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Background: Acute respiratory distress syndrome (ARDS) in corona virus disease

19 (COVID-19) is triggered by hyperinflammation, thus providing a rationale for

immunosuppressive treatments. The Janus kinase inhibitor Ruxolitinib (Ruxo) has

shown efficacy in severe and critical COVID-19. In this study, we hypothesized

that Ruxo’s mode of action in this condition is reflected by changes in the

peripheral blood proteome.

Methods: This study included 11 COVID-19 patients, who were treated at

our center’s Intensive Care Unit (ICU). All patients received standard-of-care

treatment and n = 8 patients with ARDS received Ruxo in addition. Blood

samples were collected before (day 0) and on days 1, 6, and 10 of Ruxo

treatment or, respectively, ICU admission. Serum proteomes were analyzed by

mass spectrometry (MS) and cytometric bead array.

Results: Linear modeling of MS data yielded 27 significantly differentially regulated

proteins on day 1, 69 on day 6 and 72 on day 10. Only five factors (IGLV10-

54, PSMB1, PGLYRP1, APOA5, WARS1) were regulated both concordantly and

significantly over time. Overrepresentation analysis revealed biological processes

involving T-cells only on day 1, while a humoral immune response and

complement activation were detected at day 6 and day 10. Pathway enrichment
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analysis identified the NRF2-pathway early under Ruxo treatment and Network

map of SARS-CoV-2 signaling and Statin inhibition of cholesterol production at

later time points.

Conclusion: Our results indicate that the mechanism of action of Ruxo in COVID-

19-ARDS can be related to both known effects of this drug as a modulator of

T-cells and the SARS-CoV-2-infection.

KEYWORDS

acute respiratory distress syndrome, COVID-19, proteomics, Ruxolitinib, SARS-CoV-2

1. Introduction

Severe acute respiratory syndrome corona virus 2
(SARS-CoV-2) was first described as the cause of severe pneumonia
in Wuhan, China in December 2019 (1). The clinical presentation
of corona virus disease 19 (COVID-19) is highly heterogenous
ranging from asymptomatic courses to flu-like symptoms and
all the way to lethal pneumonia with acute respiratory distress
syndrome (ARDS) (2–4). Due to the rapid spread of the COVID-19
pandemic (5), treatment initially relied on repurposing of already
available drugs (6) and standard-of-care management for ARDS
including mechanical ventilation and other organ replacement
therapies. ARDS associated with SARS-CoV-2 infection is
characterized by clinical symptoms and laboratory findings that
are consistent with a massive cytokine release syndrome, such
as increased plasma levels of proinflammatory cytokines and
altered lymphocyte subsets (2, 3). No new medication has been
developed specifically for critical SARS-CoV-2 pneumonia (7–12),
but based on the understanding of the pathophysiology of ARDS
in COVID-19, several immunosuppressive strategies emerge as
rational treatment approaches. Indeed, corticosteroids (13), Janus
kinase (JAK) inhibitors that block cytokine signaling pathways
such as Ruxolitinib (Ruxo) (14–21) or Baricitinib (22–25), the
IL-6 antibody Tocilizumab (26–28) or the IL-1 receptor antagonist
Anakinra (29, 30) were found to improve outcome in hospitalized
COVID-19 patients. Intriguingly, the JAK1/2 inhibitor Baricitinib,
which also targets the kinase AAK1, a regulator of endocytosis of
the SARS-CoV-2 receptor ACE2, had been predicted as a promising
treatment for COVID-19 by artificial intelligence algorithms as
early as February 2020 (31).

At the University Hospital Marburg, following the successful
individual treatment of a single patient (32), we conducted a non-
randomized phase-II trial of the JAK1/2-Inhibitor Ruxolitinib
in critically ill COVID-19 patients requiring mechanical
ventilation (20). Ruxo was first approved for the treatment of
myeloproliferative disorders (33), in which an activating mutation
of JAK2 (V617F) is a common genomic finding (34). JAK2 is an
intracellular tyrosine kinase that transduces signals from cytokine
receptors, which in turn activate proliferative signaling cascades
such as the MAP-kinase- or the PI3K/AKT-pathway (35). Beyond
its antiproliferative impact on the cellular level, Ruxo also exerts
immunosuppressive effects due to the integral function of JAK2
and its paralog JAK1 in cytokine networks, which are exploited
clinically for the treatment of graft-versus-host disease (GvHD)

following allogenic hematopoietic stem cell transplantation
(36, 37). In this context, Ruxo not only acts via suppression
of T-lymphocytes, but also of neutrophil granulocytes, which
are major inducers of tissue damage in GvHD. In COVID-19,
quantitative changes in neutrophils and monocytes have also
been observed among patients with severe and moderate courses
(38) as well as under treatment with Baricitinib (24). Moreover,
inflammatory reactions in both GvHD and COVID-19 are at
least partially mediated by the same cytokines, which include
both proinflammatory mediators such as IL-6 or TNFα, and
anti-inflammatory components such as IL-10 or TGFβ (39–41). In
this study, we hypothesized that Ruxo’s mode of action in COVID-
19-associated ARDS is reflected by changes in the peripheral
blood proteome. To investigate this hypothesis, we applied mass
spectrometry-based (MS) quantitative proteomics and cytometric
bead array (CBA) analyses on serum samples from critically ill
COVID-19 patients under treatment with Ruxo.

2. Materials and methods

2.1. Patients and samples

This study included 11 adult patients (age ≥ 18 years) with
severe to critical COVID-19, who were treated at an Intensive
Care Unit of the University Hospital Marburg between April 2020
and January 2022. All patients had not been vaccinated against
SARS-CoV-2. SARS-CoV-2 infection was confirmed by polymerase
chain reaction as described (20), yet, determination of SARS-CoV-
2 variants was not included in the diagnostic routine. All patients
were treated according to the current standard of care at the time
of hospitalization. Eight patients were treated with Ruxo either on
an individual basis or on a clinical trial (20). Informed consent
to obtain and analyze samples for research purposes was obtained
from all patients. Serum samples were stored at−80◦C.

2.2. Serum proteomics

Samples were prepared for proteomic analysis by in gel digest
(42, 43), as well as in solution digest (44) followed by high
pH reversed phase separation (Pierce High pH Reversed-Phase
Peptide Fractionation Kit, ThermoFisher Scientific) according to
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TABLE 1 Characteristics of study patients.

No./Median Percentage (%) or range

Total 11

Ruxolitinib

Yes 8 66.7%

No 3 33.3%

Basic demographics

All patients n (%)
median (range)

Ruxo patients n (%)
median (range)

Control patients n (%)
median (range)

Female 4 (36.4%) 3/8 (37.5%) 1/3 (33%)

Male 7 (63.6%) 5/8 (62.5%) 2/3 (67%)

Age 65 (23–82) 61 (23–82) 70 (23–73)

BMI 27.7 (25.4–51) 29 (25.5–51) 27.7 (26.1–3.4)

Comorbidities

All patients n (%) Ruxo patients n (%) Control patients n (%)

Hypertension 8/11 (72.7%) 6/8 (75%) 2/3 (67%)

Obesity 6/11 (54.5%) 5/8 (62.5%) 1/3 (33%)

Cardiovascular (other than
Hypertension)

4/11 (36.4%) 2/8 (25%) 2/3 (67%)

GIT diseases 4/11 (36.4%) 3/8 (37.5%) 1/3 (33%)

Diabetes 3/11 (27.3%) 2/8 (25%) 1/3 (33%)

Hyperlipidemia/Hyperlipoproteinemia 2/11 (18.2%) 1/8 (12.5%) 1/3 (33%)

CKD 2/11 (18.2%) 0/8 (0%) 2/3 (67%)

Malignancy 2/11 (18.2%) 1/8 (12.5%) 1/3 (33%)

Neurologic/Neuromuscular 1/11 (9.1%) 0/8 (0%) 1/3 (33%)

Thyroid 1/11 (9.1%) 1/8 (12.5%) 0/3 (0%)

Previous medication

All patients n (%) Ruxo patients n (%) Control patients n (%)

Betablockers 5/11 (45.5%) 4/8 (50%) 1/3 (33%)

PPIs 4/11 (36.4%) 2/8 (25%) 2/3 (67%)

ACE-inhibitors 3/11 (27.3%) 1/8 (12.5%) 2/3 (67%)

Antidiabetic medication 3/11 (27.3%) 2/8 (25%) 1/3 (33%)

Calcium antagonists 3/11 (27.3%) 2/8 (25%) 1/3 (33%)

Platelet aggregator inhibitors 3/11 (27.3%) 2/8 (25%) 1/3 (33%)

Statins 3/11 (27.3%) 1/8 (12.5%) 2/3 (67%)

Antineoplastic agents 2/11 (18.2%) 1/8 (12.5%) 1/3 (33%)

Immunosuppressive drugs
(particularly corticosteroids, CNIs,
rituximab)

2/11 (18.2%) 0/8 (0%) 2/3 (67%)

Diuretics 1/11 (9.1%) 1/8 (12.5%) 0/3 (0%)

NSAIDs and other analgesic drugs 1/11 (9.1%) 0/8 (0%) 1/3 (33%)

Psychoactive drugs 1/11 (9.1%) 1/8 (12.5%) 0/3 (0%)

Thyroid medications 1/11 (9.1%) 1/8 (12.5%) 0/3 (0%)

Outcome

Days of hospitalization – median
(range)

29 (21–67) 28.5 (21–65) 40 (23–67)

Alive at day 28 10/11 (91%) 7/8 (87.5%) 3/3 (100%)

Discharged 7/11 (63.6%) 5/8 (62.5%) 2/3 (67%)

Deceased 4/11 (36.4%) 3/8 (37.5%) 1/3 (33%)

ACE, angiotensin-converting enzyme; BMI, body mass index; CKD, chronic kidney disease; CNI, calcineurin inhibitors; GIT, gastro-intestinal tract; NSAIDs, non-steroidal anti-inflammatory
drugs; PPIs, proton-pump inhibitors.
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FIGURE 1

Serum proteomes of critically ill COVID-19 patients with and without Ruxo treatment. (A) Left panel: Volcano plot of MS data indicating differential
protein expression between COVID-19 patients with or without ARDS [Ruxo group (green) vs. control group (red)]. “p” indicates the raw p-value,
“bon” indicates the Bonferroni-corrected p-value. Right panel: Time trajectory from principal component analysis for the protein PGLYRP1.
(B) Principal component analysis (PCA) score plot derived from mass spectrometry (MS) data of different patients and sampling time points using
treatment as a design-factor. Each individual is color-coded. Additionally, for each subject, “Treatment” is coded by symbol shape and “ApproxDay”
by size. (C) Partial least square regression analysis (PLS) derived from the MS data. Coding as in panel (B).

the manufacturer’s protocol, as reported. Briefly, after determining
protein concentration of each serum sample by Lowry assay
(BioRad Laboratories), 50 µg of total serum protein was separated

into ten fractions using the in gel approach. For in solution
digest, 150 µg were acetone-precipitated and separated into eight
fractions. Liquid chromatography/tandem mass spectrometry was
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FIGURE 2

Changes in serum proteomes of COVID-19 patients upon Ruxo
treatment over time. (A) Partial least square regression analysis (PLS)
derived from the MS data of different patients and sampling time
points using time as a design-factor. Each individual is color-coded.
Additionally, for each subject, “Treatment” is coded by symbol shape
and “ApproxDay” by size. Samples from the same subject are
connected by a line. (B) Volcano plot of MS data indicating
differential protein expression in COVID-19 patients under
treatment with Ruxo at day 1 (green) compared to day 0 (red). “p”
indicates the raw p-value, “bon” indicates the Bonferroni-corrected
p-value. (C) General linear modeling of protein expression as a
function of sampling day.

performed as reported (44). Used parameters were extracted and
summarized using MARMoSET (45) and are included in the
Supplementary Material 1. The mass spectrometry raw data
from experiments described here has been deposited in the
MassIVE member repository of the ProteomeXchange consortium
(46).

2.3. Processing and statistical analysis of
proteomics data

MS data were processed using MaxQuant v.2.0.3.0 (47),
including label free quantitation against the human Uniprot protein
sequence database (08.12.2020 download, canonical only with
75577 protein sequences).1 Parameters used for MaxQuant are
included in the Supplementary Material 1. MaxQuant returned a
file with 975 protein groups. 16 reverse proteins, 65 contaminant
proteins and 194 proteins that were only represented by single

1 https://www.uniprot.org/

peptides were dropped. The remaining 700 proteins were subjected
to statistical analyses in R (48). For general linear model analysis
we used the autonomics version 1.1.7.7 (49) interface fit_limma to
the limma modeling engine (50). Overlap analyses of significantly
regulated proteins identified in the limma-model was performed
using the R-/Bioconductor package VennDetail (51). Functional
analyses were performed using the R-/Bioconductor packages
clusterProfiler (52) and dbtORA (53) and results were visualized
using the package enrichplot (54).

2.4. Cytometric bead array assay

Fifty microliters of 1:4 diluted serum from each patient and
time point was analyzed with human cytokine Grp I panel 17-plex
cytometric bead array set (M5000031YV; Bio-Rad Laboratories),
according to the manufacturer’s instructions and as described
before (55) to quantify serum cytokines.

3. Results

3.1. Patient characteristics

This study included 11 COVID-19 patients, who were treated
during the first to fourth wave of the pandemic (April 2020 -
January 2022) at the University Hospital Marburg, Germany. All
patients required intensive care treatment including mechanical
ventilation (mean duration 26 days ± 10 days). Eight patients
with ARDS were treated with Ruxo in a clinical trial (20)
or on an individual basis (Ruxoonly group), and two of these
additionally received steroids (Ruxo+Steroids subgroup) according
to the standard of care at the time of hospitalization. One of
three control patients (no ARDS, no Ruxo treatment) was treated
with steroids. Baseline characteristics of the Ruxo and Control
patients are summarized in Table 1. Blood samples for the analyses
described in this work were collected before (day 0) and on days one
(day 1), five to seven or nine to eleven days after initiation of Ruxo
treatment. The latter time points were merged to day 6 and day 10,
respectively, for statistical analyses. In the control group, different
sampling time points are indicated relative to the day of ICU
admission, which we considered the clinical peak of critical illness
in these patients. All patients except for one in the Ruxo group who
died on day 21, survived until day 28, which corresponds to the
primary end point in several clinical trials investigating Ruxo in
COVID-19-associated ARDS (20, 56) (Table 1).

3.2. Serum proteomes of critically ill
COVID-19 patients with or without
Ruxo-treatment

To explore the serum proteomes of patients with severe
COVID-19-associated pneumonia or ARDS and the impact
of Ruxo in the latter condition, we performed MS in the
absence of any depletion protocol against high-abundant serum
proteins on serum samples collected at different time points
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FIGURE 3

Overrepresentation analysis of differentially regulated serum proteins in COVID-19 patients under Ruxo treatment. ORA was performed on
differentially regulated proteins (raw p-value < 0.05) as detected by MS on (A) day 1, (B) day 6, and (C) day 10. The top 20 GO terms of the category
biological process from analyses using the clusterProfiler package were plotted. Note that direction of regulation (up or down) was not considered
in this analysis. The barplots indicate the level of significance and the number of included genes for each term. See Supplementary Tables 6–8 in
Supplementary Material 2 for complete ORA results.

after initiation of treatment. In total 25 samples from nine
patients were investigated including three control, four Ruxoonly

and two Ruxo+Steroids patients. We observed differential protein
expression between Ruxo-treated and untreated patients at day 0
with Peptidoglycan recognition protein 1 (PGLYRP1 as the most
significant upregulated factor in the treatment group (Figure 1A).
However, principal component analysis (PCA) revealed clear
patient-specific effects and time trajectories, which, did not
generalize across patients. Subtle treatment effects were only
recognizable for the Ruxo+Steroids subgroup (Figure 1B). Thus, the
main PCA drivers appeared to be factors unrelated to the study-
design. Particularly in the control group, covariates associated with
preexisting conditions and/or patients’ permanent medications
such as chronic kidney disease, diabetes, immunosuppression or
antihypertensive drugs, confirmed, that the largest variability in
the dataset was not caused by different treatments for COVID-
19 (Supplementary Figure 1A in Supplementary Material 3). To
further investigate potential effects of our experimental design, we

performed partial least square (PLS) regression analysis. In line
with the PCA results, examination of "treatment" as a design-
factor revealed no clear separation of groups, (Figure 1C). These
calculations underlined considerable heterogeneity of individual
patients in all treatment groups in our limited dataset.

3.3. Changes in serum proteomes of
COVID-19 patients under Ruxo
treatment over time

Given that "treatment" did not allow to distinguish patients
treated with Ruxo from untreated patients, we next investigated
"time" as a relevant design-factor in our experimental setting by
PLS. Indeed, we detected some generalizable time effects, which
were most pronounced (i.e., displayed the highest PLS1 loadings)
for the proteins Afamin (AFM), Apolipoprotein C3 (APOC3),
Lipopolysaccharide binding protein (LBP), and Serpin family A
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FIGURE 4

Pathway enrichment analysis of differentially regulated serum proteins in COVID-19 patients under Ruxo treatment. Wiki-Pathway enrichment
analysis was performed on differentially regulated proteins (raw p-value < 0.05) as detected by MS on (A) day 1, (B) day 6 and (C) day 10.
Heatmap-like plots indicate expression of individual genes involved in each pathway.

FIGURE 5

Serum cytokine levels in treated and untreated COVID-19 patients. Cytometric bead array assay performed with serum samples collected at different
time points (day 0, day 1, day 6, and day 10) from three COVID-19 patients under Ruxo treatment and two control patients, without Ruxo treatment.
One patient in the Ruxo group also received steroids (marked by #).

member 5 (SERPINA5) (Figure 2A and Supplementary Figure 1B
in Supplementary Material 3). Yet, these exploratory analyses still
revealed considerable heterogeneity within the three non-Ruxo
patients, precluding to use them as an appropriate control group.
Thus, these patients were excluded from subsequent analyses.

Considering only Ruxo-treated patients (Ruxoonly and
Ruxo+Steroids), we next investigated differential protein expression
at different time points. Inter-Alpha-Trypsin Inhibitor Heavy
Chain 4 (ITH4) was most significantly upregulated while,
PGLYRP1 was expressed at lower levels under treatment
(Figure 2B). This latter observation was consistent with our

initial finding that PGLYRP1 was less abundant in the less
severely ill patients. Subsequently, we extended our time-course
analyses and performed general linear modeling of protein
expression as a function of collection day, including subject
as a random effect. This analysis revealed four proteins which
changed systematically (FDR < 0.05) across patients, although
these were not measured in all patients and/or at all time points:
Apolipoprotein A5 (APOA5), N-Acetylglucosamine-1-phosphate
transferase subunit gamma (GNPTG), PGLYRP1 and Serpin
family A member 1 (SERPINA1) (Figure 2C, Supplementary
Figure 1C in Supplementary Material 3, and Supplementary
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Table 1 in Supplementary Material 2). Modifying this analysis by
calculating Helmert contrasts, i.e., comparing each day against the
average of the previous time points confirmed systematic time-
effects on APOA5 and SERPINA1 and added one more protein,
Immunoglobulin Heavy Variable 3/OR16-12 (IGHV3OR16-12),
a poorly characterized immunoglobulin complex component
(Supplementary Figure 1C in Supplementary Material 3).
The statistically significant time-effect observed for SERPINA1
attracted our particular attention, as this protein was detected
in the two Ruxo+Steroids patients at d0 and d1 at approximately
identical levels, but appeared completely absent at later time
points. Moreover, when we compared the proteomes of critically ill
COVID-19 patients who eventually deceased due to the infection to
those who could be discharged from hospital, we found SERPINA1
among the factors that were higher expressed in the survivors.
This observation was also remarkable because most of the factors
that differentiated between final outcomes were largely unchanged
over time (Supplementary Figure 2 in Supplementary Material 3).
Due to the heterogeneity of our dataset, we could not confirm the
time-effect of SERPINA1 as a true switch-like response, as a global
analysis of presence/absence schematics in our dataset exhibited a
random pattern (data not shown). In addition, since we had also
collected peripheral blood mononuclear cells (PBMCs) from some
patients at day 0, day 1 and day 6, we applied qPCR to examine
whether changes in serum protein levels were paralleled by mRNA
expression changes in these cells. However, this seemed not to be
the case, which we attribute to differential expression of candidate
genes (GNPTG, HP, C4B, PGLYRP1, WARS1, and SERPINA1) in
various PBMC-subsets as well as expression in other tissues which
contribute to serum levels of these proteins, such as liver (data
not shown). Taken together, these results suggested that a mode of
action for Ruxo in a small cohort of critically ill COVID-19 patients
is potentially more reliably deduced from longitudinal in-patient
effects rather than from comparisons between treatment groups.

3.4. Functional analysis of differentially
regulated proteins under Ruxo treatment
compared to baseline

To further characterize the response to Ruxo in COVID-19-
ARDS patients on a functional level, we performed gene ontology
(GO) and pathway enrichment analyses on the proteins that were
differentially regulated at different time points according to our
linear model. Each treatment day was compared to day 0 separately
since the time trajectories from PLS analyses indicated opposite
effects on several proteins over time. Focusing on significant
proteins (raw p-value < 0.05) we identified ten proteins that were
upregulated upon Ruxo treatment at day 1 and 17 proteins that
were downregulated. At day 6 and 10, 22 and 47, or, respectively,
32 and 40 proteins were up- or downregulated (Supplementary
Tables 2–4 in Supplementary Material 2). Overlap analyses of
affected proteins at day 1, 6, and 10 confirmed opposite regulation
of several factors as indicated by PLS. We identified only five
factors that were regulated both concordantly and significantly
over time (up: IGLV10-54, PSMB1, down: PGLYRP1, APOA5,
WARS1, Supplementary Table 5 in Supplementary Material 2).
Overrepresentation analysis (ORA) of GO terms (52) including all

significant proteins (raw p-value < 0.05) at any individual time
point revealed enrichment of biological processes that implicated
a T-cell response only on day 1, but not on days 6 and 10 (Figure 3
and Supplementary Tables 6–8 in Supplementary Material 2).
The highest fold change of T-cell-proliferation-related proteins was
observed for VSIG4, a negative regulator of this process (57), which
was upregulated approximately 2-fold (Supplementary Figure 3 in
Supplementary Material 3). On the later time points, we found
significant enrichment of the humoral immune response with a
marked focus on B-cell-dependent processes on day 6, as well as
complement activation. Notably, most proteins relating to these
terms were downregulated (Figures 3B, C and Supplementary
Tables 6–8 in Supplementary Material 2). Similar results were
obtained applying a different implementation of ORA (dbtORA
(53), Supplementary Tables 9–11 in Supplementary Material 2).
Pathway enrichment analysis using the curated Wiki pathway
database (52) yielded only two gene sets, the Nuclear receptors meta-
pathway and the NRF2-pathway at day 1. The first one was also
enriched on day 6, together with additional pathways including
Network map of SARS-CoV-2 signaling and Statin inhibition of
cholesterol production. These SARS-CoV-2- and Cholesterol-gene
sets in turn were shared by enrichment results for day 6 and day
10 (Figure 4). Of note, most of the affected pathways included
APOA5, which was downregulated under Ruxo treatment at all
time points. Although enrichment analyses are less robust for the
day 1 time point due to a very short list of only 27 significantly
regulated proteins (compared to 69 on day 6 and 72 on day 10),
these results suggest that Ruxo exerts immediate, but transient
effects in COVID-19-ARDS patients, that during the course of
several days clearly connect to the underlying condition, namely
SARS-CoV-2-infection.

3.5. Serum cytokine levels in
COVID-19-ARDS and effects of Ruxo
treatment

Cytokines and chemokines are generally difficult to capture
by MS because of very low serum concentrations compared to
other serum proteins. We therefore investigated these mediators in
COVID-19-ARDS compared to COVID-19-pneumonia and their
potential regulation by Ruxo separately using a cytometric bead
array (CBA) assay. This analysis was restricted to three Ruxo
and two control patients from whom sufficient sample material
was available. COVID-19 patients with ARDS exhibited higher
serum levels of all cytokines and chemokines measured (IFNy,
TNFa, IL-4, IL-6, IL-7, IL-8, IL-10, IL-13, MIP-1b, and MCP-1)
compared to patients with COVID-19 pneumonia without ARDS
(data not shown). Moreover, serum cytokines and chemokines
clearly showed patient-specific time courses, as observed in our
proteomics experiments. However, despite heterogenous time-
patterns, several mediators in Ruxo patients tended to approximate
control levels after 10 days of treatment, such as TNFa, IL-8, MIP-
1b, and MCP-1 (Figure 5). This observation presumably reflects
attenuation of the cytokine storm, consistent with the expected
clinical effects of Ruxo, although with slower kinetics than expected
based on our initial clinical experience with Ruxo (32) and even
transient increase of proinflammatory cytokines (58).
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4. Discussion

Ruxo has been repurposed for the treatment of SARS-CoV-
2 infection in different clinical settings inside and outside of
clinical trials, but the clinical significance of this drug in COVID-
19 pneumonia and ARDS remains to be firmly established (18,
20, 21, 32, 56, 59–62). The work presented here adds to previous
work on the mechanisms of action of Ruxo in hyperinflammation
and respiratory distress (63, 64). Specifically, we aimed to gain
deeper insights into systemic effects of Ruxo in critical COVID-19
by studying serum proteomes by MS and cytokine array analyses
at different time points after initiation of treatment. Based on
our early clinical experience with Ruxo for ARDS associated with
SARS-CoV-2 infection (32), we expected rapid and profound
changes of circulating factors. We therefore analyzed samples from
only eight COVID-19-ARDS patients treated with Ruxo and three
controls and did not stratify the patients/samples investigated
here for outcome.

Firstly, we found time trajectories in the proteomics data
that generalized for all patients, which included factors that have
been mentioned in the literature in the context of COVID-
19 such Afamin (65), APOC3 (66), or SERPINA5 (67). On
the other hand, time patterns for a set of different proteins
including APOA5, GNPTG or PGLYRP1 only became detectable
after excluding the extremely heterogenous control group from
further analyses. Only 5 factors were regulated both concordantly
and significantly over time, including Immunoglobulin Lambda
Variable 10–54 (IGLV10-54) and Proteasome 20S Subunit Beta 1
(PSMB1), which were upregulated and, respectively, PGLYRP1,
APOA5 and Tryptophanyl-tRNA Synthetase 1 (WARS1), which
were downregulated. IGLV10-54 has been identified as one of
the top upregulated genes in SARS-CoV-2 infected individuals
compared to healthy controls and also as component of an
immune-response related gene cluster that distinguishes Long-
COVID-patients from individuals who had recovered from the
disease (68, 69). PSMB1, along with other proteasomal subunits
has been described to be induced by hypoxia in the context of
SARS-CoV-2-infection (70). In addition, certain PGLYRP1-derived
peptides have been described to inhibit proinflammatory cytokine-
production in a mouse model of acute lung injury with diffuse
alveolar damage (71). We have not examined individual peptides
on a sub-protein level in our analysis, but in view of these previous
results, decrease of PGLYRP1 under Ruxo treatment might not
necessarily point out PGLYRP1 as a direct target of Ruxo, but
rather indicate resolution of the ARDS-causing cytokine storm
within several days. APOA5 has been described to be differentially
regulated in severe COVID-19 compared to healthy controls and
also during recovery from this condition (72). Finally, WARS1,
which has been reported to boost the innate immune response
as a ligand of toll-like receptors TLR2 and TLR4 (73), has been
identified as a factor involved in several biological processes
associated with COVID-19 severity and has been described to be
downregulated on the mRNA-level upon SARS-CoV-2-infection
(74, 75).

On the functional level, i.e., with regard to biological processes
or cellular pathways we found two phases of the response to
Ruxo. The early phase on day 1 following treatment initiation
was characterized by a T-cell response and repression of the
NRF2-pathway, reflecting well established actions of Ruxo as a

mediator of T-cells (76) and a previously identified SARS-Cov-
2 key pathogenic pathway (77). At later time points, however,
we observed enrichment of other SARS-CoV-2-related pathways,
which involved, for example, ITIH4. This protein, which acts
as a protease inhibitor upon proteolytic cleavage (78), has been
detected at increased levels in plasma or serum samples of
COVID-19 patients in previous proteomics studies reported in
the literature (79, 80) and has also been proposed as a potential
predictor for disease mortality (81). These observations support the
clinical experience that Ruxo exerts prompt effects in COVID-19-
associated ARDS, which only transiently overlay more sustained
immune responses or pathomechanisms.

Thus, our careful and detailed analyses of our dataset revealed
several lines of evidence that the mechanism of action of Ruxo
in COVID-19-ARDS can be related to both known effects of this
drug and the clinical condition studied, i.e., SARS-CoV-2-infection.
However, interpretation of our experiments is clearly compromised
by the very limited number of Ruxo- and control patients that
were included in this study, which resulted in extensive variability
within our cohort with regard to clinical covariates, and thus, of our
proteomics dataset. Moreover, given that we included patients with
critical COVID-19 from the first to fourth wave of the pandemic,
variant-specific proinflammatory effects of different SARS-CoV-2-
mutants may also have contributed to the heterogeneity observed
in our dataset (82).

In summary, the results presented here further strengthen
the concept of Ruxo constituting a rational treatment for
COVID-19-related ARDS that warrants further preclinical and
clinical investigation.
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