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Abstract: Here we investigated the refolding of Bacillus subtilis 6S-1 RNA and its release from σA-RNA
polymerase (σA-RNAP) in vitro using truncated and mutated 6S-1 RNA variants. Truncated 6S-1
RNAs, only consisting of the central bubble (CB) flanked by two short helical arms, can still traverse
the mechanistic 6S RNA cycle in vitro despite ~10-fold reduced σA-RNAP affinity. This indicates
that the RNA’s extended helical arms including the ‘−35′-like region are not required for basic 6S-1
RNA functionality. The role of the ‘central bubble collapse helix’ (CBCH) in pRNA-induced refolding
and release of 6S-1 RNA from σA-RNAP was studied by stabilizing mutations. This also revealed
base identities in the 5’-part of the CB (5’-CB), upstream of the pRNA transcription start site (nt
40), that impact ground state binding of 6S-1 RNA to σA-RNAP. Stabilization of the CBCH by the
C44/45 double mutation shifted the pRNA length pattern to shorter pRNAs and, combined with
a weakened P2 helix, resulted in more effective release from RNAP. We conclude that formation of
the CBCH supports pRNA-induced 6S-1 RNA refolding and release. Our mutational analysis also
unveiled that formation of a second short hairpin in the 3′-CB is detrimental to 6S-1 RNA release.
Furthermore, an LNA mimic of a pRNA as short as 6 nt, when annealed to 6S-1 RNA, retarded the
RNA’s gel mobility and interfered with σA-RNAP binding. This effect incrementally increased with
pLNA 7- and 8-mers, suggesting that restricted conformational flexibility introduced into the 5’-CB
by base pairing with pRNAs prevents 6S-1 RNA from adopting an elongated shape. Accordingly,
atomic force microscopy of free 6S-1 RNA versus 6S-1:pLNA 8- and 14-mer complexes revealed that
6S-1:pRNA hybrid structures, on average, adopt a more compact structure than 6S-1 RNA alone.
Overall, our findings also illustrate that the wild-type 6S-1 RNA sequence and structure ensures an
optimal balance of the different functional aspects involved in the mechanistic cycle of 6S-1 RNA.

Keywords: Bacillus subtilis 6S-1 RNA; truncated and mutated derivatives; 6S-1 RNA:σA-RNAP
release kinetics; product RNA (pRNA) transcription; gel shift assays; locked nucleic acid derivatives
(pLNAs) of pRNA oligomers; atomic force microscopy

1. Introduction

Bacterial 6S RNAs are non-coding RNAs (ncRNA) of ~200 nt that form a rod-shaped
secondary structure with a relatively unstructured region in the center (termed central
bubble) that is flanked by two, non-continuously helical arms: the terminal (closing) stem
formed by the RNA’s 5′- and 3′-proximal sequences and the internal (apical) stem capped
by a loop (Figure 1 and Figure S1). The helical arms are not perfectly base-paired, but they
are interspersed with short internal loops and bulges. The sequence identity of 6S RNAs is
limited and only the inclusion of secondary structure conservation (covariance models) al-
lowed their identification as members of the same ncRNA family [1]. The sequence identity
between Bacillus subtilis 6S-1 RNA and Escherichia coli 6S RNA is 38 to 45%, depending on
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the type of alignment (Figure S1B). The 6S RNAs bind to the active site of RNA polymerase
(RNAP) holoenzymes in complex with the major (housekeeping) sigma factor, σ70 and σA

in the model organisms E. coli and B. subtilis, respectively. This results in differential and
complex transcription inhibition effects at σ70/σA-dependent promoters [2–7] and, as a
consequence, in global modulation of transcription. A single 6S RNA gene is found in the
vast majority of bacterial genomes sequenced so far; some bacteria such as B. subtilis even
express two 6S paralogs (6S-1 and 6S-2 RNA). A bioinformatic analysis predicted more
than 1700 6S RNAs in >1600 bacterial species [8]. The biological importance of 6S RNA can
be illustrated using the example of the hyperthermophilic bacterium Aquifex aeolicus [9]
that encodes and expresses a 6S RNA, although it has a parsimonious, highly condensed
genome and it abandoned another prominent bacterial ncRNA, the catalytic RNA of RNase
P [10]. Phenotypic analyses of 6S RNA-deficient bacterial strains revealed dysregulations
under various stress conditions (reviewed in [5,7,11]).
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Figure 1. (A) Secondary structure of B. subtilis 6S-1 RNA in its free state (top) and (B) after the  
structural rearrangement (bottom) induced by transcription of a pRNA 14-mer (orange) that 
remains stably bound to 6S-1 RNA. The structures were inferred from in-solution probing data [12]. 
(A) The 5’- and 3’-CB (Central Bubble) regions are highlighted in light blue and green, respectively; 
the orange arrow indicates the transcription start site (TSS) for pRNA synthesis by σA-RNAP. Helix 
P2 (composed of elements P2’ and P2’’), marked in pink, is disrupted upon pRNA synthesis. Probing 

Figure 1. (A) Secondary structure of B. subtilis 6S-1 RNA in its free state (top) and (B) after the
structural rearrangement (bottom) induced by transcription of a pRNA 14-mer (orange) that remains
stably bound to 6S-1 RNA. The structures were inferred from in-solution probing data [12]. (A) The
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5’- and 3’-CB (Central Bubble) regions are highlighted in light blue and green, respectively; the
orange arrow indicates the transcription start site (TSS) for pRNA synthesis by σA-RNAP. Helix P2
(composed of elements P2’ and P2”), marked in pink, is disrupted upon pRNA synthesis. Probing
data [12] suggested that a hairpin structure forms in the 3’-CB in the free state (in line with RNAfold
prediction), where it is in equilibrium with the open conformation; probing suggested that this
hairpin is stabilized in the pRNA-bound, rearranged structure ([12]; panel B). RNAfold also predicts
weak (transient) base-pairing within the 5’-CB (framed light blue hairpin structure), although this
was not confirmed by structure probing [12]. Consensus secondary structure analysis of 14 Firmicutes
6S-1 type RNAs by mlocarna and RNAalifold predicted the 3’-CB hairpin and the open conformation
of the 5’-CB [13]. Gray horizontal lines mark the structural elements corresponding to −35 and
−10 elements of open DNA promoters, tentatively assigned in analogy to the E. coli system. (B)
Structural probing was also consistent with formation of the so-called ‘central bubble collapse helix’
(CBCH, boxed) that forms between nucleotides of the 5’-CB and 3’-strand of the P2 region [12].
RNAfold dot plot analysis predicts that the three A:U bp (U51-53 and A153-155) are the weakest part
of the CBCH and may, thus, form only transiently (highlighted by gray lines connecting the pairing
bases), particularly in the wt and C44/45 structures.

The binding specificity of 6S RNAs for RNAP is achieved by structurally mimicking
an open DNA promoter [1,2]. A cryo-EM structure of E. coli σ70-RNAP in complex with
a 6S RNA derivative revealed B-DNA-like helical parameters in the paired regions of
6S RNA as a major component of this structural mimicry [14]. Based on the cryo-EM
structure and biochemical/mutational studies in the E. coli system, a ‘−35′-like region in
the internal (apical) arm of 6S RNA and a ‘−10′-like region located in the 3′-central bubble
(3′-CB; see Figure S1A) were pinpointed as the key recognition elements for binding to
σ70-RNAP [14–16].

The open DNA promoter mimicry of 6S RNAs also enables RNAP to utilize the RNA
as a template for the transcription of short abortive transcripts termed product RNAs
(pRNAs; [17]). The abundance and the length pattern of pRNAs increases with intracellular
NTP concentration, particularly of the initiating nucleotide (GTP) in the case of B. subtilis
6S-1 RNA-derived pRNA synthesis [12,17–20]. These pRNAs, when reaching a certain
length (13 nt for E. coli 6S RNA, 14 nt for B. subtilis 6S-1 RNA; [16,18]) and depending
on their GC content, have such low rate constants for dissociation from 6S RNA that
they stably rearrange the 6S RNA structure. This triggers the release of 6S RNA:pRNA
complexes from RNAP as an escape mechanism from the transcriptional block [12,17,21].
In the case of canonical 6S RNAs, this release mechanism is operational during outgrowth
of cells from stationary phase upon nutrient resupply [5,12]. The pRNA-induced 6S RNA
rearrangement involves the unwinding of 6S RNA helix P2 (termed downstream duplex
or helix in the E. coli system [14,16]) and the formation of the 6S RNA:pRNA hybrid helix
involving nucleotides of the 5′-central bubble (5′-CB) and the 5′-strand of the unwound
P2/downstream helix (Figure 1 and Figure S1). For 6S RNAs from E. coli and other γ-
proteobacteria, the unwinding of the downstream helix allows formation of a 9-bp long
hairpin in the 3′-CB (Figure S1A) that was shown to make a major contribution to 6S RNA
release induced by pRNAs as short as 13-mers [16]. In contrast, other 6S RNAs, such as A.
aeolicus 6S RNA or B. subtilis 6S-1 RNA, do not form such an extended hairpin in the 3′-CB.
In the case of B. subtilis 6S-1 RNA, a smaller 3′-CB hairpin already forms in free 6S-1 RNA,
which appeared to be stabilized in the 6S-1 RNA:pRNA hybrid structure [12]. However,
in B. subtilis 6S-1 RNA and A. aeolicus 6S RNA, another structural element was inferred
to form upon pRNA transcription, termed the ‘central bubble collapse helix (CBCH)’,
involving the 3′-strand of P2 and the distal sequence of the 5′-CB (Figure 1; [12,22]. These
findings suggest differences in the pRNA-induced 6S RNA release mechanism of E. coli-
and B. subtilis-type 6S RNAs.

Here we show that truncated variants of 6S-1 RNA, solely consisting of the CB flanked
by two short helical arms, can still traverse the mechanistic 6S RNA cycle in vitro, despite
decreased σA-RNAP affinity. This indicates that the ‘−35′ region is not strictly essential for
the basic 6S-1 RNA function. Using strategic 6S-1 RNA mutants, we further characterized
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the role of the CBCH in the kinetics of the 6S-1 RNA rearrangement/release mechanism
and its influence on pRNA length patterns. We observed that certain mutations in the
5′-CB upstream of the pRNA transcription start site (TSS; nt 40) rapidly impair 6S-1 RNA:
σA-RNAP ground state binding. Stabilizing the CBCH shifted the pRNA length pattern
to shorter pRNAs. A 6S-1 RNA variant with a weakened helix P2 was more effectively
refolded and released from the enzyme in the presence of the stabilized CBCH. Our
mutational analysis also revealed that formation of a second short hairpin in the 3′-CB is
detrimental to 6S-1 RNA release. From our results we conclude that formation of the CBCH
supports pRNA-induced 6S-1 RNA refolding and release. We further studied the 6S-1
RNA rearrangement by native PAGE upon stable annealing of LNA versions of pRNAs of
different length (6-, 7- and 8-mers) to determine if the rearrangement of 6S-1 RNA structure
and 6S-1 RNA:σA-RNAP complex decay may require a certain minimum pRNA length.
Finally, we analyzed the shape of free 6S-1 RNA versus 6S-1:pLNA complexes by atomic
force microscopy, revealing that 6S-1:pRNA hybrid structures, on average, adopt a more
compact structure than 6S-1 RNA alone.

2. Materials and Methods
2.1. Purification of B. subtilis RNA Polymerase

Native B. subtilis σA-RNA polymerase holoenzyme was prepared according to [23] and
His-tagged σA-RNAP as described recently [24] (Table 1). The σA-RNAP concentrations
were determined by Bradford assay. A calibration curve was established using quick start
bovine serum albumin (BSA) (Cat #5000206, Bio-Rad, Feldkirchen, Germany) to prepare
800 µL samples with 0, 2, 4, 6, 8, or 10 µg BSA (referred to the final volume of 1 mL). These
samples were mixed with 200 µL of Protein Assay Dye Reagent Concentrate (Cat # 5000006,
Bio-Rad) and incubated for 5 min at room temperature. Samples were then transferred
into 1 mL cuvettes and absorption was measured at 595 nm in a spectrophotometer. For
measurement of test samples, 2 µL of the RNAP preparation was diluted with 798 µL
ddH2O; all of the following steps were as for the calibration curve samples. For converting
weight concentration into molar concentration, we assumed an average molecular weight
of 440 kDa for σA-RNAP preparations based on ~340 kDa for the core enzyme plus 60 kDa
for sub-stoichiometric amounts of σA, δ and HelD [24].

Table 1. Strains and plasmids used in this study.

Strain or Plasmid Genotype Reference or Source

Strains

B. subtilis His-rpoC, ∆bsrAB (SG7)
PY79∆bsrA:spc (Spr),

∆bsrB::kan (Kmr)
rpoCΩ pYQ52 (Cmr)

[24]

B. subtilis 110 NA trpC2 spo0A3 su- [25]

Plasmids
pBB1 pUC18::T7-bsrA-190-wt, (Ampr) [12]

pGH2 pUC18::T7-bsrA-190-U50, (Ampr) This work

pGH3 pUC18::T7-bsrA-190-C50, (Ampr) This work

pGH5 pUC18::T7-bsrA-78-6S78, (Ampr) This work

pGH6 pUC18::T7-bsrA-82-6S82cp, (Ampr) This work

pGH12 pUC18::T7-bsrA-190-UUUUswap (Ampr) This work

pGH15 pUC18::T7-bsrA-190-A47, (Ampr) This work

pGH16 pUC18::T7-bsrA-190-C44/45, (Ampr) This work

pGH17 pUC18::T7-bsrA-190-A53, (Ampr) This work
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Table 1. Cont.

Strain or Plasmid Genotype Reference or Source

pAH_P2swap pUC18::T7-bsrA-190-P2swap (Ampr) This work

pSG1 pUC18::T7-bsrA-190-G50, (Ampr) This work

pSG2 pUC18::T7-bsrA-190-wt 8M, (Ampr) This work

pSG3 pUC18::T7-bsrA-190-C44/45 8M, (Ampr) This work

pSG4 pUC18::T7-bsrA-190-wt 6M, (Ampr) This work

pSG5 pUC18::T7-bsrA-190-C44/45 6M (Ampr) This work

pSG6 pUC18::T7-bsrA-190-wt 5M (Ampr) This work

pSG7 pUC18::T7-bsrA-190-C44/45 5M (Ampr) This work

2.2. Cloning of 6S-1 RNA Constructs

The pUC18 derivative plasmid pBB1, encoding the full-length mature 6S-1 RNA (gene:
bsrA, 190 nt; [12]) under control of a class III T7 promoter, was chosen as the backbone
to construct all 6S-1 RNA mutants (see Table 1). Mutagenesis was performed according
to standard procedures. Briefly, the entire plasmid was amplified by PCR, using back-
to-back primers (manually designed or using Snapgene 4.1.9) and one mutagenic primer
with 5’-proximal or internal mismatches to introduce nucleotide substitutions (see NEB
web page, https://international.neb.com/applications/cloning-and-synthetic-biology/
site-directed-mutagensis accessed on 13 February 2022). After agarose gel purification of
the PCR product, the 5’-ends of primer elongation products were phosphorylated using T4
polynucleotide kinase, the template strands were digested with DpnI and the amplified
strands were circularized by T4 DNA ligase in a one-tube reaction. For some constructions,
primers were already 5’-phosphorylated before the PCR reaction. After transformation
into E. coli DH5α cells and selection on ampicillin-containing agar plates, clones were
identified by DNA sequencing. For the construction of 6S-1 RNA genes with combined
mutations in different regions, the construction was performed in two steps. As an example,
the 5’-portion of 6S-1 RNA helix P2 was mutated in the first step as just described. After
mutation and verification by DNA sequencing, the plasmid obtained after this first PCR
mutagenesis round was used as a template to introduce the compensatory mutations into
the 3’-strand of helix P2 in a second PCR.

2.3. In Vitro Transcription of B. subtilis 6S-1 RNA Variants and Synthetic
pRNA/pLNA Oligonucleotides

All 6S-1 RNA variants were transcribed from linearized plasmid templates by runoff
transcription using T7 RNA polymerase as described, followed by transcript purification
usually on 7.5% denaturing (8 M urea) polyacrylamide gels as described [24]. The synthetic
6S-1 pRNA 8-mer (5′-OH-GUU CGG UC) and 14-mer (5′-OH-GUU CGG UCA AAA CU)
used as size markers were synthesized by Noxxon Pharma AG (Berlin, Germany) or
Integrated DNA Technologies (IDT) Europe. The all-LNA versions of the 8-mer (5′-GTT
CGG TC) and 14-mer (5′-GTT CGG TCA AAA CT) were obtained from Axolabs (Kulmbach,
Germany).

2.4. 6S RNA Refolding

To ensure uniform folding of 6S RNA after denaturing gel purification, 100 nM of
T7-transcribed RNA, containing trace amounts of the same 5′-32P-labeled RNA (2500
Cherenkov c.p.m. per gel lane), were adjusted to 1 × TE buffer (10 mM Tris pH 8.0, 1 mM
EDTA). The mixture was then heated to 80 ◦C in a thermocycler (Biometra, Analytik Jena,
Jena, Germany); after 2 min of holding time at 80 ◦C, the temperature was lowered to
70 ◦C and kept for 2 min at 70 ◦C; this was repeated for temperature shifts to 60 and
50 ◦C, followed by shifting to and maintaining the temperature at 37 ◦C. For Figure 2E,F, a

https://international.neb.com/applications/cloning-and-synthetic-biology/site-directed-mutagensis
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somewhat different refolding protocol was used: 5 min each at 95, 90, 80, 70, 60, and 50 ◦C,
followed by transfer to 37 ◦C (≥5 min).

2.5. Gel Shift Assay to Assess 6S RNA:σA-RNAP Complex Formation

The following ingredients were combined in a final volume of 10 µL: 1 µL of T7-
transcribed and refolded 6S RNA (100 nM) containing trace amounts of the same 5′-32P-
labeled RNA (2500 Cherenkov c.p.m. per gel lane), 2 µL 5× transcription buffer (200 mM of
Tris-HCl pH 8.0, 25 mM MgCl2, 800 mM KCl, 5 mM dithiothreitol), 2 µL of heparin solution
(400 ng/µL; Sigma-Aldrich, Taufkirchen, Germany), a varying concentration of native
or His-tagged σA-RNAP (specified in the corresponding figure legend), and RNase-free
ddH2O. Dilutions of σA-RNAP stock solutions were made in a RNA polymerase storage
buffer [10 mM Tris-HCl pH 8.0, 10 mM MgCl2, 0.1 mM EDTA, 0.1 mM dithiothreitol, 0.1 M
NaCl and 50% (v/v) glycerol]. The aforementioned 10 µL reaction mixtures were incubated
for 30 min at 37 ◦C, followed by mixing with 10 µL 2 × native loading dye [10% (v/v)
glycerol, 10 mM MgCl2, 0.025% (w/v) bromophenol blue and 0.025% (w/v) xylene cyanol
blue)] and loading onto a native 7.5% native polyacrylamide (PAA) gel [running buffer
1 × TBE; glass plate dimensions 30 cm × 20 cm × 1 mm (L × B × H)], typically run for
3 h at 25 mA. In the experiments shown in Figure 2C, native PAGE was conducted in
an electrophoresis buffer containing 0.5 × TBE, 160 mM KOAc, 5 mM Mg(OAc)2, 1 mM
DTT, pH 8.6, with correspondingly adjusted electric field strength to prevent substantial
warming of the gel during electrophoresis [12]. Gels were exposed overnight to a phosphor
imaging plate (Fujifilm, Düsseldorf, Germany). Radioactive bands were visualized and
quantified using a FLA-3000 Fluorescent Image Analyzer (Fujifilm), the software BAS
Reader (version 3.14), and AIDA (v. 3.45.039). Data fitting of binding curves was based on
three independent experiments (if not stated otherwise), using the software Grafit, v. 5.0.13
(Erithacus Software, East Grinstead, West Sussex, UK).

2.6. Native Gel Assay to Assess NTP Dependence of the pRNA-Induced Rearrangement of 6S-1
RNA and Its Release from RNAP

For the NTP concentration variation experiment in Figure 5, a set of 10.5 µL mixtures
containing 3.5 µL 6S-1 RNA (100 nM stock concentration with trace amounts of 5′-32P-
labeled 6S-1 RNA; a total of ~9000 Cherenkov c.p.m. for withdrawal of 3 time point aliquots,
corresponding to 2500 c.p.m. per gel lane; see below) in 1 × TE buffer were subjected to
the refolding protocol. Then, 7 µL of 5 × transcription buffer (see above), 7 µL of heparin
solution (400 ng/µL), and ~1 µL of ddH2O were added per reaction. To each sample, with
a time interval of 7 min, 2.5 µL of native σA-RNAP were added (resulting in a volume
of 28 µL). The 7-min time delay was required for staggered processing of samples with
different NTP concentrations. Each sample was incubated for 30 min at 37 ◦C to reach
equilibrium of 6S-1 RNA binding to σA-RNAP. Reactions were started by adding 7 µL of
NTP mix (final reaction volume: 35 µL) to adjust the NTP concentration to either 40, 80,
120, 160, or 200 µM each NTP [A/C/G/UTP mixes of 200 µM, 400 µM, 600 µM, 800 µM
and 1000 µM of each NTP were usually made from 100 mM stock solutions (Carl Roth,
Karlsruhe, Germany) by dilution in ddH2O]; the final concentration of 6S-1 RNA was 10 nM
and that of σA-RNAP was 2 µM. After 15 s, 1 min, and 2 min at 37 ◦C, 10 µL aliquots were
withdrawn, mixed with 10 µL of 2 × native loading dye (see above), and put immediately
on ice. The three collected aliquots were then loaded onto a 7.5% native PAA gel [running
buffer 1 × TBE; glass plate dimensions 30 cm × 20 cm × 1 mm (L × B × H)] that was
running at low current (~5 to 10 mA) to avoid diffusion of initially loaded samples from
gel pockets until all pockets were loaded. After loading the last aliquot set, the current
was increased to 25 mA for 3 h. Phosphor imaging and data evaluation were performed as
described in Section 2.5.



Non-coding RNA 2022, 8, 20 7 of 27

2.7. Native Gel Assay to Analyze 6S-1 RNA Rearrangement Kinetics at a Specific
NTP Concentration

A total of 5.5 µL of 5′-32P-labeled 6S RNA (~2500 Cherenkov c.p.m per µL) was
combined with 5.5 µL of 2 × TE buffer (20 mM Tris pH 8.0, 2 mM EDTA) and refolded
as described in Section 2.4. Then, 11 µL of 5 × transcription buffer (see above), 11 µL
of heparin solution (400 ng/µL), between ~12 and 19 µL of His-tagged σA-RNAP (stock
concentrations varied between 5.75 and 9.05 µM), and RNase-free ddH2O were added to a
total volume of 53.6 µL. The reaction mixture was incubated for 1 h at 37 ◦C to equilibrate
6S RNA binding to σA-RNAP. Subsequently, 1.4 µL of an A/C/G/UTP mix (2 mM each
NTP) was added (final volume: 55 µL) to start the reaction at 37 ◦C. The reaction mixtures
contained final concentrations of usually 2 µM (2.6 µM in Figure 10D) His-tagged σA-RNAP,
50 µM each NTP, and trace amounts (2500 Cherenkov c.p.m per gel lane) of 5′-32P-labeled
6S RNA. ATP omission experiments and the experiment shown in Figure 6A followed the
same protocol, except that the concentration of each added NTP was 100 µM instead of
50 µM. Deviations from this protocol are specified in the legend to Figure 2E. Typically,
10 µL aliquots were withdrawn after 15 s and after 2, 5, 10, and 15 min, to which 10 µL of
2 × native loading dye (see above) were added, followed by shock freezing in liquid N2.
Samples were loaded onto a native 7.5% PAA gel (running buffer 1 × TBE; gel dimensions
see above) that was run for 3 h at 25 mA. Control samples lacking NTPs, or enzyme and
NTPs, were prepared and handled in the same manner as the test samples before loading
onto the gel (incubation time at 37 ◦C for at least 15 min). Phosphor imaging and data
evaluation were performed as described in Section 2.5. After electrophoresis, the band
corresponding to the 6S-1 RNA:RNAP complex (signal 1) and the lane segment (signal 2)
covering both free 6S-1 RNA and rearranged 6S-1 RNA:pRNA hybrids were quantified
for each lane; the sum of signals 1 and 2 yielded the total radioactivity in each lane; the
radioactivity of the complex band (signal 1) was then divided by the total radioactivity
(signal 1 + 2) in the lane, and the resulting complex fraction was normalized to the fraction
of complex at time point zero. Data fitting was based on three independent experiments
using the software Grafit, v. 5.0.13.

2.8. pRNA Transcription Assay Using Native σA-RNAP

For the experiment shown in Figure 3D, 2 µL of in vitro T7-transcribed 6S RNA (stock
concentration: 15 µM) were combined with 2 µL of 2 × TE buffer and subjected to the
refolding protocol (see above). Then, 3 µL of 5 × transcription buffer (see above), 2.4 µL of
native σA-RNAP (stock concentration: 15.84 µM), and 3.1 µL of RNase-free ddH2O were
added to a volume of 12.5 µL. The reaction mixture was incubated for 15 min at 37 ◦C to
equilibrate binding of 6S RNA to σA-RNAP. Subsequently, 2 µL of NTP mix (ATP, GTP, CTP
and UTP, each 1.5 mM) plus 0.52 µL [α-32P]UTP (250,000 Cherenkov c.p.m per reaction
mixture) were added. The final concentrations in the reaction mixture were 2 µM for the
6S RNA variant, 2.5 µM for native σA-RNAP, and 200 µM for each NTP. The final reaction
mixture (~15 µL) was incubated for up to 1 h at 37 ◦C. After incubation, 5 µL of the reaction
mixture was withdrawn and mixed with 15 µL of 2 × denaturing loading dye [95% (v/v)
formamide, 0.025% (v/v) SDS, 0.025% (v/v) bromophenol blue, 0.025% (v/v) xylene cyanol,
0.5 mM EDTA], heated for 3 min to 98 ◦C in a dry bath (Biometra, Analytik Jena, Jena,
Germany), followed by cooling on ice for 5 min. Control samples (final volume: 15 µL)
either lacking native σA-RNAP or without 6S RNA were subjected to the same conditions
as the test samples. Samples were loaded onto denaturing 25% PAA gel [8 M urea; running
buffer 1 x TBE; gel plate dimension 42 cm × 33.5 cm × 0.3 cm (L × B × H)] that was run
for 16 h at 1200 V. Phosphor imaging and data evaluation was performed as described in
Section 2.5. A slight variation of this protocol was applied to pRNA transcription of RNAs
6S-1 wt and C44_45 (Figure 4C). Here, the differences included a final volume of 20 instead
of 15 µL, a native σA-RNAP final concentration of 1 µM, and withdrawal of 5 µL aliquots
at time points 5-, 20-, and 60-min post-nucleotide addition.
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2.9. pRNA Transcription Assay Using His-Tagged σA-RNAP

4 µL of T7-transcribed 6S RNA (stock concentration ~15 µM) and 4 µL of 2 × TE
buffer (20 mM Tris pH 8.0, 2 mM EDTA) were mixed and subjected to the RNA refolding
procedure (see above). Then, 6 µL of 5 × transcription buffer (see above), ~1 to 5 µL of His-
tagged σA-RNAP (stock concentration varied from 5.75 µM to 9.05 µM), and RNase-free
ddH2O were added to a total volume of 24.2 µL, followed by equilibration for 15 min at
37 ◦C. Approximately 12 µL aliquots of this reaction mixture were transferred into two new
tubes, followed by the addition of 2.9 µL of A/C/G/UTP mix or C/G/UTP mix (1.39 mM
each NTP); the resulting ~15 µL contained [α-32P]UTP (250,000 Cherenkov c.p.m per lane),
270 µM end concentration of each indicated NTP, 2 µM 6S RNA, and ~0.4 µM His-tagged
σA-RNAP; pRNA transcription was allowed to proceed for 1 h at 37 ◦C. Thereafter, 5 µL of
the reaction mixture was withdrawn and mixed with 15 µL of 2 × denaturing loading dye
(see above), heated for 3 min to 98 ◦C in a dry bath, followed by cooling on ice for 5 min.
Control samples either lacking His-tagged σA-RNAP or 6S RNA were treated in the same
manner. For details on electrophoresis, see the preceding paragraph.

2.10. Annealing of pLNA/pRNA Oligonucleotides to 6S-1 RNA

A total of 10 pmol of 6S-1 RNA were mixed with trace amounts of 5′-32P-labeled 6S-1
RNA (10,000 Cherenkov c.p.m.) and 0.4 µL 10 × TE buffer. The volume was adjusted
to 4 µL with RNase-free ddH2O. Then, 2 µL of a 50 µM stock solution of the respective
pLNA or pRNA oligonucleotide was added and the mixture was successively incubated
for 5 min each at 95, 90, 80, 70, 60, and 50 ◦C, followed by transfer to 37 ◦C for at least 5 min.
Subsequently, 1 µL of heparin (400 ng/µL), 2 µL of 5× transcription buffer (see above), and
either ~1.1 µL native σA-RNAP (stock concentration: 8 mg/mL) or 1.1 µL double-distilled
RNase-free ddH2O (for controls without RNAP) were added. Mixtures were incubated for
30 min at 37 ◦C, then supplemented with 10 µL of 2 × native RNA loading dye (see above)
and analyzed by 10% native PAGE.

2.11. Atomic Force Microscopy (AFM)

For AFM analysis, the RNA was prepared as follows: 1 µL of a 10 µM stock solution of
in vitro T7-transcribed 6S-1 RNA was mixed with a tenfold molar excess of the respective
pLNA oligonucleotide in a final volume of 10 µL adjusted to 1 × TE buffer. The annealing
protocol was the same as described in the preceding paragraph. To remove excess pLNA
oligonucleotides, samples containing the pLNA 8- or 14-mer were centrifuged 3 times, with
500 µL 1× TE buffer per round, through Amicon Ultra centrifugal filter units (molecular
weight cut-off: 10 kDa). Before the actual measurements, the density of molecules was
recorded in a test image; depending on the observed density, RNA mixtures were diluted
with 1 × TE buffer to adjust the working concentrations to ~1–4 nM. RNA solutions were
transferred to a mica surface treated with poly-L-lysine (MW 500–2000, Sigma-Aldrich,
Taufkirchen, Germany) as described [26]. Pictures were taken using a Veeco Multimode
Nanoscope IIIa AFM device with silicon tips (Tap300Al-G, BudgetSensors, Sofia, Bulgaria)
in tapping mode (resonance frequency: 300 kHz, scan rate: 1 Hz). Pictures were recorded
with an edge length of 1 µm. The AFM images were analyzed using ‘ImageJ 1.51’ [27].
Particles with a size of 0.3 to 0.64 µm2 and a circularity (c = 4π × [area]/[perimeter]2) of 0.2
to 0.6 were annotated as 6S-1 RNA molecules. For each of these particles, an ellipse was
fitted. The ratio of the longitudinal (long) and latitudinal (short) axis length (see Figure 13C)
were used to describe the molecule shape. Smaller ratios are indicative of more compact
and possibly bent molecules while larger ratios indicate more stretched conformations.
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2.12. RNAfold and RNAcomposer Predictions

Secondary structure predictions were computed on the RNAfold web server 2.4.18 ([28];
http://rna.tbi.univie.ac.at, accessed on 23 December 2021) using the default parameters.
For simulating complexes of 6S-1 RNA and pRNAs, the corresponding pRNA binding
site was blocked using constraint folding with the ‘Enforce Constrained pairing pat-
tern’ option. The 3D structure predictions were performed with RNAcomposer ([29];
https://rnacomposer.cs.put.poznan.pl, accessed on 15 December 2021). For RNAcomposer
prediction of the 6S-1:pRNA complex, the 6S-1 RNA sequence was extended at the 5’-end
by a linker sequence (here 25 cytidines) and the pRNA sequence at the very 5’-end, mim-
icking an artificial pseudoknot structure; very similar results were obtained with U25, A25,
and G25 linkers or longer homopolymeric linkers of 50, 75, or 100 nt that were analyzed
in comparison.

3. Results
3.1. Analysis of 6S-1 RNA Derivatives with Large Truncations

In the E. coli system, biochemical studies and the cryo-EM structure of the σ70-RNAP
complex have led to the identification of structural 6S RNA elements that correspond to
the −35 and −10 regions of DNA promoters and interact with σ70 as well as the β and
β’ subunits of the core RNAP [14–16]. These 6S RNA elements coincide with the 3’-CB
(−10 element) and, by inference from the E. coli system, roughly with the P5 helix and
its two flanking internal loops (−35 element) in B. subtilis 6S-1 RNA (Figure 1). The P2
region interacts with β and β’, while the terminal stem region (corresponding to helix P1
in Figure 1A) was shown to be dispensable for complex formation [14,15]. To gain insight
into the interaction of B. subtilis 6S-1 RNA and σA-RNAP, we constructed two extensively
truncated derivatives of B. subtilis 6S-1 RNA, a 78-nt long variant (6S78) and a very similar
but circularly permuted variant (6S82cp) that was 82-nt in length, both lacking the ‘−35’
region (Figure 2A,B). The 6S82cp variant was constructed to evaluate possible effects caused
by fraying of the 5’- and 3’-termini upon helix P2 disruption during pRNA synthesis. Both
truncation variants showed 50% complex formation with σA-RNAP at ~1 µM enzyme,
whereas the same enzyme bound full-length 6S-1 RNA with a Kd of ~100 nM (Figure 2C).
Nevertheless, the truncated RNAs preserved the ability to serve as a template for the
synthesis of pRNA 14/15-mers (Figure 2D, lanes 6 and 7), although with reduced efficiency
relative to full-length 6S-1 RNA (lane 5). Particularly low pRNA synthesis efficiency in the
case of RNA 6S82cp can be attributed to the constraints imposed by the artificial capping
loop of helix P2. RNAs 6S78 and 6S82cp were converted to complexes with pRNA upon
incubation with NTPs but not as efficiently as the full-length (wt) 6S-1 RNA (Figure 2E).
Likewise, both truncated 6S RNAs showed the hallmark feature of time-dependent release
from RNAP upon induction of pRNA synthesis (Figure 2E). Altogether, these findings
demonstrate that the basic mechanistic features of 6S-1 RNA are maintained, though
with reduced efficiency, when the RNA’s size is reduced to the CB solely flanked by the
immediate helical elements that confine the CB. At the same time, the results demonstrate
the contribution of structural elements in the helical arms of native 6S-1 RNA, such as the
putative −35 region, to ground state binding affinity of 6S-1 RNA for σA-RNAP.

http://rna.tbi.univie.ac.at
https://rnacomposer.cs.put.poznan.pl
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Figure 2. (A,B) Secondary structures of the truncated 6S-1 RNA derivatives (A) 6S78 (78 nt) and (B) 
6S82cp (82 nt, circularly permuted) lacking larger parts of the terminal and internal stem, including 
the −35 region; color code as in Figure 1. (C) Binding of wt 6S-1 RNA, mutant RNA 6S82cp, and 
mutant RNA 6S78 toσA-RNAP, analyzed by gel shift assay (see Materials and Methods). A 
representative experiment is shown. The curves are fits to a one ligand binding site model; as Kd 
values for the two mutant RNAs were calculated with endpoints considerably above 1, they are not 
given here; K1/2 values (50% complex relative to the endpoint) were approx. 100 nM for wt 6S-1 RNA 
and approximately 1 µM for the two mutant RNAs. (D) pRNA transcription using wt 6S-1 RNA or 
one of the two truncation variants as template (lanes 5–7). Lanes 1 and 2, 5’-32P-end-labeled synthetic 
6S-1 pRNA 8-mer (lane 1) and 14-mer (lane 2); lanes 3 and 4, controls lacking either 6S RNA (lane 3) 
or enzyme (lane 4); lanes 5–7: pRNA transcription for 1 h at 37 °C in the presence of 2 µM of the 
respective 6S RNA variant, 2.5 µM σA-RNAP, 200 µM each NTP, and 250,000 c.p.m of [α-32P]-UTP 
per lane. The bracket at the upper right marks bands attributable to hybrids of 6S78 RNA and pRNA 
runoff transcripts (17-mers). € Refolded 5’-32P-end-labeled wt 6S-1 RNA, 6S82cp or 6S78 RNA was 
preincubated with σA-RNAP for 30 min at 37 °C. Then, NTPs were added to the mixture to induce 
transcription of pRNAs and the samples were incubated at 37 °C for the time period indicated above 
each lane. The final concentrations were 1 µM for 6S78 RNA, ~2 µM for σA-RNAP, and 200 µM each 
NTP. Lanes C, no NTPs added and incubation at 37 °C for 180 min. Samples for all three 6S RNA 
variants were analyzed on the same 7.5% native PAA gel; for further details, see Materials and 
Methods. These experiments were conducted with the native σA-RNAP. Filled circles indicate 6S 
RNA:RNAP complexes, open triangles 6S RNA:pRNA complexes and open circles free 6S RNA, 
either wt 6S-1 RNA, 6S82cp or 6S78 RNA; asterisks indicate bands of unknown nature not observed 
in other experiments. 

Figure 2. (A,B) Secondary structures of the truncated 6S-1 RNA derivatives (A) 6S78 (78 nt) and
(B) 6S82cp (82 nt, circularly permuted) lacking larger parts of the terminal and internal stem, including
the−35 region; color code as in Figure 1. (C) Binding of wt 6S-1 RNA, mutant RNA 6S82cp, and mutant
RNA 6S78 to σA-RNAP, analyzed by gel shift assay (see Materials and Methods). A representative
experiment is shown. The curves are fits to a one ligand binding site model; as Kd values for the
two mutant RNAs were calculated with endpoints considerably above 1, they are not given here;
K1/2 values (50% complex relative to the endpoint) were ∼100 nM for wt 6S-1 RNA and ∼1 µM for
the two mutant RNAs. (D) pRNA transcription using wt 6S-1 RNA or one of the two truncation
variants as template (lanes 5–7). Lanes 1 and 2, 5′-32P-end-labeled synthetic 6S-1 pRNA 8-mer (lane
1) and 14-mer (lane 2); lanes 3 and 4, controls lacking either 6S RNA (lane 3) or enzyme (lane 4);
lanes 5–7: pRNA transcription for 1 h at 37 ◦C in the presence of 2 µM of the respective 6S RNA
variant, 2.5 µM σA-RNAP, 200 µM each NTP, and 250,000 c.p.m of [α-32P]-UTP per lane. The bracket
at the upper right marks bands attributable to hybrids of 6S78 RNA and pRNA runoff transcripts
(17-mers). (E) Refolded 5′-32P-end-labeled wt 6S-1 RNA, 6S82cp or 6S78 RNA was preincubated with
σA-RNAP for 30 min at 37 ◦C. Then, NTPs were added to the mixture to induce transcription of
pRNAs and the samples were incubated at 37 ◦C for the time period indicated above each lane.
The final concentrations were 1 µM for the 6S-1 RNA variants, ~2 µM for σA-RNAP, and 200 µM
each NTP. Lanes C, no NTPs added and incubation at 37 ◦C for 180 min. Samples for all three 6S
RNA variants were analyzed on the same 7.5% native PAA gel; for further details, see Materials
and Methods. These experiments were conducted with the native σA-RNAP. Filled circles indicate
6S RNA:RNAP complexes, open triangles 6S RNA:pRNA complexes and open circles free 6S RNA,
either wt 6S-1 RNA, 6S82cp or 6S78 RNA; asterisks indicate bands of unknown nature not observed in
other experiments.
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3.2. Role of the Central Bubble Collapse Helix (CBCH) in the Rearrangement and 6S-1 RNA
Release from RNAP

The rearrangement and release mechanism of B. subtilis 6S-1 RNA differs from that
of 6S RNAs of E. coli and related γ-proteobacteria. In the latter, the 3’-CB is essentially
unstructured in the free state, but an extended hairpin (9 bp) forms between nucleotides of
the 3’-CB and the 3’-strand of helix P2 (also called downstream duplex; [14]), when P2 is
disrupted during pRNA synthesis. This hairpin was shown to play a key role in the release
mechanism in the E. coli system [16]. As a shorter hairpin (with 5 and potentially up to 7 bp
according to RNAfold prediction; Figure 1A) already forms in the 3’-CB of free B. subtilis
6S-1 RNA [12] and no extended hairpin forms during pRNA synthesis, this raised the
question of whether the CBCH may play a supporting role in the 6S-1 RNA release process
in addition to formation of the pRNA:6S-1 RNA hybrid helix. We initially approached this
question by introducing the A50U mutation into 6S-1 RNA, which was expected to slightly
stabilize the CBCH (Figure 1B). When we tested this mutant 6S-1 RNA for binding to
σA-RNAP, we observed a two-fold increase in Kd (Figure 3A). Similar two- to threefold Kd
increases were also observed for A50C and A50G mutations (Figure 3B,C), indicating that
the base identity of residue A50 in the 5’-CB plays a role in the interaction with σA-RNAP.
We then tested if the CBCH stabilization by the A50U mutation may energetically favor the
pRNA-induced rearrangement of 6S-1 RNA and thereby somewhat shift the pRNA length
pattern to shorter pRNAs. However, the pRNA length pattern did not differ substantially
from that of wt 6S-1 RNA (Figure 3D). For a more substantial stabilization of the CBCH,
we mutated residues U44/45 to cytosines (termed mutant C44/45 in the following), thus
converting the tandem G:U to G:C pairs (Figure 1B). This double mutation decreased
σA-RNAP binding affinity by a factor of two (Figure 4A) and up to a factor of three with
other RNAP preparations (not shown). Here, pRNA transcription assays clearly revealed a
higher proportion of pRNAs shorter than 14 nt (mainly 11- and 12-mers) when using the
SG7 RNAP as enzyme and the C44/45 mutant RNA as a template (Figure 4B, lane 7 vs. 5,
marked at the right margin). This effect was even enhanced (for unknown reasons) with
the native RNAP (Figure 4C). These findings provided evidence that the C44/45 double
mutation may energetically favor the pRNA-induced rearrangement of 6S-1 RNA to such
an extent that pRNAs shorter than 14 nt (10 to 12-mers) can now more effectively trigger
the rearrangement of 6S-1 RNA and its release from σA-RNAP.

As a next step, we evaluated the 6S-1 RNA rearrangement/release kinetics as a func-
tion of NTP concentration (Figure 5). In this setup, complexes of 6S-1 RNA and σA-RNAP
were preformed and pRNA transcription was induced by the addition of NTP substrates,
followed by withdrawal of aliquots at different time points. The experiment illustrated
in Figure 5 showed that the pRNA-mediated rearrangement of 6S-1 RNA (resulting in
retarded gel mobility) and its release from σA-RNAP gains substantial momentum at NTP
concentrations >40 µM. Evidently, there are two subpopulations of 6S-1 RNA:σA-RNAP
complexes, one reacting in the fast phase of the reaction (≤15 s) and the other reacting
with slower kinetics (see also Figure 7). The subpopulation reacting in the fast phase in-
creases with increasing NTP concentration (Figure 5). We then analyzed the rearrangement
kinetics for wt 6S-1 RNA and the C44/45 mutant RNA at 100 µM each NTP to determine if
the C44/45 RNA may be released faster than the wt RNA. Yet, no significant differences
between the wt and C44/45 mutant RNA were observed and major fractions of both RNAs
were released during the initial fast phase (≤15 s) (Figure 6A; quantification not shown). We
also investigated the rearrangement/release kinetics under ATP omission conditions (only
CTP/GTP/UTP added, which should restrict pRNA synthesis to 8-mers) to examine if the
C44/45 mutant RNA might be more efficient in RNA release from RNAP, as suggested by
the pRNA transcription pattern (Figure 4B,C). As expected from previous results [12], stable
6S-1 RNA:pRNA complexes could not be resolved in gel shift assays upon ATP omission
(Figure 6B). The decay of 6S-1 RNA:RNAP complexes was very slow and essentially lacked
an initial fast phase of release with both RNA variants (Figure 6C), suggesting that fast
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release requires the synthesis of pRNAs > 8-mers. The C44/45 mutant RNA showed a trend
toward somewhat faster release and lower endpoint relative to wt 6S-1 RNA (Figure 6C).
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Figure 3. σA-RNAP affinity of 6S-1 RNA A50 mutants and pRNA transcription pattern of the A50U
mutant RNA. (A–C) σA-RNAP affinity of mutant RNAs (A) A50U, (B) A50C and (C) A50G relative
to wt 6S-1 RNA, measured by gel shift assay using the native σA-RNAP. The calculated Kd values (fit
to a one ligand binding site model) are indicated within each graph; data points in graphs A-C were
based on three independent experiments each (error bars, SEM). (D) pRNA transcription using the
wt (lane 5) and A50U mutant (lane 6) 6S-1 RNA as template, performed as in Figure 2D. Lanes 1 and
2, 5′-32P-end-labeled synthetic 6S-1 pRNA 8-mer (lane 1) and 14-mer (lane 2); lanes 3 and 4, controls
lacking either 6S RNA (lane 3) or enzyme (lane 4). For details, see Materials and Methods. These
experiments were conducted with the native σA-RNAP.
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Figure 4. σA-RNAP binding affinity and pRNA transcription pattern for the wt and C44/45 mutant
6S-1 RNAs. (A) Binding affinity of mutant C44/45 (see Figure 1) and wt 6S-1 RNA to native σA-RNAP;
Kd values, determined as in Figure 3A–C, are indicated within the graph. (B) pRNA transcription for
1 h at 37 ◦C using the wt (lanes 4–6) or C44/45 mutant (lanes 7 and 8) 6S-1 RNA as template (2 µM),
σA-RNAP (0.41 µM) prepared from strain SG7, 270 µM each NTP (lanes 3–5, 7), or 270 µM CTP, UTP
and GTP (lanes 6 and 8), and 250,000 c.p.m of [α-32P]-UTP per lane. Lanes 1 and 2, 5′-32P-end-labeled
synthetic 6S-1 pRNA 8-mer (lane 1) and 14-mer (lane 2) used as size markers; lanes 3 and 4, controls
lacking 6S RNA (lane 3) or enzyme (lane 4); dots indicate the increased abundance of mainly pRNA
11- and 12-mers in lane 7 vs. 5. The observation of pRNAs longer than 8-mers in the absence of ATP
indicates non-templated product extension or misincorporation of NTPs other than ATP. For details,
see Materials and Methods. (C) pRNA transcription for 1 h 37 ◦C on wt or C44/45 mutant 6S-1 RNA
(2 µM) using the native σA-RNAP (1 µM), 200 µM each NTP, and 250,000 c.p.m of [α-32P]-UTP per
lane. For more details, see Materials and Methods.
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Figure 5. NTP concentration dependence of pRNA synthesis as well as 6S-1 RNA rearrangement
and release, analyzed by gel shift assay (7.5% native PAGE). Lane 1, 6S-1 RNA (10 nM 6S-1 RNA);
lane 2, as lane 1 plus 2 µM native σA-RNAP; lanes 3–17, as lane 2, but followed by adjustment to the
indicated NTP concentration and withdrawal of aliquots at 15 s, 1 min, and 2 min post-NTP addition.
For further details, see Materials and Methods.

For better handling of manual kinetics, we reduced the concentration for each of the
four NTPs from 100 to 50 µM each. Comparisons of the release (complex decay) kinetics
of wt and C44/45 mutant 6S-1 RNA yet provided no evidence for differences between
the two (Figure 7). To accentuate the differences between wt and C44/45 mutant 6S-1
RNAs, we designed RNA variant 8M (8 mutations in P2) in the wt and C44/45 context
(Figure 8A). Beforehand, we observed that major sequence changes in P2 adjacent to the
CB (6S-1 RNA mutants UUUUswap and P2swap) had no or very minor effects (<two-fold)
on ground state binding (Figure S2). The rationale for constructing the 8M mutant RNA
was to change the pRNA-coding sequence such that pRNA 11-mers are transcribed in the
absence of ATP (versus 8-mers in the case of wt RNA); the generated 11-mer:6S-1 8M RNA
duplexes were predicted to have a ∆G of −20.7 kcal/mol (Figure 8A), thus close to the
stability of the duplex formed between wt 6S-1 RNA and complementary pRNA 14-mers
(∆G = −22.4 kcal/mol; Figure 1B). With the 8M design, we speculated we would see a
more pronounced advantage of the C44/45 8M vs. wt 8M variant to undergo the structural
rearrangement in the presence of such shorter pRNA:6S-1 RNA hybrids. As a side effect, the
8M mutations slightly stabilized helix P2 (predicted ∆G = −13 vs. −9.2 kcal/mol for the wt
RNA; Figure 8A). Again, σA-RNAP affinity was ~1.5-fold lower for the C44/45 8M relative
to the wt 8M RNA (Figure 8B), but pRNA transcription patterns were essentially identical
(Figure 8C). The 8M variants now formed gel-resolvable 6S:pRNA 11-mer complexes under
ATP omission conditions (Figure 9A). However, when we analyzed the 6S RNA release
kinetics, we observed a much lower fraction of released 6S RNA at the endpoint for variant
wt 8M (52%) relative to variant C44/45 8M (82%; Figure 8D). RNAfold analysis then
provided an explanation for this unexpected finding: in variant C44/45 8M, formation
of the CBCH is favored upon disruption of helix P2 during pRNA synthesis, whereas a
hairpin structure forming in the 3’-CB, made possible by the 8M mutations, is favored in
the case of the wt 8M RNA (Figure 8A, bottom structures). This finding indicates that an
extra hairpin, whenever it forms in the 3’-CB, acts as an impediment to the release from
σA-RNAP upon pRNA synthesis.
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Figure 6. pRNA-induced rearrangement and release of wt and C44/45 mutant 6S-1 RNA upon
addition of (A) all four NTPs or (B) CTP/GTP/UTP only. Each NTP had a final concentration of
100 µM. (A) Lanes 1 and 8, 5′-32P-labeled 6S-1 RNA only; lanes 2 and 9, 6S-1 RNA incubated with
2 µM SG7 σA-RNAP; lanes 3–7 and 10–14, as lanes 2 and 9, but followed by addition of NTPs and
withdrawal of aliquots at the indicated time points. (B) As in panel A, but addition of CTP/GTP/UTP
only (-ATP) in lanes 3–7 and 10–14. (C) Kinetics of wt and C44/45 6S-1 RNA release from σA-RNAP
upon pRNA-induced 6S-1 RNA refolding in the presence of CTP/GTP/UTP only; based on two
independent experiments including the one shown in panel B (error bars, SEM). The data was fit to
an equation for a single exponential with offset, yielding rate constants k of 0.3 ± 0.03 min−1 (wt)
and 0.35 ± 0.04 min−1 (C44/45) and offsets (= endpoints representing release-resistant complexes) of
0.48 ± 0.01 (wt) and 0.39 ± 0.02 min−1 (C44/45). For further details, see Section 2.7.
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Figure 7. Kinetics of wt and C44/45 6S-1 RNA release from σA-RNAP (= complex decay) upon
pRNA-induced 6S-1 RNA refolding. The setup was the same as in Figure 6A but conducted with only
50 µM of each NTP. The data was fit to an equation for a double exponential curve with offset. The rate
constant k1 for the fast phase was calculated as 8.4 ± 0.02 min−1 (wt) and 7.2 ± 1.6 min−1 (C44/45)
that for the slow phase (k2) as 0.19 min−1 (wt) and 0.17 ± 0.04 min−1 (C44/45); the release-resistant
complex fraction (at the endpoint) was 0.21 (wt) and 0.22 (C44/45). For details, see Section 2.7.

To avoid formation of this extra hairpin, we constructed variant 6M by reverting C151
and U153 in variant 8M back to U and A residues, respectively (Figure 10A). This slightly
reduced the predicted stability of helix P2 from ∆G = −9.2 (wt 6S-1 RNA) to −7.3 kcal/mol.
As a consequence, RNAfold dot plot analysis now predicted formation of the CBCH
instead of P2 already in the free C44/45 6M mutant RNA, but not in the wt 6M RNA.
As before, we compared σA-RNAP affinity of the variants wt 6M and C44/45 6M, again
showing an almost three-fold reduction in RNAP affinity owing to the C44/45 mutations
(Figure 10B). In the pRNA transcription pattern, 11-mers were prominent under ATP
omission conditions, although non-templated 12 to 14-mers appeared as well (Figure 10C,
lanes 6 and 8), somewhat more pronounced than in the case of the 8M variants (Figure 8C).
Remarkably, the release extent and kinetics were now clearly increased for the 6M mutant in
the C44/45 vs. wt background (Figure 10D). Furthermore, the rearranged 6S-1 RNA:pRNA
hybrids formed by the 6M variants appeared as more distinct bands on native gels than the
8M mutants (cf. Figure 9A,B), suggesting that a weaker P2 helix formation potential has a
stabilizing effect on the 6S-1 RNA:pRNA hybrid structures.

Finally, we again slightly reinforced helix P2 by reverting A32 to U to restore one
internal base pair (variants 5M; Figure 11A; predicted P2 stability: −11.4 vs. −9.2 kcal/mol
for the wt RNA). As a consequence, 8-mers were the major pRNA species expected under
ATP omission conditions (Figure 11A), although 9 to 11-mers appeared as well (Figure 11C,
lanes 7–10; see also Figure S3). These pRNAs formed gel-resolvable complexes with the 5M
variants (Figure 9C). For unknown reasons, the 5M design caused a particularly pronounced
deterioration of RNAP binding in the C44/45 relative to wt background (Figure 11B).
Regarding extent and kinetics of release (complex decay), the wt 5M variant became
slightly faster in the slow phase than the C44/45 5M variant (k2 = 0.45 vs. 0.36 min−1),
but still formed more release-resistant complexes than the C44/45 5M RNA (0.31 vs. 0.19;
Figure 11D).
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Figure 8. Characterization of wt 8M and C44/45 8M 6S-1 RNAs. (A) Secondary structure of the two
6S-1 RNA variants in the free state (top) and after the structural rearrangement (bottom) induced by
pRNA transcription. The eight mutations (8M) are highlighted in red, the C44/45 mutations in magenta.
In the sketches of the rearranged structures (bottom), the favored structures based on RNAfold dot plot
analysis are shown. The first A residue in the pRNA sequence is marked by a circle. The ∆G of the
6S-1 8M RNA:pRNA 11-mer hybrid helix is predicted as −20.7 kcal/mol (RNAfold), compared with
−22.4 for a pRNA 14-mer annealed to wt 6S-1 RNA (Figure 1B). (B) σA-RNAP binding affinity of the
two 6S-1 RNA variants. K1/2 gives the σA-RNAP concentration at half-maximal saturation. The curves
are approximating curves (B-spline of order 3; data point errors, SEM). (C) pRNA transcription by SG7
σA-RNAP (0.45 µM) using either wt 8M or C44/45 8M RNA (1.06 µM) as template, and in the presence
of all four NTPs (each 200 µM) or with CTP, GTP, and UTP (each 200 µM) but lacking ATP, as indicated
above lanes 5–8. Lanes 1 and 2, pRNA 8- and 14-mer markers; lanes 3 and 4, controls lacking either 6S
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RNA (lane 3) or enzyme (lane 4). These experiments were conducted with SG7 σA-RNAP. (D) Kinetics of
pRNA-induced complex decay for wt 8M or C44/45 8M RNAs using SG7 σA-RNAP (2 µM) and 100 µM
each CTP, GTP and UTP (see Section 2.7 for details); under these conditions, mainly pRNA 11-mers were
synthesized based on the results shown in panel C. Data evaluation was performed as described in the
legend to Figure 7 and in Section 2.7. The rate constants k1 for the fast phase could not be stably predicted,
those for the slow phase (k2) were 0.78 ± 0.12 min−1 (wt 8M) and 0.72 ± 0.08 min−1 (C44/45 8M), the
release-resistant complex fractions were 0.48 (wt 8M) and 0.18 (C44/45 8M).
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Figure 9. pRNA-induced rearrangement of 6S-1 RNA variants (A) wt and C44/45 8M, (B) wt and
C44/45 6M, and (C) wt and C44/45 5M, using 5′-32P-end-labeled 6S-1 RNA, 2 µM SG7 σA-RNAP,
and 100 µM each CTP, GTP, UTP, analyzed by 7.5% native PAGE. For details, see Section 2.7.
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illustration exactly as in Figure 8A. The six mutations (6M) relative to the wt RNA are highlighted 
in red. (B) σA-RNAP binding affinity for 6S-1 RNA variants wt 6M and C44/45 6M; for more details, 
see legend to Figure 8B. (C) pRNA transcription by SG7 σA-RNAP using the two 6S-1 mutant RNAs 
as templates, as detailed in the legend to Figure 8C. (D) Kinetics of pRNA-induced complex decay 
of wt 6M or C44/45 6M RNAs using SG7 σA-RNAP (2.6 µM) and 100 µM each CTP, GTP, and UTP. 
The data were fit to an equation for a double exponential curve with offset. The rate constants k1 for 
the fast phase could not be stably predicted, those for slow phase (k2) were 0.12 ± 0.02 min−1 (wt 6M) 
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Figure 10. Characterization of 6S-1 RNA variants wt 6M and C44/45 6M (A) Secondary structure
illustration exactly as in Figure 8A. The six mutations (6M) relative to the wt RNA are highlighted in
red. (B) σA-RNAP binding affinity for 6S-1 RNA variants wt 6M and C44/45 6M; for more details,
see legend to Figure 8B. (C) pRNA transcription by SG7 σA-RNAP using the two 6S-1 mutant RNAs
as templates, as detailed in the legend to Figure 8C. (D) Kinetics of pRNA-induced complex decay of
wt 6M or C44/45 6M RNAs using SG7 σA-RNAP (2.6 µM) and 100 µM each CTP, GTP, and UTP. The
data were fit to an equation for a double exponential curve with offset. The rate constants k1 for the
fast phase could not be stably predicted, those for the slow phase (k2) were 0.12 ± 0.02 min−1 (wt
6M) and 0.21 ± 0.01 min−1 (C44/45 6M), the release-resistant complex fractions were 0.18 (wt 6M)
and 0.13 (C44/45 6M).
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Figure 11. Characterization of 6S-1 RNA variants wt 5M and C44/45 5M (A) Secondary structure
illustration exactly as in Figure 8A. The five mutations (5M) relative to the wt RNA are highlighted
in red. (B) σA-RNAP binding affinity for 6S-1 RNA variants wt 5M and C44/45 5M. The lines are
spline curves; K1/2 values were not calculated, as σA-RNAP titrations for variant C44/45 5M did not
reach saturation. For more details, see legend to Figure 8B. (C) pRNA transcription by SG7 σA-RNAP
using the two 6S-1 mutant RNAs as templates, as detailed in the legend to Figure 8C. The difference
between lanes 7/8 and 9/10 is the use of 1 µM (lanes 7 and 9) or 2 µM (lanes 8 and 10) enzyme. In
lane 7, the total amount of radioactivity was lower than in lanes 8–10, affecting the intensity of all
transcription products. (D) Kinetics of pRNA-induced decay of 6S-1 RNA:RNAP complexes for wt
5M or C44/45 5M RNAs using SG7 σA-RNAP (2 µM) and 100 µM each CTP, GTP, and UTP. The data
were fit to an equation for a double exponential curve with offset. The rate constants k1 for the fast
phase could not be stably predicted, those for the slow phase (k2) were 0.45 ± 0.06 min−1 (wt 5M)
and 0.36 ± 0.01 min−1 (C44/45 5M), the release-resistant complex fractions were 0.31 (wt 5M) and
0.19 (C44/45 5M).
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3.3. 6S-1 RNA Refolding and Disruption of the Complex with RNAP Can Be Induced by a Stably
Bound Oligonucleotide Hexamer

We previously showed that an iso-sequential analog of a pRNA 8-mer that consists
of locked nucleic acid (LNA) residues stably binds to 6S-1 RNA and retards the RNA’s
mobility in native PAA gels to a very similar extent as a pRNA 14-mer [12]. Here we
addressed the question of whether even iso-sequential pLNA oligonucleotides shorter
than 8 nt might be able to induce 6S-1 RNA refolding such that complex formation with
σA-RNAP is disrupted/prevented. For this purpose, we annealed chemically synthesized
pLNA 6-, 7- and 8-mers to radiolabeled 6S-1 RNA, and analyzed their mobilities by native
PAGE. The complex of 6S-1 RNA with the pLNA 8-mer migrated almost as fast as the
complex with the pRNA 14-mer used as reference (Figure 12, lines 7 and 8). Gel mobility
incrementally decreased for complexes with the pLNA 7-mer and 6-mer (lanes 5 and
6), but the 6S-1:pLNA 6-mer complex still migrated substantially slower than free 6S-1
RNA (Figure 12, cf. lanes 1 and 5 with lanes 9 and 10). As the complex with the pRNA
14-mer, all three 6S-1:pLNA complexes prevented 6S-1 RNA binding to σA-RNAP (cf.
lanes 1–4 and lane 9). Our findings demonstrate that already stable binding of a 6-meric
pRNA mimic constrains or compacts the 6S-1 RNA conformation to an extent that impedes
σA-RNAP binding.
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Figure 12. Effect of pLNA/pRNA length on 6S-1 RNA structure analyzed by 10% native PAGE.
Annealing of pLNA 6-, 7- or 8-mers, or a pRNA 14-mer, to 5′-32P-labeled 6S-1 RNA either without
(lanes 5–8) or with native σA-RNAP (lanes 1–4); σA-RNAP was added after pLNA/pRNA annealing
to 6S-1 RNA, followed by incubation for 30 min at 37 ◦C before gel loading. For more details, see
Section 2.10.

3.4. Atomic Force Microscopy Analysis of Free 6S-1 and 6S-1:pLNA Complexes

We further employed atomic force microscopy (AFM) to study the shape of free 6S-1
RNA in comparison with complexes annealed to a pLNA 8-mer or 14-mer (Figure 13A,B).
Particularly for pRNA 8-mers the use of all-LNA versions was essential to prevent dissocia-
tion of annealing complexes within the time frame of the experiment [12]. As a measure for
the compactness and possibly for the bend of each 6S RNA molecule, an ellipse was fitted
around the detected particle and the ratio of its long and short axis was used for shape esti-
mation (Figure 13C). The AFM particle analysis showed a significant (p = 2.2 × 10−16, one
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tailed Welch Two Sample t-test) increase in compactness for 6S-1 RNA:pLNA complexes
relative to free 6S-1 RNA (Figure 13D). For details on data recording and evaluation, see
Materials and Methods.

1 
 

 

Figure 13. Atomic Force Microscopy (AFM) of B. subtilis 6S-1 RNA. (A) Raw image (1 × 1 µm area)
of 6S-1 RNA molecules spread on a mica surface (for details, see Section 2.11). (B) Enlarged image
section after image processing with contours of individual molecules encircled by an ellipse. (C)
Magnified visualization of three encircled example molecules (magnification of the area marked
by the white frame in panel B) next to a cartoon of ellipse evaluation. For more individual images
considered to be representative based on visual inspection, see Figure S4. (D) Boxplots displaying
the ratio of long to short axis of ellipses (a value of 1 corresponds to a perfect cycle) for 6S-1 RNA
alone or annealed to a pLNA 8- or 14-mer; all residues were locked nucleic acid (LNA) analogs. (E,F)
RNAComposer 3D approximations of 6S-1 RNA in (E) its native conformation (as in Figure 1A with
unstructured 5’-CB) and (F) in its rearranged structure (Figure 1B with extended CBCH) in complex
with a pRNA 14-mer. The model for 6S-1 RNA alone is illustrated in two perspectives and that for
the 6S-1 RNA:pRNA complex in three perspectives. The secondary structural elements in panels E
and F are indicated according to Figure 1; p14, pRNA 14-mer. The distance between the P atom of
6S-1 RNA residue U94 in the apical loop and the 3’-oxygen of the last nucleotide (U190) is depicted
as well. For the 2D structure annotations used as templates for RNAcomposer, see Figure S5.
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4. Discussion

The B. subtilis 6S-1 RNA truncation variant 6S78 and 6S82cp with length reductions of
almost 60% still showed hallmarks of 6S RNAs, that is, served as template for transcription
of pRNAs including 14-mers to form 6S RNA:pRNA hybrid structures that trigger 6S RNA
release from σA-RNAP (Figure 2E). The truncations caused a ~10-fold decrease in affinity
that may be due to the loss of contacts in the apical stem region where a −35-like contact
region to the highly conserved domain 4 of σ70/σA-like sigma factors was identified in
the E. coli system [14]. However, in the E. coli system, already truncation of the distal part
of the apical stem (deletion of the apical loop plus approx. P6/P5; Figure 1A) completely
abolished gel-resolvable binding to σA-RNAP [15]. We conclude that the −35 region is
more crucial for E. coli 6S RNA interaction with σ70-RNAP than for binding of B. subtilis
6S-1 RNA to σA-RNAP. Despite the affinity reduction of variants 6S78 and 6S82cp, our results
demonstrate that the CB region and its adjacent short helices include all elements required
for basic 6S-1 RNA function. Thus, the native length of the helical arms is not essential for
the pRNA-induced disruption of 6S RNA:σA-RNAP complexes.

Previous investigations in the E. coli system focused on the ‘−10’-like region of the 3’-
CB [14–16]. Six tested single mutations at positions 131 to 136 in the 3’-CB of E. coli 6S RNA
(see Figure S1A) had no or minor effects (~35% affinity reduction) on ground state binding
to the σ70-RNAP enzyme, of which one (C132A) caused a release defect and another one
(U134A) accelerated the release rate [15]. The lack of a binding defect upon mutation of
A131, U135, and G136 was confirmed in another study [14]. As nucleotides 132 to 136 form
base pairs in the 3’-CB hairpin in E. coli 6S RNA:pRNA hybrid structures (see Figure S1A),
the just mentioned findings suggest a primary role of these nucleotides in the 6S RNA
release mechanism during pRNA synthesis. For B. subtilis 6S-1 RNA [12], we observed a
two- to three-fold lower affinity for a triple mutant of 6S-1 RNA (C136A/G145U/C146A)
that is unable to form the 3’-CB hairpin. We also provided evidence that the triple mutant
is conformationally more flexible than the native 6S-1 RNA [12]. So, it seems that the
3’-CB hairpin of B. subtilis 6S-1 RNA, predicted by RNAfold to stably form already in the
free RNA, is either involved in ground state binding to σA-RNAP or indirectly supports
the interaction of other RNA elements with the holoenzyme. We conclude that the 3’-
CB interaction with RNAP differs in Enterobacteriaceae such as E. coli compared with B.
subtilis and related Firmicutes. This leads to questions regarding the extent to which the
5’-CB contributes to interactions with RNAP. Unfortunately, residues of the 5’-CB were
not resolved in the E. coli cryo-EM structure [14] and ground state binding data are not
available for E. coli 6S RNA variants with mutations in the 5’-CB. Two mutations upstream
of the TSS (U44) in the 5’-CB of E. coli 6S RNA, namely A52U and A50U, were tested
for pRNA-induced release from σ70-RNAP [30]. While the A52U variant had no effect
on the release rate, the A50U mutant released 2.5-fold slower than the parental 6S RNA.
Surprisingly, A50U and A52U in combination were able to rescue the release defect caused
by a U44A mutation at the TSS, a finding as yet not understood [30]. For B. subtilis 6S-1
RNA, we saw clear binding defects upon mutation of A50 to U, C, or G and U44/45 to
C44/45 upstream of the pRNA TSS (C40), consistent with base-specific direct contacts
to the enzyme in this part of the 5’-CB. At present, it can also not be excluded that the
C44/45 double mutation more indirectly reduced binding affinity through shifting the
conformational equilibrium of unbound 6S-1 RNA toward conformers forming the CBCH
instead of helix P2. It is noteworthy that two other 6S-1 RNA mutations in the 5’-CB, U47A,
and U53A had no effect on ground state binding (Figure S2), indicating that not all base
identities in the 5’-CB are crucial for interaction with σA-RNAP.

Stabilization of the CBCH by introducing the C44/45 double mutation that replaced
two G:U with G:C pairs (Figure 1) increased the fraction of shorter pRNA in vitro transcripts
(11/12-mers; Figure 4B,C), consistent with the notion that the CBCH lowers the activation
barrier for pRNA-induced 6S-1 RNA refolding, to an extent depending on its relative
stability and probability of formation. In our experimental setup, the kinetics of pRNA-
induced 6S-1 RNA release from σA-RNAP (complex decay) remained indistinguishable
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between the wt and C44/45 mutant RNA upon pRNA synthesis in the presence of all four
NTPs (Figure 7). To further carve out differences between the two, we introduced the 8M,
6M, and 5M mutations into helix P2 of the wt and C44/45 6S-1 RNAs. This was conceived
to adjust pRNA synthesis under ATP omission conditions to length species of 11 (8M, 6M)
or 8 (5M) nucleotides and to compensate this length reduction by increasing the proportion
of G:C pairs in 6S-1 RNA:pRNA hybrids. The 8M variants indeed gave rise to the synthesis
of pRNA 11-mers under ATP omission conditions (Figure 8C) and to formation of gel-
resolvable 6S-1 RNA:pRNA complexes (Figure 9A). The 6S-1 RNA:pRNA hybrid RNA
appeared as more distinct bands in the C44/45 relative to the wt background, in line with
the stabilizing effect of the CBCH (Figure 9A, cf. right and left gel image). Surprisingly,
an enlarged fraction of release-resistant 6S-1 RNA:σA-RNAP complexes was observed in
the wt background (Figure 8D). This can be explained by pRNA-induced formation of a
second small hairpin in the 3’-CB that is energetically favored in the wt background, but
not in the C44/45 context that favors formation of the CBCH (Figure 8A). Formation of the
extra hairpin in the 3’-CB may inhibit a conformational change in RNAP that is required for
enzyme release, may induce a release-resistant RNAP conformation, or might tighten the
6S-1 RNA:σA-RNAP interaction, thereby locking the complex in a high affinity state. With
the 6M variant, we prevented formation of the artificial 3’-CB hairpin and also destabilized
helix P2. With the wt and C44/45 6M variants, 6S-1 RNA:pRNA hybrids now appeared
as sharp bands with identical mobility in native gels (Figure 9B). The 6M variants gave
rise to primarily pRNA 11-mers, but appeared somewhat more permissive than the 8M
variant to the synthesis of longer pRNAs despite the omission of ATP (Figure 10C). Here,
the release process was faster and more complete in the C44/45 versus wt background
(Figure 10D). Again, as for the 8M variants, these findings are in line with the support
function of the CBCH in the release process. It cannot be completely ruled out that the 2-
to 3-fold decreased ground state binding affinity of the C44/45 6M mutant relative to the
wt 6M variant might have contributed to its more efficient release from RNAP. We have
attempted to marginalize this possibility by analyzing 6S-1 RNA release in the presence of
σA-RNAP concentrations considerably above the Kd for the C44/45 mutant RNA.

Abortive pRNA transcription results from RNAP scrunching, where the enzyme
remains stationary on the template but reels in RNA downstream of the TSS, thereby threads
the template RNA strand through the active site for pRNA synthesis. Panchapakesan and
Unrau [16] devised a model according to which formation of the extended 3’-CB hairpin
upon pRNA synthesis on E. coli 6S RNA accumulates additional strain during scrunching,
explaining why σ70 ejection occurs at a pRNA length of 9 nt on the wt RNA but increases
to 14 nt when the hairpin is disrupted. Our observation of a shift to shorter pRNAs
with the C44/45 mutant RNA (Figure 4B,C) would be in line with the stabilized CBCH
increasing strain during scrunching as well. The 3’-CB hairpin of 6S-1 RNA may also add
strain during scrunching, as our 6S-1 triple mutation (C136A/G145U/C146A) that disrupts
hairpin formation caused a shift to longer pRNAs including runoff-like transcripts [12].
Increased proportions of runoff-like pRNAs were also observed in vivo for B. subtilis 6S-2
RNA [31], which is less structured than 6S-1 RNA in the CB [13]. Thus, scrunching of
RNAP holoenzymes and refolding of 6S RNA during pRNA synthesis are likely intertwined
components of the release mechanism. A related issue is the pRNA length at which σA/70-
RNAP switches to the elongation mode. For DNA promoters, promoter escape has been
reported to occur at transcript lengths of 9–15 nt [32,33]. For E. coli 6S RNA:σ70-RNAP
complexes, σ70 ejection, and by inference entry into the elongation mode, was observed
upon synthesis of pRNA 9-mers followed by dissociation of core RNAP:6S RNA complexes
at a pRNA length of 13 nt [16]. Assuming a similar length requirement for σA-RNAP:6S-1
RNA complexes to enter the elongation mode associated with σA ejection, then our 5M
variants may be revealing, since pRNA 8-mers were the main products under ATP omission
conditions (Figures 11D and S3). Here, the fast phase of complex decay was almost lacking
(Figure 11D). Likewise, the fast phase of complex decay was absent in the release kinetics for
wt and C44/45 6S-1 RNAs under ATP omission conditions, limiting pRNA transcription
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to mainly 8-mers as well (Figure 6C). Although still speculative at present, this could
mean that the transition to the elongation mode of RNAP has become rate-limiting for fast
release in the case of wt, C44/45, wt 5M, and C44/45 5M 6S-1 RNAs under ATP omission
conditions that prevent or largely decelerate the synthesis of pRNAs longer than 8-mers.

Another observation of this study is the extension of pRNAs under ATP omission
conditions, despite the restriction of templated pRNAs to a length of 11 (variants 8M
and 6M) or 8 (5M) nucleotides. These extensions may be due to NTP misincorporation,
non-templated addition of NTPs, or utilization of alternative TSSs.

We demonstrated here that already stable binding of a hexameric pLNA mimic sub-
stantially retards gel mobility of 6S-1 RNA and alters its structure to an extent that is
incompatible with σA-RNAP binding. In native gels, elongated/extended/rod-shaped
RNAs migrate faster than branched molecules [34]. A 6-bp helix apparently constricts
conformational flexibility in the 5’-CB to an extent that disfavors formation of an elongated
structure as adopted by free 6S-1 RNA. We previously showed for A. aeolicus 6S RNA
that essentially the same gel mobility shift is obtained by annealing a pRNA 15-mer to
nucleotides in the 5’-CB/5’-P2 strand compared with an artificial ‘pRNA’ 15-mer annealing
to the opposite part of the CB, namely the 3’-strand of P2 and nucleotides in the 3’-CB [22].
This observation indicates that constricting conformational flexibility by duplex formation
involving nucleotides of the 3’- or 5’-CB prevents formation of a more elongated 6S RNA
structure. Thus, the latter feature seems to be the reason for the observed gel shifts, rather
than formation of a specific 6S RNA:pRNA hybrid structure. Increased deviation from
an elongated, rod-shaped structure when a pRNA is stably bound was quantitatively
ascertained in our AFM particle shape analyses (Figure 13) and also qualitatively evident
upon visual inspection of individual molecule shapes (Figure S4). Upon annealing of the
pLNA 8- and 14-mers, increasingly bent, thicker, and shorter molecules appeared (often
with three protuberances of about equal length) while slim elongated molecules seemed
to be more abundant in images of free 6S-1 RNA (Figure S4). This would be in line with
the RNAcomposer 3D predictions shown for free 6S-1 RNA and 6S-1 RNA:pRNA 14-mer
complexes in Figure 13E,F, the latter predicted to adopt a more compact shape. Of course,
the RNAcomposer predictions should be taken as reasonable yet approximate estimates of
6S-1 RNA folds, with a speculative level of structural detail. We are also aware that some
subjective interpretations of individual AFM images (Figure S4) are at risk of overstraining
the resolution power of AFM images.

Remarkably, A. aeolicus 6S RNA with the artificial ‘pRNA’ 15-mer bound to 3’-P2/3’-
CB was inefficient in preventing complex formation with σA-RNAP and rather formed
aberrantly migrating complexes with the enzyme in native PAA gels [22]. Thus, constriction
of conformational flexibility in the CB may be one component of the 6S-1 RNA release
mechanism, but other mechanistic components may be required as well. Conceivably,
duplex formation with pRNA in the 5’-CB/5’-P2 region may specifically disrupt nearby
enzyme contacts to 5’-CB nucleotides upstream of the TSS, possibly including A50 and
U44/45 whose mutation was shown here to weaken ground state binding to the enzyme.
If so, formation of the CBCH may support disruption of such contacts involving A50 and
U44/45, as those residues are part of the CBCH.

In addition to the pleiotropic and complex phenotypes of the C44/45, 8M, 6M, and
5M mutant RNAs, the sensitivity of 6S-1 RNA function to certain mutations (A50B, C44/45,
C136A/G145U/C146A [12]) in the CB region supports the view that the 6S-1 RNA wt
sequence and structure, particularly in the CB region, provide an optimal balance of all
molecular features that are relevant to the different steps of the RNA’s mechanistic cycle,
which includes 6S-1 RNA:σA-RNAP ground state binding affinity, coordination of RNAP
scrunching, enzyme switch to the elongation mode, pRNA transcript length, conformational
constriction/refolding of 6S-1 RNA, and release of 6S-1 RNA:pRNA hybrids from RNAP.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ncrna8010020/s1, Figure S1: The pRNA-induced structural
transition of E. coli 6S RNA and sequence identity between E. coli 6S RNA and B. subtilis 6S-1 RNA;
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Figure S2: Binding affinity of σA-RNAP to 6S-1 RNA wt and other mutant RNAs; Figure S3: pRNA
transcription by SG7 σA-RNAP using 6S RNAs wt 5M and C44/45 5M as templates; Figure S4:
Example AFM images of free 6S-1 RNA and 6S-1 RNA complexes with pLNA 8- and 14-mers; Figure
S5: Secondary structure dot-bracket notation of free 6S-1 RNA and the 6S-1 RNA:pRNA 14-mer
complex used as input for 3D predictions by RNA composer.
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