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Background: Treatment of locally advanced HPV-negative head and neck squamous cell
carcinoma (HNSCC) with photon radiation is the standard of care but shows only moderate
success. Alterations in response toward DNA DSB repair, apoptosis, and senescence are
underlying determinants of radioresistance in the tumor cells. Recently, senescence and the
associated secretory phenotype (SASP) came into the focus of research and raised the
need to identify the tumor-promoting molecular mechanisms of the SASP. The aim of this
project was to unravel more of this process and to understand the impact of the IL1
pathway, which plays a major role in SASP. The studies were performed for photon and
12C-ion irradiation, which strongly vary in their effect on radioresistance.

Materials andMethods: A panel of five HPV-negative HNSCC cell lines was treated with
photon and 12C-ion irradiation and examined for clonogenic survival, DNA DSB repair, and
senescence. SASP and IL1 gene expressions were determined by RNA sequencing and
activation of the IL1 pathway by ELISA. A functional impact of IL1A and IL1B was
examined by specific siRNA knockdown.

Results: Cell killing and residual DSBs were higher after 12C-ion than after photon
irradiation. 12C-ion induced more senescence with a significant correlation with cell
survival. The impact on radioresistance appears to be less than after photon irradiation.
The expression of SASP-related genes and the IL1 pathway are strongly induced by both
types of irradiation and correlate with radioresistance and senescence, especially IL1A
and IL1B which exhibit excellent associations. Surprisingly, knockdown of IL1A and IL1B
revealed that the IL1 pathway is functionally not involved in radioresistance, DSB repair, or
induction of senescence.
April 2022 | Volume 12 | Article 8786751

https://www.frontiersin.org/articles/10.3389/fonc.2022.878675/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.878675/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.878675/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.878675/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.878675/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ulrike.schoetz@uni-marburg.de
https://doi.org/10.3389/fonc.2022.878675
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.878675
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.878675&domain=pdf&date_stamp=2022-04-22


Tiwari et al. IL1 Indicates Radioresistance in HNSCC

Frontiers in Oncology | www.frontiersin.org
Conclusions: IL1A and IL1B are excellent indicators of cellular radioresistance and
senescence in HNSCC cells without functional involvement in these processes. Clearly
more research is needed to understand the molecular mechanisms of senescence and
SASP and its impact on radioresistance.
Keywords: HNSCC, radioresistance, senescence, SASP, IL1, photon, carbon ion, tumor
INTRODUCTION

Ionizing radiation with photons is a main pillar in the treatment of
locally advanced head and neck squamous cell carcinoma
(HNSCC). The disease poses a severe threat to the patient, and
treatment is challenging. Locoregionally advanced stages in the
HPV-negative setting experience multimodal treatment strategies
composed of surgery, radiotherapy (RT), and concurrent
chemotherapy, albeit with modest outcome (1). Locoregional
relapse is the most prominent failure with up to 40%, limiting
8-year overall survival to approximately 50% in HPV-negative
cases (2). A resistance toward irradiation of these tumors is made
responsible for therapeutic failure and raises the need for
optimization of RT (3). The standard-of-care treatment cannot
be further intensified, since it is associated with severe side effects
in the anatomically complex area of the head and neck, reducing
quality of life for many patients (4). Instead, alternative strategies
are investigated, to improve survival and reduce toxicity.

Radiation exposure causes genomic stress and induces a wide
variety of lesions, with DNA double-strand breaks (DSBs)
representing the most toxic lesion. An inevitable consequence
of unrepaired DNA DSBs that are passed through the cell cycle is
an aberrant mitosis culminating in mitotic catastrophe. This
intermediate cellular state is a highly common event after
irradiation of solid tumors, and it will be resolved to a certain
degree by intrinsic apoptosis, but more importantly by cellular
senescence (5, 6). The irradiation-induced senescence and the
accompanied NFkB-dependent secretion of inflammatory
factors of the senescence-associated secretory phenotype
(SASP) are of specific interest, since accumulating evidence by
us and other authors suggests their involvement in therapy
resistance (7–9).

Senescence is well described to be a feature of cellular stress
response toward many tumor therapies, including irradiation,
and can occur in both tumor and normal cells. In recent years, it
has been more and more understood that the metabolic
reprogramming taking place in senescent cells can contribute
to therapy resistance in a cell autonomous or non-cell
autonomous manner by propagation of tumor cell survival,
proliferation, and stemness (10–13). SASP secretion is
regulated on the transcriptional level by a variety of
transcription factors, but NFkB makes a pivotal contribution
to the response (14, 15). The transcribed SASP mRNA is
stabilized by MAPKAPK2 (16), and mTOR regulates the SASP
on the translational level by controlling IL1A mRNA translation
(17). Within SASP, IL1A and IL1B hold a key position by
autocrine activation of the IL1 pathway, which stimulates the
NFkB-mediated transcription of SASP genes (18–21).
2

In a recent study, we demonstrated the capability of
modulating the cytotoxic powers of IR on HNSCC cells by
interfering with the SASP in vitro and in vivo (9). In the
present study, we investigated the role of the SASP factors
IL1A and IL1B for tumor cell killing by IR in the context of
irradiation-induced senescence in vitro. Besides photons, we
used particle irradiation with carbon (12C) ions. The
technology of particle beam delivery enables an enhanced
relative biological effectiveness (RBE) in the Bragg peak leading
to improved inactivation of tumor tissue in a highly precise
defined area, and the physical properties of the beam reduce
unwanted effects to normal tissue (22). Ongoing clinical trials
demonstrate the advantages of 12C-ion irradiation and encourage
preclinical research into this area to open this treatment option
to a wider community (23–26). The tumor-reducing capabilities
of ionizing irradiation are interlinked with the DNA damage
response, cell death mechanisms, and cellular stress responses to
activate the removal of damaged cells, while responsiveness of
these pathways toward irradiation increases with increasing LET
(27, 28). Since ionizing irradiation of varying LET was described
to result in various levels of senescence (29), we selected these
two different radiation qualities to study the molecular
mechanisms of senescence and SASP in the context of IL1 on
different levels.

A panel of five HNSCC cell lines was irradiated with photons
and 12C-ions and examined for clonogenic survival, DNA damage,
senescence, and SASP induction as well as IL1 pathway activation.
As expected, irradiation with 12C-ions resulted in a higher RBE
and reduced DNA damage repair than observed after photons.
Senescence induction was stronger after 12C-ions and exhibited a
high and significant association with clonogenic survival.
Expression of SASP factors and IL1 pathway activation were
strongly correlated with clonogenic survival and senescence, yet
more pronounced after 12C-ions. Surprisingly, functional studies
of IL1A and IL1B using specific siRNA knockdown revealed that
these two factors are not involved in the mechanisms controlling
radioresistance. Overall, the study demonstrates that the IL1
pathway, although being a strong indicator of radioresistance
and senescence in HNSCC cells after both photon and 12C-ion
irradiation, is functionally not involved in these processes.
METHODS

Cell Culture
The five HPV-negative cell lines Cal27, Cal33, UPCI:SCC040,
UPCI:SCC131, UPCI:SCC099 (ATCC, Wesel and DSMZ,
Braunschweig, Germany) were cultured in DMEM (Life
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Technologies, Darmstadt, Germany) supplemented with 10%
fetal bovine serum (Capricorn, Ebsdorfergrund, Germany) and
maintained at 37°C in a humidified 5% CO2 atmosphere. The
GenePrint 10 kit (Promega, Walldorf, Germany) and
GeneMapper 5.0 software were used for short-tandem repeat
analysis. To confirm the authenticity of all cell lines, the data
were compared to Expasy and DSMZ databases (30). Cell lines
are routinely tested free from mycoplasma contamination using
a PCR-based assay (31).

Carbon Ion Irradiation
Cell lines and samples were irradiated at the Marburg Ion-Beam
Therapy Centre (MIT) with a vertical beam of 114.5–129.5 MeV/
n 12C-ions and positioned in a spread-out Bragg peak (SOBP) of
10–20 mm as described previously (32). Fields were applied
using active scanning with a field size of 18 × 18 cm2. Doses of
0.25, 0.5, 1, 2, 3, and 4 Gy were applied as indicated.

Photon Irradiation
An X-ray biological irradiator Precision X-RAD 320ix (Precision
X-Ray, North Branford, CT, USA) was used to irradiate cell lines
and samples at 320 kV and 8 mA, dose rate of 1.1 Gy/min, and
Thoräus filter 0.5 mm Cu+ 0.5 mm Al. Absolute dose
measurements confirmed the applied doses. Doses of 1, 2, 4, 6,
and 8 Gy were applied as indicated.

Colony Formation Assay
For the preplating assay (33), exponentially growing single cells
were seeded in a range of 1 × 101–104 cells/cm2, depending on
the cell line and irradiation dose. Cells were irradiated after
adherence with the indicated irradiation quality and dose.

For the delayed plating assay, exponentially growing cells
were seeded in a range of 5 × 104—105 cells/cm2, depending on
the cell line. Cells were irradiated after adherence with the
indicated irradiation quality and dose. 16 hours after
irradiation, growing single cells were seeded in a range of 1 ×
101–104 cells/cm2.

After incubation for 10–14 days, the grown colonies were
fixed and stained (10% formaldehyde, 0.1% crystal violet) and
colonies >50 cells were counted. The clonogenic survival was
calculated by normalization to the plating efficiency of untreated
cells. Survival curves were fitted to the linear–quadratic model
(SF = exp - [a × D + b × D^2]) according to a least square fit
(GraphPad Prism 8.1.1 software, San Diego, CA, USA). D10 was
extrapolated from these data and used for calculation of RBE.
Each experiment was done at least in three biological triplicates
with a minimum of three independent technical repetitions.

Senescence
Senescence was measured by detection of senescence-associated
b-galactosidase (SA-bgal) activity with a flow cytometer (34).
Cells were seeded at 2–4 × 104 cells/cm2, irradiated after
adherence at the indicated doses, and incubated for 1–6 days.
Staining was done with 5-dodecanoylaminofluorescein-di-b-
galactopyranoside (C12-FDG, Thermo Scientific, Waltham,
MA, USA) after lysosomal alkalinization with bafilomycin
A1, which ensures the lysosomal origin of SA-bgal activity.
Frontiers in Oncology | www.frontiersin.org 3
The experiment was described previously (9). In deviation
from this study, all cells with high C12-FDG and high SSC
signal were considered senescent and the setup offlow cytometric
parameters in terms of photodiode settings varied, explaining the
difference in total intensities of senescence, but showing similar
amounts of relative senescence. All measurements were
performed on a LSRII cytometer (BD Biosciences, Heidelberg,
Germany), and data were analyzed with FlowJo v10 Software
(Tree Star Inc., Ashland, OR, USA). Each experiment was done
in biological triplicates.

DSB Repair Foci
DSB repair foci were analyzed using co-staining of gH2AX and
53BP1, as described previously (32). Cells were fixed and stained
at 0, 4, and 24 h after irradiation with a primary antibody
solution as follows: mouse monoclonal anti-phospho-S139-
H2AX antibody (1:500, clone JBW301, Millipore, Darmstadt,
Germany) and rabbit polyclonal 53BP1 antibody (1:500, Novus
Biologicals, Wiesbaden, Germany). Secondary antibody
solutions were mouse Alexa-Fluor 594 (1:1,000) and rabbit
Alexa-Fluor 488 (1:1,000, both Invitrogen, Karlsruhe,
Germany). Cells were mounted in ProLong Gold Antifade
Reagent with DAPI (Invitrogen, Karlsruhe, Germany).
Immunofluorescence was analyzed using the Leica DM5500
wide-field microscope and LAS-AF software (Leica, Wetzlar,
Germany). All experiments were performed at least twice and
with 100 counted nuclei per experiment.

Elisa IL1B
Briefly, 1–1.5 × 105 cells/10 cm2 were grown in 2 ml medium and
irradiated after a 16 h adherence with photons or 12C-ions as
indicated. Supernatants were collected on indicated days after
irradiation, immediately frozen in liquid nitrogen, and kept at
-80°C until further analysis. Cytokine concentrations in cell
culture supernatants were measured with the human IL1B
DuoSet ELISA System (R&D Systems, Minneapolis, MN, USA)
according to the manufacturer’s protocol. All experiments were
performed twice in technical duplicates.

Downregulation of IL1A/IL1B by RNA
Interference
Transient knockdown of the transcripts was performed using
Lipofectamine 2000 (Life Technologies, Carlsbad, CA) as
described previously (35). Cells were seeded in a density of
1.5 × 104 cells/cm2 and transfected after a 16 h adherence with
50 nM siRNA, according to the manufacturer’s protocol. Human
IL1A or IL1B and control siRNA oligonucleotides (ON-
TARGETplus, SMARTpool) were purchased from Dharmacon
(Horizon Discovery Group, Cambridge, UK). Sequences are
listed in Supplementary Table 1. Knockdown efficiency was
verified by qRT-PCR 1 day after transfection.

qRT-PCR and RNA Sequencing
Cells were seeded at 5 × 104 cells/cm2 and treated and RNA
extracted as indicated (dose and time point) using NucleoSpin
RNA II Kit (Macherey-Nagel, Dueren, Germany) according to the
manufacturer’s instructions. cDNA was reverse transcribed by
April 2022 | Volume 12 | Article 878675
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incubation of 500 ng RNA with 200 U RevertAid Reverse
Transcriptase in the presence of 5 mM random hexamers, 5 mM
Oligo(dT)18, 500 mM dNTPs, and 1 U/ml RiboLock RNase
inhibitor (all from Thermo Scientific). qRT-PCR was carried out
on a QuantStudio5 Real-Time PCR System (Thermo Scientific,
Germany). Relative quantification was calculated by the ddCT
method. For normalization, a housekeeper reference gene was
used. Primer sequences are stated in Supplementary Table 2.

Transcriptome generation and data preprocessing were
conducted as described in Hirschberger et al. (36). In brief,
sequencing libraries were prepared using the QuantSeq 3′
mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen
GmbH, Vienna, Austria), while the optimal number of
amplification cycles was determined using the PCR Add-on kit
for Illumina (Lexogen GmbH, Austria). Prior to sequencing on
an Illumina HiSeq 4000 machine, the quantity and quality of
libraries were assessed using the Quanti‐iT PicoGreen dsDNA
Assay Kit (Invitrogen, Carlsbad, CA, USA) and the Bioanalyzer
High Sensitivity DNA Analysis Kit (Agilent Technologies, Inc.,
Santa Clara, CA, USA). An equimolar pool of libraries was
prepared and sequenced in 150 bp paired-end mode.
Preprocessing of data included adapter trimming, followed by
alignment to the human genome (GRCh38) and counting of
reads per gene. Only genes with a total read count greater than
five times the sample size were kept in the data set. Generation of
variance-stabilized expression values was performed using the
DESeq2 R Bioconductor package (37).

Statistical Analysis
Graphs: Data were visualized using mean values and standard
deviations over all individual experiments. GraphPad Prism
version 8.1 (GraphPad Software, San Diego, CA, USA) was
used for statistical analysis. Student’s t-test statistics were
applied with significant p-values < 0.05.

Area under curve (AUC): for correlation analysis, AUC was
determined for each individual cell line on linear survival curves
for the clonogenic survival data sets, and on linear time kinetics
for the senescence data sets. The total area and SD values are
given in Supplementary Tables 3, 4.

RNA seq: Qlucore Omics Explorer v3.7 (Qlucore, Lund,
Sweden) was used to analyze RNA sequencing data based on
vst expressions. Principal component analysis (PCA) was
performed on z-scaled data. Hierarchical clustering was used to
visualize genes differentially expressed between irradiated and
unirradiated samples (absolute log2-fold change > 1.5,
Benjamini–Hochberg false discovery rate (FDR) < 0.05).
RESULTS

Impact of Photon and 12C-Ion Irradiation
on Cell Killing
To understand the relevance of senescence and SASP in HNSCC
cells, radioresistance was determined after two types of radiation
with different efficacies in cytotoxic cell killing. Cells were
exposed to 2, 4, 6, or 8 Gy photon or 0.25, 0.5, 1, 2, 3, or 4 Gy
Frontiers in Oncology | www.frontiersin.org 4
12C-ion irradiation, and survival was scored via colony formation
assay (Figure 1A). For the five cell lines used, there was a
considerable variation in radioresistance, which was more
pronounced after photon irradiation (Supplementary
Figure 1A). To express the specific radioresistance by applying
the entire dose–response curve, area under curve (AUC) values
were calculated for the linear presentation of the data
(Supplementary Figure 1B, Supplementary Table 3). Cal33
and UPCI:SCC040 are the two most radioresistant cell lines after
both radiation qualities, while Cal27 is the most sensitive cell line
after photon but of intermediate radioresistance after 12C-ion
irradiation, and the opposite is seen for UPCI:SCC131; UPCI:
SCC099 is the second sensitive cell line for both photons and
12C-ions (Figure 1B).

Data were also used to calculate the relative biological effect at
10% survival (RBE10). The values obtained varied from 2.22 to
3.16 showing that on average 12C-ions are two to three times
more effective than photons (Figure 1C), which is well in line
with previous data (32).

The results obtained for photons are in good congruence
with a previous study (9), separating a radioresistant (Cal33,
UPCI:SCC040) from a rather radiosensitive cluster (other cell
lines). Nonetheless, some differences in the detailed ranking are
seen, which might be due to the fact that delayed plating was
used instead of preplating and cellular cooperation is a strong
determinant of assay performance (38, 39) but also that after
photon irradiation the overall variation in radioresistance was
rather small. To overcome this deficit, now also 12C-ions were
used, enhancing the overall variation in radiation response.

Diminished Double-Strand Break Repair
Efficiency After 12C-Ion Irradiation
DNA-DSBs are the most critical damage induced by irradiation
when left un- or misrepaired. Therefore, DSB repair is
considered to be a main terminator of radioresistance. DSB
repair was studied after the isoeffective doses of 2 Gy photon
and 1 Gy 12C-ion. DSBs were detected 4 and 24 h after
irradiation via gH2AX/53BP1 foci colocalization (Figure 2A).
For both radiation qualities, all cell lines exhibited an efficient
repair as indicated by the significant reduction in foci with
increasing repair incubation (Figure 2B and Supplementary
Figure 1C). On average, the number of initial foci measured 4 h
after irradiation was slightly lower for 12C-ion irradiation
(Figure 2C), which is due to the lower physical dose.
However, despite this difference in dose significantly more
residual foci are found 24 h after 12C-ion irradiation,
indicating a clearly less efficient DSB repair when compared
to photons. This lower DSB repair efficiency is considered to
contribute to the higher effect of 12C-ions on cell survival. For
both radiation qualities, there was a moderate correlation of
residual foci with radioresistance AUC (Figure 2D). The
correlation did not reach significance but is in good
agreement with previous data from our lab (32). In
conclusion, residual foci are an indicator of radiosensitivity
but are not sufficient to explain the variations in radiation
response of the HNSCC cell-line panel.
April 2022 | Volume 12 | Article 878675
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Stronger Induction of Senescence After
12C-Ion Irradiation
Cellular senescence is a frequent event after irradiation, to
prevent propagation of damaged cells. Due to metabolic
changes, senescent cells switch their expression profiles toward
inflammatory factors summarized as SASP, which might also
induce radioresistance (40). To evaluate senescence, cells were
irradiated with 2–6 Gy photon or 1–3 Gy 12C-ions and
senescence-associated lysosomal b-galactosidase activity (34)
was determined by flow cytometry over a period of 6 days
after irradiation (Supplementary Figure 2). The fraction of
senescent cells increased from day 2 after irradiation over time
and with dose but showed large variations between cell lines and
radiation qualities (Figure 3A).

Senescence was quantified by calculating AUC (Figure 3B).
Cal33 and UPCI:SCC040 showed a strong induction after both
photon and 12C-ion, while UPCI:SCC099 presented intermediate
senescence levels and UPCI:SCC131 and Cal27 were
characterized by very low senescence (Figures 3B, C). Overall,
there was a strong correlation for the senescence induced by
these two types of irradiation (Figure 3D), with a much stronger
effect after 12C-ion irradiation. For an identical dose of 2 Gy,
senescence was about 7 times higher after 12C-ions when
compared to photons (Figure 3E). The correlation of
senescence AUC and radioresistance AUC revealed a strong
and significant association of the two parameters for 12C-ions
and similar results for photons (Figure 3F). It is noticeable that
the slope of the association was much steeper for 12C-ion
irradiation. Albeit the strong increase in senescence,
Frontiers in Oncology | www.frontiersin.org 5
radiosensitivity did not increase to the same extent. This
suggests that overall senescence appeared to have a lower
impact on radioresistance after 12C-ions than it did
after photons.

For Photon and 12C-Ion Irradiation
Activation of SASP Genes and IL1
Pathway Correlate With Radioresistance
Senescent cells are characterized by an altered expression profile
summarized as SASP. Members of the SASP include chemokines
and cytokines, but also growth factors, which are secreted and
enable communication with the microenvironment (41). We
used RNA sequencing data to examine the gene expression
profiles of SASP family members in the cell line panel. The cell
lines were irradiated with 8 Gy photons or 4 Gy 12C-ions or mock
irradiated, and RNA was extracted 48 and 72 h after irradiation
(Figure 4A). 3′ sequencing of the RNA (RNA-seq) was
performed, data were preprocessed, and log2 values were
extracted. After QA, from the RNA-seq dataset, 49 SASP genes
could be extracted for further analysis (Supplementary Table 4).
PCA on z-scaled data revealed a cell-line-specific SASP gene
expression profile (Figure 4B). It can also be observed that
unirradiated samples with low SASP can be distinguished from
irradiated samples with high SASP. Separation is not completely
achieved for UPCI:SCC131 and UPCI:SCC099 cells. UPCI:
SCC131 unirradiated cells express low but noticeable SASP
levels and cannot be clearly distinguished from irradiated
samples, while for UPCI:SCC099 SASP is not induced after
irradiation and, as a consequence, all samples appear in the
A B

C

FIGURE 1 | Radioresistance of five HPV-negative HNSCC cell lines after photon- or 12C-ion irradiation. Exponentially growing cells were irradiated and incubated for
16 h followed by delayed plating for colony formation. (A) Clonogenic survival after irradiation. (B) Ranking of radioresistance according to the AUC calculated from
linear presentation of dose–response curves. (C) Relative biological effectiveness at 10% survival (RBE10). Experiments were performed at least three times. Mean +/-
SEM are indicated. Significance levels were calculated with Student’s t-test statistics and significant p-values below 0.05 marked with an asterisk.
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unirradiated cluster (Figures 4B–D). 8 Gy photons and 4 Gy
12C-ions induce highly similar expression patterns for almost all
factors, and hence samples cannot be separated according to
radiation quality. Using hierarchical clustering, irradiated
samples can be separated from unirradiated samples in case of
photons (q = 0.001; Figure 4C) as well as 12C-ions (q = 0.001;
Figure 4D) by an 11-gene identifier. These genes are expressed
significantly differently between irradiated and unirradiated
samples with a fold change >1.5 (Figure 4E) and include
members of the IL1 pathway, various chemokines, and growth
factors. Correlation studies for IL1A (Figure 4F) and IL1B
(Figure 4G) show strong associations for these genes with
radioresistance and senescence, where the associations are
always stronger for 12C-ions. This analysis demonstrates that
IL1A and IL1B gene expression are strong indicators for the
radioresistance of HPV-negative HNSCC cells. The result was
confirmed using qRT-PCR analysis of independent samples
(Supplementary Figure 3A–C).
Frontiers in Oncology | www.frontiersin.org 6
Since both proteins are known to activate the identical
pathway, we were interested to examine other relevant genes of
the IL1 pathway. 25 genes could be extracted from the RNA-seq
data set (Supplementary Table 5), and similar to the analysis with
the SASP genes, hierarchical clustering was able to separate
irradiated from unirradiated samples for photons (q = 0.006;
Supplementary Figure 4A) and 12C-ions (q = 0.001;
Supplementary Figure 4B). Separation was excellent for Cal27,
Cal33, and UPCI:SCC040. Also, the IL1 pathway gene expression
was enhanced in unirradiated samples of UPCI:SCC131 and was
low and not induced in irradiated UPCI:SCC099 cells. The 9-gene
identifier showed a fold change above 1.5 and highly significant q
values (Supplementary Figure 4C). For association analysis with
survival and senescence, the mean over log2 values of all IL1
members was calibrated to the unirradiated control and used as a
representative value for IL1 pathway activity. The associations
obtained were strong and significant for both radiation
qualities (Figure 4H).
A B

C D

FIGURE 2 | DSB repair efficiency after photon and 12C-ion irradiation. Cells were exposed to 2 Gy photons or 1 Gy 12C-ions and after repair incubation for 4 and
24 h DSBs were detected via gH2AX/53BP1 co-localization. (A) Representative pictures for immunofluorescence co-staining of foci with 53BP1 (green), gH2AX (red),
and counterstaining of the nucleus with DAPI (blue). Cell line: Cal33. (B) Number of co-localizing foci 4 and 24 h after irradiation after background subtraction (foci at
0 Gy). (C) Comparison of repair efficiencies between photon and 12C-ion irradiation. Values are presented as MV +/- SEM after background subtraction (foci
measured in unirradiated samples). p values were calculated using t-test statistics. p < 0.05 are considered significant. (D) Correlation of radioresistance AUC with
residual gH2AX/53BP1 foci for photon and 12C-ion irradiation.
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We also observed that after photon irradiation with 8 Gy,
IL1B protein secretion as detected by ELISA nicely coincided
with gene expression data (Figures 4G, I). In all three cell lines,
secretion of IL 1B increased with time after irradiation. In UPCI:
SCC131 cells showing the lowest gene expression, also the lowest
protein secretion was seen, and protein secretion was detectable
Frontiers in Oncology | www.frontiersin.org 7
in unirradiated samples, which was not the case for the two other
cell lines. For Cal33 cells, where gene expression was strong, also
protein secretion was strong and UPCI:SCC040 exhibited
intermediate levels.

In conclusion, a strong and cell line-specific increase in
expression of SASP factors can be detected after irradiation
A

B C

D E F

FIGURE 3 | Senescence induced by photon or 12C-ion irradiation in HNSCC cell-lines. Cells were irradiated either with 2-, 4, or 6 Gy photons or 1-, 2-, or 3-Gy
12C-ions, and senescence was detected for 6 days by flow-cytometric measurement of SA-bgal activity. (A) Kinetics of senescence as a function of dose and time
after irradiation. (B) Senescence (AUC with background BG subtracted) as a function of dose. (C) Ranking of senescence induced by irradiation. (D) Correlation
between senescence induced by 6-Gy photons or 3-Gy 12C-ions. (E) Group analysis of senescence (AUC-BG) induced by 2-Gy photons or 12C-ions. (F) Association
between senescence induced by 2 Gy of photons or 12C ions (AUC-BG) with the radioresistance (AUC) of the respective cell line. Values are indicated as MV ± SEM.
p values were calculated using t-test statistics. p values < 0.05 are considered significant.
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A B

C D

E

I
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FIGURE 4 | Evaluation of SASP gene expression after irradiation with 8 Gy photons or 4 Gy 12C-ions. (A) Schematic of experimental procedure. (B) Principal
component analysis (PCA) on z-scaled data of the five cell lines for the 49 SASP factors. (C) Hierarchical clustering (fold change >1.5) for 11 genes to separate
irradiated from unirradiated samples for photons and (D) 12C-ions. (E) Plot depicting fold change and q value for significantly differently expressed genes between
unirradiated and irradiated samples for photons and 12C-ions. (F) IL1A and (G) IL1B values 72 h after irradiation were calibrated to the unirradiated control and
correlated with radioresistance AUC or senescence AUC. (H) Correlation of IL1 pathway activity with radioresistance AUC or senescence AUC. Experiments were
performed in three biol. replicates. Values are MV+/- SEM. T-test statistics were used for p value calculation. p < 0.05 are considered significant. R2: Pearson
coefficient. For PCA and hierarchical clustering, log2-transformed, normalized (mean = 0, var = 1) data was used. Benjamini–Hochberg correction was applied, and
q < 0.05 was considered significant. (I) Detection of IL1B protein secretion by ELISA up to 6 days after irradiation with 8 Gy photons in the cell lines UPCI:SCC131,
UPCI:SCC040, and Cal33.
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with photons and 12C-ions. Especially the IL1 pathway is highly
associated with radioresistance and senescence of HPV-negative
HNSCC cells.

IL1A and IL1B Are Not Functionally
Involved in Radioresistance and
Senescence of HNSCC Cells
Results up to now disclosed a role of IL1 as a strong indicator of
radioresistance in HNSCC cells. It was tested whether the strong
correlation with survival and senescence also implies that IL1 is
functionally involved in these processes. To this end, specific
siRNA oligonucleotides were used to perform a single or double
knockdown of IL1A and IL1B in the HNSCC cell lines. Efficiency
of the knockdown was validated by qRT-PCR and demonstrated
a decrease in expression levels from 34% down to 5%
(Supplementary Figure 5A).
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Surprisingly, neither the IL1A and IL1B single nor double
knockdown was found to have an effect on the cellular
radioresistance, as determined by colony formation assay
(Figure 5A). The result was identical for all cell lines
examined, and for both radiation qualities. There was also no
effect of the knockdown on the number of residual foci as found
after irradiation with 2 Gy photon or 1 Gy 12C-ion (Figure 5B).
Likewise, there was no effect of IL1B KD on irradiation-induced
senescence (Figure 5C), whereby this knockdown was
characterized by stable depression of both gene expression and
protein secretion over the whole observation period of 5 days
(Supplementary Figure 5B, C).

Overall, these data demonstrate for the first time that IL1A
and IL1B, despite being strong indicators of radioresistance and
senescence in HNSCC cells, are not functionally involved in
these processes.
A B

C

FIGURE 5 | Cell survival after siRNA knockdown of ILA or/and IL1B. (A) Colony formation assay was initiated 1 day after transfection. Knockdown and control cells
were irradiated with 2–8 Gy photons or 1–3 Gy 12C-ions. (B) Foci formation in response to 2-Gy photons or 1-Gy 12C-ions was examined by gH2AX/53BP1
immunofluorescence 24 h after irradiation. (C) Flow cytometry-based analysis of senescence after siRNA knockdown of IL1B in the cell line UPCI:SCC040. IL1B
knockdown and control samples were irradiated with 6 Gy photon or 3 Gy 12C-ion, and senescence was determined from days 2 to 6 after irradiation. Experiments
were performed in triplicates. MV+/- SEM are given. p values were calculated using t-test statistics. p = ns describes no significance was detected.
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DISCUSSION

Resistance toward irradiation is a frequent cause of therapeutic
failure and raises the need to understand the molecular
mechanisms of this occurrence. The purpose of this study was
to identify determinants of tumor-cell intrinsic radioresistance
caused by senescence and the associated SASP in HPV-negative
HNSCC cells. We used photons and, for the first time, 12C-ion
irradiation to examine a panel of five HPV-negative HNSCC cell
lines. Clonogenic survival data of both irradiation qualities were
correlated with functional and molecular data of DNA damage,
senescence, SASP, and IL1 pathway factors. The analysis
identified the NFkB-dependent arm of the SASP and the IL1
pathway with its most upstream factors IL1A and IL1B as strong
indicators of radioresistance and irradiation-induced senescence.
Despite their strong indicative function, both factors were not
functionally involved in mechanisms regulating radioresistance.

As expected, 12C-ion showed improved cell killing over
photons with an RBE of 2–3. The ranking in radiosensitivity is
quite similar for both photons and 12C-ions, with Cal33 and UPCI:
SCC040 being the most radioresistant cell lines, and Cal27, UPCI:
SCC099, and UPCI:SCC131 being rather radiosensitive.
Concerning DNA damage response, the dynamics of DSB
initiation and repair define the increased cytotoxicity of high
LET irradiation (32, 42), and this can be observed with our data
as well. DSB repair was less efficient after 12C-ion than seen after
photon irradiation. The increased complexity of DSBs induced by
high-LET and subsequent variations in the recruitment of DSB
repair pathways were considered to be responsible for this
difference (43–45). Residual gH2AX-foci are a well-established
marker for assessment of radiosensitivity (46), and our association
studies of residual foci with radioresistance showed a moderate
correlation. Nevertheless, DSB repair cannot fully explain the
underlying nature of variation in radiation response of different
cell lines; other factors must contribute to this process.

We could now identify that irradiation-induced senescence is
a strong determinant of clonogenic survival not only after
photon but also after 12C-ion irradiation. The dynamics of
senescence were similar for both, but induction was stronger
after 12C-ion. The alterations in DNA damage response after
high LET may be of relevance in this process. The complex
clustered damage and the accompanied rearrangement of the
chromatin prolong and impair the respective repair of the
lesions, and as a biological consequence an increase in
senescence may occur (47, 48).

It can be concluded that the cells might undergo senescence
irrespective of p53 or p16, since two of the cell lines harbor
mutated p53 (Cal27, Cal33), one is absent of p53 (UPCI:
SCC040), and only two carry wild-type p53 (UPCI:SCC099,
UPCI:SCC131). P16- and p53-independent induction can be
observed also in response to other stimuli, such as oncogenes
(49), but the underlying mechanisms are not yet clarified. Instead
of evaluating the expression of cell-cycle markers, we used a flow
cytometry-based assay to assess the lysosomal beta-galactosidase
activity, which is an essential hallmark of senescence (50). The
detected senescence levels of the five HNSCC cell lines showed a
Frontiers in Oncology | www.frontiersin.org 10
strong correlation with clonogenic survival and demonstrated
that radioresistance was high when induction of senescence was
strong. Other groups do observe similar results: senescence was
identified as a p53-independent mechanism of tumor cells to
escape from cytotoxic cell killing after high LET (51). Senescence
which was induced after IR of low LET was observed to be a main
contributor to tumor progression and tumor cell survival, and
the removal of those cells by senolytic drugs could improve the
response toward irradiation (9, 52, 53). Our results support the
role of senescence as a driver of radiotherapy resistance (54).

Tightly connected to senescence is the expression and
secretion of inflammatory factors termed SASP (41). The
inflammatory response elicited after IR is composed of a
plethora of chemokines and cytokines which are known to
contribute to radiation fibrosis in normal tissue and trigger
propagation and invasiveness of tumor cells (55). We observed
a strong induction of SASP in response to irradiation at the gene
expression level. Activation was nearly identical for photon and
12C-ions. There was, however, a remarkable cell-line-specific
response detectable with a significant separation of irradiated
from unirradiated samples according to SASP gene expression.
According to literature, the effect detected by us at the RNA level
can be observed in various experimental systems, also in tumor
specimen, even a long time after irradiation, and is interlinked
with radioresistance (56, 57).

The most significant genes identified in our analysis were
members of the NFkB-mediated SASP, consisting of factors of
the IL1 pathway and CXCR2 chemokine receptor ligands, but
also growth factors such as VEGF. Especially the roles of the IL1
pathway are manifold with pivotal contributions to senescence,
stress response, and inflammation (20, 21). IL1 is described to
suppress immunity and promote tumor growth and metastasis,
and it may play a role in carcinogenesis as well (58, 59). This led
us to further focus on the factors of this pathway and to study
the role in tumor cell-intrinsic radioresistance, which is not yet
clarified by current literature. Hierarchical clustering of our
RNA-seq data clearly identified a strong association of the IL1
pathway with the radiation response of the HNSCC cell lines.
IL1A and IL1B, the activators of the pathway, showed excellent
correlations with radioresistance and senescence. This finding
suggests that IL1A and IL1B might be involved in
these processes.

However, detailed studies revealed that after photon and 12C-ion
irradiation radioresistance does not depend on IL1A and IL1B.
Neither clonogenic survival nor DNA repair were affected by siRNA
knockdown of IL1A and IL1B. We found IL1B also being
dispensable for initiation of senescence, since knockdown did not
have an effect on the occurrence of senescence after irradiation. Lau
et al. reported similar findings and confirmed a role for IL1 in SASP
expression but not in senescence (60). Apart from our findings, still
IL1 pathwaymembers are dominant triggers of inflammation which
needs to be considered in tumor treatment. IL1-dependent signaling
was shown to elevate oxidative DNA damage and irradiation-
induced senescence in inflammatory cancer-associated fibroblasts
(iCAFs). Induction of the senescence program included secretion of
associated factors, which acted on invasion and metastasis and
April 2022 | Volume 12 | Article 878675

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tiwari et al. IL1 Indicates Radioresistance in HNSCC
supplied tumor cells of rectal cancer with a survival advantage after
irradiation (61). In turn, the secretion of IL1 members observed in
our studies could still be of relevance in a more complex biological
setting reflecting also the tumor microenvironment. In HNSCC
mouse xenografts, IL1-suppression by the drug anakinra was able to
sensitize tumor cells toward EGFR inhibitor treatment (62). In such
a context, IL1A could also reach clinical relevance, but clinical trials
using anakinra in treatment of HNSCC patients are still
outstanding (63).

In a recent study, we already identified NFkB-related
components of the SASP as major drivers of radioresistance
and inhibition of the SASP by the senomorphic drug metformin
was found to sensitize HNSCC tumor cells toward irradiation
(9). In particular, the CXCR2-related arm of the SASP was found
to be attenuated after treatment. CXCR2 acts as receptor for the
chemokines CXCL1–3, 5–8, and its stimulation activates several
signaling pathways beneath NFkB, which are involved in tumor
cell survival and proliferation (64). Altogether, these results
suggest subtle regulatory differences for IL1 and the CXCR2-
related SASP. Clearly, more research into this area is needed to
define the specific responsible SASP components driving
radioresistance in tumor cells.
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