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Abstract

Assessment of regional language lateralization is crucial in many scenarios, but not all

populations are suited for its evaluation via task-functional magnetic resonance imag-

ing (fMRI). In this study, the utility of structural connectome features for the classifi-

cation of language lateralization in the anterior temporal lobes (ATLs) was

investigated. Laterality indices for semantic processing in the ATL were computed

from task-fMRI in 1038 subjects from the Human Connectome Project who were

labeled as stronger rightward lateralized (RL) or stronger leftward to bilaterally latera-

lized (LL) in a data-driven approach. Data of unrelated subjects (n = 432) were used

for further analyses. Structural connectomes were generated from diffusion-MRI

tractography, and graph theoretical metrics (node degree, betweenness centrality)

were computed. A neural network (NN) and a random forest (RF) classifier were

trained on these metrics to classify subjects as RL or LL. After classification, compari-

sons of network measures were conducted via permutation testing. Degree-based

classifiers produced significant above-chance predictions both during cross-validation

(NN: AUC–ROC[CI] = 0.68[0.64–0.73], accuracy[CI] = 68.34%[63–73.2%]; RF:

AUC–ROC[CI] = 0.7[0.66–0.73], accuracy[CI] = 64.81%[60.9–68.5]) and testing

(NN: AUC–ROC[CI] = 0.69[0.53–0.84], accuracy[CI] = 68.09[53.2–80.9]; RF: AUC–

ROC[CI] = 0.68[0.53–0.84], accuracy[CI] = 68.09[55.3–80.9]). Comparison of net-

work metrics revealed small effects of increased node degree within the right poste-

rior middle temporal gyrus (pMTG) in subjects with RL, while degree was decreased

in the right posterior cingulate cortex (PCC). Above-chance predictions of functional

language lateralization in the ATL are possible based on diffusion-MRI connectomes

alone. Increased degree within the right pMTG as a right-sided homologue of a

known semantic hub, and decreased hubness of the right PCC may form a structural

basis for rightward-lateralized semantic processing.
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1 | INTRODUCTION

It is well established that the language system is lateralized to the left

hemisphere in the majority of individuals, while a minority shows a

rightward lateralization (RL; Knecht, Deppe, et al., 2000; Knecht,

Dräger, et al., 2000). This lateralization is commonly assessed via lan-

guage task-functional magnetic resonance imaging (tfMRI). Word flu-

ency tasks, for example, produce strongly lateralized activations

especially in language regions within the frontal lobe (Bradshaw

et al., 2017), and tfMRI can lead to robust estimates of hemispheric

language dominance in these regions of interest (ROIs) (Fernández

et al., 2003; Jansen et al., 2006). It has, however, been shown that lan-

guage function is distributed over a large, partially bihemispheric net-

work (Binder et al., 2009; Branco et al., 2020; Price, 2012), whose

regional involvement can differ dramatically across tasks and individ-

uals (Seghier, 2008). This implies a potential benefit of tfMRI proto-

cols tailored to fit the ROIs under investigation, which can be

relevant, for example, in clinical scenarios such as prior to epilepsy

surgery (Tailby et al., 2017).

Binder et al. proposed an overt semantic processing task that

robustly activates the anterior temporal lobes (ATLs) with a bilateral,

on average left dominant pattern (Binder et al., 2011). It has been

demonstrated that the ATLs are necessary for lateralized spoken word

processing in patients with semantic dementia (Cope et al., 2020), and

that the resection of the language-dominant ATL can lead to deficits

in naming and semantic processing (Sabsevitz et al., 2003). Therefore,

this task is a promising candidate for assessing regional lateralization

of semantic processing within the ATL.

However, many subjects, for example, in clinical populations, are

unable to adequately perform tfMRI. Therefore, task free alternatives

for delineating regional language dominance are of great interest.

There are several approaches to derive lateralization indices from

other modalities. Language networks and individual activations from

language tfMRI have been successfully predicted from resting-state

functional connectivity (rs-fc; Parker Jones et al., 2017; Tavor

et al., 2016; Tomasi & Volkow, 2012) and laterality indices (LIs) were

derived from these with varying degrees of correlation to tfMRI-LI in

healthy (Tavor et al., 2016) and clinical (Desai et al., 2018; Doucet

et al., 2015) populations. In the latter, rs-fMRI-based classification of

language dominance was found to show up to 63% concordance with

the tfMRI-based classification (Rolinski et al., 2020). Others have dem-

onstrated correlations of word-generation-task-based tfMRI-LI with

rs-fc of the left inferior frontal gyrus (IFG) and with global graph theo-

retical (GT) metrics obtained from rs-fc (Wang et al., 2019).

There have also been efforts to infer language lateralization from

diffusion MRI (dMRI). Tractometry of the arcuate fasciculus (AF) has

commonly revealed a leftward lateralization in volume, fractional

anisotropy (FA) and fiber count (Delgado-Fernández et al., 2020;

Matsumoto et al., 2008; Silva & Citterio, 2017; Tiwari et al., 2011;

Vernooij et al., 2007). One study of 10 right-handed healthy partici-

pants extended on this knowledge and the authors detected correla-

tions of LI obtained from task-fMRI with LI obtained from FA within

bilateral fronto-temporal tracts between language regions (verb gen-

eration: r = .782, reading comprehension: r = .651) (Powell

et al., 2006). Recently, it has been demonstrated that the lateralization

of the AF, however, does not discriminate between subjects with

right- and left-sided functional language dominance (Verhelst

et al., 2021). Another study demonstrated a significant negative corre-

lation of the LI of FA within the direct segments of the AF with inter-

hemispheric rs-fc of bilateral Broca's territories (r = �.65), while again,

the LI of the AF was not correlated with task-evoked asymmetry or

asymmetry of intrahemispheric rs-fc (Piervincenzi et al., 2016).

According to the authors, this might potentially signify a downregula-

tion of interhemispheric connectivity (via the corpus callosum) medi-

ated by this leftward structural asymmetry. Interestingly, small effects

of increased FA within the corpus callosum have been associated with

atypical language dominance in both healthy subjects (R2 = .082)

(Häberling et al., 2011) and in patients with arteriovenous malforma-

tions (Li et al., 2021). One study has demonstrated a correlation

between LI derived from tfMRI and an asymmetry of Meyer's loop in

patients with epilepsy (Nowell et al., 2016).

Overall, tract-based and microstructural properties have com-

monly been assessed in subjects with left and more rightward lan-

guage lateralization. However, as opposed to rs-fc, the role of the

dMRI connectome in subjects with differential hemispheric language

lateralization is unclear.

The connectome is a description of brain connectivity and can be

modeled by brain graphs of interregional connections, which can be

estimated with different methodologies such as dMRI tractography

(Bullmore & Bassett, 2011; Fornito & Bullmore, 2015). Graph theory

is a branch of mathematics dedicated to the analysis of networks

(Bassett & Sporns, 2017). In a brain network, its elements (e.g., brain

regions) are termed nodes, and their connections or relationships are

termed edges (Sporns, 2014).

Structural connectomes are brain networks generated from dMRI

tractography and constitute graphs of white matter interconnections

of its nodes (Sotiropoulos & Zalesky, 2019). Based on such networks,

various graph-theoretical metrics can be computed that describe

topological properties of the network (Sporns, 2014). One such met-

ric, for example, is node degree, which simply describes the number of

connections that link a node to the rest of the network (Bullmore &

Sporns, 2009). GT properties have been investigated in a wide range

of fields to characterize networks in healthy subjects and clinical

populations (Bullmore & Sporns, 2009; Sporns, 2014).
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GT measures derived from resting-state fMRI connectomes, for

example, have been successfully applied to predict naming decline

after ATL surgery (Audrain et al., 2018). In terms of machine learning,

GT metrics seem attractive, as they summarize properties of a net-

work and thus can lead to a reduction of input features for model

training.

The present study aimed to investigate the utility of various struc-

tural connectome features for predicting the regional lateralization of

semantic processing within the ATL. In a second step, we sought to

delineate a structural basis of functional lateralization. To this end, the

large sample of high-quality neuroimaging data from the Human Con-

nectome Project (HCP; van Essen et al., 2013), including the above-

mentioned semantic processing task was leveraged (Binder

et al., 2011).

Subjects were grouped into rightward and more leftward latera-

lized subjects and machine learning models were trained on structural

connectome features to differentiate between both groups. We then

explored whether differences in nodal hubness are present in subjects

with differentially lateralized semantic processing.

2 | METHODS

2.1 | Subjects

All subjects from the HCP S1200 release in whom a minimally pro-

cessed structural MRI (Freesurfer-Pipeline), language task-fMRI and

diffusion weighed MRI (BedpostX-processed) were available

(n = 1039) (van Essen et al., 2013) were included. One subject was

excluded due to lack of any ATL tfMRI-activation. Subjects were

healthy adults aged 22–35 years, 558 (53.8%) were female and 46.2%

were male. After estimation of a threshold for rightward language

laterality (see Section 2.4.1), a subset of 432 unrelated subjects was

selected for further analyses. To this end, 117 unrelated subjects with

RL were identified, and all subjects with LL who were neither related

to the subjects with RL, nor to each other, were included (n = 315).

Analyses including all 1038 subjects are reported in the supplemen-

tary material.

2.2 | MRI acquisition and preprocessing

The HCP acquisition protocols and preprocessing pipelines are

described in detail elsewhere (Glasser et al., 2013; Sotiropoulos

et al., 2013; U�gurbil et al., 2013). In short, dMRI was acquired at a res-

olution of 1.25 mm3 with 90 gradient directions at each of three shells

with b-values of 1000, 2000, and 3000 s/m2, respectively. Images

were corrected for eddy current distortions, movement and suscepti-

bility induced distortions. Images were registered to native space and

fiber orientations had been estimated using FSL's BedpostX (Jbabdi

et al., 2012). Task-fMRI was acquired with a gradient-echo EPI

sequence (TE 33.1 ms, TR 720 ms, multiband factor = 8) over two

runs with left–right and right–left phase encoding respectively. Data

from the fMRI volume preprocessing pipeline was used, to which gra-

dient distortion correction, motion correction, TOPUP, bias field

removal as well as registration to the native T1 weighted image and to

standard space had been applied. Structural scans (3D MPRAGE, TE

2.14 ms, TR 2400 ms, 0.7 mm isotropic) had already been processed

via a modified version of Freesurfer's recon-all pipeline.

2.3 | fMRI language task

The language task implemented in the HCP task fMRI battery is a

semantic processing task first proposed and described in detail by

Binder et al. (2011). Subjects completed 26 runs each of a semantic

processing task (“Story”) and a math task as control.

During the story task, participants were presented short stories

from Aesop's fables (five to nine sentences), after each of which they

were asked dichotomous questions about the story's content. The

choice was given by the participant via right-hand button presses.

During the control task, participants were presented math problems in

varying and adjustable degree of difficulty, again with a dichotomous

possibility to answer (Binder et al., 2011).

2.4 | MRI processing

2.4.1 | Functional MRI processing and calculation
of LIs

FSL Feat (FSL 6.0) was used for fMRI analysis (Woolrich et al., 2001).

As we were interested in the lateralization of semantic processing,

only the Story > Math contrast was calculated. In each subject, one

acquisition with right to left- and one run with left to right phase

encoding was present. First-level analysis was carried out on each of

these images without application of any thresholding, using a double-

gamma-HRF convolution. Subject-wise second level analysis was per-

formed to create an average of these images and cluster-wise thresh-

olding of activations was applied at a cluster-forming threshold of

Z = 3.1 and a cluster p-threshold of .05 (Figure 1a). An ATL ROI ante-

rior to MNI Y = �22 (Murphy et al., 2017) was generated in standard

MNI space (Figure 1a).

Right and left ATL activations were calculated by summing the z-

statistics of each significantly activated voxel in each ATL ROI sepa-

rately, resulting in a weighted measure of task-activation per ROI. LIs

were calculated as follows: I¼ Left�Right
LeftþRight, so that LI ranged from �1 to

1. Generally, LIs can be calculated based on the extent or the magni-

tude of activations in the respective ROI, and it has been demon-

strated that magnitude-based calculations can yield more robust

estimates of regional language dominance (Jansen et al., 2006). Other

approaches that avoid a fixed activation threshold above which LI are

calculated are available as well (Matsuo et al., 2012; Wilke &

Lidzba, 2007).

For binary classification of language lateralization, a threshold

needed to be determined below which an LI was considered more

498 ZAHNERT ET AL.
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F IGURE 1 Labeling and preprocessing of connectomes. (a) Extraction of labels for the data. Laterality indices were calculated from language-
task-functional magnetic resonance imaging (tfMRI) using the Story > Math contrast within the anterior temporal lobe (ATL). (b) Distribution of
laterality indices and assignment of labels (see Section 2.4.1). Subjects (x axis) in blue were defined as more rightward lateralized. (c) Binary label
as RL or LL per subject after selection of 432 unrelated subjects. (d) Tractography with computation of regions of interest (ROI) � ROI
connectivity between parcels of the modified Desikan parcellation as detailed in Section 2.4.2. The red line within the temporal lobe highlights
the coordinate MNI Y = �22, at which temporal lobe seeds were split into anterior and posterior divisions. (e) Resulting preprocessed
connectivity matrices, thresholded at network densities of 20–40%. The depicted example networks had a density of 30%. (f) Graph theoretical
metrics were computed in each subject and at each density. (g) A curve of the GT metric as a function of network density resulted. Values under
curve were averaged to obtain one metric across network densities. (h) For each subject and metric, a vector of 96 features (corresponding to
96 ROIs) as well as the respective label of functional lateralization resulted. Each metric was used separately for model training. GT, graph theory;
LI, laterality index; LL, leftward and bilateral lateralization; RL, stronger rightward lateralization
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strongly rightward lateralized for this task. In the literature, leftward

lateralization of language function is commonly considered as typical

and it is often assumed at a LI of >0.2–0.25 (Janecek et al., 2013;

Seghier, 2008). An jLIj < 0.2 usually is considered as bilateral, and

LI < �0.2 are considered as rightward lateralized (Jansen et al., 2006;

Seghier, 2008). However, these thresholds have commonly been set

for word fluency tasks, and the degree to which different tasks lateral-

ize language function can vary (Seghier, 2008).

The present task has been reported to typically produce bilateral,

on average left dominant activations (Barch et al., 2013; Binder

et al., 2011). We computed the distribution of left, bilateral, and right

lateralized subjects according to canonical thresholds of LI = j0.2j and
confirmed these results (mean LI = 0.16, SD = 0.23; left: 446 subjects

(43%), bilateral: 542 (52.2%), right: 50 (5%)). According to these

thresholds of LI in the case of this only moderately lateralizing task, an

implausible proportion of subjects would have had to be deemed

“atypical” (57%).

Thus, a cutoff for stronger RL lateralization was identified in a

data-driven manner based on the distribution of LI among all subjects.

Data-driven classification of language lateralization has been con-

ducted in previous literature, albeit less frequently than adoption of

the canonical thresholds (Seghier, 2008). In this study, this data-driven

approach allowed for functional classification of regional laterality as

stronger left to bilateral lateralization (from here: LL) or RL based on

this moderately lateralizing task.

The threshold for RL was computed as follows:

meanLI�SDLI ¼�0:06805, and subjects with LI below this value were

labeled as RL. Note that the above approach was nonetheless still an

approximation to the unknown ground truth as to which range of LI

truly is “typical” for this task. Therefore, classifications and statistics

were also conducted using a different approach of threshold selection

(k-means clustering, obtaining a threshold for RL at LI = �0.064318),

and these results are reported in the supplementary material.

After generating two subpopulations according to LI and selection

of the subgroup of 432 unrelated participants, third level analysis was

performed within FSL to compare task-activations in subjects with RL

versus LL using a mixed effects model with a cluster-forming thresh-

old of Z = 3.1 and a cluster p-threshold of .05. This was done to infer

which ATL-subregions, on average, drove lateralization and to gain

insights on which other regions showed significant between-group

differences in concert with lateralized ATL-activation.

2.4.2 | dMRI and tractography

The GPU Version of ProbtrackX2 (FSL) (Hernandez-Fernandez

et al., 2019) was used for probabilistic tractography in all subjects.

The Desikan parcellation was modified and chosen for seed genera-

tion (Desikan et al., 2006), including supratentorial subcortical ROI.

Temporal lobe seeds were split into anterior and posterior divisions

using a custom generated ATL mask (anterior MNI Y = �22) in each

individual. Cortical seeds were confined to voxels at the gray-/white-

matter interface and the residual cortical gray matter was excluded

from tractography to avoid spurious connections across adjacent gyri.

This way, 96 cortical and subcortical seeds were created for tractogra-

phy and to estimate interregional connectivity.

To evaluate robustness of our results across parcellations, struc-

tural connectomes were additionally generated using the Schaefer

200 ROI functional parcellation (Schaefer et al., 2018) including

14 additional subcortical ROI. Results obtained from these connec-

tomes are reported in the supplementary material.

Cerebrospinal fluid, ventricles, and infratentorial structures were

excluded from the analysis and all white matter was used as a way-

point mask. Five thousand streamlines were generated per voxel in

each seed-ROI at the white–gray matter boundary and correction for

streamline-length was applied.

2.5 | Preprocessing of network matrices

Tractography (Figure 1d) resulted in an asymmetric 96 � 96 (for

96 ROIs) matrix A per subject, where each element Ai,j indicated the

streamline-count between two regions i and j. We applied a form of

fractional scaling by dividing each element Ai,j in a row (corresponding

to a region i) by the respective sum of all streamlines of that ROI that

reached a target:

Ai,jscaled ¼
Ai,j

PN
j¼1Ai,j

It has been demonstrated that fractional scaling of matrices derived

from probabilistic tractography can lead to improved contrast

between edges (Sotiropoulos & Zalesky, 2019). Scaled streamline

counts were used as connectivity weights. Connectivity matrices were

symmetrized elementwise according to Ai,jþAj,i

2 , except for connections

where at least one of the edges was 0, as here both edges were set to

0 (Figure 1d). In the next step, connectivity matrices were thresholded

to account for potential spurious connections inherent to probabilistic

tractography (Sarwar et al., 2019).

The get_components function from the Brain Connectivity Tool-

box for Python (https://pypi.org/project/bctpy/, (Rubinov &

Sporns, 2010)) was used to assess whether any of the created graphs

fragmented at a given density threshold (10, 15, 20, 30, and 40% con-

nection density interrogated), which was the case in seven subjects at

10% and one subject at 15% density. As physiological brain networks

should consist of only one connected component (Sotiropoulos &

Zalesky, 2019), these sparsest network densities were excluded from

our analyses. Therefore, connectivity matrices were thresholded at a

range of 20–40% (step size = 1%) network density for each subject.

2.6 | GT measures

Node degree and betweenness centrality (BC) were calculated for all

nodes using functions available in the Brain Connectivity Toolbox

(https://pypi.org/project/bctpy/, (Rubinov & Sporns, 2010)). Node

500 ZAHNERT ET AL.

 10970193, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26074 by U
niversitatsbibliothek, W

iley O
nline L

ibrary on [08/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://pypi.org/project/bctpy/
https://pypi.org/project/bctpy/


degree indicates the sum of connections that link a node to the rest

of the network, while BC is a measure of how many shortest paths

traverse a node (Bullmore & Sporns, 2009). Such GT metrics summa-

rize topological network properties in a lower dimensionality than, for

example, an adjacency matrix does.

GT metrics were computed in each subject and at each network

density. This resulted in a curve of the respective metric per node as a

function of network density (Figure 1f,g). This curve was integrated to

obtain one value of the analyzed metric per node and subject (Bassett

et al., 2008), therefore circumventing later statistical testing at multi-

ple density thresholds. For the convenience of the reader, these aver-

aged measures of node degree and BC will remain termed “node
degree” and “BC,” respectively.

2.7 | Classification of language lateralization

Computation of subject-wise LI resulted in 117 unrelated subjects

with RL and 315 subjects with LL. Since the number of samples was

small, GT metrics (node degree, BC) were used for model training to

avoid overfitting. For each metric, separate data sets were generated,

and thus different models were trained. For an overview of the

machine learning procedure, see Figure 2.

In a first step, random undersampling was applied to the majority

class (i.e., LL) to numerically match the minority class. Second, 20% of

the subjects were randomly split off from the training set to form the

test set (Figure 2b,c).

For feature selection, permutation testing with 100k permuta-

tions was performed to test for differences in the respective metric

across the two groups. Note that this was performed on the down-

sampled training set after splitting off the test set. All significant fea-

tures (p uncorrected <.05) were selected in each case for training of

the model. Prior to model training, metrics were scaled using a z-

transformation. For each metric, a random forest (RF) classifier and a

neural network (NN) were trained on the selected features.

The Keras API (https://keras.io/) was used to build a simple NN

consisting of the input layer, two dense layers with two interspersed

dropout layers and a single neuron for output (schematic see

Figure 2e). The learning rate was set at 0.001, ReLU was selected as

the activation function in each layer and “Adam” was selected as the

optimizer. Hyperparameter tuning was conducted using a separate

validation set (20% of the initial training set).

F IGURE 2 (a) Example data set for one of the two metrics analyzed (degree, betweenness centrality [BC]). A feature-vector of 96-features
per subject as well as the respective label (rightward lateralization [RL] dark blue, laterality index [LL] light blue) served as raw input for the
classification pipeline. (b) Balancing of classes and (c) train test split prior to (d) feature selection via permutation testing of features across both
groups within the training set. (e) Two models were trained and validated on the training set. Via 1000 iterations of fivefold cross-validation using
different data-spilts in each iteration, confidence intervals and differences to null classifiers for ROC–AUC and accuracy were computed during
validation. (f) Testing was conducted on the separate test set, and ROC–AUC and accuracy were computed for model evaluation
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Afterward, 1000 iterations of stratified fivefold cross-validation

(using 1000 different data splits) were conducted on the entire train-

ing set (i.e., 80% of the data) to obtain a mean validation accuracy and

AUC–ROC. Confidence intervals were computed, and additional null

classifiers were trained with shuffled labels during each iteration,

whose performances were compared to the “true” models by comput-

ing differences in model performance (AUC–ROC, accuracy) during

each iteration. The null hypothesis (classifications do not exceed

chance) was rejected if the lower bound of the 95% confidence inter-

val of differences in model performance was greater than zero.

Finally, models were evaluated on the unseen test set. The NN

that was trained on node degree, for example, consisted of 29 neurons

in the first and 20 neurons in the second dense layer. AUC–ROC and

binary accuracy were calculated for model evaluation.

For comparison, we used Scikit-Learn (https://scikit-learn.org/

stable/) to train an RF classifier on the same data set. Here, the entire

training set was used to perform a grid-search for hyperparameter

estimation via fivefold cross-validation. Mean validation accuracy and

AUC were subsequently obtained via 1000 iterations of stratified

fivefold cross-validation as described above, with model hyperpara-

meters set to those of the best estimator during grid search. Finally,

the RF was evaluated on the same separate test set as the NN.

Confidence intervals for AUC–ROC were calculated on the test

set using a python implementation of the DeLong method ((DeLong

et al., 1988; Sun & Xu, 2014), https://github.com/yandexdataschool/

roc_comparison). Confidence intervals for model accuracy on the

independent test set were obtained via randomly bootstrapping the

test set with 1000 bootstrap samples and evaluating model perfor-

mance for each sample. To assess whether model performance

exceeded chance, again, additional “null-models” with identical hyper-

parameters to those of the “true” models were created. These models

were trained on the training set with shuffled data labels and were

evaluated on the original test set. The performances of the true and

null models were evaluated and compared on the test set by comput-

ing differences in model performance for 1000 bootstraps. The null

hypothesis (classifications do not exceed chance) was rejected if the

lower bound of the 95% confidence interval of differences in model

performance was greater than zero.

2.8 | Statistical analyses

After model evaluation, statistical analyses were conducted across the

entire study population (n = 432 unrelated subjects) for inference of

differences in structural connectivity across both groups. The above-

mentioned GT measures were compared via permutation testing with

100k permutations and false-discovery rate correction (Benjamini–

Hochberg) for multiple testing was applied in each instance.

In addition, link-wise differences in connectivity strength were

analyzed with the Network-based Statistics (NBS) Toolbox (Zalesky

et al., 2010) using the NBS and FDR correction methods, as recom-

mended. NBS was conducted at densities of 20 and 30% and in

unthresholded connectomes. Link-wise analyses were followed up by

tractometry to explore group-differences in microstructural properties

of language-related tracts. These results are reported and discussed in

the supplementary material.

3 | RESULTS

Stronger RL was found in 125/1038 subjects (12%), and there was no

difference in sex across groups (RL: 58.3% female, LL: 53.1% female, p

(uncorrected) = 0.3, OR = 0.81). Then, 97 subjects were left-handed

and 26 (26.8%) of which showed RL, while 10.7% of right-handed sub-

jects had been classified as RL. The association between handedness

and fMRI-based assessment of language laterality was statistically sig-

nificant (Fisher's exact test, p(uncorrected) = .000031, OR = 0.33).

Furthermore, there was no difference in task-performance across RL

and LL (task accuracy: t = 1.355, p(uncorrected) = .17909, d = 0.14;

reaction time during task: t = 0.31, p(uncorrected) = .75, d = 0.03).

All following analyses were conducted within a subset of

432 unrelated subjects (226 females, no difference in sex across

groups, OR = 0.84, p = .45), enriched with individuals with RL

(117/432 = 27.1%) as detailed in Section 2.1. No difference in task

performance across RL and LL was detected in this subset either (task

accuracy: t = 1.09, p(uncorrected) = .28, d = 0.13; reaction time dur-

ing task: t = �0.17, p(uncorrected) = .86, d = �0.02).

F IGURE 3 Comparison of task-activations from the Story > Math
contrast between subjects with rightward lateralization (RL) and
laterality index (LL). Cluster-corrected z-maps of significant
activations stronger in subjects with RL are depicted in red, and
activations stronger in LL are depicted in blue (here depicted as
negative values) at a z-threshold of 3.1. The range of activations for
RL > LL was 3.1–6.3 and the scale was adapted to the larger range of
z-values from the LL > RL contrast
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3.1 | Differences in task activation

Figure 3 shows that RL was mainly driven by weaker activations in

the left ATL compared to subjects with LL, and by stronger activa-

tions in the right anterior inferior temporal gyrus and in the right

anterior middle temporal gyrus. Concomitant activations stronger in

subjects with RL were mainly located in the right posterior middle

temporal gyrus (pMTG) and pSTG, while homologous contralateral

regions showed significantly decreased activations compared to sub-

jects with LL. Also, right IFG had stronger concomitant activations

in RL, with decreased activity in the contralateral IFG compared to

LL. The right posterior cingulate cortex (PCC) and right caudal mid-

dle frontal gyrus showed stronger concomitant activations in sub-

jects with RL.

3.2 | Classification of language lateralization

Classifiers trained on node degree yielded significant predictions of

functional lateralization during semantic processing both during cross

validation and during testing on the held-out test set. The NN and RF

classifier showed similar performances and both significantly outper-

formed classifiers trained with shuffled data labels. Table 1 depicts

the results obtained from cross validation, as well as from testing of

both models on the held-out test set. Predictions of models trained

on BC did not exceed chance.

Figure 4 depicts the ROC curves of model performances on the

held-out test set, as well as a visualization of features used for classifi-

cation, while Table 2 lists these features selected for classification

with degree-based models. Results obtained using a different method

of threshold definition, as well as results obtained using a different

cortical parcellation were similar and are reported in the supplemen-

tary material.

3.3 | GT metrics

After model evaluation, GT metrics derived from structural connec-

tomes were analyzed across the entire data set.

Increased node degree was detected within the right pMTG in

subjects with RL (pMTG: p = .02784, d = �0.4, t = �3.68), while

node degree of the right PCC was greater in subjects with LL

(p = .04464, d = 0.35, t = 3.35) (Figure 5). There was no difference in

BC in any ROI across groups. All p-values were FDR-corrected for

96 comparisons corresponding to 96 ROIs. No link-wise differences in

connectivity strength were detected.

TABLE 1 Performance of degree-based classifiers during validation and on the held-out test set. ROC–AUC and accuracies reported for
cross-validation are means computed from 1000 models evaluated during 1000 iterations of fivefold stratified cross-validation, each with varying
train-test-splits. Both models performed significantly better than chance

Model AUC [CI] Accuracy (%) [CI]
AUC: Difference to
null classifiers (M [CI])

Accuracy: Difference
to null classifiers (%) (M [CI])

Cross validation Neural network 0.683 [0.63–0.73] 68.34 [64.2–72.7] 0.14 [0.03–0.26] 10.4 [2–19.1]

Random forest 0.696 [0.66–0.73] 64.81 [60.9–68.5] 0.19 [0.08–0.3] 14.7 [5.4–24]

Testing Neural network 0.687 [0.53–0.84] 68.09 [53.2–80.9] 0.36 [0.07–0.62] 24.9 [2.1–46.8]

Random forest 0.683 [0.527–0.839] 68.09 [55.27–80.85] 0.28 [0.07–0.49] 23.4 [4.3–42.6]

F IGURE 4 (a) Receiver operating curves obtained during testing of models that had been trained on node degree. The dashed line indicates
chance. NN, neural network; RF, random forest. (b) Visualization of features selected for training as well as feature importance as estimated by
the random forest and the neural network. Node size indicates feature importance for the neural network, while node color indicates impurity-
based feature importance of the random forest
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4 | DISCUSSION

The utility of structural connectomes for prediction of functional lan-

guage lateralization in the ATLs was evaluated. In a second step, we

provided evidence for a structural basis of this functional

lateralization.

4.1 | Classification of language lateralization

We demonstrated that better than chance classification of lateralized

semantic processing is possible with modest to acceptable AUC–ROC

(Mandrekar, 2010) based on dMRI connectomes alone. To our knowl-

edge, this study contributes the first effort to predict hemispheric lan-

guage dominance from structural connectomes.

The best models were based on node degree, and classifications

based on this metric showed robust results with moderate AUC–ROC

and accuracy across both classifiers. The confidence intervals of the

estimations on the test set were wide, which can be attributed to the

small sample size of 234 subjects for training, validation, and testing.

The sample size might also have prohibited classifiers from producing

better results.

It is noteworthy that some of the predictive regions (e.g., right

caudal middle frontal gyrus, right PCC, or right pMTG) also showed

stronger concomitant activations in subjects with RL as compared to

LL during the language task, as shown in Figure 3, hinting at a struc-

tural basis for these rightward lateralized activations in these regions.

Similar results were obtained when using a different, more fine-

grained parcellation for generation of connectivity features, among

which similar regions were predictive of language laterality, underlin-

ing the robustness of our results.

Our findings highlight that dMRI connectivity at rest contains

information on task-derived functional language lateralization. Espe-

cially the assessment of language laterality in subjects who are unable

to perform task-fMRI could benefit from the availability of task-free

models, and we believe the present study may pose an encouraging

step in this direction.

While previous predictions of language lateralization from

resting-state fMRI showed promising results in healthy populations

(Tavor et al., 2016), rs-fc seems to be susceptible to effects of, for

example, anticonvulsive medication (Salinas & Szab�o, 2017; Zhang

et al., 2017) or vigilance (Liu & Falahpour, 2020). No such effect is

known to affect dMRI, rendering structural connectivity an interesting

tool for resting-state assessment of language laterality. dMRI

connectome-based predictions involving different or multiple lan-

guage tasks that elicit perhaps more markedly lateralized activation

maps (thus facilitating labeling of data) will be of great interest in the

future, especially in clinical populations.

4.2 | Graph theoretical analysis

After classification of language lateralization in the ATLs, differences

in structural connectivity across the entire study population were

analyzed.

Analysis of GT measures showed increased node degree of the

right posterior MTG in subjects with RL, which also showed signifi-

cantly stronger concomitant activations in RL during the language

task, while the contralateral posterior MTG showed decreased activa-

tions compared to LL. This indicates a concomitant rightward shift of

TABLE 2 Features selected from the degree-based training set
for subsequent machine learning (as also depicted in Figure 4).
Features were selected via two-tailed permutation testing and
negative values indicate greater degree in subjects with RL. p-Values
are uncorrected

Degree

Region t-stat
Cohen's
d p

Right posterior middle temporal

gyrus

�3.06 �0.45 .0026

Right caudal middle frontal gyrus 2.69 0.39 .00789

Right posterior cingulate cortex 2.62 0.38 .0094

Right inferior parietal cortex �2.5 �0.37 .0131

Left postcentral gyrus �2.32 �0.34 .021

Right frontal pole 2.23 0.32 .027

Right supramarginal gyrus �2.12 �0.31 .035

Left insula 2.06 0.3 .041

Left posterior transverse temporal

gyrus

2.03 0.3 .044

Left inferior parietal cortex �1.98 �0.28 .049

F IGURE 5 Results of multiple univariate permutation testing of
node degree across groups. Node colors indicate t-statistic. Two
nodes reached statistical significance (right posterior middle temporal
gyrus [pMTG] and right posterior cingulate cortex [PCC]). Two-tailed
testing of subjects with laterality index (LL) versus rightward
lateralization (RL) was performed, so that negative t-statistics indicate
stronger degree in subjects with RL
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involvement of the pMTG in semantic processing that is accompanied

by measurable increase in structural degree centrality.

Previous studies consistently demonstrated a role of the left

pMTG as a major semantic hub where multiple modalities of semantic

input converge (Binder et al., 2009; Binder & Desai, 2011;

Middlebrooks et al., 2017; Xu et al., 2016). The pMTG was found to

be part of a multimodal semantic network consisting of the ventral

ATL, PCC, inferior temporal regions, angular gyrus, and mesial tempo-

ral regions (Bonilha et al., 2017; Jackson et al., 2016). In patients with

left temporal lobe epilepsy, intact fc of the right pMTG was predictive

of semantic performance after left ATL resection, indicating a poten-

tially increased role of this contralateral semantic hub in functional

reserve (Audrain et al., 2018). Future research should be directed at

investigating whether preoperative right pMTG node degree, too,

might have prognostic value in determining risk of postoperative lan-

guage impairment.

Interestingly, the right PCC showed decreased degree in subjects

with RL, which showed significantly stronger activations during fMRI

in subjects with RL compared to LL. The left PCC was consistently

activated in neuroimaging studies of semantic processing and is

hypothesized to form an interface to the hippocampus in encoding

semantic information to episodic memory (Binder & Desai, 2011). We

speculate that our findings might imply a shift of the role of the right

PCC toward a more selective function of lower hierarchy (Seguin

et al., 2019) in subjects with RL, potentially in conjunction with adopt-

ing the above-mentioned function. Interpretation of this finding in

relation to semantic processing, however, is not straightforward based

on our results and warrants further dedicated research.

Importantly, the node degrees of these two regions (right pMTG

and PCC) were among the features selected for classification with the

successful degree-based model in the first step of this study.

Using the alternative Schaefer200 parcellation (see supplement),

no region withstood correction for 214 comparisons. However, in this

exploratory analysis, multiple neighboring parcels along the right pos-

terior MTG showed comparatively marked effect sizes, which would

likely have been summed into one ROI (pMTG) in the coarser parcella-

tion, leading to the observed effect. Additional neighboring nodes

with increased degree in RL (all nonsignificant after correction for

multiple comparisons) were observed within the right posterior STG

and in the temporoparietal junction, together forming a cluster over

an area resembling a right-sided homologue of the canonical Wer-

nicke's area. The strongest effects were observed in regions within

the right caudal middle frontal cortex, which was a predictive region

during classification for the models based on the Desikan parcellation

as well as for models based on the Schaefer parcellation. Interestingly,

there have been prior reports of the potential utility of the (posterior)

middle frontal gyrus in functional lateralization of language function in

brain tumor patients (Chang et al., 2020; Dong et al., 2016; Gohel

et al., 2019). Overall, results from this second parcellation corroborate

our findings from the main analysis.

Results remained largely unchanged when applying a slightly dif-

ferent threshold for RL, as well as with the inclusion of all 1038 sub-

jects of the HCP data set with available data.

4.3 | Limitations

There are several limitations to this study. First, the labeling of our

groups as subjects with “typical” left versus “atypical” right language

lateralization had to be determined by the investigators without

knowledge of a ground truth. Due to the known, often bilateral activa-

tion patterns of the selected language task (Binder et al., 2011), we

did not impose more standard (and in this case arbitrary) cutoff values

of LI > 0.2 versus <�0.2. Instead, we chose to identify a cutoff value

for more rightward laterality from the distribution of LI among all sub-

jects. While selection of this cutoff was still somewhat arbitrary, it

resulted in a plausible number of subjects with RL (12%) compared to

the literature (�5–7.5% and �20% in right-handed and left-handed

populations, respectively (Knecht, Deppe, et al., 2000; Knecht, Dräger,

et al., 2000; Springer et al., 1999; Szaflarski et al., 2002)), and our

approach reduced bias and produced meaningful results under permu-

tation testing. Future research should now focus on tasks that pro-

duce stronger lateralizations to infer structural differences in subjects

with differential language dominance. To our knowledge, large, openly

available data sets containing such language tfMRI and dMRI data are

not available to date.

Another limitation is the small sample size for classification with

machine learning, which created the need to perform feature selection

and engineering, leading to a potential loss of information. The reason

for this is the scarcity of subjects with RL in a healthy population, and

future data sets enriched with individuals with RL could overcome this

issue and might produce even better classification results.

Furthermore, the network densities at which connectomes are

probed need to be determined by the investigator, which can intro-

duce bias, and results can vary across different density thresholds in

the same data set. Thresholding can increase specificity by eliminat-

ing spurious connections, but can also lead to loss of information

due to elimination of true connections (Sotiropoulos &

Zalesky, 2019). To overcome this issue, GT metrics were averaged

over a range of connection densities to form a single summary met-

ric per node (Bassett et al., 2008), and thresholded connectomes

were rigorously interrogated for fragmentation to ensure anatomical

plausibility.

5 | CONCLUSION

We report above-chance predictions of functional language lateraliza-

tion during semantic processing within the ATLs based on structural

connectomes. Overall, these results show promise that further efforts

with larger sample sizes may achieve even better accuracies in the

future.

Structural differences were found in right-sided homologues of

widely accepted semantic hubs, one of which (pMTG) adopted a more

central role in subjects with RL. Functional implications of the demon-

strated decreased topological centrality of the right PCC in rightward

lateralized subjects are of great interest and warrant future research.

In conclusion, stronger rightward language lateralization in healthy
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individuals seems to be supported by a right-sided structural frame-

work involving canonical language regions.
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