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Abstract

Bioturbators shape their environment with considerable consequences for ecosystem pro-

cesses. However, both the composition and the impact of bioturbator communities may

change along climatic gradients. For burrowing animals, their abundance and composition

depend on climatic and other abiotic components, with ants and mammals dominating in

arid and semiarid areas, and earthworms in humid areas. Moreover, the activity of burrowing

animals is often positively associated with vegetation cover (biotic component). These

observations highlight the need to understand the relative contributions of abiotic and biotic

components in bioturbation in order to predict soil-shaping processes along broad climatic

gradients. In this study, we estimated the activity of animal bioturbation by counting the den-

sity of holes and the quantity of bioturbation based on the volume of soil excavated by biotur-

bators along a gradient ranging from arid to humid in Chile. We distinguished between

invertebrates and vertebrates. Overall, hole density (no/ 100 m2) decreased from arid (raw

mean and standard deviation for invertebrates: 14 ± 7.8, vertebrates: 2.8 ± 2.9) to humid

(invertebrates: 2.8 ± 3.1, vertebrates: 2.2 ± 2.1) environments. However, excavated soil vol-

ume did not follow the same clear geographic trend and was 300-fold larger for vertebrates

than for invertebrates. The relationship between bioturbating invertebrates and vegetation

cover was consistently negative whereas for vertebrates both, positive and negative rela-

tionships were determined along the gradient. Our study demonstrates complex relation-

ships between climate, vegetation and the contribution of bioturbating invertebrates and

vertebrates, which will be reflected in their impact on ecosystem functions.
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Introduction

Bioturbation, the biological reworking of soils and sediments [1, 2], shapes the environment

and thus has considerable consequences for ecosystem processes [3] such as sediment trans-

port, soil formation [4, 5], soil water cycles [6], litter decomposition [7], and nutrient availabil-

ity [8, 9]. Soil excavating animals range from small invertebrates such as ants [10, 11] and

earthworms [12, 13] to medium-sized vertebrates such as gophers [14, 15] and beavers [16,

17]. Generally, bioturbating animals have distinct adaptations to environmental conditions

but recent studies reveal that bioturbating animals are intentionally able to modify their envi-

ronment [18–20]. Thus, assessments of the relative contributions of bioturbators to soil-shap-

ing processes across larger climate gradients, must consider both the composition of

bioturbator communities and their relationships to the abiotic and biotic environment. Previ-

ous studies indicate that:

1. The abundance and composition of burrowing animal communities depend on climatic (=

abiotic) factors such as temperature and humidity [21–26]. Ants and mammals are the

most important bioturbators in semiarid and arid areas, and earthworms (Lumbricidae)

dominate in humid areas [27]. Local soil characteristics affect bioturbating activity, which is

highest after rainfall because the soil softens and the energy cost of digging is accordingly

reduced [28] as shown for burrowing mammals [29] and in the nest site selection of ants

[23].

2. Burrowing animals are closely associated with biotic components of the environment, espe-

cially vegetation which affects the abundance of bioturbators directly by providing food

[30, 31] and indirectly by providing habitat [32]. In humid regions with dense vegetation

cover, food resources are generally abundant and thus mammals have less need to dig for

food. Vegetation also provides shelter further reducing the need to dig. In resource-limited

environments, such as semi-arid and arid regions, the activity and quantity of bioturbating

mammals correlate positively with vegetation cover, because of those animals’ need to seek

subterranean food and shelter [33]. By contrast, invertebrates such as earthworms do not

rely on surface resources offered by vegetation cover as they live entirely belowground,

where they feed on dead roots in the soil [34].

Those studies demonstrate, that both, abiotic and biotic components influence bioturbation

patterns, with the relationships between bioturbators and their environment varying between

animal groups [35]. Detailed insights into the relative contributions of those groups can be

obtained by associating them with their burrows, such as based on the diameter of the holes

they create. A previous study has collected data on burrowing animals along a climate gradient

and used a threshold of 2.5 cm to differentiate between vertebrates and invertebrates [36].

However, most studies have thus far focused either on the burrowing activity and quantity

of single species (mostly vertebrates), or on individual climatic regions [36]. Studies on the

overall patterns of bioturbation along broad climatic gradients are rare. To close this research

gap, we examined the interaction of abiotic and biotic components along a broad climatic and

vegetational gradient in Chile. For this purpose, we measured the abundance of burrow

entrances (hole density) and the amount of soil excavated by burrowing animals (excavated

soil volume) as parameters for bioturbation activity and quantity across seasons. Taking into

account the available literature, we hypothesized that:

H1: Bioturbating activity decreases from arid to humid regions because climate drives the

abundance of burrowing animals and the contribution of invertebrates and vertebrates to

bioturbation patterns.
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H2: Seasonal changes affect bioturbation with a higher activity of burrowing animals during

rainy seasons, when the soil is softer, and the energetic cost of digging is therefore reduced.

H3: With increasing vegetation cover, the bioturbating activity of many invertebrates (includ-

ing most earthworms) decreases, due to the subterranean food supply provided by fine

roots in the soil independent of soil surface vegetation, while that of vertebrates increases,

due to the increased availability of food and shelter.

Methods

Study area

Our study was conducted at four sites representing a climate gradient along the coastal range

of Chile (26˚S-38˚S), extending from an arid desert with a mean annual temperature of 16.8˚C

and mean annual precipitation of 12 mm to a temperate humid rainforest with a mean annual

temperature of 6.6˚C and mean annual precipitation of 1469 mm [37]: arid Atacama Desert,

located in Pan de Azúcar National Park, semi-arid shrubland in the private reserve Santa Gra-

cia, a Mediterranean forest in La Campana National Park and a humid rainforest in Nahuel-

buta National Park. All approvals from the relevant authorities, i.e. the Chilean National

Forest Commission (CONAF), were obtained in advance to our study and granted access to

the research sites. In 2019, the year of our field campaigns, the mean temperature in the arid

desert was 14.6˚C and the mean precipitation was 9.4 mm while in the humid rainforest, the

mean temperature was 7.3˚C and the mean precipitation was 1885 mm [38].

To sample each research site representatively, we established 12 10 m × 10 m plots with a

distance of at least 30 m between them during the first field campaign, conducted in autumn

of the southern hemisphere (March to April 2019). In a second field campaign conducted in

spring of the southern hemisphere (September to November 2019) we established eight addi-

tional plots at each site to cover possible variation, resulting in a total of 20 plots per site. The

20 plots per research site were evenly distributed across two opposing hillsides, 10 on the

north- and 10 on the south-facing hillslope.

Assessment of bioturbation activity and quantity

To evaluate bioturbation activity, we counted the number of all visually detectable burrow

entrances on the soil surface (hole density) of each plot. We calculated the amount of soil exca-

vated by burrowing animals (excavated soil volume) as an indicator of bioturbation quantity

by using a caliper to measure the vertical (dv) and horizontal (dh) diameters. In addition, we

defined the depth of each hole entrance (de) as the distance to the first barrier encountered by

the caliper and measured this parameter. Raw data of burrow measurements can be obtained

from S7 Table in S4 Appendix. Following [36, 39, 40], we calculated the (minimal) excavated

soil volume assuming that the measured burrows were cone-shaped:

excavated soil volume ¼
1

3
�

dv þ dh

4

� �2

� p � de:

To distinguish between the burrows of invertebrates and vertebrates, burrows with a hole-

entrance diameter < 2.5 cm were assumed to be created by invertebrates and burrows with a

hole-entrance diameter� 2.5 cm by vertebrates [36].

Assessment of vegetation data

Vegetation cover was estimated using unmanned aerial vehicle (UAV) red green blue (RGB)

images and land cover classification [41]. For each plot, we calculated the ratio of pixels
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classified as any plant type (herbs, shrubs, cacti, trees) to the amount of all pixels. Following

[42], the average elevation (hillside elevation) and the hillslope of each plot were estimated

based on high resolution Lidar data [43].

Statistical analyses

For the burrows of invertebrates and vertebrates we analyzed the allometric relationship

between their depth (de) and their diameter (mean of dv and dh). We regressed the mean diam-

eter of the entrance versus the depth using the log10-transformed values of both variables and

then determining the slope. In an isometric relationship, the log-transformed variables should

be linearly related to a slope of one [44]. Since diameter and depth were measured with

roughly equal error, in addition to an ordinary least squares (OLS) regression, we estimated

the slope using a reduced major axis (RMA) regression [45]. To assess a deviation from a slope

of one, we used the offset argument available in most regression functions. With the diameter

serving as the independent variable and the offset, the estimate tests for deviations from one.

For the slope of the RMA regression, we used the standard error and a t-test to test for devia-

tions from one. The same approach was applied to the regression between excavated soil vol-

ume and hole density.

To analyze the interaction of abiotic and biotic components in bioturbation activity and

quantity, we applied generalized linear mixed effect models (GLMMs). We used hole density

or excavated soil volume as response variables, site, season, hillside elevation and hillslope as

abiotic fixed predictors and vegetation cover and animal group as biotic fixed predictors. The

study plots were used as a random factor (Table 1). All data of the GLMM parameters can be

obtained from S7 Table in S4 Appendix. We also included interaction terms between site and

all other fixed predictor variables and between vegetation cover and taxon. We standardized

the fixed predictor hillside elevation for each site because it varied and could not be assigned

separately to each of the sites. We performed GLMMs for the 12 plots within each site (total of

48 plots) in the first field campaign, conducted in the southern-hemispheric autumn, and in

the 20 plots within each site (total of 80 plots) during the second campaign conducted in the

southern-hemispheric spring. Separation of the hole density of invertebrates and vertebrates

resulted in 256 measurements (2 × (48 + 80)). For the GLMM of the excavated soil volume, we

log10-transformed data for hole density and excavated soil volume to achieve normality of the

residuals. For the log10-transformation, we only considered plots with a hole density > 0 [no/

100 m2]. Thus, 46 plots without holes were not included in the GLMM for excavated soil vol-

ume, resulting in 210 valid measurements. Additionally, we integrated the interaction between

hole density and taxon as another fixed predictor.

All statistical analyses were performed using the R statistical environment (version

1.3.1093). We used the lmodel2 package [46] for OLS and RMA regression analysis. For the

GLMM, we employed the buildmer function [47] of the lme4 package [48] to perform back-

ward stepwise selection. To determine the proportion of variation explained by the model in

Table 1. Summary of all variables used in the GLMM.

Response variable Abiotic fixed predictors Biotic fixed predictors Random factor

Hole density or excavated soil volume Site Vegetation cover Plot number

Season

Hillside elevation Animal group

Hillslope

Depicted are the response variables, fixed predictors (abiotic and biotic) and the random factor.

https://doi.org/10.1371/journal.pone.0264408.t001
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total including fixed and random effects, we calculated R-squared for the fitted models using

the rsq command from the rsq package [49]. We additionally performed an ANOVA between

all possible combinations of fixed predictors retained within the fitted model to evaluate the

significance of certain combinations between predictors using the anova command and per-

forming a Chi-square test [50].

Results

First, we investigated the allometric relationships by examining the relationship between the

mean diameter and mean depth of the burrows and between the hole density and excavated

soil volume. While the respective estimates of the slope are presented herein, our focus is on

the RMA slopes. For both, invertebrates and vertebrates, the slopes showed a positive allome-

tric relationship (Fig 1A, Table 2) that was maintained also in the single-season analysis (S1

Fig, S2 Table in S2 Appendix). However, note that the statistical tests evaluating burrow char-

acteristics and the excavated soil volume were not strictly independent, as the former parame-

ter was used to calculate the latter.

Hole density was always greater for invertebrates than for vertebrates (Fig 2A). For inverte-

brates, hole density decreased continuously from the arid site Pan de Azúcar (raw mean and

standard deviation: 14 ± 7.8 no/ 100 m-2) to the humid site Nahuelbuta (2.8 ± 3.1 no/ 100 m-2)

while hole density for vertebrates was highest in the semi-arid site Santa Gracia (9.1 ± 9.7 no/

100 m-2) and remained similar in the other three sites (Pan de Azúcar: 2.8 ± 2.9 no/ 100 m-2,

La Campana: 5.6 ± 8.7 no/ 100 m-2, Nahuelbuta: 2.2 ±2.1 no/ 100 m-2, S1 Fig in S1 Appendix).

Overall, the pattern of excavated soil volume from arid to humid was hump-shaped for ver-

tebrates (largest in La Campana), whereas for invertebrates we could not determine a clear

geographic pattern along the gradient (Fig 2B). In each site, the soil volume excavated by verte-

brates was larger. This difference between the two groups of bioturbators was especially clear

in the Mediterranean site La Campana (raw mean and standard deviation for invertebrates:

0.00019 ± 0.00016 m3 ha-1, for vertebrates: 0.06 ± 0.18 m3 ha-1) and the humid site Nahuelbuta

Fig 1. Relationships between burrow parameters and bioturbation parameters created by burrowing invertebrates

(yellow) and vertebrates (blue). (A) Relationship between the depth and mean diameter of the holes, (B) relationship

between the excavated soil volume and hole density. The regression lines are derived from the reduced major axis

analysis. Note that both axes in (A) and (B) were log10-scaled. Data from both field campaigns and all sites were used.

https://doi.org/10.1371/journal.pone.0264408.g001
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(invertebrates: 0.00015 ± 0.00022 m3 ha-1, vertebrates: 0.012 ± 0.02 m3 ha-1, S1 Fig in S1

Appendix). Correcting the amount of excavated soil volume for the number of holes, the geo-

graphic pattern revealed by the residuals was similar to that obtained based on the analysis of

the raw data (Fig 2C); thus, the excavated soil volume was larger for vertebrates than for inver-

tebrates, especially large at the two southern sites.

All predictors for the response variable hole density were significant in the GLMM, with

the fixed predictors explaining 48% and the random predictor plot number explaining 39% of

the variation (AIC = 2030.7, p< 0.001, S3 and S5 Tables in S3 Appendix). The overall hole

density was higher in Santa Gracia and Nahuelbuta during the field campaign from March to

April than during the field campaign from September to November while in Pan de Azúcar

there was no difference between the two seasons (Fig 3A). For invertebrates, hole density

decreased at all sites with increasing vegetation cover. The hole density of vertebrates was

Fig 2. Bioturbation patterns of invertebrates (yellow) and vertebrates (blue) in each site (Pan de Azúcar, Santa

Gracia, La Campana, Nahuelbuta). (A) Median hole density based on the raw data, (B) median excavated soil volume

of holes, (C) the residuals of the excavated soil volume (log10-transformed) after correcting for hole density (log10-

transformed) using separate regressions for the two animal groups. Note that the x-axis in (B) and (C) was log10-scaled.

Data from the field campaign from September to November were used.

https://doi.org/10.1371/journal.pone.0264408.g002

Table 2. Ordinary least squares (OLS) and reduced major axis (RMA) regression analyses of the relationships between the depth and mean diameter of the holes

and between the excavated soil volume and hole density for invertebrates and vertebrates (all variables log10-transformed).

invertebrate vertebrate

Relation method r slope SE p r slope SE p

Depth and diameter OLS 0.31 0.729 0.053 <0.001��� 0.44 0.996 0.045 0.93

(mixed model)

OLS 0.32 0.628 0.057 <0.001��� 0.66 1.04 0.043 0.3

RMA 0.61 1.97 0.057 <0.001��� 0.53 1.57 0.43 <0.001���

Excavated soil volume and hole density OLS 0.55 0.933 0.10 0.5 0.66 1.76 0.13 <0.001���

(mixed model)

OLS 0.69 0.955 0.10 0.64 0.81 1.77 0.13 <0.001���

RMA 0.48 1.38 0.10 <0.001��� 0.66 2.17 0.13 <0.001���

A slope of one represents an isometric relationship. Depicted are statistical method, correlation coefficient, slope, standard error (SE) and p-value (p) of the offset.

Significant effects are labelled with asterisks: �:<0.1, ��:<0.01

���:<0.001. Data from both field campaigns and all sites were used. Further information on the statistical analysis is provided in the Methods section.

https://doi.org/10.1371/journal.pone.0264408.t002
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positively associated with increasing vegetation cover in Santa Gracia and La Campana (Fig

3B). Overall, there was no clear trend in the relationship between the hole density of inverte-

brates and increasing vegetation cover whereas vertebrates’ hole density increased with

increasing vegetation cover (S2A Fig in S3 Appendix).

After the exclusion of non-significant independent variables, the fixed predictors season,

vegetation cover, hole density and hillside elevation within the fitted GLMM for excavated soil

volume explained 85% of the model variation (AIC = 296.67, p< 0.001, S4 and S6 Tables in S3

Appendix). The patterns of excavated soil volume varied for invertebrates and vertebrates with

increasing vegetation cover along the climate gradient (Fig 4A). The raw data revealed another

trend, as the excavated soil volume increased with increasing vegetation cover for both, inver-

tebrates and vertebrates (S2B Fig in S3 Appendix). In addition, the excavated soil volume

increased disproportionally with increasing hole density, with a larger increase for vertebrates

than for invertebrates (Fig 4B).

Fig 3. Fitted relationship between the hole density and fixed effects for invertebrates (yellow) and vertebrates

(blue) at each site (Pan de Azúcar, Santa Gracia, La Campana, Nahuelbuta). (A) Season (autumn: March-April/

spring: September-November), (B) vegetation cover [%]. Data from both field campaigns were used.

https://doi.org/10.1371/journal.pone.0264408.g003
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Discussion

Our study showed that while hole density decreased from arid to humid environments, no

clear pattern could be discerned for the excavated soil volume along the investigated environ-

mental gradient. However, the contribution of vertebrates to excavated soil volume was larger

than that of invertebrates. For the latter, the relationship to the vegetation cover along the cli-

mate gradient was consistently negative while for vertebrates it was partly positive.

Before discussing the general results, a few comments should be made on the allometric

relationships of the burrow characteristics. Based on the RMA analysis regressions, these rela-

tionships were not isometric, as the relative depth of a burrow increased with the increasing

diameter of the entrance. This finding suggests that, for bioturbators, larger animals dig deeper

into the soil [51]. This relationship presumably reflects the anti-predator behavior of larger

animals: with increasing body size animals want to keep their entrance as small as possible to

exclude predators [52], but on the same time minimize burrowing cost [53] on one hand, but

Fig 4. Fitted relation between excavated soil volume (log10-transformed) and fixed effects for invertebrates

(yellow) and vertebrates (blue) at each site (Pan de Azúcar, Santa Gracia, La Campana, Nahuelbuta). (A)

Vegetation cover [%], (B) hole density (log10-transformed). Data from both field campaigns were used.

https://doi.org/10.1371/journal.pone.0264408.g004
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have a comfortable nest site [51] on the other hand. Our data do not allow a test of this hypoth-

esis, but further analyses of these allometric relationships are likely to provide a rich source of

biological and behavioral information, particularly in studies comparing a large number of

animal groups.

Our first hypothesis, that bioturbating activity decreases from arid to humid regions [21–

26], was supported by our results for invertebrates, as their hole density decreased from arid to

humid climates. Vertebrates, however, created fewer holes in arid than in semi-arid regions.

Burrowing vertebrates are, on average, larger than invertebrates [51] such that fewer holes are

consistent with a decline in animal density with increasing body size [54]. Accordingly, verte-

brates were presumably less frequent in the arid region of our study than in the other climatic

zones, such that fewer vertebrate than invertebrate burrows were present over a given area.

Similarly, the higher hole density of invertebrates all along the climate gradient can be attrib-

uted to the generally higher abundance of invertebrates [55]. However, it is also the case that

most invertebrates create their own new burrows while some vertebrates use previously exist-

ing burrows as an energy-saving strategy [56, 57]. In particular, larger animals, in our case ver-

tebrates, invest more energy in burrowing effort than smaller invertebrates. Previous

investigations showed that the energy cost of burrowing is directly proportional to the amount

of soil moved by the bioturbator. Consequently, larger vertebrates, which need to move larger

soil amounts to create a burrow of adequate size, will burrow fewer holes [15].

The excavated soil volume did not follow a clear pattern across the climatic gradient and it

differed between invertebrates and vertebrates in our study. Similar results were obtained in a

recent study measuring the excavated soil volume of bioturbators along the same environmen-

tal gradient [36]. The authors found that the excavated soil volume was greater in the semi-

arid (0.56 m3 ha-1 yr-1) and Mediterranean (0.93 m3 ha-1 yr-1) than in the arid (0.34 m3 ha-1 yr-

1) and humid (0.09 m3 ha-1 yr-1) climate zones and that the excavation rates were higher for

vertebrates (0.01–56 m3 ha-1 yr-1) than for invertebrates (0.01–37 m3 ha-1 yr-1). These findings

are in line with several studies showing that, due to their larger body size, vertebrates excavate

considerably larger volume of soil (1–5 m3 ha-1 yr-1) than invertebrates (<1 m3 ha-1 yr-1) [55,

58–64] as well as our findings. Those studies together with our own demonstrate the impor-

tance of vertebrates as bioturbators along a climate gradient.

Our second hypothesis, that bioturbation activity and quantity respond to seasonal changes

[23, 29], was supported by the higher hole density during autumn than spring of the southern

hemisphere, as observed at both the semi-arid and humid site. In the arid desert, with a consis-

tent lack of rainfall events, there was no difference between seasons. This is in agreement with

previous studies and with the observation that in the southern hemisphere the bioturbation

season ends in autumn [65]. Moreover, the climate in Central Chile during the study period in

2019 was drier than usual [66], which may have lessened the differences in bioturbation activ-

ity and quantity between seasons. While the relationship between seasons and bioturbation

patterns is no doubt, our study suggests that, at least in Chile, the impact of bioturbation is

largest in semi-arid and humid climate zones after the autumn rainfall.

The absence of a clear trend between vegetation cover and either bioturbation activity or

quantity along the climate gradient was consistent with previous studies examining the distri-

bution of burrow entrances as a function of vegetation [67, 68]. However, we were able to

show that the bioturbation patterns of invertebrates and vertebrates differed. The consistently

negatively association of invertebrates with vegetation cover supported our hypothesis that

some invertebrates are entirely independent of surface resources due to their permanently

belowground lifestyle [34]. By contrast, because vertebrates rely on a resource supply from the

surface [33], a positive association with vegetation cover occurred only in the middle of the

geographic gradient, as in the arid region the vegetation cover is sparse. Vertebrates living in
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regions of extreme temperatures characterized by limited resource must invest their energy in

digging for food as well as shelter from extreme temperatures in such resource-limited habitats

[69]. Furthermore, there is often no vegetation near freshly created burrows, because burrow-

ing typically destroys the vegetation at and possibly adjacent to the burrow [39, 70]. This may

have introduced a biased estimate of vegetation cover within plots with fresh burrows and

would explain the absence of either a positive or a negative association between burrowing ver-

tebrates and vegetation cover in the humid region. Nonetheless, in general, vegetation cover

was shown to be positively associated with vertebrates with a complex influence on bioturba-

tion patterns along the climate gradient.

Conclusion

Our study showed that climatic conditions and vegetation cover drive the activity and quantity

of bioturbation as well as the amount of burrowing by different animal groups. The contribu-

tion of vertebrates to bioturbation quantity is large and only bioturbating vertebrates had a

positive association, albeit a partial one, with vegetation cover. In its examination of the inter-

action of abiotic and biotic components, our study demonstrated the intricate relationships

between climate, vegetation and the contribution of bioturbating invertebrates and vertebrates.

These results provide further insights into the patterns that occur along broad climatic gradi-

ents and therefore into the impact of ecosystem engineers on ecosystem processes such as sedi-

ment transport, soil water cycling and nutrient availability. In a further study, we will therefore

compare physical and chemical soil properties in areas with soil affected and unaffected by bio-

turbation along the same climatic gradient. Additionally, our findings support the importance

of examining impacts of bioturbation on ecosystem processes on a broader climatic scale and

thereby encourage similar further studies like the assessment of sediment redistribution rates

caused by bioturbation [71].
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