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Mouse models of pemphigus:
valuable tools to investigate
pathomechanisms and novel
therapeutic interventions
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Autoimmune blistering diseases (AIBD) are paradigms of autoantibody-mediated

organ-specific autoimmune disorders that involve skin and/or mucous

membranes. Compared to other autoimmune diseases, the pathogenicity of

autoantibodies in AIBD is relatively well described. Pemphigus is a potentially

lethal autoantibody driven autoimmune disorder with a strong HLA class II

association. It is mainly characterized by IgG against the desmosomal adhesion

molecules desmoglein 3 (Dsg3) and Dsg1. Several murine pemphigus models

were developed subsequently, each allowing the analysis of a characteristic

feature, such as pathogenic IgG or Dsg3-specific T or B cells. Thus, the models

can be employed to preclinically evaluate potentially novel therapies. We here

thoroughly summarize past and recent efforts in developing and utilizing

pemphigus mouse models for pathomechanistic investigation and

therapeutic interventions.
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Introduction

Pemphigus is a severe autoimmune blistering skin disease characterized by disruption

of desmosomes, thereby affecting the epidermis of the skin and surface-close mucosal

epithelia (1, 2). Depending on their immunohistological manifestations, three major forms

of pemphigus are distinguished. The mucocutaneous pemphigus vulgaris (PV) presents in

both mucosal epithelia and the epidermis and is characterized by IgG autoantibodies (auto-

abs) directed against desmoglein 1 (Dsg1) and Dsg3 antigens, which were identified over

three decades ago (3). Pemphigus foliaceus (PF) is triggered by anti-Dsg1 IgG leading to

intraepidermal blistering limited to the skin. Paraneoplastic pemphigus (PNP) is
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characterized by polymorphic mucocutaneous eruptions and

originates from a pool of auto-abs mainly against plakin proteins

such as envoplakin, periplakin, desmoplakins, epiplakin,

desmocollins, and BP230 as well as against a2 macroglobulin-like

1 and Dsg (4, 5). In addition to Dsg3 and/or Dsg1 auto-abs, IgG

auto-abs against several target proteins other than Dsgs such as

desmocollin 3 were identified in pemphigus patients, raising

speculations about potential synergic effects eventually triggering

acantholysis (6, 7).

Autoreactive B cells are key players in the production of

pathogenic antigen-specific IgG in specific organs such as the skin

(8). Pathogenic auto-abs can be generated after clonal expansion of

autoreactive B cells in secondary lymphoid organs, but also in the

skin (9). During T-dependent and T-independent responses to

Dsg3, Dsg3-specific memory B cells are generated which can

remain in immunological niches and become reactivated (10). In

remission following immunosuppressive therapy, these cells might

potentially lead to reencounter of the clinical symptoms (11).

The critical role of auto-abs in pemphigus pathogenesis is

supported by the observations that i.) the level of IgG auto-abs

frequently correlates with the severity of the disease (12), ii.)

pemphigus-associated blister formation can be induced by passive

transfer of IgG from pemphigus patients into neonatal mice (13),

and iii.) transplacental transmission of pemphigus IgG antibodies

from diseased mothers to neonates leading to temporal neonatal

pemphigus (14).

Despite the direct pathogenic role of B cells in pemphigus,

recent studies shed light on the so far largely neglected autoimmune

block, the T cells. While several T-cell subsets with a strong Th2 and

Th17 polarization are undoubtedly involved in the pathogenesis of

pemphigus (15, 16), identifying immunodominant self-peptides

and characterization of autoreactive T cells is still challenging.

Indirect characterization via activation markers such as CD154
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presents as a reliable method to detect antigen-reactive T cells, while

other methods such as ELISPOT or incorporation of 3H-thymidine

are unable to distinguish specific cell populations (3H-T, ELISPOT)

or focus on a single cytokine secreted by activated T cells

(ELISPOT) (17). With the advent of MHC class II–peptide

technology a more comprehensive understanding of antigen-

specific T cells in the immune pathogenesis of several HLA class

II–linked autoimmune disorders is now achievable (18).

Considering the potential individual contributions of loss of

tolerance, arising antigen-specific T and B cells as well as antigen-

specific IgG as key elements of pemphigus pathogenesis, we next

summarize the development of pemphigus-related mouse models

focusing on those different aspects of the disease with each of the

advantages and disadvantages (Table 1).
Animal models of pemphigus

Depending on the desired complexity of parameter induction,

pemphigus-associated blister research brought forth different

mouse models of pemphigus during the last three decades. In vivo

models of pemphigus are classified as follows (Figure 1) (19, 28, 29):
1. Antibody transfer-induced (“passive”) models based on the

injection of pemphigus auto-abs into mice to reproduce a

transient disease phenotype

2. Lymphocyte transfer-induced disease models based on the

transfer of autoreactive lymphocytes into mice, using

transgenic models that induce a complex auto-ab-driven

clinical phenotype

3. Antigen-specific immunization of mice to induce B and T

cell-specific autoimmune responses including induction of

pathogenic auto-abs
TABLE 1 Advantages and disadvantages of pemphigus mouse models.

Model Mice Advantages Disadvantages References

Antibody transfer-
induced (“passive”)

Neonatal
mice

• Faster and easier completion time
• Less antibody required to induce disease
• Reduction of animal usage in research

• Inability to follow up for a long period of time
• Inability to produce their own auto-abs
• No finalized epidermal morphogenesis
• Does not allow to study of lesions in mature hair
follicles and stem cell niche
• No possibility of applying a systemic therapeutic
approach

(13, 19, 20)

Adult
mice

• Better resembling the clinical situation
• Drug screening in a therapeutic approach

• Requirement of higher amounts of antibodies to induce
disease
• No possibility of evaluating the role and targeted
therapy of autoreactive T cells or B cells

(19, 21)

SCID

• Investigation of autoantibody-induced
pathology in human tissue

• Labor-intensive and time-consuming
• Complex surgical intervention
• Immunological differences between human and mouse
• No further validation

(22, 23)

Lymphocyte transfer-
induced

Adult
mice

• Solid inducible phenotype
• 107 splenocytes/transfer allows a reasonable
amount of recipient mice

• Artificial system due to using immune-deficient Rag2-/-

recipient mice
(24, 25)

Immunization-induced
Adult
mice

• Active antigen-specific immune modulation
• Possibility of immune interventions in both
preventive and therapeutic setups

• While antigen-specific IgG total titers can be affected,
no clinical phenotype is inducible so far

(26, 27)
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Antibody transfer-induced (“passive”)
mouse models

Transfer of auto-abs into neonatal mice

The direct pathogenicity of pemphigus auto-abs has been

confirmed by their passive transfer into mice. The first

experimental model for pemphigus was the passive transfer

model described by Anhalt and coworkers in 1982 (13).

Intraperitoneal (i.p.) administration of IgG from sera of PV

patients at doses of 1.5 to 16 mg/g/day into neonatal BALB/c

mice resulted in cutaneous blisters and erosions with clinical,

histological, ultrastructural, and immunological features of human

pathology. In the course of 18-72 h following IgG administration,

mice developed skin lesions in a dose- and titer-dependent manner.
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Continuous IgG administration led to the development of new

erosions and crusts; however, skin lesions healed when the IgG

injections were discontinued. This model further allowed

mechanistical investigations of of auto-ab-induced acantholysis in

pemphigus. In a time-course study, the ultrastructural

immunological changes in the epidermis of mice injected with PV

IgG were examined by electron microscopy (30). Early detachment

of the epidermis was observed 1 h post IgG injection as a widening

of the interdesmosomal spaces, followed by splitting of the

desmosomes and complete cell detachment in the suprabasal

epidermal layers within 6 h. Of note, basal cells remained

unaffected in a tombstone-like pattern. Anti-Dsg3 auto-abs

purified from PNP sera were also pathogenic and caused

blistering in neonatal mice (31).

The principle of disease induction by passive transfer of

pathogenic PV IgG into neonatal mice has also been successfully
FIGURE 1

Different mouse models of pemphigus. (A) Antibody transfer-induced (“passive”) models. Total pemphigus vulgaris (PV) or pemphigus foliaceus (PF)
IgG fractions, anti-desmoglein (Dsg) 1/3 IgG isolated from patients′ sera, or monoclonal anti-Dsg3 antibodies (e.g., AK23, 2G4) are injected into adult
or neonatal mice leading to blister formation. Direct immunofluorescence (IF) microscopy, hematoxylin and eosin (H&E)-stained histology, and
clinical presentation (white arrowheads indicate the blister sites) of a neonatal mouse injected with purified IgG from a patient with PV.
(B) Lymphocyte transfer-induced models. Following adoptive transfer of naive lymphocytes from Dsg3-/- mice or splenocytes from Dsg3-/- mice
immunized with recombinant Dsg3 protein, Rag2-/- immunodeficient mice produce anti-Dsg3 IgG antibodies and display the PV phenotype,
allowing us to study the loss of tolerance. (C) Immunization-induced models. Immunization of humanized HLA-DBR1*04:02 transgenic mice with
human Dsg3 recapitulates the effector phase of T and B cells followed by the formation of pathogenic Dsg3-specific IgG formation. Binding of the
murine IgG from immunized mice to the keratinocyte cell surface was confirmed by indirect IF staining on monkey esophagus. Injection into human
skin with murine IgG resulted in intraepidermal acantholysis and typical pathology. Figure was created with BioRender.com.
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https://www.BioRender.com
https://doi.org/10.3389/fimmu.2023.1169947
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Emtenani et al. 10.3389/fimmu.2023.1169947
applied to other pemphigus variants. Roscoe et al., in 1985

published the first in vivo study on the pathogenic role of anti-

Dsg1 antibodies (32). When injected into neonatal mice, PF IgG (at

10 mg/g/day for a total of four injections) induced superficial skin

blisters reproducing the clinical and immunopathological findings

of human disease. Similar to the PV model (13), there was a close

correlation between disease severity and the amount of injected IgG.

In contrast to PV IgG, PF IgG did not cause suprabasal acantholysis

in the epidermis but rather a superficial loss of epidermal adhesion,

suggesting that PV and PF are mediated by different auto-abs

specificities. Further studies showed that the pathogenic auto-abs

in pemphigus are predominantly of the IgG4 subclass (33, 34). In

contrast, some PF patients only had IgG1 auto-abs, which caused

acantholysis in mice (35).
Autoantibodies alone cause skin
pathology in pemphigus

Unlike the pemphigoids, IgG-induced acantholysis in

pemphigus is independent of complement activation or Fc-

effector function. In an experimental passive transfer model, i.p.

injection of intact pathogenic IgG and F(ab′)2 from PV sera led to

the same extensive blistering, while the latter failed to induce C3

deposition. In addition, blistering was observed in C5-deficient or

cobra venom factor (a structural analog of complement component

C3) pretreated neonatal mice following administration of PV IgG

(36). Hence, it was speculated that crosslinking of PV antigen on the

surface of keratinocytes by bivalent PV auto-abs may be a necessary

step for acantholysis.

Another study showed that subcutaneous (s.c.) injection of F(ab

′)2 and Fab fragments caused blistering in mice (37). Pemphigus-

like lesions have also been induced in neonatal mice by passive

transfer of F(ab′)2 and Fab′ fragments purified from PF IgG (33).

These early studies relied predominantly on polyclonal IgG or its

cleavage products. Although patient’s IgG is certainly an excellent

tool for investigation of pemphigus pathomechanisms, its limited

availability and heterogeneity over the course of the disease and

between individuals may complicate systematic studies (38, 39).

Monoclonal antibodies (mAbs), developed by immunization of

mice with the recombinant mouse Dsg3 ectodomain, such as

AK23, or isolated by phage display from active pemphigus patients,

are now being extensively used to model PV pathogenesis (40–44).

Payne et al. cloned anti-Dsg3 mAbs as single-chain variable

fragments (scFvs) from a mucocutaneous PV patient using

antibody phage display, which induced typical PV lesions in

neonatal mice (40). Using the same technique, Ishii et al., isolated

anti-Dsg1 scFv mAbs from a PF patient that were pathogenic in

mouse and human skin (44). While most pathogenic Dsg3-related

mAbs bind to the membrane distal EC-1/2 regions of the Dsg3

ectodomain, a novel Dsg3-EC5 binding mAb 2G4 allows the

characterization of membrane proximal pathogenic binding (45).

Additionally, experimental pemphigus can also be induced by Dsg3-

hybridoma cell lines. Passive transfer of AK23-IgG hybridoma
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derived from splenocytes of the PV model caused blistering in

neonatal mice (41). The practical advantage of hybridoma

technology is that once stable somatic cell lines are established,

they can be used to produce sensitive and specific mAbs in

unlimited quantities. Furthermore, this technique preserves the

native pairing of antibody variable and constant regions (46).

Despite these advantages, hybridoma cells are limited by long

generation times and the difficulty of controlling the epitopes

against which antibodies are produced. Immunoadsorption of

pathologic auto-abs from PV sera using the entire EC domains of

Dsg1 and Dsg3 abolished the blister-inducing ability of IgG fractions

in mice, suggesting that anti-Dsg1/3 IgG alone is pathogenic; other

factors such as additional non-desmoglein PV auto-abs alone or in

combination are not required (47, 48). In line with these observations,

adjuvant immunoadsorption has been successfully applied in patients

with severe PV and PF to efficiently reduce circulating pathogenic

auto-abs (49–51).

The possible involvement of IgM in the pathogenesis of PV has

also been investigated. In experimental PV, in contrast to AK23

IgG, administration of its AK23-IgM hybridoma cells isotype did

not induce clinically overt blisters (52). As monovalent (Fab),

bivalent (F(ab)’)2), or scFv fragments of anti-Dsg auto-abs induce

keratinocyte dissociation in vitro and in vivo, the Fc portion of

pathogenic pemphigus auto-abs is probably of minor

significance (53).

Taken together, these results demonstrate that Fc-mediated

mechanisms are not required for blister formation in PV and PF.

Accordingly, research in pemphigus has focused on characterizing

anti-Dsg B cells and antibodies as well as signaling pathways that

modulate the pathogenic effects of auto-abs.
Desmoglein compensation model explains
the localization of lesions

Dsg1 or Dsg3 can, at least in part, compensate for the adhesive

functions of each other (1, 54). The desmoglein compensation

model has been supported by several experimental studies.

Passive transfer of PF IgG to neonatal mice caused loss of

adhesion in the superficial epidermis (55). Consistent with this

finding, exfoliative toxins produced by Staphylococcus aureus

specifically cleave Dsg1, resulting in blistering just below the

stratum corneum of neonatal mice (56, 57). On the other hand,

forced superficial expression of Dsg3 in transgenic mice protected

them from PF antibody-induced blistering. Another proof comes

from the passive transfer of pemphigus IgG to normal and neonatal

Dsg3null mice. Basically, Dsg3null neonatal mice do not present skin

blisters because Dsg1 is present throughout the epidermis to

compensate for the genetic loss of Dsg3. However, challenging

these mice with anti-Dsg1 IgG led to severe PV-like blistering

similar to cutaneous PV patients (54, 58). Additionally, the telogen

hair sheds early in Dsg3−/− mice leading to an alopecia areata-like

phenotype, whereas transgenic Dsg1 over-expression in the telogen

club leads to a decreased or delayed balding phenotype (59).
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Emerging novel therapeutic targets
for pemphigus

Targeting signaling pathways

Beyond steric hindrance, signaling pathways induced by

binding of pemphigus IgG have been proposed to indirectly

trigger acantholysis (60–62). Pharmacological modulation of

signaling molecules blocked blister formation in the passive

transfer mouse models for pemphigus. Consequently, some of the

therapies derived from treating these experimental models might be

translatable to human disease. For instance, 38 mitogen-activated

protein kinase (p38MAPK) was shown to be activated by polyclonal

PV (63, 64) and PF IgG (65) in vivo. Furthermore, pretreatment

with p38MAPK inhibitors (i.e., SB202190 and SB203580) blocked

PV and PF IgG-induced blistering in mice, suggesting a pivotal role

for p38MAPK signaling in acantholysis (64–66). On the other hand,

blisters induced by mAbs isolated from PV patients were not

affected by p38 or MAPK-activated protein kinase 2 (MK2)

inhibition, pointing to the significance of steric hindrance

mechanisms (42, 67). Application of a Dsg3-specific tandem

peptide stabilized adhesion inhibited PV IgG-mediated activation

of p38MAPK and skin blistering (68). Unfortunately, clinical trials

with a p38MAPK inhibitor (NCT00606749) in PV patients were

terminated due to its dose-limiting hepatotoxicity (69).

Downstream of p38MAPK, epidermal growth factor receptor

(EGFR) signaling was shown to be activated in PV IgG-treated

keratinocytes. In line, treatment with AG1478, an inhibitor of EGFR

signaling, blocked blister formation in mice (70). Moreover, other

clinically approved EGFR (Erlotinib) and dual EGFR/ErbB2

(Lapatinib) inhibitors prevented blistering in a neonatal PV

mouse model (71). ADAM10 together with Src regulates signaling

downstream of Dsg3 which may also include EGFR signaling. It was

shown that PV IgG increased ADAM10 activation in a Src-

dependent manner. Thus, inhibition of ADAM10 prevented

histological acantholysis and skin blistering in mice injected with

PV IgG (72). In addition, in neonatal mice injected with PV IgG,

enhanced phosphorylation of mammalian target of rapamycin (m-

TOR) and Src as well as increased blister formation and apoptosis

were observed, all of which were eliminated or reduced by focal

adhesion kinase (FAK) inhibition (73). In another experimental

setting, modulation of mTOR with sirolimus (or rapamycin) and

Src with PP1 abolished acantholysis (74). Additionally, Src blockade

was protective against AK23-induced skin blistering (75). In a

neonatal PV model, pharmacological inhibition of cyclin-

dependent kinase 2 (Cdk2) by roscovitine prevented blister

formation (76). Pretreatment of mice with inhibitors of tyrosine-

kinase (TK) completely prevented the clinical and histological

findings of PV (77). PV IgG was demonstrated to induce protein

kinase C (PKC) activation as well. In line with these findings, PKC

inhibition reduced PV IgG-induced skin blistering in vivo (78, 79).

Finally, elevated levels of cyclic adenosine monophosphate (cAMP)

have been shown to interfere with signaling pathways and prevent

blister formation in vivo (80). A recent study showed that the

phosphodiesterase 4 (PDE4) inhibitor apremilast inhibited blister
Frontiers in Immunology 05
formation in a passive transfer PV model via protective cAMP

signaling in keratinocytes. Hence, apremilast offers a promising

approach to target loss of desmosomal adhesion in pemphigus

patients (81). PV IgG not only induces direct signaling effects but

also changes gene expression patterns, which may contribute to

pemphigus pathogenesis . In contrast , cort icosteroids

antagonistically upregulate DSG3 transcription through inhibition

of the transcription factor Stat3 (82, 83). Additionally, it has been

demonstrated that methylprednisolone reduces the extent of PV

IgG-induced acantholysis in the skin of neonatal mice.
Targeting Fas ligand

Several lines of evidence indicate that certain mediators

involved in apoptosis contribute to the pathological mechanisms

of pemphigus, while apoptosis itself is not apparent in pemphigus

lesions nor required for acantholysis in vitro (84–86). In particular,

cleaved caspase-8 and -3 were detected in pemphigus lesions, and

upregulation of Fas ligand (FasL) was observed in keratinocytes co-

cultured with PV IgG (87–89). Accordingly, a study by Lotti et al.,

showed that an anti-FasL antibody blocked blister formation in a

neonatal mouse model of PV. Following PV IgG injection, sFasL-/-

mice (lacking secreted soluble form of FasL) revealed reduced

acantholytic area, whereas mFasL-/- mice (lacking membrane-

bound form of FasL) developed blisters. These observations

indicate that sFasL, which is upregulated and released from

keratinocytes, plays a critical role in pemphigus pathogenesis (90).

In a neonatal PF model, the administration of caspase inhibitors

blocked intraepidermal blistering (91). In line, a novel anti-sFasL

human mAb (PC111) has been tested for pemphigus therapy due to

low its potential for immunogenicity, favorable chemical and

physical stability, and high binding affinity of the compound (92).
Targeting neonatal Fc Receptor

Several studies have shown a pivotal role for FcRn in

pemphigus. Li et al., demonstrated that FcRn-deficient mice were

resistant to experimental PV and PF, in which circulating auto-ab

levels were significantly reduced as compared to wild type mice.

Besides, the therapeutic efficacy of high-dose intravenous

immunoglobulins (IVIg) might be attributed to FcRn saturation

and increased catabolism of pathogenic IgG (93). Of note, IVIg

protected target cells from apoptosis by interfering with signaling

pathways and increasing the sensitivity to corticosteroids (89). In an

auto-ab-induced model of PV, IVIg selectively inhibited anti-Dsg3

antibodies, decreased the number of circulating auto-abs, and

reduced blister formation (94). Additionally, disease-specific IVIg

was shown to be more effective in neutralizing pathogenic

antibodies and preventing blister formation in vivo than

commercial IVIg (95). Clinical trials are currently evaluating the

safety and efficacy of several FcRn‐targeting compounds (e.g.,

efgartigimod (ARGX-113) and SYNT001 (ALXN1830)) in

pemphigus (96–98). Showing unexpected effects for efgartigimod
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in vitro, a recent study additionally suggested that efgartigimod-

induced blockade of FcRn may have functions on B cell homeostasis

beyond IgG recycling. Improvement of keratinocyte adhesion by

FcRn blockade may provide a novel treatment option for

pemphigus (39). However, the antibody-induced model is not

suitable to study the role and specific targeting of autoreactive T

cells or B cells.
Transfer of autoantibodies into adult mice

Due to incomplete epidermal development in neonates, the

principle of autoantibody transfer has been further adapted to adult

mice. Experimental PV was induced in adult C57Bl/6J or Rag2-/-

mice by passive transfer of a murine pathogenic Dsg3 mAb, AK23

(21). This model has proved useful in exploring non-apoptotic

aspects of pemphigus related signaling. For instance, EGFR was

shown to be activated in response to AK23, followed by an increase

in c-myc levels. Adult passive transfer model of pemphigus was also

applied in fully humanized Dsg3 (hDsg3) mice, showing that the

administration of anti-Dsg3 serum IgG from patients with mucosal

PV (mPV) caused IgG deposits on the surface of epidermal

keratinocytes and suprabasilar acantholysis in mucosal tissues of

hDsg3 mice, but not in WT mice. This finding confirms the in vivo

pathogenicity of mPV anti-hDsg3 IgG (99).
Transfer of autoantibodies into human skin
grafted onto mice

An alternative approach for studying the pathogenesis of

human auto-abs in mice is to passively transfer pemphigus serum

into athymic nude mice grafted with human oral mucosa. This

model combines a mouse model with human skin allowing in vivo

studies with pathogenic anti-human Dsg3 auto-abs (22, 100). A low

degree of epithelial cell detachment was observed in this mucosal

graft model, whereas human IgG was detected in the skin of all

mice, and nearly two-thirds of the transplants showed basal

epithelial edema (23). When full-thickness human skin was

grafted onto the backs of severe combined immunodeficient

(SCID) mice followed by injection of PF and PV IgG, subcorneal

and suprabasal loss of adhesion as well as intercellular IgG deposits

in the upper and lower layers of the epidermis, respectively, was

seen (22). Because the xenograft model in pemphigus is complex

and adds little to a classical passive model, few experiences have

been gained with these models.
Lymphocyte transfer-induced disease
models based on the transfer of
autoreactive lymphocytes into mice

Considering the half-life of serum IgG, passive transfer models

can only be used and analyzed for a limited amount of time. The

main obstacle to an active immunization model is immunological
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self-tolerance. The usage of pemphigus mouse models was

transformed by the development of Dsg3-/- knockout mice. These

mice show a loss of keratinocyte cell adhesion mainly in oral

mucous membranes, a phenotype that resembles that of patients

with PV (24). These erosions, also occasionally found in the skin

with suprabasal acantholysis demonstrated the importance of Dsg3

in vivo, however, no immunological inherent components were

involved. Immunization with murine Dsg3 induced a more severe

phenotype in terms of affected skin area and eosinophilic spongiosis

(25). To further pinpoint Dsg3-specific immune modulation,

immunization of Dsg3-/- mice with recombinant murine Dsg3

was followed by the intravenous transfer of the splenocyte pool

into immunodeficient Rag2-/- Dsg3+/+ recipient mice (25). Newly

formed antigen-specific T and B cells then induced a Dsg3-specific

autoimmune response presenting with suprabasal acantholysis,

rows of tombstone basal keratinocytes, and half-desmosomes

(101). Interestingly, antigen-specific T cell infiltration into Dsg3-

expressing tissues led to interface dermatitis, a distinct form of T

cell-mediated autoimmunity causing acantholysis and can be found

in autoimmune skin diseases such as PNP (102). Establishing a

retroviral transduction system, Takahashi et al., generated a C57BL/

6J-Tg (Dsg3TCR140) mouse line which enabled them to show that

while tolerized Dsg3H1 T cells could induce interface dermatitis,

but not PV, non-tolerized Dsg3H1 T cells induced both anti-Dsg3

IgG production and interface dermatitis. These results

demonstrated that induced anti-Dsg3 auto-abs potentially

interfere with cell-cell adhesion of keratinocytes in the PV model.

Based on those studies, a series of human, murine, and bispecific T

cell clones were generated. Further characterization indicated that

although an individual anti-Dsg3 IgG is not sufficient to cause

acantholysis in adult mice, several clones together can induce a

p emph i g u s ph eno t y p e ( 4 3 ) . An a r r a y o f v a r i o u s

immunosuppressive agents frequently used in PV patient

treatment was evaluated by means of ELISA, weight, and PV

severity score (103). While cyclophosphamide displayed the

strongest immunosuppressive properties, other agents such as

azathioprine were shown to be less effective or not suppressive at

all such as methylprednisolone and dexamethasone. Those findings

are partially in contrast to the experience in humans (104), showing

that observations in preclinical mouse models cannot be directly

transferred to the human situation. Unfortunately, no follow-up

studies applying novel treatment modalities in this model have been

published so far.

Another modification of the pemphigus mouse model involved

the transfer of naїve splenocytes from Dsg3-/- mice into Rag2-/-

Dsg3+/+ recipients (105). Here, Dsg3-specific naїve lymphocytes in

Dsg3-/- mice can be primed and activated by endogenous Dsg3 in

recipient mice to ultimately induce pathogenic anti-Dsg3 IgG

without active immunization. While the time and overall levels of

IgG and phenotype induction were delayed by two weeks, once the

phenotype developed, no apparent differences in disease severity

between Rag2-/- recipients of naïve or immunized splenocytes were

found (105). Immunosuppressive drugs such as cyclophosphamide

successfully inhibited disease development in a preventive setting,

and mice were free of symptoms 35 days after discontinuing the

treatment (106). To further pinpoint crucial CD4+ subpopulations
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for anti-Dsg3 IgG formation, Kim et al., developed a modified

murine transfer protocol based on Rag1-/- recipient mice and

provided compelling data that Dsg3-specific ICOS+ T follicular

helper (Tfh) cells play a pivotal role in pathogenic humoral

immunity in PV (107). Since alterations in the Tfh compartment

have previously been found in PV (108), targeting ICOS represents

a valid therapeutic option for the treatment of PV.
Antigen-specific immunization of
mice to induce B and T cell-specific
autoimmune responses including
induction of pathogenic antibodies

PV is an oligoparametric disease, arising from a combination of

different environmental factors in predisposed individuals carrying

individual susceptibility genes. While genome-wide association

studies are lacking to complete the picture of protective,

susceptible, or neutral alleles (109), two highly associated class II

alleles have been found in PV patients (DQB1*0503 and

DRB1*0402) (110). PV patients carrying these alleles showed

Dsg3-specific auto-aggressive Th2 cells, while healthy carriers

preferentially displayed an autoreactive Th1 response (111). This

prompted us to develop an active mouse model using a C57B/6J

transgenic mouse line with the respective alleles HLA-DQB1*04:02

in a linkage disequilibrium with HLA-DQB1*03:02 that

additionally expresses the human CD4 co-receptor while lacking

a functional murine major histocompatibility class II molecule (I-

Ab−/−) (26). Antigen presentation after Dsg3 immunization is

therefore restricted to human alleles which are presented in

association with these human HLA class II alleles to CD4+ T

cells. Intraperitoneal immunization with human Dsg3 protein or

with a set of immunodominant Dsg3-peptides (50 µg/mouse day 0

and day 14), which share a positively charged anchor motif for

HLA-DRB1*04:02, led to the formation of Dsg3-reactive CD4+ T

cells followed by a profound and lasting induction of anti-Dsg3 IgG

(26). This model was used to show that T and B cell interaction is

crucial for pemphigus pathology. Blockade of this interaction by

anti-CD40L mab completely prevented anti-Dsg3 IgG formation.

Furthermore, the induction of T regulatory cells by the

superagonistic anti-CD28 antibody D665 also significantly

reduced anti-Dsg3 IgG induction (112).

Dsg3-specific immunization of the HLA tg mice allows cellular

characterization and therapeutic intervention studies in a

preclinical setting (i.e., during the formation of antigen-specific T

and B cells and subsequent auto-Ab formation) or a therapeutic

setting (i.e., after the onset of immunization with an ongoing auto-

Ab formation as in human PV). Using this model, CD4+ T cell-

specific tolerance could be induced and analyzed based on the

application of a set of immunodominant Dsg3 CD4+ T cell epitopes

l inked to nanoparticles (113). For identificat ion and

characterization of low-frequent Dsg3-specific CD4+ T cells in

lymphatic tissues, a novel detection based on DRB1*04:02 HLA

class II specific dextramers loaded with the aforementioned

immunodominant Dsg3-T cell epitopes was developed. CD4+ T
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cells were primarily detected in lymphoid tissue after initial

immunization (4% Dsg3+ CD4+ CD19+ cells) which steadily

decreased thereafter. Additionally, applying IVIg as an established

treatment for pemphigus was shown to modulate antigen-specific T

and B cell formation (114). A significant reduction of Dsg3-specific

serum IgG correlated with an upregulation of regulatory T cells.

Recent endeavors to break tolerance against Dsg3 in various

strains of Dsg3-expressing mice employing different immunization

protocols with recombinant human and murine Dsg3/Dsg1 forms

did not elicit a clinical phenotype while non-pathogenic anti-Dsg3/

Dsg1 IgG was induced (115). However, unpublished work currently

focuses on the establishment of a Dsg3-transgenic mouse model

displaying the formation of HLA-dependent antigen-specific T and

B cells as well as a solid antigen-specific IgG as a basis of a lasting

clinical phenotype. This model will be suitable for in-depth analysis

of autoreactive B and T cells and IgG formation as well as a

preclinical model for testing novel specific immune interventions

in pemphigus.
Conclusions

Even though our understanding of T- and B-cell-related

induction of antigen-specific IgG in AIBD PV and PF has

dramatically improved over the last decades, we still lack a proper

mouse model that reflects the “grande picture” of patient-relevant

characteristics. The interplay between blister formation based on

steric hindrance by auto-abs against Dsg3 and prominent induced

signaling pathways such as p38MAPK or ERK is still under debate.

The identification of novel PV-related antigens allows the further

distinction of novel clinical subtypes with specific clinical outcomes.

Different preclinical models reflect distinct hallmarks and pathways

of PV immune pathogenesis, i.e., induction of autoreactive T and B

cells and auto-ab-induced acantholysis. They are constantly

improved and reflect, so far, only a few PV-related parameters.

Novel therapeutic interventions in PV address these parameters and

be further characterized in vivo. Nonetheless, a mouse model

reproducing PV pathology based on HLA-dependent T- and B-

cell mediated antibody formation leading to mucosal acantholysis

would be a desired gold standard.
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