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Toward forest dynamics’
systematic knowledge: concept
study of a multi-sensor visually
tracked rover including a new
insect radar for high-accuracy
robotic monitoring

Alexey Noskov*, Sebastian Achilles and Joerg Bendix

Faculty of Geography, Philipps University of Marburg, Marburg, Germany
Forest dynamics research is crucial in understanding the global carbon cycle and

supporting various scales of forest decision-making, management, and

conservation. Recent advancements in robotics and computing can be

leveraged to address the need for systematic forest monitoring. We propose a

common autonomous sensor box platform that enables seamless data

integration from multiple sensors synchronized using a time stamp–based

mechanism. The platform is designed to be open-source–oriented, ensuring

interoperability and interchangeability of components. The sensor box, designed

for stationary measurements, and the rover, designed for mobile mapping, are

two applications of the proposed platform. The compact autonomous sensor

box has a low-range radar that enables high-detail surveillance of nocturnal

insects and small species. It can be extended to monitor other aspects, such as

vegetation, tree phenology, and forest floor conditions. Themulti-sensor visually

tracked rover concept also enhances forest monitoring capabilities by enabling

complex phenology monitoring. The rover has multiple sensors, including

cameras, lidar, radar, and thermal sensors. These sensors operate

autonomously and collect data using time stamps, ensuring synchronized data

acquisition. The rover concept introduces a novel approach for achieving

centimeter-accuracy data management in undercanopy forest conditions. It

utilizes a prism attached to the rover, which an oriented robotic total station

automatically tracks. This enables precise positioning of the rover and accurate

data collection. A dense control network is deployed to ensure an accurate

coordinate transfer from reference points to the rover. The demonstrated

sample data highlight the effectiveness and high potential of the proposed

solutions for systematic forest dynamics monitoring. These solutions offer a

comprehensive approach to capturing and analyzing forest data, supporting

research and management efforts in understanding and conserving

forest ecosystems.
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1 Introduction

Forests are crucial elements of Earth due to their vital ecological,

economic, and social roles. Ecologically, forests exhibit high

biodiversity and act as habitats for numerous species, promoting

ecosystem stability and functioning (Seymour and Busch, 2016).

They play a crucial role in carbon sequestration, absorbing and

storing substantial amounts of carbon dioxide, thus helping

mitigate climate change (Fahey et al., 2010). Forests also

contribute to water regulation, soil erosion prevention, and water

quality improvement (Ellison et al., 2017). From an economic

standpoint, forests support industries such as timber, paper, and

pharmaceuticals, providing employment and economic

opportunities (Wear, 2002). In addition, forests offer recreational

and cultural values, contributing to human wellbeing (Tabbush,

2010). Preserving and sustainably managing forests are, therefore,

paramount for the health of our planet and a sustainable future.

Multiple forest research challenges are to be addressed, and

environmental monitoring is a central tool for facilitating it. Among

challenges, occurring pervasive shifts in forest dynamics are of vital

concern. At first glance, deforestation is the most distinguishable

concern in the forest dynamics scope. Although forest cover is

increasing in many, mainly developed countries, in tropical and

subtropical areas, its degradation continues (Pendrill et al., 2019).

Forest transitions, i.e., moving from net loss to net gain of forest

area, are expanding. Brazil is a remarkable example of attempting to

halt deforestation. Regarding forest preservation and restoration

strategies, Arroyo-Rodriguez et al. (2020) have concluded that

landscapes should contain at least 40% of forest cover to be

optimal for forest-dwelling species.

Forest degradation has been extensively monitored worldwide

using various remote sensing methods (Gao et al., 2020). The

verified Global Forest Change dataset (Galiatsatos et al., 2020)

indicates that Africa, South Asia, and South America remain hot

spots. Conversely, the situation in temperate and boreal forests

appears optimistic regarding the deforestation problem. However,

despite national and regional achievements, global deforestation

remains challenging. It is worth noting that even well-established

remote sensing monitoring in North Europe may occasionally lead

to confusion (Ceccherini et al., 2020; Wernick et al., 2021). In

addition to deforestation, other less apparent issues associated with

forest dynamics require attention. One such challenge is the limited

availability of high-resolution data beneath tree canopies, which

hampers the accurate assessment of understory vegetation and

small-scale structural attributes (Lefsky et al., 2002; Hyyppä et al.,

2020). However, this gap can be addressed through modern

solutions in robotics and computation.

Another significant environmental monitoring challenge is

assessing forests’ role in the global carbon cycle (Pugh et al.,

2019). The lack of monitoring data and well-designed models

makes it difficult to implement practical policy actions (Mitchard,

2018). Global forest carbon mapping efforts by (Harris et al., 2021)

have highlighted the challenge of consistently evaluating mitigation

performance across different scales due to the need for standardized

data and the utilization of diverse methods and assumptions in

worldwide forest carbon monitoring systems (Petrokofsky et al.,
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2011; Huang et al., 2019; Zhou et al., 2021). The global assessment

of the potential of regrowing natural forests to capture additional

carbon has encountered issues with data availability and quality,

particularly regarding under-crown data (Cook-Patton et al., 2020).

The recently recognized complex thermal insulator functions of

forests further emphasize the significance of undercanopy

measurements (De Frenne et al., 2019).

In addition to the complex forest dynamics questions, concrete

factors are strongly considered in the forest monitoring context.

Among them, forest fires are one of the main exceptional factors

(Boer et al., 2020). Insect pests are another remarkable concrete

factor affecting forest dynamics (Jactel et al., 2019). They are

expected to exhibit positive responses to climate change with a

shorter generation time, higher fecundity, and survival, leading to

increased range expansion and outbreaks. Another aspect of forest

insect research is conservation. There is a significant need for more

systematic insect monitoring techniques, which makes it hard to

respond to the pest challenge effectively (Noskov et al., 2021b).

Automatic solutions based on sensor boxes and unmanned

vehicles are attracting significant interest recently due to advances

in open-source technology supplementing traditional forest

monitoring methods (Friess et al., 2019). We would like to draw

special attention to the following critical gaps in forest monitoring:

first, shortage in effective open-source prototypes of autonomous

sensor boxes for static measurements and, second, unmanned

vehicle utilization restrictions in challenging forest environments

for mobile measurements.

Concerning the first critical gap, forest monitoring with sensor

boxes faces challenges, including limited standardization,

interoperability, and data quality control (Barrenetxea et al.,

2008). It is particularly crucial to have standardization and open-

source solutions to enable integration with newly emerging sensors.

Although integrating sensor boxes with remote sensing

technologies can enhance monitoring efforts, calibration,

maintenance, and data processing challenges persist (Nijland

et al., 2014). Addressing these gaps requires interdisciplinary

collaboration, standardization efforts, and advancements in data

analytics. Establishing protocols for data sharing, improving sensor

calibration, and developing robust algorithms are essential steps in

harnessing the full potential of sensor boxes. By overcoming these

challenges, sensor boxes can enhance our understanding of forest

ecosystems and support adaptive forest management.

Regarding the second critical gap, practitioners consider two types

of vehicles: aerial and ground. Unmanned aerial vehicles (UAVs)

equipped with lidar or hyperspectral sensors enable the collection of

high-accuracy data in complex forest environments (Wallace et al.,

2012). Advanced algorithms and machine learning techniques can

computationally process the large-scale datasets obtained from these

technologies, facilitating precise characterization of forest attributes

(Vandendaele et al., 2021). Although UAVs have gained prominence in

forest health monitoring, there is a timely need for ground-based

vehicle studies to complement existing techniques. Ground vehicles

equipped with sensors, such as lidar or cameras, can provide fine-scale

measurements of forest attributes and capture information from close

proximity to the forest floor (Nasiri et al., 2021). This approach allows

for the detailed monitoring of understory vegetation, root systems, and
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other ground-level features, contributing to a more comprehensive

understanding of forest health and dynamics (Calders et al., 2015).

Unmanned ground vehicle (UGV) studies can provide valuable data

for the calibration and validation of remote sensing techniques,

enhancing the accuracy and reliability of monitoring efforts and

offering previously unavailable fine-grained information on

understory, forest floor, and forest soil processes (Ghamry et al.,

2016; Anastasiou et al., 2023).

Whereas UAV-based solutions have reached a well-established

and developed level, UGV-based efforts are still on a lower but

rapidly advancing trajectory, presenting multiple unsolved

challenges. One of the main challenges is achieving high-accuracy

device localization and georeferencing for data collection. The

presence of trees causes the multi-path effect in the Global

Navigation Satellite System (GNSS) signal, making it challenging

to conduct high-accuracy measurements below tree canopies, even

with a highly elevated antenna (Brach and Zasada, 2014). In our

recent field experience in the forest, we have only achieved GNSS’s

FLOAT mode, which provides accuracy on the meter scale, as

opposed to the FIXED mode, which enables a centimeter-level

accuracy. Other research studies have confirmed this limitation,

with studies reporting the best accuracy of 10–15 m (Feng et al.,

2021). Accurate UGV positioning is particularly crucial for

collecting time-series data. Recent fieldwork has demonstrated the

potential to obtain accurate forest attribute information with

undercanopy lidar (Hyyppä et al., 2020). In a related study, Qian

et al. (2017) achieved a 6-cm accuracy in the XY coordinates

[compared to meters in earlier works (Hussein et al., 2013)] by

combining GNSS, inertial navigation systems (INSs), and

simultaneous localization and mapping (SLAM) calculations.

However, the obtained coordinate accuracy varies and is

dependent on forest conditions. In addition, the ability to obtain

accurate Z coordinates remains uncertain.

Furthermore, the combination of GNSS/INS + SLAM has not

yet reached a production level, making it challenging for non-

GNSS/INS/SLAM professionals to adopt this approach for broad

research. Therefore, we have reservations about the practical

feasibility of this approach for our current research.

The present article proposes a novel forest monitoring concept

to achieve the highest possible level of detail required for adequate

progress in monitoring forest dynamics, carbon cycle–related

processes, and specific aspects of forest functionality such as pest

management and animal conservation. The widespread adoption of

these proposed ideas will significantly contribute to systematic

knowledge of forest dynamics. This concept facilitates the

collection of fine-grained, high-accuracy time-series data related

to forest structure, understory vegetation, forest floor, and animal

activity, enabling a comprehensive research framework for large-

scale forest monitoring.

First, we suggest the use of a typical sensor box platform. By

leveraging popular open-source standard solutions, we can connect

a wide range of interchangeable sensors and adopt well-established

data acquisition and processing approaches. In addition to

commonly used sensors like microphones and cameras, we

propose the integration of an experimental radar system, building

upon the ideas described in previous works (Noskov et al., 2021a;
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Noskov et al., 2021b; Noskov, 2022). This radar system allows for

continuously collecting high–temporal resolution and compact

aggregated data on forest animals, mainly insects. The

simultaneous use of cameras and microphones helps to reduce

data uncertainty. We demonstrate an autonomous sensor box, a

mechanism for data flow integration based on epoch time stamps,

and provide samples of collected data to validate the effectiveness of

the proposed solution and its potential for expansion into

other domains.

Second, we introduce an innovative UGV concept. The

developed multi-sensor rover utilizes the aforementioned

common sensor platform and data flow integration mechanism.

Most notably, we propose a novel method for achieving a

centimeter-level accuracy in coordinate detection under forest

canopies. In contrast to previous works, our method is based on

well-established survey approaches. It involves deploying a

reference network within the research area and using a robotic

total station to track a prism attached to the rover. This visually

tracked rover can potentially provide practitioners with centimeter-

accuracy data from multiple sensors.

Finally, we point out that the combination of sensor boxes

(primarily for static observations of animal behavior and other

high-dynamic or localized forest processes) and unmanned vehicles

(mainly for mobile mapping of relatively slow, wide-space

phenological conditions) can serve as the foundation for

systematic undercanopy forest monitoring. This integrated

approach, aiming for very high temporal and spatial accuracy,

can also serve as a valuable source of information required to

interpret and refine above-crown data obtained from UAVs,

satellites, and airborne remote sensing platforms.
2 Elements and design

2.1 Overall concept

Figure 1 illustrates the proposed research schema, which

consists of three initial tasks, three deployed and verified

platforms, and five partially achieved products. Together, these

elements form the research target of attaining systematic knowledge

about forest dynamics. The arrows in the figure depict the

connections between the conducted and planned research

elements. The concept is based on the idea that stationary sensor

boxes are utilized for animal monitoring, whereas mobile devices

such as UGVs and UAVs are employed for phenology monitoring.

Although stationary sensor boxes can provide some information

about phenology, their primary focus is animal surveillance.

Similarly, although a UGV can collect some data related to

animals, its main emphasis is on phenology. For this paper, we

do not consider UAVs, but they are scheduled for future work. The

following are the initial tasks of forest monitoring, which are further

expanded upon:
• animal surveillance;

• mapping of the forest floor, vegetation, and canopy;

• high-accuracy coordinate detection under the canopy.
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As previously mentioned, animal surveillance relies on

stationary sensor boxes equipped with various sensors to detect

forest animals, including bats, mammals of all sizes, birds, and

invertebrates. Cameras, microphones, and radars are commonly

used sensors for this purpose. Cameras are typically configured for

motion detection and often require attracting animals to a specific

location. Microphones can capture the soundscape, making them

particularly effective for ornithology studies. Compact and energy-

efficient cameras and microphones are widely used in stationary

sensor boxes. However, using cameras and microphones alone has

limitations and requires supplementation with other sensors.

Recently available radar units show great potential for animal

surveillance in autonomous sensor boxes, especially in forest

environments. Unlike cameras, radar does not rely on visual

contact with the target. It is suitable for nocturnal observations or

when targets are hidden by obstacles such as fog or dense vegetation

(Taravati, 2018). Compact radar units are emerging in this field and

offer promising opportunities for animal surveillance in stationary

sensor boxes.

This article presents an autonomous sensor box where radar is a

key component. Here, we continue the previous works [Noskov et al.

(2021b); especially, Noskov (2021)]. Currently, the radar box aims

mainly at nocturnal insects. We also use a camera and microphone,

extending the use cases of the sensor box. Prospectively, it can cover a

broader range of forest research topics including animal behavior and

vegetation/decomposition processes.

A core component of this work is dedicated to forest floor,

vegetation, and canopy mapping. We propose a novel solution for

conducting systematic research under the forest canopy, focusing

on achieving a centimeter-level accuracy. To achieve this, we have

developed a multi-sensor rover. Because accurate coordinate

detection using real-time kinematic positioning (RTK) GNSS is

challenging in forest environments, we propose using an attached

prism tracked by a total station that records the prism’s coordinates

at short intervals. It is important to note that high-accuracy

monitoring beneath the canopy in the forest is currently tricky.

However, our proposed approach with a visually tracked rover

overcomes this limitation.

For high-accuracy coordinate detection under the canopy, a

network of surveyed reference points (reference network) is

required to orient the total station. We have transferred the exact

coordinates from nearby meadows, where several benchmarks were

measured with a sub-centimeter accuracy using RTK GNSS. The
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oriented total station allows for tracking the rover’s movement and

recording its coordinates with approximately a centimeter-level

accuracy. Each recorded information, such as photos, point cloud

data, audio, and temperature measurements, is geotagged. This

means that each photo, for example, is attributed with the XYZ

coordinates of the closest recorded point in time from the

total station.

All elements of the proposed forest monitoring infrastructure,

as shown in Figure 1, are interconnected and converge, intending to

increase systematic knowledge about forest dynamics. The sensor

box contributes to this knowledge by providing animal monitoring

data and serving as a common sensor platform for the rover. The

RTK GNSS and total station element is utilized to establish a

reference network, essential for measuring trees and orienting the

total station to track the rover. The rover collects diverse data

related to vegetation phenology and the forest floor, further

contributing to our understanding of forest dynamics. Accurate

three-dimensional (3D) tree models with semantic information

have inherent value, and they are also used for data interpretation

by the rover and future adjustments of UAV point cloud data.

In the following subsections, we will provide more details on the

elements and design of the developing forest monitoring infrastructure.
2.2 Compact insect radar box

Our extensive review of insect monitoring approaches, focusing

on radar techniques, has highlighted the potential of using novel

radar solutions for entomology (Noskov et al., 2021b). The review

has revealed a significant gap in the availability of compact short-

range radar applications for insect research. Although numerous

camera-based solutions exist, little attention has been given to

compact radar systems. We have proposed using a frequency-

modulated continuous-wave (FMCW) compact radar and

identified the need for innovative data processing and

interpretation methods tailored explicitly for compact radar

systems. In addition, we have demonstrated the initial setup of

the radar on a rover platform. However, because of the radar unit’s

design for larger targets, detecting clear insect signals has proven

challenging and unstable. To address this, we have proposed and

demonstrated a radar setup integrated with a light trap, which

allows us to collect ground-truth information and improve the

interpretation of the highly uncertain FMCW radar data.
FIGURE 1

Research infrastructure. Connections of tasks, products, and the research target.
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In our study (Noskov et al., 2021a), we conducted a series of

laboratory experiments to investigate how to extract insect signals

from the noisy radar data. As a solution, we proposed a novel metric

called the Sum of Sequential Absolute Magnitude Differences

(SSAMD), which is calculated as follows:

SSAMD  = o
tmax

t=1
o
cmax

c=1
o
dmax

d=0

mt,c,d −mt − 1, c, d
�
�

�
� (1)

where t is a time moment or a file number ordered by time; tmax

depends on a time interval defined by the user (we use a 1-s interval,

so, tmax = 1 s/50 ms = 20. c is a channel number (in our case c∈ {1, 2,

3, 4}, i.e., all available channels and cmax = 4). d is a distance (an

index of a magnitude in a list of magnitudes ordered by the

distance); in our case, dmax = 42. m is a magnitude value. One

can mention that an absolute difference between the current and

previous moment is calculated. SSAMD is simply a sum of all

absolute differences.

The SSAMD metric allows for extracting insect presence and

biomass information from highly uncertain radar data. This has

been validated through multiple laboratory experiments. In
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addition, several experiments have been conducted using a light

diffuser to demonstrate the radar’s capability when integrated with a

light trap. The experiments have determined that the insect signal

falls within the range of 500 to 3,000 dBm, with lower values

indicating the absence of insect targets and higher values likely

caused by other sources, such as larger animals.

We have developed an autonomous, compact, and energy-

efficient device that integrates a radar unit, a light trap, and

several other sensors for fieldwork. Figure 2 illustrates the

assembled compact sensor box, the field workflow, a photo of the

sensor box taken in the forest, and sample photos captured by the

light trap camera. The sensor box measures 40 cm × 30 cm × 25 cm,

and the camera holder has a length of 108 cm. The main enclosure

is a standard domestic plastic box with a lid with a specially created

hole to accommodate the radar unit. Similar to our previous work,

we utilize a 60-GHz radar; comprehensive technical details can be

found in our previous publication (Noskov et al., 2021a).

Figure 2A depicts the components of the designed compact

insect radar box. The heaviest component is the 12-V car battery;

most of the energy is consumed by the ultraviolet (UV) light-
FIGURE 2

Insect radar. (A) Sensor box’s schema: R, radar; M, managing block (consisting of RaspberryPi, cables, and other components); C, camera with an
internal microphone; and L, light trap (ultraviolet LED, reflecting aluminum sheet and a plastic light diffuser); (B) field workflow; (C) operating the
insect radar box in the forest (the camera is pointed at the light trap); and (D) examples of light trap’s photos taken on 22 August 2022 (from 23:00
to 23:20).
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emitting diode (LED). An aluminum sheet reflects the light

returning from the bottom of the light diffuser, thereby

improving the light trap’s performance, which is equipped with a

single LED.

The management block includes a Raspberry Pi, radar data

cables, power connections, battery connections, and other

miscellaneous wires. The device is powered by a standard car

battery using black and red wires with regular clamps. The radar

data cables consist of a standard Ethernet cable connected to a radar

data cable that runs to the radar unit attached to the lid. The

miscellaneous cables include wires for LED management, a polarity

protection circuit, an LED driver, and other necessary connections.

The polarity protection circuit ensures the radar unit is not

damaged due to incorrect battery polarity.

The Microsoft LifeCam HD-3000 web camera, which features a

usage indicator (blue light) and an internal microphone, is used in

the setup. An Real-Time-Clock (RTC) circuit ensures accurate

timekeeping. Two wires connected to pins enable the Raspberry

Pi to control the on/off operation of the LED through the DC-DC

Constant Current Buck-Boost LED driver. The device is powered by

a USB-C cable connected to a USB 12-V–to–5-V converter in the

power wire bundle.

In addition, the Raspberry Pi is programmed to shut down the

device at a specific time in the morning (usually 09:00) to prevent

unnecessary battery discharge. Therefore, the battery must be

charged or replaced almost daily, which requires manual

intervention. A person needs to retrieve the device in the

morning, charge it during the day, upload the collected data, free

up disk space if necessary, bring it back to the forest in the evening,

and start the radar box. This workflow (also depicted in Figure 2B)

typically requires at least 1 h per day (approximately half an hour in

the morning and half an hour in the evening). Solar panels can be

utilized in the future, eliminating the need for manual intervention

in charging the battery to simplify the workflow.
2.3 Multi-sensor visually tracked rover

Whereas drones remain very popular in forest monitoring,

rovers show high prospects due to several advantages. Using

rovers is beneficial because it enables us to apply multiple sensors
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and conduct accurate low-viewpoint large-scale forest mapping. In

addition, an acquired rover can carry relatively heavy sensors (such

as the discussed insect radar box) and has good maneuverability in

the forest.

We use a Jackal UGV produced by Clearpath Robotics (Dataset,

2023b). Figure 3 introduces the proposed rover design. Notice that

the rover’s top black lid size in the view from above is 48 cm × 32

cm. Table 1 lists the installed sensors. Our rover setup conceptually

consists of two main blocks: navigational and thematic. Both have

separate computers with connected sensors. All sensors are attached

to the top lid of the rover (see Figure 3A).

2.3.1 Navigational sensors
The navigational block of the rover is responsible for performing

SLAM tasks, which involve tracking the rover’s location and creating

a map of the environment. This block consists of the rover’s internal

computer and two connected sensors: RpLidar, and infrared and

Red-Green-Blue (RGB) global shutter cameras.

The RpLidar S1 (Dataset, 2023c) is a portable time-of-flight

laser range scanner. It utilizes time-of-flight ranging technology,

which ensures that the ranging resolution remains consistent

regardless of the distance. The device has a range radius of 40 m

and is designed to minimize interference from solid daylight. The

RpLidar S1 offers stable ranging and high-resolution mapping

performance in outdoor environments.

The front camera of the rover is the Intel RealSense Depth

Camera D435 (Dataset, 2023a). This camera is known for having

the most expansive field of view among all Intel RealSense cameras.

It also features a global shutter on the depth sensor, making it

suitable for fast-moving applications. The D435 is a stereo solution

that provides high-quality depth information for various

applications. Its wide field of view is particularly advantageous in

robotics, augmented reality, virtual reality, and other scenarios

where capturing a large portion of the scene is crucial. The

camera has a range of up to 10 m, making it well-suited for forest

monitoring applications.

The RpLidar and the front camera enable prospective

autonomous navigation in the forest. However, because the rover

is operated manually using a wireless controller, these sensors are

primarily utilized for general mapping. This includes mapping

trees, obstacles, vegetation, understory, and the forest floor.
FIGURE 3

Rover’s schema (A). Navigational block: P, 360° prism; L, RpLidar; and F, front camera (RGB global shutter cameras). Thematic block: S, sky-oriented
camera with a flash light and an attached microphone; R, low-range radar; and G, ground-oriented sensors (No Infrared filter (NoIR) camera,
infrared thermometer, and thermal camera). Rover’s field workflow (B).
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2.3.2 Thematic mapping sensors
The thematic mapping sensors consist of sky- and ground-

oriented sensors connected to the Raspberry Pi.

As described earlier, the radar unit has been initially designed for

insect monitoring (Noskov et al., 2021a). However, in this work, we

have repurposed it for phenology monitoring, specifically observing

tree crowns. As the fieldwork took place during the leaf-fall season

(October to November), we aimed to capture the variable radar

reflections resulting from the changing conditions of the tree crowns.

We expect stronger radar signals in the earlier measurements and

weaker signals in the later measurements. The detailed results of this

field campaign will be published in future works.

The sky-oriented camera, HBV-1825 FF Camera Module,

provides a high-definition image of the tree crowns. It enables us

to observe detailed crown changes throughout the leaf-fall period.

In addition, this camera has the potential to capture nocturnal

species, as discussed in (Noskov et al., 2021b).

The internal microphone records the measurement conditions,

such as the rover’s movement and any potential noise impact (e.g.,

road noise). However, its primary purpose is separate from the

thematic mapping tasks.

Moving on to the ground-oriented sensors, we have the Raspberry

Pi NoIR Infrared CameraModule 8MP v2.1 (Dataset, 2022), the Optris

CT Infrared-Thermometer (Dataset, 2021), and the MLX90640 IR

Array Thermal Imaging Camera (Shaffner, 2021). These sensors are

focused on the forest floor and ground-level observations.

The infrared camera captures visible patterns of the forest floor,

including fallen leaves, grass, moss, and rotting wood. The accurate

positioning data obtained from the rover will be valuable for

advanced research on forest soils, microhabitats, and forest floor

microbiomes. The infrared thermometer measures the temperature

of the observed ground patch, providing additional information for

analysis. The NoIR infrared camera could be used for observing

nocturnal processes on the forest floor.

Finally, the thermal imaging camera produces thermal maps of

larger ground patches. It aims at a point on the ground located 1 m

behind the rover, allowing for the creation of accurate thermal

forest time-series maps. By calculating the average temperature, we

can collect temperature point data, where each point represents a

wide area behind the rover.
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These thematic sensors are positioned along the symmetry axis

of the rover. The RealSense Depth Camera is situated at 6 cm from

the front of the rover, followed by the HBV-1825 FF Camera at 11

cm, RpLidar at 19 cm, radar at 31 cm, and the ground-oriented

sensors at 46 cm from the ground. These sensors record valuable

multi-source data, which require a novel merging and positioning

approach that we will discuss in the following sections.

Given the challenges of the forest environment, such as lack of

GNSS signal, poor GSM coverage, obstacles, and low accessibility,

we propose three primary principles for UGV high-detail multi-

sensor monitoring in this article: autonomy, time-stamp

synchronization, and visual tracking. These principles aim to

address the specific problems of systematic monitoring in

forest environments.

2.3.3 Autonomy and time-stamp synchronization
We also adopt the design solutions introduced for the insect

radar box for the UGV. Moreover, we have designed the rover using

discussed autonomous monitoring approach. The rover drives

manually with a wireless controller. However, all sensors are

preconfigured in lab conditions and are not intended (although it

is possible if needed) to be manipulated in the field. They all start

recording data automatically with the start of the rover and shut

down when it is powered off.

We use three unconnected computers (Raspberry Pi, the rover’s

internal computer, and the total station’s tablet) to collect various

data sourced from multiple sensors; these data are merged using

exact time stamps (epoch seconds). Before starting field

measurements, we ensure that the clocks of all computers are

synchronized perfectly. In our case, we accept when the clock

deviation does not exceed one second. All data slices collected by

sensors are addressed with an epoch-seconds time stamp. This

makes it possible to merge data residing in the different computers

correctly afterward.

2.3.4 Prism for visual tracking
In our forest test bed, obtaining a satisfactory signal accuracy is

only possible in meadows and specific segments of roads that cross

the forest. The accuracy achieved in our research is measured in

meters or tens of meters and renders the collected data unsuitable
TABLE 1 Rover’s sensors.

ID Name Specification Aim

Navigational (SLAM)

L RpLidar 360°, 2D Localization and general mapping

F RGB global shutter camera 70°, 1,920 × 1,080 pixels Navigation, forest floor, and understory

Thematic

S RGB camera 60°, 5 MP Tree crown phenology

R Radar 60 GHz, see (Noskov et al., 2021a) for details. Insects, small flying animals, and tree crowns

G1 NoIR camera 60°, UV: 1,000 nm, 8 MP Forest floor

G2 Thermal camera 110°, 32 × 24 pixels Forest floor temperature

G3 IR thermometer 8–14 μm Forest floor temperature
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for high-detail time-series analysis. To overcome this limitation, we

have adopted visual tracking using a robotic total station and a

prism installed on the rover, enabling a centimeter-level

spatial accuracy.

The visual tracking process requires an oriented robotic total

station and a 360° prism attached to the rover. Robotic total stations

allow for automatic prism tracking and automatic recording of

coordinates at a specified time or distance intervals. The

environmental illumination conditions do not affect the ability to

track the rover; the performance is more or less the same under dark

and light conditions.

The rover is equipped with a prism holder on the same pole as

the thematic mapping sensors, where a 360° prism can be securely

fixed. Using the robotic total station, this prism enables automatic

tracking of the rover’s coordinates at very short intervals, with an

accuracy of approximately 2 cm. Figure 4 illustrates the fully

equipped rover, ready for measurements, with the prism mounted

on the holder.

The total station is oriented using a dense reference network

established in the key area to ensure accurate data positioning.

Correct orientation of the total station is crucial for achieving

accurate data collection. The following section will provide

further details on this topic.
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3 Deployment and demonstration

3.1 Study area

The study area is located approximately 7 km North-West of

Marburg in Hesse, Germany, near the Caldern district. The area is

characterized by a typical German forest composition, with the

following tree species distribution: 60% Fagus sylvatica (European

beech), 30% Quercus sp. (oak), and 10% Carpinus betulus

(European hornbeam) and other species. The total area covers

approximately 20 hectares.

Within this study area, we focused on a smaller, more detailed

investigation in the central part. This area spans approximately 5

hectares and encompasses a range of elevation differences, from 256

m above sea level (AMSL) to 275 m AMSL. To capture

comprehensive data, we conducted tree measurements using a

total station and collected data using a multi-sensor rover. The

area of interest is highlighted in Figure 5.

In addition, regular UAV flights were conducted, capturing

RGB point clouds of the entire study area. These aerial data provide

an overview of the forest structure and composition.
3.2 Insect radar sensor box

The sensor box has been operational during the warm

seasons of 2021 and 2022, specifically during no-rain nights

from 20:00 to 09:00, within the vicinity of the automatic weather

station in the forest area. This location allows for a comparison

of insect radar data with the comprehensive meteorological data

collected by the station, as weather conditions significantly

impact insect flight behavior. The collected data span long

time series, including light trap photos taken at a 5-s interval

and radar frequency data captured at a 0.02-s interval, which is

used for calculating the SSAMD values over a 1-s interval. These

time series enable the calculation of insect presence and biomass
FIGURE 4

Operating the rover.
FIGURE 5

Research area map. Coordinate system: EPSG 32632 (WGS 84/UTM
Zone 32N). Satellite imagery of Bing maps.
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information, with ground-truth validation from the light

trap photos.

Table 2 provides a summary of the data collected in 2021 and

2022, comprising a total of 66 observation nights (35 in 2021 and 31

in 2022). Each night’s dataset includes radar frequency data and

light trap photos. Starting from August 2022, the device also records

audio from the camera’s internal microphone, primarily to filter out

non-insect signals and noise from larger animals (e.g., badgers) or

precipitation effects.

Figure 6 presents an example of the measured SSAMD values over

a 20-min period. In our previous work (Noskov et al., 2021a), we

determined that insect targets typically fall within the SSAMD interval

of 500 to 3,000, with values above 3,000 considered suspicious and

likely caused by larger targets (e.g., bats). In the provided example, most

of the SSAMD values indicate insect presence. However, there are three

instances where the SSAMD exceeds 3,000, suggesting the potential

presence of larger targets like bats. As the light trap attracts various

insects, it also attracts bats. It is essential to carefully examine peaks

above 3,000 to determine whether they are due to bats or other larger

targets. In addition, the impact of dew, fog, and rain on the radar signal

needs further investigation, which can be facilitated by the weather

station’s data for filtering out interrupted data.

Figure 2D illustrates three light trap photos. The first two

subfigures from left to right show several insects and correspond

to an SSAMD value of approximately 1,000. The last subfigure on

the right is associated with an SSAMD value slightly below 500,

indicating no insects. Initially, we planned to automatically

calculate the number of insects within the radar radiation zone

surrounding the light traps’ symmetry axis. However, fieldwork

observations have revealed insect behavior’s complexity around the

light trap. Insects are often in constant motion, flying and crawling

around, making it challenging to count them accurately based on

the light trap photos alone.

Furthermore, many insects are not visible to the camera but can

be detected by the radar. For example, we frequently observed
Frontiers in Ecology and Evolution 09
dynamic flight patterns of hornets and bats that were not captured

by the camera but detected by the radar. In situations where

multiple insects were attracted to the light trap and suddenly

disappeared, bats were likely responsible. Given these

complexities, we are exploring alternative approaches that involve

working with aggregated values of the number of insects in photos

and SSAMD values over a time interval (e.g., 1 h). This can help to

filter out unnecessary events and examine the correspondence

between aggregated measures (such as average or median) over

longer time intervals.

In our previous work (Noskov et al., 2021b), we proposed the

concept of a mobile radar mounted on a rover. We showed a

mockup setup, demonstrating the feasibility of using a radar unit

installed on a rover. Furthermore, we discuss using UGV equipped

with radar and other sensors to collect high-resolution spatial

forest data.
3.3 Forest reference network for
high-accuracy sensor positioning
and tree measurements

To ensure accurate positioning in the forest and enable various

applications such as UAV time-series adjustment, tree monitoring,

and sensor positioning, we deployed a dense reference network in a

key forest area covering approximately 5 hectares. This area is

already covered by regular UAV RGB point cloud time-series data

collected by our colleagues in previous years. The purpose of the

dense reference network is to improve the absolute accuracy of the

georeferenced data by using equably distributed 3D landmarks,

primarily trees.

To establish the reference network, we surveyed during winter

when the leaves and vegetation in the forest are minimal, making

measurements easier. We began by measuring several basis

benchmarks in meadows with excellent GNSS signals. These

benchmarks served as reference points with a sub-centimeter

absolute accuracy for the XYZ coordinates. In addition, we placed

benchmarks within the forest area between the meadows. The winter

survey was advantageous as the prism used for measurements

remained visible even through dense branches of low trees. The

forest benchmarks referenced to the basis benchmarks achieved an

accuracy of up to 2 cm, whereas benchmarks defined with other forest

benchmarks had an accuracy of approximately 20 cm. Although the

20-cm accuracy is sufficient for UAV data refinement and tree

monitoring, we aimed for a centimeter accuracy for sensor (rover)

positioning. Consequently, the rover measurements were conducted

using benchmarks with the 2-cm accuracy.

All trees in the central part of the key area, totaling 504 trees,

were measured using the total station. To measure a tree, the total

station was positioned in a location with good visibility of the target

tree and access to at least three benchmarks. It was then oriented

using the accessible benchmarks, and measurements were taken in

reflectorless mode. Two approaches were used for tree

measurements: brief and detailed. In the brief mode, a few points

along the tree stem were measured, typically including the highest

point near the beginning of the crown. This is because the crown
TABLE 2 Overview of insect radar data collected in 2021 and 2022.

Year Month Number of Observed Nights

2021 June 9

July 9

August 2

September 11

October 2

November 2

Yearly: 35

2022 August 14

September 13

October 4

Yearly: 31

Overall: 66
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can obstruct the direct measurement of the target tree. A detailed

mode was employed for a few trees, involving measurements of

multiple points along the stem, including all major branches. In

some cases, the laser reached the very tip of the branches, allowing

for the construction of accurate and detailed 3D tree models.

Figure 7 provides an example of a 3D tree model created from

the measured points.

The accurate data from the tree measurements are crucial for

refining the UAV and multi-sensor rover data. These tree

measurements are also essential for interpreting the rover data, as

trees are the main objects of interest in the research area. Figure 8

provides an overview of the survey results, including the locations of

the original six basis benchmarks in the two meadows, the 28 forest
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benchmarks distributed within the forest area between the

meadows, and the 504 measured trees. These data points

collectively contribute to the comprehensive understanding and

analysis of the forest ecosystem.
3.4 Visually tracked rover workflow
and results

The workflow (also earlier sketched in Figure 3B) for

conducting fieldwork with the visually tracked rover involves

several steps. A single person can handle the equipment and

perform the necessary tasks. Here is an overview of the workflow.
FIGURE 6

Example of SSAMD measurements on 22 August 2022. The SSAMD insect detection interval is depicted by red lines (500 and 3,000).
FIGURE 7

3D model of a tree measured in the detailed mode. Green points, the stem; blue points, the main branches.
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3.4.1 Bring the equipment close to the
measurement area

The equipment, including the rover, total station, and other

necessary tools, is transported near the measurement area.

3.4.2 Install the prism
Attach it to a benchmark and secure it with a pole tripod. This

serves as the target for the total station’s tracking.

3.4.3 Setup the total station
Position and orient the total station using accessible

benchmarks. Three to six benchmarks are typically used for

orientation, ensuring a maximum accuracy of the rover data.

3.4.4 Measure benchmarks
Use the total station to measure the benchmark coordinates,

ensuring accurate reference points for positioning.

3.4.5 Prepare the rover
Attach the prism to the rover, ensure time synchronization, and

point the total station toward the prism on the rover.

3.4.6 Start tracking mode
Activate the tracking mode on the total station, which records

points at regular intervals as the prism moves. A distance interval of

20 cm is typically used to capture the rover’s trajectory.

3.4.7 Drive the rover:
Use a wireless controller to maneuver the rover within the range

of the total station. The rover collects data as it moves, capturing

detailed information about the forest floor, vegetation, and canopy.

During the fieldwork, the rover’s position coordinates are

estimated to have an accuracy of about 2 cm for each coordinate.
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The total station tracks the prism’s movement, allowing for precise

positioning of the rover and ensuring accurate data collection.

The setup and workflow for the visually tracked rover are

illustrated in Figure 9, showcasing the process of pointing the

total station toward the prism on the rover. The rover can be

driven up to a maximum range of approximately 50 m from the

total station, enabling extensive coverage of the measurement area.

Figure 4 depicts the rover prepared for measurements: It is

equipped with a prism, powered on, and connected to the wireless

controller. The constant blue light on top of the rover in the photo

indicates that it is connected and ready to be operated. As

previously mentioned, the rover automatically records all data

once turned on.

Regarding data collection, the navigation and thematic mapping

sensors employ different approaches. The navigation sensors utilize

the Robot Operating System (ROS) services to save data in the bag

format. Every 6 s, the rover computer initiates writing a new bag file

for 2 s. This process captures several RpLidar and front camera

frames, along with data from the rover’s internal sensors. On the

other hand, the thematic mapping sensors, similar to the insect

radar box, record sensor data continuously for the radar and

temperature sensors with a 0.02-s pause between data slices.

In addition, the cameras capture photos in a specific sequence.

First, the sky-oriented USB camera takes a photo, followed by the

ground-oriented NoIR camera. There is then a 2-s break before the

process is repeated. The microphone continuously records audio,

providing additional information about the workflow. For example,

it can detect whether the rover has overturned, which has occurred

several times. In the future, the microphone could be used to record

bird songs to reconstruct the forest soundscape.

Each photo is time-stamped, allowing for georeferencing using

the accurate coordinates of points recorded at short distance

intervals from the total station. Prospective plans involve

classifying the captured photos using machine learning
FIGURE 8

Map of the installed benchmarks and measured trees. Coordinate system: EPSG 32632 (WGS 84/UTM Zone 32N).
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algorithms to generate high-detail maps of tree crowns and the

forest floor.

Figure 10 displays an example of a photo captured by the

ground-oriented NoIR camera. It is worth noting that these photos

are highly contaminated by infrared radiation. However, as shown

in the figure, post-processing techniques can be applied to refine the

photos and make them appear more natural. Using a NoIR camera

enables nocturnal observations with infrared lighting and the

potential for multispectral imaging, such as calculating vegetation

indices (Lopez-Ruiz et al., 2017). Although a removable infrared

filter can be equipped on the camera, it is not considered necessary

as the global shutter front camera captures high-quality, high-

resolution RGB photos of the ground surface.

Figure 11 illustrates the results obtained from the sample data of

sky-oriented sensors, providing an overview of the leaf-fall process.

The figure includes photos from the sky-oriented camera and radar

SSAMD data. The first subfigure represents a single date, whereas

the remaining subfigures represent four different moments in all

rounds: 29 October 2022, 15:36:39 (round 1); 3 November 2022,
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16:29:28 (round 2); 10 November 2022, 12:41:30 (round 3); and 30

December 2022, 12:22:34 (round 4).

Figure 11A presents an example of a photo captured by the sky-

oriented camera. This type of data provides valuable insights into

the condition of tree crowns. The left subfigure depicts the original

photo, whereas the right subfigure displays the result of a

classification process. The classification was performed using an

unsupervised algorithm, specifically a modified version of the k-

means algorithm (Shapiro and GRASS Development Team, 2017).

This algorithm classifies the pixels into three distinct groups: leaves,

tree stems and branches, and the sky. The classification results

enable the calculation of essential statistics for ecological

modeling purposes.

Figure 11B displays photos taken from specific points on the

corresponding dates. The photos were taken from points with

coordinates 477879.35/5632268.82, 477879.37/5632268.93,

477879.32/5632268.85, and 477879.41/5632268.84 (X/Y coordinates

in meters of the EPSG 32632 WGS 84 UTM Zone 32N coordinate

system). The photos were taken from nearly the same point, with a
FIGURE 9

Research area map. Coordinate system: EPSG 32632 (WGS 84 / UTM Zone 32N). Satellite imagery of Bing maps.
FIGURE 10

Ground-oriented NoIR camera photo example. Left: original image. Right: processed image with the reduced impact of the infrared radiation [as
recommended in (Thomas, 2021)].
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maximum coordinate difference of less than 12 cm. The following

subfigures show the processing results of these photos, including the

green band effect and corresponding histograms.

To represent the leaf-fall process using the photos, we propose a

simple metric called the “green band effect.” This metric is

calculated by subtracting the red and blue channel values from

the value of the green channel, with the pixel values ranging from 0

to 255. The green band effect reflects the degree of “greenness” in a

specific pixel. We applied unsupervised classification to distinguish

sky pixels, which were masked and excluded from subsequent

calculations. Figure 11C displays the results of the green band

effect calculation, followed by the respective histograms shown in
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Figure 11D. It is important to note that the same color table is used

for the green band effect imagery and the histograms.

Figure 11E presents the aggregated statistics of the green band

effect and radar’s SSAMD calculations. The green line represents the

dynamics of the average green band effect pixel values, whereas the

red line represents the SSAMD calculation. To obtain an aggregated

radar reflection of the tree crown conditions, a large time interval of

±30 min from the corresponding photo capture moment is used.

Using the median SSAMD allows for reducing the significant effects

of shaking, solid and wet obstacles, the operator’s body reflection,

and other factors. Both lines show a declining trend, confirming the

expected leaf-fall process reflection in the collected data. These
A

B

C

D

E

FIGURE 11

(A) Example of a photo taken by the sky-oriented camera: Left: original image. Right classification results: blue pixels, the sky (ca. 25%); black, tree
stems and branches (ca. 25%); and green, leaves (ca. 50%). (B) Sky-oriented photos taken from the same point (coordinate difference within 12 cm)
on the following dates (from left to right): 29 October, 3 November, 10 November, and 30 December. Red line indicates the same tree. (C) Green
band effect corresponding (see (B)) rasters. The meaning of colors is reflected in (D). (D) Corresponding (see (C)) histograms. X-axis, cell values in
tens; Y-axis, number of cells in hundreds. (E) Leaf-fall statistics. Average green band effect and median SSAMD. Leaf-fall observations with the sky-
oriented sensors.
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statistics demonstrate the promising potential of using the proposed

rover concept for measuring crown conditions.

Now, we will showcase examples of maps summarizing the work

conducted with the rover thus far, along with the collected temperature

information. Given that radar/lidar data and photos entail intensive

data processing, our focus has been on surface temperature data. This

data source is relatively straightforward and only necessitates a brief

workflow description and simple interpretation.

Figure 12 provides an overview of the routes taken by the rover.

The rover operator selected the routes intuitively to ensure maximum

efficiency in covering the area. The data collection was organized into

four rounds, each involving data collection from all planned stations.

The figure displays the time at which the points were measured. Each

round spanned 2 working days, and the points outlined on the second

day of each round are depicted in the figure. The time intervals are

represented by color, indicated in hours and minutes (HH : MM

format). The maps presented in the figure showcase the routes taken

during the four rounds: the first round on 28 and 29 October 2022;

the second round on 2 and 3 November 2022; the third round on 10

and 12 November 2022; and the fourth round on 29 and 30

December 2022. These maps illustrate the area covered by the

rover routes and the corresponding measurement times.

Figure 13 presents the surface temperature data recorded along

the rover routes. The temperature values displayed are the average
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pixel values captured by the thermal camera, measured in degrees

Celsius. The camera’s field of view covers a wide area, with the

center point located approximately 1 m behind the rover. In

contrast, the infrared thermometer represents a smaller spot on

the ground behind the rover, situated in the middle of the NoIR

ground-oriented camera’s field of view. The maps clearly illustrate

the process of autumn cooling in the forest. It is important to note

that the duration of data collection for one round spans 2 working

days. As a result, intraday temperature fluctuations significantly

impact the recorded data. To ensure accurate modeling of surface

temperatures, it is crucial to address and account for these

fluctuations in future work carefully.

The demonstrated time and temperature maps confirm the

potential to collect highly detailed forest data with a centimeter-

level accuracy. Geotagging of the photos taken by the sky- and

ground-oriented cameras has already been done using time stamps,

and most of the points shown in the time maps have corresponding

relevant photos. Adding geotags to the data slices in the ROS *.bag

files is also feasible, although it requires more advanced processing

due to the point nature of the data captured by these sensors.

Because the rover’s orientation influences point data, this can be

addressed by calculating the rover’s movement vectors using

consecutive position coordinates. Point coordinates can be easily

derived by considering the rover’s coordinates and orientation.
FIGURE 12

Rover field work routes: Time maps (epoch seconds) of measurements. Coordinate system: EPSG 32632 (WGS 84/UTM Zone 32N).
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Different control experiments will be necessary to estimate the

accuracy of RpLidar and front camera RGB point coordinates.

Furthermore, with knowledge of the rover’s orientation, it

becomes possible to convert photos taken by the sky- and

ground-oriented cameras into georeferenced imagery, enabling

the generation of time series with a centimeter-level accuracy.
4 Conclusions and future work

Recent progress in computers, robotics, and equipment has

enabled the development of devices and solutions for high-detail

automatic forest monitoring. The introduced devices share

common principles.
Fron
• They are based on popular open-source compact solutions

that enable connecting multiple easily replaceable sensors.

• We propose the autonomous time stamp–based concept for

data collecting. It allows the merging of data from various

sources.

• Extending the autonomous approach, the presented devices do

not requiremanipulations and configurations for data collecting.
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They gather data shortly after powering the devices, facilitating

fieldwork, and filtering out irrelevant data.

We have introduced these principles with the proposed compact

insect radar box. The conducted fieldwork has shown its effectiveness.

Despite the challenging field conditions, we have brought the earlier lab

achievements into the forest and collected relatively long and

meaningful time series using the radar, camera, and light trap. A

preliminary evaluation of these data confirms the effectiveness of the

proposed approach. In the next step, we will conduct a detailed analysis

of the collected data to research the low nocturnal insect flight. After

filtering out the raw data and extracting the insect information, we will

use the detailed weather station data to investigate the meteorological

factors of the low nocturnal insect flight.

Good progress with the insect radar box has inspired us to more

complex solutions. The prepared rover setup has inherited the

achievements of the insect radar box. The navigation and multiple

thematic sensors work autonomously and separately using time stamps

for data merging. The proof-of-concept fieldwork confirmed that our

UGV could conduct real measurements in real forest conditions.

Several rounds of measurements in the forest have allowed us to

collect a large dataset concerning the forest phenology, trees,

understory, and forest floor. Several camera sensors, a lidar, a radar,
FIGURE 13

Temperature maps. Coordinate system: EPSG 32632 (WGS 84/UTM Zone 32N).
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and two thermal sensors facilitate it. The collected data are immediately

geotagged using a time stamp. In addition, we have demonstrated the

ability to prepare accurate time-series maps. Prospectively, we want to

calculate the rover’s orientation for assigning accurate coordinates of

the point datasets. Furthermore, it will be likely possible to prepare

imagery using sky-, ground-, and front-oriented cameras.

The rover follows a novel principle of visual tracking. It means

that the rover is equipped with a prism, and an oriented robotic

total station follows this prism automatically and writes position

coordinates using a short distance interval. This is one of the earliest

attempts to apply a visual tracking rover for monitoring purposes.

In future work, we will present the results of the rover data

processing and discuss measured forest processes.

We ensure centimeter positioning with the dense reference

network in the forest. Several applications require this control

network. We have used the network for tree measuring and

sensor positioning. Furthermore, we need to increase the accuracy

of the distant benchmarks. Moreover, more trees should be

measured in the detailed mode.
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