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Abstract 

Many meta-regression analyses that synthesize estimates from primary studies have now been 

published in economics. Meta-regression models attempt to infer the presence of genuine empirical 

effects even if the authors of primary studies select statistically significant and theory-confirming 

estimates for publication. Meta-regression models were originally developed for the synthesis of 

experimental research where randomization ensures unbiased and consistent estimation of the effect of 

interest. Most economics research is, however, observational and authors of primary studies can search 

across different regression specifications for statistically significant and theory-confirming estimates. 

Each regression specification may possibly suffer from biases such as omitted-variable biases that 

result in biased and inconsistent estimation of the effect of interest. We show that if the authors of 

primary studies search for statistically significant and theory-confirming estimates, meta-regression 

models tend to systematically make false-positive findings of genuine empirical effects. The ubiquity 

of such search processes for specific results may limit the applicability of meta-regression models in 

identifying genuine empirical effects in economics. 

 

 

Keywords: Meta-regression, meta-analysis, p-hacking, publication bias, omitted-variable bias, 

sampling variability, sampling error, Monte Carlo simulation 

JEL classification: C12, C15, C40 

 

 

 

 

 

Acknowledgements 

I would like to thank Guido Bünstorf and David Stern for their helpful comments.  

mailto:bruns@uni-kassel.de


2 
 

I. Introduction 

Empirical research is often characterized by the selection of statistically significant results. It has been 

shown that published 𝑝-values cluster just below the widely used significance thresholds for the 

leading general-interest journals (Ridley, 2007), the top economics journals (Brodeur et al., 2015), the 

top sociology journals (Gerber and Malhotra, 2008a), and the top political science journals (Gerber 

and Malhotra, 2008b). Meta-regression models try to address this selection bias by integrating the 

estimates from multiple primary studies in order to reveal the presence or absence of genuine effects. 

We show that meta-regression analyses of observational research suffer from a lack of robustness if 

primary authors search across different regression specifications for statistically significant and theory-

confirming estimates. Therefore, using meta-regression models to make inferences on genuine effects 

in observational research may result in systematic false-positive findings of genuine effects.  

We refer to experimental research if randomization is used to estimate an effect of interest, whereas 

observational research denotes research designs without randomization. While randomization ensures 

an unbiased and consistent estimate of the effect of interest, regression analyses based on 

observational data are characterized by a large analytical flexibility due to the multitude of potential 

regression specifications. Each regression specification may possibly suffer from biases such as 

omitted-variable biases resulting in a biased and inconsistent estimation of the effect of interest. This 

analytical flexibility was described as a key threat to the reliability of inferences in observational 

research (Hendry, 1980; Leamer, 1983; Sims, 1988).    

There are many different labels to denote that the authors of primary studies may search for estimates 

that are theory-confirming and that provide a p-value that is below the common thresholds of 0.05 or 

0.1. We follow the definition of Simonsohn et al. (2014) who coined the term “p-hacking” to denote 

the selection of statistically significant (or theory-confirming) estimates within each study while 

“publication bias” denotes the decreased publication rate of studies without statistically significant 

estimates (Rosenthal, 1979). 

p-hacking is prevalent for both experimental and observational research and it is likely to be caused by 

the incentive system of academic publishing limiting the reliability of inferences that can be drawn 

from published empirical studies (Glaeser, 2006; Ioannidis, 2005). Empirical estimates have to be 

significant, but they also have to confirm the theory or hypothesis presented in the paper. Fanelli 

(2010) shows that the probability that a paper finds support for its hypothesis is high across all 

research disciplines. The pressure to provide significant and theory-confirming results is increased by 

declining acceptance rates in top journals and the need to publish in these journals in order to start or 

advance an academic career (Card and DellaVigna, 2013). As a result, Young et al. (2008) compare 

the publication process to the winner's curse in auction theory. The most spectacular or exaggerated 

results are rewarded with publication in the top journals, although in this case it is the scientific 

community rather than the author that is cursed.  

In extreme cases, strong theoretical presumptions may lead authors to search for theory-confirming 

results (Card and Krueger, 1995). As soon as potentially false theories become established, empirical 

research may be characterized by the selection of results that meet the anticipated expectations of 

reviewers (Frey, 2003) rather than those that falsify the false theory. Null results may only be 

considered for publication if a series of articles previously established the presence of a genuine effect 

(De Long and Lang, 1992). 

The combination of flexible observational research designs in economics and incentives to select for 

specific results may introduce severe biases in published empirical findings. Experimental sciences 

improve the reliability of inferences by using meta-analyses that integrate the evidence of multiple 
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studies while controlling for p-hacking (e.g. Sutton et al., 2000). Such meta-analytic tools are 

increasingly being used to synthesize observational research in economics. The Precision-Effect Test 

(PET) that relates the t-value of an estimated regression coefficient to the precision of the estimate 

(Stanley, 2008) is commonly used (e.g. Adam et al., 2013; Efendic et al., 2011). If a genuine effect is 

present, the coefficient’s t-value and its precision are associated and this relation is used to test for the 

presence of genuine effects. However, such an association between a coefficient’s t-value and its 

precision might also occur in the absence of a genuine effect due to omitted-variable bias.  

Stanley’s (2008) pioneering simulation results suggest that PET is largely robust to the presence of 

omitted-variable biases in primary studies and, consequently, genuine empirical effects are supposed 

to be reliably identified. This paper extends these simulation results and offers a note of caution 

regarding the reliability of meta-regression models in identifying genuine empirical effects in 

observational research. We show that inferences on genuine effects by PET are fragile in the presence 

of p-hacking based on omitted-variable biases, i.e. authors of primary studies search across different 

regression specifications for statistically significant and theory-confirming estimates. We discuss 

theoretically and show by means of simulations that PET provides systematically false-positive 

findings of genuine effects that are caused by omitted-variables biases in the primary literature.  

PET can also be extended using dummy variables that measure the presence or absence of control 

variables in the primary studies to filter out omitted-variable biases. However, most meta-regression 

analyses in economics control for only a small degree of variation in primary regression specifications 

(e.g. Adam et al., 2013; Efendic et al., 2011). One reason for this practice of meta-regression analysis 

may be the belief that PET is largely robust to omitted-variable biases based on the simulation results 

by Stanley (2008). More importantly, however, may be the high degree of heterogeneity of regression 

specifications across primary studies in empirical economics. Publication requires novelty and this is 

often achieved by modifying the set of control variables. This high degree of heterogeneity of 

regression specifications may often make it impossible for the meta-regression model to control for the 

variation of regression specifications.  

Our findings suggest that the applicability of meta-regression models to identify genuine empirical 

effects in observational research in economics may be limited by the fragility of PET with respect to 

biases such as omitted-variable biases and the large heterogeneity of regression specifications in 

empirical economics that is difficult or even impossible to control for in a meta-regression model.  

Section 2 presents p-hacking in observational research in economics and section 3 discusses the lack 

of robustness of meta-regression models in the presence of p-hacking that is based on omitted-variable 

biases. Section 4 provides evidence from a Monte Carlo simulation, section 5 discusses the limits of 

meta-regression analysis in economics, and section 6 concludes. 

  

II. p-hacking in observational research 

The majority of empirical economic research uses the regression framework to estimate conditional 

associations between variables that stem from observational data. This research design is characterized 

by a high degree of flexibility and, as a result, the corresponding range of obtainable estimates is wide 

(Hendry, 1980; Leamer, 1983; Sims, 1988). Sources of this flexibility include the choice of estimation 

techniques, functional forms, variable definitions, and, in particular, the sets of control variables 

included. Variations in the sets of control variables may introduce omitted-variable biases in the 

estimates of the effect of interest. This flexibility in research designs eases the search for statistically 

significant or theory-confirming results. To illustrate this, suppose a theory that states x causes y and 

the corresponding data generating process (DGP) is: 
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𝒚 = 𝛼 + 𝛽𝒙 + 𝒁𝜹′ + 𝝐 (1) 

where 𝛽 is the coefficient of interest, 𝒁 = [𝒛1, … , 𝒛ℎ] is a vector of ℎ control variables with 

coefficients 𝜹 = [𝛿1, … , 𝛿ℎ], and 𝐸[𝝐|𝒙, 𝒁] = 0. Let us define 𝒁𝑞 as a subsample of 𝑞 variables from 𝒁 

and 𝒁𝑝 as the complement to 𝒁𝑞 so that each variable of 𝒁 is either in 𝒁𝑞 or 𝒁𝑝. Let 𝜹𝑞 and 𝜹𝑝 be the 

corresponding coefficients of 𝒁𝑞 and 𝒁𝑝, respectively. Consider 𝑠 = 1, … , 𝑘 independent studies 

estimating the following regressions: 

𝒚𝑠 = 𝛼̂𝑠 + 𝛽̂𝑠𝒙𝑠 + 𝒁𝑞𝑠𝜹̂𝑞𝑠
′ + 𝝐̂𝑠, (2) 

where 𝛼̂𝑠, 𝛽̂𝑠, and 𝜹̂𝑞𝑠 are the estimates of 𝛼, 𝛽, and 𝜹𝑞𝑠 for study 𝑠. The set of control variables 𝒁𝑞𝑠 

may be specific to study 𝑠 as may be the utilized sample. Some studies may use the same 𝒁𝑞𝑠 or the 

same sample, but in general we observe a variety of 𝒁𝑞𝑠 and samples across studies.  

Suppose primary authors search for positive and significant 𝛽̂𝑠. In such a case, only a biased subset of 

𝛽̂𝑠 may be observable in the published literature, whereas a potentially large amount of 𝛽̂𝑠 estimated in 

the process of conducting research remains unpublished. Let us define 𝑏̂𝑠 = [𝛽̂𝑠, 𝜹̂𝑞𝑠] and 𝑸𝑠 =

[𝒙𝑠, 𝒁𝑞𝑠], then 𝑏̂𝑠 in the presence of p-hacking is given by: 

𝐸[𝑏̂𝑠|𝑃𝐻] = 𝑏 + 𝐸[(𝑸𝑠
′ 𝑸𝑠)−1𝑸𝑠

′ 𝒁𝑝𝑠𝜹𝑝𝑠
′ |𝑃𝐻] + 𝐸[(𝑸𝑠

′ 𝑸𝑠)−1𝑸𝑠
′ 𝝐|𝑃𝐻] (3) 

where PH denotes p-hacking for positive and significant 𝛽̂𝑠. Equation (3) illustrates two important 

sources of p-hacking in observational research. First, authors may vary the set of control variables, 

𝒁𝑞𝑠, and by this the set of omitted variables, 𝒁𝑝𝑠. The specification searching results in potential 

omitted-variable biases for 𝑏̂𝑠 that are given by 𝐸[(𝑸𝑠
′ 𝑸𝑠)−1𝑸𝑠

′ 𝒁𝑝𝑠𝜹𝑝𝑠
′ |𝑃𝐻] in (3). We are primarily 

interested in its first entry, that is the potential omitted-variable bias of 𝛽̂𝑠. Such a search across 

different regression specifications need not even be a deliberate manipulation of the estimate of 𝛽, but 

might result from naive and unconscious experimentation with the data or from dealing with limited 

data availability. Leamer (1983) highlights this search process as the key source of the low credibility 

of observational research. Omitted-variable biases result in biased and inconsistent estimation of 𝛽 and 

we denote the use of omitted-variable biases to obtain statistically significant and theory-confirming 

estimates as p-hacking based on omitted-variable biases.  

We focus here on p-hacking based on omitted-variable biases as varying the set of control variables is 

likely to represent an important source of bias when the authors of primary studies search for 

statistically significant and theory-confirming estimates. However, our results can be easily 

generalized as other types of bias also result in biased and inconsistent estimation of the effect of 

interest. We discuss this in Section V. 

Second, authors may vary the utilized sample, e.g. by using subsamples or by deleting “outliers”, to 

select positive and significant 𝛽̂𝑠 from those estimates offered by sampling variability. Each sample 

implies a sampling error that may render 𝛽̂𝑠 positive and significant by chance. If authors 

systematically use sampling errors to obtain positive and significant 𝛽̂𝑠, the published 𝛽̂𝑠 are 

characterized by an association between 𝒙 and the true error, 𝝐, in (1). As a result, we can expect the 

first entry of 𝐸[(𝑸𝑠
′ 𝑸𝑠)−1𝑸𝑠

′ 𝝐|𝑃𝐻] in (3) to be positive.1 In an extreme case, we may observe only 

                                                           
1 If sampling errors are not systematically used to select positive and significant 𝛽̂𝑠 , we can expect that  
𝐸[(𝑸𝑠

′ 𝑸𝑠)−1𝑸𝑠
′ 𝝐] = 𝟎. Note that simultaneity also results in some entries of 𝐸[(𝑸𝑠

′ 𝑸𝑠)−1𝑸𝑠
′ 𝝐] differing from 

zero. 
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those 𝛽̂𝑠 that are positive and significant by chance, whereas the 95% insignificant 𝛽̂𝑠 as well as the 

2.5% negative and significant 𝛽̂𝑠 remain in the file-drawer (Rosenthal, 1979). p-hacking based on 

sampling error is well discussed in meta-analyses of experimental studies. For these research designs 

randomization ensures unbiased and consistent estimation of the effect of interest and sampling 

variability may be the main source of bias. However, a major source of bias in observational research 

is likely to be omitted variables.  

If a primary literature is distorted by p-hacking for statistically significant and positive 𝛽̂𝑠, we may 

learn little about 𝛽 by using a simple average of the published 𝛽̂𝑠. Meta-regression models synthesize 

the published 𝛽̂𝑠 and aim to identify the genuine 𝛽 while controlling for p-hacking. 

 

III. Meta-regression models 

Basic Model 

The basic meta-analysis model2 is: 

𝛽̂𝑠 = 𝜔𝐵 + 𝑢𝑠 (4) 

where 𝛽̂𝑠 are the estimated coefficients of interest of study 𝑠 = 1, … , 𝑘 and 𝑢𝑠 = 𝑁(0, 𝑣𝑠
2 ) with 𝑣𝑠

2 as 

the sampling variance of 𝛽𝑠. The basic meta-analysis model is estimated by weighted least squares 

(WLS) where the weights are equal to the inverse variance of 𝛽̂𝑠. This weighting procedure gives 

smaller weights to imprecisely estimated 𝛽𝑠 and larger weights to more precisely estimated 𝛽𝑠 (e.g. 

Sutton et al., 2000). 𝐻0: 𝜔𝐵 = 0 tests for a non-zero weighted mean of 𝛽̂𝑠. The Basic Model does not 

control for p-hacking. Therefore, if authors of primary studies opt for statistically significant or theory-

confirming 𝛽̂𝑠 by using sampling errors or omitted-variable biases, the weighted mean becomes 

biased.  

An alternative to the Basic Model is the use of random-effects models (e.g. Sutton et al., 2000). 

However, meta-regression analyses in economics are usually augmented by many control variables in 

the meta-regression. As random-effects models require strict exogeneity, most meta-regression 

analyses in economics focus on the use of fixed effects (e.g. Adam et al., 2013; Efendic et al., 2011).    

 

Precision-Effect Test 

The main meta-regression model that has been used in economics is the Egger et al. (1997) regression:  

𝑡𝑠 = 𝛿 + 𝜔𝑃𝐸𝑇

1

𝑠𝑒̂𝑠
+ 𝑒𝑠 

(5) 

where 𝑡𝑠 is the 𝑡-value of 𝛽̂𝑠 and 𝑠𝑒̂𝑠 is the estimated standard error of 𝛽̂𝑠. Stanley (2008) suggests 

𝐻0: 𝜔𝑃𝐸𝑇 = 0 to test for the presence of a genuine effect in a given primary literature and names this 

test “Precision-Effect Test” (PET).  

If the correct primary regression specification is used 𝛽̂𝑠 is an unbiased and consistent estimate of 𝛽; 

similar to the unbiased and consistent estimates obtained by randomization in experimental research 

                                                           
2 The basic meta-analysis model is known in the meta-analysis literature as fixed-effects model. We refer to this 
model as the Basic Model to avoid confusion with the terminology from the econometrics of panel data. 
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designs. If the correct primary regression is used in all primary studies and a genuine effect is absent 

(𝛽 = 0), there should be no relation between 𝑡𝑠 and 1 𝑠𝑒̂𝑠⁄ .  

We can further expect that 𝛽̂𝑠 is a precise estimate of 𝛽 if the sample size is large and the estimated 

standard error (𝑠𝑒̂𝑠) is small. On the contrary, if the sample size is small and 𝑠𝑒̂𝑠 is large, sampling 

variability yields a wide range of 𝛽̂𝑠. p-hacking that is based on the use of sampling errors requires 

large 𝛽̂𝑠 for large  𝑠𝑒̂𝑠 and small 𝛽̂𝑠 for small 𝑠𝑒̂𝑠to ensure positive and statistically significant 𝛽̂𝑠, i.e. 

𝑡𝑠 ≳ 1.96. Therefore, 𝑡𝑠 is again unrelated to 1 𝑠𝑒̂𝑠⁄  if p-hacking is only based on sampling errors.  

If a genuine effect is present (𝛽 ≠ 0) and the correct primary regression specification is used by all 

primary studies, 𝑡𝑠 and 1 𝑠𝑒̂𝑠⁄  are associated. As a result, 𝐻0: 𝜔𝑃𝐸𝑇 = 0 can be used to infer the 

presence of genuine effects if all primary studies use the correct primary regression specification. 

However, observational research is characterized by a large heterogeneity of regression specifications 

across primary studies potentially implying omitted-variable biases. Omitted-variable biases result in 

biased and inconsistent estimation of 𝛽 and, thus, a relation between 𝑡𝑠 and 1 𝑠𝑒̂𝑠⁄  is introduced, 

exactly as it is for a genuine effect. Therefore, the relation between 𝑡𝑠 and 1 𝑠𝑒̂𝑠⁄  cannot distinguish 

between genuine effects and omitted-variable biases and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 can no longer serve as a test 

for the presence of genuine effects if the authors of primary studies use p-hacking based on omitted-

variable biases . Figure 1 illustrates the properties of PET. 

 

 

Figure 1. Properties of Precision-Effect Test. The dotted lines represent the (approximate) level of statistical 

significance (±1.96). The dots are based on illustrative data and represent 𝑡-values of regression coefficients 

that can be obtained by primary studies (a) in the absence of a genuine effect and if all primary studies use the 

correct regression specification, (b) in the absence of a genuine effect and if all primary studies use the correct 
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regression specification but p-hacking based on sampling error, (c) in the presence of a genuine effect, and (d) in 

the absence of a genuine effect but in the presence of p-hacking based on omitted-variable bias. 

In the presence of an omitted-variable bias, 𝛽̂𝑠 is asymptotically biased and even with an infinitely 

small 𝑠𝑒̂𝑠 the resulting estimate would still be biased. PET captures biases that are associated with 𝑠𝑒̂𝑠 

which is the case if sampling errors are used to select for statistically significant 𝛽̂𝑠. In some cases, 

omitted-variable biases may also be associated with 𝑠𝑒̂𝑠 and, consequently, PET may reduce the false-

positive findings of genuine effects in these cases compared to the Basic Model that does not control 

for any biases. Specifically, PET reduces false-positive findings of genuine effects if a positive 

omitted-variable bias goes in line with an increase in 𝑠𝑒̂𝑠 so that the change in 𝛽̂𝑠 does not fully 

translate to a change in 𝑡𝑠.  

In general, 𝑠𝑒̂𝑠 can increase or decrease if an omitted-variable bias is present. The variance of 𝛽̂𝑠 for 

the correct regression specification is given by: 

𝑉𝑎𝑟[𝛽̂𝑠|𝒙𝑠, 𝒁𝑠] =
𝜎̂𝒁𝑠

2

(1 − 𝑅̂𝒙𝑠𝒁𝑠
) 𝑆𝒙𝑠𝒙𝑠

 (6) 

where 𝜎𝒁𝑠

2  is the estimated residual variance of primary study 𝑠, 𝑅̂𝒙𝑠𝒁𝑠

2  is the 𝑅2 of a regression of 𝑥𝑠 

on the set of control variables 𝑍𝑠, and 𝑆𝒙𝑠𝒙𝑠
= ∑(𝑥𝑠 − 𝑥̅𝑠). If a control variable that is correlated with 

𝒙𝑠 and that has an own effect on 𝑦𝑠 is dropped from the regression, the variance of 𝛽̂𝑠 remains constant 

if 𝜎̂𝒁𝑠

2  and (1 − 𝑅̂𝑥𝑠𝒁𝑠
) change proportionally. If (1 − 𝑅̂𝒙𝑠𝒁𝑠

) increases less (more) than proportionally 

to 𝜎̂𝒁𝑠

2 , the variance of 𝛽̂𝑠 increases (decreases). The change in the variance of 𝛽̂𝑠 is based on the size 

of the coefficients and the covariances between the variables. We use Monte Carlo simulations to 

evaluate how PET performs if 𝑠𝑒̂𝑠 has a tendency to increase and decrease with the size of the omitted-

variable bias. 

 

IV. Monte Carlo simulation 

Design 

The Monte Carlo simulation analyses the robustness of PET and the Basic Model with respect to p-

hacking that is based on omitted-variables biases and sampling errors. We consider the sample sizes of 

the meta-regression analyses as 𝑘 =  20, 40, 80, 160 which is the number of primary studies that are 

synthesized by the meta-regression. These sample sizes reflect typical sample sizes that can be 

observed in meta-regression analyses in economics (Appendix I in Doucouliagos and Stanley (2013) 

gives an overview).  

The primary study sample size of the 𝑠th study with 𝑠 = 1, … , 𝑘 is drawn from a gamma distribution 

with scale parameter equal to 𝜎2 (𝜇 − 30)⁄  and shape parameter equal to (𝜇 − 30)2 𝜎2⁄ . Thus, 𝜇 

denotes the mean of the primary study sample size distribution and 𝜎2 its variance. We round the 

obtained value for the primary study sample size to the next integer and add 30 so that 30 is the 

smallest primary study sample size. The choice of the scale and shape parameters allows us to vary 𝜇 

and 𝜎2 independently. The use of a gamma distribution provides right-skewed primary study sample 

size distributions for small 𝜇 and increasingly symmetric ones for larger 𝜇. We consider 𝜇 =

100, 200, 400 and 𝜎2 = 302, 602. Figure 2 provides an overview of the sample size distributions 

mirroring primary literatures that are prevalent in empirical economic research.  
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Figure 2. Primary sample size distributions. 

 

The data-generating process (DGP) for each primary study 𝑠 is given by: 

𝑦 = 𝛽𝑥 + 𝛾1𝑧1 +  𝛾2 𝑧2 + 𝛾3 𝑧3 +  𝜖 (7) 

where all right-hand side variables are 𝑁(0,1) and 𝛽 = 0 that is the coefficient of interest. We set 

𝛾1 = 0.2, 𝛾2 = 0.3, and 𝛾3 = 0.5. Suppose primary authors intend to show that 𝛽 > 0 at the 5% level 

of statistical significance using a two-sided 𝑡-test. The easiest way to search for an estimate of 𝛽 that 

fulfils these criteria is to search across different regression specifications. We model this search for a 

positive and statistically significant 𝛽 by first estimating the correct regression using 𝑥, 𝑧1, 𝑧2 and 𝑧3. If 

the estimate of 𝛽 is positive and significant by chance, the estimate is published. If these criteria are 

not fulfilled, the author of the primary study randomly drops 𝑧1, 𝑧2 or 𝑧3 from the regression. If the 

estimate of 𝛽 becomes positive and significant by using an omitted-variable bias, the estimate is 

published. If the thus obtained estimate is not positive and statistically significant, the author of the 

primary study adds the omitted variable and randomly drops one of the remaining two variables from 

the regression. If the estimate of 𝛽 becomes positive and significant, the estimate is published. Finally, 

if the obtained estimate of 𝛽 is not positive and statistically significant, the primary author adds the 

omitted variable again and drops the remaining control variable. If the estimate becomes positive and 

statistically significant, the estimate is published. If still no positive and significant estimate of 𝛽 is 

obtained, the author of the primary study starts the same search across regression specifications for a 

different sample implemented by resampling all variables in equation (7).  

The simulated process of p-hacking is based on a search across different regression specifications 

involving omitted-variable biases and sampling errors. We consider primary literatures where ℎ% of 

the studies are affected by p-hacking, whereas (100 − ℎ)% of the studies estimate the correct primary 

regression and publish the estimate of 𝛽 irrespective of whether this estimate is positive and 

significant. We use ℎ = 10, 20, … , 100 to simulate primary literatures that range from the absence of 
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p-hacking to primary literatures that provide solely positive and statistically significant 𝛽̂ though 𝛽 =

0. 

The simulated omitted-variable biases depend on the size of 𝛾1, 𝛾2 and 𝛾3 as well as on the covariance 

between the variables on the right-hand side in (7). We use two different cases to analyse the role of 

the covariance structure between the right-hand side variables in (7) on the robustness of PET and the 

Basic Model. Case I models a covariance structure between the variables that implies a variance of 𝛽̂ 

that has a tendency to increase with the size of the omitted-variable bias: 

𝐶𝑜𝑣(𝑥, 𝑧1, 𝑧2, 𝑧3) = [

1 . . .
0.5 1 . .
0.5 0.2 1 .
0.5 0.2 0.2 1

]. 

 

(8) 

Case II models a covariance structure that implies a variance of 𝛽̂ that has a tendency to decrease with 

the size of the omitted-variables bias: 

𝐶𝑜𝑣(𝑥, 𝑧1, 𝑧2, 𝑧3) = [

1 . . .
0.4 1 . .
0.5 0.2 1 .
0.6 0.2 0.2 1

]. 

 

(9) 

We analyse the rejection rate of 𝐻0: 𝜔𝐵 = 0 for the Basic Model and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 for PET for all 

480 scenarios (#𝑘 ∗ #𝜇 ∗ #𝜎2 ∗ #ℎ ∗ #𝐶𝑜𝑣(𝑥, 𝑧1, 𝑧2, 𝑧3)). As a genuine effect is absent (𝛽 = 0) these 

rejection rates are the type I errors of testing for genuine empirical effects in the presence of p-

hacking. 

Finally, Case III analyses the robustness of PET and the Basic Model with respect to p-hacking that is 

only based on sampling errors. For this scenario we use the simulation design described above, but the 

authors of primary studies always estimate the correct regression specification that is a regression of 𝑦 

on 𝑥, 𝑧1, 𝑧2 and 𝑧3. If 𝛽̂ is not positive and significant for the ℎ% of studies that search for a positive 

and significant 𝛽̂, the author of the primary study re-estimates the correct primary regression 

specification for a new sample. A new sample is generated by resampling all variables in equation (7) 

and the author continues to estimate the correct regression specification for new samples until a 

positive and significant 𝛽̂ is obtained by chance. There are no omitted-variable biases involved in this 

case and p-hacking is only based on sampling errors. We focus on smaller primary sample size 

distributions in Case III as obtaining statistically significant estimates of 𝛽 by chance becomes 

computationally intensive for large primary sample sizes. 

 

Results 

Type I errors of 𝐻0: 𝜔𝐵 = 0 and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 for Case I that uses the covariance structure (8) 

implying a tendency of increasing 𝑠𝑒̂𝑠 with the size of the omitted-variable bias are presented in Figure 

3. The Basic Model neither controls for p-hacking that is based on sampling errors nor for p-hacking 

that is based on omitted-variable biases and, consequently, this model provides highly inflated type I 

errors even if the degree of p-hacking in the primary literature is small. PET also provides inflated 

type I errors, though they are smaller compared to the Basic Model. The type I errors increase with the 

primary sample sizes as sampling errors play a larger role for smaller primary sample sizes and PET 

controls for this type of bias. The type I errors of PET often show an inverted U-shape that is induced 
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by the decreasing number of statistically insignificant observations for lower levels of precision of the 

estimate of interest as the degree of p-hacking increases. 

 

 

Figure 3. Type I errors of 𝐻0: 𝜔𝐵 = 0 and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 for Case I with a tendency of increasing 𝑠𝑒̂𝑠 with the 

size of the omitted-variable bias are presented for small to large meta sample sizes (𝑘 = 20, 40, 160) in 

combination with different primary sample size means 𝜇 = 100, 200, 400 and primary sample size variances 

𝜎2 = 302, 602. 

Type I errors of 𝐻0: 𝜔𝐵 = 0 and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 for Case II that uses the covariance structure (9) 

implying a tendency of decreasing 𝑠𝑒̂𝑠 with the size of the omitted-variable bias are presented in 

Figure 4. The type I errors of PET are systematically larger than for Case I indicating that the positive 

association between 𝑠𝑒̂𝑠 and the size of omitted-variable biases that is modelled in Case I indeed 
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reduces the type I errors of PET. If the meta-sample size becomes large and the primary sample sizes 

are large, the type I errors of PET become as inflated as the type I errors of the Basic Model. 

Finally, type I errors of 𝐻0: 𝜔𝐵 = 0 and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 for Case III that uses p-hacking based only on 

sampling errors are presented in Figure 5. In Case III the correct regression specification is estimated 

in all primary studies leading to unbiased and consistent estimates of 𝛽. PET can largely filter out this 

type of p-hacking whereas the Basic Model provides highly inflated type I errors. 

 

Figure 4. Type I errors of 𝐻0: 𝜔𝐵 = 0 and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 for Case II with a tendency of decreasing 𝑠𝑒̂𝑠 with the 

size of the omitted-variable bias are presented for small to large meta sample sizes (𝑘 = 20, 40, 160) in 

combination with different primary sample size means 𝜇 = 100, 200, 400 and primary sample size variances 

𝜎2 = 302, 602. 
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Figure 5. Type I errors of 𝐻0: 𝜔𝐵 = 0 and 𝐻0: 𝜔𝑃𝐸𝑇 = 0 for Case III using p-hacking based only on sampling 

errors are presented for small to large meta sample sizes (𝑘 = 20, 40, 160) in combination with a primary 

sample size mean of 𝜇 = 100 and primary sample size variances 𝜎2 = 302, 602. 

 

V. Discussion 

We discuss theoretically and show by means of simulations that both the Basic Model and PET 

provide inflated type I errors if primary authors search across regression specifications for positive and 

statistically significant estimates. If the primary literature suffers from p-hacking that is only based on 

sampling errors implying the use of the correct regression specification for all primary studies, PET 

provides adequate type I errors and the Basic Model suffers from inflated type I errors. However, p-

hacking in observational research in economics is more likely to be characterized by specification 

searching rather than by estimating the same regression specification for different samples. Therefore, 

even if the standard error of the estimate of interest increases with the size of the omitted-variable bias 

introducing an association between bias and standard error, PET provides inflated type I errors, though 

the type I errors are reduced compared to the Basic Model that does not control for any biases. 

These findings extend the pioneering simulation results of Stanley (2008) suggesting that PET is 

largely robust to p-hacking that is based on omitted-variable biases and sampling errors. His 

simulation design is based on a DGP with two variables where the coefficient of the first variable is 

the coefficient of interest and the coefficient of the second variable is drawn from a normal 

distribution. Omitted-variable biases are simulated by primary studies estimating a regression with the 

first variable while the second variable is omitted from the regression. If the estimate of the first 

coefficient is not positive and statistically significant, all variables of the DGP are resampled and a 

new second coefficient is drawn that generates a new omitted-variable bias.  

Our simulation design extends this simulation design in two respects that are important for the 

robustness of PET in testing for the presence of genuine effects. First, Stanley (2008) simulates p-

hacking based on omitted-variable biases by resampling not only the second coefficient of the DGP to 

generate a new omitted-variable bias but also by resampling all variables of the DGP. If the variance 

of the normal distribution from which the second coefficient is selected is small, it requires multiple 

resamplings of the second coefficient to generate an omitted-variables bias that provides a positive and 

significant estimate of interest. However, each resampling of the second coefficient goes in line with a 

resampling of all variables of the DGP. This implies that primary studies that face an insignificant 

estimate of interest not only choose a new regression specification but simultaneously use a new 

sample that may by chance result in a positive and significant estimate of interest. Hence, in Stanley’s 
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simulation design p-hacking based on omitted-variable biases that should actually mirror specification 

searching for desired estimates may be dominated by p-hacking that is based on sampling errors. Case 

III of our simulation illustrates that PET is robust to p-hacking that is only based on sampling errors. 

Consequently, a dominance of sampling errors over omitted-variable biases in the process of p-

hacking is likely to result in adequate type I errors of PET. We model p-hacking as a search across 

different regression specifications and only if all of these specifications fail to provide a positive and 

significant estimate of interest does the primary study chose a new sample.  

Second, Stanley (2008) generates omitted-variable biases by drawing the second coefficient of the 

DGP from a normal distribution with mean zero and by omitting the second variable from the 

estimated primary regressions. This implies potentially large positive and negative omitted-variable 

biases in the primary studies. As discussed above, a small variance of the normal distribution from 

which the second coefficient is drawn may result in a dominance of sampling errors over omitted-

variable biases. If the variance of the normal distribution becomes larger, large positive and negative 

omitted-variable biases are present in the primary literature. Given that Stanley considers degrees of 

publication selection of 0%, 25%, 50%, and 75%, at least 25% percent of primary studies may have 

(large) negative omitted-variable biases. These negative and potentially significant estimates reduce 

the type I errors of PET. Such a primary literature is characterized by opposing estimates of the effect 

of interest rather than by a selection for theory-confirming results. In the presence of p-hacking for 

estimates that confirm a dominant theory, it may be unlikely to observe large contradicting estimates 

in the published literature. Even if two opposing theories are present in the literature, it is more likely 

that one implies a genuine effect and the other no effect rather than two genuine effects with opposing 

signs. We simulate empirical literatures that suffer from p-hacking for positive and significant 

estimates and those primary studies that are not affected by p-hacking do not publish large 

contradicting negative findings.  

Both extensions of the simulation design result in what may be a more realistic simulation of p-

hacking for specific estimates, i.e. theory-confirming and statistically significant estimates. Authors of 

primary studies may estimate many regression specifications and consciously or unconsciously choose 

those that fit their theoretical presumptions. In these cases the Basic Model and PET provide 

systematically false-positive findings of genuine effects.   

Meta-regression analyses in economics widely use PET to integrate estimates of various primary 

studies. As the heterogeneity of study characteristics is often large, meta-analysts extend PET by 

adding dummy variables that are interacted with precision. These dummy variables may mirror 

various study characteristics including differences in variable definitions, considered time periods or 

subjects of investigation, estimation techniques, data sources, and the sets of primary control variables. 

Koetse et al. (2010) show that if the correct primary regression specification is known, using a dummy 

variable to control for an omitted variable can filter out the omitted-variable bias. Probably due to the 

large heterogeneity of regression specifications across different primary studies and the belief that PET 

has a certain robustness to omitted-variable biases, meta-regressions usually only add some dummy 

variables that control for omitted variables (e.g. Adam et al., 2013; Efendic et al., 2011). However, if 

the primary literature suffers from p-hacking for theory-confirming and statistically significant 

estimates, PET is likely to false-positively identify a genuine effect if the meta-regression model does 

not capture the heterogeneity introduced by different regression specifications. 

In general, even if we assume that the meta-analyst knows the correct primary regression specification, 

dummy variables for all primary control variables that are omitted at least in one study may be 

required. If heterogeneity in the estimate of interest caused by omitted-variable biases remains, PET is 

likely to suffer from inflated type I errors. Given the large heterogeneity of regression specifications in 
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observational research in economics, it may be difficult or even impossible to cover this heterogeneity 

by dummy variables. This may limit the applicability of meta-regression analyses for the purpose of 

identifying genuine effects in observational research in economics. 

Statisticians are well aware of the limits of meta-analysis in observational research. Becker and Wu 

(2007) and Wu and Becker (2012) present approaches to integrate regression slopes across primary 

studies. But these approaches require either the covariances of the regression coefficients of each 

primary study or the covariances of the variables used in the regression of each primary study. As both 

pieces of information are usually not available across primary studies in economics, these approaches 

are difficult to apply in empirical economic research.   

We focus in this article on p-hacking that is based on omitted-variable biases to analyse the fragility of 

meta-regression models in identifying genuine empirical effects. However, our results can be easily 

generalized as the increased rate of false-positive findings of genuine effects stems from biased and 

inconsistent estimates in the primary literature. Such biased and inconsistent estimates introduce an 

association between the t-value of the estimate of interest and the precision of the estimate of interest 

that is interpreted by PET as evidence for a genuine effect. Omitted-variable biases are a prominent 

source of biased and inconsistent estimates, but other types of biases such as misspecifications of the 

functional form, simultaneity, and measurement errors may also result in biased and inconsistent 

estimates in the primary studies. If the authors of primary studies include these other sources of bias in 

their search process for statistically significant and theory-confirming estimates, meta-regression 

models also provide systematically false-positive findings of genuine effects as demonstrated for the 

case of omitted-variable biases in this article. 

In experimental research, randomization ensures - at least in theory - unbiased and consistent 

estimation of the effect of interest and p-hacking is likely to rely more on chance rather than on 

systematically biased and inconsistent estimates of the effect of interest. If p-hacking relies more on 

chance, the bias is likely to be positively associated with the estimated standard error as large biases 

are unlikely to occur for large sample sizes. Therefore, meta-analysis is likely to play a promising role 

in identifying genuine effects and in adjusting for p-hacking in experimental research in economics 

including field experiments and quasi-experiments. Vivalt (2015), for example, demonstrates how 

meta-analytic tools may be utilized to synthesize research in the field of impact evaluation in 

development economics.  

Further research is needed to better understand if and how estimates stemming from highly 

heterogeneous primary studies can be synthesized by meta-regression models to improve the reliability 

of inferences in observational research.  

 

VI. Conclusions 

Meta-regression models are increasingly being utilized in economics to integrate estimates from 

observational research designs. We show by means of theory and Monte Carlo simulations that the 

Precision-Effect Test (PET) that aims to test for the presence of genuine effects provides highly 

inflated type I errors if the authors of primary studies use p-hacking based on omitted-variable biases, 

i.e. they search for statistically significant and theory-confirming estimates across different regression 

specifications. Our findings extend previous pioneering simulation results that suggest a robustness of 

PET with respect to omitted-variable biases in primary studies (Stanley, 2008). 

Our findings cast doubt on whether recent meta-regression analyses can help to improve the reliability 

of inferences on genuine effects in observational research in economics. Meta-regression models may 



15 
 

add dummy variables to filter out omitted-variable biases if the meta-analyst is willing to assume 

which primary regression specification is best to estimate the effect of interest. However, many meta-

regression analyses in economics control only for some variation of the control variables in the 

primary studies (e.g. Adam et al., 2013; Efendic et al., 2011). This practice of meta-regression 

analysis may be caused by the belief that PET is largely robust to omitted-variable biases. More 

importantly, however, it may be difficult or even impossible in many cases to control for the high 

degree of heterogeneity of regression specifications that can be observed in primary literatures in 

economics.  

Given the uncertainty whether a primary literature suffers from p-hacking, the difficulties to control 

for p-hacking may limit the applicability of meta-regression models for the purpose of identifying 

genuine effects in observational research in economics.  
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