potential losses, especially for longer short-term horizons); the 

latter, on the other hand, is composed of Eos, Ethereum and Litecoin (which presents the highest risk 

for almost all the scenarios).  

 

4.8. Locally – Linear Kernel at various tail risks 

The contributions related to tail risk measures at a 99% and 95% level of confidence present a higher 

variability in comparison to the ones obtained with a locally constant methodology (as shown in Figure 

 
17 Respectively related to a level of confidence of 99% and 95%. 
18 These diversification possibilities are not shown in tail risk measures at a 99% level of confidence. This fact is certainly due 

to the evidence that an error component of 1% returns highly extreme negative returns, so that, even in presence of weak 

positive correlations, it would not be possible to have a positive return for one asset when all the others suffers losses. 
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4.6 and Figure 4.7 in the Figures Section19). Indeed, it is possible to note how their trend is not smoothed 

over different time horizons, leading to a non-clear ordinality among the less risky and riskier 

cryptocurrencies and to a difficultly interpretable time diversification effect. After having a look at 

Table 4.7 and Table 4.8 (Tables Section)20, it becomes evident that the range between the riskiest asset 

and the safest one does not tend to reduce in the mean for all the frames as the investment maturity 

increases (like in the constant kernel framework). For example, Bitcoin appears to be the least risky 

investment for a great number of scenarios of a 99% level of confindence, but this result is not reliable.  

The results for a 95% level of confindece, however, seems to be more stable. Indeed, results for all the 

frames from a certain investment maturity follow almost the same ordinality in terms of risk. As for the 

riskiest asset, Litecoin has the highest percentage of contribution for all the scenarios summarized in 

Table 4.8. Bitcoin, on the other hand, is not always the least risky investment. This generally happens 

for frames with data that is higher than 1m and 5m data. This fact makes it difficult to rank the currencies 

with respect to their contribution to the overall risk. What is interesting is that 1m data still provides 

some strong diversification effects by returning negative contributions for the overnight scenario 

(Binance) and the 14d and 21d horizons (Ripple). 

Such a model has to be carefully evaluated before its application as it tends to be more reactive to 

different intra-day frameworks, but it could be relevant to note how Bitcoin, Ripple and Binance are in 

general the coins which are chosen as safer investments. As for the riskier alternatives, Ethereum, Eos 

and Litecoin show, in the mean, generally higher contributions for both the tail measures. 

 

5. Conclusion 

The results show that from a univariate point of view, intraday data were considered to be most 

representative of the “real” level of volatility. The ARMA-realized GARCH model with GED residuals 

is able to  capture the leverage effect and to exploit the informative content of high frequencies.  

Consequentially, the ARMA-realized GARCH with GED was picked as the most appropriate model to 

predict the dynamic of each cryptocurrency in terms of analysed models. Moreover, the fat-tailed 

distribution was preferred to the normal one given the evidence on the crypto-market as market with  

frequent extreme values. What is known is that the inclusion of realized volatility measures in the 

estimation of predictive models has highlighted the impact of the data frequency on predictions and was 

confirmed by the sensitivity to different time frames shown by results. Such a context demonstrates the 

usefulness of risk budgeting activities. In light of the above, this work is still believed to be a 

contribution to the knowledge on the cryptocurrency market, having returned results that, even if not in 

line with all the expectations, have suggested the presence of important effects. Certainly, the 

 
19 Respectively related to a level of confidence of 99% and 95%. 
20 Respectively related to a level of confidence of 99% and 95%. 
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expectation of a contribution to risk being different from the contribution to return was respected in all 

the investigated alternatives. With reference to the value of these contributions, however, the variability 

shown by the different frames combined with the disparity obtained by the two kernel approaches, 

makes it impossible to quantify precise percentages of incidence. What has generally emerged is a sort 

of constant ordinality among the analysed cryptocurrencies. In the short term (within 30 days), Bitcoin 

proved to be a generally low-risk investment in terms of potential losses. This result, in fact, belies the 

common beliefs born after the "bursting" of the bubble. Binance and Ripple, on the other hand, have 

manifested themselves as safe alternatives in the very short term (overnight and within a week), with 

percentages of contributions even below 1% (depending on the frame taken into account). This disparity 

in percentage suggests opportunities for risk diversification. In terms of greater incidence, Litecoin has 

revealed a certain concentration, especially in the very short term. The presence of concentration 

considerably increases the riskiness of a portfolio. This evidence, in absence of an investment strategy 

that focuses on risk, would suggest spreading the possibility of loss equally among the cryptocurrencies. 

Such a result, in any case, is obtained naturally with an increase of the time horizon. All contributions 

showed a kind of convergence at more uniform levels: time reduces concentration, making the portfolio 

actually less risky. The lower level of risk is also demonstrated by the term structures, whose slope 

made them a nonlinear function of time (whose presence would have testified the lack of time 

diversification). Their shape, indeed, highlighted how the daily VaR/ES grows but at decreasing rates 

with lower final tail risk levels. The resulting information could eventually be easily exploitable in 

designing investment strategies on the crypto-market. Unfortunately, the lack of equal percentages or 

equivalent out-of-sample measures of goodness for different frames prohibits establishing an order of 

preference in terms of frequencies. However, if one wanted to build a diversified portfolio without using 

particularly targeted strategies (such as risk parity approaches, i.e. those aimed at matching the 

contribution to the portfolio standard deviation of all the securities within it), the 30-day horizon would 

be able to offer a sufficiently satisfactory solution. Ethereum and Litecoin should be avoided in the very 

short term, especially in the presence of trading strategies characterized by conservative stop-losses. 

Investing in Bitcoin or Binance instead (which are the only securities to have a significant positive non-

conditioned average and median) could actually lead to more efficient risk-return profiles (as they also 

generally have the lowest risk contributions). 
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Tables 

 

Table 2.1: Training and test sets for WF cross validation 

Training Validation 

Start End Start End 

31/05/2018 30/01/2019 31/01/2019 02/03/2019 

31/05/2018 01/03/2019 02/03/2019 01/04/2019 

31/05/2018 31/03/2019 01/04/2019 01/05/2019 

31/05/2018 30/04/2019 01/05/2019 31/05/2019 

31/05/2018 30/05/2019 31/05/2019 30/06/2019 

 

Table 3.1 Daily unconditional descriptive statistics (training set) 

Stats BTC BNB ETH LTC XRP EOS 

min -14,50% -21,44% -22,25% -16,12% -19,63% -22,98% 

1st q -0,98% -2,15% -2,29% -2,49% -2,38% -2,75% 

median 0,22% 0,25% -0,11% -0,36% -0,11% -0,16% 

mean 0,10% 0,24% -0,16% 0,01% -0,10% -0,18% 

3rd q 1,57% 2,94% 2,11% 2,79% 1,88% 2,42% 

max 15,87% 17,77% 17,35% 25,75% 31,60% 21,90% 

dev st 3,51% 4,94% 4,97% 5,10% 5,13% 5,96% 

skew -0,17 -0,21 -0,35 0,45 1,03 -0,04 

kurt 6,55 4,83 5,59 6,04 9,94 5,46 

J-B 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

 

Table 3.2. Ljung-Box and LM-Arch tests (for each frame) 

  Ljung-Box (returns) Ljung-Box (realized volatility) 
 BTC BNB ETH LTC XRP EOS BTC BNB ETH LTC XRP EOS 

1m 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

5m 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

15m 0,00% 0,00% 0,03% 0,01% 0,00% 0,81% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

30m 0,01% 0,00% 0,00% 0,19% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1h 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1d 3,58% 7,35% 2,77% 7,36% 8,23% 3,66% 3,24% 4,45% 7,04% 9,49% 0,08% 6,40% 

   
 LM arch    

   
 BTC BNB ETH LTC XRP EOS    

   1m 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%    
   5m 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%    
   15m 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%    
   30m 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%    
   1h 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%    
   1d 5,06% 8,94% 3,81% 9,82% 0,12% 3,30%    
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Table 4.1. Garch models summary (for each frame) 

BTC LTC 

Orders 1m 5m 15m 30m 1h Orders 1m 5m 15m 30m 1h 

garch (2;1) (3;1) (1;1) (1;1) (2;2) garch (1;1) (3;1) (3;1) (3;1) (3;1) 

arma (1;1) (1;1) (1;1) (1;1) (1;1) arma (0;0) (1;1) (0;0) (0;0) (0;0) 

RMSE 0,24% 0,27% 0,36% 0,22% 0,21% RMSE 0,39% 0,51% 0,53% 0,46% 0,47% 

BNB XRP 

Orders 1m 5m 15m 30m 1h Orders 1m 5m 15m 30m 1h 

garch (3;1) (2;1) (1;1) (3;1) (3;1) garch (1;1) (1;1) (2;1) (2;1) (1;1) 

arma (0;1) (0;1) (1;1) (1;1) (0;1) arma (1;1) (0;0) (1;1) (0;1) (0;0) 

RMSE 0,31% 0,31% 0,32% 0,27% 0,28% RMSE 0,39% 0,51% 0,53% 0,46% 0,47% 

ETH EOS 

Orders 1m 5m 15m 30m 1h Orders 1m 5m 15m 30m 1h 

garch (1;1) (2;1) (2;1) (3;3) (1;3) garch (1;1) (2;1) (2;1) (2;1) (2;1) 

arma (1;1) (0;1) (0;1) (0;1) (0;1) arma (1;1) (0;1) (1;1) (0;1) (0;1) 

RMSE 0,30% 0,34% 0,36% 0,32% 0,33% RMSE 0,39% 0,51% 0,53% 0,46% 0,47% 

 

Table 4.2. Kolmogorov-Smirnov and Uniformity tests 

  Norm sNorm C-F t-S st-S 1 st-S 2 Ged sGed 
  K-S U K-S U K-S U K-S U K-S U K-S U K-S U K-S U 

BTC 

1m 0,36 0,00 0,36 0,00 0,59 0,00 40,90 9,60 90,30 47,32 57,41 1,77 98,33 63,46 98,33 66,42 

5m 0,28 0,00 0,36 0,00 5,22 0,21 31,61 10,01 80,79 34,20 51,63 0,01 98,33 96,63 98,33 97,39 

15m 0,36 0,00 0,47 0,00 9,07 0,38 46,11 20,35 90,30 16,67 63,36 0,05 99,80 91,75 99,80 91,75 

30m 0,28 0,00 0,36 0,00 7,58 0,09 51,63 11,78 93,89 16,36 63,36 7,94 99,34 91,44 99,34 91,44 

1h 0,28 0,00 0,28 0,00 12,78 1,20 46,11 7,61 93,89 5,34 63,36 0,05 99,34 79,11 99,34 79,11 

BNB 

1m 15,06 0,03 15,06 0,01 90,30 52,64 90,30 35,73 85,88 19,64 80,79 0,16 100,00 82,96 99,96 69,33 

5m 9,07 0,01 10,79 0,01 90,30 53,23 80,79 32,71 80,79 24,58 75,21 32,22 98,33 78,60 98,33 74,93 

15m 9,07 0,00 10,79 0,00 69,34 34,20 80,79 19,99 85,88 6,98 75,21 10,43 96,55 84,74 96,55 84,74 

30m 10,79 0,00 12,78 0,00 75,21 31,25 85,88 12,01 85,88 4,15 80,79 6,39 90,30 71,61 90,30 65,83 

1h 9,07 0,01 12,78 0,01 80,79 25,83 75,21 30,30 80,79 24,58 75,21 26,69 90,30 97,25 90,30 96,29 

ETH 

1m 1,20 0,00 0,59 0,00 5,22 4,66 80,79 13,52 85,88 9,21 93,89 17,30 99,80 89,80 96,55 76,53 

5m 0,59 0,00 0,28 0,00 4,29 0,68 57,41 17,30 63,36 14,33 85,88 10,86 96,55 97,52 93,89 95,72 

15m 0,76 0,00 0,36 0,00 5,22 2,39 63,36 14,89 69,34 12,01 80,79 11,78 96,55 96,46 93,89 98,01 

30m 0,47 0,00 0,22 0,00 3,52 2,11 51,63 2,00 51,63 5,46 75,21 0,01 90,30 97,90 85,88 92,90 

1h 0,47 0,00 0,22 0,00 4,29 1,44 51,63 2,57 51,63 1,95 75,21 9,80 90,30 96,63 85,88 95,53 

LTC 

1m 5,22 0,02 2,33 0,15 0,02 0,00 63,36 32,22 75,21 44,44 57,41 74,93 85,88 56,84 63,36 42,18 

5m 1,51 0,00 0,96 0,00 0,07 0,00 93,89 48,49 75,21 32,71 69,34 61,06 99,34 85,17 98,33 89,10 

15m 3,52 0,00 1,51 0,01 0,00 0,00 46,11 54,43 75,21 67,01 46,11 60,46 85,88 68,17 69,34 58,65 

30m 3,52 0,00 1,51 0,02 0,00 0,00 51,63 55,04 69,34 52,04 51,63 71,05 90,30 36,25 69,34 34,70 

1h 4,29 0,00 1,88 0,04 0,00 0,00 57,41 49,08 75,21 30,30 51,63 2,30 90,30 47,90 69,34 31,73 

XRP 

1m 1,20 0,00 0,96 0,00 0,47 0,00 75,21 55,64 93,89 83,41 75,21 56,24 96,55 86,82 90,30 76,00 

5m 1,20 0,00 1,51 0,00 2,87 0,00 75,21 67,01 69,34 61,05 76,33 0,73 78,11 64,44 70,90 62,74 

15m 0,96 0,00 0,76 0,00 2,87 0,83 63,36 62,86 90,30 47,90 69,34 44,44 85,88 95,11 85,88 94,43 

30m 0,76 0,00 0,76 0,00 5,22 1,72 57,41 61,06 85,88 78,09 63,36 49,67 96,55 80,59 90,30 74,39 

1h 3,52 0,00 4,29 0,00 23,88 1,40 72,55 22,98 69,34 41,62 68,33 0,84 75,21 41,07 63,36 40,20 

EOS 

1m 0,47 0,00 0,59 0,00 93,89 75,47 57,41 1,95 75,21 3,96 69,34 1,33 99,80 95,53 99,80 95,53 

5m 0,96 0,00 0,96 0,00 99,34 77,06 51,63 5,46 63,36 4,88 63,36 3,87 97,73 98,01 98,33 98,61 

15m 0,36 0,00 0,47 0,00 75,21 48,49 15,06 2,51 36,06 3,52 46,11 0,01 63,36 19,29 63,36 19,29 

30m 0,36 0,00 0,47 0,00 75,21 63,46 23,88 2,05 36,06 0,15 40,90 0,09 80,79 74,93 85,88 77,06 

1h 0,47 0,00 0,47 0,00 63,36 15,18 17,65 0,44 27,55 0,07 31,61 0,42 69,34 27,57 69,34 30,78 

 

Table 4.3 Copula RMSE for each frame 

Copula 
Frame 

1m 5m 15m 30m 1h 

Normal 5,2031% 5,2622% 5,2237% 5,2219% 5,2157% 

t-Student 5,2051% 5,2609% 5,2209% 5,2191% 5,2246% 

Gumbel 5,1980% 5,2572% 5,2063% 5,2058% 5,2295% 

Clayton 5,2103% 5,2594% 5,2175% 5,2158% 5,2291% 

Frank 5,2075% 5,2655% 5,2216% 5,2162% 5,2142% 

Joe 5,2045% 5,2559% 5,2226% 5,2159% 5,2193% 
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Table 4.4. Term Structures in % (weeks) 

 VaR 99% ES 99% 

Time 1m 5m 15m 30m 1h 1m 5m 15m 30m 1h 

01/07 3,10 2,90 5,48 5,59 5,90 3,98 3,47 6,95 7,16 6,77 

07/07 5,51 5,35 7,05 6,89 7,77 6,43 6,03 7,96 8,10 8,81 

14/07 6,74 6,44 7,60 7,87 8,18 7,96 7,07 8,70 9,17 9,40 

21/07 7,60 6,98 8,24 8,48 8,53 8,89 7,74 9,36 9,70 9,58 

30/07 8,22 7,33 8,48 8,80 8,47 9,34 8,25 9,63 10,01 9,79 
 VaR 95% ES 95% 

Time 1m 5m 15m 30m 1h 1m 5m 15m 30m 1h 

01/07 1,54 1,72 2,90 3,01 4,01 2,50 2,44 4,50 4,62 5,15 

07/07 3,72 3,80 4,76 4,86 5,38 4,81 4,75 6,05 6,14 6,76 

14/07 4,90 4,58 5,46 5,58 5,70 6,15 5,66 6,76 6,99 7,22 

21/07 5,48 5,00 5,86 5,97 6,12 6,83 6,17 7,29 7,54 7,55 

30/07 5,93 5,32 6,14 6,30 6,06 7,31 6,55 7,57 7,80 7,55 

 

Table 4.5. Constant Kernel marginal tail risk allocations 99% 

  VaR 99% ES 99% 
 Time BTC BNB ETH LTC XRP EOS BTC BNB ETH LTC XRP EOS 

1d 

1m 13,00% 0,03% 34,77% 29,10% 2,78% 20,31% 15,04% 0,99% 35,34% 25,55% 3,94% 19,15% 

5m 10,53% 4,63% 31,59% 22,07% 11,35% 19,83% 10,16% 4,39% 32,00% 22,76% 9,87% 20,82% 

15m 17,52% 9,32% 25,63% 28,97% 0,26% 18,31% 18,11% 9,81% 24,84% 27,04% 0,82% 19,38% 

30m 20,61% 20,67% 17,03% 20,73% 0,45% 20,52% 21,61% 18,81% 16,83% 20,05% 1,33% 21,37% 

1h 18,00% 14,00% 20,92% 22,29% 5,82% 18,97% 18,26% 13,49% 21,19% 20,40% 5,29% 21,37% 

7d 

1m 10,99% 9,16% 24,01% 24,19% 13,70% 17,94% 11,75% 9,31% 24,08% 23,08% 13,54% 18,24% 

5m 11,11% 13,49% 20,69% 24,00% 12,69% 18,02% 11,34% 13,28% 20,88% 24,07% 12,14% 18,29% 

15m 14,27% 12,88% 19,19% 24,54% 10,93% 18,19% 14,45% 12,70% 19,30% 24,48% 10,79% 18,27% 

30m 14,82% 17,02% 18,24% 21,92% 10,37% 17,62% 14,68% 17,63% 17,79% 21,62% 10,17% 18,10% 

1h 15,06% 16,07% 18,97% 20,90% 10,43% 18,58% 15,04% 16,19% 19,14% 20,75% 10,24% 18,65% 

14d 

1m 9,81% 12,35% 20,74% 22,35% 15,92% 18,84% 10,57% 12,70% 20,68% 21,56% 16,19% 18,30% 

5m 10,26% 14,64% 19,98% 23,00% 14,49% 17,63% 10,16% 14,89% 20,12% 22,96% 14,32% 17,55% 

15m 12,42% 13,75% 18,18% 23,48% 14,56% 17,60% 12,56% 14,09% 18,14% 23,16% 14,06% 18,00% 

30m 12,66% 16,35% 17,33% 21,21% 14,88% 17,57% 12,71% 16,68% 17,46% 21,00% 14,56% 17,60% 

1h 13,70% 15,77% 17,49% 21,39% 13,17% 18,49% 13,81% 16,22% 17,40% 21,36% 13,11% 18,10% 

21d 

1m 9,81% 13,86% 18,86% 21,80% 17,18% 18,49% 10,11% 14,31% 18,92% 21,12% 17,15% 18,38% 

5m 10,16% 15,11% 19,28% 21,85% 15,29% 18,30% 10,39% 15,18% 19,60% 21,32% 15,29% 18,22% 

15m 11,27% 14,58% 17,64% 22,24% 16,26% 18,00% 11,54% 14,87% 17,88% 21,41% 16,01% 18,28% 

30m 11,72% 16,37% 16,86% 21,07% 15,80% 18,18% 12,20% 16,36% 17,06% 20,47% 15,63% 18,28% 

1h 12,51% 15,88% 17,47% 21,33% 14,73% 18,09% 12,78% 15,87% 17,29% 21,19% 14,78% 18,08% 

30d 

1m 9,50% 14,44% 18,63% 20,85% 17,62% 18,96% 9,95% 14,65% 18,60% 20,08% 17,23% 19,49% 

5m 9,83% 14,93% 18,39% 22,07% 15,75% 19,03% 9,86% 15,26% 18,64% 22,01% 15,48% 18,73% 

15m 10,87% 14,41% 17,48% 21,50% 16,86% 18,89% 11,23% 14,62% 17,48% 21,03% 16,59% 19,06% 

30m 10,92% 16,38% 16,64% 20,80% 17,19% 18,07% 11,32% 16,42% 16,75% 20,43% 17,03% 18,05% 

1h 11,84% 15,97% 17,42% 21,07% 15,30% 18,39% 12,16% 16,64% 16,92% 20,40% 15,64% 18,23% 
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Table 4.6. Constant Kernel marginal tail risk allocations 95% 

  VaR 95% ES 95% 
 Time BTC BNB ETH LTC XRP EOS BTC BNB ETH LTC XRP EOS 

1d 

1m 9,37% -7,40% 36,39% 44,63% -2,21% 19,21% 12,48% -1,83% 35,08% 32,72% 1,86% 19,68% 

5m 9,84% 1,69% 32,07% 19,36% 18,05% 18,99% 10,30% 3,74% 31,59% 21,39% 13,18% 19,80% 

15m 17,81% 8,73% 22,91% 37,91% -3,95% 16,60% 17,94% 9,47% 24,37% 31,01% -0,84% 18,05% 

30m 18,50% 19,57% 16,49% 29,22% -2,92% 19,14% 20,20% 19,93% 16,70% 23,24% -0,31% 20,23% 

1h 16,69% 14,01% 19,44% 25,07% 7,40% 17,38% 17,58% 13,94% 20,38% 22,93% 6,34% 18,83% 

7d 

1m 9,89% 8,29% 23,62% 26,42% 14,24% 17,53% 10,76% 8,91% 23,86% 24,80% 13,86% 17,83% 

5m 10,80% 12,87% 20,96% 24,05% 13,52% 17,79% 11,06% 13,21% 20,83% 23,99% 12,93% 17,98% 

15m 13,49% 12,57% 19,05% 26,33% 11,29% 17,28% 13,97% 12,74% 19,21% 25,23% 11,05% 17,81% 

30m 14,20% 16,80% 17,84% 23,26% 10,91% 16,98% 14,61% 17,11% 17,99% 22,30% 10,50% 17,50% 

1h 14,62% 15,11% 18,98% 22,09% 11,32% 17,87% 14,90% 15,66% 19,04% 21,32% 10,77% 18,31% 

14d 

1m 9,10% 11,52% 20,39% 24,03% 16,71% 18,24% 9,75% 12,14% 20,60% 22,75% 16,23% 18,54% 

5m 9,90% 13,60% 19,92% 23,22% 15,10% 18,26% 10,14% 14,27% 19,96% 23,02% 14,72% 17,90% 

15m 11,53% 12,94% 18,17% 24,94% 15,48% 16,93% 12,10% 13,52% 18,20% 23,96% 14,82% 17,40% 

30m 11,70% 15,87% 17,01% 22,90% 15,27% 17,26% 12,31% 16,25% 17,19% 21,84% 14,94% 17,47% 

1h 12,52% 15,15% 17,96% 22,44% 13,99% 17,95% 13,26% 15,61% 17,72% 21,70% 13,46% 18,26% 

21d 

1m 8,86% 12,86% 19,04% 23,16% 17,80% 18,27% 9,54% 13,62% 18,95% 22,13% 17,37% 18,39% 

5m 9,47% 14,07% 18,81% 23,46% 15,42% 18,76% 9,93% 14,71% 19,14% 22,42% 15,33% 18,47% 

15m 10,62% 13,50% 17,61% 24,21% 16,80% 17,26% 11,07% 14,22% 17,67% 22,88% 16,37% 17,79% 

30m 10,70% 15,56% 16,54% 22,79% 16,92% 17,49% 11,45% 16,11% 16,79% 21,56% 16,15% 17,93% 

1h 11,56% 15,43% 17,71% 22,35% 15,14% 17,81% 12,14% 15,72% 17,59% 21,67% 14,86% 18,02% 

30d 

1m 8,55% 13,14% 18,13% 22,58% 18,80% 18,80% 9,22% 13,99% 18,40% 21,38% 18,06% 18,95% 

5m 8,98% 14,36% 18,39% 22,99% 15,99% 19,29% 9,53% 14,77% 18,42% 22,37% 15,82% 19,09% 

15m 9,97% 13,94% 17,20% 23,35% 17,83% 17,73% 10,59% 14,30% 17,36% 22,10% 17,17% 18,48% 

30m 9,95% 15,54% 16,39% 22,37% 17,99% 17,76% 10,61% 16,09% 16,56% 21,33% 17,43% 17,98% 

1h 11,09% 15,04% 17,86% 22,56% 15,69% 17,76% 11,64% 15,73% 17,54% 21,47% 15,47% 18,14% 

 

Table 4.7. Linear Kernel marginal tail risk allocations 99% 

  VaR 99% ES 99% 
 Time BTC BNB ETH LTC XRP EOS BTC BNB ETH LTC XRP EOS 

1d 

1m 13,78% 0,76% 35,25% 26,83% 3,09% 20,29% 20,01% 1,25% 34,46% 22,38% 1,53% 20,37% 

5m 10,92% 9,62% 25,63% 22,76% 12,82% 18,25% 12,60% 8,51% 22,01% 21,87% 13,57% 21,44% 

15m 9,88% 12,78% 20,61% 21,68% 16,35% 18,69% 11,79% 10,86% 20,32% 19,30% 19,28% 18,46% 

30m 11,06% 14,30% 18,56% 21,51% 16,93% 17,66% 12,00% 9,97% 20,83% 21,58% 17,30% 18,31% 

1h 10,92% 13,52% 19,16% 20,38% 16,58% 19,44% 8,72% 7,48% 19,13% 23,25% 26,44% 14,98% 

7d 

1m 10,38% 5,01% 32,59% 22,99% 8,70% 20,32% 16,41% 2,98% 31,30% 17,98% 8,13% 23,20% 

5m 11,44% 14,55% 20,15% 24,36% 11,75% 17,76% 11,01% 16,69% 19,78% 21,50% 12,10% 18,93% 

15m 10,12% 15,52% 21,10% 23,35% 13,82% 16,10% 10,47% 16,01% 21,76% 18,17% 15,78% 17,81% 

30m 10,71% 15,23% 20,27% 20,96% 15,42% 17,41% 10,90% 16,46% 22,30% 17,13% 13,59% 19,62% 

1h 10,03% 15,42% 19,22% 21,40% 15,04% 18,89% 8,90% 18,80% 15,00% 18,38% 15,17% 23,75% 

14d 

1m 17,16% 9,25% 26,04% 28,12% 0,79% 18,65% 15,45% 11,92% 26,36% 28,04% 2,56% 15,66% 

5m 14,64% 13,27% 18,21% 23,61% 11,24% 19,04% 13,10% 12,56% 19,51% 24,73% 11,11% 19,00% 

15m 12,64% 14,57% 17,73% 22,83% 14,22% 18,01% 11,43% 13,85% 19,75% 21,99% 12,90% 20,09% 

30m 12,26% 15,50% 16,97% 22,13% 16,04% 17,09% 11,45% 15,41% 19,06% 18,87% 15,76% 19,46% 

1h 11,59% 13,66% 18,45% 21,04% 15,99% 19,28% 14,33% 10,61% 15,20% 25,36% 15,67% 18,83% 

21d 

1m 20,94% 20,07% 17,29% 19,81% 0,84% 21,05% 15,32% 20,01% 23,37% 22,10% 0,43% 18,78% 

5m 14,62% 17,18% 18,27% 21,71% 10,34% 17,89% 13,03% 20,12% 18,75% 22,60% 8,39% 17,11% 

15m 12,57% 15,67% 18,55% 21,26% 14,21% 17,74% 13,30% 18,14% 18,52% 19,20% 13,84% 17,00% 

30m 11,78% 16,23% 17,90% 19,33% 16,08% 18,68% 13,01% 16,08% 18,52% 19,54% 15,06% 17,79% 

1h 11,13% 17,23% 17,79% 19,88% 16,59% 17,38% 11,25% 21,69% 16,07% 14,43% 20,11% 16,46% 

30d 

1m 18,44% 13,77% 21,53% 20,76% 5,06% 20,44% 13,64% 14,00% 21,39% 18,12% 5,90% 26,95% 

5m 15,18% 16,68% 18,55% 20,65% 10,02% 18,92% 13,85% 15,94% 20,39% 22,48% 12,20% 15,14% 

15m 14,18% 16,03% 17,14% 21,42% 13,05% 18,17% 13,40% 15,77% 18,86% 19,74% 16,68% 15,54% 

30m 12,99% 15,80% 17,64% 20,30% 15,16% 18,11% 12,00% 15,64% 17,54% 20,35% 14,83% 19,64% 

1h 11,50% 15,83% 16,49% 21,64% 15,38% 19,16% 11,27% 22,50% 10,55% 26,34% 8,99% 20,36% 
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Table 4.8. Linear Kernel marginal tail risk allocations 95% 

  VaR 95% ES 95% 
 Time BTC BNB ETH LTC XRP EOS BTC BNB ETH LTC XRP EOS 

1d 

1m 11,08% -3,89% 34,88% 37,42% 0,67% 19,83% 15,92% 0,81% 30,23% 33,97% 1,96% 17,11% 

5m 10,13% 9,02% 24,30% 25,39% 13,65% 17,52% 12,14% 10,16% 20,25% 24,04% 16,84% 16,56% 

15m 9,26% 12,31% 20,56% 22,35% 16,56% 18,97% 11,24% 13,74% 20,13% 21,12% 16,83% 16,93% 

30m 9,99% 14,28% 18,74% 21,73% 15,65% 19,61% 10,93% 14,90% 18,92% 20,99% 17,51% 16,75% 

1h 9,52% 13,75% 18,59% 21,32% 19,11% 17,71% 13,13% 16,94% 18,26% 22,13% 16,45% 13,09% 

7d 

1m 11,04% 5,00% 30,22% 21,75% 12,49% 19,51% 8,60% 6,75% 28,18% 21,10% 10,82% 24,55% 

5m 11,77% 12,84% 20,53% 23,93% 13,27% 17,66% 10,11% 14,10% 20,66% 22,23% 13,98% 18,91% 

15m 10,70% 13,93% 19,61% 22,45% 15,03% 18,29% 9,77% 15,03% 19,53% 22,61% 15,56% 17,50% 

30m 9,38% 13,86% 19,07% 23,10% 15,01% 19,58% 9,67% 15,54% 19,07% 22,01% 15,53% 18,18% 

1h 9,39% 15,01% 17,67% 22,84% 15,71% 19,38% 10,73% 14,24% 18,23% 22,41% 15,08% 19,31% 

14d 

1m 17,96% 9,64% 23,57% 33,54% -1,88% 17,17% 18,77% 8,53% 23,44% 32,81% 1,14% 15,31% 

5m 13,68% 13,17% 19,57% 25,43% 11,22% 16,94% 14,25% 12,45% 21,90% 24,33% 10,06% 17,00% 

15m 12,13% 13,24% 18,79% 23,45% 15,43% 16,97% 12,11% 14,29% 18,74% 24,39% 13,72% 16,74% 

30m 10,98% 13,86% 18,00% 23,23% 16,34% 17,59% 10,68% 15,61% 18,79% 23,02% 15,80% 16,10% 

1h 10,72% 14,11% 17,43% 22,27% 17,37% 18,10% 13,31% 12,03% 14,32% 20,48% 18,34% 21,52% 

21d 

1m 19,13% 20,32% 16,56% 25,67% -1,27% 19,58% 19,12% 17,86% 17,92% 23,21% 0,17% 21,72% 

5m 14,99% 16,92% 18,14% 21,95% 10,33% 17,68% 14,93% 16,74% 18,64% 22,78% 9,37% 17,55% 

15m 12,31% 16,38% 16,94% 22,07% 14,57% 17,73% 12,61% 17,77% 16,93% 21,27% 14,12% 17,29% 

30m 11,08% 16,57% 16,74% 21,37% 16,24% 18,01% 10,75% 16,80% 17,66% 20,75% 15,61% 18,43% 

1h 10,05% 16,79% 16,32% 21,60% 17,52% 17,71% 11,08% 16,88% 15,28% 20,80% 16,66% 19,31% 

30d 

1m 17,37% 14,24% 19,97% 23,87% 6,81% 17,75% 16,93% 14,75% 21,80% 21,08% 6,26% 19,17% 

5m 15,14% 14,95% 19,40% 21,40% 11,16% 17,94% 15,10% 15,80% 18,87% 21,08% 10,65% 18,50% 

15m 12,44% 15,54% 18,33% 21,83% 13,45% 18,41% 13,34% 16,44% 19,12% 20,88% 12,86% 17,36% 

30m 11,25% 15,20% 18,24% 22,06% 14,06% 19,19% 13,09% 16,78% 18,41% 20,75% 13,15% 17,83% 

1h 12,38% 15,53% 17,80% 21,41% 14,85% 18,03% 12,24% 17,60% 17,72% 19,19% 14,15% 19,10% 
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Figures 

 
Figure 4.4. Constant Kernel marginal tail risk allocations 99% 
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Figure 4.5. Constant Kernel marginal tail risk allocations 95% 
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Figure 4.6. Linear Kernel marginal tail risk allocations 99% 
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Figure 4.7. Linear Kernel marginal tail risk allocations 95% 
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