
LETTER • OPEN ACCESS

Using GEDI as training data for an ongoing
mapping of landscape-scale dynamics of the plant
area index
To cite this article: Alice Ziegler et al 2023 Environ. Res. Lett. 18 075003

 

View the article online for updates and enhancements.

You may also like
Inferring alpha, beta, and gamma plant
diversity across biomes with GEDI
spaceborne lidar
C R Hakkenberg, J W Atkins, J F Brodie et
al.

-

The use of GEDI canopy structure for
explaining variation in tree species
richness in natural forests
Suzanne M Marselis, Petr Keil, Jonathan
M Chase et al.

-

GEDI launches a new era of biomass
inference from space
Ralph Dubayah, John Armston, Sean P
Healey et al.

-

This content was downloaded from IP address 137.248.1.31 on 18/01/2024 at 09:13

https://doi.org/10.1088/1748-9326/acde8f
/article/10.1088/2752-664X/acffcd
/article/10.1088/2752-664X/acffcd
/article/10.1088/2752-664X/acffcd
/article/10.1088/1748-9326/ac583f
/article/10.1088/1748-9326/ac583f
/article/10.1088/1748-9326/ac583f
/article/10.1088/1748-9326/ac8694
/article/10.1088/1748-9326/ac8694
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv_pRgqvK6aeBEXvYaS5F7F4gLVA67yKALpz7EEZwiCFCJ6vz4RLgxEP4GBsscglBDMqqr52tmCx4y7Gx993gHst1-DC0GLfJ5GJDT3yYhMNeiDWqjQ7a-gKdPtYpHTggSRIlRw6U5FRSjp0gIJgibXdd4raKHD3SmZkTgPrQbZDlyQuOlT3EXTidEuEYmI7qPlUGv_gKdBBnmZwBlXETiApXE8jPyMTPJIBi83VIJ3AJuK-qMxwk3XRh_5S3shOoORSGgQm4g4kvEB90ZFqus9G00dYwmL3axkKeU6u50fE_ACG78uSbR9_PzCbnQs&sai=AMfl-YSvUKSZ7k7f5A-DztIOoXimbbURMdqiL1L7ZC2c63JvzFFK6rheQ2APuu1IgwTwD9pcARNhTBzxVrB4F5c&sig=Cg0ArKJSzFQxtOuSHhZP&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Environ. Res. Lett. 18 (2023) 075003 https://doi.org/10.1088/1748-9326/acde8f

OPEN ACCESS

RECEIVED

17 March 2021

REVISED

12 June 2023

ACCEPTED FOR PUBLICATION

15 June 2023

PUBLISHED

27 June 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Using GEDI as training data for an ongoing mapping of
landscape-scale dynamics of the plant area index
Alice Ziegler1,∗, Johannes Heisig2, Marvin Ludwig3, Chris Reudenbach4, Hanna Meyer3

and Thomas Nauss1
1 Environmental Informatics, Faculty of Geography, University of Marburg, Deutschhausstraße 12, 35032 Marburg, Germany
2 Institute for Geoinformatics, University of Muenster, Heisenbergstraße 2, 48149 Münster, Germany
3 Institute Landscape Ecology, University of Muenster, Heisenbergstraße 2, 48149 Münster, Germany
4 Environmental Modeling, Faculty of Geography, University of Marburg, Deutschhausstraße 10, 35032 Marburg, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: alice.ziegler@geo.uni-marburg.de

Keywords: random forest, LAI, leaf area index, spatial modeling, maschine learning, environmental monitoring, phenology

Abstract
Leaf or plant area index (LAI, PAI) information is frequently used to describe vegetation structure
in environmental science. While field measurements are time-consuming and do not scale to
landscapes, model-based air- or space-borne remote-sensing methods have been used for many
years for area-wide monitoring. As of 2019, NASA’s Global Ecosystem Dynamics Investigation
(GEDI) mission delivers a point-based LAI product with 25 m footprints and periodical repetition.
This opens up new possibilities in integrating GEDI as frequently generated training samples with
high resolution (spectral) sensors. However, the foreseeable duration of the system installed on the
ISS is limited. In this study we want to test the potential of GEDI for regional comprehensive LAI
estimations throughout the year with a focus on its usability beyond the lifespan of the GEDI
mission. We study the landscape of Hesse, Germany, with its pronounced seasonal changes.
Assuming a relationship between GEDI’s PAI and Sentinel-1 and -2 data, we used a Random Forest
approach together with spatial variable selection to make predictions for new Sentinel scenes. The
model was trained with two years of GEDI PAI data and validated against a third year to provide a
robust and temporally independent model validation. This ensures the applicability of the
validation for years outside the training period, reaching a total RMSE of 1.12. Predictions for the
test year showed the expected seasonal and spatial patterns indicated by RMSE values ranging
between 0.75 and 1.44, depending on the land cover class. The overall prediction performance
shows good agreement with the test data set of the independent year which supports our
assumption that the usage of GEDI’s PAI beyond the mission lifespan is feasible for regional studies.

1. Introduction

Leaf area index (LAI) describes the structure of veget-
ation as the ratio of leaf area to ground area. LAI
is a highly relevant variable for interactions between
vegetation and atmosphere and is therefore one of the
proclaimedEssential ClimateVariables (GCOS 2021).
The plant area index (PAI) is defined as half of the
total plant area per unit ground surface. Compared to
the LAI, not only leaves, but all above-ground plant
components such as branches and trunks are con-
sidered. However, the PAI is closely related to the LAI
(Myneni et al 2001, Weiss et al 2007, Feret et al 2008,
Tang et al 2012). On a global scale, carbon flux and

evapotranspiration are massively influenced by LAI.
At the regional scale, in addition to its use in models
for carbon assessment e.g. (Tharammal et al 2019),
the importance of LAI is, for example, evident in run-
off models as it affects not only evapotranspiration
rates but also immediate water retention (Tesemma
et al 2015, Seo and Kim 2021, Huang et al 2022).
Since LAI varies greatly due to seasonality, the use of
a temporally as well as spatially (Huang et al 2022)
detailed data set could help improve dynamic model-
ing of such variables.

Various field methods and techniques exist for
the direct (destructive) measurement and the indir-
ect estimation or inverse modeling of the LAI (Zheng
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andMoskal 2009, Fang et al 2019). However, direct or
field-based methods in general are time-consuming
and therefore do not scale over time and space.
In contrast, air-borne light detection and ranging
(LiDAR) missions provide high-resolution wall-to-
wall data on vegetation structure at landscape level
and can be used for spatial mapping of LAI (Yan et al
2019, Wang and Fang 2020). Nonetheless, they have
limitations with respect to temporal repetition, which
usually does not allow for spatial time series that
are dense enough to derive phenological information.
Global satellite-based products, e.g. from MODIS
(Myneni et al 2001, Qiao et al 2019) or Sentinel-3
(Fuster et al 2020) fill this gap by providing regu-
lar repetitions, but the resolutions of typically 300 m
to 1 km are too coarse for small-scale differentiated
studies. To bridge this gap between current global
space-borne products and air-borne or field-based
missions, the utilization of higher resolution radar
and optical sensor satellites, e.g. from Sentinel-1 or
-2 data, is promising (Frampton et al 2013, Baghdadi
et al 2016, Pasqualotto et al 2019, Wang et al 2019,
Kganyago et al 2020, Luo et al 2020, Padalia et al
2020). Yet, this requires extensive ground truth data
and sophisticated modeling strategies, to link optical
and radar data to the response variable—the LAI.
This leads back to the point that field observations are
not sufficiently comprehensive in the spatial and tem-
poral domain and hence do not provide a sufficient
baseline for model training. Bringing LiDAR into
space with NASA’s new Global Ecosystem Dynamics
Investigation (GEDI) mission in December 2018 was
a big step towards almost global, space-borne, and
direct observation of vegetation structure which may
provide training and testing samples with a much
higher temporal repetition rate. Since January 2019
data sets are available and studies confirm the high
potential for ecosystem monitoring (Boucher et al
2020, Healey et al 2020, Marselis et al 2020, Di
Tommaso et al 2021, Kacic et al 2021, Potapov et al
2021, Rishmawi et al 2021, 2022, Wang et al 2022, Xi
et al 2022).

A Level 2B standard product of GEDI is the PAI
that is closely related to the LAI (see section 2.2.1).
Version 2 of the PAI product provides information
for footprints with 25 m in diameter with a spa-
cing of 60 m along track and 600 m across track
(Dubayah et al 2020). To derive wall-to-wall products
fromGEDI’s PAI, ESA’s Sentinel-1 and Sentinel-2 sys-
tems are promising candidates, as vegetation struc-
ture interferes with radar and optical wavelengths,
and since both sensors come with a high spatial
and temporal resolution. The radar observations of
Sentinel-1 capture vertical vegetation heterogeneity
similar to LiDARobservations (Bae et al 2019) and the
multi-spectral scanner observations of Sentinel-2 are
indicators for plant physiology, vegetation type and
biomass. Previous studies have shown ahigh potential

to estimate LAI from a combination of different spec-
tral bands using non-linear models (Verrelst et al
2015, Baghdadi et al 2016, Korhonen et al 2017,Wang
et al 2019, Jiang et al 2020, Luo et al 2020).

The aim of this study is to use the PAI as estim-
ated by GEDI to produce wall-to-wall maps by an
integration of Sentinel optical and radar data. The
integration of GEDI’s PAI and Sentinel-1/-2 data was
already proven to be feasible (Di Tommaso et al
2021, Kacic et al 2021, Rishmawi et al 2021, 2022).
However, previous studies that aimed at wall-to-wall
mapping of GEDI-derived variables used tempor-
ally aggregation, i.e. long-term means of such vari-
ables (Healey et al 2020, Potapov et al 2020, Chen
et al 2021, Dorado-Roda et al 2021, Khati et al 2021,
Verhelst et al 2021, Francini et al 2022, Shendryk
2022). This is certainly suitable for a detection of
large-scale spatial patterns, however, does not sup-
port seasonality and is hence not suitable for stud-
ies that require the consideration of phenology. The
potential of learning the seasonal dynamics by using
the different overpasses of the GEDI with the corres-
ponding optical and radar data from Sentinel is, to
our best knowledge, not analyzed yet. In this study
we test the potential of matching GEDI point data
to the temporally closest Sentinel scene in a machine
learning approach, with the aim to derive wall-to-
wall predictions of the PAI with a temporal resolu-
tion that is in accordance with the availability of the
frequent Sentinel scenes. Motivation for this study
comes from the limited duration of the GEDI mis-
sion onboard the ISS. Therefore it is of particular
importance to apply and test the trained model bey-
ond its training period. Hence, in this study, we use
two of the three years of GEDI data to train a model
and we validate the performance with the remaining
year. The German state Hesse was selected as a study
area because of its heterogeneous landscape of forests,
pastures and cultivated land. Since we expect land
cover to cause differences in model performance, res-
ults are interpreted by taking the different types into
account.

2. Methods

2.1. Study area
The state of Hesse, Germany (about 21 000 km2) was
used as the study area (see figure 1). The area with
low mountain ranges and a temperate climate with
pronounced seasonal changes is composed of 26%
non-irrigated arable land, 25% broad-leaved forest,
20% pastures, 13% coniferous forest and 3% mixed
forest according to the Coordination of information
on the environment (CORINE) land cover inventory
2018 (EuropeanUnion, Copernicus LandMonitoring
System, 2018). The remaining area is mostly covered
by urban areas and some smaller patches of other land
cover classes that will not be considered in this study.
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Figure 1. CORINE land cover classes for the study area Hesse. Small sketch in the bottom-right corner shows the location of
Hesse within Germany.

2.2. Data sources
Data pre-processing was mainly executed in Google
Earth Engine (GEE) to handle the large data volume
(Gorelick et al 2017). All steps of model training
and evaluation were performed in R (R Core Team
2022). For the availability of scripts and data sets see

the data availability statement (Ziegler and Ludwig
2023).

2.2.1. PAI GEDI data
The GEDI mission was operational fromMarch 2019
toMarch 2023 and is tentatively scheduled to provide
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additional data beginning in the fall of 2024. All orbits
that intersected the study area within the study period
were identified using the rGEDI package in R (Silva
et al 2021). The level 2B version 2 PAI product was
obtained within GEE and contains footprints with
a diameter of 25 m for eight parallel tracks spaced
600 m across track and 60 m along track (Dubayah
et al 2020). For our study area it offers about one daily
overpass but no complete spatial coverage or over-
lap (Dubayah et al 2020). Of the available 1441 GEDI
overflights from April 2019 until December 2021,
1347 potential overflights remained after excluding
footprints with a low quality flag and GEDI’s sensitiv-
ity value below 0.9 in the Level 2B PAI product (Tang
et al 2019).

2.2.2. Sentinel-1 data
To provide spatially continuous predictors for PAI,
the ground-range-detected high-resolution product
of Sentinel-1’s C-Band radar, retrieved directly within
GEE, was used for the study. Both polarizationmodes
(VV: vertically transmitted and received, VH: ver-
tically transmitted and horizontally received) with
a resolution of 10 m and their difference and ratio
(VV-VH, VV/VH) were used as potential predictor
variables since these metrics showed to be sensitive to
seasonal changes in forested areas (Frison et al 2018).
For the selection process of appropriate scenes and the
matching with GEDI data, see section 2.3.1.

2.2.3. Sentinel-2 data
Sentinel-2 Level 2Amulti-spectral data, retrieved dir-
ectly within GEE, provided the second source of
potential predictor variables for the PAI. All avail-
able spectral bands except band 10, which lies within
the atmospheric absorption bands of water vapor and
carbon dioxide, were selected as potential predictors
in their original resolution. The normalized differ-
ence vegetation index (NDVI), enhanced vegetation
index (EVI) and the inverted red-edge chlorophyll
index, that copes well with the problem of oversatura-
tion in LAI products, were computed (Frampton et al
2013). For the selection process of appropriate scenes
and the matching with GEDI data, see section 2.3.1.

2.3. ProcessingMethods
2.3.1. Temporal and spatial matching of GEDI data
with Sentinel-1/-2
Temporally matching Sentinel data were queried for
each of the 1441 available GEDI overpasses. We
allowed a temporal difference of +/− 3 days for
Sentinel-1 and +/− 5 days for Sentinel-2 and a max-
imum cloud cover of 50% per scene. If more than
one scene was available within this window, we chose
the temporally closest cloud-free pixel to the GEDI
acquisition date. All pixels selected according to this
procedure were combined into a mosaic and used in
the following for the corresponding GEDI recording.
If no adequate Sentinel data were available within this

time window, the GEDI overpass was not considered
for further analysis. For each of the 25 m footprints,
all intersecting pixels were extracted from the mosaic
and used as predictor variables for the model.

2.3.2. Data quality and sampling strategy
The availability of sufficiently large data sets allowed
generous filtering to use only high quality data points,
especially because the GEDI location error adds addi-
tional uncertainty. Therefore, GEDI footprints were
excluded if located within a 1000 m buffer around
pixels marked as clouds or cloud shadows or flagged
as defective by Sentinel’s scene classification band.
If footprints were flagged in the GEDI quality band
or covered mixed land cover classes according to
the CORINE inventory they were excluded from the
study. Additionally, only the five main land cover
classes were taken into consideration (see section 2.1).
Outliers were rigorously eliminated from Sentinel
and PAI data by excluding the upper and lower
0.1% of the data points. This temporal and spa-
tial matching as well as sub-sampling resulted in
7132 148 valid observations from 1327 GEDI over-
passes between April 2019 and December 2021. Due
to the massive amount of data points we randomly
sampled 150 000 of those high quality points for
model training (127 449 points) and testing (22 551
points, see figure 2). The number of samples for the
training data set across land cover classes and month
is visible in figure 2 and roughly follows the distribu-
tion corresponding to the proportions of land cover
classes (see section 2.1) and prevailing weather con-
ditions of the seasons.

2.3.3. Model training
In sum 16 predictors formed the set of training
data: two from Sentinel-1 (see section 2.2.2); nine
Sentinel-2 channels and five derived indices. A ran-
dom forest machine learning approach was used to
model PAI with the R packages caret (Kuhn 2008),
ranger (Wright and Ziegler 2017) and CAST (Meyer
2020). Duringmodel tuning a spatial cross-validation
(CV) was applied to evaluate the potential of models
to predict GEDI PAI for new spatial areas. Therefore,
we divided the data into 20 folds by keeping foot-
prints from one orbit placed in the same fold, to
ensure spatial and temporal independence between
folds. For training, we only took data from 2019 and
2020 and used the 2021 data to assess the ability of the
trained model to make predictions beyond the train-
ing phase.Duringmodel tuning, a spatial forward fea-
ture selection as explained in Meyer et al (2018) and
Meyer et al (2019a) was applied: from all 18 poten-
tial predictor variables, only those that led to the low-
est spatial CV error root-mean-square error (RMSE)
were selected for themodel training. Themodels were
trained with 50 trees and the hyperparameter mtry
was tuned with three different numbers of variables
included in the respective training iteration step (2,
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Figure 2. Number of available PAI observations in training data by month and land cover class.

6, 11). After tuning, model performance was quan-
tified with the remaining 2021 data by computing R2

and RMSE. Since the land use classes differ strongly in
their variance, the RMSEwas additionally normalized
with the standard deviation (RMSE/sd) to allow a dir-
ect comparison of the performances between the dif-
ferent classes. To visually interpret the spatial patterns
of the predictions, we applied the model to monthly
composites of the predictors for the year 2021.

3. Results

3.1. Comparison of the temporal phenology
dynamics of GEDI PAI and Sentinel-2 NDVI
To assess the plausibility of the GEDI PAI dynam-
ics compared to the well-established NDVI, we first
assessed the time series of both data sets. The tem-
poral development of PAI fromGEDI andNDVI from
Sentinel-2 show clear patterns of vegetation pheno-
logy. While the NDVI reflects the phenology of veget-
ation by spectral properties responding to green bio-
mass, the PAI reflects phenology by a change in the
structure. The temporal dynamics in both, PAI and
NDVI, reflect general differences especially during
the summer months between arable land and pas-
tures (lower values) and different forest types (higher
values), but feature a large within-class variability
(figure 3). The forest bud burst and leaf growth is
well represented in the NDVI between February and

May and also clearly visible in the PAI. The three
forest types show different seasonal patterns in the
NDVI, which also corresponds to the patterns in PAI.
For pastures, the similarity between NDVI and PAI
dynamics is less distinctly compared to the forest
classes, as expected. However, the same tendencies
can be observed considering an increasing variability
during the summer months. The most obvious dif-
ference in PAI compared to what is reflected by the
NDVI is observed for arable land. Here the NDVI
shows clear seasonal patterns, which are not reflected
by the median monthly PAI.

3.2. Assessment of the trained model
The spatial forward feature selection revealed that
eleven out of 16 predictors were useful for spatial pre-
dictions of the PAI (figure 4). The best seven predict-
ors include two visible bands (bands 3 and 4), two
Sentinel-1 bands (VV and VH), two near-infrared
bands from the red edge spectrum (bands 5 and
7) and one vegetation index (EVI). Both Sentinel-1
indices, and the two vegetation indices from Sentinel-
2 data as well as the short wave infrared band (band
9) could not improve the model further.

The cross validation error for the 2019 and 2020
data set reached a R2 value of 0.45 (RMSE: 1.20,
RMSE/sd: 0.83). Based on the independent valida-
tion data set from 2021, the model reached an over-
all R2 performance of 0.40 (RMSE: 1.12, RMSE/sd:

5
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Figure 3. Temporal variability of the GEDI’s PAI (top) and Sentinel’s NDVI (bottom) per land cover class. The NDVI values are
extracted from the same locations as the PAI and include a total of 150 000 points across the years 2019–2021.

Figure 4. Ranking by RMSE of the predictor variables that were chosen in the feature selection to be included in the model.
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Figure 5. Assessment of prediction errors (RMSE/sd) for the 2021 validation data by month and land cover class.

0.78). The difference between the CV performance
and the external validation statistics can be regarded
as an indicator of the models potential to be applied
beyond the training period. A large difference would
indicate that the model performs significantly better
within the training period. In our case, the CV error
(gray) agrees well with the external test data set when
validated across the land cover classes.

Figure 5 shows a heat map of the RMSE/sd for
the independent validation by land cover class and
month. Arable land performed worse than forest
classes, overall and for each individual month except
for September. In the winter months they fall far
behind other classes with RMSE/sd above 5 (see
figure 5). Forested classes follow a seasonal pattern
with better performance in the summer months. The
ranking of the performances of the forested classes
alternates (see figure 5). In most months, conifer-
ous forest has the best performance, despite an over-
all worse performance than mixed or broad-leaved
forest (see table 1). The monthly breakdown of the
external validation (see figure 6) demonstrates that
all RMSE/sd values are below 1 and reveals a seasonal
patternwith a better performance during the summer
months. Regarding the error metrics throughout the
whole year split up by land cover class as shown in
table 1 RMSE/sd values stay below 1 for all forested
classes and above 1 for arable land and pastures.

Table 1. Prediction errors that were externally validated against a
testing data set from a different year, differentiated by land cover
class (white rows). The gray row indicates the error from the cross
validation within the model training.

Corine Rsquared RMSE RMSE/sd

Mixed forest 0.29 1.25 0.84
Coniferous forest 0.20 1.21 0.90
Broad-leaved forest 0.25 1.44 0.88
Pastures 0.14 0.91 1.06
Arable land 0.05 0.75 1.46
All 0.40 1.12 0.78
All (cross validation error) 0.45 1.20 0.83

3.3. Spatio-temporal prediction
Spatial wall-to-wall predictions for the study area
were computed based on monthly median values of
Sentinel-1 and Sentinel-2 data from 2021. Figure 7
shows a sequence of four PAI predictions covering
the growing season 2021. For a comparison of all
12months see figure A1 in the appendix The gen-
eral expectation that PAI increases significantly dur-
ing the growing season and that there are signific-
ant differences between forest and non-forest are
evident in figure 7. This impression is also con-
firmed by analyzing the predicted PAI dynamics sep-
arately for each land cover class (boxplots in figure 8,
analogue to figure 3). Predictions during January

7
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Figure 6. R2 and RMSE/sd error metrics for the 2021 validation data by month.

and November, however, are based on considerably
less available pixels than during the rest of the year
(figure 9). To check the agreement of the annual
dynamics, Pearson’s correlation coefficient was cal-
culated between the monthly medians for the 2021
observations and the 2021 predictions. As detailed in
table 2, this reveals a significant positive correlation
for all forest classes but can not find a significant cor-
relation for arable land and pastures.

4. Discussion

GEDI’s PAI product generally reflects the expected
temporal variability in the study area. In forested
areas the increase in PAI during the early growing sea-
son corresponds to bud burst and leaf growth. On
pastures, a slight gain together with an extended vari-
abilitymarks the start of the growing season. Seasonal
patterns are more distinct for forested areas than for
pastures and arable land. High variability of PAI on
pastures during the summermonths can be explained
by irregularmanagement activities such asmowing or
grazing as well as isolated trees.

The spatial prediction of PAI also generally
reflects the expected seasonal dynamics described in
section 3.1 (see figures 7 and A1). PAI increases
in forests (see figures 1 and 8) during spring and
fluctuates in summer. The latter is probably the
result of alternating extreme weather conditions in

Germany. Related effects add to existing tree condi-
tions induced by recent droughts (DWD 2019, 2020).
For arable land and pastures, the temporal dynamic in
figure 8 looks similar to the observed seasonal course
(figure 3). For January and November the number of
valid pixels is extremely low compared to the other
months due to persistent and area-wide cloud cover-
age (see figures 9 and A1) and do therefore not allow
for meaningful interpretation.

The PAI prediction was generally more accurate
for the forest classes with broad-leaved forest and
mixed forest performing even better than conifer-
ous forest. This can likely be explained by the larger
vertical variability of forests compared to other land
cover types like arable land or pastures, and differ-
ent moisture properties. Both GEDI LiDAR and the
Sentinel sensors can capture differences in PAI more
easily if vegetation height and structural variability
are large. However, mixed forest shows inconsistency
in performance throughout the year. This may either
originate from its diverse ecological and structural
composition and related spatio-temporal anomalies
throughout the seasons, or from the relatively small
number of reference footprints compared to the other
land cover classes. Uncertainties in class assignment
can be expected, especially from the delineation of
pure deciduous or coniferous forest andmixed forest.
This may be an additional factor causing lower model
performance in the mixed forest class. In principle,

8
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Figure 7. Spatial prediction of PAI for March, May, July and September for Hesse, Germany.

Figure 8. Temporal variability of the GEDI’s PAI per land cover class including all pixels of monthly spatial predictions for 2021.

and despite the cross-check with the CORINE land
cover classes, heterogeneous training footprints can-
not be excluded from the analysis with absolute cer-
tainty. Since pastures and arable land in the study area
are typically embedded in more heterogeneous struc-
tures (small settlements, roads, edges) that are not
captured by CORINE, it is likely that these classes are
more affected by impure footprints compared to lar-
ger homogeneous forest areas.

The temporal dynamics between observations
and area-wide predicted pixel values for the test year
2021 agree well for forested areas. A significant pos-
itive correlation was found for the forested classes

but not for arable land and pastures (see table 2).
This may partly be explained by the overall smal-
ler variance in PAI as well as individual growth and
harvesting or mowing events of different crop types.
Even thoughGEDI and Sentinel acquisition times can
lie no further apart than three days, these areas can
change significantly in the meantime, resulting in a
mismatch between the data sets and, hence, an unfa-
vorable effect on prediction quality. Themonthly per-
formance across all CORINE classes (see figure 6)
shows a clear seasonal pattern with better perform-
ances during the summer months. The monthly
RMSE/sd across all land cover classes scores below 1

9
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Figure 9. Number of available pixels in the monthly spatial predictions by land cover class.

Table 2. Pearson correlation of median monthly values between
observations of testing data set and pixel values of area-wide
spatial prediction. Significant results, in terms of the p-value, are
marked bold.

Corine Correlation p-value

Arable land 12 0.018 0.956
Pastures 18 −0.004 0.990
Broad-leave forest 23 0.910 0.000
Coniferous forest 24 0.729 0.007
Mixed forest 25∗ 0.821 0.002
∗Due to missing values in November for mixed

forest, this value is only based on 11 median monthly

values.

and therefore lower than the sd in the original data
set. This proves that our model is generally usable
throughout the year. January, April, November and
December are the months with the weakest perform-
ance. This behavior may partially be attributed to
sparse data availability and therefore extremely low
RMSE/sd values for those months for arable land (see
figure 5).

A performance comparisonwith other studies can
only provide limited indications in this case. Most
other studies used field-based measurements as ref-
erence and observed the related yet not identical LAI
as the response variable. The accuracy of GEDI’s PAI
for different landscapes has only been explored in

few studies. Dhargay et al (2022) tested the accuracy
of GEDI’s PAI in Australia and found rather poor
agreement and a significant underestimation com-
pared to estimates derived from air-borne LiDAR
data. According to their assessment, however, both
the complex study area and the time lag between
air-borne and space-borne observations can be pos-
sible sources of error. They further used only about
one month of GEDI data, which does not cover a
time frame large enough to study temporal dynam-
ics. Kacic et al (2021) examined the integration of
GEDI’s PAI and sentinel data in Paraguay’s forests
and aggregated the data across one entire dry sea-
son (RMSE= 0.3, R2 around 0.5). Rishmawi et al
(2021) produced contiguous PAI maps at 1 km res-
olution over the United States by integrating GEDI
and VIIRS data (RMSE = 0.09, R2 = 0.76). Since we
use data with high spatial and temporal resolution,
the performance of our models is worse, as would
be expected, but difficult to relate directly. Few stud-
ies, including Miranda et al (2020), use PAI winter
observations to calculate the woody proportion of
forest areas. With this information they then calcu-
late effective LAI during the growing season. This
approach could potentially also be applied to GEDI
studies and should be investigated further.

Other study design components, that complicate
a direct comparison include, study areas, vegetation
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types, study seasons, variance in the data, validation
strategies and other aspects of the study design that
vary considerably between publications. In addition,
RMSE/sd values which facilitate a comparison across
studies are rarely communicated and many previ-
ous studies restricted data analysis to plots that were
clearly dominated by a single species (Brown et al
2019), or featured homogeneous cover (Korhonen
et al 2017, Cohrs et al 2020). Nevertheless, it is help-
ful to put the results of this study in the context of
previous research on LAI estimation. TheGEDImod-
els in our study generally reached lower R2 values
for arable land and pastures than models of previ-
ous studies. Frampton et al (2013) and Gitelson et al
(2003) report a training errorR2 value range of 0.36 to
0.88 in their LAImodels, differing drastically from the
performance of our correspondingmodel (independ-
ently validated R2 = 0.05). For pastures, Baghdadi
et al (2016) presented R2 values between 0.65 and
0.89 in contrast to 0.14 in our study. For agricultural
areas, RMSE values of previous studies ranged from
0.44 to 0.68 (Delegido et al 2011, Verrelst et al 2015,
Luo et al 2020) which is slightly better than ourmodel
(RMSE = 0.75). In the case of pastures we were able
to obtain a lower error (RMSE= 0.91) compared to a
study by Wang et al (2019) (RMSE = 1.09). For the
forest classes, the GEDI-based approach achieved a
slightly lower performance compared to other stud-
ies. While our RMSE scores are above 1.21, previ-
ous work by Korhonen et al (2017) and Meyer et al
(2019b) reached values between 0.8 and 0.9 in mod-
els based on field-observations. The study of Cohrs
et al (2020) in coniferous forest reached RMSE val-
ues of 0.63 to 0.89 with linear models while our
validation reached an RMSE of 1.21. For decidu-
ous forest, Brown et al (2019) achieved RMSE val-
ues of 1.55 using the Sentinel Application Platform
(SNAP) algorithm, and up to 0.47 using an optimized
algorithm, compared to an RMSE of 1.44 achieved in
this study. In addition to previously described lim-
itations in comparability, it is likely that the sys-
tematic, but spatio-temporally irregular coverage of
GEDI footprints bares more challenges for the statist-
ical modeling process compared to studies which do
not use GEDI data. Luo et al (2020) for example used
time series from a fixed set of plots and analyzedmore

homogeneous data than expected from the shifting
GEDI footprints.

The different validation methods also have an
impact on the comparability of the results. The
spatial and temporal CV used in this study tests the
applicability to new data, which in principle leads
to poorer validation measures, but provides a real-
istic picture for prediction on new data. However,
regardless of the absolute performance, the good
agreement of error measures between the model-
internal cross validation and the validation with
the external test data set (see table 1) shows that
modeling of LAI in regional studies is feasible
for applications beyond the lifetime of the GEDI
mission.

5. Conclusion

This study presents a first approach to match GEDI’s
PAI observations with their closest Sentinel-1 and -2
pixels in space and time to compile monthly wall-to-
wall maps of PAI in heterogeneous landscapes. The
high spatial resolution of the predictions and regu-
lar repetition rates improve the availability of inform-
ation compared to current operational global LAI
products. This study demonstrates that a stable year-
round monitoring of the key vegetation variable PAI
in a heterogeneous landscape is possible. However,
our findings reveal that there are great differences in
predictive power across land cover classes, the use
of multi-temporal variables might be an option to
optimize the model further. We further found the
prediction of PAI within forests to be more stable
possibly due to its variability in vertical structure.
Overall our results show good agreement for predic-
tions within the time range of our training data and
one year beyond. This leads to the conclusion that our
approach can even be applied to time periods outside
GEDI’s life-span.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
github.com/aliceziegler/GediEngineR.
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Appendix

Figure A1.Monthly predictions of PAI in Hesse (Germany).

12



Environ. Res. Lett. 18 (2023) 075003 A Ziegler et al

Figure A1. (Continued.)
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Figure A1. (Continued.)
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Figure A1. (Continued.)
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Figure A1. (Continued.)
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Figure A1. (Continued.)
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