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Abstract: Background: The International Prognostic Index (IPI) is applied to predict the outcome
of chronic lymphocytic leukemia (CLL) with five prognostic factors, including genetic analysis. We
investigated whether multiparameter flow cytometry (MPFC) data of CLL samples could predict
the outcome by methods of explainable artificial intelligence (XAI). Further, XAI should explain the
results based on distinctive cell populations in MPFC dot plots. Methods: We analyzed MPFC data
from the peripheral blood of 157 patients with CLL. The ALPODS XAI algorithm was used to identify
cell populations that were predictive of inferior outcomes (death, failure of first-line treatment). The
diagnostic ability of each XAI population was evaluated with receiver operating characteristic (ROC)
curves. Results: ALPODS defined 17 populations with higher ability than the CLL-IPI to classify
clinical outcomes (ROC: area under curve (AUC) 0.95 vs. 0.78). The best single classifier was an
XAI population consisting of CD4+ T cells (AUC 0.78; 95% CI 0.70–0.86; p < 0.0001). Patients with
low CD4+ T cells had an inferior outcome. The addition of the CD4+ T-cell population enhanced
the predictive ability of the CLL-IPI (AUC 0.83; 95% CI 0.77–0.90; p < 0.0001). Conclusions: The
ALPODS XAI algorithm detected highly predictive cell populations in CLL that may be able to refine
conventional prognostic scores such as IPI.
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1. Introduction

Chronic lymphocytic leukemia (CLL) is the most common leukemic disease in West-
ern countries [1]. The WHO Classification for 2022 categorized CLL as a mature B-cell
neoplasm [2]. CLL is diagnosed by the characteristic immunophenotype in multiparameter
flow cytometry (MPFC) B-cell panels [3,4]. The prognosis of CLL is heterogeneous; some
patients will not require treatment and some patients will progress quickly and some
transform into high-grade lymphoma (Richter syndrome). Traditionally, the Rai and Binet
classifications of CLL were used for clinical staging and to estimate the prognosis based
primarily on leukemia burden [5,6]. In addition to the disease burden, genetic factors such
as TP53 mutation or 17p deletion, 11q deletion, and a complex karyotype indicate a poor
prognosis, while deletion of 13q14 and trisomy 12 harbors a favorable prognosis [7–9].
Furthermore, mutations in the NOTCH1, SF3B1, and BIRC3 genes are associated with
shorter survival [10–13]. Expression of CD38 and ZAP-70 on CLL cells has been associated
with unmutated IGHV and higher levels of beta2-microglobulin indicating an adverse
prognosis [14–20].

In 2016, the International Prognostic Index for patients with chronic lymphocytic
leukemia (CLL-IPI) was introduced [21]. Four prognostic subgroups based on five inde-

Curr. Oncol. 2023, 30, 1903–1915. https://doi.org/10.3390/curroncol30020148 https://www.mdpi.com/journal/curroncol

https://doi.org/10.3390/curroncol30020148
https://doi.org/10.3390/curroncol30020148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/curroncol
https://www.mdpi.com
https://orcid.org/0000-0003-2820-1501
https://orcid.org/0000-0002-5259-4651
https://orcid.org/0000-0003-1612-9557
https://doi.org/10.3390/curroncol30020148
https://www.mdpi.com/journal/curroncol
https://www.mdpi.com/article/10.3390/curroncol30020148?type=check_update&version=2


Curr. Oncol. 2023, 30 1904

pendent factors (TP53 status, IGHV mutational status, serum beta2-microglobulin concen-
tration, clinical stage, and age) were defined [21]. Five-year overall survival ranges from
93.2% (low-risk CLL-IPI) to 23.3% (very-high-risk CLL-IPI) [21].

However, the five parameters of the CLL-IPI or single markers such as CD38 and
ZAP-70 may not reflect the genetic, pathophysiological, and prognostic heterogeneity of
the CLL at the individual level compared to structures in large and complex datasets.

The MPFC of peripheral blood from patients with CLL generates individual and complex
high-dimensional data from malignant CLL cells and non-malignant surrounding white blood
cells. MPCF data from CLL patients are acquired routinely for diagnostic purposes.

Dimensionality reduction techniques such as self-organizing maps (SOM) have already
been applied to enhance the interpretation of MPFC data [22,23]. Furthermore, the Citrus
(cluster identification, characterization, and regression) algorithm can be applied to find
cell-type specific differences between groups in MPFC data [24,25].

Our group described the algorithmic population description approach (ALPODS)
which is based on explainable artificial intelligence (XAI) and has been used for classification
tasks. The XAI provides sample-based explanations of its decisions by visualizing the
immune cell populations which were distinctive for bone marrow compared to peripheral
blood [26,27]. ALPODS delivered disjunct cell populations which can be visualized in
usual flow cytometry two-dimensional dot plots of FCS data files. This enables human flow
cytometry operators to classify these cell populations by conventional MPCF gating.

MPFC data of diagnostic B-cell panels should include information about the individual
CLL prognosis and outcome. Therefore, we used the ALPODS algorithm to identify the
crucial cell populations that are overrepresented in CLL patients who experienced death or
failure of the first line of systemic therapy [26].

2. Materials and Methods
2.1. Patients, Data Acquisition, and Processing

MPFC data of the peripheral blood from 157 unselected patients with CLL diagnosis
were re-analyzed for this study and matched to clinical data. MPFC data were acquired
for routine diagnostic analysis at the University Hospital Marburg from 2014 to 2020. The
study was approved by the local ethics committee in Marburg. Clinical data included the
following: CLL-IPI (i.e., TP53 mutation status, IGHV mutation status, age, Binet, beta2-
microglobulin), sex, ECOG, Richter transformation, treatment, date of death, treatment
failure, and last follow-up. In case of incomplete or unknown CLL-IPI parameters, half of
the score points of the missing parameters were given. The patients were separated into a
group with an inferior outcome and a group with a superior outcome. Patients who died
during follow-up and had a failure of the first-line systemic therapy were categorized as
TTF 1 (time to first-line treatment failure), that is, inferior outcome. All other patients were
classified as TTF 0 which indicated a superior CLL outcome.

We used the ALPODS XAI algorithm [26] to identify cell populations in flow cytome-
try data that were over or underrepresented in patients with the inferior result (TTF 1) or
superior outcomes (TTF 0). The predictive value of the XAI populations was compared to
the frequency of CD38-positive CLL cells and CLL-IPI on the receiver operating charac-
teristic (ROC) curves. Multiple logistic regression analysis in repeated 10 bootstrap trials
was performed for the combination of more than one independent variable to predict
dichotomous groups. Therefore, three randomly selected patients from each group (TTF 0
and TTF1) were left out 10 times to test if the results can be generalized for other patients.

2.2. Antigen Panel, Flow Cytometry Staining, and Analysis

For diagnosing CLL and other B-cell lymphomas we used a B-cell panel which con-
sisted of two tubes with different fluorescence antibody panels. The first tube (T1) included
fluorescence antibodies against B-cell antigens (CD19, CD20, FMC7, CD79b, CD23, light
chains of kappa and lambda), T-cell antigens (CD3, CD5, CD2, CD7, CD4, CD8), and the
activation marker CD38, which has been described to be prognostic for CLL [14]. The sec-
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ond tube (T2) contained B-cell antigens (CD19, CD20, IgM), markers of hairy-cell leukemia
(CD103, CD11c, CD25), follicular lymphoma, and high-grade lymphoma (CD10), and addi-
tional markers to ensure the diagnosis of CLL (CD43, CD200). The complete antibody panel,
clones, and fluorescence dyes are stated in the Supplementary Information (Table S1).

Two 5 mL polystyrene FACS tubes with fluorescence antibodies in a dried-down layer
(DuraClone-Technology, Beckman Coulter, Krefeld, Germany) were incubated for 15 min
at room temperature in 100 µL prewashed peripheral blood. After antibody staining, red
cells were lysed in 2 mL of VersaLyse™ (Beckman Coulter, Krefeld, Germany) for 10 min,
washed with 3 mL of buffered phosphate saline (PBS Biochrom, Berlin, Germany), and
centrifuged with 300× g for 5 min. The cell pellet was resuspended in 500 µL PBS and
measured on a Navios Flow Cytometer (Beckman Coulter, Krefeld, Germany). In total, up
to 1 × 105 cells were acquired.

2.3. Data Processing

The raw flow cytometry data were compensated, and log transformed. Events with
very high side scatter (i.e., mainly granulocytes) were excluded to reduce the amount of data
that adds little informative value. Thereafter, data were range standardized between zero
and 6 based on the adapted Milligan cooper standardization [28,29]. From the total number
of recorded cell events of each sample, a 1% random data set was drawn. Using this 1%
sample for training ALPODS a 1000-fold cross-validation was performed. The populations
that were relevant for the distinction of TTF 1 versus TTF 0 were selected from ALPODS
and the most important populations were filtered using Cohen’s D effect size measure. The
computed ABC analysis [30] selected optimal limits for subset division by exploiting the
mathematical properties related to the distribution of the items analyzed. ABC analysis
divides the data into three disjoint subsets A, B, and C, with subset A comprising very
profitable values, i.e., largest data values (“the important few”), subset B comprising values
where the yield equals the effort required to obtain it, and the subset C comprising of
non-profitable values.

2.4. Statistics

The graphs and statistics were compiled with Excel 2016 (Microsoft Corporation,
Redmond, WA, USA) and in the R package ggplot2 [31] and DataVisualizations [32], Graph-
Pad Prism® Version 9.4.1 (GraphPad Software, San Diego, CA, USA), R (programming
language), www.R-project.org (accessed on 6 October 2022).

3. Results
3.1. Patient Characteristics

From the 157 CLL patients N = 42 had inferior outcomes (death and/or first-line
treatment failure) and N = 115 patients did not reach the defined endpoints (superior
outcome, TTF 0). The median age of the total cohort was 68 years (range 26–91 years), and
62 (39.5%) of the patients were female and 95 (60.5%) were male. A total of 83 (52.9%) of
the patients were diagnosed with Binet A, 24 (15.3%) with Binet B, and 12 (7.6%) with Binet
C. Follow-up was in the median 31.5 months (interquartile range 9–65 months). Additional
patient characteristics for the total cohort and separated for TTF 1 or TTF 0 are denoted in
Table 1.

www.R-project.org
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Table 1. Patient characteristics.

Total (N = 157) TTF 1 (N = 42) TTF 0 (N = 115)

Age (years)

Median (range) 68 (26–91) 70 (50–88) 67 (26–91)

Sex

Female 62 (39.5%) 17 (40.5%) 45 (39.1%)

Male 95 (60.5%) 25 (59.5%) 70 (60.9%)

Binet

A 83 (52.9%) 15 (35.7%) 68 (59.1%)

B 24 (15.3%) 7 (16.7%) 17 (14.8%)

C 12 (7.6%) 8 (19.0%) 4 (3.5%)

unknown 31 (19.7%) 9 (21.4%) 22 (19.1%)

CLL-IPI

Low 84 (53.5%) 9 (21.4%) 75 (65.2%)

Intermediate 53 (33.8%) 20 (47.6%) 33 (28.7%)

High 16 (10.2%) 11 (26.2%) 5 (4.3%)

Very High 4 (2.5%) 2 (4.8%) 2 (1.7%)

Follow up

Median (IQR) months 31 (9–65) 71 (38–114) 24 (7–46)

Death (N) 16 (10.2%) 16 (38.1%) 0 (0%)

Treatment failure first line (N) 34 (21.7%) 34 (80.1%) 0 (0%)

Richter’s syndrome (N) 4 (2.5%) 3 (7.1%) 1 (0.9%)

Therapy (first line)

R-Bendamustin 25 (15.9%) 17 (40.5%) 8 (7.0%)

Ibrutinib 12 (7.6%) 6 (14.3%) 6 (5.2%)

Other 24 (15.3%) 15 (35.7%) 9 (7.8%)

No therapy 80 (51.0%) 0 (0%) 80 (70.0%)

Unknown 16 (10.2%) 4 (9.5%) 12 (10.4%)
Abbreviations: N = number; CLL = chronic lymphocytic leukemia; IPI = International Prognostic Index; TTF = time
to first-line treatment failure; IQR = interquartile range; R = rituximab.

3.2. Cell Populations Identified by ALPODS

Standardized flow cytometry data and outcome group (TTF 1 or TTF 0) were used
as input information for the ALPODS algorithm. ALPODS identified N = 17 distinctive
cell populations in the MPFC data which were overrepresented (N = 14/17) or underrepre-
sented (N = 3/17) in the TTF 1 patients’ cohort. Seven out of 17 populations were identified
in the first tube (T1) of the diagnostic flow cytometry B-cell panel. Ten out of 17 populations
were identified in the second tube (T2) of the B-cell panel. The workflow is depicted in
Figure 1.

Mann–Whitney U test and ROC analysis were performed to detect the most predictive
XAI populations for inferior outcomes. The results were listed in Table 2. XAI populations
with a significant predictive ability for the outcome (TTF 1 vs. TTF 0) were verified for their
prognostic value in patients with high IPI (≥4) compared to patients with low IPI (≤1)
(Supplementary Information, Table S2). XAI populations with a significant predictive value
for the outcome (TTF 1 vs. TTF 0) and the prognosis (IPI low vs. IPI high) were T1C0011,
T1C0016, T2C0004, and T2C0018 (bold script in Table 2). Among these populations, solely
T1C0016 had a higher frequency in the patients with a good outcome (TTF 0; mean 13.51%
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vs. 4.91%; SE of difference 1.83) and good prognosis (IPI ≤ 1; mean 12.50% vs. 5.37%; SE of
difference 2.42).
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Figure 1. Workflow and data processing. Flow cytometry raw data was standardized and assigned
to the outcome group (TTF 1 inferior, TTF 0 superior). The ALPODS algorithm was used to identify
distinctive cell populations with different frequencies in TTF 1 versus TTF 0 The most important
populations for determination were visualized in flow cytometry bivariate dot plots and assigned to
their biological counterparts.
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Table 2. Outcome prediction of the XAI populations.

TTF 1 TTF 0 ROC

Mean (%) Mean (%) SE of
Difference

p-Value
(MWU-Test) AUC 95% CI p-Value

CLL-IPI 2.845 * 1.322 * 0.2712 <0.0001 0.78 0.70–0.86 <0.0001
CD38+ 37.05 22.51 5.414 0.0016 0.66 0.57–0.76 0.0018

XAI-
populations

Total 0.95 0.91–0.98 <0.0001
T1C0011 5.36 1.39 0.81 <0.0001 0.76 0.68–0.84 <0.0001
T1C0012 1.91 1.61 0.40 0.2650 0.56 0.45–0.66 0.2635
T1C0016 4.91 13.51 1.83 <0.0001 0.78 0.70–0.86 <0.0001
T1C0017 6.46 4.15 1.32 0.2136 0.57 0.46–0.67 0.2124
T1C0019 5.19 6.38 1.01 0.0970 0.59 0.47–0.70 0.0966
T1C0020 0.35 0.11 0.08 0.1514 0.58 0.47–0.68 0.1506
T1C0023 2.25 0.57 0.49 0.5593 0.53 0.41–0.65 0.5573
T2C0001 2.59 5.50 1.31 0.0011 0.67 0.57–0.76 0.0012
T2C0002 2.85 0.73 0.61 0.0052 0.64 0.54–0.75 0.0055
T2C0004 9.64 1.23 1.29 0.0002 0.69 0.58–0.80 0.0002
T2C0009 1.74 0.84 0.49 0.6877 0.52 0.41–0.63 0.6859
T2C0010 0.55 0.21 0.15 0.5369 0.53 0.43–0.64 0.5349
T2C0014 8.19 12.14 1.97 0.0078 0.64 0.54–0.74 0.0081
T2C0018 5.37 1.66 0.72 0.0001 0.73 0.63–0.82 <0.0001
T2C0020 4.38 1.75 0.63 <0.0020 0.66 0.55–0.77 0.0022
T2C0021 3.25 2.74 0.73 0.4286 0.04 0.44–0.64 0.4266
T2C0028 0.85 0.36 0.14 0.2021 0.57 0.45–0.68 0.2010

* Score points ( 6=percentage). Abbreviations: TTF = time to first-line treatment failure; ROC = receiver operation
characteristics; SE = standard error; MWU = Mann–Whitney U; AUC = area under curve; CI = confidence interval,
IPI = International Prognostic Index; T1 = Tube 1 (first tube of the flow cytometry panel; T2 = Tube 2 (second tube
of the flow cytometry panel).

In ROC curve analysis, T1C0016 had the highest predictive ability for the outcome
of all XAI populations. It should be noted that only the T1C0016 population had the
same predictive value as the CLL-IPI score (Table 2; both: AUC 0.78; 95% CI 0.70–0.86).
Furthermore, the frequency of CD38-positive CLL cells had a lower predictive ability (AUC
0.66; 95% CI 0.57–0.76, p = 0.0018) than all verified XAI populations TC0011 (AUC 0.76; 95%
CI 0.68–0.84, p < 0.0001), T1C0016 (AUC 0.78; 95% CI 0.70–0.86, p < 0.0001), T2C0004 (AUC
0.69; 95% CI 0.58–0.80, p = 0.0002), and T2C0018 (AUC 0.73; 95% CI 0.63–0.82, p < 0.0001).

The 17 XAI populations in combination had a predictive ability of 0.95 AUC (95%
CI 0.91–0.98; p < 0.0001) for TTF using multiple logistic regression analysis (Figure 2A),
which was significantly higher than IPI (p = 0.0008; Hanley–McNeil test). Restriction on
the four populations of XAI (that is, T1C0011, T1C0016, T2C0004, and T2C0018), which
were verified to be predictive of IPI, resulted in a lower diagnostic ability of 0.87 AUC (95%
CI 0.80–0.93; p < 0.0001) (Figure 2B), but still higher than the conventional IPI (AUC 0.87
vs. 0.78) in this patient cohort, although the difference did not reach statistical significance
(p = 0.0771; Hanley–McNeil test).
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Figure 2. Multiple logistic regression with ROC curve analysis for (A) all XAIpopulations revealed a
predictive ability of AUC 0.95 (95% CI 0.91–0.98; p < 0.0001). (B): The restriction of the four most pre-
dictive XAI populations for the outcome (TTF) and prognosis (IPI) resulted in lower predictive ability
(AUC 0.87; 95% CI 0.80–0.93; p < 0.0001). Abbreviations: ROC = receiver operation characteristics;
XAI = explainable artificial intelligence; AUC = area under curve; CI = confidence interval.

3.3. Identification of the XAI-Populations

The ALPODS algorithm calculated FCS data files that can be depicted with conven-
tional two-dimensional flow cytometry dot plots. Therefore, XAI populations can be gated
and analyzed by a human flow cytometry expert. The population T1C0011 has been lo-
cated within the CLL cells while T1C0016 consisted of CD4+ T cells (Figure 3A). T2C0004
represented nearly exclusively a subset of CLL cells (Figure 3B) and T2C0018 was a mixture
of a CLL cell subset (higher fraction) and a T and NK cell subset (lower fraction).

Interestingly, the most relevant cell population for the outcome (T1C0016) in CLL was
not part of the malignant cells but consisted of T helper cells, which were overrepresented
in patients with a favorable outcome. This observation led to the question of whether
increased CD8+ T cells were predictive of an inferior outcome. Indeed, we found that the
XAI population T1C0023 consisted of CD8+ T cells (Supplementary Information, Figure S1).
T1C0023 was significantly more abundant in patients with an inferior prognosis (IPI ≥ 4
mean 4.30% vs. IPI ≤ 1 mean 0.48; SE of difference 0.77; p < 0.00461). However, in the ROC
analysis, population T1C0023 was not able to classify between TTF 1 and TTF 0 on its own
(AUC 0.53; 95% CI 0.41–0.65; p = 0.5573).
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Figure 3. Identification and description of the XAI population through flow cytometry gating in
a representative sample. (A) The populations T1C0011 (green) and T1C0016 (red) were the most
relevant populations for the outcome and prognosis in Tube 1 (T1) of the analyzed B-cell panel.
T1C0011 (green) could be located within the CLL cells (blue). The population of T1C0016 (red)
corresponded to CD4+ T cells (i.e., T helper cells). (B) T2C0004 (green) and T2C0018 (red) were the
most relevant populations for the outcome and prognosis in Tube 2 (T2). Both were located mainly
within the CLL cells (blue), but T2C0018 was a mixture of a biologically different population (CLL
cells and T/NK cells).

3.4. Characterization of Predictive Subsets within CLL Cells

Besides T1C0016 (CD4+ T cells) and T1C0023 (CD8+ T cells), most of the XAI popu-
lations were CLL subsets (Tube 1: T1C0011, T1C0012, T1C0017, T1C0019, and T1C0020;
Tube 2: T2C0002, T2C0004, T2C0009, T2C0010, T2C0014, T2C0018, and TC0020). The most
crucial CLL subsets were T1C0011, T2C0004, and T2C0018, which are shown in Figure 4.
Additionally, the median levels of antigen expression and scatter height for relevant sub-
populations of CLL cells were compared to the median antigen expression of CLL cells
from the average patient in the cohort using a heat map. (Figure 4A,B).

It is noteworthy that the populations T1C0011 and T2C0002 showed a decreased
forward scatter expression and a decreased antigen brightness compared to mean CLL
cells. Visualized on flow cytometry forward scatter, these populations were located partly
in the area of dead and apoptotic cells CLL cells (Figure 4C). This finding suggests that a
higher frequency of dead and apoptotic CLL cells is associated with a worse prognosis and
outcome. In contrast, the CLL subsets T2C0004, T2C0014, T2C0018, and T2C0020 showed
higher antigen expression and scatter light profile than mean CLL cells. In summary, CLL
cells with small cell volume (low forward scatter) were overrepresented in MPFC data
independent of the B-cell panel tube and indicated a poor outcome. On the contrary, subsets
of CLL cells with large cell volumes (high forward scatter) also indicated poor outcomes.
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sented in patients with a favorable outcome. This observation led to the question of 
whether increased CD8+ T cells were predictive of an inferior outcome. Indeed, we found 
that the XAI population T1C0023 consisted of CD8+ T cells (supplementary information, 
Figure S1). T1C0023 was significantly more abundant in patients with an inferior progno-
sis (IPI ≥ 4 mean 4.30% vs. IPI ≤ 1 mean 0.48; SE of difference 0.77; p < 0.00461). However, 
in the ROC analysis, population T1C0023 was not able to classify between TTF 1 and TTF 
0 on its own (AUC 0.53; 95% CI 0.41–0.65; p = 0.5573). 

3.4. Characterization of Predictive Subsets within CLL Cells 
Besides T1C0016 (CD4+ T cells) and T1C0023 (CD8+ T cells), most of the XAI popu-

lations were CLL subsets (Tube 1: T1C0011, T1C0012, T1C0017, T1C0019, and T1C0020; 
Tube 2: T2C0002, T2C0004, T2C0009, T2C0010, T2C0014, T2C0018, and TC0020). The most 
crucial CLL subsets were T1C0011, T2C0004, and T2C0018, which are shown in Figure 4. 
Additionally, the median levels of antigen expression and scatter height for relevant sub-
populations of CLL cells were compared to the median antigen expression of CLL cells 
from the average patient in the cohort using a heat map. (Figure 4A,B). 

 
Figure 4. Median antigen expression and scatter properties of CLL subsets with predictive ability 
for outcome (TTF) were compared with the CLL cells of the average patient. The population 
T1C0011 (A), which was identified in tube 1 (T1), showed lower forward scatter (FS) and diminished 
antigen expression. T2C0002 (B) in tube 2 (T2) shared the lower FS and antigen expression with 
T1C0011. In flow cytometry dot plots (C), parts of T1C0011 and T2C0002 were located in the very 

Figure 4. Median antigen expression and scatter properties of CLL subsets with predictive ability for
outcome (TTF) were compared with the CLL cells of the average patient. The population T1C0011
(A), which was identified in tube 1 (T1), showed lower forward scatter (FS) and diminished antigen
expression. T2C0002 (B) in tube 2 (T2) shared the lower FS and antigen expression with T1C0011.
In flow cytometry dot plots (C), parts of T1C0011 and T2C0002 were located in the very low FS
region of apoptotic/dead CLL cells. This may indicate a predictive value of apoptotic/dead CLL
cells for outcome.

3.5. Clinical Significance

The XAI method ALPODS identified 17 cell populations that were effective at pre-
dicting outcome. However, correct manual gating of these populations without using
ALPODS is sophisticated, especially for the CLL subsets. Exceptions were the populations
T1C0016 and T1C0023, which compromised CD4+ T cells and CD8+ T cells, respectively.
Both populations were easy to gate manually in flow cytometry dot plots. Therefore, we
tested whether T1C0016 (CD4+ T cells) and T1C0023 (CD8+ T cells) add predictive value
to IPI and CD38-positive CLL cells. Multiple logistic regression was performed for this
four-factor model (Table 3). Odds ratio (OR) >1 favored inferior outcome and <1 favored
superior outcome.

In the four-factor model, T1C0023 (OR 1.14; 95% CI 0.95–1.77; p = 0.3305) and CD38-
positive CLL cells (OR 1.01; 95% CI 1.00–1.02; p = 0.1790) were dispensable. IPI and
T1C0016 (two-factor model with IPI) showed only slightly lower predictive value than the
four-factor model (0.84 AUC; 95% CI 0.77–0.91; p < 0.0001 vs. 0.83 AUC; 95% CI 0.77–0.90;
p < 0.0001). In the two-factor model (IPI and T1C0016) IPI can be replaced by T1C0023 with
an acceptable diagnostic ability (0.79 AUC; 95% CI 0.71–0.87; p < 0.0001).
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Table 3. Predictive models for outcome.

OR 95% CI p-Value AUC 95% CI p-Value

All XAI populations 0.95 0.91–0.98 <0.0001

CLL-IPI 0.78 0.70–0.86 <0.0001

Four-factor model

0.84 0.77–0.91 <0.0001

CLL-IPI 1.53 1.19–2.04 0.0018

T1C0016 (CD4+ T cells) 0.86 0.78–0.93 0.0003

T1C0023 (CD8+ T cells) 1.14 0.95–1.77 0.3305

CD38 1.01 1.00–1.02 0.1790

Two-factor model with IPI

0.83 0.77–0.90 <0.0001CLL-IPI 1.64 1.29–2.16 0.0001

T1C0016 (CD4+ T cells) 0.85 0.78–0.92 0.0002

Two-factor model w/o IPI

0.79 0.71–0.87 <0.0001T1C0016 (CD4+ T cells) 0.85 0.78–0.91 <0.0001

T1C0023 (CD8+ T cells) 1.29 1.05–2.14 0.1390

Abbreviations: OR = odds ratio; TTF = time to first-line treatment failure; AUC = area under curve; CI = confidence
interval, IPI = International Prognostic Index.

4. Discussion

In this single-center study, we analyzed immunophenotypes of 157 CLL patients
employing an explainable AI (XAI). The XAI identified 17 cell populations in MPFC data
which could in combination predict the clinical outcome of CLL with a higher ability than
CLL-IPI or the frequency of CD38-positive CLL cells. Most of the 17 cell populations were
located completely or in part within the abundant CLL population. However, some cell
populations were non-malignant. For example, the T1C0016 population consisted of CD4+
T cells entirely and was underrepresented in patients with a poorer outcome. T1C0016
(CD4+ T cells) was the best single classifier for the outcome of the 17 XAI-identified cell
populations. In contrast, T1C0023 compromised CD8+ T cells that were overrepresented in
patients with inferior outcomes.

T cells in CLL have been described as dysregulated. CD4+ T cells and CD8+ T cells
in patients with CLL deviate from healthy individuals by the accumulation of memory
T cells and loss of naïve T cells, increased expression of immune checkpoint receptors
(i.e., PD1, TIGIT, CTLA-4), and increased activation [33–38]. Inversion of the CD4/CD8
ratio is typical for CLL [39–42]. Furthermore, Elston et al. showed that patients with a
CD4/CD8 ratio >1 have better overall survival and progression-free survival [34]. This
is in line with our findings that CD4+ T cells indicated a good outcome and CD8+ T cells
an adverse outcome. It would be of interest in further studies to determine which subset
of CD4+ cells plays the most significant role in favorable outcomes for patients with CLL.
Gating of CD4+ T cells and CD8+ T cells is simple in contrast to XAI populations of CLL
subsets and transferrable to other flow cytometry panels that include antibodies against
CD4 and CD8. For this reason, we developed a simplified approach to predict the outcome
in CLL by the combination of IPI and CD4+ T cells or CD4+ T cells and CD8+ T cells. Both
two-factor models discriminate between inferior and superior outcomes in more than 80%
of the CLL cases.

In addition to diagnostic ability, the XAI populations provided insight into the im-
munopathology of CLL. For example, we showed that CLL subsets that predict inferior
outcomes were small apoptotic/dead CLL events (T1C0011, T2C0002) with low forward
scatter. These results are in line with Witkowska et al. and Jahrsdörfer et al. who described
that spontaneous in vitro apoptosis of CLL cells correlated with disease progression and
cytogenetics with worse prognosis [43,44].

On other hand, CLL subsets with high forward and side scatter (T2C0004, T2C0014,
T2C0018, and T2C0020) were associated with adverse outcomes as well. Forward and side
scatter correlates with bigger cell size and internal complexity and suggests the prognostic
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importance of prolymphocytes in CLL. Oscier et al. described that prolymphocytes >10%
in CLL are associated with shorter OS and PFS [45].

There are limitations in this study, as some patients did not have complete data for all
components of the IPI. In these cases, a half-point score was assigned, which may result
in the inaccurate categorization of some patients. A larger patient cohort is warranted to
validate our discoveries in multivariate Cox regression models. This would also allow a
better clue, if the results are independent of different treatment strategies. Furthermore, an
analysis of other prognostic markers for CLL, such as CD49d and ZAP-70, would strengthen
the conclusions of the study [46]. However, in addition to the established markers that have
been shown to have prognostic value in CLL, our XAI study provides new insights into
the prognostic factors related to the immunology of CLL and the non-malignant, reactive
immune system.

5. Conclusions

The ALPODS XAI algorithm identified and described highly predictive immune cell
populations related to outcomes in CLL. In particular, CD4+ T cells were identified as the
best single classifier and improved the predictive ability of CLL-IPI. These findings should
be further refined with a different immunophenotyping panel and an independent patient
cohort.
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