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Abstract

Subterranean animals act as ecosystem engineers, for example, through soil per-

turbation and herbivory, shaping their environments worldwide. As the occur-

rence of animals is often linked to above-ground features such as plant species

composition or landscape textures, satellite-based remote sensing approaches can

be used to predict the distribution of subterranean species. Here, we combine in-

situ collected vegetation composition data with remotely sensed data to improve

the prediction of a subterranean species across a large spatial scale. We compared

three machine learning-based modeling strategies, including field and satellite-

based remote sensing data to different extents, in order to predict the distribution

of the subterranean giant root-rat GRR, Tachyoryctes macrocephalus, an endan-

gered rodent species endemic to the Bale Mountains in southeast Ethiopia. We

included no, some and extensive fieldwork data in the modeling to test how these

data improved prediction quality. We found prediction quality to be particularly

dependent on the spatial coverage of the training data. Species distributions were

best predicted by using texture metrics and eyeball-selected data points of land-

scape marks created by the GRR. Vegetation composition as a predictor showed

the lowest contribution to model performance and lacked spatial accuracy. Our

results suggest that the time-consuming collection of vegetation data in the field

is not necessarily required for the prediction of subterranean species that leave

traceable above-ground landscape marks like the GRR. Instead, remotely sensed

and spatially eyeball-selected presence data of subterranean species could pro-

foundly enhance predictions. The usage of remote sensing-derived texture metrics

has great potential for improving the distribution modeling of subterranean spe-

cies, especially in arid ecosystems.

Introduction

Subterranean animals act as ecosystem engineers as they

shape and maintain grassland ecosystems worldwide. By

burrowing, they rework sediments, redistribute nutrients

in the soil and change vegetation patterns and when taken

together, create and modify habitats for other organisms

(Corenblit et al., 2011; Gabet et al., 2003; Hastings

et al., 2007; Jones et al., 1994, 1997; Reichman &

Seabloom, 2002). At the same time, the distribution of

subterranean animals and the species’ functions for biodi-

versity and ecosystems are affected by human-induced
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habitat modification and degradation, such as changes in

vegetation cover caused by livestock grazing (Bakker

et al., 2009; Keesing, 1998; Vial et al., 2011). Studies on

the distribution and abundance of subterranean animals

remain rare despite their importance for ecosystems and

the increasing demand for detecting and predicting

ecosystem changes.

The giant root-rat (GRR; Tachyoryctes macrocephalus,

R€uppel, 1842 by Yalden, 1985) is a prime example of an

animal ecosystem engineer. By creating extensive under-

ground burrows and tunnel systems, it has a strong

impact on the environment, particularly on the surround-

ing soil structure and vegetation (�Skl�ıba et al., 2017;

Yalden, 1985). The rodent is endemic to the afro-alpine

ecosystem of the Bale Mountains of southeast Ethiopia,

stretching between elevations of 3,000 and 4,150 m a.s.l.,

in lawns of Alchemilla abyssinica, which is their preferred

diet (Yaba et al., 2011; Yalden, 1985; Yalden & Lar-

gen, 1992). Over time, the subterranean activity of the

GRR changes the vegetation and soil structure of the pre-

vailing open dwarf shrublands of Helichrysum splendidum,

the Cyperaceae swamps and grasslands into discrete open-

soil mounds (Miehe & Miehe, 1994; Yalden & Lar-

gen, 1992). Due to soil texture changes, these discrete

mounds are distinguishable from the characteristically flat

areas marked by an absence of GRR activity. Further, the

species affects plant species richness, composition and

biomass in its direct vicinity due to soil perturbation and

above-ground herbivory (Sillero-Zubiri et al., 1995; �Skl�ıba

et al., 2017; Yalden & Largen, 1992). The changes in soil

structure and vegetation patterns underpin the GRR’s

influence on the landscape and ultimately, their strong

impact on an ecosystem and its processes. The ecological

role of the species is even broader as GRRs are the pre-

dominant prey of the endangered Ethiopian wolf Canis

simensis (Sillero-Zubiri & Gottelli, 1995). Moreover, the

GRR is currently listed as endangered and is especially

sensitive to increasing human-induced habitat degrada-

tion in the Bale Mountains (Lavrenchenko & Kenner-

ley, 2016). Therefore, assessing the distribution of GRRs

on the landscape scale is equally important for estimating

their effectiveness as an ecosystem engineer as it is for

evaluating the endangerment of the species. Here, we used

satellite-based remote sensing to upscale the ecosystem

engineering signs and quantify ground burrows across

large extents (i.e., assessing the species distribution across

the Bale Mountains).

Many satellite-based remote sensing studies have pre-

dicted particularly large animal species that are easily

detectable from space either via direct observations across

large extents or indirectly by predicting discrete structures

or habitat changes caused by these animals, for example,

elephants, penguins, or lions (Barber-Meyer et al., 2007;

Fretwell et al., 2012, 2014; Hollings et al., 2018; Kellen-

berger et al., 2018; LaRue et al., 2014; Loarie et al., 2013;

Wang et al., 2019). To predict smaller-sized or species with

low visibility such as birds, invertebrates, or subterranean

animals, remote sensing approaches must rely on vegeta-

tion cover and composition, or geomorphological proper-

ties as proxies for habitat suitability and probability of the

species’ presence (Culbert et al., 2012; Estes et al., 2010;

Farwell et al., 2021; Gabet et al., 2003; Grigusova

et al., 2021; Koshkina et al., 2020; Porcasi et al., 2005).

Generally speaking, predicting the presence of an animal

species becomes increasingly difficult as its visibility

decreases, for example, due to small body size or fast move-

ment; this is particularly true for subterranean animals in

homogenous grasslands. Hence, in order to predict GRR

distribution, the focus should be on changes in vegetation

patterns or soil structure (i.e., on the mounds created by

the species) (Grigusova et al., 2021; Koshkina et al., 2020).

Machine learning has recently been used to bridge the

gap between grain and extent. In our approach, we opted

for statistical classification models, which can be trained on

the local field data that link spectral remote sensing obser-

vations or other area-wide data sets, such as digital eleva-

tion models, with the occurrence of GRRs. This approach is

regularly used to scale surveys across large areas (P€oyry

et al., 2018; Wakuli�nska & Marcinkowska-Ochtyra, 2020).

However, the performance of a given model depends on

numerous factors, such as the observed environment and

the species it aims to predict (Aguirre-Guti�errez

et al., 2014; Fiedler et al., 2008). Some studies show that

including plant species composition as an additional inde-

pendent variable can improve the predictability of animal

species distribution or diversity (Schaffers et al., 2008; Wal-

lis et al., 2017). In this specific context, if plant species

composition and its change over space (i.e., turnover) are

caused by a subterranean engineer, the turnover indicates

the distribution of the species. However, this requires a

labor-intensive field campaign to collect sufficient training

data to directly predict the species composition in space as

a surrogate for the animals’ distribution. Thus, comparing

remote sensing models that integrate field survey data to

different extents with a model solely trained on readily

available data could determine whether integrating time-

intensive field observations improves the prediction of a

subterranean ecosystem engineer (e.g., GRRs) across large

extents.

In this study, we map GRRs distribution across the

Bale Mountains using three different modeling strategies

that require no (method 1, M1), some (M2) and very

intensive (M3) fieldwork to collect training data. First, we

hypothesize that in-situ collected GPS coordinates (M2),

which accurately depict GRR presence and absence,

improve the classifications exclusively based on training
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areas selected with the eyeball method (M1). Second, we

hypothesize that using plant species composition data

(M3) and remotely sensed observations improve the clas-

sification outcome. Our comparative approach demon-

strates methodological tools for mapping the current

distribution of a subterranean species. Therewith, we pro-

vide insights into how GRRs shape the afro-alpine Bale

Mountains ecosystem across their entire distribution

range.

Materials and Methods

Field survey

The field survey was conducted in October and Novem-

ber 2017 across the Sanetti Plateau, and Web Valley of

the Bale Mountains National Park in Ethiopia (6°290N–
7°100N and 39°280 E–39°570 E; Fig. 1B). The highest peak

of the study area was the Mount Tullu Dimtu at 4,377 m

a.s.l. The climate of the study area is characterized by two

consecutive wet and warm seasons (April–September) and

a dry and colder season (November–March) with annual

rainfall of approximately 1,000 mm (station records of

the DFG Research Unit Bale Exile at 10 sites). The slopes

of the Bale Mountains are covered in moist mountain

forests merging into the Ericaceous Belt around 3,000 m

a.s.l. At the upper reaches, these ericaceous shrubland and

dwarf forests of Erica trimera again merge in an extended

ecotone into the afro-alpine ecosystem between 3,800 and

4,000 m with the highest Erica outposts at approximately

4,250 m a.s.l. The afro-alpine ecosystem consists of

species-poor open dwarf shrublands of Alchemilla hau-

mannii and Helichrysum citrispinum in the northern part

and H. splendidum in the southern highlands. Lobelia

rhynchopetalum, a giant rosette plant, is scattered across

the entire afro-alpine ecosystem (Chala et al., 2016). In

addition to the GRR, other wild herbivores such as

mountain nyalas Tragelaphus buxtoni, bohor reedbucks

Redunca redunca and rock hyraxes Procavia capensis capil-

losa feed upon vegetation (Mekonen, 2020; Tekle-

haimanot & Balakrishnan, 2018). Furthermore, growing

human presence in the Bale Mountains National Park fol-

lowed by livestock and associated grazing, human settle-

ments, grass collection or frequent fire and bush

encroachment impact the landscape of the Bale Moun-

tains National Park (Mekonen, 2020). The impact GRRs

Figure 1. Locations of training areas with presence (yellow dots) and absence (blue dots) of giant root-rat (GRR) activity used in the different

model strategies based on (A) Google Earth (M1) and (B) local GPS records (M2 and M3). Black dotted lines in (A) show sectors, in which training

areas were selected, and white triangles in (B) show the location of climate stations; for details, see the methods section. (C) Shows GRR mounds

as observable in Google Earth and (D) in the field.
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have on the landscape can be clearly separated from the

impact of other species as a result of the pronounced

effect they have on soil structure creating discrete mounds

and a “spongy” ground (Fig. 1C and D) (Miehe &

Miehe, 1994; Sillero-Zubiri et al., 1995).

In the field survey, we selected 94 GPS points and sam-

pled plant species composition data in a pairwise plot

design at the GPS points, in areas with and without GRR

activity for later machine learning analyses (47 presence

and 47 absence plots; GPS: Garmin eTrax30, precision

3 m). The survey was conducted along the main track of

the Sanetti Plateau, the northern and northeastern parts

of the Sanetti Plateau, and the Web Valley. The track was

unpaved and infrequently used, and thus, the impact on

plant species composition or GRR activity was presum-

ably insignificant. Plots following the main track were

established in a 2 km interval with a minimum of 100 m

distance to the main track and a minimum of 50 m

between presence and absence plots. The presence and

absence plots were selected and carefully distinguished by

the observers in GRR presence or absence areas (two per-

sons with each 25 days and 10 h observations per day;

PK and MF). Areas of GRR presence were clearly detect-

able as mound structures, which showed altered vegeta-

tion patterns in comparison to areas where GRR were

absent and thus, areas without GRRs were also clearly

identifiable. One mound was approximately 20 m in

diameter (personal observation), with several burrow

openings scattered across one mound. The immediate

surrounding of GRR burrow openings was characterized

by bare vegetation, while herbaceous vegetation covered

the rest of the mound (Miehe & Miehe, 1994). For each

mound, GRR activity could further be identified by fresh

burrow openings (Leyer & Wesche, 2007), whereby one

GRR individual used several burrow openings. The bur-

row openings from other subterranean species were smal-

ler in diameter and thus distinguishable from GRR

burrows, wherefore presence and absence of GRR activity

areas were clearly specifiable. Nonetheless, past GRR

activity at absence points could theoretically not be ruled

out entirely; however, the impact on our analyses should

be negligible, as the aim was to map current GRR pres-

ence and absence. We documented the plant species com-

position on each plot of 5 9 5 m size, and estimated the

cover fraction in intervals of 5%, following a typical

Mueller-Dombois and Ellenberg (1974) design. In addi-

tion, specialists identified plant species that could not be

determined in the field (MF and SD). As a result, we

found 60 (63) different plant species on GRR presence

(absence) plots and 79 different plant species in total. The

most abundant plant species for both areas with and

without GRR activity was A. abyssinica. The abundance of

other plant species varied between both areas.

Pre-processing

Species composition analysis

To compare the plant species composition between plots

with and without GRR activity, we used constrained cor-

respondence analysis (CCA) as an ordination method,

based on the correlation matrix of the 79 plant species

(rare species included) across all 94 plots (Fig. 1B). In

general, ordination techniques can be used for assessing

the main environmental gradients driving plant composi-

tion turnover across sites, using raw data of species rich-

ness and abundance. The gradients are projected into axes

and displayed in a multidimensional ordination space

with the first axis explaining the largest variance in the

changes of plant composition by a gradient, with decreas-

ing variance explained by the subsequent axes (Feilhauer

& Schmidtlein, 2009; Leyer & Wesche, 2007). A con-

strained ordination method assumes that the variation in

the vegetation data is displayed by a priori chosen envi-

ronmental gradient (i.e., constraints) (Leyer &

Wesche, 2007), which are included in the first constrained

axis. Further, a CCA assumes that a species’ response to

environmental gradients is unimodal and not linear.

CCAs can deal with zero-inflated data and are therefore

suited for our species composition data set (Leyer &

Wesche, 2007; ter Braak, 1987). As temperature is a main

driver for plant species composition (Keller et al., 2000;

Nottingham et al., 2018), the satellite-predicted mean air

temperature of 2017 was used as a constraining variable

on the first CCA axis (CCA: Fig. S1A; for Landsat-8 tem-

perature prediction see Appendix S1; Supplementary

Method 1). By constraining species compositions on tem-

perature, we removed the effect of temperature on species

composition from the remaining unconstrained axes. The

ordination scores of the first two unconstrained axes

(CA1 and CA2 axes; Fig. S1B) were used in subsequent

machine learning steps, herein referred to as CA1 and

CA2 scores. Thus, the CA scores present plant species

composition across survey sites corrected for the effects of

temperature on vegetation composition. Temperature as a

constraining variable explained 5% of the plant species

composition. The package vegan (Oksanen et al., 2020)

was used for the analysis in R version 4.0.2 (R Core

Team, 2021).

Sentinel-2 observations for spatial prediction of
GRR presence

An almost cloud-free (3.5% cloud cover) Sentinel-2 scene

from December 15, 2017 at 07:54:34 UTC was retrieved

from the USGS Earth Explorer repository and used as a

basis for predicting GRR mounds in the study area. The
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data were atmospherically corrected using the Sen2cor

algorithm (Filipponi, 2018). We used Sentinel-2 observa-

tions of the red, green, blue, red edge, near-infrared bands

– each with 10 m resolution – and short-wave infrared

satellite bands with 20 m resolution to include multiple

indices with different foci on vegetation, soil and water,

which best represent the grassland habitat of the GRR. The

10 m bands (three visible and one near-infrared) were

resampled to match the 20 m resolution of the near- and

short-wave infrared bands, to characterize the GRR pres-

ence in the study area. Spectral indices that highlight differ-

ent vegetation and environmental characteristics (e.g., soil

wetness) were computed from the individual band observa-

tions using the RStoolbox (Leutner et al., 2017). In addi-

tion, the k-mean distance from the centroid (KMDC) was

computed in each case on every band and generated an

index raster image (Table S1). Since GRR activity leads to

hill-like structures, such as mounds, a group of grey-level

co-occurrence matrix features (GLCM) and Rao’s Q (Roc-

chini et al., 2018) were also compiled. For the GLCM, the

entropy, homogeneity, and second moment (Haralick

et al., 1973) for three different window sizes (3 9 3,

11 9 11 and 31 9 31 pixels) were derived separately for

both KMDC indices that were reduced to 32 grey levels.

Different texture metrics are helpful to detect similarities

and differences, and also patterns in the topography that

simple satellite bands and vegetation indices cannot depict

as accurately (Kupidura, 2019; Mishra et al., 2019). For

depicting topographical differences, especially in soil tex-

ture and soil type from space, a pre-processing step with k-

means cluster analysis was conducted using the Hartigang

& Wang algorithm, set center = 1 and squared the fitted

result which was multiplied by 2, in R-version 4.0.2

(Brus, 2019; Brus et al., 2006; Hartigan, 1975). Rao’s Q

(Rao, 1982) was determined based on the combined set of

original bands, the scaled vegetation indices, and the results

from KMDC (Table S1).

Modeling workflow

We followed three different modeling strategies to map

the presence and absence of GRR activity, that is, by

identifying locations with or without mound occurrences

(Fig. 2; Table S2). All three strategies, hereafter referred

to as M1, M2 and M3 utilized the Sentinel-2-based spec-

tral indices and texture metrics as predictor variables. M1

was based on 94 training data points (i.e., 47 presence

and 47 absence points) that were visually chosen from

Google Earth. The visually chosen training data points

(i.e., mounds for GRR presence and no mounds for GRR

absence) were taken in the middle of a mound (presence)

and in landscapes visually without mounds (absence).

Mounds (Fig. 1C and D) were selected visually by one

person (LW) and cross-checked by a second person (TN)

in a two-day process from Google Earth imagery, using

their specific non-edge landscape characteristics and often

repetitive appearance. M2 used in-situ collected GPS

points as training data instead, with 94 training data

points in total that were composed of 47 presence and 47

absence points. The GPS points (i.e., the training data) in

M2 were taken in the middle of each mound and in areas

without mounds. Finally, M3 employed the same in-situ

collected training data points as in M2 (i.e., 94 points in

total, 47 presence and 47 absence points); however, the

CA1/CA2 scores derived from vegetation composition

(CA prediction) into space were first predicted using the

Sentinel-2-based variables. Next, the GRR activity was

classified into a binary presence and absence map by a

second model trained on the CA1/CA2 maps (M3, CA

classification).

Our approach for M1 and M2 included using a random

forest classifier (Breiman, 2001) in a forward feature selec-

tion (FFS), a 5-fold external leave location-out-(LLO) and

10-fold internal cross-validation (CV). Within each of the

five iterations, 70% of the data was used for training and

30% data was withheld for independent testing. For M3,

the CA1/CA2 scores were first predicted into space using a

random forest regression model (CA prediction step) using

the same FFS, LLO and CV settings as in M1 and M2. For

the second step, the variables CA1 and CA2 were added as

predictors. Lastly, for the M3 approach, the same model

settings were used as for M1 and M2. The FFS used in M1,

M2 and M3 always starts by identifying the two best-

performing variables based on the LLO error estimates.

Subsequently, the algorithm incrementally increases the

number of predictor variables and tests for each additional

predictor variable if it is improving the current model fur-

ther. The model stops training when adding another vari-

able no longer increases the overall performance. For

details on FFS, see Meyer et al. (2018). Previous studies

identified the random forest classifier robust (Kuhn &

Johnson, 2013; Meyer et al., 2018). The classification

model performance was measured by Cohen’s Kappa

(Cohen, 1960), while the root mean square error (RMSE)

was used for the regression models. Finally, the GRR pres-

ence and absence was classified after receiver operator char-

acteristic (ROC) analysis for each of the three modeling

strategies M1, M2 and M3 (Fig. S5). Since models are gen-

erally restricted to the information dimension of the input

data sets (i.e., the spectral range of the Sentinel-2 data

across the 94 extracted training areas) and a certain level of

uncertainty generally remains after the final prediction, it is

necessary to consider those (Jansen et al., 2022). Here, the

area located outside of the actual area of applicability

(AOA) of the model was masked and not further consid-

ered, following the approach from Meyer et al. (2018) and
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Figure 2. Modeling workflow showing the pre-processing (blue), the CA prediction (yellow, M3 only) and the classification (green). Pre-

processing: Air temperature and habitat indicators were processed for downstream analyses; field-based plant species composition data was used

in constrained correspondence analysis (CCA) to retrieve CA scores; CA-prediction: A machine learning regression model was used to predict

CA1/CA2 scores into space with Sentinel-2 variables. Using forward feature selection (FFS) and a 10-fold leave-location-out (LLO) cross-validation

(CV) to compile the CA1/CA2 maps, which were used in subsequent classification for M3; Classification: Machine learning models were applied,

using FFS and 10-fold LLO-CV for predicting species distribution maps. The boxes with the numbers M1, M2 and M3 depict the three model

strategies compared in this paper, with M1 supplied by image-selected classification categories, M2 using in-situ collected GPS coordinates and

M3 using the same settings as M2 and also additionally the predicted CA scores as a predictor for the modeling process (see section Pre-

processing). The area of applicability (AOA) method was used to calculate the validity of prediction error in space.
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Meyer and Pebesma (2021) as implemented in the CAST

package. Besides the random forest-based methods M1–
M3, a Maximum Entropy (MaxEnt) (Phillips et al., 2006)

machine learning model software accessed by the R-

Package dismo (Hijmans et al., 2021) was conducted to

further evaluate and cross-check the results of our three

machine learning modeling strategies. In short, we used

the same model settings and input data including the pre-

dicted CA variables as in M2 and M3, with the exception

of the absence data (also 47 points) in MaxEnt which was

selected randomly within the raster extent. The MaxEnt

and random forest models were compared by the area

under a receiver operating characteristic curve (AUC)

value. If available, true presences and absences should be

considered first in any modeling of species distributions

(Elith et al., 2011; Guillera-Arroita et al., 2014; Zaniewski

et al., 2002). Thus, the random forest model we used was

the preferred method over the MaxEnt model, as it used

true presences and true absences in our data. In contrast,

absence points (or “background” points) in MaxEnt were

randomly sampled across the whole area (Massada

et al., 2012; Oppel et al., 2012) and may, by chance, also

depict single presence points, which might influence the

model results. Nevertheless, in other comparative studies,

both machine learning-based methods tend to perform

similarly (Acharya et al., 2019; Bektas et al., 2022; Kaky

et al., 2020; Kaky & Gilbert, 2016; Mi et al., 2017; Zhao

et al., 2022). As also in our case, the results of the MaxEnt

and the modeling strategy M1 (the best of the random

forest models) were qualitatively similar, we only present

the results of the random forest machine learning

approaches in the results section. The model performance,

evaluation and final predictor variable selection of the

MaxEnt model can be found in Appendix S1, Supplemen-

tary Method 2.

Results

CA prediction

Predicting CA1/CA2 values in M3 resulted in relatively

high RMSE values with CA2 (0.882) exceeding CA1

(0.715); the R2 (coefficient of determination) values pro-

vided a slightly contrary perspective (CA1: 0.188 and

CA2: 0.129). The difference between the mean absolute

error (MAE) values in CA1 (0.445) and CA2 (0.770) was

more pronounced than for the RMSE and R2. The pre-

dicted CA1 scores overlapped more with the original

scores than CA2 (Fig. 3). The two most important predic-

tors for CA1 were the Normalized Difference Vegetation

Index (NDVI) and Land Surface Water Index (LSWI); for

CA2 they were the Sentinel-2 band 3 (blue) and GLI

(Table S3; Fig. S2). Three of the six (CA1) and five of the

eight (CA2) variables were composed based on the pixels’

surroundings (Table S3; Fig. S2).

GRR classification

In terms of predicting the presence and absence of GRR

activity, the model accuracies showed considerable differ-

ences with M1 (Cohen’s Kappa: 0.777) and M2 (0.494)

outperforming M3 (0.375) (Table 1b). Models M1 and

M2 shared similarities, for example, they each included at

least two texture metrics, representing information com-

puted on window sizes of 3 9 3 or 11 9 11 pixels, which

cover an extent of 60 and 220 m, respectively (Fig. 4). In

M1, the most important predictor variable was the

KMDC indices stack (k-means distance from the center

of indices stack) and the second most important predictor

was the texture metric of Rao’s Q KMDC indices stack.

The texture metrics were the most important predictor

Figure 3. Correlation between original and predicted CA scores of (A) CA1 and (B) CA2 by M3 for each of the 47 GRR presence and absence

locations. This figure displays a randomly chosen test set of 27 data points.
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group of M1, with seven texture metrics selected in total

(Fig. 4A). Compared to M1, the difference in the impor-

tance of the top four predictors in M2 was more gradual.

The final model of M2 included two predictor variables

less than M1, including the Visible Vegetation Index

(VVI), two Sentinel-2 bands and two texture metrics

based on a 3 9 3 window size of 60 m2 as predictor vari-

ables for the GRR distribution (Fig. 4B). In M3, only the

predicted CA2 axis scores were chosen in combination

with texture Rao’s Q KMDC (Sentinel-2 band stack) as

the second most important predictor (Fig. 4C). Model

tuning resulted in five (M1), three (M2) and two (M3)

variables used for splitting at each tree node of the

random forest classifier (i.e., mtrys, Fig. S3). The error

matrix, which depicts how much of each class is assigned

correctly (i.e., GRR presence or absence), determined that

M1 outperformed M2 and M3.

Distribution of the giant root-rat

The three model strategies predicted GRR presence and

absence across the Sanetti Plateau and Web Valley. M1

and M2 both predicted a strong concentration of GRR

presence on the central Sanetti Plateau and the north-

western descent toward the Web Valley and the lower

plateau area (Fig. 5). While M1 predicted a higher

Table 1. Comparison of the three model strategies (M1–M3); Google Earth (M1) and local GPS records (M2 and M3 with M3 additionally includ-

ing CA scores as predictors, see section Modeling workflow for details) by depicting the (a) error matrix and (b) accuracy values. (a) shows which

response, that is, presence or absence of giant root-rat (GRR) activity, explains how much percentage of its own or the other classes. (b) shows

each model’s performance for the applied classifications (ROC threshold as graph, see Figure S5).

(a) Error matrix (b) Accuracy values

Prediction Presence Absence Accuracy Cohen’s Kappa AUC ROC threshold

M1 Presence 49.3 6.0 0.895 0.777 0.849 0.555

Absence 4.5 40.3

M2 Presence 41.8 13.4 0.750 0.494 0.640 0.575

Absence 11.9 32.8

M3 Presence 38.8 16.4 0.691 0.375 0.654 0.581

Absence 14.9 29.9

Figure 4. Selected predictors in order of importance and their explanatory power in percent (%) for each of the three model strategies M1–M3

(A–C); training areas based on Google Earth (M1; A), local GPS records (M2; B) and (M3; C). M3 additionally included CA scores as predictors

(see section Modeling workflow for details; predictor names: Table S1).
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presence of GRR activity in the middle of the Sanetti Pla-

teau and resulted in an area of 28,366 ha for GRR pres-

ence (i.e., 19% of the total area of 147,963 ha). M2

showed a higher concentration around the upper north-

western parts and less concentration on the Sanetti Pla-

teau with 55,589 ha of GRR presence. The classification

map of M3 predicted 84,859 ha of GRR presence cen-

tered around the plateau area and with extra parts in the

north–northwestern area. These values were based on

prediction probability ROC thresholds of 0.555 (M1),

0.575 (M2) and 0.581 (M3) for delineating presence and

absence locations (Fig. S5). In general, the plateau area

was more likely to be predicted for the three methods

(Fig. 5A–C). These values were also corrected for the

models AOA (Fig. 5). For M1, 41.35% of the entire satel-

lite image extent fell into the valid area; this percentage

was much greater for M2 (62.73%) and M3 (86.82%).

Areas in white were not considered applicable for the

model results and areas in transparent displayed overlap.

For M1, the AOA partly aligned with the prediction

results (orange) but excluded some distinct, concentrated

parts in the southern section. For M2, the AOA also

aligned with the prediction result with a greater AOA at

an area west adjacent to the Sanetti Plateau and northern

parts the Web Valley. In general, the AOA for M3 cov-

ered more area than M1 and M2, excluding larger areas

in the south and southwestern parts adjacent to the

Sanetti Plateau. The AOA also eliminated all areas that

did not exhibit GRR mound structures.

Discussion

Comparing subterranean species prediction methods that

include field data to a different extent helps to elucidate

whether integrating detailed plant species composition

data improves predictions across space. Contrary to our

first and second hypotheses, our study showed that in-

situ collected GPS coordinates of GRR presence and

absence and additional plant species composition infor-

mation did not improve the landscape-scale prediction of

the distribution of a subterranean rodent in a homoge-

nous afro-alpine environment. Remotely sensed textural

Figure 5. Spatial predictions of giant root-rat (GRR) presence across the Bale Mountains. Each map depicts the distribution of the GRR with a dif-

ferent model strategy M1 (A), M2 (B) and M3 (C). The prediction layer of GRR distribution shows presence in orange and absence in dark grey.

The probability of GRR presence in an area is indicated from 1 (presence, yellow) to 0 (absence, dark purple). This is based on the best fitting

threshold from each model strategy defined by a receiver operating characteristic (ROC) curve analysis (see Table 1 and Fig. S4 for plotted ROC

curves). The validity of the prediction result for GRR presence using the area of applicability method (AOA) is displayed with a transparent mask;

white areas lie outside the AOA – and predictions in this area should not be considered.
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metrics and vegetation indices significantly improved

models for predicting the presence of the subterranean

GRR. The model strategy based on training areas visually

selected on Google Earth images (M1), outperformed

training areas using in-situ collected GPS coordinates

(M2). In the overall comparison, the complex model M3,

including CA scores for plant species composition as a

model predictor, had the lowest accuracy. Hence, detailed

vegetation surveys are superfluous for predicting the distri-

bution of the GRR, a species that leaves distinct above-

ground, and remotely distinguishable landscape marks

therefore it is advisable to focus on remote sensing analyses.

Model performance

Overall, M1 had a considerably higher accuracy (Cohen’s

Kappa) compared to M2 and M3. Comparisons revealed

that the spatial coverage of the training data was decisive in

improving the quality of the models. As such, M1 per-

formed better given that the training data points covered

the entire extent of the Sanetti Plateau and were possibly

more heterogeneous. Previous studies have shown that the

more spatial representative the training data, the better the

resulting models (Berhane et al., 2019; Hengl, 2007; War-

ren et al., 2014). Future field campaigns should focus on

covering the entire study area to generate a heterogenous

data set. Furthermore, M1 only used training points that

were clearly identifiable as locations with GRR presence or

absence in the Google Earth images. This selection of train-

ing points may skew towards large or characteristic fea-

tures, which is concomitant with deficits in mapping the

potential variability of the GRR locations. The visual selec-

tion of training data (M1) works if the species makes a

tremendous impact on its landscape, like the GRR. In con-

trast, the training data in M2 and M3 were restricted to in-

situ collected GPS coordinates and plant species composi-

tion data of GRR presence and absence areas (only M3).

In-situ sampling was subject to human labor and temporal

constraints on the extensive and partly difficult to access

mountain plateau. An extended field period in remote areas

at high elevations (4,000 m a.s.l.) would require several

months of physically challenging work conditions to collect

a sample comparable to M1, for which the data was

retrieved within a few office days.

Predictor importance

M1 and M2 shared similarities as both methods chose tex-

ture metrics as predictors of 3 9 3 and 11 9 11 pixel win-

dow sizes. The texture metrics as the most frequently chosen

predictors, likely reflect the topographic pattern of the GRR

(i.e., the mounds created by GRR activity). These mounds

are distinct from the relatively flat surroundings and, hence,

detectable from space. Numerous studies have demon-

strated the use of environmental structural heterogeneity for

predicting a broad range of plant and animal species (Bellis

et al., 2008; Farwell et al., 2021; Tuanmu & Jetz, 2015;

Wood et al., 2013). The impact of the GRR on soil structure

is extreme compared to other species; however, we would

recommend using texture metrics in future predictions of

subterranean rodents, for example, the east African root-rat,

north American pocket gophers or Mongolian marmots

(Gabet et al., 2003; Huntly & Reichman, 1994; Koshkina

et al., 2020), which also leave above-ground marks.

In direct comparison, M1 selected two more predictors

for the final model than M2. The importance of the pre-

dictors was less abrupt for M2 than for M1. For M1, the

most interpretable variable is Rao’s Q, which can be

linked to plant functional types (i.e., grouping plant spe-

cies with similar structural features) (Botta-Duk�at, 2005;

Rocchini et al., 2018). The presence of GRRs is related to

grasslands where Alchemilla is the predominant species,

whereas the species’ absence is characterized by other

habitat features, such as denser shrubland or Erica-

thickets (Miehe & Miehe, 1994).

For M2, the VVI and Sentinel-2 bands were chosen along

with texture metrics. VVI is typically used to predict bio-

mass and can be linked to GRR presence and absence

because the species keeps vegetation low and in pioneer

stages through soil perturbation, its herbivorous diet (Miehe

& Miehe, 1994) and reduced vegetation covers at the top of

burrows. Furthermore, the abundance and activity of her-

bivorous rodents are affected by vegetation as their primary

food resource. Hence, they are typically more abundant in

areas with higher plant productivity (Eldridge & Whit-

ford, 2014; Huntly & Reichman, 1994; Zhang et al., 2003).

Further, the reduced food supply during the dry season

causes GRRs to change their home range to food-rich peri-

odic wetlands in the Bale Mountains (�Skl�ıba et al., 2020;

Vlasat�a et al., 2017). Thus, selecting a vegetation index

describing biomass is in accordance with the ecology and

habitat preferences of the target species and emphasizes our

findings that GRR distribution can be predicted using

remote sensing.

In M3, the predicted CA2 scores describing species com-

position were chosen as a predictor for GRR presence and

absence, indicating the effect that the GRR has on species

composition. For instance, the species reduces A. abyssinica

but fosters Salvia merjame (�Skl�ıba et al., 2017). In general,

the vegetation and texture metrics selected for predicting

the CA scores can be related to the rodent’s ecological func-

tion. The selected vegetation index is sensitive to chloro-

phyll concentration, the reflectance of which can be related

to the distribution of herbivorous species as they correlate

to plant biomass (Gitelson et al., 2009; Olofsson

et al., 2012) and, hence, available food resources (Reichman
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& Seabloom, 2002). However, including vegetation data in

the form of CA scores did not explain GRR presence as

accurately as the purely remote sensing-based approach in

M1, even when combined with remote sensing-based pre-

dictors. The prediction of the area of M2 and M3 only

approximates to the final distribution map of M1 when the

AOA layer is included, which masks areas where the predic-

tion should not be considered.

Despite the well-known impact of GRRs on vegetation

(Miehe & Miehe, 1994; Sillero-Zubiri et al., 1995; �Skl�ıba

et al., 2017; Yalden, 1985), the in-situ collected raw plant

species composition data, surprisingly did not enhance the

prediction of GRR distribution. One explanation might be

that the spectral difference of plant species between areas

with and without current GRR activity was not pro-

nounced enough to be detected remotely and to be a reli-

able predictor for GRR distribution. In fact, the most

abundant plant species in both presence and absence areas

was A. abyssinica. The less abundant plant species differed

between GRR presence and absence areas; however, their

spectral signature was presumably not pronounced enough

or masked by the spectral signature of the dominant plant

species A. abyssinica. Our results demonstrate that textural

metrics can reliably predict the presence and absence of

the species via their impact on soil structure. However,

more subtle impacts of the GRR on its biotic environ-

ment, such as the vegetation composition, could not be

assessed from space. Hence, field assessments are indis-

pensable if subtle impacts of a species on ecosystem func-

tionality are the primary focus. Yet, we emphasize that

remote sensing is a promising tool for predicting the pres-

ence of a subterranean species based on texture metrics,

while field-based knowledge about plant species composi-

tion is not required to predict the distribution of the

GRR. Predicting the current distribution with minimized

effort is particularly relevant considering the endanger-

ment of the species and its ecological role as ecosystem

engineer.

To summarize, our aim to predict the spatial distribution

of the focal subterranean animal species was best conducted

with textural and vegetation indices; detailed knowledge of

the vegetation composition around the mounds was not

required. As such, remote sensing and machine learning

approaches can facilitate spatial modeling of subterranean

species that create distinctive above-ground landscape struc-

tures. In this study, we examined tools to meet the complex

challenge of predicting less visible species. This could be par-

ticularly valuable for spatial modeling in remote areas and

environments with low structural heterogeneity. Our

approach may be applicable to other arid ecosystems, where

vegetation stands are low and sparse. Here, subterranean

rodents are present frequently with important implications

for ecosystem processes (Contreras et al., 1993; Desmet &

Cowling, 1999; Kerley et al., 2004; Lacey & Wiec-

zorek, 2003; Miranda et al., 2019), which is particularly

critical if the ecosystems are difficult to access. Yet, further

studies need to confirm if our approach is applicable for

other subterranean species, for instance for the GRR’s sister

species T. splendens, subterranean mammals in the Tibetan

and Mongolian grasslands, or other cryptic species such as

social-insect colonies that create vegetation patterns like the

Namibian and Australian fairy circles.
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unconstrained axes (CA1 and CA2) for presence and
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the internal model iterations and number of randomly

selected predictors.
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