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Abstract: “Big omics data” provoke the challenge of extracting meaningful information with clinical
benefit. Here, we propose a two-step approach, an initial unsupervised inspection of the structure of
the high dimensional data followed by supervised analysis of gene expression levels, to reconstruct the
surface patterns on different subtypes of acute myeloid leukemia (AML). First, Bayesian methodology
was used, focusing on surface molecules encoded by cluster of differentiation (CD) genes to assess
whether AML is a homogeneous group or segregates into clusters. Gene expressions of 390 patient
samples measured using microarray technology and 150 samples measured via RNA-Seq were
compared. Beyond acute promyelocytic leukemia (APL), a well-known AML subentity, the remaining
AML samples were separated into two distinct subgroups. Next, we investigated which CD molecules
would best distinguish each AML subgroup against APL, and validated discriminative molecules of
both datasets by searching the scientific literature. Surprisingly, a comparison of both omics analyses
revealed that CD339 was the only overlapping gene differentially regulated in APL and other AML
subtypes. In summary, our two-step approach for gene expression analysis revealed two previously
unknown subgroup distinctions in AML based on surface molecule expression, which may guide the
differentiation of subentities in a given clinical–diagnostic context.

Keywords: Bayesian machine learning; gene expressions; leukemia; cluster of differentiation genes;
CD genes

1. Introduction

High-throughput molecular analyses are becoming increasingly affordable in clin-
ical medicine, and have significantly improved our understanding of diseases such as
cancer [1,2]. However, overwhelming amounts of “big omics data” still provoke the chal-
lenge of extracting meaningful information with clinical benefit. Deep molecular insights
can provide a basis to shift organ/tissue-centered approaches to tumor diagnosis and ther-
apy towards precision oncology, i.e., the integration of genetic and genomic data to estimate
a patient’s prognosis and guide treatment decisions [3]. In fact, molecular classification
systems have been proposed already for some entities such as breast cancer [4] or acute
myeloid leukemia (AML) [5]. However, large-scale sequencing or gene expression studies
are of limited practical value in specific clinical settings concerning both diagnostics and
therapy. Notably, specific low-complexity biomarkers can be determined in less time than
system-wide profiles, and molecular therapeutics need precisely defined structures rather
than superordinate patterns as their particular sites of action. Therefore, rapid diagnostics
and e ffective molecular therapies require knowledge about “the important few” features
that low-throughput testing procedures or targeted compounds can address.
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Diagnosis of acute myeloid leukemia (AML) is of great medical importance in the field
of hematology, as one of its subtypes, specifically, acute promyelocytic leukemia (APL), is
associated with a substantial risk of early death from bleeding complications [6]. Although
diagnosis of AML can be established in many cases by cytology, discrimination of APL
and non-promyelocytic AML (np-AML) is sometimes challenging and requires further
examination. Throughout the past two decades, flow cytometry has become an additional
powerful tool to rapidly characterize AML and distinguish this entity from other acute
leukemias or myeloid neoplasms based on the immunophenotyping of blasts [7,8]. Up
to now, single distinct AML-specific cell surface markers have not been identified, thus
the European Leukemia Net (ELN) guidelines recommend a broad antibody panel for
diagnostic testing [9].

In this work, we applied an unbiased mathematical approach that combines Bayesian
and computed ABC analysis [10] on gene expression data in order to identify the most
informative cluster of differentiation (CD) genes on AML blasts that could distinguish APL
from np-AML. Specifically, we analyzed microarray gene expression profiles for a series
of 390 primary patient samples comprising 266 np-AML, 15 APL, and 109 control cases
(healthy/non-leukemia patients) [11], and RNA-Seq-data from 135 np-AML and 15 APL
patient samples from the TCGA LAML project [12].

2. Materials and Methods
2.1. Gene Expression Datasets

Two AML gene expression datasets were analyzed in this study. The first one (provided
by T.H) was a subset of a previously published microarray dataset [11] and included gene
expression profiles of 281 diagnostic AML samples (266 np-AML, 15 APL) and 109 non-
leukemia/healthy individuals that had been obtained using Affymetrix HG-U133 Plus
2.0 microarrays. The ethics board approved the analysis of this dataset for the purpose
of this study at the faculty of medicine, University of Marburg (No. 138/16). The second
dataset comprised RNA-Seq data from the TCGA LAML project for 135 np-AML and
15 APL patients [12], and can be downloaded from the Broad GDAC Firehose platform
(http://firebrowse.org/?cohort=LAML&download_dialog=true, accessed on 3 April 2017).
It can also be downloaded from the GDC Data Portal for each case separately (https:
//portal.gdc.cancer.gov/ (accessed on 3 April 2017). Clinical annotations for the LAML
dataset included FAB subgroups as the most diverse established classification system
for AML, while more recent classifications such as WHO 2016 [8] or ELN 2017/2022
classifications [7,13] were not provided. Thus, we chose FAB classes as the reference
for our calculations, which we also considered appropriate given that our bioinformatic
explorations were directed towards the cell surface. A list of 417 CD genes that were
examined for expression in np-AML, APL, and non-leukemia samples (available only in the
microarray dataset) was compiled manually using the list of CD molecules provided by the
HUGO gene nomenclature committee (https://www.genenames.org/data/genegroup/
#!/group/471, accessed on 30 November 2019) and a query to the NCBI gene database
(https://www.ncbi.nlm.nih.gov/gene, accessed on 2 November 2017; query term “CDxxx
AND Homo Sapiens [Organism]”).

2.2. Calculation of Bayesian Decision Borders for Expressed and Unexpressed Genes

Initial exploratory data analysis with techniques taken from [14] indicated that the
distribution of the log-transformed expression data for each of the two complete sample
sets followed a multimodal distribution. Mixture models are the standard statistical tool for
such applications [15,16], and further preprocessing was not required. Gaussian mixture
models (GMM) were fitted to the overall distribution of the log-transformed microarray and
the RNA-Seq gene expression data and subjected to Bayesian analysis using the R package
“AdaptGauss” available on the Comprehensive R Archive Network (CRAN) [15]. In brief,
the procedure incorporated the following definitions and operations: In Gaussian Mixture

http://firebrowse.org/?cohort=LAML&download_dialog=true
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genenames.org/data/genegroup/#!/group/471
https://www.genenames.org/data/genegroup/#!/group/471
https://www.ncbi.nlm.nih.gov/gene
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models (GMM), the probability density of the measurements, GMM(x), is represented as a
weighted sum of Gaussians

GMM(x) = ∑M
i=1 wiN(x|mi i, si) = ∑M

i=1 wi·
1√

2πsi
·e
− (x−mi)

2

2s2
i (1)

where N(x|mi,si) denotes Gaussian normal distributions with mean mi and standard
deviation si; the weights, wi, which add up to 1, indicate the relative contribution of each
component; and M denotes the number of components in the mixture. For each dataset,
a suitable value for M was selected based on the Akaike information criterion [17], and
the GMM was adapted to the data using an expectation–maximization algorithm. This
approach resulted in a GMM with M = 2. Chi-square tests [18] were applied to estimate the
probability that the GMM did not adequately describe the logarithmized gene expression
data. The chi-square tests yielded p-values of p < 0.001 for both GMMs. Posteriors for each
GMM were calculated as follows:

p(ci|x) =
p(ci) ∗ p(x|ci)

∑M
i=1 p(ci) ∗ p(x|ci)

(2)

with
∑M

i=1 p(ci) ∗ p(x|ci) = ∑M
i=1 wi∗N(mi, si) = GMM(x) (3)

in which p(x|ci) is the likelihood to generate data in this class (conditional probability of
being in the mode of gene expression values x); p(ci) is the probability of choosing a class
(prior); and p(ci|x) is the posterior.

Bayesian decision borders between unexpressed and expressed genes, defined as the
posteriors of p = 0.5 with log expression values of x = 2.96 (microarray) and x = 1.48
(RNA-Seq), were calculated, for which the back transformation yielded expression values
of 912 and 30.2. In detail, the left Gaussian contained low gene expression values and
the right Gaussian contained high gene expression values. The posteriors defined the
probability of a gene expression value either belonging to the left or to the right Gaussian.
By exploiting the GMM, the expression datasets were automatically normalized to the
closed interval [0, 1] using the Bayes posteriors. A value of p(ci|x = genea) = 0 indicates
definitive underexpression of genea, and a value of p(ci|x = genea) = 1 denotes definitive
overexpression of genea.

2.3. Identification of AML Subgroups

The subgroups Gk k = 1, 2, 3 were identified with the Ward algorithm accessible in the
R package “FCPS” available on CRAN [19]. As the algorithm was applied to the Bayes
posteriors p(ci|x), no normalization was necessary. The inspection of the dendrogram
indicated optimal clustering. Here, significant changes in fusion levels of the ultrametric
portion of the Euclidean distance in the Ward algorithm (y-axis) indicated the best cut [20].

2.4. Selection of Differentially Expressed Genes (Deg)

In the next step, the probability
∣∣∣pdeg

∣∣∣ that genea is differentially expressed is defined in

Equation (4) as the difference of group average Bayes posteriors pGk =
1

Nk
∑Nk

u∈Gk
pu(ci|genea)

with pu being the posterior value of a subject’s case u ∈ Gk of a subgroup Gk with its
cardinality Nk = |Gk|, as follows:

pdeg(genea) = pGk (ci|genea)− pGj(ci|genea) (4)

with Gk and Gj (where by k = 1, 2, 3, j = 1, 2, 3, j 6= k) being the two groups of comparison
(e.g., APL vs. AML) and the sign (+,−) defining the direction. A value of pdeg(genea) = −2
indicates definitive underexpression, and a value of pdeg(genea) = +2 denotes definitive
overexpression in relation to the compared groups.
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Differences in gene expression levels were analyzed for the dichotomies APL vs. AML1,
APL vs. AML2, AML1 vs. AML2, APL vs. normal, AML1 vs. normal, and AML2 vs. nor-
mal in the microarray dataset, and APL vs. AML1, APL vs. AML2, and AML1 vs. AML2
in the RNA-Seq dataset, using Cohen’s D with varying variances and group sizes [21]
as a measure of the effect size. The most important effect sizes, i.e., the most significant
differences in gene expression, were identified by computed ABC analysis [10] using the
R package “ABCanalysis” available on CRAN (http://cran.r-project.org/web/packages/
ABCanalysis/index.html (accessed on 3 April 2017)). The ABC curve can visualize the
data by graphically representing the cumulative distribution function closely related to
the Lorenz curve. Using the ABC curve, the algorithm calculates the optimal limits by
exploiting the mathematical properties pertaining to the distribution of analyzed items.
Recursively applying ABC analysis three times on all probabilities

∣∣∣pdeg

∣∣∣ yielded the used
thresholds: genes were considered to be expressed if their difference exceeded the threshold
of 0.3 for RNA-Seq (0.7 for microarray data), because genes with values above the threshold
were in group A (A and B respectively) in the third computed ABC analysis, and considered
to be the most important ones.

3. Results

At first, the gene expressions in both datasets were logarithmized. Distribution
analysis [14] revealed multimodal distributions for the CD genes. Therefore, distributions
were modeled with Gaussian mixtures as described in the methods section. The models
allowed for calculating Bayesian posteriors, which were used for further analysis.

3.1. Subgroups of AML Based on the Expression of CD Genes

In the next step, hierarchical clustering, using the Ward algorithm, of the RNA-Seq
data revealed three major clusters marked in the dendrogram in black in Figure 1, con-
sisting solely of APL/AML M3 cases (Ward cluster 3). Beyond this separation, AML had
two subgroups (magenta and red). In order to compare the RNA-expression-based AML
clustering with the historical classification of the French–American–British group [22], both
classifications were aligned in Table 1. Within the first cluster of Ward, M1, M2, and M0
were predominant, and within the second cluster, M5. M4 was equally distributed, and for
M6 to M8, only a few cases were available. FAB M3 is historically defined as APL, and was
only found in Ward cluster 3. Hence, the Ward dendrogram for the AML patients without
APL of the microarray dataset was also investigated. In line with the clustering results
from the RNA-Seq data, the non-APL group revealed a cluster structure of two subgroups,
as depicted in Figure 2.

Table 1. Contingency table comparing Ward clustering of the RNA-Seq dataset and FAB classification [22].
Abbreviations: M0, undifferentiated acute myeloblastic leukemia; M1, acute myeloblastic leukemia
with minimal maturation; M2, acute myeloblastic leukemia with maturation; M3, acute promyelocytic
leukemia (APL); M4, acute myelomonocytic leukemia; M5, acute monocytic leukemia; M6, acute
erythroid leukemia; M7, acute megakaryoblastic leukemia.

Ward Cluster M0 M1 M2 M3 M4 M5 M6 M7

1 (magenta) 15 34 36 0 17 2 2 1

2 (red) 0 3 1 0 12 13 0 0

3 (black) 0 0 0 15 0 0 0 0

http://cran.r-project.org/web/packages/ABCanalysis/index.html
http://cran.r-project.org/web/packages/ABCanalysis/index.html
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Figure 1. Ward clustering applied to the RNA-Seq data revealed a cluster structure of three groups
Gk, k = 1, 2, 3, one consisting only of APL and two of AML with the FAB classification of Table 1
which also depicts the colors of this figure. Clustering and dendrogram generation were computed
with the R package “FCPS” available on the Comprehensive R Archive Network (CRAN) [19].
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Figure 2. Dendrogram of Ward clustering applied to microarray np-AML patient samples revealed
two subgroups (magenta and red). Clustering and dendrogram generation were computed with the
R package “FCPS”, available on CRAN. The dataset provided normal controls in addition to APL.
Both diagnostic entities were not used in the clustering.
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A dichotomy of np-AML is neither recognized in the present WHO classification [7]
nor in the stratification for treatment strategies. The separation of np-AML to APL is in
agreement with previous research [23]. In addition, it is mentioned in one prior publication
that AML divides into one APL cluster and two AML clusters with principal component
analysis using 37 microarray samples [24]. Alignment of the two clusters to FAB classifi-
cation could either be interpreted as a myeloid vs. monocytic differentiation pattern or
as an immature (M0–2 and M6/M7) vs. a more mature (M4–M5) biologic nature of the
leukemia blasts, as suggested by Goardon et al. [25]. To corroborate the latter hypothesis,
we performed a detailed inspection of specific antigen distribution patterns.

3.2. Differential Expression of CD Genes in AML Subtypes

To determine the CD genes that most accurately discriminate the subgroups of AML
(APL, AML1, AML2) in the microarray analysis, we determined the differences in mean ex-
pression values for each dichotomy by calculating Cohen’s D and then performed computed
ABC analyses. In total, 23 genes significantly discriminated two AML subgroups in at least
one dichotomy in the microarray dataset (Table 2). Moreover, 10 genes were differentially
expressed in APL vs. AML1, and 19 genes in APL vs. AML2, with six co-regulated genes in
APL vs. both groups. Only one gene (CD18) was differentially expressed in all three pairs
of AML subgroups. Hence, a comparison of APL vs. a mixture of both AML groups would
have underscored the expression of considerable many potential target genes.

Table 2. The most important differentially expressed CD genes in AML subtypes in the microar-
ray dataset. Cohen’s D values are indicated for each dichotomous comparison (group A on the
left vs. group B on the right). Positive values indicate higher expression in group A. Negative values
indicate higher expression in group B. Values < 0.7 were set to 0.

Gene APL vs. AML1 APL vs. AML2 AML1 vs. AML2
1 CD3D 0.9 0.92 0

2 CD9 0.89 0 0

3 CD11b 0 −1.17 −0.94

4 CD14 0 −0.99 0

5 CD15 0 −0.77 0

6 CD18 −0.97 −1.69 −0.72

7 CD24 0 −1.29 −0.79

8 CD37 0 −1.09 0

9 CD50 0 −0.98 0

10 CD52 −0.96 −1.25 0

11 CD55 0.78 0 0

12 CD62L −1.04 −1.44 0

13 CD66b 0 −1.49 −0.82

14 CD66c 0 −1.06 0

15 CD83 −0.7 −1.4 0

16 CD87 1.08 0 0

17 CD88 0 −1.1 −1.09

18 CD98 0.93 1.05 0

19 CD210A 0 −1 −0.79

20 CD282 0 −0.81 −0.75

21 CD339 0.9 0.75 0

22 CD354 0 0 −0.75

23 CD369 0 −1.04 −0.94
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Of six genes that were correspondingly differentially expressed between APL and
each AML1 and AML2, three (CD3D, CD98, CD339) were higher expressed in APL, and
three (CD52, CD62L, CD83) were higher in AML1/2. In addition, the CD18 gene was
also higher in APL vs. AML1/2, and differentially expressed in all three pairs of AML
subgroups. Finally, one gene (CD354) discriminated AML1 from AML2, but not AML1 and
AML2 from APL.

In the RNA-Seq dataset, 14 genes significantly discriminated between AML subgroups
in at least one dichotomy (Table 3). Three genes (CD84, CD148, CD339) separated APL
from each AML1 and AML2, with all of these genes showing higher expression in APL.
In addition, three genes (CD91, CD197, CD261) discriminated between AML1 and AML2.
However, CD197 did not discriminate in the microarray data. Of note, CD84, CD148, CD197,
and CD261, as well as all other genes that significantly discriminated between two AML
subgroups only in one dichotomy (APL vs. AML1, APL vs. AML2, AML1 vs. AML2), were
only found in one dataset and showed a Cohen’s D-value of 0 in the other and CD91 was
not expressed in the microarray dataset (Table S1). Thus, overexpression of CD339 in APL
was the only consistent finding in the two datasets.

Table 3. The most important differentially expressed CD genes in AML subtypes in the RNA-Seq
dataset. Cohen’s D values are indicated for each dichotomous comparison (group A vs. group B).
Positive values indicate higher expression in group A. Negative values indicate higher expression in
group B. Values < 0.3 were set to 0.

Gene APL vs. AML1 APL vs. AML2 AML1 vs. AML2

1 CD1D 0 0.42 0

2 CD7 0 0.52 0

3 CD13 0 0.39 0

4 CD44 0 0.53 0

5 CD79A −0.39 0 0

6 CD84 0.32 0.32 0

7 CD88 0 0.34 0

8 CD91 0 0 −0.32

9 CD148 0.88 0.89 0

10 CD197 0 0 0.32

11 CD227 0 −0.36 0

12 CD230 0 0.32 0

13 CD261 0 0.55 0.52

14 CD339 0.45 0.42 0

Together, the comparison of APL vs. AML2 revealed a diverse expression of well-
known differentiation marker molecules, such as CD11b, CD13, CD14, CD15, and CD24,
whereas fewer surface molecules were differentially expressed between APL and AML1.
The minor expression of specialized functional molecules inside the cell and on the surface is
a feature of “stemness”, hereby indicating that AML2 might represent a more differentiated
type of AML, and that AML1 is more stem-cell-like. Moreover, only CD79a was overex-
pressed in AML1 vs. APL. CD79a is considered a B-cell antigen, but is often expressed in
immature blast crisis acute leukemias following CML (chronic myeloid leukemia) [26].

3.3. Differential Expression of CD Genes in AML Compared to Normal Samples

To further substantiate the differential expression of specific CD genes in AML1, AML2,
and APL, we compared these entities to normal samples separately. The results are pre-
sented in Table 4. As TCGA RNA-Seq data did not include healthy/normal controls, these
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analyses were performed only in the microarray dataset. ABC analyses revealed differential
regulation between at least one AML subgroup and normal controls of 48 CD genes.

Two genes (CD99, CD135) were upregulated in each AML subgroup compared to
healthy/normal samples, and five genes (CD24, CD66b, CD66c, CD218b, CD233) were
expressed significantly lower. One gene (CD88) showed opposing differential regulation in
APL and AML1 compared to AML2 relative to healthy bone marrow. Three genes were
differentially expressed only between APL and normal, with two genes (CD3D, CD339)
being upregulated and one gene (CD50) being downregulated. Furthermore, 20 genes
were expressed higher and 6 genes lower in AML2, but no gene was discriminative for
AML1 alone or AML1/2 compared to normal (Table 3). Four genes (CD99, CD135, CD218b,
and CD233) separated any of the AML subgroups from normal bone marrow without
discriminating between them. On the other hand, 21 genes (CD3D, CD9, CD11b, CD14,
CD18, CD24, CD37, CD50, CD52, CD62L, CD66b, CD66c, CD83, CD87, CD88, CD98,
CD210A, CD282, CD339, CD354, and CD369) were differentially expressed between both at
least two different AML subgroups and one AML subgroup compared to normal samples
(Tables 2 and 3). Thus, ABC analysis using normal samples as a reference confirmed the
differential expression of CD genes in different subgroups of AML.

3.4. Validation of Target Genes by Literature Screening

In order to corroborate the target CD antigens with a focus on the distinction between
APL and np-AML that were derived from both microarray and RNA-Seq datasets, we
screened the literature for reports from other AML groups [Table 5].

In sum, 36 genes (14 in the RNA-Seq, 23 in the microarray dataset) were expressed
differentially in APL and np-AML (Table 5). Overexpression of CD339/JAG1 in APL was
the only consistent finding in the two datasets, in line with previous reports including
both gene expression data from RNA-Seq and microarray analyses [27] or flow cytometry
studies [28] Of note, differential expression in APL and other AML subtypes cannot be
deduced from these earlier studies for all CD genes identified by our calculations, such as
CD84 [29], CD88 [30], CD148 [23,31], CD210A/IL10RA, and CD227 [32,33]. However, all of
these genes have been detected in cells from all hematopoietic lineages or AML blasts, and
CD148 and CD210 have even been recently suggested as novel immunotherapeutic targets
in AML [34], except forCD261/TNFRSF10A which we did not find in previous publications
pointing to implications in AML or APL.

Several genes that discriminated AML or one of its major subgroups from controls
are known diagnostic markers and/or targets for investigational therapies in AML, for
example CD11b, CD13, CD14, CD24, CD33 [35,36], CD71 [37], CD81 [38] and CD99 [39],
while CD132 has not been investigated concerning its potential role in AML.

Therefore, current knowledge of CD gene expression in distinct subgroups of AML strongly
supports the validity of our mathematical approach to extract clinically important information
from gene expression data, specifically in the context of AML, for diagnostic purposes.

Table 4. The most important differentially expressed CD genes between AML subtypes and normal
controls in the microarray dataset. Cohen’s D values are indicated for each dichotomous comparison
(group A/left vs. group B/right). Positive values indicate higher expression in group A. Negative
values indicate higher expression in group B. Values < 0.7 were set to 0.

Gene APL vs. Normal AML1 vs. Normal AML2 vs. Normal
1 CD1D 0 0 0.39
2 CD3D 0.72 0 0
3 CD9 1 0 0.31
4 CD11b −1.24 −1 0
5 CD13 0 0 0.33
6 CD14 0 0 0.49
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Table 4. Cont.

Gene APL vs. Normal AML1 vs. Normal AML2 vs. Normal
7 CD18 −1.18 0 0.52
8 CD24 −1.83 −1.33 −0.54
9 CD32 0 0 0.34

10 CD33 0 0 0.46
11 CD37 0 0 0.97
12 CD44 0 0 0.45
13 CD50 −0.73 0 0
14 CD52 −0.86 0 0.39
15 CD62L −0.98 0 0.46
16 CD66b −1.91 −1.24 −0.42
17 CD66c −1.8 −1.43 −0.74
18 CD71 0 0 −0.44
19 CD81 0.82 0 0.53
20 CD83 −0.84 0 0.56
21 CD87 0.8 0 0.4
22 CD88 −0.8 −0.79 0.3
23 CD97 0 0 0.73
24 CD98 1.01 0 0
25 CD99 1.44 1.14 1
26 CD107b 0 0 0.41
27 CD114 0 0 0.55
28 CD119 0 0 0.39
29 CD120b 0 0 0.5
30 CD132 0.72 0 0.35
31 CD135 0.7 0.82 0.6
32 CD157 0 0 0.37
33 CD210A 0 0 0.68
34 CD218b −0.79 −0.7 −0.52
35 CD225 0 0 −0.39
36 CD230 0 0 0.36
37 CD233 −1.29 −0.83 −1.09
38 CD235a −0.87 0 −0.81
39 CD235b 0 0 −0.53
40 CD236 0 0 −0.41
41 CD240D 0 0 −0.44
42 CD241 0 0 −0.31
43 CD256 0 0 0.4
44 CD257 0 0 0.53
45 CD282 0 0 0.68
46 CD339 0.92 0 0
47 CD354 0 0 0.75
48 CD369 0 0 0.4
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Table 5. Supporting evidence from the literature for differential expression of CD genes in APL
and other AML subtypes. If differential expression could not be deduced from previous reports,
references describing expression in AML are indicated.

Index in Table 2/Table 3 Gene Evidence

21,14 CD339 [27,28]

1 CD3D [40]

2 CD9 [41–44]

3 CD11b [41–44]

4 CD14 [19,43]

5 CD15 [45,46]

6 CD18 [47]

7 CD24 [48]

8 CD37 [49]

9 CD50 [50]

10 CD52 [51]

11 CD55 [52]

12 CD62L [53]

13 CD66b [54]

14 CD66c [54]

15 CD83 [55,56]

16 CD87 [57]

17 CD88 [30]

18 CD98 [58,59]

19 CD210A [60,61]

20 CD282 [57]

23 CD369 [62]

1 CD1D [63]

2 CD7 [64,65]

3 CD13 [45,46]

4 CD44 [60,66]

5 CD79A [67,68]

6 CD84 [29,69]

7 CD88 [30]

9 CD148 [31]

11 CD227 [24,32,33]

12 CD230 [70]

13 CD261 x

4. Discussion

Characteristic expression patterns of cell surface molecules provide the basis for
rapid diagnosis of AML by flow cytometry [9]. Here, we used combined Bayesian and
ABC analysis to identify subgroups of AML based on characteristic cell surface patterns
reconstructed from gene expression data for CD genes. We explored associations of AML
CD subgroups with an established morphologic classification system for AML, precisely,
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FAB classification. Moreover, we extracted the most important discriminating CD genes
that distinguish the AML subgroups from each other and normal samples. As the focus
of our work was more closely related to potential diagnostic applications, the following
discussion primarily refers to current experimentally confirmed knowledge on CD gene
expression in AML. Yet, clinical implications are clearly emerging as a future perspective,
given the growing spectrum of monoclonal antibodies targeting AML and related myeloid
diseases [71].

Intriguingly, using two independent AML expression datasets obtained by microarray
or RNA-Seq analyses, we found that AML separated into only two natural clusters in
both datasets based on the expression of CD genes. In the RNA-Seq dataset, we identified
two subgroups of AML and were able to separate APL from AML. One of these clusters
is APL, the only subclass of AML that has been previously defined, and is managed
therapeutically differently from all other AML subclasses in the clinic [72]. Np-AML, on
the other hand, is less diverse based on CD gene expression than, for example, based on
morphology or genetic findings. Employing the Ward algorithm on 394 CD genes, AML
clustered into two subgroups, which we here pragmatically designated AML1 and AML 2.
In the RNA-Seq dataset, AML1 was associated with FAB classes M1 and M2, while AML2
corresponded to FAB class M5. Both AML subgroups contained FAB class M4. In the
microarray dataset, the FAB classification was not accessible. This association supports the
notion that the AML1 cluster refers to an immature immunophenotype, while the AML2
cluster characterizes leukemia cells with the expression of maturation markers, i.e., AML1
cells may derive from a pluripotent stem cell and AML2 from a progenitor cell, respectively.

In order to further investigate whether the classification of AML by CD gene expres-
sion may be exploited for AML diagnosis by flow cytometry in addition to previously
recommended immunophenotype targets, we selected the most important discriminating
genes for each subgroup compared to the other subgroups and to normal controls. Per-
forming ABC analysis on the microarray and the RNA-Seq datasets predominantly yielded
non-overlapping results. Only the CD339 gene, which corresponds to the Jagged-1 protein,
was expressed higher in APL than in AML1 and AML2 in both datasets, and was also
distinctive for APL compared to normal samples, which is in line with previous analyses of
publicly available gene expression datasets [27]. However, CD339 is not included in previ-
ously reported antibody panels for the identification of APL by flow cytometry [41,42,73].
Therefore, it is tempting to speculate that our unbiased analysis of the AML surface can
inform the design of improved diagnostic tools.

On the other hand, the only other gene that was somehow discriminating between
AML subgroups, CD88, was underexpressed in AML2 compared to APL in the RNA-Seq
dataset but overexpressed relative to both APL and AML1 in the microarray dataset. CD88
(C5AR1) has been reported to be expressed in AML cell lines and primary patient blasts
and to contribute to cell motility [30], illustrating its potential role in this disease. We
attribute the conflicting results for CD88 expression, as well as the overall lack of consistent
observations, to the different molecular techniques for gene expression measurement [74],
as Bayesian analysis based on GMMs has been shown to yield stable and consistent results
on noisy data of various types, such as income, heat or cold pain, GDP time series or
nitrate concentrations in streams [15,75,76]. Of note, the dataset of only 15 cases of APL
samples is small, but in line with the reported frequency of this subgroup. Consequently,
consolidation with a larger dataset would be desirable to strengthen the results reported
here. Of non-overlapping genes that were differentially expressed between AML subgroups
or AML and normal samples, several CDs are either known targets (such as CD33) or have
already been reported to be implicated in AML.

Novel treatment options for AML cases with an unfavorable prognosis are highly
demanded and monoclonal antibodies that target AML surface molecules are currently
evaluated in clinical trials ([71,77]). Although we do not have detailed information on
cytogenetics or survival in both of our datasets, our study reveals potential target molecules,
particularly if AML1 is indeed a stem cell near a subgroup with inferior prognosis.
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In summary, we conclude that our unbiased mathematical approach was highly suc-
cessful in deducing knowledge from complex biological datasets. “The important few”
AML-specific CD genes identified by combined Bayesian and calculated ABC analysis
are widely congruent with actual knowledge in the field, independent from the particu-
lar method of gene expression analysis. Thus, the work described here may serve as a
blueprint for translating relevant information from high-dimensional biological data into
clinical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9110642/s1, Table S1: Overview of all significant
differentially expressed CD genes in both datasets.
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