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Abstract

With the rapid and unprecedented growth of digital images, the need for effective image

similarity search systems has become more important than ever. The application scenarios for

image similarity search are numerous, ranging from e-commerce (where it enables customers

to find products through image queries), over healthcare (where it supports diagnosis by

comparing medical images), to digital archiving (where it helps to organize and access large

volumes of visual data). Furthermore, there has been tremendous progress in the field of image

segmentation in recent years, suggesting that image similarity search could possibly benefit

from image segmentation.

This thesis provides contributions to two primary research areas: (1) detection and segmentation,

and (2) image similarity search.

Two approaches are presented in the area of detection and segmentation: (a) a novel deep

learning based workflow for automatic detection, alignment, and recognition of textual stamps

on digitized index cards; (b) a novel cell segmentation approach for fluorescence microscopy

images of morphologically complex eukaryotic cells.

In the area of image similarity search, we propose a novel approach to better understand

the user’s search intent. Moreover, we present a novel two-stage approach based on multi-

index hashing to integrate deep hashing into Elasticsearch with query times comparable to

state-of-the-art similarity search methods.

An important contribution of the thesis is a novel approach that combines insights from both

domains into segmentation-based image similarity search, proposing the use of segmented

images to enable querying image databases for specific regions within images. A novel versatile

region-based similarity search approach for images couples two foundation models and enables

users to utilize point, box, and text prompts to search for similar regions.

Finally, the thesis explores the practical implementation of image similarity search in different

application domains. Real-world systems for analyzing large-scale image and video data

benefit substantially from image similarity search, and image similarity search accelerates data

acquisition and labeling when iteratively training specialized deep learning models.
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Deutsche Kurzfassung

Mit dem rasanten und beispiellosen Anstieg der Anzahl digitaler Bilder ist der Bedarf an effek-

tiven Bildähnlichkeitssuchsystemen wichtiger denn je geworden. Die Anwendungsszenarien für

die Bildähnlichkeitssuche sind zahlreich und reichen vom elektronischenHandel (wo sie Kunden

ermöglicht, Produkte durch Bildabfragen zu finden) über das Gesundheitswesen (wo sie Diag-

nosen durch den Vergleich medizinischer Bilder unterstützt) bis hin zur digitalen Archivierung

(wo sie hilft, große Mengen visueller Daten zu organisieren und zu erschließen). Darüber hin-

aus wurden in den letzten Jahren enorme Fortschritte auf dem Gebiet der Bildsegmentierung

erzielt, was darauf hindeutet, dass Bildähnlichkeitssuche von der Bildsegmentierung profitieren

könnte.

Diese Arbeit liefert Beiträge in zwei primären Forschungsbereichen: (1) Detektion und Segmen-

tierung von Objekten in Bildern und (2) Bildähnlichkeitssuche.

Im Bereich der Detektion und Segmentierung von Objekten in Bildern werden zwei Ansätze

vorgestellt: (a) ein neuartiger, auf tiefen neuronalen Netzen basierender Workflow zur automa-

tischen Erkennung, Ausrichtung und Erkennung von textuellen Stempeln auf digitalisierten

Karteikarten; (b) ein neuartiger Zellsegmentierungsansatz für fluoreszenzmikroskopische Bilder

von morphologisch komplexen eukaryotischen Zellen.

Im Bereich der Ähnlichkeitssuche von Bildern schlagen wir einen neuartigen Ansatz vor, der

dazu dient, die Suchabsicht von Nutzer*innen besser zu verstehen. Darüber hinaus stellen

wir einen neuartigen zweistufigen Ansatz vor, der auf Multi-Index Hashing basiert, um Deep

Hashing in Elasticsearch zu integrieren, wobei die Abfragezeiten mit denen von aktuellen

Ähnlichkeitssuchmethoden vergleichbar sind.

Ein wesentlicher Beitrag der Arbeit ist ein neuartiger Ansatz, der Erkenntnisse aus beiden Bere-

ichen zu einer segmentierungsbasierten Bildähnlichkeitssuche kombiniert und die Verwendung

von segmentierten Bildern zur Abfrage von Bilddatenbanken nach bestimmten Regionen inner-

halb von Bildern beinhaltet. Dieser neuartige regionenbasierte Ansatz für die Ähnlichkeitssuche

in Bildern verbindet zwei Basismodelle und ermöglicht es so Benutzer*innen, mit Hilfe von

Punkt-, Box- und Text-Prompts nach ähnlichen Regionen zu suchen.

Zuletzt wird in dieser Arbeit der praktische Einsatz der Bildähnlichkeitssuche in verschiedenen

Anwendungsdomänen untersucht. Reale Systeme zur Analyse großer Bild- und Videodaten

profitieren erheblich von der Bildähnlichkeitssuche, und die Bildähnlichkeitssuche beschleunigt

die Datenakquise und -annotation beim iterativen Training spezialisierter Modelle des tiefen

Lernens.
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1
Introduction

The need for fast and high-quality image similarity search emerges from the rapid growth of

digital imagery and the consequent need to efficiently handle and navigate through vast visual

databases. In today’s digitally driven world, where billions of images are captured and shared

daily, the ability to quickly and accurately find images that are visually similar to a given query

image is becoming increasingly necessary.

Image similarity search has many applications in different fields. In e-commerce [Ak+18], for

example, it allows customers to find products by uploading images, enhancing the shopping

experience. In digital photo management, it helps to organize and categorize large image

libraries. In healthcare, it can aid in diagnosis by allowing similar medical images to be retrieved

for comparison, helping to detect and analyze diseases [Sil+22; KRS20; Qay+17].

While image similarity search has been an area of research for a long time, only recently have

deep learning models significantly improved the retrieval quality, and data-driven indexing

approaches, such as deep hashing and product quantization, have enabled image similarity

search at scale.

1.1 Motivation

Although image similarity search is already commonly used in domains such as e-commerce

and medical imaging, it is not yet widely used in several other domains. Thus, there are

specific applications to be explored in other domains where image similarity search can make

a significant contribution. For example, in the digital humanities, where large databases of

digitized historical material are being created, image similarity search can be of great benefit.

It can help to unlock cultural heritage by making large digitized image or video databases

accessible.

Another more general area where there is great potential for image similarity search is in the

dataset creation phase of the deep learning cycle. This is especially true for problems that

require labeled training data and iterative training to improve machine learning models. Within

the deep learning cycle, image similarity search can play a key role in the data acquisition phase.

The application of image similarity search in this context primarily involves the enrichment

and refinement of training datasets. Deep learning models require large, diverse, and high-

quality datasets to learn effectively. Image similarity search can help to collect and enrich these

datasets by retrieving images that are visually similar to existing images. This helps to cover a

wider range of examples and variations, which is critical for training models to generalize well.
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Where data labeling is required, similarity search can speed up the labeling process by grouping

similar images together, making it easier and more efficient for human annotators to label

them. This improved data acquisition process can substantially contribute to the development

of more powerful deep learning models.

In addition to providing high quality retrieval results, an image similarity search system must

be efficient. Ideally, this means an immediate response to a query, but at least a timely response

in less than one second. It is often difficult to find a trade-off between search speed (usually

determined by the length of the vector representing the images) and retrieval quality, and

depends on, among other things, the size of the data set to be indexed, the available hardware

resources, and the software environment. Therefore, it is necessary to develop solutions under

specific conditions.

In addition to the semantic gap for images [Sme+00a], there exists an intentional gap in

the context of image retrieval via image similarity search. This gap refers to the discrepancy

between the query provided by the user and the user’s actual search intention. Addressing this

intentional gap is critical in improving the effectiveness of image similarity search and quality

of search results.

Traditional image similarity search or instance retrieval methods that evaluate images as a

whole and compress the whole image into a short, often binary, vector fail to capture the

subtleties within different regions of the image, leading to less accurate or relevant results.

They usually rely primarily on the use of global image features and are therefore unable to

account for the intricacies and distinct patterns within local regions of an image. This can

lead to sub-optimal search results, particularly in scenarios where specific image regions are

of interest. In instance retrieval [Che+22], for example, in addition to global features, local

descriptors are extracted, which, however, are still used on the whole image level. Furthermore,

instance retrieval is limited to instances of a particular object. In contrast, segmenting images

into smaller parts and indexing these regions can enable a more detailed search, focusing on

specific areas of interest within images. Segmentation-based image similarity search can be

particularly useful when only a specific region of an image is of interest, rather than the entire

scene.

1.2 Problem Statement

Image similarity search works by comparing features extracted from images. After selecting

a single query image, a ranked list of images similar to this query image is returned. What

similar means usually depends on the dataset and the model trained on that data, respectively.

However, this does not necessarily coincide with a user’s search intention, and there is often

a discrepancy between the returned retrieval list and a user’s expectations of what aspects

of the present query image should be considered for similarity search. A challenge in image

similarity search is therefore to bridge this gap by exploring how to better understand and

interpret the user’s underlying search intentions, which may not be explicitly conveyed by the

query image alone.

This dissertation investigates how these search intentions can be more precisely specified.

Special emphasis is placed on search scenarios where specific regions, rather than the entire
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image, are of interest. This leads to the main research question of this thesis, which is how

image similarity search can benefit from image segmentation. Since there can be potentially

many representations extracted for a segmented image, this raises further questions concerning

the efficiency of the search system that are important for segmentation-based image similarity

search. The aim of this thesis is to develop a segmentation-based image search system that

fulfills these requirements, i.e., delivers high-quality retrieval results and does this in an efficient

manner.

1.3 Contributions of this Thesis

The main contribution of this thesis is a novel approach to image similarity search based on

segmented images. Segmentation-based image similarity search covers the areas of image

similarity search on the one hand, and image segmentation on the other. Additionally, this thesis

provides contributions in both areas, segmentation and similarity search, but also in related

areas, such as content-based video retrieval and analysis, stamp detection and recognition,

concept classification, and person recognition.

The contributions of this thesis can be roughly categorized into three areas. First, contributions

in the area of object detection and segmentation in images are addressed. Following that,

advancements in the area of image similarity search are presented. Additionally, there are

contributions in several application domains.

The contributions of this thesis in different areas are as follows:

Detection and Segmentation

• An innovative approach to accelerate the production of the Lessico Etimologico Italiano

(LEI), a comprehensive historical and etymological dictionary of the Italian language

and dialects, which traditionally relied on manual lexicographic methods. The proposed

deep learning workflow for automatic detection, alignment, and recognition of textual

stamps on digitized index cards significantly streamlines the philological work involved

in processing large numbers of scanned cards.

• A novel approach for the detection and segmentation of macrophage cells in fluorescence

microscopy images, addressing challenges like crowded cell environments and morpho-

logical complexity. It involves the integration of previously learned nucleus features into

the cell detection and segmentation architecture, resulting in improved performance.

The proposed feature pyramid fusion architecture outperforms other state-of-the-art

approaches on this challenging dataset.

Image Similarity Search

• Implementation and evaluation of a similarity search method to identify new textual

stamps within the corpus of philological index cards of the Lessico Etimologico Italiano

(LEI).
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• Implementation of multi-task learning for visual concept detection and similarity search

within a single common architecture, allowing network weight sharing to reduce compu-

tation time significantly.

• Introduction of intentional image similarity search as a novel approach to image similarity

search that addresses the limitations of query-by-example in content-based image and

video retrieval by allowing users to more effectively specify their search intent for a

query image. It includes a plugin mechanism to support fine-grained neural network

models tailored to specific search tasks, a hybrid feature method that combines features

extracted from convolutional neural networks with hand-crafted features, and a deep

similarity network analysis technique to find relevant image regions and improve the

relevance of retrieved results.

• Introduction of ElasticHash, a novel approach for efficient and large-scale semantic image

similarity search in Elasticsearch. It utilizes a deep hashing model to generate hash codes

for fine-grained image similarity search in natural images. A two-stage search method

that combines multi-index hashing and terms lookup enables fast and accurate similarity

search. The first stage involves a coarse search based on short hash codes, while the

second stage re-ranks results based on Hamming distance computed on long hash codes.

• Search Anything, a novel approach for performing similarity search in images, enabling

users to use point, box, and text prompts to search for similar regions within a set of

images. By using self-supervised learning and foundation models to learn binary hash

code representations for image regions, Iit enables fine-grained region-level indexing

and searching. It automatically segments the region selected by a prompt and extracts

a binary feature vector, which is then used to query an image region index to retrieve

images containing the corresponding regions.

Applications

• Introduction of a system designed for automatic video content analysis and retrieval

within the historical collections of GDR television recordings. As a distributed, service-

oriented architecture, it incorporates various video analysis algorithms, including shot

boundary detection, concept classification, person recognition, text recognition, and

similarity search.

• Introduction of a system that includes deep learning approaches to assist professional

media production by automating content-based labeling video footage This includes the

development of specific methods for visual concept detection, similarity search, face

detection, face recognition, and face clustering, which are integrated into a multimedia

tool for efficient video inspection and retrieval with innovative visualization components.

• Introduction of VIVA, a software tool designed for building content-based video retrieval

methods using deep learning models. VIVA enables non-expert users to perform visual

information retrieval for concepts and persons within video archives and adapt themodels

to changing search requirements. It provides a novel semi-automatic data acquisition

workflow including a web crawler, image similarity search, and review and user feedback

components to reduce the time-consuming manual effort for collecting training samples.
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1.5 Open Source Software and Dataset Contributions

During the work on this thesis, the following software has been co-developed and released

under permissive open source licenses:

1. ElasticHash implementation that enables large-scale image similarity search in Elastic-

search including Tensorflow model serving and web front-end [KMF21]. Available at

https://github.com/umr-ds/ElasticHash.

2. ElasticHash Python package which builds on the Elasticsearch Python package. Available

at https://github.com/nik-ko/elastichash

3. VIVA, a web-based software tool for building content-based retrieval methods for video

archives based on deep learning models [Müh+22]. Available at https://github.com
/umr-ds/VIVA

4. Mask R-CNN implementation modified to enable feature pyramid fusion for detection

and segmentation in fluorescence microscopy images [Kor+20]. Available at https:
//github.com/umr-ds/feature_pyramid_fusion

The following publicly available datasets have been released:

• Text stamps on index cards dataset consisting of a detection dataset of 6,991 scanned

index cards, containing bounding box annotations of 6,759 stamps, and a recognition

dataset, containing 170,494 images of 4,304 different stamp classes [Kor+24]. Available at

https://github.com/umr-ds/stamp-detection-recognition

• Cell segmentation dataset of 82 2-channel fluorescence microscopy images including

more than 2,500 macrophage cells and nuclei [Kor+20]. Available at https://data.uni
-marburg.de/handle/dataumr/231

• Hashcode dataset for about 6.9 million images of the OpenImages dataset [KMF21].

Available at https://data.uni-marburg.de/handle/dataumr/233

1.6 Organization of this Thesis

This thesis is organized as follows:

Chapter 2 introduces topics fundamental to the research in this thesis. The focus is on deep

learning. In particular, convolutional neural networks (CNNs) and neural network architectures

for detection and segmentation, including foundation models, are discussed. This chapter also

provides an introduction to image similarity search and methods for efficient nearest neighbor

search.

Chapter 3 covers research in the fields of detection and segmentation. First, we present a

deep learning workflow for efficiently processing index cards, focusing on automatic detection,

alignment, and recognition of text stamps, along with an image similarity search method

for identifying new stamps. Then, we present an approach for detecting and segmenting

morphological complex cells in fluorescence microscopy images.
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Chapter 4 presents research aimed at improving image similarity search in two ways: query

time on the one hand, and retrieval quality at the other hand. Our work on intentional image

similarity search aims to improve retrieval quality according to the user’s expectations by

enabling users to specify their search intentions more precisely. In the second work, we present

an efficient and robust two-stage approach for integrating deep hashing into Elasticsearch.

Chapter 5 builds on the areas covered in Chapters 3 and 4 by presenting a novel approach that

combines segmentation and image similarity search. By not considering whole images as data

points, but by segmenting them first, this, together with region prompts, allows a finer grained

image similarity search at the level of image regions.

Chapter 6 presents three content-based image retrieval systems. In each of these systems, the

use of image similarity search is an important component. The first system is dedicated to

making the heritage of GDR television accessible. The second system is a multimedia tool for

rapid video inspection and retrieval to support media production. The third system allows

non-expert users to train and apply deep learning models on a corpus of videos, including the

creation of new concepts to be searched for. Here, image similarity search plays an essential

role in data acquisition.

Chapter 7 concludes the thesis and discusses possible areas of future work.
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2
Fundamentals

This chapter discusses the basic concepts and technologies used throughout this thesis. Section

2.1 introduces deep learning with a focus on convolutional neural networks (CNNs). These form

the basis for the object detection models discussed in Section 2.2 and the architectures used

for segmentation, which are discussed in Section 2.3. Section 2.4 introduces several foundation

models used in the work presented in this thesis. Finally, concepts related to image similarity

search are introduced in Section 2.5.

2.1 Deep Learning

Deep learning as a subarea of machine learning involves algorithms based on artificial neural

networks. These networks were originally inspired by the structure and function of the brain.

2.1.1 Feed-Forward Neural Networks

A typical artificial neural network (ANN) consists of two or more layers: an output layer with

one or more hidden layers, with the inputs connected to the first hidden layer. The elements in

the hidden layers and the output layer are called neurons or units. Figure 2.1 shows a small

feed-forward neural network that receives four input values and consists of four hidden and

three output neurons, i.e., it returns a vector with three components.

A feed-forward network is a directed acyclic graph, which means that it must not contain

any cycles or connections from higher to lower layers. Units between two adjacent layers

are fully pairwise connected, while units within a single layer share no connections. We will

refer to the type of hidden layer in the network shown in Figure 2.1 as a fully connected layer,

although it has different names depending on the context. It is also called dense or linear layer

in deep learning frameworks. In the context of transformers, multiple fully connected layers

are referred to as multi-layer perceptron (MLP).

The size of a neural network is usually measured in terms of learnable parameters, i.e., weights

and biases. Recent neural networks can contain hundreds of millions or billions of parameters,

organized in hundreds of layers; this is why they are called deep neural networks.

When the network is used for inference, an input vector n, fed into the input layer, is passed

through the network, resulting in an output vector, the prediction. In the forward pass, the

inputs to the network are propagated through the network. Starting from the input layer, the
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Figure 2.1: A feed forward neural network with four inputs, three outputs and one hidden layer

with four neurons.

outputs (activations) of the input units serve as inputs to the units of the next layer, i.e., they

are passed forward to the units of the next hidden layer, which in turn may be followed by

several hidden layers. Finally, this results in activations in one or more units of the output layer.

This output vector is the prediction for a given input.

In the training phase of the network, the forward pass is followed by a backward pass, which

adjusts the units according to a loss function. The output activations are compared to the true

outputs by an error function, also called the loss. If the deviation from the true output is large,

the loss function returns a large loss, while if the network output is close to the ground truth,

the loss is small. To correct the parameters of the network, a backward pass is performed. In the

backward pass, the loss of the network is propagated backward: all parameters (i.e., weights

and biases) of the network are changed by a small amount towards the true output, depending

on how much they contributed to the current output. This adaptation of the parameters can

be achieved by, for example, stochastic gradient descent, and the calculation of the weight

adaptations is usually done by the backpropagation algorithm.

When dealing with a large number of units, it is useful to specify the network in terms of layers

rather than individual units. The weights between layers can then be viewed as matrices W
where the columns are the outputs of the previous layer and the rows are the inputs of the

current layer. More precisely, the weight matrix of the lth layer is defined as Wl
. Its elements are

then identified as wl
ji, where j corresponds to the jth unit of the actual l layer and i corresponds

to the ith unit of the (l − 1)th layer. Similarly, the biases of a layer l are defined as a vector bl

with bl
j for the jth unit of the layer l. It follows that the output of a single unit j in the hidden

layer l is given by

al
j = f

(
∑

i
wl

jia
l−1
j + bl

j

)
(2.1)
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and thus the output of the layer, i.e., the output of all neurons in this layer, by

al = f
(

Wlal−1 + bl
)

, (2.2)

where f is the activation function and a0 = x is the input to the neural network. However, f
need not be the same for all layers. The matrix notation reflects an important feature of neural

network layers: all computations can be performed in parallel. For example, the weighting of

the incoming connections al−1
in Figure 2.2 is simply a matrix multiplication.

In the following, all components of the neural network will be explained in more detail. First,

some common activation functions f are introduced. Then, the training procedure is described

in more detail. This includes the choice of a suitable loss function and the application of the

backpropagation algorithm. Furthermore, some kind of regularization is needed to make the

training less prone to overfitting.

2.1.2 Activation Functions

In case of fully connected layers, the summed inputs constitute the input of the activation

function. In the following, the input of an activation function is defined as

z = ∑
i

wjiaj + bj, (2.3)

or, in vectorized form as

z = Wa + b, (2.4)

whereas the layer superscripts and unit subscripts are sometimes omitted for the sake of

simplicity.

An important requirement for the units in a neural network is the use of a nonlinear activation

function. The nonlinearity of the activation is crucial. It allows the neural network to learn

complex patterns. In contrast, with a layered composition of linear functions, the entire network

itself is a linear function and would reduce the neural network to a linear model.

For the output units it is important to choose an activation function that fits to the charac-

teristics of the target values (e.g., sigmoid for binary classification, softmax for multi-class

classification, or linear for regression). In following, several common activation functions and

their characteristics are introduced.

Sigmoid

A common activation function is the logistic (or sigmoid) activation. It maps input values to

values between 0 and 1, thereby transforming the inputs into a probability, as shown in Figure

2.2. While it was the standard activation function in earlier feed-forward networks, today it is

mainly used in the output layer for binary classification, representing the probability of an

instance belonging to one of two classes. The logistic function is defined as

fσ(z) =
1

1 + e−z . (2.5)
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Backpropagation of the forward pass error in neural networks requires the computation of

derivatives of the activation functions. In more complex networks, with a larger number of

units, the computational cost of these derivatives becomes significant. One attractive property

of the logistic function for neural networks is its simple derivative, which is given by

f ′σ(z) = fσ(z) (1 − fσ(z)) . (2.6)

However, this type of activation function has drawbacks. The logistic function can saturate,

resulting in a very small gradient in deeper layers during backpropagation. Since the error

is backpropagated to the inputs by multiplication, the adaptation of the incoming weights

will also be very small - the network will hardly learn due to a vanishing gradient. In addition,

to ensure fast convergence of neural networks, the use of non-zero mean inputs for neurons

should be avoided [LeC+12]. This is easily achieved in the first layer by normalizing the inputs.

However, since the sigmoid activation function is non-symmetric, the output of a neuron is

restricted to the interval [0, 1]. According to Glorot et al. [GB10], logistic sigmoid activations

are inappropriate as hidden layer activation functions in deeper networks (more than four

layers deep) because they can saturate the top hidden layer very early and lead to poor learning

dynamics. Based on these observations, the tanh activation function is a better choice in many

situations.

Figure 2.2: Sigmoid activation given by 1/(1 + ex).

Tanh

The hyperbolic tangent activation function, usually called tanh, provides the same advantages

as the sigmoid. Additionally, it is an antisymmetric activation function and thus the neuron

outputs both positive and negative values in the interval [−1, 1]. Tanh units are more likely to

produce outputs, that are on average close to zero [LeC+12]. The tanh function is given by

ftanh(z) =
sinh z
cosh z

=
ez − e−z

ez + e−z =
e2z − 1
e2z + 1

. (2.7)
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Tanh can also be written as a linear combination of the sigmoid activation function

ftanh(z) = 2 · fσ(2z)− 1. (2.8)

Its derivation is simple as well:

ftanh(z)′ = 1 − f 2
tanh(z) = (1 + ftanh(z))(1 − ftanh(z)). (2.9)

Tanh should be initialized with weights that are not too small because of their very flat error

surface near the origin.

Whilemore efficient activation functions such as ReLU are usually preferred in current networks,

tanh is often used in deep hashing approaches where outputs can be mapped to approximations

of binary outputs (either 1 or -1) and are preferred over sigmoid outputs.

Figure 2.3: Tanh activation.

ReLU

A common choice for activation functions in current neural networks is Rectified Linear Units

(ReLUs) [NH10]. ReLUs are units that use a very simple activation function, called a rectifier,

defined as

frec(z) = max(0, z). (2.10)

Figure 2.4 shows the activation function for a ReLU.

Until the successful application of ReLUs in deep convolutional neural networks by Krizhevsky

et al. [KSH12], which led to 6 times faster convergence, tanh activation functions were the

common choice for hidden unit activation. Today, ReLUs are widely used in deep neural

networks. They have some advantages over sigmoid and tanh activations, although they are

neither symmetric nor fully differentiable. Non-differentiability at 0 is actually not a real
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Figure 2.4: ReLU activation.

problem, since it is differentiable at any point arbitrarily close to 0 and a subgradient can be

used. A subgradient generalizes the notion of a gradient to functions that are not differentiable

at certain points. In the case of ReLU, the subgradient at zero can be chosen as either 0 or 1, or

any value in between, allowing backpropagation to proceed even when the exact derivative is

undefined.

Obviously, the output of the function, as well as its derivation, is muchmore efficient to compute

(thresholding a matrix of activations at zero). It is precisely this property that makes ReLUs

so well suited for deep networks, which often contain hundreds of thousands or millions of

neurons, by allowing much faster and more effective training. Furthermore, ReLUs do not suffer

from the vanishing gradient problem: unlike sigmoid neurons, they do not saturate, whereas

the derivatives of sigmoid functions become very flat far away from 0. Using unbounded ReLUs

makes sense in hidden layers, but usually not in the output layer. While sigmoid neurons

tend to return values close to 0 or 1, and less often anything in between, ReLUs have a high

probability of returning zero. If the learning rate is too high, a large gradient can lead to a

weight update that sets all weights to zero, meaning that the neuron will never be active again

(referred to as the problem of "dead ReLUs"). A variant of the ReLU that solves this problem is

the Leaky ReLU, which has a small negative slope instead of zero for z < 0:

flrec = 1(s<0)αx + 1(z≥0)z, (2.11)

where α is a small constant and 1 is the indicator function, which is one if the condition is true

and zero otherwise. The generalization of the ReLU is the maxout neuron [Goo+13b] which

can learn the activation function itself during training:

fmaxout = (wT
1 z + b1, wT

2 z + b2). (2.12)

The ReLU is then a special case with w1, b1 = 0. While maxout neurons do not suffer from

irreversible deactivation like ReLUs, they have twice the number of parameters.
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The importance of rectifiers for deep neural network models has also been confirmed by He et

al. [He+15b], where a modification of ReLU, called Parametric Rectified Linear Unit (PReLU), in

combination with an appropriate initialization method outperforms humans on the ImageNet

2012 classification dataset [Rus+15].

Sigmoid Linear Unit

The SiLU (Sigmoid Linear Unit) activation function [EUD18], also known as the Swish function,

is defined as follows:

SiLU(x) = x · fσ = x · 1
1 + e−x . (2.13)

This results in a smooth, non-monotonic function as show in Figure 2.5. Unlike ReLU, which

blocks negative inputs completely but similar to other improved variants of ReLU, SiLU provides

a non-zero gradient for negative inputs. This characteristic counteracts the dead ReLU problem.

It has replaced ReLU in many state-of-the art CNN architectures such as EfficientNet [TL19]

or newer versions of YOLO [JCQ23].

Figure 2.5: SiLU activation.

Softmax

In multi-class problems, where the input should be assigned to one of C classes, a categorical

probability distribution of the outputs is often preferred to a single independent activation for

each output. For this purpose, the softmax activation function is used in the last layer. It is the

generalization of the logistic function for binary problems to multi-class problems. A softmax
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layer normalizes the outputs of the units so that they sum to 1. For the jth unit, the softmax is

defined as

sj =
ezj

∑C
c=1 ezc

, (2.14)

where s = fsoftmax(z). The exponentiation ensures positive values for the outputs. In this way,

the softmax function interprets each element in z as holding the unnormalized probabilities

(often referred to as logits) of the C classes. Applying the softmax function results in a C
dimensional vector of probabilities for a network input x. This requires that the number of

output units in the final layer be equal to the number of classes.

Unlike the sigmoid activation function, the output of a unit in the softmax layer must also

consider its neighbors. For the previous activation functions, it was appropriate to look at a

single neuron and its derivative, but in the softmax layer, the errors from each of the C outputs

should be propagated to each of the C inputs, so the gradient for the jth unit with respect to z
depends on the index of the unit:

∂sj

∂zc
=

{
sj(1 − sc) ifj = c
−sjsc else

(2.15)

Using the Kronecker delta
1
this simplifies to

∂sj

∂zc
= sj(δjc − sc) (2.16)

Typically, the softmax function is used with logarithmic loss (cross-entropy loss) because it

works much better than squared error [GB10]. Also, other loss functions than logarithmic loss

can lead to a vanishing gradient when an output unit saturates [BGC17]. Softmax is invariant

under additive changes of its input vector, so the bias can be omitted, i.e., softmax(z) =
softmax(z − b) (see equation 2.17). If the softmax is calculated directly, numerical stability

problems are likely to occur. As a result of the exponentiation, the intermediate terms ezj
and

∑C
c=1 ezc

can become very large, making the division of the two numerically unstable. To solve

this problem, the following normalization trick can be used:

ezj

∑C
c=1 ezc

=
Kezj

K ∑C
c=1 ezc

=
ezj+log K

∑C
c=1 ezc+log K

, (2.17)

where log K is usually set to −maxj zj, which corresponds to shifting the values within the

vector so that the highest value is zero.

The softmax function is also used in recurrent neural networks such as LSTMs [HS97] or in

attention mechanisms [Vas+17] used in transformer architectures.

1
The Kronecker delta is 1 if the variables are equal and 0 otherwise: δij =

{
0 if i ̸= j
1 if i = j
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2.1.3 Loss Functions

In the training phase, the output of a network is compared to the desired output (the target).

To measure the discrepancy between these values, a loss function (also called an error function,

cost function, or objective function) maps the network outputs to a real value. The higher

the value that the loss function returns, the worse it rates the current model. In this section,

some common loss functions used in CNNs and other neural networks are introduced and

considered for regression, binary, and multi-class problems.

During training, the gradient of the loss function is computed during backpropagation. In

practice, it is not necessary for the function to be fully differentiable, and the problem is solved

by using the subgradient. For each instance in the training set, the loss is computed separately

and then averaged over the N training samples:

L =
1
N

N

∑
i=1

Li (2.18)

Usually, a loss function is used together with a certain output layer activation function, which

allows to express the gradient in the output layer as the difference between the actual output

and the target output. An example of such a pairing are softmax together with logarithmic loss

or mean squared error for regression tasks.

Mean Squared Error

A loss function commonly used for regression problems, called the mean squared error loss, is

based on the squared error, defined as

Li =
1
2
(ti − yi)

2
(2.19)

for the output for a training instance i, where ti is the target vector and yi is the output of the

network. The multiplication of
1
2 is for convenience in computing the gradient, which is simply

yi − ti. For N training instances, the mean squared error (MSE) loss is then defined as

L =
1
N

N

∑
i=1

(ti − yi)
2, (2.20)

Squaring each term amplifies outliers, i.e., large false outputs are weighted much more heav-

ily.

Cross Entropy Loss

Cross entropy is a measure of the difference between two probability distributions. In infor-

mation theory, it is used to quantify the information lost when a given distribution Q (the

estimated distribution) is used to approximate another distribution P (the true distribution),

and is defined as
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H(P, Q) = −∑
x

p(x) log q(x). (2.21)

Thus, a lower cross entropy value indicates that the estimated distribution Q is closer to the

true distribution P.

In neural networks, the cross entropy loss (often called the log loss) is used when the outputs

can be thought of as representing independent probabilities (e.g., each output represents a

different class). The probabilities p(x) correspond to the target value and the probabilities

q(x) correspond to the actual output. If the problem is binary and thus the network has a

single output oi, the loss Li for a training sample with the true label yi ∈ {0, 1} is computed

as follows:

Li = −yi log oi + (1 − yi) log(1 − oi). (2.22)

When there are multiple output units, i.e., the output is a vector, it is common to use the

sigmoid if each output represents an independent probability (e.g., in multi-label classification),

or the softmax activation if the ground truth is a one-hot encoded vector. For a multi-class

problem with K classes, the cross-entropy loss is computed as

Li = −
K

∑
k=1

Lik = −
K

∑
k=1

yik log(oik). (2.23)

For example in softmax, with output vector oi = fsoftmax(zi), the cross-entropy loss for the

output corresponding to the position in the target vector with the positive value (yik = 1)
results in

Lik = −yik log oik = − log oik = − log

(
ezik

∑C
c=1 ezic

)
, (2.24)

where z is the summed input of the activation function as defined in equation 2.3. For non-

target classes k yik = 0 and the term yik log oik becomes zero, so these classes do not contribute

directly to the sum in the loss calculation.

If the probability of the true class is very small (close to 0), the loss will go to infinity, and if the

probability is very high (log 1 = 0), the loss will go to 0.

With softmax activation, the derivation of the cross-entropy loss at z results in y− t: the
gradient of the loss with respect to the input of the softmax function z (the logits) is the

difference between the predicted probabilities and the true labels.

Contrastive Loss

Contrastive loss functions are used when labels about similarity are available or in self-

supervised learning. While the previous loss functions are typically used on labeled datasets,

there are scenarios where distances or orders are available instead of class labels, or can be

obtained from the data to train the model in a self-supervised manner. Contrastive losses

are used to learn embeddings or representations of the data by considering how similar or

dissimilar pairs of samples are.
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An example of a contrastive loss is the pairwise contrastive loss [HCL06]. The idea is to ensure

that pairs of similar data points (positive pairs) are closer together in the learned feature space,

while pairs of dissimilar data points (negative pairs) are further apart. The pairwise contrastive

loss for N pairs in a batch is defined as

L =
N

∑
i=1

[
(1 − yi)

1
2

d(ai, bi)
2 + yi

1
2

max(0, margin − d(ai, bi))
2
]

, (2.25)

where margin is a hyperparameter that measures the minimum distance between two points ai
and bi that are dissimilar. The binary label yi for the ith

pair is 0 if the pair is similar, 1 if the pair

is dissimilar. The distance function d is often the Euclidean distance between the embeddings

of the two samples.

Another example of a contrastive loss is the triplet loss, which is often used in tasks such as face

recognition and similarity learning. It is computed over a batch of N samples and is defined

as

L =
N

∑
i=1

max (d(ai, pi)− d(ai, ni) + margin, 0) , (2.26)

where ai is the anchor sample in the ith
triplet, pi is the positive example, and ni is the negative

example. The distance between the samples is measured by a distance function d(x, y), which
can be the Euclidean distance. The margin is a hyperparameter that defines how far apart the

distances between the anchor-positive and anchor-negative pairs should be. It prevents the

model from trivial solutions and encourages it to learn useful embeddings. The triplet loss

function aims to ensure that the distance between the anchor and the positive example is less

than the distance between the anchor and the negative example by at least the margin. If this

condition is satisfied, the loss is zero.

2.1.4 Optimization

During training, the network learns by iteratively updating its weights to achieve a lower loss.

This is done by error backpropagation combined with gradient descent.

Error Backpropagation

The backpropagation algorithm [RHW88] performs parameter updates for all parameters of

the network. The amount of parameter adjustment depends on their individual contribution to

the network error.

After the forward pass, in which one or more training examples are passed through the network,

the discrepancy between the output of the network and the desired output is measured by a

loss function. Then, all parameters in the network are adjusted to make the network perform

better in the next iteration, i.e., to achieve a lower loss next time. Essentially, the parameters of
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the network are changed towards a (usually local) minimum of the loss function. Since it is

computationally infeasible to compute a global minimum for a large model on the entire data

set, backpropagation is usually combined with the gradient descent method.

Gradient descent finds a minimum in parameter space by iteratively taking steps proportional

to the negative of the gradient of the function until it no longer yields a relevant improvement.

The combination of parameters that minimizes the loss function is considered the solution to

the learning problem. Figure 2.6 illustrates gradient descent for a function with two parameters.
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Figure 2.6: Gradient descent on a 3-dimensional error surface.

The training process consists of several iterations. In each iteration, there are two subsequent

steps. First, the gradient for the whole network is computed efficiently by error backpropagation,

and then the parameters are adjusted. In larger networks, the second step of weight adjustment

is usually realized by optimization schemes such as Stochastic Gradient Descent (SGD) or

Adam [KB15], which offers improvements like adaptive learning rates.

To obtain the overall gradient of a network, it is necessary to compute the gradient of the loss

function with respect to each parameter of the network. A multi-layer network represents a

potentially very deeply nested function, i.e., each layer can be thought of as a function in its

own right whose output depends on the output of the previous layer. What the backpropagation

algorithm basically does is to apply the chain rule repeatedly, layer by layer, starting from the

output layer. When computing the local gradient (for example, at a given layer), two functions

g and f are considered. Their composition is given by F(x) = f (g(x)), i.e., the local function
g(x) is followed by f (x), e.g., the next layer towards the output of the network. The chain
rule then expresses the derivative of the composition F′(x) = f ′(g(x))g′(x), which can be

equivalently written as

dz
dx

=
dz
dy

· dy
dx

, (2.27)
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where z = f (y) and y = g(x), so z is a function of x. From the multivariable chain rule it

follows for f : Rm → R and g : Rn → R with y = f (u) and u = g(x) = (g1(x), ..., gm(x))
that

∂y
∂x

=
m

∑
ℓ=1

∂y
∂uℓ

∂uℓ

∂x
. (2.28)

In the case of neural networks, one is interested in the gradient of the loss function L with

respect to the parameters in the network. There are two cases to consider: Either a unit is in

the output layer, or the unit is in the hidden layer. In the first case, the gradient of the loss

function can be computed directly. However, if a unit is in a hidden layer, the gradients of its

input weights also depend on the gradients of the upper layers. Thus, backpropagation starts

by computing the gradient of the loss with respect to the weights connecting the output units

to units in the last hidden layer. A unit in the output layer is identified by the index j, units in

fσ
aj

wj,i wk,jai

zj

Figure 2.7: Unit j sums the weighted outputs of units i of the previous layer to zj. After applying

the nonlinearity, aj serves as the input for the units k in the following layer.

the previous layer by the index i. Applying the chain rule then results in

∂L
∂wji

=
∂L
∂aj

∂aj

∂zj︸ ︷︷ ︸
δj

∂zj

∂wji
. (2.29)

For the output layer, the derivative with respect to wij, the weight between unit i and unit j, can
be computed easily. For example, in the case ofmean squared error loss, with L = 1

2 ∑j(yj − tj)
2
,

it follows that

∂L
∂aj

=
∂L
∂yj

= (yj − tj), (2.30)

where yj ∈ y are the outputs of the network and tj ∈ t are the values of the destination vector.

The second factor in Equation 2.29 simply expresses the derivative of the activation function,

which in the case of sigmoid activation is given by fσ:

∂aj

∂zj
=

∂ fσ(zj)

∂zj
= f ′σ(zj) = a fσ(zj)(1 − fσ(zj)) = aj(1 − aj). (2.31)
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To complete the computation of the gradient for the output units, the sum of the weighted

inputs zj is differentiated with respect to a specific input weight, wji, and thus only the input

associated with that weight will have a non-zero derivative:

∂zj

∂wji
= ai. (2.32)

Plugging the equations 2.38 and 2.32 into 2.29, we get the following for the output layer

∂L
∂wji

= δjai. (2.33)

The calculation of the gradients for the hidden layers is different, since the gradients depend

on higher layers. In the following, we will examine the gradient with respect to wji. As shown

in figure 2.7, unit i is located in the previous layer of unit j. Units with index k are in the layer

above j.

Similar to Equation 2.29, the gradient of the loss with respect to the weights in the hidden

layers is also given by

∂L
∂wji

=
∂L
∂aj

∂aj

∂zj︸ ︷︷ ︸
δj

∂zj

∂wji
. (2.34)

While the last two factors are computed analogously to those in the output layer (see Equations

2.31 and 2.32), the first factor is now a recursive expression. The loss function for unit j now
depends on the units k in the subsequent layer:

∂L(aj)

∂aj
=

∂L(zu, zv, ..., zw)

∂aj
, (2.35)

where K = u, v, ..., w are units in the subsequent layer which are receiving input from unit

j. The outgoing connections from unit j to units in K lead to a sum of gradients due to the

multi-variable chain rule (Equation 2.28 ):

∂L(aj)

∂aj
= ∑

k∈K

∂L
∂ak

∂aj

∂zk

∂zk

∂aj

= ∑
k∈K

∂L
∂ak

∂aj

∂zk︸ ︷︷ ︸
δk

wkj,
(2.36)

where the δk correspond to the errors already calculated for the units k ∈ K in the subsequent

layer. Eventually, the above equations result in

∂L
∂wji

= ∑
k∈K

[δkwkj] f ′(zj)︸ ︷︷ ︸
δj

aj, (2.37)

where δj is the error of unit j.
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Gradient Descent

When using gradient descent in the next stage, weight updates are performed with the learning

rate η by adding

∆wij = −η
∂E

∂wij
= −ηδj, (2.38)

where

δj =
∂l
∂aj

∂aj

∂zj
=

{
(aj − tj) f (zj) if j is an output unit,

(∑k∈K δkwkj) f (zj) if j is a hidden unit.

(2.39)

Only gradients with respect to the weights have been considered here, but gradients for the

biases are obtained in a similar way. Since all computations are local, they can be processed

efficiently in parallel. For this purpose it is convenient to write the forward and backpropagation

equations in matrix notation. For an output layer L, the errors are defined as

dL = t − yL. (2.40)

The errors for the layers l = L − 1, L − 2, ..., 1 are given by

dl = (WT
l+1dl+1) ◦ fl(zl), (2.41)

where ◦ is the Hadamard product. The weight and bias updates are then computed as

∆Wl = dlaT
l−1 and ∆bl = dl . (2.42)

This example assumes fully connected layers. For sparsely connected layers (such as con-

volutional layers), the equations are different. Although there are other ways to perform

optimization, gradient descent remains the most widely used method in neural networks.

Stochastic Gradient Descent

Summing and then averaging the loss over the entire training set and then performing the

weight updates is called full-batch learning. However, this approach becomes very expensive

for large datasets. If the dataset contains millions of examples, learning would be slowed down

significantly by considering all training samples in each iteration. In practice, the gradient is

usually computed for a mini-batch. A mini-batch consists of m examples that are randomly

selected from the training set for each gradient descent learning step. The number of images

in a mini-batch is typically in the range of about 10-1000 examples, depending on the problem,

and is a hyperparameter, although it is usually not cross-validated. For current neural network

architectures, the batch size may also depend on the memory limitations of a GPU (although

gradients can be accumulated over several batches before performing a weight update).

Originally, stochastic gradient descent (SGD), sometimes called online gradient descent, is a

special case of minibatch gradient descent. The batch then contains only a single example.

However, this approach is not widely used because it is much more efficient to evaluate the

gradient for m examples than to evaluate the gradient m times. The term stochastic gradient

descent is now used synonymously with mini-batch gradient descent.
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Momentum-Based Gradient Descent

The simplest form of weight updating is simply to add the negative gradient to the weights at

a fixed learning rate (see Equation 2.38). While gradient descent is the most commonly used

method for updating weights, there are other approaches and variations of it. Improvements in

the rate of convergence can be achieved by using momentum-based methods. The motivation

for momentum comes from a physical analogy. The loss can be interpreted as the height of a

hilly landscape and the parameter vector as a ball rolling on that landscape. While in standard

gradient descent the position depends only on the fixed learning rate, the parameter vector

now depends on a velocity and a friction term. Integrating a velocity leads to the following

equations for gradient descent updates:

vnew
j = µvold

j − ηδj (2.43)

wnew
j = wold

j + vnew
j , (2.44)

where the hyperparameter µ ∈ [0, 1] controls the amount of friction, misleadingly called the

momentum coefficient. A low value of 0 for µ corresponds to a suppression of the velocity

term, while a value of 1 means a strong effect of velocity. In cross-validation, µ should be set

to values such as 0.5, 0.9, 0.95, and 0.9.

A variation of themomentummethod is called Nesterov AcceleratedMomentum (NAG) [Nes83]

and can further improve gradient descent [Sut+13]. Instead of looking at the current position

x of the parameter vector, the idea is to look ahead to the position that µv would push the

parameter vector to, i.e., compute the gradient at that future position x + µv.

Other less common approaches include second-order methods based on Newton’s method,

which use the inverse of the Hessian matrix to update the weight according to local curvature.

However, for large neural networks, computing the Hessian matrix requires a lot of memory.

Adaptive Learning Rate Methods

Another group of optimization approaches is based on the idea of assigning an individual

learning rate to each parameter. For example, the Adaptive Gradient Algorithm (AdaGrad)

[DHS11] adapts the learning rate so that weights that receive large gradients have their learning

rate decreased, while weights that receive small updates have their learning rate increased.

RMSprop (Root Mean Square Propagation) is another optimization algorithm. It adjusts the

learning rate for each parameter by dividing the gradient by a running average of its recent

size, solving the vanishing or exploding gradient problem common to deep neural networks.

A widely used optimization algorithm is ADAM (Adaptive Moment Estimation) [KB15]. It

combines the advantages of AdaGrad and Root Mean Square Propagation (RMSProp).

ADAM maintains an exponential running average of the gradients similar to SGD with mo-

mentum. It also maintains an exponentially decaying average of the squared gradients. The

decay rates β1 and β2 are set close to 1 (e.g. β1 = 0.9 and β2 = 0.999). The initial learning
rate α is another hyperparameter.
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Initially, at t = 0, the first moment vector m0 = 0 and the second moment vector v0 =
0.

For each iteration t, the first and second moments are updated as follows

mt = β1 · mt−1 + (1 − β1) · gt (2.45)

vt = β2 · vt−1 + (1 − β2) · g2
t (2.46)

where the gradient gt with respect to the loss function is obtained by backpropagation. Since

the momentum vectors are initialized with zeros, they are biased towards zero in the early time

steps and at high decay rates. Therefore, a bias correction is applied to the momentums:

m̂t =
mt

1 − βt
1

(2.47)

v̂t =
vt

1 − βt
2

(2.48)

Finally, the parameters are updated:

wt+1 = wt − α · m̂t√
v̂t + ϵ

, (2.49)

where ϵ is a small constant to ensure numerical stability and w is the parameter vector.

2.1.5 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a specialized type of neural network, particularly

suited to image data. They were introduced by Fukushima [Fuk80] and later successfully applied

to the MNIST dataset of handwritten digits [LeC+98]. They are inspired by the biological image

processing of the primate brain, which is hierarchically organized in layers of increasing

processing complexity [Ben+09]. Basically, CNNs use convolutions instead of general matrix

multiplication (as in standard feed-forward neural networks). Convolutions allow a localized

view on the input data and are very efficient since they share locally connected and thus sparse

parameters. This section first introduces the mathematical operation of convolution. Then, the

architecture of convolutional networks is explained. CNNs usually consist of several successive

groups of stacked layers. There are three types of layers that are part of a typical convolutional

neural network. First, there is a convolutional layer, in most cases followed by a pooling layer

and finally one or more fully connected layers (the same as the hidden layers explained earlier

when introducing regular feed forward neural networks).
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Convolution

An illustrative application of a 2D convolution can be found in image processing:When applying

a particular filter to an image, the filter function (kernel) is applied to the image, centered at

each position (i.e., pixel). For example, in the case of Gaussian blur, the kernel is a discretized

Gaussian function. This fixed-size kernel is then shifted across the entire image, pixel by pixel.

For each pixel, the following steps are performed Each pixel of the original image within the

range of the filter is multiplied by the value of the filter for that filter position. These values

are then added together to form the new value for that particular pixel (which is in the center

of the current filter position). Figure 2.8 shows a Gaussian blur filter mask of size 3 × 3 and its

effect.

Figure 2.8: Example of a 2-D convolution: 3 × 3 Gaussian blur filter mask (left), convolution

applied to one pixel (center), sample output with Gaussian blur applied to half of

the image (right).

In general, convolution is an operation on two functions f and g. It is defined as

( f ∗ g)(t) =
∫

f (a)g(t − a)da a, t ∈ R, (2.50)

where f is the input, g is the kernel, and the output is called the feature map in the context of

CNN. In practice, time is discretized and t takes on integer values. For the discrete case, the

convolution is defined as follows

( f ∗ g)[t] =
∞

∑
a=−∞

f [a]g[t − a], a, t ∈ Z (2.51)

In the case of convolutional neural networks, the input is an array of data and the kernel is an

array of parameters learned by backpropagation. However, these parameters are not learned

separately for each location, but rather a single set of parameters is learned for all locations.

This is called parameter sharing and will be explained in detail in the next section.

The first layer in a deep CNN is an input layer, which usually accepts fixed-size images with

three RGB channels. This layer is typically followed by convolution and pooling layers. A

convolution layer is followed by an activation layer, for example a ReLU. There may be one or

more convolution layers with corresponding activation layers. In most cases, a pooling layer is

placed between these groups. Finally, there is usually at least one fully connected layer. Recent

CNN architectures often include batch normalization layers after convolution layers or before

activation functions to improve training stability and training speed.
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Convolutional Layer

In the context of neural networks, the convolution operation differs slightly from the usual

definition of the standard discrete convolution operation. The term actually refers to an

operation that consists of many convolutions in parallel. A convolution in a CNN extracts

many types of features at many locations. In general, the parameters of a convolutional layer

consist of a set of filters. Figure 2.9 shows the organization of an input layer, a filter, and a

convolutional layer. In the forward pass, the filter is convolved over the input volume. More

precisely, convolving here means computing the dot product between the entries of the filter

and the input. This computation is exactly what characterizes a unit in a regular feed forward

neural network, but here it only considers a small region of the input. In fact, the filter entries

correspond to the weights of the input. Since the filter slides over the entire input volume

dout

f

wout

hout

din

win

hin

f

Figure 2.9: A filter of size f × f convolves over a 3-dimensional input layer of size win × hin × din
and produces a slice of size wout × hout. The filters are the input weights of the

output layer units, and their number corresponds to the depth dout.

along its width and height, there will be an output for each location. Together, these outputs

of a given filter form a 2-dimensional activation map. It is important to note that the filter

weights are the same for each output, i.e., the parameters are shared by units within the same

activation map. If the input is large compared to the filter, this leads to an enormously reduced

number of parameters. In practice, there is usually more than one filter: in a convolutional

layer, the resulting activation maps (also called feature channels) are stacked, and the depth of

the output volume corresponds to the number of filters or activation maps. Figure 2.10 shows

a typical set of learned first-layer filters.

Figure 2.10: Visualization of filters (input weights to the first convolutional layer) of GoogLeNet

[Sze+15] of size 7 × 7 (left) and AlexNet [KSH12] of size 11 × 11 (right).
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The spatial extent f × f of a filter is called the receptive field. While f can be adjusted, its depth

depends on the previous layer, since it is required that the depth of the filter be equal to the

depth din of its input. Thus, the connections are local along the width and height, but full along

the depth of the input volume. Typically, a receptive field is no larger than 7 × 7.

While f determines the number of inputs to consider for a single output, three other hyper-

parameters specify the extent of the output volume. First, the depth dout, i.e., the number

of filters k, can be chosen freely, since it only affects the following layer. The remaining two

hyperparameters, stride s and zero-padding p, together with the width win and height hin of the
input volume, control the width wout and height hout of the output volume. When interpreting

the filter as sliding over the input volume, the stride is the distance between any specific

position of a filter at two consecutive steps. In other words, the stride specifies how many units

in the input volume are skipped before a unit is multiplied by the same filter entry and assigned

to the next unit in the activation map. For example, if the stride is 1, the next receptive field
will overlap a lot and produce a large activation map. Conversely, a higher stride will reduce

both the overlap of the receptive field and the size of the output activation map. So, if s ≥ f ,
the receptive fields will not overlap. Assuming f > 1 (a receptive field larger than 1 × 1) in
combination with a stride of 1, the spatial dimension win × hin of the input. More precisely, the

width of the output volume will be wout = win − ⌊ f
2⌋. This motivates zero padding: by spatially

padding the input at the border, it is possible to generate output volumes that have the same

spatial size as their input volumes. Setting the padding to p = f−1
2 when s = 1 ensures that

the input and output volumes are of the same spatial size. In general, zero padding allows to

directly control the spatial size of the output volumes to match s and f .

In summary, the dimension of the convolutional layer input is defined as win × hin × din. It
produces an output volume of dimension wout × hout × dout. The relationship between the

hyperparameters f , s, and p is reflected in the following equation, which calculates the number

of units along the width of the output volume:

wout =

⌊
win − f + 2p

s

⌋
+ 1, (2.52)

where it must be ensured that wout ∈ Z. Similarly, the number of units hout resulting from

convolving over height can be calculated. Thus, the number of units in an activation map is

wout · hout and the total number of units in the convolutional layer is (wout · hout) · k, with the

hyperparameter k = dout. Each filter corresponds to f · f · din weights. So, in total there are

(f · f · din) · k weights and k biases that belong to a convolutional layer.

When implemented, the convolution is performed by a large matrix multiplication, for example

on a GPU. The filters are expanded to f · f · din columns and the locations of the receptive fields

to wout · hout rows. Thus, the resulting matrix of stretched inputs is of dimension (f · f · din)×
(wout · hout). The weights of the convolutional layer are also stretched, resulting in a weight

matrix of dimension k× (f · f · din). The resulting multiplied matrix is k× (wout · hout) is then
reshaped to the dimensions wout × hout × k.

Formally, the summed input of a unit in the convolutional layer can be written as

zℓijk =
f

∑
a=1

f

∑
b=1

din

∑
c=1

wabckaℓ−1
(i+a−1)(j+b−1)c, (2.53)
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where i ∈ {1, ...,wout}, j ∈ {1, ..., hout}, k ∈ {1, ..., dout} and ℓ is the convolutional layer.

Including the stride, it follows that

zℓijk =
f

∑
a=1

f

∑
b=1

din

∑
c=1

wabckaℓ−1
(s·i+a−1)(s·j+b−1)c, (2.54)

with stride s. As usual, an nonlinear activation function is applied to the output of the units.

In case of CNN, the convolution is often followed by a rectifier activation (implemented as a

ReLU layer). The output of an single unit is then defined as

aℓijk = frect(zℓijk). (2.55)

In the derivation of the backpropagation equations, stride and padding are omitted for simplicity.

In the backward pass, the derivative of the loss with respect to the input of the following layer

∂L
∂aℓijk

has already been computed in the previous step. Next, the derivative with respect to the

weights is needed. Since the weights are shared, a weight wabck is connected to all zℓijk. Thus,
due to the multivariate chain rule (Equation 2.28), we get

∂L
∂wℓ

abck
=

(win−f+1)

∑
i=1

(hin−f+1)

∑
j=1

dout

∑
k=1

∂L
∂zℓijk

∂zℓijk
∂wℓ

abck
. (2.56)

Since

∂zℓijk
∂wℓ

abck
= aℓ−1

(i+a−1)(j+b−1)c, Equation 2.56 can be rewritten as

∂L
∂wℓ

abck
=

(win−f+1)

∑
i=1

(win−f+1)

∑
j=1

dout

∑
k=1

∂L
∂zℓijk︸︷︷︸

δℓ

aℓ−1
(i+a−1)(j+b−1)c. (2.57)

As with normal backpropagation, the computation of δℓ is straightforward:

δℓ =
∂L

∂zℓijk
=

∂L
∂aℓijk

∂aℓijk
∂zℓijk

=
∂L

∂aℓijk

∂

∂zℓijk

(
frect(zijk)

)
=

∂aℓijk
∂zℓijk

f ′
rect

(zℓijk). (2.58)

Now the gradient with respect to the weights can be used for weight updates in the con-

volutional layer. In addition, the error must be propagated back to the previous layer ℓ− 1.
The following equation assumes that the upper and left edges of the convolutional layer ℓ
are padded with f zeros. Again, since each aℓ−1

ijk is connected to a patch of size f × f in each

activation map, i.e. a volume of size f × f × dout, it follows from the multivariate chain rule

that

∂L
∂aℓ−1

ijk

=
f

∑
a=1

f

∑
b=1

dout

∑
c=1

∂L
∂zℓ

(i−a+1)(j−b+1)c

∂zℓ(i−a−1)(j−b−1)c

∂aℓ−1
ijk

=
f

∑
a=1

f

∑
b=1

dout

∑
c=1

∂L
∂zℓ

(i−a−1)(j−b−1)c

wabck.

(2.59)

This is also a convolution using the same filter (i.e. weights wabck), but with both spatial axes

flipped.
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A popular variant of convolutional layers are dilated convolutions [YK15], also called atrous

convolutions. They are designed to capture broader contextual information without increasing

the number of parameters. While in a regular convolution the filter is applied to the input in

contiguous manner (each element of the filter is multiplied by adjacent elements of the input),

in dilated convolutions, the filter is applied over an area larger than its actual size by skipping

input values at a certain rate (dilation factor r. With r > 1, spaces are introduced between the

kernel elements. Dilated convolutions are especially useful when information of larger areas is

important, e.g., in semantic image segmentation.

In many CNNs, a pooling layer is inserted periodically in between successive convolutional

layers.

Pooling Layer

A convolutional layer can optionally be followed by a pooling layer. The pooling layer takes

small rectangular blocks from the convolutional layer and subsamples them to produce a single

output from each block. Unlike the convolutional layer, the pooling is performed for each depth

slice of the input layer (i.e., activation map) individually. This preserves the depth of the output

volume.
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Figure 2.11: Max-pooling with step 2 and step 2 downsamples the input.

There are two hyperparameters to adjust: stride s and spatial extent f . From a convolutional

layer of size win × hin × d, pooling results in a volume with width wout =
win−f

s + 1 and height

hout =
hin−f

s , while the depth is still d (see Figure 2.11).

Although there are other options for the pooling function, such as average pooling or L2 norm

pooling, max pooling is most commonly used in CNN. That is, the highest activation in the

spatial extent of the filter is selected. The output of a max pooling layer indicates whether a

feature was present in a region of the convolutional layer, but not exactly where.

In practice, two max pooling settings are usually used. The more commonly used form applies a

2 × 2 filter with a step of 2 to the input volume, discarding 75% of the activations. The second

type of max pooling uses a 3 × 3 filter with stride 2, called overlapping pooling. It turned out

that larger receptive field sizes were too destructive.

30



2.1 Deep Learning

In backpropagation, the gradient is propagated only to the unit that had the highest activation

value in the forward pass, i.e., the derivative of the loss with respect to the input of the previous

layer ℓ− 1 is defined as

∂L
∂aℓ−1

(i+a)(j+b)k

=

0 if aℓ−1
ijk ̸= aℓ−1

(i+a)(j+b)k
∂L

∂aℓijk
else

. (2.60)

This can be implemented efficiently by keeping the index of the maximum in the forward

pass.

After several convolution and max-pooling layers, most CNNs have at least one fully connected

layer before the output layer. One of the advantages of a CNN architecture is that there are

many more connections than weights involved, and thus a kind of regularization is already

introduced by the architecture. Furthermore, a certain degree of translation invariance is

automatically provided by the shared weights. Since images contain hierarchical structures

(e.g., a car consists of wheels, a wheel consists of edges, etc.), filters in convolutional layers,

which can be interpreted as more and more abstract detectors the deeper the layers are, seem

to be a suitable approach to handle image or similar data. Finally, the local connectivity induced

by the receptive field reflects that neighboring pixels are correlated in images.

Learning Rate

If the learning rate is too high, the loss will not converge. Conversely, if it is too low, learning

will be slower than necessary. For deep networks, it is common to choose an initial learning rate

that decreases over time during the training process. There are several approaches to learning

rate annealing. In step decay, the learning rate is reduced by a factor after some epochs. How

to choose the interval of epochs (the step size) and the factor depends on the nature of the

problem and the model. A common heuristic is to reduce the learning rate by a constant when

the validation error stops improving. The learning rate with exponential decay is defined as

η = η0e−kt
with the hyperparameters η0 and k and the number of iterations t. For 1/t decay,

the learning rate is η = η0
1+kt . Another frequent choice for a learning rate schedule is cosine

annealing [LH16], where the learning rate decreases following a cosine curve.

In addition, adaptive learning rate methods such as Adam are often used. They start with an

initial learning rate and adjust the learning rate dynamically during training.

2.1.6 Regularization

When a model with many parameters is trained on a comparatively small training data set,

the model usually overfits. That is, the model achieves a small error on the training data, but

when applied to new examples, the error is large. In the worst case, the model has learned the

training examples but does not generalize. To prevent a neural network from overfitting, some

kind of regularization must be applied. There are several approaches, of which L2 regularization

and dropout are often used in the field of deep convolutional neural networks.
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L1 and L2 Regularization

L2 regularization penalizes the squared magnitude of all parameters. This is done by modifying

the loss function to produce a higher loss for large weights. For each weight in the network,

the following regularization term is added

1
2

λw2, (2.61)

where λ controls the influence of the regularization and the factor
1
2 is just for simplifying

the derivation. The effect of L2 regularization is to prevent the network from learning large

parameters. Since the inputs are multiplied by the weights, the network generally achieves

lower loss by using all of its inputs a little, rather than some of its inputs a lot. Thus, over time,

each weight decays linearly toward 0. Usually, L2 regularization is not applied to penalize the

biases. That is, it usually has little effect on the results, and large biases make it easier for units

to saturate, which can sometimes be desirable. In L1 regularization, the following term is added

to the loss:

λ|w|. (2.62)

In contrast to the L2 regularization, this leads to sparse weight vectors, i.e. many weights are

close to zero and only a few are large. The combination of both L1 and L2 loss is called elastic

net regularization [ZH05]. Another type of regularization are max-norm constraints, which

introduce an absolute upper bound c for weight vectors in a network, i.e. each weight vector

must satisfy ∥w∥2 ≤ c.

Dropout

The above regularization methods can be used together with a simple and powerful regular-

ization technique called dropout [Sri+14]. The idea of dropout is to keep a unit active with

some probability p and otherwise deactivate it during training (with probability 1 − p). When

a unit is deactivated, it neither receives input from neighboring units nor does it receive output

from previously connected units. Thus, in each iteration, only a subset of units is active, as

shown in Figure 2.12. This can be interpreted as training a different network in each iteration,

each overfitting in a different way. Then averaging over all these networks regularizes the full

network.

Applying dropout during trainingmeans that the expected output of a unit will be pa+(1− p)0.
Therefore, when using the network for inference, the output a must be adjusted by multiplying

it by p to keep the same expected output. However, since time is more important during

inference, the outputs are scaled at training time. Another explanation for the regularization

effect of dropout is that it counteracts complex co-adaptations of units by preventing units

from relying on the presence of particular other units, and thus forcing them to learn more

robust features that are useful together with many different random subsets of the other units

[KSH12]. Dropout is most effective when taking relatively large steps in the parameter space

[Goo+13a]. A related method is called DropConnect [Wan+13b], where a random set of weights

is set to 0 during a forward pass.
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Figure 2.12: Dropout randomly deactivates neurons in training.

Batch Normalization

Batch normalization [IS15] addresses the problem of internal covariate shift, where the dis-

tribution of each layer’s inputs changes during training as the parameters of previous layers

change. It therefore normalizes the inputs of each layer for each minibatch by adjusting the

inputs across the minibatch to have a mean of 0 and a standard deviation of 1.

The input x in a batch is normalized as follows

x̂ =
x − µB√

σ2
B
+ ϵ

(2.63)

This normalized input is used together with two learnable parameters; a scaling factor γ and

a shift parameter β, allowing the network to undo the normalization if it is more beneficial

during training. The output y of a batch normalization layer is then given by

y = γx̂ + β (2.64)

During training, the mean and variance are computed for each mini-batch. During inference,

an exponential moving average computed during training is used instead. In addition to

regularization, batch normalization improves gradient flow, thereby speeding up training and

making the network less sensitive to initial parameters.

Finally, unsupervised pre-training can also have a regularizing effect.

Data Preprocessing and Weight Initialization

One of the most important preprocessing steps when using images as input for neural networks

is mean subtraction. Typically, the individual mean is subtracted from each input feature, which

centers the data around the origin in each dimension. In the case of images, it is often sufficient

to subtract a single value from all pixels or a single value for each color channel. In contrast,

normalization is not always necessary, since for images the relative scales of the pixels are
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already approximately equal and in the range from 0 to 255. Another way to normalize the

input is to apply batch normalization to the input layer.

Before starting training, it is important to initialize the weights. The weight initialization has a

strong influence on how and if the network learns during training. On the one hand, it should

be avoided that activations excessively saturate since then the gradients would not propagate

well. On the other hand, they should not be too linear, as they would not compute anything

interesting [GB10]. First of all, the worst thing to do would be to initialize all weights with

the same value, for example setting them to 0. If every unit in the network outputs the same

value, the gradients would all be the same and each unit would perform exactly the same

weight updates. To break symmetry, weights are usually initialized to small random values

around 0. A common procedure is to sample from a Gaussian distribution with zero mean and

one standard deviation. However, smaller numbers do not always work better. For example,

in a deep network, it is problematic if the gradients are very small and decrease too much

during backpropagation. If the initial weights are sampled from a random distribution, another

problem arises. As the number of inputs increases, so does the variance. To solve this, the

variance of a unit’s output can be normalized to 1 by scaling its weight vector by the square

root of the number of inputs, i.e., multiplying the random weight by
1√
n for n inputs. This

factor follows from the fact that each input should have a variance
1
n to normalize the output

variance [Bot12]. The mean of the output of a unit is assumed to be zero-centered. This is

however not the case for e.g. ReLUs. Glorot et al. [GB10] recommend a variance of 2/(n + m)
is recommended for weight initialization, where n is the number of units in the previous layer

and m is the number of units in the next layer. In newer deep neural networks, the variance

for ReLU initialization is set to

√
2.0/(n + m) or

√
2.0/n [He+15b] which is referred to as

Xavier initialization. Biases can be initialized to 0 without concern. Another option is sparse

initialization, where all weights are set to 0, but each unit is randomly connected to a fixed

number of units in the layer below.

2.1.7 Transformers

Transformers were originally introduced in the field of natural language processing (NLP)

[Vas+17], but have recently been used in many other fields. In contrast to earlier sequence-to-

sequence models such as RNNs or LSTMs [HS97], they do not process inputs sequentially, but

are able to process sequence inputs in parallel. This, along with self-attention, enhances their

efficiency and ability to capture long-range dependencies within the data. This section briefly

introduces the main concepts behind transformer models before discussing their adaptations

for processing image data.

Encoder-Decoder Architecture

A transformer consists of two main components, an encoder and a decoder. From a high

level perspective, the encoder processes embedded sequence inputs, which are combined

with positional encodings to preserve the order of the sequence, and processes them through

several similarly structured encoder blocks. Within these blocks a crucial part is the attention

mechanism which allows to consider the whole input sequence. The decoder part, on the other
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hand, takes the output of the last encoder block as input. The decoder part itself consists of

several decoder blocks, each of which includes attention blocks that work slightly different

from the encoder attention mechanism. Inputs at a position after the actual input within the

input sequence are masked and attention is linked to the encoder output. Figure 2.13 depicts

the transformer architecture as proposed by Vaswani et al. [Vas+17].

At inference time, all encoder inputs are processed in parallel. However, the decoder outputs

are generated sequentially. This is because each token generated by the decoder depends

on previously generated tokens. The decoder part predicts the next output token given the

encoded embeddings and the output embeddings up the the current position. More precisely,

the final linear layer outputs a probability distribution over the vocabulary for the current

output embedding position. After the output token for a particular position has been generated,

the output embedding for that token is added to the sequence of output embeddings and the

next position is processed. For training, cross entropy loss is used.

a) b) c)

Figure 2.13: The Transformer model (a) includes different kinds of Multi-head Attention blocks

(b). Each of them performs scaled dot-product attention (c). Images taken from

Vaswani et al. [Vas+17].

Attention

Attention allows the encoder and decoder to consider the entire input sequence when processing

a given embedding. This mechanism is called Scaled Dot-Product Attention. It maps a set of
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query vectors (Q), key vectors (K), and value vectors (V) to an output, as illustrated in Figure

2.13c. The attention function is computed as follows

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V, (2.65)

where Q, K, and V are matrices obtained by projecting the input embedding matrix X of

dimension dmodel through learned weight matrices WQ ∈ Rdmodel×dq
, WK ∈ Rdmodel×dk , and

WV ∈ Rdmodel×dv
, respectively. For example, the key matrix is computed as K = XWK

. The

dimensions dq, dk, and dv are hyperparameters that define the size of the query, key, and value

vectors (or matrices in batch processing). The resulting matrix of the dot product between

each query vector in Q and each key vector in K is referred to as the scores, which represent

how much each element in the sequence (represented by the queries) should care about every

other element (represented by the keys). The scaling factor (

√
dk) scales the dot products to

stabilize the gradients by preventing large values. The softmax function normalizes the scaled

dot products to produce a set of weights for each query, with these weights reflecting the

relevance of each key to the query. It is applied across the rows of the score matrix for each

query over all keys.

These normalized scores are then used to perform a matrix multiplication with the value vectors

(V), effectively computing a weighted sum of the value vectors for each query. This operation

aggregates the information across the sequence, weighted by the computed attention scores,

resulting in a set of vectors that form the output of the attention mechanism.

In the encoder blocks, this attention is usually called self-attention. In the decoder blocks,

attention is applied twice, each time in a slightly different way. First, the attention is applied to

the input embeddings of the decoder block in the same way as in the encoder, with a small

difference: before applying the softmax to obtain the weight vector for V, those inputs of

the softmax at positions corresponding to positions after the position of the current input

embedding are masked. This is done by setting the corresponding elements in the scaled vector

to−∞. The purpose of the masking is to preserve that the generation of each output embedding

can only depend on previously generated embedding, not future ones. The second attention is

also called cross-attention: It computes query vectors Q from the previous embedding within

the decoder as for self-attention, but V and K are computed on the outputs of the final encoder

block. This provides a connection to the output sequence of embeddings of the encoder for

each decoder block.

The described computation of the attention function is limited to computing the attention of a

single embedding to all other embeddings within the input sequence. Multi-Head Attention

allows the model to generate multiple attention weight distributions, enabling it to attend to

different aspects of the information contained in the sequence (see Figure 2.13b). More precisely,

it allows to compute h weight matrices WV
, WK

and WQ
and to compute the attention function

h times, thus allowing the model to attend to different positions. The resulting vectors are

concatenated and multiplied by a weight matrix WO ∈ Rhdv×dmodel , resulting in output vectors

of dimension dmodel . It is defined as:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO, (2.66)
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where headi = Attention(QWQ
i , KWK

i , VWV
i ).

Attention is followed by layer normalization [BKH16], which is defined as

LN(x) = γ

(
x − µ√
σ2 + ϵ

)
+ β, (2.67)

where γ and β are learnable parameters.

This normalized output is added to the pre-attention input vectors, allowing direct information

flow through a bypass connection, thus serving a similar purpose as residual connections in

ResNet [He+15a] or U-Net [RFB15].

Within the encoder and decoder blocks, attention is followed by a feed-forward neural network

with ReLU activation shared across input positions:

FFN(x) = max(0, xW1 + b1)W2 + b2. (2.68)

Positional Encoding

Since transformers do not inherently have access to information about the position of an

embedding within the input sequence, a positional encoding is used to bring this information

into the model.

This is achieved by adding position encoding vectors to the input embeddings. Position encod-

ings are defined as follows

PE(pos,2i) = sin
( pos

100002i/dmodel

)
and PE(pos,2i+1) = cos

( pos
100002i/dmodel

)
(2.69)

where pos is the position within the input sequence, i ∈ {0..dmodel − 1} is the dimension

index. The use of sine and cosine allows relative positions to be learnt and inputs to be scaled

to unseen lengths of sequences.

Vision Transformers

Vision Transformer (ViT) [Dos+20] adapt the Transformer architecture to address vision tasks

such as image classification. It treats an image as a sequence of fixed-size patches (e.g. 16× 16).
Each patch is flattened and linearly projected to a certain dimension. This corresponds to the

input word embeddings in original Transformers. The input image is thus converted into a

sequence of 1D patch embeddings. In contrast to the original Transformer architecture, ViT

does only use an encoder part and adds linear layers on top (see Figure 2.14). The encoder

blocks work slightly different. ViT introduces a learnable class token as the model is trained

for image classification.
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Figure 2.14: Vision Transformer uses the encoder part and introduces a class token. Image

taken from Dosovitskiy et al. [Dos+20].

2.2 Object Detection

In object detection, the goal is to identify and locate objects in an image or video. It involves two

primary tasks: identifying what objects are present (recognition) and determining where they

are in the image (localization). Object detection has seen significant advances with the advent

of CNNs. This section provides a brief overview from the beginnings of object recognition with

CNNs to the current state of research.

Object detectors can be divided into two groups: Two-Stage Detectors and Single-Stage Detec-

tors. Two-stage detectors are characterized by a two-stage object detection process. The first

step in these models is to generate region proposals. These are essentially candidate object

bounding boxes that the model predicts might contain objects. In the second step, each of the

proposed regions is classified into different object categories. This allows for a more refined

detection process, as the model first narrows down the areas of interest before classifying

them, resulting in potentially higher accuracy. More recent architectures belong to the group

of single-shot detectors. These models eliminate the region proposal step entirely. Instead,

they directly predict object categories and their bounding box coordinates in a single pass

through the network. This approach is usually faster than the two-stage detectors, as it reduces

the computational overhead. It is particularly beneficial for applications requiring real-time

processing. Usually there is a trade-off between speed and accuracy [Hua+17], as skipping

the region proposal step might lead to less accurate localization of objects compared to the

two-stage approach.

We will start chronologically with R-CNN [Gir+14] and then pointing out the improvements

made by its successors, Fast R-CNN [Gir15] and Faster R-CNN [Ren+15]. As an representative

example for architectures that belong to the group of Two-Stage Detectors, Faster R-CNN will

be explained in more detail. We will then introduce the YOLO architecture [Red+16; RF18;

JCQ23; WBL23] representing single stage detectors.
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2.2.1 Two Stage Detectors

Shortly after the breakthrough of CNNs in image classification, they were used for object

detection. A pioneering object detection approach based on CNNs is R-CNN [Gir+14].

R-CNN

R-CNN first generates region proposals using a method such as selective search [Uij+13]. These

proposals are candidate regions in the image that may contain objects. Each proposed region

is then resized and fed into a pretrained CNN to extract features. Then R-CNN uses a set of

class-specific SVMs [CV95] for classifying these features. In addition to the SVM, for each

class a linear regressor is trained as well. Depending on the predicted class the corresponding

regressor is used for refining the bounding box of the proposal. Finally, a Non-Maximum

Suppression (NMS) step removes multiple bounding boxes for each object: the proposals are

ordered according to their confidence scores from the SVMs. Those boxes with the highest

scores are kept, while boxes with lower scores and a predefined IoU overlap are removed.

Fast R-CNN

Figure 2.15: Fast R-CNN: Proposals are extracted from the feature map of the backbone CNN.

The main drawback of R-CNN, the expensive CNN application for each proposal, is addressed

in its successor Fast R-CNN [Gir15]. In Fast R-CNN, region proposals are generated from the

input image and then mapped to a shared convolutional feature map created by applying the

backbone CNN to the entire image. From this global feature map fixed-size feature maps are
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extracted via max (or average) pooling. This is referred to as RoI (Region of Interest) pooling,

eliminating the need to apply the whole CNN for each proposal. Furthermore, the separate

SVMs for classification and the linear regressors for bounding box regression used in R-CNN

are replaced with a single head consisting of fully connected layers. This head performs both

object classification, using a softmax layer, and bounding box regression, directly predicting

refinements for the proposal boxes.

Figure 2.15 depicts the object detection process with Fast R-CNN: Proposal generation and

feature extraction from the backbone CNN are performed once per image, while RoI pooling,

bounding box prediction and classification are performed for each proposal. Finally, NMS is

applied to filter out redundant bounding boxes.

For training, a multi-task loss L = Lcls + λLloc is used. For classification Lcls is the log loss

over K + 1 classes (including background). The loss for bounding box regression is defined as

Lloc(t, t∗) = ∑i∈{x,y,w,h} smoothL1(ti − t∗i ) is used with

smoothL1(x) =

{
0.5x2

if |x| < 1,
|x| − 0.5 otherwise.

where t are the predicted and t∗ = (t∗x, t∗y, t∗w, t∗h) are the ground truth transformation parame-

ters, calculated from the ground truth bounding box relative to the proposal box with

t∗x =
(xgt − xa)

wa
, t∗y =

(ygt − ya)

ha
, t∗w = log

(
wgt

wa

)
, t∗h = log

(
hgt

ha

)
.

Faster R-CNN

Fast R-CNN still relies on an external region proposal algorithm such as selective search. For

this reason, Faster R-CNN introduces a Region Proposal Network (RPN), a fully convolutional

network that simultaneously predicts object bounding boxes and objectness scores at each

position in the image. This RPN is integrated into the architecture, allowing for end-to-end

training. Figure 2.16 shows the Faster R-CNN architecture, where the region proposal algorithm

has been replaced by an RPN. It operates directly on the backbone CNN. For each spatial

position of this feature map, a set of anchors is defined. These anchors are predefined bounding

boxes of different scales and aspect ratios. They serve as reference points for potential objects.

For each anchor box, the RPN predicts bounding box refinements and an objectness score.

First, the objectness scores and refined bounding boxes are used to filter out likely background

boxes. Then, redundant region proposals are removed using NMS.

By using an RPN for region proposals, Faster R-CNN can be trained end-to-end. The losses

used to train the RPN are similar to the final outputs. The multi-task loss includes a binary

cross-entropy loss for the objectness score (foreground and background) and a regression loss

(smooth L1 loss) for the bounding box refinements.
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2.2 Object Detection

Figure 2.16: Faster R-CNN: Proposals are generated by a Region Proposal Network (RPN).

Feature Pyramid Networks

A weakness of the original Faster R-CNN architecture is that is struggles with small objects.

This is due to the loss of fine-grained spatial information as the input passes through multiple

convolutional and pooling layers, which leads to reduced resolution in deeper layers of the

network.

Feature Pyramid Networks (FPN) [Lin+17a] apply the idea of feature pyramids to CNNs for

object detection. It extends the backbone CNN by adding a top-down pathway with lateral

connections to the existing bottom-up pathway of the CNN. The top-down pathway of the FPN

starts from the highest-level feature map (with the lowest spatial resolution) in the backbone

CNN and progressively upsamples it, as shown in Figure 2.17. The corresponding CNN feature

maps are connected to those of the feature pyramid by adding them after applying a 1 × 1
convolutional layer. These typically five levels of the pyramid all contribute to the prediction of

bounding boxes and classes, as anchor boxes are extracted from all levels. However, each level

corresponds to a range of bounding box extents in the input image and thus predicts only for

that range. Higher levels with smaller feature maps are used to detect larger objects, while

lower levels with larger feature maps are used to detect smaller objects. When Faster R-CNN

is extended with FPN, the feature pyramid is used in the RPN as well as in the subsequent

classification and regression head.
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Figure 2.17: Feature Pyramid Network (FPN) for predicting bounding boxes and scores from

different spatial resolutions.

2.2.2 Single Stage Detectors

In contrast to two-stage detectors such as Faster R-CNN, which first generate region proposals

and then refine and classify them, Single Shot Detectors accomplish both tasks in a single

pass through the network. This makes them faster and better suited for real-time applications.

Among the first architectures for single shot detection were Single Shot Multi-Box Detector

(SSD) [Liu+16b] and You Only Look Once (YOLO) [Red+16]. In contrast to the first version of

YOLO, SSD relies on anchor boxes and uses multi-scale feature maps according to different

object sizes, similar to Faster R-CNN with FPN, improving detection particularly for smaller

objects. However, subsequent versions of YOLO followed these principles and employed anchor

boxes and multi-scale feature maps. As one of the most influential approaches for single shot

object detection we will give a short overview on the evolution of YOLO and focus on YOLO v8

in this section.

YOLO

YOLO v1 [Red+16] is fundamentally a CNN with a loss tailored to object detection. It is

characterized by its ability to process the entire image in a single forward pass, enabling real-

time object detection. The main idea is to divide the input image into a grid and predict two

bounding boxes for each grid cell (e.g. 7 × 7 cells results in 49 × 2 box predictions per image),

making it significantly faster than two-stage approaches since there is only a single NMS step

on an order of magnitude fewer proposals. The loss used for training YOLO is a weighted

sum of classification, objectness and localization loss. For objectness and classification, mean

squared error is used. For bounding box regression, the localization is different from other

detection architectures:

Lloc =
S2

∑
i=0

B

∑
j=0

1
obj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2 + (

√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2
]
,

where S2
represents the total number of grid cells, B is the number of bounding boxes per cell,

1
obj

ij is 1 if an object is present in the j-th bounding box of the i-th grid cell, and 0 otherwise.
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In YOLO v2 [RF17], anchor boxes for grid cells, batch normalization, connections to higher-

resolution feature maps and multi-scale training were used. The architecture is fully convolu-

tional. Among other improvements, anchor boxes were optimized via k-means clustering.

YOLO v3 [RF18] further improved the architecture by using a deeper backbone, Spatial Pyramid

Pooling [He+15c] and changing the loss function to logistic regression for bounding boxes

and cross-entropy loss for classification. It has three outputs corresponding to three ranges of

bounding box sizes. In summary, architectural features previously used in two-stage detectors

such as anchor boxes or FPN were also incorporated into YOLO. Additionally, the loss function

became more similar to those used in two stage detectors, e.g. by adding an objectness loss

term.

A detailed description of the further evolution of the YOLO series is beyond the scope of this

thesis, so we will focus on a more detailed description of a recent version of YOLO that achieves

state-of-the-art performance in real-time object recognition. Next, we will briefly outline the

main improvements and architectural componens of YOLO v8.

YOLO v8

YOLO v8 shifts from anchor box-based box prediction back to an anchor-free approach [Tia+19;

Ge+21] like YOLO v1 and predicts the center of an object directly instead of the offset from a

predefined anchor box. This is intended to counteract differences between the distribution of

anchor boxes in the dataset used for training and other data at inference time, which may have

different distributions of anchor boxes [TC23]. It also reduces the number of box predictions,

thus speeding up the NMS step.

The architecture is divided into three parts: backbone, neck, and head. The backbone is a CNN

consisting of blocks of C2f modules and convolutional layer and Spatial Pyramid Pooling (SPPF)

module on top. In addition to the SPPF outputs, output feature maps of the backbone are taken

from several intermediate layers corresponding to different spatial resolutions. The levels are

refered to as P3, P4, and P5 (from low level high resolution feature maps to high level low

resolution feature maps). They are connected to the neck which performs upsampling on P4 and

P5 and provides skip-connections. The idea of up- and downsampling with skip-connections is

similar as for U-Net (see Section 2.3.1), although more complex as it involves C2f modules. The

head part consists of three decoupled heads for the three scale levels P5, P4 and P3, where each

head separately predicts bounding boxes and class probabilities. The convolutional layers in

YOLO v8 perform batch normalization (see Section 2.1.6) and use SiLU activations (see Section

2.1.2).

A central architectural block used in YOLO v8 is the C2f module. By its design it combines high-

level features with contextual information to improve detection accuracy. The C2f module is an

evolution of the Cross-Stage Partial (CSP) layer introduced in CSP Nets [Wan+20]. CSPNets

have been shown to improve information flow and learning efficiency. Their main idea is to split

the feature maps along the channel dimension, process one part through multiple convolutional

layers, and then merge both parts. This avoids potentially redundant computations in two

parallel branches. Specifically, within the YOLO v8 architecture, a part is processed through a
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series of bottleneck blocks. These blocks consist of two convolutional layers with an optional

shortcut connection.

Spatial Pyramid Pooling Fusion (SPPF) process features at various scales. SPPF extends the idea

of Spatial Pyramid Pooling (SPP) [He+15c]. Figure 2.18 shows how SPPworks on a convolutional

layer: pyramid pooling spatially divides the input feature maps into a fixed number of bins

(1 × 1, 2 × 2, and 4 × 4). The resulting outputs are concatenated. The size of the output is the

same regardless of the size of the pooled feature map. This allows CNNs to process arbitrarily

sized inputs. SPPF stacks pooling layers and adds shortcut connections rather than applying

pyramid pooling for different scales in parallel, thus reducing computational cost.

Figure 2.18: Spatial Pyramid Pooling (SPP). Image taken from He et al. [He+15c].

The loss function for YOLO v8 is binary cross entropy for classification and a combination of

Complete Intersection over Union (CIoU) [Zhe+20] and Distribution Focal Loss (DFL) [Li+20]

for bounding box regression.

Unlike IoU, which considers the overlap between bounding boxes, CIoU loss also considers the

distance between their centers and the aspect ratio. It is defined as

CIoU = IoU− ρ2(b, bgt)

c2 − αv,

with α =
v

(1 − IoU) + v
and v =

4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

, (2.70)

where IoU is the intersection over union between the predicted bounding box b and the ground

truth bounding box bgt
, ρ(b, bgt) is the Euclidean distance between the center points of the

boxes, c is the diagonal length of the smallest enclosing box that covers both boxes, v is the

aspect ratio consistency term that is balanced by α. For the predicted box, w and h are the

width and height, and wgt
and hgt

are the width and height of the ground truth bounding box,

respectively.

DFL extends focal loss to continuous values and can therefore be used in bounding box regres-

sion when predicting attributes such as center coordinates, width, and height.
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The original focal loss (FL) [Lin+17b] addresses the scenario where there is a strong imbalance

between classes during training. It is defined as

FL(pt) = −αt(1 − pt)
γ log(pt), (2.71)

where pt is the estimated probability for the class with the true label, αt is a weighting factor

for the class that adjusts the importance of positive or negative examples, and γ is the focusing

parameter that adjusts the rate at which easy examples are down-weighted, helping the model

focus more on hard examples.

DFL is applied to each bounding box regressor. It is applied to a predicted discretized probability

distribution (realized as a softmax) for a given number of bins (e.g., 14 bins). The minimum and

maximum values of the interval reflect the minimum and maximum possible offsets for the

corresponding bounding box attribute. Each bin is associated with an interval of offsets. The

idea then is to focus on the probability of the predicted values in the vector at positions i and
i + 1 around the ground truth value y. The values yi and yi+ represent the start and end points

of an interval around the ground truth value y with yi ≤ y ≤ yi + 1. DFL is defined as

DFL(Si, Si+1) = −(yi+1 − y) log(Si) + (y − yi) log(Si+1), (2.72)

where Si and Si+1 are the softmax probabilities predicted by the model for the merged interval

(spanning two bins) from yi to yi+1. As with the focal loss, hard examples, such as boxes with

ambiguities in the object boundaries, have a higher impact on the total loss because their

respective softmax probabilities are lower.

Unlike its predecessors, which focused primarily on object detection, YOLO v8 also supports

other vision tasks such as segmentation and pose estimation.

Transformers for Detection

In this section, the focus was on CNN-based architectures. However, there exist also models

based on Transformer architectures. DETR (Detection Transformer) [Car+20] performs similarly

well as Two-Stage CNN based detectors like Faster R-CNN. While object detection is performed

in a end-to-end manner (single-stage object detection), this has several drawbacks. It generally

requires more training data and training time. Inference speed can be slower due to its more

complex architecture. Additionally, DETR struggles in detection of small objects as it lacks

multi-scale features, which are critical for small object detection [Liu+23].

2.3 Segmentation

In image segmentation, the goal is to divide an image into several parts or regions in order to

simplify its representation. While there are different approaches to image segmentation that

are more or less suitable depending on the specific problem, in this section we will focus on deep

learning based image segmentation. These approaches can be used in cases where classical
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image processing methods such as thresholding (e.g. OTSU [Ots79]) or edge detection [Can86],

region-based (e.g. region growing [PP93]), clustering-based or watershed segmentation [BM18]

fall short. This is the case, for example, in natural image segmentation, which is particularly

challenging due to the inherent complexity and variability of real-world images.

In deep learning-based image segmentation, we can categorize segmentation tasks into three

groups: Semantic Segmentation, Instance Segmentation, and Panoptic Segmentation. Figure

2.19 shows the different segmentation tasks for an input image.

• Semantic segmentation involves labeling each pixel in an image with a class label that

corresponds to a category or type of object. The goal is to classify each pixel into a

category, such as trees, sky, etc. As shown in Figure 2.19b, this does not distinguish

between instances of a particular object type or class (i.e., all pixels for elephants are

assigned the same label).

• Instance segmentation focuses on segmenting individual objects. Rather than assigning

each pixel of the input image to a specific class, it requires that each instance’s pixels are

assigned correctly. This usually involves object detection to first detect instances, and a

subsequent segmentation step. In Figure 2.19c, the pixels inside the detected bounding

boxes are segmented.

• Panoptic segmentation [Kir+19] requires labeling every pixel in an image, like semantic

segmentation, but also distinguishes between instances of the same object class, similar

to instance segmentation. In panoptic segmentation, classes are typically grouped into

"stuff" (amorphous regions such as grass, sky, road) and "things" (countable objects such

as people, animals, cars). For example, the stuff classes sky and grass in Figure 2.19d

are the same as in Figure 2.19b, but each pixel belonging to an elephant is assigned to a

specific instance class.

In this section, we will focus on semantic segmentation and instance segmentation, and outline

approaches that represent methods in each area. We will take a closer look at U-Net [RFB15]

as an architecture for semantic segmentation. Then, we will introduce Mask R-CNN [He+17]

as a typical architecture for instance segmentation. Finally, we will highlight the extensions

needed to adapt YOLO v8 for instance segmentation.
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a) Input image b) Semantic segmentation

c) Instance segmentation d) Panoptic segmentation

Figure 2.19: Different segmentation tasks for an input image a)

2.3.1 U-Net

Figure 2.20: U-Net for cloud segmentation.

One of the most widely used architectures for semantic segmentation is the U-Net. It was

originally developed for and applied to biomedical image segmentation. Its name refers to

its typical shape It consists of two parts: a downsampling and an upsampling path. The

downsampling path is similar to a typical CNN, i.e., alternating convolution and pooling

layers. The upsampling path uses transposed convolutions [Zei+10], which aim to reverse the

transformation of a convolution, effectively increasing the spatial dimensions of the input. An

important feature is the use of skip connections between downsampling and corresponding

upsampling layers. This allows a flow of contextual information from high-resolution layers,

which helps with precise localization in upsampling layers.
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Figure 2.20 shows a U-net architecture that we adapted for cloud segmentation in satellite

imagery [Drö+18]. It works with 9 input channels, has fewer filters for a lighter network, and

uses strided convolutional layers instead of pooling layers for downsampling. For training a

U-Net for predicting one of C classes per pixel a multi-class cross entropy is used:

LCE = − 1
N

N

∑
i=1

H

∑
j=1

W

∑
k=1

C

∑
c=1

yijkc log(ŷijkc), (2.73)

where ŷijkc is the softmax output for class c at position (j, k) and yijkc is the 1 if the groundtruth

at pixel position (j, k) is c and 0 otherwise.

2.3.2 Mask R-CNN

Figure 2.21: Mask R-CNN.

Mask R-CNN [He+17] is based on Faster R-CNN (see Section 2.2.1) and extends it for instance

segmentation. It includes an additional branch for segmentation: In addition to box prediction

and classification, the extracted region of interest is processed by a mask branch that outputs

a segmentation map (see Figure 2.21). To train the mask branch, the following binary cross-

entropy loss is used:

Lmask = − 1
N

N

∑
i=1

H

∑
j=1

W

∑
k=1

[yijk log(ŷijk) + (1 − yijk) log(1 − ŷijk)], (2.74)
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where ŷijk is the predicted and yijk is the groundtruth value of for each pixel at position (j, k).
The total loss used for training is therefore L = Lcls + Lbox + Lmask. Other improvements

include replacing RoI pooling with RoIAlign, which addresses the quantization errors introduced

by RoI pooling. Instead of dividing the RoI into a grid, it computes exact floating-point values

of cell boundaries and computes values in the output feature map via bilinear interpolation.

2.4 Foundation Models

Foundation models are large-scale models trained on large datasets of text, images or audio.

They are often trained in a self-supervised manner. Because of the general representations

learned, they can be fine-tuned or adapted for a variety of downstream tasks.

In this section, we present three foundation models. First, we introduce the Contrastive

Language-Image Pre-training (CLIP) [Rad+21], an image-to-text model trained on unified

image and text representations. Next, the Segment Anything Model (SAM) [Kir+23] is de-

scribed, a general purpose image segmentation model. Trained on the same data as SAM,

FastSAM [Zha+23] provides comparable segmentation results to SAM, but by using a CNN

architecture instead of Transformer, it significantly improves inference time.

2.4.1 CLIP

CLIP (Contrastive Language-Image Pre-training) is a model trained to understand both text

and images. The training data are images and their descriptions collected from the Internet. It

consists of two main components: the text encoder and the image encoder. The image encoder

can be based on various architectures, such as a Convolutional Neural Network (CNN) or a

Vision Transformer (ViT). The text encoder processes textual input (the image descriptions)

and typically uses a transformer-based architecture. Both encoders are trained to project their

input into a common embedding space. This is achieved by learning to minimize the distance

between the text and image vectors of an image-text pair, as shown in Figure 2.22. CLIP uses

the following contrast loss function for training:

L = − 1
2N

N

∑
n=1

[
log

exp(sim(in, tn)/τ)

∑N
k=1 exp(sim(in, tk)/τ)

+ log
exp(sim(tn, in)/τ)

∑N
k=1 exp(sim(tn, ik)/τ)

]
(2.75)

where sim(i, t) denotes the similarity score between an image embedding i and a text em-

bedding t, in and tn represent the image and text embeddings of the nth
pair, respectively.

The temperature τ is a scaling parameter that controls the degree of concentration of the

distribution, affecting the separation between positive and negative pairs in the embedding

space. The loss is averaged over all N pairs in the batch, with the sum running over both

image-to-text and text-to-image comparisons to ensure symmetry in learning.
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Figure 2.22: CLIP constrastively learns unified image- and text reprentations. Image taken from

Radford et al. [Rad+21].

2.4.2 SAM

The Segment Anything Model (SAM) is a basic image segmentation model capable of segment-

ing a wide range of images without task-specific training. It is trained on the SA-1B dataset,

which consists of over 1 billion masks on 11 million images. The images were labeled iteratively

and semi-automatically. It is based on a Vision Transformer backbone. In addition to the Vision

Transformer (stacked encoder blocks) that encodes the images, an additional prompt encoder

is trained that learns a unified embedding for point, box, and mask prompts, and, based on

CLIP text encodings, also text prompts. These two encoders are the input to a mask decoder

that outputs the segmentation maps. For training focal loss together with dice loss, which is

defined as:

Dice Loss = 1 − 2 × |Y ∩ Ŷ|
|Y|+ |Ŷ|

, (2.76)

where Y denotes the ground truth mask and Ŷ denotes the predicted mask.

2.4.3 FastSAM

Unlike SAM, FastSAM uses a CNN-based architecture, namely the YOLO v8 detector with

segmentation. The use of a CNN dramatically reduces computation time while maintaining

comparable segmentation performance. It is trained on a fraction of the SA-1B dataset intro-

duced for SAM. While FastSAM cannot directly process prompts within its architecture, the

resulting masks are post-processed and matched to box, dot, and text prompts.
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2.5 Image Similarity Search

Image similarity is a subjective concept, depending on the context in which it is being applied.

How similar two images are depends on the specific scenario. For instance, two images might

be considered similar based on their color distribution but dissimilar when considering the

arrangement of elements within them. Furthermore, when considering the similarity of colors,

shapes, textures, and patterns this is often not reflected in semantic concepts of objects present

in an image. Instance retrieval [CAS20; Che+22] is closely related to image similarity search. It

can be considered as a subfield of image similarity search, since it focuses on identifying and

retrieving images that contain the same specific instance depicted in the query image.

In practice, image similarity is usually measured between feature vectors that represent those

images. Similarity search then corresponds to nearest neighbor search in feature space, whether

binary or real-valued. While earlier image descriptors such as SIFT [Low99] were used, nowa-

days the feature vectors are usually obtained from deep learning models.

Figure 2.23a shows a result list of a similarity search system based on CNN features that were

pre-trained for image classification on OpenImages [Kuz+20]. In this example, two images are

similar, if they are from the same class, i.e., bicycle. A more fine-granular search could consider

color or type of the bicycle. The determination how images are similar to each other is thus

determined by the model and dataset, respectively.

Image similarity search is used to find images that are visually similar to a given query image.

Figure 2.23b shows the process from a high level point of view: A user’s search intention is

expressed via a query image which is then used to query a database to find similar images.

The results are then presented to the user. The search process involves two main steps: feature

extraction and nearest neighbor search.

First, features need to be extracted from an image. These features implicitly define the concept

of similarity used for image similarity search. An image is represented by a vector in this feature

space. Similar images are those which are close in feature space (e.g., in terms of Euclidean

distance). When indexing an image dataset, the speed of feature extraction is not the most

important issue, but it is very important at query time, since this step needs to be performed

before using the feature vector for nearest neighbor search.

The second step, nearest neighbor search, is even more important for search performance. As

the dataset to be searched grows, the requirement for fast an efficient nearest neighbor search

becomes more important. The performance of the image similarity search depends on various

parameters, such as the indexing structure and the corresponding search algorithm, the type

of the feature vectors (e.g., binary or float values), and the length of the feature vector.
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a) Retrieval list visualization [KMF21] b) Query by example

Figure 2.23: Image similarity search: A query image is used to find similar images (b). The result

is visualized as retrieval list (a).

2.5.1 Similarity Measures

The following measures are used to quantify how similar two feature vectors are to each other.

The query vector is q and a vector from the database is x.

Euclidean Distance

The simplest way to measure distance between feature vectors is the Euclidean distance. It

computes a straight line distance between points in feature space:

de(q, x) =

√
n

∑
i=1

(qi − xi)2
(2.77)

The smaller the value, the closer the feature vectors are.

Cosine Similarity

The cosine similarity calculates the cosine of the angle θ between two vectors. One advantage

is that it can be used to compute how similar two feature vectors are, regardless of their

magnitude. Contrary to the Euclidean distance, a cosine similarity close to 1 indicates high

similarity, a cosine similarity close to -1 indicates high dissimilarity (opposite directions).

scos(q, x) = cos(θ) =
q · x

∥q∥∥x∥ =
∑n

i=1 qixi√
∑n

i=1 q2
i ·
√

∑n
i=1 x2

i

(2.78)
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Cosine similarity can be used to measure distance instead of similarity by computing 1− scos.

If the vectors are L2 normalized (dividing the vectors by their magnitude to get a vector of unit

length), then computing the Euclidean distance results in the same order as when using the

cosine distance (also the actual distance values will differ).

Hamming Distance

If the vectors are x and q binary vectors, i.e., in Hamming space, the Hamming distance can be

used:

dH(q, x) =
n

∑
i=1

1qi ̸=xi (2.79)

Although there is a quantization error, an advantage of using binary vectors is that theHamming

distance computation is very fast, especially in hardware implementations or using bitwise

operations in software, which is significantly faster than computing Euclidean distance in

high-dimensional spaces.

2.5.2 Approximate Nearest Neighbor Search

Nearest Neighbor Search (NNS) includes algorithms that are used to find the data points in a

given dataset that are closest to a query point. Its simplest form is the brute-force search, which

calculates the distance from the query point to every other point in the dataset and then selects

the points with the smallest distance. This is also referred to as exhaustive search or linear

scan. While straightforward and exact, this approach is expensive and obviously does not scale

for larger datasets. For this reason, Approximate Nearest Neighbor (ANN) methods partition

the search space or use some kind of quantization to enable a more efficient search. ANN

methods can be grouped into hashing-based methods, product quantization based methods,

and graph-based methods [Wan+15]. Hashing methods map input feature vectors to a lower

dimensional binary space. In this way, the learned representations (referred to as compact

binary codes or hash codes) enable memory-efficient storage and fast retrieval of similar items

from large databases. In the context of ANN, hash functions are supposed to achieve the

opposite of hash functions know from other fields: instead of avoiding collisions, they are

explicitly designed the way that similar items have the same or similar hash values (in terms

of the Hamming distance).

2.5.3 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [GIM+99] is one of the first methods in the field of hashing-

based ANN methods. The idea of LSH is to hash data points such that similar points are more

likely to be mapped to the same bucket. LSH uses a set of hash functions which map a data

point to a bucket. The number of hash functions n is the length of the binary string, i.e., there is

one hash function for each position in the binary string. The bucket a data point is mapped to
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then corresponds to the particular value of the resulting binary string. Although the definition

of LSH is more general, when used for ANN, where the input is a d-dimensional embedding

vector and the output is an n-dimensional binary vector, Signed Random Projection (SRP) is

used as hash function, that implicitly assumes cosine similarity of the embedding vectors and

is defined as:

ha(v) = sign(a · v) (2.80)

where a is a projection vector with each element is randomly chosen from a Gaussian distri-

bution N(0, 1). In this way, the hash function defines a hyperplane that acts as a decision

boundary for the hash value to be either 0 or 1.

While LSH aims to map data points that are close to each other into the same buckets, the

decision boundaries for the buckets are data-independent because they are chosen randomly.

For this reason, when LSH is used for ANN of image feature vectors, the performance is usually

inferior to that of deep hashing methods.

2.5.4 Deep Hashing

Similar to LSH, the goal of deep hashing is to represent large-scale, high-dimensional data such

as images in a lower-dimensional binary space while preserving the similarity relations of the

original space between the data points. The fundamental idea to use deep learning methods to

learn binary hashcodes was introduced by Salakhutdinov et al. as Semantic Hashing [SH09]

where an auto-encoder learns a binary hashcode representation of the input data. In contrast

to data-independent hashing methods, the hashing function is directly learned from the input

data. The field of deep hashing can be roughly divided into supervised and unsupervised

methods. Supervised deep hashing methods [Cao+17b; Su+18; Cao+18b] usually utilize class

labels of large image datasets to train an output layer that produces outputs that approximate

binary vectors of a certain length. The performance depends on the network architecture and

the loss function. Typical loss functions are pairwise or triplet losses (see Section 2.1.3). Often

the quantization error is incorporated into the loss function. In unsupervised deep hashing

[Su+18; Yan+19], the similarity information is usually derived from the relationship in the

original space.

2.5.5 ProductQuantization

The idea of product quantization [JDS10; Mat+18; JDJ19] is to divide the high-dimensional

space into smaller sub-spaces and then quantize each of these sub-spaces separately. The

input vector of length D is split into M subvectors xm of equal length
D
M , corresponding to M

subspaces. For each of the subspaces a set of K representative values cm,k is derived (called

codes or centroids). The learning of the codes typically involves a clustering algorithm, such as

k-means, applied to each of the M sub-spaces. Each centroid is assigned to a unique id. By

accepting a quantization error between the floating point sub vector and the representative

value assigned to its code, the subvector can be stored as an id referencing to the value, thereby

significantly reducing storage costs. Query costs are reduced by using an inverted index for

the codes that point to the corresponding subvectors in the dataset.
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The whole code is quantized as follows:

Q(x) = [Q1(x1), Q2(x2), . . . , QM(xM)] with Qm(xm) = argmin
cm,k∈Cm

∥xm − cm,k∥2,

(2.81)

The approximate reconstruction x̂ of x from its centroids can be used to efficiently perform

distance computations and is defined as:

x̂ = [cT
1,Q1(x1)

, cT
2,Q2(x2)

, . . . , cT
M,QM(xM)]

T
(2.82)

The Euclidean distance between a query vector q and a database item x, after quantization,
can be approximated by summing the distances between their corresponding sub-vector

centroids:

∥q − x∥2 ≈
M

∑
m=1

∥cm,Qm(qm) − cm,Qm(xm)∥
2

(2.83)

2.5.6 Multi-Index Hashing

Usually, it is not necessary to compute the distance to all neighbors, since it is often sufficient

to search neighbors within certain radius of the query point. Multi-Index Hashing (MIH)

[NPF12] divides a hashcode h into m partitions, i.e. h = (h1, ..., hm), where hk
and gk

are the

kth
subcodes. The Hamming distance between the query code and the database code is the

same as computing the distance between all subcodes and adding them up. However, when

searching only within a specific radius, not all subcodes need to be considered. The idea of MIH

is based on the observation that for two binary codes h = (h1, ..., hm) and g = (g1, ..., gm) the
following proposition holds:

∥h − g∥H ≤ r ⇒ ∃k ∈ {1, ..., m}
∥∥∥hk − gk

∥∥∥
H
≤
⌊ r

m

⌋
, (2.84)

where H is the Hamming norm.

For example, a 64-bit binary code could be divided into m = 4 partitions. Then, for every

neighboring code within radius r = 3, there must exist a subcode with ⌊ 3
4⌋ = 0. In this case,

instead of comparing the whole binary string, it is sufficient to check if any of the subcodes

are equal. Multi-Index Hashing can be combined with the previously introduced methods.
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3
Detection and Segmentation

This chapter presents work in two related areas: object detection and image segmentation. Both

works present solutions to specific problems that could not be solved by available state-of-the-

art methods alone. The first work presents an approach to solve the problem of textual stamp

detection and recognition. The second work presents a solution for improved segmentation of

morphologically complex eukaryotic cells.

Detection and Recognition

Detecting textual stamps on index cards that contain various other text itself poses various

challenges. Our approach integrates several deep learning approaches into a pipeline for textual

stamp detection and recognition. We show that the learned textual stamp representations

generalize well and can be used to identify and group unknown textual stamps.

Detection and Segmentation

Segmentation of morphologically complex eukaryotic cells in fluorescence microscopy images

is a challenging task due to the inherent variability in cell shapes, sizes, overlapping cells, and

the complex intracellular structures that may be present. When working with fluorescence

microscopic images of cells, it is common to stain cells. It is also possible to stain cell nuclei

separately. Our approach extends the Mask R-CNN architecture to learn features for cell nuclei

separately and achieves better results than using both channels directly.
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3.1 Deep Learning for Textual Stamp Recognition on Index
Cards of the Lessico Etimologico Italiano

3.1.1 Introduction

The objective of the Lessico Etimologico Italiano (LEI)1 [PS79] is the documentation and historical

analysis of the entire Italian vocabulary from its beginnings until today. The LEI is published

since 1979 by the Academy of Sciences and Literature (Akademie der Wissenschaften und der

Literatur) in Mainz, Germany, under the direction of Max Pfister, Wolfgang Schweickard, and

Elton Prifti. In addition to the standard Italian language, all italo-romance dialects are taken

into account. With this conception, the LEI makes an important contribution to the knowledge

of Italian as well as European language history and to the preservation of the linguistic and

cultural historical traditions reflected in it.

The traditional workflow of etymological dictionary research is based on the compilation of

large collections of source material in the form of annotated index cards, as shown in Figure 3.1.

In the LEI project, these annotated index cards were started to be digitized in recent years for

two reasons: first, to store and save the precious collected material on digital storage devices,

and second (and above all), to be able to process the scanned index cards automatically to speed

up the redaction process of the LEI. A typical index card is shown in Figure 3.2. It contains at

least three different areas of text: (a) an etymon (green box) that corresponds to an entry in

the published dictionary, (b) an area containing the content, i.e., the source text (orange box),

and (c) a single textual stamp that itself contains information about the origin of content (red

box).

The index cards of the LEI were produced manually by the LEI team members over the years,

since 1968. The total number of index cards collected for the LEI is about 8,000,000.

Typically, each index card is processedmanually by a team of philologists to produce an entry for

a particular word of the Italian vocabulary, taking the etymon as a starting point and considering

semasiological and onomasiological aspects. The dimensions of an article of the LEI can oscillate

from a few lines up to nearly 200 pages of text. Each article of the LEI is composed of four

parts: a) the head, containing the etymon, morphological information as well as the meaning,

b) the body, containing a summary as well as the history of the word, c) the commentary,

d) the bibliography. The body of the article is composed of lexicographic information chains,

systematically ordered by meaning, as well as geolinguistic and chronological classification.

The completion of the LEI is planned for the year 2033.

Since 2009, several software tools are used to support the creation of the LEI [Pri22]. In particular,

a collaborative work environment is provided, based on a shared database system containing

entries for each word of the Italian vocabulary currently being processed, with all the required

information. The final database entries are used to produce the printed edition and the online

version of the LEI. The information in the database also includes the currently relevant scanned

index cards.

1
https://lei-digitale.it
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Figure 3.1: Example of boxes of collected index cards for the LEI.

The textual stamp in an index card refers to a specific literature source (e.g., "MenegusTam-

burin" in Figure 3.2) and contains usually also the related geolinguistic information (e.g., "3222

lad.cador.(oltrechius.)" in Figure 3.2) as well as the chronological coordinates. The stamp is

important to determine the relevant entry in the database the index card belongs to. Thus,

automatically recognizing textual stamps in scanned index cards and automatically inserting

the corresponding index card into the database can save significant amounts of time.

However, the recognition of textual stamps on index cards poses several challenges. For example,

the stamp itself and all other parts of an index card contain text. Correctly identifying the text

of interest (i.e., the stamp’s text) can be difficult and cannot be solved, e.g., by standard text

spotting approaches [Zha+16b; JVZ14] or scene text recognition methods [WBB11; SBY16].

Other challenges are variations in background, layout, size, and position of a stamp. Stamps

can occur in various orientations, might not be complete or have very low contrast. They may

be occluded, modified by hand-written corrections or partly stamped on other text, resulting

in background clutter. This is particularly hard to distinguish, since both background and

the object to be detected in the foreground are text. Even hand-written “stamps" occur on

numerous index cards.

Another challenge is that two different stamp classes may differ only in one or few letters, which

makes them visually very similar. In Figure 3.3, several particularly challenging stamps are

shown. Overall, this leads to the fact that the use of available methods for stamp recognition

[You+17] or text recognition [WBB11; SBY16] do not provide satisfactory results.
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Figure 3.2: A typical index card with the stamp to be recognized (red), content (yellow), and

etymon (green).

To address these challenges, we present a novel approach to automatically process a collection

of digitized index cards by detecting, aligning, and recognizing textual stamps on scanned

index cards. The proposed approach is based on deep learning models for the three tasks of

stamp detection, alignment, and recognition, in order to speed up the lexicographic workflow

of the LEI and facilitate editorial work.

The contributions of this section can be summarized as follows:

• We propose a novel deep learning approach for processing a large corpus of scanned index

cards in the fields of lexicography, philology, linguistics, as well as further disciplines

working with large numbers of index cards. In particular, we present deep neural network

models for textual stamp detection, alignment, and recognition. To the best of our

knowledge, our work is the first work proposing a solution to the problem of textual

stamp recognition on index cards.

• Since the total number of stamp classes in the LEI corpus is unknown, we trained a deep

learning model to map stamp images to the embedding space. These embedding vectors

are compact representations of the stamps and can be used to compare two stamps and

determine whether they belong to the same class. Although trained iteratively only on a

small portion of the data, we demonstrate that the learned textual stamp embeddings

generalize well and are highly discriminative to identify unknown stamp classes. Our
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Figure 3.3: Visually challenging textual stamps.

experimental evaluations show excellent results for the stamp detection task as well as

for the stamp recognition task, with a mean average precision of 98.80% and an accuracy

of 97.02%, respectively.

• We present a semi-automatic stamp recognition approach based on similarity search to

identify new textual stamps not present during training in the entire corpus of philological

index cards and thus accelerate the traditional time-consuming workflow of etymological

dictionary research.

• We make annotated datasets for textual stamp recognition on index cards available

to the scientific community (i.e., 6,819 scanned index cards with bounding boxes for
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stamps and 170,494 cropped and aligned stamps for recognition)
2
. Although we focus on

textual stamps in the context of the LEI, other philological projects that also digitize their

analogue collections and have similar workflows based on recognizing textual stamps

on index cards may profit from our work. Examples of such projects are: Diccionario

del español medieval (DEM) [Mül87]; Dictionnaire étymologique de l’ancien français

(DÉAF) [Bal+74]; Dictionnaire de l’occitan médiéval (DOM) [Ste+96]; Dictionnaire ono-

masiologique de l’ancien gascon (DAG) [BPW75].

Parts of this section are based on: Nikolaus Korfhage, Hicham Bellafkir, Markus Mühling,

Markus Vogelbacher, Elton Prifti, and Bernd Freisleben. “Deep Learning for Textual Stamp

Recognition on Index Cards of the Lessico Etimologico Italiano.” in: Submitted; Under Review.
2024.

3.1.2 Related Work

In recent years, deep learning methods, in particular deep convolutional neural networks

(CNNs), have led to breakthroughs in many computer vision tasks, such as image classification,

object detection, image segmentation, person recognition, and text spotting. To the best of our

knowledge, the particular problem of textual stamp recognition in general, and the problem of

textual stamp recognition on index cards for creating an etymological dictionary in particular

have not been considered in the literature - neither using deep learning approaches, nor using

classical computer vision methods. Nevertheless, there are related fields such as text spotting,

text recognition, optical character recognition (OCR), and generic stamp recognition.

Existing methods and deep learning models in the field of text spotting [Zha+16b; JVZ14] are

usually trained and applied end-to-end, but cannot be successfully applied to our corpus of

scanned index cards. Text spotting is aimed at recognizing text in natural images, where the

intra-class variation is usually very high. In contrast, textual stamps, and stamps in general,

have a low intra-class variation, since they mostly differ in color, position, and orientation, but

not in shape and size. In the case of our scanned index cards, we need to distinguish textual

stamps from other text.

Similarly, OCR cannot be applied directly. Although OCR works well on textual stamps cropped

and aligned accurately, it still requires a method to distinguish the unimportant text from the

important text (i.e., textual stamps). To tackle this problem, we divide the task into an initial

stamp detection step, a subsequent stamp alignment step, and a final stamp recognition step.

Dividing the textual stamp recognition task into subtasks, rather than training an end-to-end

model, eliminates the need for a sufficiently large dataset with full bounding box annotations

for thousands of stamp classes. For stamp detection, we rely on the recent CNN object detection

architecture Mask R-CNN [Wu+19] with feature pyramids [Lin+17a]. The cropped detection

results are aligned by using a recent word-level text detection framework [Bae+19]. Finally, for

stamp recognition, we use the deep learning model EfficientNet-B3 [TL19], which achieves

state-of-the-art results in image recognition tasks.

Several other methods relying on classical image processing methods for special use cases

(e.g., passport stamp recognition [Zaa+20], seal detection [RPL09], logo detection [ARP16;

2http://link_to_datasets

62

http://link_to_datasets


3.1 Textual Stamp Recognition on Index Cards

Figure 3.4: Textual stamp detection, alignment, and recognition workflow.

Cha+19] or photo timestamp recognition, [CZ03]) exist. These methods use features such as

shape [FM13; DMS15], color [MB11; MBS12; Ued95], or local keypoint descriptors [Ahm+13;

DMS15; FM13]. They assume that a fixed set of stamps is represented by the corresponding

features. Thus, these methods are not applicable to the more challenging problem of (arbitrary)

textual stamp recognition. A method for the segmentation of textual, graphical, official, and

fun purpose stamps based on fully convolutional neural networks has been presented by

Younas et al. [You+17]. It predicts whether a pixel belongs to a stamp or to background. In

our case, pixel-level segmentation is not necessary. This approach could be used to derive the

bounding boxes from the segmented regions, but the training of such a model requires ground

truth segmentation masks for the index cards. However, providing this information during the

manual data acquisition phase is very expensive and time-consuming.

Finally, another requirement that is not fulfilled by any of the available stamp detection or

stamp recognition approaches, is the ability to re-identify stamp instances that have not

occurred in the training data. With increasing sizes of the underlying database of index cards

and stamps, respectively, the need for an efficient automatic indexing strategy arises.

3.1.3 Method

In this section, we present our proposed approach for textual stamp recognition on index cards.

Figure 3.4 shows the entire workflow from a scanned document to the final assignment of a

stamp class. It consists of the following steps:

1. The scanned document is automatically cropped to the detected borders of an index

card.
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Figure 3.5: Variations of index cards.

2. The deep neural detection model is applied to identify stamp region, content, and etymon.

While the other object classes (content and etymon) are of interest and further processed

in other contexts in LEI, we focus only on the detected stamps.

3. Since the detected textual stamps may have various orientations, the stamp region is

aligned using a character-level text detection approach.

4. The crop of the aligned stamp is fed to the deep neural stamp recognition model that

assigns the corresponding stamp class.

The individual steps are discussed in more detail below.

Index Card Cropping

A large number of index cards had to be scanned manually due to their variable extents and

attachments. Thus, the documents were often not captured accurately. In addition to the

relevant region of an index card, the scanned documents contain various backgrounds, such

as hands, black or white regions, and other noise such as light artifacts (as shown in Figure

3.5). Therefore, we cropped the scanned documents automatically to the region of the index

card. Due to different forms of background clutter in the corpus of the scanned index cards,

we developed a robust method
3
for automatically cropping the relevant regions of the index

cards. The method uses image processing methods based on the OpenCV library [Bra00] for

detecting the scanned index card boundaries on various backgrounds. The cropped index cards

are then passed to the neural network for stamp detection.

3https://github.com/nik-ko/crop_scans
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Textual Stamp Detection

We trained a deep neural stamp detection model that not only detects stamps, but also other

regions of index cards. These regions are further processed within the LEI project, but are not

considered in the subsequent steps of our textual stamp recognition workflow. Altogether, we

detect three object classes: stamp, content, and etymon (see Figure 3.2). We use the Faster

R-CNN [Ren+15] deep neural network architecture with feature pyramids [Lin+17a] and a

ResNext backbone deep neural network [Xie+17]. Since the training of a deep neural network

for object detection requires millions of training images and many object regions, we follow a

fine-tuning strategy. We initialized the parameters of the base model using pre-trained weights

learned on the COCO object detection dataset [Lin+14], which itself was used to initialize

the ResNext backbone on pre-trained weights of ImageNet [Rus+15]. We trained the object

detection model using the Detectron2 framework [Wu+19].

Furthermore, we applied data augmentation to extend the dataset by flipping the images

horizontally and vertically. Additionally, we rotated the images by 90°, 180° and 270°, respectively.

We trained the object detection network for 29 epochs on the stamp detection dataset.

After detecting a stamp on an index card, the stamp identity needs to be recognized. However,

the stamps are often not aligned horizontally and therefore require an alignment step.

Textual Stamp Alignment

Textual stamps may occur in very different orientations, which may result in quite large

bounding boxes with a large proportion of background. This background, especially if it is text,

may hinder the subsequent stamp recognition. For example, the extreme case occurs when a

stamp is rotated by 45 degrees. Another option would be to train with rotated bounding boxes

instead. However, this would require the manual annotation of rotated bounding boxes, which

would be significantly more time-consuming. For this reason, we decided not to use rotated

bounding boxes.

To obtain well aligned stamps, we utilized a character-level text detection approach [Bae+19].

The predicted rotated word-level bounding boxes are used to infer the rotation angle of the

stamp. Since there may be multiple detections per stamp, the calculation of the rotation angle

is based on the largest word-level bounding box.

Using the inferred rotation angle, we rotated the cropped stamps accordingly. Next, we applied

the stamp detection model again and cropped the detected stamp region once more. This

approach leads to high-quality aligned crops of textual stamps that are the input for the

subsequent stamp recognition task.

Textual Stamp Recognition

The exact number of stamp classes in the entire corpus of index cards will not be known until

the entire corpus of the LEI has been processed. Therefore, it is unknown at the current stage

of the LEI project how many different textual stamps occur in the entire dataset of index cards.

Hence, we need to create a database of known stamp classes in an iterative manner. For this
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purpose, we do not classify all stamps directly, but learn a mapping from stamp images to

feature embeddings, where distances in the embedding space correspond to a measure of

similarity between stamps. This embedding can then be used to cluster, verify, or classify stamp

images by calculating distances between feature embeddings. For classification, the feature

embedding of an unknown stamp is compared to all embeddings in the database of known

stamps, and the stamp class with the smallest Euclidean distance is assigned.

The workflow of textual stamp recognition in the context of LEI using a database of known

stamps is presented in detail in Section 3.1.3. In this section, we describe our approach for

iteratively obtaining a deep neural stamp recognition model that can be used to extract stamp

embeddings.

The index cards in the LEI are grouped by the first letter of their etymons. As a data basis for

building the recognition model, we selected the stamps of the index cards with the first letter P
and S in their etymons. This is motivated by the assumption that this subset contains a large

number of different stamp classes, since many words of the Italian language begin with the

letters P or S.

Due to the large manual effort for the acquisition of training data, we generated the ground

truth data semi-automatically and performed the training of the neural stamp recognition

model in several steps, as described below.

Initial Textual Stamp Recognition Model

To obtain training data for an initial textual stamp recognition model, we applied the stamp

detection model to all index cards of etymons beginning with letter P. In the first step, we

applied the Tesseract OCR software [Smi07] to the aligned and cropped stamp images. We

clustered the resulting text representations hierarchically using average linkage clustering

[Sib73]. The distance function between two clusters A and B is given by

1
|A| · |B| ∑

a∈A
∑
b∈B

dL(a, b).

where |A| is the number of text representations in cluster r, |B| is the number of text repre-

sentations in cluster s, and dL is the Levenshtein distance between two text representations

(stamps). The stamps are agglomeratively clustered until the distance exceeds a predefined

threshold. The threshold is manually chosen so that the purity of the clusters with respect to

the stamp classes is as high as possible.

After clustering, we revised the resulting groups manually, e.g., we deleted incorrectly assigned

stamps and merged groups representing the same stamp class. In total, we obtained a dataset

of 13,882 stamp images with 557 different stamp classes. However, the distribution of the

stamp classes is very imbalanced. Many classes have only one or a few samples. Therefore,

we applied data augmentation to increase the number of examples per class as well as to

add new synthetic stamp classes to the dataset. For the synthetic stamp classes, we used

a generated list of “pseudo stamps” similar in structure to real stamps used in philological

research. The generation of synthetic stamp images works as follows: a background image is

randomly selected from a set of 270 index cards. Since the layout of the index card is known
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due to the preprocessing by the object detection model, the synthetic stamp can be drawn

to a random region, non-overlapping with the original stamp region. The style of the stamp

is randomly chosen from 7 free stamp-like fonts. Finally, the corresponding stamp region is

cropped. Examples of synthetically generated stamp images are shown in Figure 3.6. Altogether,

we obtained an augmented training dataset of 1,800 stamp classes with 1,000 samples per class.

Based on this dataset, we trained an initial stamp recognition model using an EfficientNet-B3

architecture [TL19] and cross-entropy loss pre-trained on ImageNet[Rus+15].

Final Textual Stamp Recognition Model

The initial deep neural network model is applied to the stamp images of index cards for etymons

beginning with S in the second step. Again, the examples are hierarchically clustered, but this

time based on the deep neural network features extracted from the last layer of the initial

model. Again, we corrected the resulting groups manually. We removed noise samples, such as

false detections, and we merged stamp classes that were wrongly partitioned into multiple

clusters. This additional effort results in a high-quality stamp recognition dataset that we used

for training and validating the final neural network model on 170,494 images of 4,304 different

stamp classes.

Figure 3.6: Examples of synthetic textual stamps.

Semi-automatic Stamp Recognition via Similarity Search

In this section, we present a semi-automatic workflow for indexing the entire corpus of scanned

index cards. We can not simply apply our trained classification model to the whole corpus,

since it is currently unknown how many and which stamps are present in the LEI corpus.

However, when indexing the corpus, many of the index cards can already be assigned to one of

the stamps present in the stamp database, which in the beginning contains the stamps used to

train the model.
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Figure 3.7: Semi-automatic stamp recognition workflow. A stamp is either assigned to an

existing stamp class and added to the stamp index (a) or a new stamp class is

created and the stamp is added to the index (b).

As the digitization of LEI’s index cards continues, many index cards with previously unseen

stamps will appear. Instead of continuously learning new deep neural network models, which

requires manual labeling in each iteration, we want to use the learned neural network model

to eventually index the entire dataset of scanned index cards.

We now outline our approach to identify new, unseen stamps and to semi-automatically add

them to the stamp database. The entire semi-automatic workflow is shown in Figure 3.7. Steps

that require user interaction are colored in orange.
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We assume that the new stamps will come from a similar distribution as the stamps used

for training. Therefore, the learned feature embeddings of the trained stamp classification

model can be used to identify new stamp classes without retraining the model. Thus, after

training the stamp classification model as described in Section 3.1.4, we applied the neural

stamp recognition model to a dataset of about 1.6 Million cropped stamps that we used in

this section to (a) extract feature vectors, and (b) find examples that are not assigned to any

class with certainty by the neural network model. The stamps with low confidence for any

trained class are frequently new stamps that were not present during training. Such new stamp

representations can be easily added to a database with a new stamp label for classifying future

occurrences of this stamp in a semi-automatic workflow for indexing the entire corpus. For all

stamps assigned to a class we extracted feature vectors from the penultimate layer of the deep

neural network. We normalized these 1,536-dimensional embeddings and used them to build a

Faiss index [JDJ19] for finding similar stamps.

First, we took the annotated stamps from the training and validation sets to set up an initial

database of stamp representations, as shown in Figure 3.4. We used feature vectors obtained

from the classification model to map the stamps to a high dimensional stamp embedding space.

During processing the corpus of stamped index cards, this database can be queried. If a query

stamp matches a stamp from the database of already processed stamps (i.e., a nearest neighbor

with a stamp label assigned shows the same stamp as the query stamp), the corresponding

stamp class can be assigned to this index card (Figure 3.7 a). Since an accuracy of 100% is

necessary to satisfy the quality requirements of LEI, this assignment needs to be confirmed

by a human expert: The stamp classes of the nearest neighbors found in the stamp index are

presented to the user from which the user selects the class representing the query stamp.

Otherwise, if none of the nearest neighbors found does show the same stamp as the query

stamp, it is assumed that the stamp is not present in the database. In this case, the stamp needs

to be added to the database (Figure 3.7 b). To store the new stamp, a class name is required,

which in case of textual stamps will be the stamp’s text. The new stamp is first processed via

OCR. Then, the result is presented to the human expert who may correct the stamp text if

necessary and then confirm the stamp text. Finally, a new stamp class is added and the stamp

is assigned to that class and inserted into the stamp index.

3.1.4 Results

We evaluated the detection and recognition performance of our approach separately. Addi-

tionally, we present qualitative results of the nearest neighbor search in the stamp embedding

space for unseen stamps.

Datasets

The proposed deep neural network models for detection and recognition are trained on different

datasets. In the following, we will explain in more detail how the datasets for detection and

recognition were compiled.

Our detection dataset consists of 6,991 scanned index cards containing bounding box anno-

tations of which 6,759 are stamps, 13,961 etymons, and 7,012 content. All index cards were
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Class Training Validation Total

Stamp 6115 644 6759

Etymon 12731 1230 13961

Content 6349 663 7012

Table 3.1: Scanned index card detection dataset.

manually annotated by human experts. For annotating the stamp detection dataset, the human

experts used the labeling tool Labelbox
4
. We split the data into a training and a validation

dataset where we used 10% of the index cards for validation. The number of bounding box

annotations per class and dataset are shown in Table 3.1.

Our recognition dataset contains 170,494 images of 4,304 different stamp classes, which where

iteratively collected, as described in 3.1.4. Each sample is a detected stamp cropped from a

scanned index card. The distribution of the samples is highly imbalanced, since only 756 stamp

classes have more than 50 samples and 1,131 classes have less than 5 samples. As shown in

Figure 3.8, many classes have indeed very few training samples. We do not consider this to be

a particularly serious problem, since for stamps, variation in their appearance is usually very

limited. The unequal distribution of the stamp classes can be counteracted during the training

by sampling from a uniform distribution.

Figure 3.8: Number of classes with less than 50 training samples.

From the imbalanced stamp dataset, we used 4,304 stamp classes for training. However, for

validation, we only considered stamps with at least 40 examples, which holds for 899 stamp

classes. The validation dataset has 10 images per stamp class, resulting in 8,990 stamp images

for validation. The remaining 161,504 images were used for training.

4https://labelbox.com
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Class APIoU=0.50 APIoU=0.75

Stamp 0.988 0.953

Etymon 0.980 0.805

Content 0.988 0.954

Table 3.2: Stamp detection performance.

Textual Stamp Detection

We evaluated our deep neural stamp detection model in terms of average precision (AP). AP

summarizes the shape of the precision-recall curve. It is defined as the mean precision at a

set of equally spaced recall levels. AP is computed for different Intersection over Union (IoU)

thresholds. IoU between sets of pixels A and B is computed as

IoU(A, B) =
A ∩ B
A ∪ B

(3.1)

on the 100 top-scoring detections per image for bounding boxes and segmentation masks,

respectively. For example, for threshold t = 0.5, detections with an IoU overlap of at least 50%

with a ground truth object are counted as true positives (TP). Unmatched predicted objects are

false positives (FP) and unmatched ground truth objects are false negatives (FN). Precision

is computed as p = TP
TP+FP and recall as r = TP

TP+FN . We use the 101-point interpolated AP,

similar to Lin et al. [Lin+14]. AP for a given IoU threshold t is computed over all images in the

test set as

AP(t) =
1

101 ∑
r∈{0,0.01,...,1}

pinterp(r), (3.2)

where pinterp(r) = max
r̃:r̃≥r

p(r̃) and p(r̃) is the measured precision at recall r̃.

On the validation data, we achieved APIoU=0.50 = 0.988 for stamps. In addition to stamps, the

object classes content and etymon were also detected. The full results are shown in Table 3.2.

Textual Stamp Recognition

To evaluate the performance of the deep neural stamp recognition model, we computed its

classification accuracy on the validation set as

Accuracy =
number of correctly classified stamps

total number of stamps

. (3.3)

Table 3.3 shows the results of different methods for text recognition applied to the detected

textual stamps. As a baseline we apply the Tesseract OCR software [Smi07] without alignment

on the cropped detections. The vocabulary are the 3,817 textual stamp strings and the OCR

results are matched to the closest string via the Levenshtein distance. This approach can only

achieve good results for clearly visible, not occluded, and well-aligned stamps. Since many

stamps in the dataset meet these conditions, we can already achieve 81.904% accuracy with
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Method Accuracy

OCR + no alignment 81.904

OCR + alignment 85.997

Recognition + no alignment 90.466

Recognition + alignment 96.754

Recognition + rotation augmentation 89.849

Recognition + alignment + synthetic stamps 97.016

Table 3.3: Stamp recognition performance.

k Weight Accuracy

1 uniform 97.197

3 uniform 97.286

3 distance 97.297

5 uniform 97.319

5 distance 97.386
10 uniform 97.297

10 distance 97.342

Table 3.4: k-Nearest neighbor performance on the validation data.

this simple approach. By aligning the cropped stamps, the OCR approach can achieve 85.997%

accuracy.

For our trained neural stamp recognition model, we evaluated different settings. Without

any data augmentation or alignment, 90.466% accuracy is achieved. While using rotation

augmentation does not lead to an improvement, aligning the stamps greatly improves the

accuracy to 96.754%. We applied stamp alignment on training and validation images equally.

Furthermore, using synthetic stamps improved the results slightly to 97.016% accuracy. We

assume that the slight improvement by data augmentation with synthetic stamps is due to the

fact that stamps have relatively little intra-class variation.

Quality of Stamp Embeddings

In our semi-automatic stamp recognition workflow, we use the embeddings obtained by the

classification model to compare stamps. We first evaluated the proposed nearest neighbor

approach in terms of accuracy for the validation images. We used the training data to assign a

stamp class via the k nearest neighbor approach to stamps from the validation set. The k nearest
neighbors are weighted either uniformly by 1 or by the inverse distance in the embedding

space, i.e., a closer element has a higher weight. Table 3.4 shows the accuracy for different

settings of the k nearest neighbor approach. The k nearest neighbor accuracy is similar to the

classification accuracy in Table 3.3 for all settings. The best accuracy is achieved with k = 5
and weighting by distance. This confirms that the features of the penultimate layer can be

used to assign stamp classes to query stamps.

72



3.1 Textual Stamp Recognition on Index Cards

To be useful for creating new stamp classes in the semi-automatic stamp recognition workflow,

it is necessary that the stamp embeddings generalize well. We therefore computed AP and

accuracy for some query examples showing stamp classes that were not present in the training

data.

Query stamp AP@10 AP@5 AP@3 ACC@5

100.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00

94.30 100.00 100.00 100.00

75.75 80.34 91.67 60.00

77.95 84.34 91.67 60.00

83.44 96.67 100.00 100.00

89.61 96.67 100.00 100.00

86.46 96.67 100.00 100.00

Table 3.5: Evaluation of the retrieval performance for some unknown stamp classes

To find stamp classes the model was not trained for, we selected some stamps from the set of

stamps that the model assigned to a stamp class of the training data set with low confidence.

These stamps were not assigned to any class of the set of stamp classes used for training with

high confidence and can thus be crops of new stamps that did not occur in the training data.

For several of these stamps, we checked that they indeed show new stamp classes and used 10

of them to query the stamp index.

For these 10 query images, we computed the AP for the top k retrieved stamps for k ∈ {3, 5, 10}
and the accuracy for the top 5 retrieved stamps, as shown in Table 3.5. For example, an accuracy

of 60% means that 3 of the top 5 stamps belong to the correct class. For some stamps, very

high AP values are obtained. For some other stamps at the bottom of table, the AP@10 values

are lower, but nevertheless our approach is still useful in practice, since even for AP@10 values

of around 75%, most of the retrieved stamps belong to the same stamp class. In our scenario,

it makes more sense to consider an even shorter retrieval list, i.e., the first 3 or 5 items, since

within the semi-automatic stamp recognition workflow, only a small number of stamps are

presented to the user, e.g., the top 5. For k = 5, the AP and accuracy values are still very high.

If we only consider the top 3 stamps of the retrieval list, all stamps often belong to the correct
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class, resulting in both accuracy and AP values of 100%. These results indicate that the neural

stamp recognition model can be successfully used to create new stamp classes that have not

been present in training data.

3.1.5 Summary

We presented a novel approach for textual stamp detection, alignment, and recognition on

index cards of the LEI. Our approach keeps the manual annotation effort as low as possible,

while achieving high quality results. Using a trained stamp embedding for similarity search

allowed us to continuously grow the stamp database used to assign new index cards to stamp

classes as digitization of index cards proceeds. Since both the neural stamp detection and

recognition components of our semi-automatic stamp recognition workflow achieve very good

results in terms of mean average precision (detection) and accuracy (recognition), they are

of great benefit for processing index cards in the context of creating the LEI etymological

dictionary. We showed that the learned stamp embeddings can generalize well to unknown

stamps and thus can be used to identify stamps the neural network models were not trained

for. The presented approach could also be helpful for other projects in the field of philological

research in digitizing their scanned index cards and speed up the digitization process.
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3.2 Detection and Segmentation of Morphologically Complex
Eukaryotic Cells in Fluorescence Microscopy Images via
Feature Pyramid Fusion

3.2.1 Introduction

High-throughput cell biology incorporates methods such as microscopic image analysis, gene

expression microarrays, or genome-wide screening to address biological questions that are

otherwise unattainable using more conventional methods [RSS15].

Nevertheless, fluorescence microscopy is often avoided in high-throughput experiments, since

the generated data is tedious to analyze by humans or too complex to analyze using available

image processing tools. However, flourescence microscopy offers information about subcellular

localization, supports morphological analysis, and permits investigations on the single cell level

[Usa+16].

A limiting factor of automated fluorescence microscopy image analysis is the separation of

signals in close proximity, regardless of whether signals originate from neighboring cells or

single spots. High cell densities or cluster formation increase the probability of such situations

on the cellular level [Che+15], while high background or low spatial resolution complicate the

problem on the signal level. Another limitation is the detection of morphologically complex

cells, such as macrophages or neurons. Their indefinite morphology causes identification issues

when looking for slight variations of fixed shapes.

a) b) c)

Figure 3.9: Image with ground truth segmentation. Nucleus signal (a), cytoplasm signal (b),

and ground truth segmentation (c).

The fluorescence microscopy images considered in this section originate from high-throughput

screening, with the aim of analyzing phenotypic changes and differences in bacterial infection

rates of macrophages upon treatment. To analyze cell infection and changes in cell morphology,

proper cell detection and segmentation are required. Upon adhesion to a surface, these cells

tend to form clusters showing faint signal changes in areas with cell to cell contact. These

restrictions prevent appropriate analysis with conventional microscopy analysis software.

Compared to merely segmenting cytoplasm, instance-based segmentation is a much harder

task, since the assignment of a cell instance identity to every pixel of an image is required.

Fig 3.9 shows that the accurate separation and segmentation of clustered cells without any
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further information is extremely difficult, if not impossible. Even for human experts, the correct

separation of individual cells is often only possible using nucleus information. Fig 3.9 indicates

that taking the nucleus signal into account alleviates the identification of individual cells

significantly.

In this section, a deep learning approach to cell detection and segmentation based on a

convolutional neural network (CNN) architecture is applied to fluorescence microscopy images

containing channels for nuclei and cells. The contributions in this section are as follows:

• We provide a novel dataset of macrophage cells for public use, including ground truth

bounding boxes and segmentation masks for cell and nucleus instances.

• We utilize nucleus information in a deep learning approach for improved cell detection

and segmentation. The nucleus channel is used to improve the quality of cell detection

and segmentation. To the best of our knowledge, this is the first deep learning approach

that uses additional nucleus information to improve cell detection and segmentation.

• We present a CNN architecture based onMask R-CNN and a novel feature pyramid fusion

scheme. This CNN architecture shows superior performance in terms of mean average

precision compared to early fusion of nucleus and cell signals. It clearly outperforms a

state-of-the-art Mask R-CNN [He+17] applied to cell detection and segmentation with

relative mean average precision improvements of up to 23.88% and 23.17%, respectively.

Parts of this section have been published in: Nikolaus Korfhage, Markus Mühling, Stephan

Ringshandl, Anke Becker, Bernd Schmeck, and Bernd Freisleben. “Detection and Segmentation

of Morphologically Complex Eukaryotic Cells in Fluorescence Microscopy Images via Feature

Pyramid Fusion.” in: PLOS Computational Biology 16.9 (9 Sept. 2020), e1008179. issn: 15537358.

doi: 10.1371/JOURNAL.PCBI.1008179.

3.2.2 Related Work

Our approach is related to several instance segmentation approaches for fluorescence mi-

croscopy images. Methods that do not rely on deep learning, such as graph cut algorithms

[Al-+10; Abr+17; Dim+14; Cai+19a; Cai+19b], usually struggle with morphologically complex

objects. Similarly, other methods either consider nuclei [CR+09; Gud+08; Al-+10] or segment

similarly sized and mostly round objects [Sch+18] or different shapes [Sol+17; Ama+14]. Most

notably, all of these methods consider only a single signal, either cell or nucleus. A method

utilizing nucleus information together with the cell signal is described by Held et al. [Hel+11]

and Wenzel et al. [Wen+11]. Their segmentation algorithm uses a fast marching level set

[Set99], i.e., a classic computer vision method that does not rely on machine learning methods.

A more recent approach proposed by Al-Kofahi et al. [Al-+18] refines deep learning based

nucleus segmentation by a seeded watershed algorithm to segment cells.

Recent CNN-based segmentation algorithms can be roughly divided into two groups. Algo-

rithms in the first group perform full image segmentation and require additional post-processing

to be applicable to instance segmentation [LSD15; NHH15; BKC17]. A well-known example in

bio-medical image segmentation is the U-Net [RFB15] architecture. However, such methods
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fail in case of clustered cells. Due to few misclassified pixels, neighboring cells are fused into a

single cell, resulting in poor detection performance.

For this reason, we consider methods of the second group of CNN-based segmentation al-

gorithms to be more suitable for our data. These methods perform detection followed by

segmentation, i.e., detected bounding boxes are segmented rather than the whole image. For

example, van Valen et al. [Van+16] use object detection and perform bounding box segmen-

tation in a subsequent step. Akram et al. [Akr+16] describe a CNN architecture using region

of interest (RoI) pooling for cell detection and instance-based segmentation. Recently, Mask

R-CNN [He+17] based on Faster R-CNN [Ren+15] with feature pyramids [Lin+17a] achieved

state-of-the-art results in natural image object detection and segmentation. Hence, our nucleus

and cell detection and segmentation approach is based on Mask R-CNN. However, in contrast

to recent work applying Mask R-CNN to a number of segmentation problems in biomedical

imaging including nucleus segmentation [Som+19; Joh19; VAK19], we extend the architecture

to meet the requirements of data sets containing both cell and nucleus signals.

3.2.3 Design and Implementation

The fluorescence microscopy images used in our work are collected as part of high-throughput

screening to detect treatments that have an influence on the bacterium Legionella pneumophila
and modify the infection of human macrophages. Microscopic images do not only allow

assessment of bacterial replication, but also enable investigations of morphological changes.

Cell preparation and image acquisition

Monocytic THP-1 cells were obtained from ATCC, inoculated from a −80◦C culture and

passaged in RPMI-1640 medium with 10% fetal calf serum (Biochrom) at 37
◦
C and 5% CO2.

The used cell passage numbers were in the range of 5 to 14. Cells were seeded in 100 µl on
96 well Sensoplate Plus plates (Greiner Bio-One) at a concentration of 1.45 × 104

cells per

well. Differentiation to macrophages was induced 24 h after seeding by adding 20 nM phorbol

12-myristate 13-acetate (PMA; Sigma-Aldrich) for 24 h. After medium renewal, cells were

infected with GFP-expressing Legionella pneumophila strain Corby at a multiplicity of infection

of 20 for 16 h. For infection, bacteria were plated on BCYE agar, incubated for 3 days at 37
◦
C

and 5% CO2, resuspended and added to macrophages [Jun+17]. After infection, the cells were

washed, fixed with 4% paraformaldehyde for 15 min and permeabilized with 0.1% Triton X-100

for 10 min. Staining of cells was achieved with HCS CellMask Red (2 µg/ml; Thermo Fisher

Scientific) and Hoechst 33342 (2 µg/ml; Invitrogen) for 30 min.

The images were acquired using an automated Nikon Eclipse Ti-E fluorescence microscope

with a 20x lens (Nikon CFI Plan Apo VC 20X) and a Nikon Digital Sight DS-Qi1Mc camera.

Finally, the images were converted to TIFF format via the Fiji/ImageJ Bio-Formats plugin.

In total, several hundred thousands of 3-channel images with a size of 1280 × 1024 pixels were

collected.
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Dataset of macrophage cells

For our benchmark dataset, 82 representative images were selected and augmented with ground

truth information by a biomedical researcher. In our work, only the nucleus and cell channels

are of interest.

These 82 2-channel images were randomly split into a training set, containing 64 images, and

a test set, containing 18 images. While the training set contains 2044 cells and 2081 nuclei,

the test set contains 508 cells and 514 nuclei. The discrepancy between the number of cell and

nuclei instances is due to border cells that are not completely visible in the images. Furthermore,

some of the cells are in their mitotic phase, i.e., multiple nuclei may occur in a single cell.

Manually generating ground truth labels for segmentation tasks is very time-consuming.

Therefore, we generated the ground truth segmentation masks for cell and nuclei instances

in a two-step process. In the first step, classical computer vision algorithms were applied to

produce an initial segmentation using a threshold-based approach and contour processing

functions from the OpenCV library [Bra00] to find cell and nuclei instances. Furthermore,

the structures of these instances were analyzed, and cells with more than one nucleus were

separated similar to a Voronoi segmentation where each pixel of a cell is assigned to the

nearest nucleus. In the second step, these segmentations were manually refined using an image

processing tool designed for scientific multidimensional images called Fiji/ImageJ [Sch+12].

Most of our manual corrections were necessary at cell to cell borders.

To segment macrophage cells, we follow an instance-based segmentation approach by intro-

ducing a new neural network architecture based on Mask R-CNN. It combines nucleus and cell

features in a pyramid fusion scheme. The Mask R-CNN [He+17] architecture is an extension of

a Faster R-CNN [Ren+15] that predicts bounding boxes with class probabilities and additional

instance-based segmentation masks.

Like Faster R-CNN, Mask R-CNN is a two-stage method. In the first stage, a Region Proposal

Network (RPN) is used to find object proposals (regions of interest, RoI). Therefore, candidate

bounding boxes together with objectness scores are predicted. In the second stage, features

are extracted for these candidate bounding boxes using a RoI Align layer that computes fixed-

size feature maps through bilinear interpolation. Based on these feature maps, the candidate

bounding boxes are refined, classified and segmented using regression, classification, and

segmentation heads, respectively. The features of the two stages are shared in a backbone

architecture for runtime improvements. The CNN backbone architecture is typically pre-trained

on an image classification task. The overall neural network is fine-tuned and trained end-to-end

using the multi-task loss L = Lbox + Lcls + Lmask, where Lbox is the bounding box regression

loss, Lcls is the classification loss, and Lmask is the mask loss (i.e., per pixel sigmoid with binary

loss), respectively.

To improve detection and segmentation performance within small object regions, Mask R-CNN

relies on a Feature Pyramid Network (FPN) [Lin+17a], a top-down architecture with lateral

connections to the backbone layers for building high-level semantic feature maps at all scales.

Feature maps for regression, classification, and segmentation of candidate bounding boxes are

extracted from the pyramid level according to bounding box sizes. Larger bounding boxes are
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assigned to higher levels of the pyramid and smaller boxes to lower levels, respectively. In Fig

3.10, the underlying Mask R-CNN architecture is highlighted in green.

Figure 3.10: Feature pyramid fusion of nucleus features. Pre-trained nucleus features (violet) are

fused with features of the feature pyramid in the cell detection and segmentation

model (green) by either concatenation or addition.

The remainder of this section is organized as follows. We first describe the used backbone

CNN. Then, the new network architecture using a pyramid fusion scheme to integrate nucleus

features for cell detection and segmentation is presented.

Furthermore, a weighted segmentation loss is introduced to focus the training process on

difficult to segment pixels at the cell borders. Finally, we describe the post-processing steps to

further improve the detection and segmentation results.

Reduced ResNet-50 backbone

Residual Neural Networks (ResNet) [He+16] achieve state-of-the-art performance in natural

image classification and object detection tasks. Due to the limited number of object classes (i.e.,

cells or nuclei), the reduced background noise of fluorescence microscopy images compared to

natural images, and the runtime requirements caused by the high-throughput experiments,

a reduced ResNet-50 is used as the backbone architecture for our segmentation network.

To speed up training, the number of filters as well as the number of building blocks in the

ResNet architecture was halved, which results in about ten times less parameters compared

to the original ResNet-50. Table 3.6 shows the reduced ResNet-50 architecture in detail. This
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architecture was trained for image classification. A pre-trained network for RGB images is not

suitable here, since the inputs are 1-channel images for nuclei and cells, respectively. Thus,

we converted the ImageNet [Den+09] dataset to grayscale. Based on the 1-channel ImageNet

dataset, the backbone model was trained for 120 epochs using batch normalization [IS15].

layer name output size blocks

conv1 112 × 112 7 × 7, 64, stride 2
conv2_x 56 × 56 3 × 3 max pool, stride 2[ 1 × 1, 32

3 × 3, 32
1 × 1, 128

]
×2

conv3_x 28 × 28

[ 1 × 1, 64
3 × 3, 64
1 × 1, 256

]
×2

conv4_x 14 × 14

[1 × 1, 128
3 × 3, 128
1 × 1, 512

]
× 3

conv5_x 7 × 7

[ 1 × 1, 256
3 × 3, 256
1 × 1, 1024

]
×2

1 × 1 avg. pool, fc, softmax

Table 3.6: Reduced ResNet-50 architecture

Feature pyramid fusion

Fig 3.11 shows architectures for instance-based cell segmentation using different ways of

integrating nucleus information. The architecture in Fig 3.11a does not include any nucleus

information at all. It basically is a Mask R-CNN trained on cell masks for single-class object

detection. Similar to an early fusion scheme, the nucleus image is added as an additional

channel to the cell image and fed directly into the Mask R-CNN (Fig 3.11bb). However, this

architecture cannot utilize available ground truth information for the nucleus channel during

the training process.

Nuclei usually have similar shapes and sizes, and in most cases they are clearly separable from

each other compared to the appearance of macrophage cells. Therefore, we designed our cell

segmentation model in two stages. In the first stage, we train a model for nucleus segmentation

to obtain useful nucleus features for the cell segmentation task (Fig 3.10, violet). This Mask

R-CNN architecture using feature pyramids based on the reduced ResNet-50 backbone is

trained for nucleus segmentation.

In the second stage, the learned FPN features of the nucleus segmentation task are incorporated

into the cell segmentation architecture using feature pyramid fusion (FPF). From each feature
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a) b) c)

Figure 3.11: Including nucleus information for cell segmentation. (a) without nucleus informa-

tion, (b) with additional input for the nucleus channel, and (c) with fused nucleus

features.

pyramid level, we obtain a stack of activations that is merged into the cell segmentation

architecture at the corresponding scale. This means that at each stage of the feature pyramid

the pre-trained features of the cell nuclei are available and can be used during training in

addition to the feature maps for cell segmentation (Fig 3.10, green). Except for the fused feature

pyramids, the backbone architecture for cell segmentation is the same ResNet-50 as for nucleus

segmentation.

We also evaluated two merging operations for residual and lateral connections: concatenation

and addition. The merged nucleus parameters are fixed during training on cell segmentation,

which allows us to combine both models at inference time for concurrently predicting nucleus

and cell segmentation masks. The final cell segmentation model has two inputs: the nucleus

image and the cytoplasm image. The model architecture was implemented in Tensorflow

[Aba+16] and is based on a Mask R-CNN implementation [Abd17].

Weighted segmentation loss

Since it is more difficult to segment pixels at the cell borders especially within cell clusters, we

applied a weighting scheme for the mask loss to focus the model on the edges of cells. The

weighting is similar to the weighting used by Ronneberger et al. [RFB15]. By putting more

weight to the edges, the model is supposed to learn predicting cell contours more accurately,

which requires exact and consistent segmentation masks. We computed a Gaussian blurred

weight matrix based on the contours of the cells in the full-image segmentation mask. The

Gaussian blur function for pixels x, y is defined as G(x, y) = 1
2πσ2 e−

x2+y2

2σ2
with the horizontal
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distance x and vertical distance y from the origin. We used a 25 × 25 kernel and standard

deviation σ = 5. Using the weight matrix, pixels near border pixels are weighted up to two

times higher than regular pixels, i.e., pixels inside cells. Fig 3.12d shows a visualization of the

crop from the weight matrix based on contours computed on Fig 3.12b . The crop corresponds

to the instance mask in Fig 3.12c . It is used for weighting the mask loss for a box proposal

processed in the mask branch.

a) b) c) d)

Figure 3.12: Weights for instances. For each box proposal, crops are resized to 28 × 28 pixels.

Crop from the input image (a), full-image segmentation mask (b), cell mask (c) and

weight matrix (d).

Post-processing

To further improve the performance of cell detection and segmentation, the following post-

processing steps are performed. First, contour processing methods from the OpenCV library

are used to detect nucleus regions that are overlapped by more than one cell. In this case, the

corresponding cell segmentation masks are merged. Second, a threshold-based segmentation

method is applied to find cell regions not covered by the instance-based segmentation masks

due to rarely occurring false positives or misaligned bounding boxes. Therefore, the predicted

segmentation masks are subtracted from the threshold-based segmentation, morphological

operations and contour processing are applied to detect regions, and regions that are smaller

than a predefined threshold are discarded. The remaining regions are handled as follows:

• The region is added to a cell if it can be connected to the corresponding cell instance.

• The region is discarded if it is connected to multiple cell instances.

• Otherwise, a new cell instance is generated.

Third, nucleus regions that are not completely covered by cell regions are used to either enlarge

the overlapping cell region or to create a new cell with the same shape as the nucleus.

However, in order to ensure a fair comparison, no post-processing was carried out in the

experiments when compared to other methods.

3.2.4 Results

In this section, the performance of the three network architectures shown in Fig 3.11 is inves-

tigated. We additionally compare the performance to the performance of U-Net in order to

evaluate how well segmentation without detection (U-Net) performs compared to detection
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and segmentation with Mask R-CNN architectures. For U-Net, we trained two settings, one

with only the nucleus channel and one with both cells and nuclei as input channels. To train the

U-Net architecture, we tuned the weighting of the gaps between neighboring cells (and nuclei,

respectively) to achieve better results on the corresponding datasets than with the settings used

in the original paper [RFB15]. Other training parameters such as learning rate and number of

epochs were also optimized to achieve the best results. Since the U-Net model does not return

bounding boxes, the contours of cells were used to obtain bounding boxes. In favor of U-Net,

contours within contours and very small bounding boxes were ignored in our evaluation. For

cell segmentation, the inputs Additionally, we compare the performance to Stardist [Sch+18],

which achieves state-of-the-art results for nucleus segmentation.

First, the Mask R-CNN architecture in Fig 3.11a is investigated. Without any information about

nuclei, its performance is expected to be lower than for the other architectures.

Second, to verify that incorporating nucleus information is indeed beneficial, Mask R-CNN

is extended to accept an additional input channel (Fig 3.11b). This is a straightforward way

of incorporating nucleus information. However, it does not utilize available ground truth

segmentation masks for nuclei.

Third, the proposed feature pyramid fusion architecture shown in Fig 3.11c is evaluated, where

pyramid features of a pre-trained nucleus model are combined with cell features using the

pyramid fusion scheme. Within this fusion scheme, two merging operations are evaluated:

concatenation and addition. Recent work on learning CNN architectures suggests that addi-

tion operations are more beneficial in many cases than concatenation operations [Liu+18].

Furthermore, the feature pyramid fusion architectures are evaluated in combination with the

weighted segmentation loss described above.

The layers of the backbone architecture were initialized with pre-trained weights from an

image classification task using the ImageNet dataset. In all experiments, the same pre-trained

weights were used for FPF. For the architecture in Fig 3.11b with two input channels, the

pre-trained weights of the first convolutional layer were duplicated and halved to not disturb

dependencies to weights of subsequent layers.

In all experiments with FPF, the same training schedule was applied, with a learning rate of

0.001, a momentum of 0.9, and a weight decay factor of 0.0001. The training schedule is as

follows: on top of the pre-trained backbone segmentation, regression and classification heads

are trained for 100,000 iterations. Next, all layers deeper than conv4 in the backbone are trained

for another 250,000 iterations. Finally, the whole network is trained for 500,000 iterations with

a reduced learning rate of 10−4
. Both regression losses and the mask loss are weighted by a

factor of 2.

All segmentation models, except the configuration with two input channels, were trained

on 512 × 512 1-channel input images. Within the training process, data augmentation was

applied to the training images, which increases the number of training images to 497, 355 of

size 512 × 512 for each channel, containing 3, 557, 425 nuclei in 4, 288, 104 cells. The variants

of the FPF architecture use the same model for nucleus features. It was trained with the same

previously described training schedule for cell segmentation models.
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All models were evaluated on the test dataset described above. Additionally, to verify that FPF

performs better particularly for clustered cells, we created a subset of the test dataset. This

subset contains all cell clusters occurring in the test images, but no isolated cells. The resulting

78 images have 256 × 256 pixels. Each image contains at least one cluster of two or more cells.

In total, the dataset contains 255 cells with 258 nuclei.

Evaluation metrics

All experiments were evaluated in terms of average precision (AP) for detection and segmenta-

tion. AP summarizes the shape of the precision/recall curve. It is defined as the mean precision

at a set of equally spaced recall levels. AP is computed for different Intersection over Union

(IoU) thresholds. IoU between sets of pixels A and B is computed as

IoU(A, B) =
A ∩ B
A ∪ B

(3.4)

on the 100 top-scoring detections per image for bounding boxes and segmentation masks,

respectively. For example, for threshold t = 0.5, detections with an IoU overlap of at least 50%

with a ground truth object are counted as true positives (TP). Unmatched predicted objects are

false positives (FP) and unmatched ground truth objects are false negatives (FN). Precision is

computed as p = TP
TP+FP and recall as r = TP

TP+FN . We use the 101-point interpolated AP as

Lin et al. [Lin+14]. AP for a given IoU threshold threshold t is computed over all images in the

test set as

AP(t) =
1

101 ∑
r∈{0,0.01,...1}

pinterp(r), (3.5)

where pinterp(r) = max
r̃:r̃≥r

p(r̃) and p(r̃) is the measured precision at recall r̃. For a detailed

description of interpolated AP, we refer to Everingham et al. [Eve+10]. The final mean average

precision score (mean AP) is the mean over all threshold values between 0.5 and 0.90 with

steps of 0.05. However, it should be noted that higher IoU thresholds are less meaningful in

our dataset, since in many cases there are no sharp cell borders and thus the corresponding

ground truth masks may be somewhat uncertain (see Fig 3.13).

Detection and segmentation results

First, we evaluated the performance of the nucleus model used in the FPF architectures (as

described in Table 3.6), Stardist, and U-Net. Table 3.7 shows results for both detection and

segmentation performance in terms of AP on the nuclei test images. Detection and segmentation

results are similar, since themajority of the nuclei are round and isolated. However, in some cases

nuclei appear adjacent. These instances are hard to separate for U-Net that cannot be trained

to detect instances before segmentation. Stardist performs slightly better for segmentation,

while Mask-RCNN performs slightly better for detection.

Next, the performance of the architecture without any nucleus information, the architecture

with two input channels, and the FPF architectures are evaluated for cell detection and seg-

mentation. In the following, ⊙ is used for concatenation and ⊕ for addition. The experiments
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Figure 3.13: Visualization of cell segmentation errors on a 256 × 256 patch of clustered cells

in test data: predicted masks (red) differ only slightly from ground truth masks

(white).

IoU threshold

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mAP

Detection

U-Net 67.4 65.6 61.0 60.4 57.8 52.9 41.8 24.1 - 46.7

Stardist 93.8 93.7 92.5 90.9 89.5 87.4 85.2 76.8 52.4 84.7

Mask R-CNN 95.3 94.1 92.5 91.5 91.5 89.6 86.7 82.2 56.9 86.7

Segmentation

U-Net 69.4 67.1 63.4 61.0 59.1 52.8 40.8 18.7 - 47.9

Stardist 94.2 92.4 92.2 90.5 89.4 89.2 88.0 81.2 60.0 86.3
Mask R-CNN 95.2 93.6 92.5 91.2 91.2 89.0 86.2 81.0 53.6 85.9

Table 3.7: Detection and segmentation results for the nuclei test dataset in terms of AP.

are conducted on the whole cell test dataset as well as on a subset of the cell test dataset that

contains exclusively clustered cells, to have a closer look at those instances that are difficult to

detect and segment.

AP scores for detection and segmentation on the cell test dataset are shown in Table 3.8

and Table 3.9, respectively. As expected, the performance of cell segmentation is much worse

when knowledge about nuclei is not incorporated at all. By simply adding one more input

channel for the nucleus signal to Mask R-CNN (see Fig 3.11b), significantly better results are

achieved. For the U-Net model, the same method is used to integrate the nucleus channel, i.e.,
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the model has two instead of one input channel. The drawbacks of the U-Net architecture

on the cell test dataset are two-fold. First, it cannot use available ground truth of nuclei

directly and second, there are even more hard-to-separate signals in this dataset than in the

nucleus dataset. Since Stardist is trained for cell segmentation only, it cannot use nucleus

information. However, Stardist still performs worse than the Mask R-CNN model without

nucleus information. Compared to the performance of Stardist on the nuclei test set, this is

most probably caused by the irregular shapes of cells and clustered cells.

FPF performs better than merely using an additional input for Mask R-CNN. However, it does

not depend on the merge operation: merging features by concatenation or addition results in

similar performance. AP scores for detection (Table 3.8) and segmentation (Table 3.9) are similar

for all pyramid fusion configurations. Although mean AP performance is slightly better for

both architectures trained under a weighted loss, a higher weighting of edges at gaps between

cells and near-border pixels in the loss function does not result in a significant performance

gain, neither in detection, nor in segmentation. Relative to the mean AP of the model without

any nucleus information, the best performing FPF architecture (FPF ⊕ with weighted loss)

achieves a performance gain of 10.25%. Compared to the model with the nucleus input channel,

the relative performance gain is 3.02%. Similarly, the performance gain for detection is 10.48%

(no nucleus) and 3.5% (nucleus input channel). A detailed evaluation including the number of

true positives (TP), false positives (FP), and true negatives (FN) of the segmentation results for

an IoU threshold of 0.75 is shown in Table 3.10.

IoU threshold

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mAP

U-Net (cell + nucleus input) 51.5 47.3 42.1 36.0 29.1 25.0 18.1 9.9 - 48.6

Stardist 84.7 81.4 73.9 65.5 56.6 48.0 36.1 24.7 10.5 53.5

no nucleus 88.6 87.0 84.5 79.0 74.3 67.5 54.8 42.6 23.0 66.8

nucleus input 92.1 91.0 88.6 86.5 82.1 72.7 61.9 44.8 22.1 71.3

FPF ⊙ 94.4 93.2 91.2 88.4 84.8 77.1 61.3 48.0 23.7 73.6

FPF ⊕ 93.5 92.5 90.1 88.6 84.2 75.8 63.3 47.9 22.0 73.1

FPF ⊙ weighted loss 94.4 93.2 89.7 88.3 84.2 76.7 63.3 45.3 22.8 73.1

FPF ⊕ weighted loss 94.2 93.2 91.6 89.1 84.1 76.6 64.8 48.4 22.4 73.8

Table 3.8: Detection results for the cells test dataset in terms of AP.

The superior performance of the FPF architectures becomes evident when they are evaluated

on the clustered cells subset (Table 3.11 and 3.12): a relative performance improvement of

23.88% (no nucleus) and 4.43% (nucleus input channel) for detection in terms of mean AP. Fig

3.15 visualizes the segmentation results for clustered cells. Fig 3.16 shows a visualization of

the segmentation masks predicted by the model without nucleus information, with nucleus

channel, and the best performing FPF architecture.

Similarly for segmentation, FPF ⊕ with weighted loss performs better. Its relative perfor-

mance improvement is 23.17% compared to the model without nucleus information, and 4.16%

compared to the model with the nucleus input channel, both in terms of mean AP. Fig 3.14
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IoU threshold

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mAP

U-Net 53.8 47.1 41.4 35.4 29.5 22.4 15.5 7.7 - 47.0

Stardist 86.9 84.3 81.3 77.3 69.8 63.2 50.4 32.2 9.4 61.6

no nucleus 89.8 87.0 85.8 83.8 81.1 75.1 65.7 49.9 22.6 71.2

nucleus input 93.1 90.9 90.8 88.1 86.6 80.7 73.3 58.5 23.6 76.2

FPF ⊙ 94.3 94.3 92.0 90.5 88.5 83.0 74.6 60.0 28.4 78.4

FPF ⊕ 93.5 93.5 90.9 90.8 89.6 84.0 76.2 59.2 24.6 78.0

FPF ⊙ weighted loss 94.6 93.4 92.1 89.0 87.6 83.5 75.3 60.5 25.3 77.9

FPF ⊕ weighted loss 94.1 93.0 93.0 91.1 89.0 84.9 76.4 60.3 24.7 78.5

Table 3.9: Segmentation results for the cells test dataset in terms of AP.

TP FP FN mAP

Stardist 379 91 129 63.2

no nucleus 409 93 99 75.1

nucleus input 427 79 81 80.7

FPF ⊙ 441 82 67 83.0

FPF ⊕ 443 65 65 84.0

FPF ⊙ weighted loss 445 69 63 83.5

FPF ⊕ weighted loss 450 66 58 84.9

Table 3.10: Detailed cell segmentation results for an IoU threshold of 0.75 on the cells test

dataset.

shows an example of a segmentation performed by FPF ⊕ with weighted loss on a cluster of

macrophages. The experiments show that U-Net is not suitable here and the instance-based FPF

architectures perform much better. Although Stardist performs well for nucleus segmentation,

the performance is considerably lower for cell segmentation.

Using additional post-processing, the detection mean AP on the dataset of clustered cells is

improved to 0.65, while the segmentation mean AP increases to 0.682. For the detection mean

AP, this is a relative improvement of 31.58% (no nucleus) and 10.92% (nucleus input channel).

For the segmentation mean AP, this is a relative improvement of 24.45% (no nucleus) and 5.25%

(nucleus input channel).

The runtime of the FPF model is about 222 ms per image using Tensorflow Serving on a server

with an Nvidia Geforce GTX 1080 Ti graphics card.
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Figure 3.14: Cell segmentation of clustered cells by Feature Pyramid Fusion (FPF) on a 512 ×
512 patch.

IoU threshold

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mAP

no nucleus 77.2 72.6 66.7 62.3 56.6 48.2 33.4 21.8 5.7 49.4

nucleus input 85.2 83.9 79.2 74.7 68.8 58.1 44.7 26.1 6.6 58.6

FPF ⊙ 85.6 82.5 82.5 75.6 69.9 64.0 43.8 25.6 7.3 59.6

FPF ⊕ 85.1 83.7 81.5 76.3 70.6 59.1 47.3 28.0 6.3 59.8

FPF ⊙ weighted loss 85.6 84.7 82.7 78.5 74.7 61.8 47.5 27.1 7.8 61.2
FPF ⊕ weighted loss 86.1 84.9 82.5 77.5 69.4 62.5 48.1 26.7 5.9 60.4

Table 3.11: Detection results for clustered cells test dataset in terms of AP.

IoU threshold

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mAP

no nucleus 77.9 72.0 68.4 67.3 63.1 55.8 45.9 31.9 10.4 54.8

nucleus input 83.9 82.6 81.5 77.7 75.4 67.6 58.9 41.6 14.2 64.8

FPF ⊙ 85.6 84.6 82.4 80.5 77.8 70.3 61.5 43.4 15.0 66.8

FPF ⊕ 86.0 83.9 81.4 79.6 78.5 71.2 63.6 41.9 13.6 66.6

FPF ⊙ weighted loss 85.9 84.9 82.9 81.9 78.8 71.8 62.5 42.0 16.0 67.4

FPF ⊕ weighted loss 86.0 84.8 83.5 80.7 78.5 72.6 61.9 42.7 16.1 67.5

Table 3.12: Segmentation results for clustered cells test dataset in terms of AP.
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features

a) b)

Figure 3.15: APs for cell segmentation on clustered cells. All FPF settings (a) and the best

performing setting FPF ⊕ with weighted loss (b).

a) b) c)

d) e) f)

Figure 3.16: Visualization of segmentation of clustered cells. Top: nucleus signal (a), cytoplasm

signal (b), and ground truth segmentation (c). Bottom: Instance segmentation

predicted by for model without nucleus information (d), with nucleus channel (e),

and FPF ⊕ with weighted loss (f).

3.2.5 Summary

In this section, we presented a novel deep learning approach for cell detection and segmentation

based on fusing previously trained nucleus features on different feature pyramid levels. The

proposed feature pyramid fusion architecture clearly outperforms a state-of-the-art Mask

R-CNN approach for cell detection and segmentation on our challenging clustered cells dataset

with relative mean average precision improvements of up to 23.88% and 23.17%, respectively.

Combined with a post-processing step, the results could be further improved to 31.58% for

detection and 24.45% for segmentation, respectively.
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4
Image Similarity Search

This chapter presents two works in the broad field of image similarity search. A low query

time on the one hand and a high retrieval quality on the other hand are requirements that are

placed on a good image similarity search system. The works presented in this chapter each

deal with one of these aspects. The first work gives answers to the question of how to improve

the retrieval quality of similarity search results. It presents methods to better capture a user’s

search intention. The second work presents a way to efficiently search in large-scale image

databases. It introduces a novel two-stage approach that is integrated into Elasticsearch.
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4.1 Intentional Image Similarity Search

4.1.1 Introduction

A fundamental problem of content-based image retrieval is to overcome the discrepancy

between the information that can be extracted from visual data and the human interpretation

of the same data. In the literature, this discrepancy is also known as the semantic gap [Sme+00b].

Using state-of-the-art convolutional neural network (CNN) features has brought us close to the

goal of bridging this gap. Image representations learned by deep neural networks can greatly

improve the performance of content-based image retrieval systems. They are less dependent

on pixel intensities and are better suited for searching semantic content.

In addition to the semantic gap, there is an intentional gap that describes the coincidence

between a query and a user’s intention. Query-by-example is the most popular, most intuitive,

and most expressive strategy to describe a user’s search intention in content-based image

and video retrieval scenarios. Nevertheless, simply presenting an image as a query is often

insufficient to express a user’s intention. For example, the pictures in Figure 4.1 show query

images presented to the database of the German Broadcasting Archive, i.e., an institution that

maintains the cultural heritage of the television broadcasts of the former German Democratic

Republic (GDR). In all presented query images, the user’s intention is not clear:

In Figure 4.1a, possible search intentions are:

• Crowd

• Person

• Katarina Witt

• Autograph signing session

• Katarina Witt signing autographs

• Katarina Witt in figure skating dress

In Figure 4.1b, possible search intentions are:

• Simson scooter

• Is the woman important?

• Is the layout important (woman sitting on a scooter at a parking area with Trabant cars

in front of a house)?

In Figure 4.1c, possible search intentions are:

• Motorbike

• Vintage Motorbike
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a) b) c)

Figure 4.1: Query images.

• Moped

• Simson moped

• Simson S51 moped

• Black Simson S51 moped

• Motorbike on meadow with trees in the background

The mismatch between a user’s intention and a query image can be attributed to the following

factors: region of interest, layout, and specificity. It is often unclear whether the user is interested

in only part of the image or in the whole scene. Furthermore, there is the question of whether

the layout is important. For example, is it important in query image 4.1b that the woman

is sitting on a scooter in front of parking cars with a house in the background? Finally, the

specificity of the query is an important factor to capture the user’s search intention. It ranges

from the general concept of the query image (e.g., motorbike), to the specific object, person, or

scene (e.g., Simson S51), to a duplicate of the image. In this context, color, texture, and shape

are further attributes to specify a user’s intention. In all these cases, more user interactions are

necessary to specify a user’s intention.

In this section, a novel similarity search approach is presented that uses intentional constraints

to capture regions of interest, layout, and specificity. These constraints are defined by user

interactions using region labeling and checkboxes for layout and specificity. Regarding speci-

ficity, we have to distinguish between the hierarchy of classes (e.g., car −→ Volkswagen −→
Golf) and the attributes like color, texture, and shape. The best solution for specific classes are

fine-grained models trained for subcategories of e.g., persons, cars, dogs, or flowers. However,

this solution is not really scalable, since there are thousands of classes that would need to be

mapped with fine granularity. Therefore, we realized a hybrid approach where CNN features

are combined with handcrafted features (e.g., color moments and SIFT descriptors) to handle

specificity constraints, while fine-grained similarity modules can be plugged in for the most

important classes such as, e.g., persons.

The hybrid approach operates in two stages. In the first stage, CNN features are used to find

semantically similar content. These images are re-ranked in the second stage using handcrafted

features. These features are extracted from image regions that are responsible for the high

semantic similarity score between the query and the result image. The responsible image
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regions (called heat maps) are calculated using a novel technique for visualizing deep similarity

networks. These regions are also used to realize the layout constraint by comparing the heat

maps.

The contributions are as follows:

• A new query specification scheme is presented that allows to clarify the search intention

of the user presenting the query image.

• A hybrid method using CNN and handcrafted features is presented to realize intentional

image similarity search.

• A novel analysis technique for deep similarity networks is introduced to find the relevant

image regions.

Parts of this section have been published in: Nikolaus Korfhage, Markus Mühling, and Bernd

Freisleben. “Intentional Image Similarity Search.” in: Artificial Neural Networks in Pattern
Recognition: 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020,
Proceedings 9. vol. 12294 LNAI. Springer. Springer Science and Business Media Deutschland

GmbH, 2020, pp. 23–35. doi: 10.1007/978-3-030-58309-5_2.

4.1.2 Related Work

In multimedia search, Kofler et al. [KLH16] distinguish between the topical dimension (“what”

is the user searching for) and the intent dimension (“why” is the user searching). While the

terms “intent” and “intention” are used synonymously in the literature, Kofler et al. [KLH16]

distinguish between the “intent” as the “immediate reason, purpose, or goal behind a user’s

information need” [HKL12] and the “intention” which describes the information need as a

whole. In the case of content-based image similarity search, we consider the intention gap as

the coincidence between the query image and the user’s intention. This is often reflected in

the ambiguity of the query image. The term “intent” goes deeper and considers, for example,

conceptual models of user intent which are built based on click-through data of user sessions,

query log analysis, or user profiles exploiting long-term search behaviors. While there is a wide

range of intent-aware approaches in the field of text and multimedia information retrieval

[KLH16; Cai+15; Den+14] that are mainly based on keyword or text queries, less research effort

has been devoted to intentional image similarity search.

In this section, we focus on content-based image retrieval with query-by-example. Query-by-

content based on feature representations learned by deep CNNs have greatly increased the

performance of content-based image retrieval systems [Wan+14], since they are less dependent

on pixel intensities and better represent the semantic content of the images. Thus, they try to

bridge the semantic gap between the data representation and the human interpretation.

In addition to the semantic gap, there is an intentional gap that describes the coincidence

between a query and a user’s intention. In general, the intentional gap is due to ambiguities

in the query image. As already described in Section 4.1.1, a search image is often insufficient

to express a user’s intention concerning region of interest, layout, and specificity. The query

image, for example, could contain image regions that are not part of a user’s search intention.

Furthermore, the specificity of the query image has to be clarified.
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Relevance feedback is a commonly used technique to narrow down a user’s search intention.

In this scenario, a user interacts with the search engine to evaluate an initial retrieval result.

The additional relevant and non-relevant labeled images are used in an iterative process to

refine the retrieval results. An overview of relevance feedback in image retrieval is given by

Zhou and Huang [ZH03].

Bian et al. [Bia+12] use a query suggestion approach for query-by-example image search

to specify a user’s intention. Given a query image, informative attributes reflecting visual

properties of the query image are suggested to the user as complements to the query. By

selecting some suggested attributes in a feedback session, a user can clarify his or her search

intention.

The approach of Guan andQui [GQ07] learns a user’s intention in an interactive image retrieval

process. Given a query image, the relevant image regions are inferred both from the query

and from multiple relevance feedback images using local image patch appearance prototypes.

These relevant regions are then used to refine the ranking result.

Zhang et al. [Zha+13] present a semantic concept approach. The authors organize the semantic

concepts into a hierarchy and augment each concept with a set of related attributes (e.g.,

round, red, shiny). The queries are mapped onto the concept hierarchy with attributes, and

user feedback is collected to refine the ranking results.

Other possibilities of specifying the search intention are query expansions using, for example,

multiple query images [AZ12; ABB20], additional keywords, or text descriptions [JB16; PG17].

To the best of our knowledge, there are no deep similarity search approaches dealing with

query image ambiguities.

4.1.3 German Broadcasting Archive

Our hybrid feature approach for intentional image similarity search has been applied to

historical video recordings of the German Broadcasting Archive (DRA). The DRA maintains the

cultural heritage of television broadcasts of the former German Democratic Republic (GDR).

It was founded in 1952 as a charitable foundation and joint institution of the Association of

Public Broadcasting Corporations in the Federal Republic of Germany (ARD).

The archive contains film documents of former GDR television productions from the first

broadcast in 1952 until its cessation in 1991. It includes a total of around 100,000 broadcasts, such

as: contributions and recordings of the daily news program Aktuelle Kamera; political magazines

such as Prisma or Der schwarze Kanal; broadcaster’s own TV productions including numerous

films, film adaptations and TV series productions such as Polizeiruf 110; entertainment programs

(e.g., Ein Kessel Buntes); children’s and youth programs (fairy tales, Elf 99); as well as advice
and sports programs.

The DRA provides access to this valuable collection of scientifically relevant videos. The unique-

ness and importance of the material fosters a large scientific interest in the video content.

Access to the archive is granted to scientific, educational and cultural institutions, to public

service broadcasting companies and, to a limited extent, to commercial organizations and pri-

vate persons. The video footage is often used in film and multimedia productions. Furthermore,
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there is a considerable international research interest in GDR and German-German history.

International scientists use the DRA for their research in the fields of psychology, media, social,

political or cultural science.

The DRA is answering a wide range of time-consuming research requests. However, finding

similar images in large multimedia archives is manually infeasible. Therefore, the DRA aims to

digitize and index the entire video collection to facilitate search in images and videos. In this

context, content-based image retrieval using query-by-example is a powerful tool to make the

valuable information in the archive findable.

4.1.4 A Novel Approach to Intentional Image Similarity Search

In this section, the proposed intentional similarity search approach is presented. To better

meet a user’s search intentions, the approach is based on a plugin mechanism for fine-grained

similarity search modules and a hybrid approach based on CNN and handcrafted features.

Further query specifications are required to capture the search intention of a user presenting a

query image. The query specification scheme and the mapping of queries to similarity search

modules is presented below. Then, we present the introduced hybrid approach using deep CNN

and handcrafted features. Finally, the plugin mechanism using the example of similarity search

for faces is described.

Query Specification

To disambiguate a query, a user is offered several options for further specifying his or her search

intention associated with the presented query image. First, the user is allowed to specify the

region of interest to exclude irrelevant parts of the query image. Second, the user can choose

whether (s)he is looking for a specific concept (e.g., a VW Golf). This option is available if

one of the plugins for fine-grained search detects the corresponding general concept (e.g., a

car). Third, the user has the possibility to select color, texture, and shape as additional query

conditions to clarify the search intention. The selected features are automatically extracted

from the region of interest and used to refine the initial ranking results of either the general

or the specific deep similarity search model. The hybrid feature approach is described in the

next section. Fourth, the user can tell the similarity search system that the layout is important.

The layout is considered by comparing the relevant image regions between the query and the

retrieved images. The relevant region extraction approach is presented below. Finally, the user

can perform a duplicate search. For this purpose, all constraints must be satisfied. Altogether,

multiple selected conditions are weighted according to the user’s settings in the distance

function at the re-ranking stage.

Hybrid Feature Method

The proposed hybrid method operates in two stages. In the first stage, CNN features are used

to find semantically similar content. To be scalable to millions of images, this stage relies

on compact representations of the images for fast computation of image similarity by the
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Hamming distance. The deep similarity search approach used in the first stage is described in

the next paragraph. If color, texture or shape are selected as additional query conditions, the

results of the first stage are re-ranked in the second stage, using handcrafted features.

Deep Similarity Search

In our work, we rely on the visual modality and focus on large-scale semantic similarity

search. Since high-dimensional CNN features are not suitable to efficiently search in very

large databases, large-scale similarity search systems focus on binary image codes for compact

representations and fast comparisons rather than full CNN features. Binary codes enable

fast distance computation in the Hamming space. Furthermore, the distance computation

complexity is reduced by Multi-Index Hashing [NPF12]. We use a model that is trained to

generate 256 bit binary codes for fast image retrieval. First, a NASNet [ZL16], pretrained on

ImageNet [Den+09], is trained on ImageNet and the Places 205 dataset [Zho+17]. Before

the final classification layer a tanh activation layer is integrated which produces the 256-

dimensional codes. Next, the model is trained for a few epochs with a smaller learning rate.

Handcrafted Features

The definition of similarity ranges from pixel-based similarity to semantic similarity. The latter

corresponds to human understanding. The definition and optimization of similarity functions

is subject to current research [Bla+16; Lia+16]. In the following, color histograms are proposed

to compute the similarity of color distributions, GIST features [OT01] to measure texture

similarity, and SIFT features [Low99] for shape. To do this, we detect key points and extract

SIFT descriptors within the region. Shape similarity is determined by the number of matching

key points, their spatial distribution, and their similarity in descriptor space. The handcrafted

features are extracted from image regions that are responsible for the high semantic similarity

score at the first stage. For this purpose, a new method is introduced to find these regions, as

described in the following paragraph. To compute the similarity between the relevant regions

of two images, the Euclidean distance of the normalized feature vectors is calculated.

Relevant Region Extraction

To re-rank the retrieval list, we extract relevant regions by a method similar to Class Activation
Maps (CAM) [Zho+16]. The idea is to use the output activations of the query image to detect

relevant regions in images of the retrieval list. The method requires that the last convolutional

layer is followed by a global average pooling layer. Global average pooling outputs the spatial

average of the feature map of the last convolutional layer. Thus, each output in the final layer

is a weighted sum of the pooled vector. CAM can then be generated by applying the weights

corresponding to a specific output class to weight each feature map of the last convolutional

layer. In contrast to CAM, we use the averaged weights of the 256-dimensional coding layer

output of the query image to weight the final feature maps of the retrieval image.

For an image r in the retrieval list, f r
k (x, y) represents the activation of unit k in the last

convolutional layer at spatial location (x, y). For this unit, global average pooling of the
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convolutional layer with depth C results in Fr
k = 1

C ∑C
i=1 f r

k (x, y)i. For each output unit in the

subsequent deep hashing layer, the score is computed as ∑k wr
k,sFr

k , where wr
k is the weight

between the output s and unit k. Likewise, wq
k is obtained a for query image q. As in CAM, the

bias term is ignored. Finally, the activation map used for extracting regions is obtained by

M(x, y) = ∑
k

∑
s

wq
k,s f r

k (x, y). (4.1)

Figure 4.2: Heatmaps visualized in retrieval results.

Figure 4.2 shows a heatmap visualization of the upscaled feature maps for several retrieval

images weighted by the query image.

Plugin Mechanism

The best solution for specific classes are fine-grained models trained for subcategories, such as

faces, car models, bird species or dog breeds. Since this approach is not scalable to thousands

of classes, fine-grained models are only integrated for the most important and most frequently

used query contents. The user-defined query image regions are analyzed by the search engine

to detect classes for which more fine-grained modules exist. Each module has to provide two

components: a detection component and a component that generates the binary codes from

the image region. In an interactive user session, as described above, the user specifies whether

(s)he is searching for the general class or for the automatically detected specific content.

Each module has its own index. If a module is activated, the general search index is replaced

by the specific index of the fine-grained model from the corresponding submodule.

In the following, the fine-grained module for faces/persons is presented in more detail. Similar

to the general model, the same deep hashing approach, as described above, is used to generate

binary codes for large-scale similarity search. In contrast to the general model, the face module

follows a two-stage approach. In the first stage, the faces are detected using a joint face detection

and alignment approach based on multitask cascaded convolutional networks [Zha+16a]. For

this purpose, a publicly available implementation is used
1
. After aligning the face regions, a

deep hashing model is used to generate the binary codes. We use the pretrained weights of

the publicly available FaceNet model [SKP15a] trained on the CASIA-WebFace dataset. We

extended the architecture of this model by a coding layer and fine-tuned it on the same dataset

extended by training samples for 100 persons from the DRA dataset to adjust the model to the

keyframes of the historical video recordings.

1https://github.com/davidsandberg/facenet/tree/master/src/align
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While in the indexing phase the binary codes for all detected faces of an image are calculated

and fed into the corresponding index, in the search phase only the largest face within the query

image region is used to generate the binary query code.
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Figure 4.3: Specific retrieval results using the fine-grained face module in comparison to the

general search results.

4.1.5 Experimental Results

The proposed intentional image search approachwas evaluated experimentally on the keyframes

of the video recordings of the German Broadcasting Archive. While the currently digitized

index contains more than 10 million keyframes, the retrieval results had to be restricted to

400,000 keyframes due to associated rights of use of the keyframes.

We evaluate our approach qualitatively for two use cases below.

In the first use case, we consider the plugin mechanism and investigate the impact of the

face/person similarity module. For this purpose, a face detection and recognition module was

integrated into the similarity search system. This allows the user to specify whether general

concepts are important, or if (s)he is interested in a specific concept - a person’s face in this

case.

The experiments were performed on two indices, one for general semantic similarity, another

one for face similarity. The general index contains hash codes for all 400,000 keyframes, while

the person recognition based index contains about 300,000 image codes, each one representing

a detected face.
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Figure 4.4: Retrieval of deep similarity search (query images in top row).
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Figure 4.5: Retrieval of deep similarity search, re-ranked by local color histograms (query images

in top row).
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Figure 4.3 shows the top retrieval results for query images for both the general search and the

specific search, which involves a subsequent face detection and recognition step. The detection

component of the face plugin reliably detected the faces both in the query and database

images. While the general search results contains similar images that contain persons with the

same shot size, the specific search delivers the same person in different scenarios with high

accuracy.

In the second use case, we evaluated the hybrid feature approach by the example of color

histograms. If a user decides that color is an important property in the query image, the

retrieval list is re-ranked, as described in Section 4.1.4. Figure 4.4 shows the retrieval for some

query images. Figure 4.5 shows the same retrieval list when color is of interest to the user,

re-ranked according to the similarity of color histograms extracted from the relevant regions.

This example shows how retrieval results of CNNs trained on (high level) semantic concepts

can be refined by re-ranking them according to selected low level features.

In both cases, the additional specification of the query leads to results that reflect a user’s

intention.

4.1.6 Summary

In this section, a novel intentional image similarity search approach was proposed to better

meet a user’s search intention. For this purpose, a new scheme for specifying a user’s intention

with respect to a query image was introduced. The best solution for specific classes are fine-

grained models trained for subcategories, such as faces. Since this approach is not scalable to

thousands of classes, a plugin mechanism was integrated to support specific search for the most

important concepts. Furthermore, a hybrid feature method based on CNN and handcrafted

features was used to consider color, texture, and shape. In this context, a novel analysis method

for deep similarity networks was presented for the purpose of finding relevant image regions.

Finally, the proposed system was evaluated qualitatively on video recordings of the German

Broadcasting Archive, showing promising results.
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4.2 ElasticHash: Semantic Image Similarity Search in
Elasticsearch

4.2.1 Introduction

Query-by-content approaches based on feature representations that are learned by deep

convolutional neural networks (CNNs) have greatly increased the performance of content-

based image retrieval systems. However, state-of-the-art methods in the field of semantic

image similarity search suffer from shallow network architectures and small data sets with

few image classes in the training as well as in the evaluation phases. Few image classes in

the training phase lead to poor generalizability to query images with unknown content in the

evaluation phase, i.e., a more fine-grained modeling of the image content is required. Thus, high

accuracy for arbitrary search queries, fast response times, and scalability to millions of images

are necessary to meet many users’ needs both in scientific and commercial applications.

In this section, we present ElasticHash, a high-quality, efficient, and scalable approach for

semantic image similarity search based on the most popular enterprise full-text search and

analytics engine Elasticsearch
2
(ES). ES processes queries very fast due to inverted indices based

on Lucene
3
, scales to hundreds of servers, provides load balancing, and supports availability

and reliability. Apparently, the properties of ES are not only desirable for full-text search, but

also for semantic image similarity search. Furthermore, integrating image similarity search

into ES allows multi-modal queries, e.g., combining text and images in a single query. Our

contributions are as follows:

• We present ElasticHash, a novel two-stage approach for semantic image similarity search

based on multi-index hashing and integrate it via terms lookup queries into ES.

• We present experimental results to show that ElasticHash achieves fast response times

and high-quality retrieval results at the same time by leveraging the benefits of short

hash codes (better search times) and long hash codes (higher retrieval quality). To the

best of our knowledge, we provide the first evaluation of image similarity search for more

than 120,000 query images on about 6.9 million database images of the OpenImages data

set.

• We make our deep image similarity search model, the corresponding ES indices, and a

demo application available at http://github.com/umr-ds/ElasticHash.

Parts of this section have been published in: Nikolaus Korfhage, Markus Mühling, and Bernd

Freisleben. “ElasticHash: Semantic Image Similarity Search by Deep Hashing With Elastic-

search.” in: Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021,
Virtual Event, September 28–30, 2021, Proceedings, Part II 19. Springer. 2021, pp. 14–23.

2https://www.elastic.co
3https://lucene.apache.org
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4.2.2 Related Work

Deep learning, in particular deep CNNs, led to strong improvements in content-based image

similarity search. With increasing sizes of the underlying image databases, the need for an

efficient similarity search strategy arises. Since high-dimensional CNN features are not suitable

to efficiently search in very large databases, large-scale image similarity search systems focus

on binary image codes for quantization or compact representations and fast comparisons rather

than full CNN features.

Recently, several deep hashing methods were introduced [Zhu+16; Eri+15; Wan+15; Wan+18b;

Cao+17a; Liu+16a; Cao+18b]. Many of them employ pairwise or triplet losses. While these

methods often achieve state-of-the-art performance on their test data sets, they are not

necessarily suitable for very large data sets and fine-grained image similarity search based

on thousands of classes. Existing deep hashing methods are often trained using small CNNs

that usually cannot capture the granularity of very large image data sets. Often, CNN models

like AlexNet [KSH12] are used as their backbones, and they are usually evaluated on a small

number of image classes [WKC12; Cao+18b; Eri+15; Zhu+16] (e.g., a sample of 100 ImageNet

categories [Cao+18b], about 80 object categories in COCO [Lin+14], NUS-WIDE [Chu+09]

with 81 concepts, or even only 10 classes as in MNIST or CIFAR). Additionally, the image

dimensions in CIFAR and MNIST are very small (32x32 and 28x28, respectively) and thus not

sufficient for image similarity search in real-world applications. Many approaches are trained

on relatively small training data sets (e.g., 10,000 - 50,000 images [Cao+17b; Cao+18b; Liu+16a]).

In addition, there are no standardized benchmark data sets, and each publication uses different

splits of training, query, and database images, which further complicates a comparison of the

methods. Furthermore, training from scratch can be prohibitively expensive for large data sets.

We observed that for large data sets with a high number of image classes, a transfer learning

approach that combines triplet loss and classification loss leads to good retrieval results. To

the best of our knowledge, ElasticHash is the first work that presents a deep hashing model

trained and evaluated on a sufficiently large number of image classes.

The currently best performing approaches for learning to hash image representations belong

either to product quantization (PQ) methods [JDS10; JDJ19] and methods based on deep

hashing (DH) [Wan+15; Eri+15]. Amato et al. [Ama+18] present PQ approaches that transform

neural network features into text formats suitable for being indexed in ES. However, this

approach cannot match the retrieval performance of FAISS [JDJ19]. Therefore, we focus on

deep hashing that in combination with multi-index hashing (MIH) [NPF12] can circumvent

exhaustive search in Hamming space and achieve low search latency while maintaining high

retrieval quality.

ElasticHash is related to other image similarity search methods integrated into ES. For example,

FENSHSES [Mu+19] integrates MIH into ES and has a search latency comparable to FAISS.

The method works efficiently for small radii of the Hamming ball and relatively small data

sets (500,000 images). Small hamming radii, however, often produce too few neighbors for a

query [NPF12]. MIH like FENSHSES is thus not suitable for our scenario of large-scale image

retrieval in ES with long binary codes (256 bits), where we require sub-second search latency

on a data set of about 7 million images. Furthermore, we solve the shortcomings of FENSHSES

using only a subset of bits rather than the whole hash codes to perform our MIH-based coarse
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search. While other works extend ES for image similarity search by modifying the Lucene

library [Gen+10], our approach is seamlessly integrated into ES without modifying its code

base.

4.2.3 ElasticHash

ElasticHash consists of several components as shown in Figure 4.6: a deep hashing component,

an ES cluster, and a retrieval component. The deep hashing component is realized as a web

service using Tensorflow Serving where the integrated deep hashing model is applied to images

and the corresponding binary codes are returned. In the first phase, the binary codes are

extracted from the database images in the indexing phase using the deep hashing component

and stored into the ES cluster. After initially building the index, the retrieval component handles

incoming query images and visualizes the retrieval results. For this purpose, the binary codes

are extracted from the query images using the web service, the corresponding ES queries are

assembled and sent to the ES cluster that returns the final list of similar images. The entire

similarity search system can be easily deployed for production via Docker.

The deep hashing model is described in more detail in Section 4.2.3, including the training

strategy and network architecture. In Section 4.2.3, the ES integration is presented.

Figure 4.6: Overview of the workflows for image similarity search in ES.

Deep Hashing Model

We now describe our deep hashing model and how it is used to extract both short and long

hash codes. The model training consists of two phases that both use ADAM as the optimization

method. First, an ImageNet-pretrained EfficientNetB3 [TL19] model is trained on a data set

with a larger number of classes in order to obtain a more fine-grained embedding. In contrast

to the original ImageNet dataset, it contains all ImageNet classes with more than 1000 training

images and all classes of the Places2 [Zho+17] data set, which results in a total number of

classes of 5,390. The model is trained with cross-entropy loss on a Softmax output. After two

epochs of training the final layer with a learning rate of 0.01, all layers are trained for another

16 epochs with a learning rate of 0.0001.
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In the second phase, the classification model’s weights are used to initialize the deep hashing

model. This model includes an additional 256-bit coding layer before the class output layer

with tanh activation and 256 outputs. This model is trained for 5 epochs with a learning rate

of 0.0001. It is trained on the same data set as before, however, by combining cross-entropy

loss on the output and hard triplet loss [SKP15b] on the coding layer.

With the classification loss

Lc =
K

∑
i=1

yi log pi (4.2)

for K classes with labels yi and predictions pi, and the triplet loss

Lt = max(d(a, p)− d(a, n) + γ, 0) (4.3)

for Euclidean distance d between the 256-dimensional output of the coding layer for anchor

image a and positive example p and between a and a negative example n, respectively, the
combined loss function is given by:

L = αL⌋ + βL⊔, (4.4)

where we set margin γ = 2 and weights α = 1 and β = 5. We first sample a batch of size

b = 128 images from a uniform distribution of the classes. This batch is used for both computing

the classification loss and generating b hard triplets. To make the similarity search more robust,

we used heavy data augmentation in both phases, which in addition to standard augmentation

methods includes inducing JPEG compression artifacts. After training, the model generates

256-bit codes. These codes can be decomposed into four 64-bit codes for fast computation of

Hamming distance on long integers. However, using codes of this length on a corpus of about 10

million images is too expensive, even when using multi-index hashing. We therefore extracted

64-bit codes from the original 256-bit codes to perform the filtering on shorter codes and thus

smaller Hamming ball radii. To extract the 64 most important bits from the 256-bit codes, we

first compute the correlations between bit positions (see Figure 4.7) and select the bits with the

lowest correlation to all remaining bits. Then we partition the 64-bit codes into four partitions

with 16 bits by applying the Kernighan-Lin algorithm [KL70] on the bit correlations.

Integration into ES

Before describing our image similarity search integration into ES, we will shortly review MIH

in Hamming space [NPF12]. The idea of MIH is based on the following observation: for two

binary codes h = (h1, ..., hm) and g = (g1, ..., gm) where m is the number of partitions, hk
and

gk
are the kth

subcodes and H is the Hamming norm, the following proposition holds:

∥h − g∥H ≤ r ⇒ ∃k ∈ {1, ..., m}
∥∥∥hk − gk

∥∥∥
H
≤
⌊ r

m

⌋
(4.5)

For the case of 64-bit codes that are decomposed into m = 4 subcodes, this means that a code is

in a Hamming radius r < 12 if at least one of the subcodes has a distance of d ≤ ⌊ r
m⌋ = 2 from

the query subcode. The performance of MIH can be increased if the subcodes are maximally
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Figure 4.7: Bit correlations of 10,000 hashcodes.
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independent of each other [Wan+13a], especially for shorter codes [Mu+19]. Thus, after training

a deep hashing model, the bit positions should be permutated accordingly.

The ES index used for retrieval contains four short codes (f_0 - f_3) and four long subcodes

(r_0 - r_3) for each image. The short codes are used for MIH and efficiently utilize the reverse

index structure of ES and are thus separated into four subcodes of type "keyword". The long

codes are also separated into four subcodes in order to allow fast computation of Hamming

distances for values of type long as shown in Listing 4.1.

PUT /es-retrieval/default/_mapping
1 {
2 "properties": {
3 "image": {"type": "text"},
4 "f_0": {"type": "keyword"},
5 "f_1": {"type": "keyword"},
6 "f_2": {"type": "keyword"},
7 "f_3": {"type": "keyword"},
8 "r_0": {"type": "long"},
9 "r_1": {"type": "long"},
10 "r_2": {"type": "long"},
11 "r_3": {"type": "long"}
12 }
13 }

Listing 4.1: Mapping of retrieval index.

An additional index is used for fast lookup of neighboring subcodes within the retrieval query.

The neighbors index does not change once it has been created and merely serves as an auxiliary

index for term queries. It requires pre-computing all nearest neighbors for all possible 16-bit

subcodes. Thus, the index of neighbors contains 216
documents. The document id corresponds

to the unsigned integer representation of a 16-bit subcode and can therefore accessed within a

term query. It contains a single field "nbs" that is assigned to a list of all neighboring 16-bit

codes within a Hamming radius of d of the corresponding query subcode. Since this index

basically works as a lookup table, it could also be realized somewhere else, i.e., not as an ES

index. However, integrating the lookup table this way eliminates the need for external code

and enables fast deployment of the whole system. All documents representing all possible

16-bit subcodes are inserted according to the query in Listing 4.2.

POST /nbs -d2/_doc/<16 bit subcode >
1 {
2 "nbs": [<d2 neighbors of 16 bit subcode >]
3 }

Listing 4.2: Query for adding an entry to neighbor lookup index.

In this stage, MIH is realized by querying the additional index of neighbors for fast neighbor

lookup. Even with MIH, using the full code length of the deep hashing model trained for 256-bit

codes is too expensive for larger databases. We therefore limit the code length for the filtering

stage to 64-bit codes. To obtain a sufficiently large set of candidate hash codes in the first stage,

we need to search within a Hamming ball with a correspondingly large radius. We set d = 2,
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Figure 4.8: A document representing an image (green) is related via subcodes to documents

holding lists of neighboring subcodes in the neighbors index (violet).

which will return at least all codes within r = 11 of a 64-bit code. In our setting with d = 2,
this results in 137 neighbors per subcode, i.e., 548 neighbors in total.

In ES, we realizeMIH by using a terms lookup. It fetches the field values of an existing document

and then uses these values as search terms (see Listing 4.2). In contrast to putting all neighbors

into the query, using a dedicated index for subcode neighbors has the advantage that the

retrieval of neighboring subcodes is carried out within ES. Thus, the query load is small, and

no external handling of neighbor lookup is necessary. The relation between a document and

the neighbors index are shown in Figure 4.8.

In the second stage, all codes obtained by MIH are re-ranked according to their Hamming

distance to the long code. To compute the Hamming distance of the 256-bit code, the Painless

Script in Listing 4.3 is applied to each of the four subcodes.

POST _scripts/hd64
1 {
2 "script": {
3 "lang": "painless",
4 "source": 64-Long.bitCount(params.subcode^doc[params.field].value)
5 }
6 }

Listing 4.3: Query for adding a Painless Script.

The query in Listing 4.4 combines the MIH step as a filter with a term query and the re-ranking

step as an application of the painless script from Listing 4.3 on the filtered retrieval list.
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GET /es-retrieval/_search
1 {
2 "query": {
3 "function_score": {
4 "boost_mode": "sum",
5 "score_mode": "sum",
6 "functions": [
7 ...,
8 {
9 "script_score": {
10 "script": {
11 "id": "hd64",
12 "params": {
13 "field": "r_<i>",
14 "subcode": <64 bit subcode for re -ranking >
15 }
16 }
17 },
18 "weight": 1
19 },
20 ...
21 ],
22 "query": {
23 "constant_score": {
24 "boost": 0.,
25 "filter": {
26 "bool": {
27 "minimum_should_match": 1,
28 "should": [
29 ...,
30 {
31 "terms": {
32 "f_<j>": {
33 "id": "<16 bit subcode for lookup >",
34 "index": "nbs -d2",
35 "path": "nbs"
36 }
37 }
38 },
39 ...
40 ]
41 }
42 }
43 }
44 },
45 }
46 }
47 }

Listing 4.4: Query for performing two-stage similarity search.

4.2.4 Experimental Evaluation

To determine the search latency and retrieval quality of ElasticHash, we evaluate three settings
for using the binary hash codes generated by our deep hashing model for large-scale image

retrieval in ES: (1) short codes, i.e., 64 bits for both filtering and re-ranking, (2) long codes, i.e.,
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Figure 4.9: Top-10 retrieval results for (a) short codes, (b) long codes, and (c) ElasticHash for the

same query image (first on the left); green: relevant result; red: irrelevant result.

256 bits for both filtering and re-ranking, and (3) ElasticHash, i.e., 64 bits for filtering, 256 bits
for re-ranking. Settings (1) and (2) are similar to the MIH integration of Mu et al. [Mu+19].

To evaluate our approach, we use OpenImages [Kuz+20], which is currently the largest an-

notated image data set publicly available. It contains multi-label annotations for 9.2 million

Flickr images with 19,794 different labels and is partitioned into training, validation, and test

data set. On the average, there are 2.4 positive labels for the training split, while the validation

and test splits have 8.8. As our database images we use all training images being available

when downloading the data set, i.e., 6,942,071 images in total. To evaluate the retrieval quality,

we use all downloaded images from the OpenImages test and validation set as query images

(121,588 images in total). From these images, we draw a sample of 10,000 images to measure

the search latencies for the three different settings.

The quality of the retrieval lists is evaluated using the average precision (AP) score, which is

the most commonly used quality measure in image retrieval. The AP score is calculated from

the list of retrieved images as follows:

AP(ρ) =
1

|R ∩ ρN |

N

∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik), with ψ(ik) =

 1 if ik ∈ R

0 otherwise

(4.6)

where N is the length of the ranked image list, ρk = {i1, i2, . . . , ik} is the ranked image list

up to rank k, R is the set of relevant documents,

∣∣R ∩ ρk
∣∣
is the number of relevant images in

the top-k of ρ and ψ(ik) is the relevance function. We consider an image as relevant, if it has

at least one label in common with the query image. To evaluate the overall performance, the

mean AP score is calculated by taking the mean value of the AP scores over all queries.

Results

We first evaluate the search latency for queries. Next, we compare the retrieval quality in

terms of AP. The experiments were performed on a system with an Intel Core i7-4771 CPU @

3.50GHz and 32 GB RAM.

Table 4.1 shows that for a k up to 250 there is no notable decrease in retrieval quality when

using ElasticHash rather than using long codes for both stages. Figure 4.9 shows examples of
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top k

10 25 50 100 250 500 1000

ES 64 MIH (short) 87.94 86.08 84.44 82.54 79.41 76.44 72.86

ES 256 MIH (long) 95.35 94.72 94.23 93.71 92.90 92.09 90.95

ElasticHash 95.21 94.48 93.90 93.22 92.02 90.61 88.42

Table 4.1: Retrieval quality (mean AP) for different thresholds of k on 121,588 query images.

top k

10 25 50 100 250 500 1000

FAISS 64 ex.

µ 22.55 22.59 22.62 22.61 22.68 22.74 22.93

σ 1.92 1.89 1.93 1.90 1.93 1.90 2.04

FAISS 256 ex.

µ 160.90 160.54 161.11 161.26 161.44 161.24 161.26

σ 17.14 17.06 17.33 17.99 18.03 17.78 17.38

FAISS 64 MIH

µ 31.05 34.02 29.52 29.88 29.58 29.89 30.17

σ 13.46 14.81 12.42 12.46 12.40 12.46 12.48

FAISS 256 MIH

µ 209.31 225.63 234.05 219.78 217.57 221.32 222.43

σ 43.03 46.78 45.33 42.99 43.27 42.74 42.20

FAISS IVF 64

µ 45.74 50.40 46.04 48.36 45.90 45.74 49.16

σ 2.59 6.45 2.61 4.62 2.49 2.46 5.17

FAISS IVF 256

µ 110.61 108.66 108.28 108.31 109.11 109.13 109.94

σ 4.58 3.35 2.99 3.11 3.12 3.02 4.48

ES 64 MIH (short)

µ 23.09 23.98 24.45 25.58 28.38 33.09 42.20

σ 4.74 4.65 4.70 4.72 4.86 5.20 6.07

ES 256 MIH (long)

µ 111.83 111.58 111.99 113.05 116.77 121.98 132.60

σ 16.50 16.58 16.72 16.54 17.04 17.13 17.99

ElasticHash
µ 36.12 36.75 37.28 38.17 40.88 45.73 55.23

σ 7.80 7.96 7.81 7.89 7.93 8.12 8.64

Table 4.2: Search latencies for ES and FAISS queries (ms) with standard deviation for different

thresholds of k on 10,000 query images.

the top-10 retrieval results for the three settings. The retrieval quality of ElasticHash is similar

to using long codes, and both are superior to using short codes. On the other hand, Table 4.2

indicates that the average retrieval time only slightly increases compared to using short codes

for both stages. This suggests that ElasticHash is a good trade-off between retrieval quality

and search latency. Although our deep hashing model was trained on 5,390 classes, but almost

20,000 classes occur in the validation data set, high AP values are achieved for ElasticHash. For
comparison, Table 4.2 also shows the query times for several approaches in FAISS [JDJ19] with
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binary indices of length 64 and 256, respectively. We evaluate FAISS with exhaustive search

(ex.), multi-index hashing (MIH), and inverted index file (IVF). For IVF in FAISS we perform

a range search within a radius < 12 for short codes, and a radius < 48, respectively. The
unordered results are then re-ranked.

4.2.5 Summary

We presented ElasticHash, a novel two-stage approach for semantic image similarity search

based on deep multi-index hashing and integrated via terms lookup queries into ES. Our

experimental results on a large image data set demonstrated that we achieve low search

latencies and high-quality retrieval results at the same time by leveraging the benefits of short

hash codes (better search times) and long hash codes (higher retrieval quality).
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5
Segmentation-based Image Similarity Search

via Region Prompts

5.1 Introduction

Image similarity search is used to find visually similar images to a given query image in large

image collections It is employed in various application areas, such as e-commerce [Ak+18],

healthcare [Sil+22; KRS20; Qay+17], art-historical research [Spr+21], research in historical

video archives [Müh+19], or as part of a visual data acquisition workflow [Müh+22].

Image similarity search systems allow users to efficiently search in large sets of images by

storing images as compact feature vectors. This means that usually entire images are indexed.

However, a desirable property of an image-based search system is to not only enable whole-

image search, but to search for certain image areas or objects that are of interest within an

image. A straightforward solution is to use an object detector, detect and classify all objects in

all images of the image collection, and set up an index for all detected objects. This approach is

disadvantageous for the following reasons. First, it only works for objects, not arbitrary regions

Figure 5.1: Example query image with a point prompt for segmentation-based similarity search.
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within an image. Second, it is limited to a set of object classes used for training, i.e., it is biased

towards the trained object categories. Even if the object detector is replaced by a panoptic

segmentation approach [Kir+19], the search would still be limited to predefined categories,

and robustness to distribution shifts is limited.

In this section, we present a novel approach to perform image similarity search that is not

limited to a dictionary of object categories, but is based on publicly available foundation models

that we use for image encoding and image segmentation. Our approach allows users to better

express their search intent by enabling a more refined search for objects or image regions. This

search intent can be conveyed via prompts, such as point, box, and text prompts. Fig. 5.1 shows

how a query is processed in our approach, called Search Anything. First, a user selects a query
image. Then, the user selects an image region of this query image via a prompt. The selected

image region is automatically segmented. Next, a binary feature vector is extracted based on

the masked region. This feature vector is used as a query for an image region index, and the

user gets back as a result the images that contain the corresponding region.

Search Anything is trained in a self-supervised manner on mask features extracted by the

FastSAM foundationmodel [Zha+23] and semantic features formasked image regions extracted

by the CLIP foundation model [Rad+21] to learn binary hash code representations for image

regions. In our experimental evaluations based on several datasets from different domains

in a zero-shot setting, we show that combining region masks, segmentation features, and

semantic features improves region retrieval performance. If objects or regions are sufficiently

large, an improvement in retrieval quality can be achieved if they are masked and thus only

features from the image region are considered. For small objects, on the other hand, context is

important, and useful features can be extracted from the context.

Our contributions are as follows:

• We present Search Anything, a novel approach to use both segmentation features and

semantic features for region-based image similarity search, relying on image-based

prompts, such as point and box prompts, originally used in image segmentation.

• We experimentally evaluate that masking and the use of a combination of segmentation

features and semantic features leads to better search results.

• To the best of our knowledge, our approach is the first approach to apply and evaluate

region-based image similarity search in a zero-shot setting.

Parts of this section are based on: Nikolaus Korfhage, Markus Mühling, and Bernd Freisleben.

“Search Anything: Segmentation-based Similarity Search via Masked Region Prompts.” in:

Submitted; Under Review. 2024.

5.2 Related Work

5.2.1 Foundation Models

Foundation models [KRS20] are large neural network models trained on large amounts of data.

In our work, we combine foundation models trained for different tasks in the vision domain to
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create a general-purpose image-based similarity search approach. Popular foundation models

for image segmentation are CLIPSegment [LE22], SAM [Kir+23], and more recently, FastSAM

[Zha+23]. We make use of FastSAM, since inference with FastSAM is an order of magnitude

faster than with SAM, while its segmentation performance is similar to the original SAMmodel.

SAM was not trained with explicit semantic supervision, but it can capture some semantics in

its representation [Kir+23] However, it still lags behind the predictive performance of models

for image encoding trained with explicit semantic information, i.e., text. We therefore enhance

mask features by combining them with semantic features. We use CLIP [Rad+21] for extracting

features of (masked) image regions, since it was trained contrastively on text. In particular,

CLIP’s image encoder has shown a good zero-shot retrieval performance due to its contrastive

training on image-text pairs. We argue that we can improve the retrieval quality by combining

these opposing features. Models trained for general purpose segmentation tend to encode more

low-level information such as shape and color, rather than semantic categories. In contrast,

models trained with contrastive learning and strong data augmentation are explicitly trained to

ignore such information. We propose a novel approach that allows users to search for regions

of an arbitrary natural image, taking into account both semantic and segmentation features.

The combination of two foundation models allows us to accomplish this goal without a large

training effort and without the need for any manual annotations.

5.2.2 Image Similarity

What ’similarity’ means for images depends on the problem to be solved and its context.

Similarity may range from a general concept present in a query image, layout, specific instances

of objects [CAS20; Che+22], or attributes such as color, texture, and shape, and is ultimately

determined by a user’s search intention [KMF20].

Most current approaches focus on one specific notion of similarity by learning a similarity

function that is either determined by specific concepts used during training or by the underlying

data distribution, as in self-supervised learning [VCM23]. However, there are often several

types of competing semantic aspects that are of interest, such as the general concept, color, and

shape. Conditional Similarity Networks (CSN) [VBK17] were introduced to handle contradicting

notions of similarity within a single model by learning embeddings, i.e., different similarities

are encoded in separate subspaces. In contrast, we combine two notions of similarity that

are in general not mutually exclusive: the general concept of a region and its exact visual

characterization given by attributes such as shape, color, and texture.

We implicitly combine two different measures of similarity as follows: (a) the implicit similarity

function learned by vision-text contrastive models such as CLIP, which we refer to as semantic

similarity, and (b) similarity between features learned by general purpose segmentation models

such as SAM, which we refer to as segmentation similarity. This distinction is somewhat

arbitrary, since, for example, information on attributes such as color and shape can also be

implicitly encoded in the features of vision-language models, e.g., if they are specific to a

semantic concept, and conversely, some semantic information is learned by segmentation

models trained for general purpose segmentation [Kir+23]. Nevertheless, the corresponding

feature space differs fundamentally due to the underlying training data and method. By

combining semantic similarity and segmentation similarity, we show that we can improve
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zero-shot region retrieval performance. We assume that (a) images are natural images, (b)

certain objects or regions in a query image are of interest, and (c) both semantic similarity

and the exact visual similarity, given by attributes such as shape, color, texture, etc., should be

reflected in the retrieval list.

5.2.3 Prompts

The use of prompts originally refers to user interaction with large language models such as

GPT-3 [Bro+20] via text prompts. CLIP supports text prompts for large vision-language models.

In CLIPSegment, text prompts are used to segment images. More recently, image-specific

prompts were introduced for general image segmentation by SAM. They include box and point

prompts and seem particularly appealing to be used for image-based similarity search to refine a

user’s search intent. These kinds of intuitive prompts complement existing image-based search

input methods such as, i.e., drawing sketches in sketch-based image retrieval [Yel+18; Lin+23;

Tur+22] or drawing (partial) segmentation maps [FIY19]. Enabling region-based prompts could

also be useful for content-based image retrieval systems that already have a variety of search

options (e.g. iArt [Spr+21]), but still lack the ability to search for specific image regions.

5.2.4 Zero-shot Region Retrieval

Our approach is related to some approaches proposed for region retrieval [Jin+04; HGC10;

VFE15] and object retrieval [Hoi+04; KPK03]. In contrast to previous region retrieval approaches

that consider the spatial configuration of semantic regions in a query image and retrieve similar

images [FIY19; Mai+17; HMS17], we consider database images and query images as collections

of regions that can be searched for. Available region retrieval methods are usually trained on

labeled training data and are not applicable to a general-purpose region retrieval approach.

In contrast, our approach leverages the generalization capability of foundation models and

acts as a zero-shot image region retrieval system. This is also different from recent zero-shot

sketch-based image retrieval (ZS-SBIR) approaches [Lin+23; Sai+23; Yel+18; Tur+22] that use a

sketch as its input, whereas our system uses region prompts on a query image as its input.

5.2.5 Large-scale Similarity Search

While the problem of extracting features quickly can be solved by efficient architectures (e.g.,

Convolutional Neural Network (CNN) architectures such as FastSAM), a significant fraction of

query time is spent on nearest neighbor search. Depending on the method used to identify

regions in an image, there easily can be more than 100 regions per image, which means that

the index becomes orders of magnitude larger than for conventional image similarity search.

This requires an efficient representation of the feature vectors. Besides using methods based

on product quantization [Guo+20; JDS10], binary representations can be learned using deep

hashing [Eri+15; Lin+15; Luo+23]. Since we do not use class-labeled data for training our hashing

model, we have to rely on semantic information encoded in the features extracted from the

foundation models. In unsupervised or self-supervised deep hashing [She+18; Yan+19], a small

neural network or single layer is trained to learn the distance from feature vectors on unlabeled
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training data. Although not yet applied to the problem of region retrieval, existing approaches

[Luo+23] have been extensively evaluated on features extracted from image classification

models. In our similarity search approach, we use FAISS [JDJ19] for indexing binary vectors for

image regions.

5.3 Approach

Figure 5.2: Search Anything: similarity search with region prompts. First, a user selects a query

image (1). Then, the user refines the search with a region prompt (2). Segmentation

features and semantic features are masked and concatenated. The combined feature

vector is compressed by deep hashing.

Figure 5.2 shows our approach, called Search Anything, for generating compact binary codes for

image regions in a query image via prompts. First, a user chooses a query image that contains

an object or region of interest. This query can then be refined by the user via various prompts,

such as point prompt, box prompt, or text prompt (violet). The query image is then segmented

by a foundation model for image segmentation. The segmentation masks of the query image

are used in the subsequent region selection step (green). It selects the corresponding query

object or region according to the user’s prompt (blue). In case of a text prompt, an image-to-text

foundation model is used to match the text encoding (brown) to one of the query image’s

segmentation masks. The image encoder of the image-to-text model is then used again for

obtaining generalized image features (yellow) for the selected region. Depending on the size of

the region, the input to the model is masked with the selected segmentation mask (⊗ in Fig.

5.2 denotes pixel-wise multiplication). The same mask is used when creating a segmentation

feature vector (red), but here, instead of masking the input, the feature map extracted from the

feature pyramid [Lin+17a] of the segmentation model is masked. Then, the semantic feature
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vector is concatenated with the extracted segmentation feature vector of the segmentation

model. Finally, the concatenated feature vector is fed into a deep hashing neural network that

returns a compact binary representation of the combined mask and semantic image features

for the image region. Finally, the obtained region-of-interest hashcode is used to efficiently

search the database of image regions.

5.3.1 Region Prompts

To process the prompts and extract the segmentation masks for selected regions, we use the

FastSAM [Zha+23] approach for dividing the segment anything task into two stages. In the

first stage, the masks for all regions in the query image are generated using a CNN-based

object detector (i.e., All Instance Segmentation). In the second stage, the corresponding mask is

assigned to the prompt (i.e., Prompt-guided Selection). The generation of segmentation masks

for all instances in the image is performed by the segmentation model’s backbone, which is a

YOLOv8 object detector [JCQ23]. Both stages are summarized in Fig. 5.2 as Region Selection;
they enable the utilization of point prompts, box prompts, and text prompts. While in SAM

prompts are part of the transformer-based architecture as inputs, in FastSAM prompts are

processed after segmentation has been performed. But image-based prompting works the same

way: as with SAM, foreground and background points can be set. If a foreground point lies in

several masks, background points are used to exclude irrelevant masks, and multiple foreground

points are used to merge segmentation masks into a single mask. With a box prompt, a user

can draw a box around a region-of-interest. By matching the Intersection over Union (IoU),

the corresponding mask is assigned. Finally, text prompts offer text-based queries to specify

a region-of-interest within the query image. Text and image embeddings are extracted from

CLIP, and the masked features with the highest similarity score to the text embedding are

selected. While text prompt processing is the most expensive step at inference time, the image

embeddings can be used directly for the following semantic feature extraction step. In the

context of region-based retrieval, these different prompts are used to specify regions as queries,

and we therefore refer to them as region prompts. Based on the selection of a segmentation

mask for the region prompt, we extract segmentation features for the corresponding prompt

region, from the highest resolution level of the feature pyramid of the segmentation model

and semantic features from the image encoder.

5.3.2 Deep Hashing

We use a hashing layer for compressing masked region features. It generates a compact

representation of length L for a given image region x ∈ RH×W×3
as follows:

hashL(x) = tanh(W( fM(x)⊕ f I(x)) + b), (5.1)

where ⊕ denotes concatenation. The segmentation features fM are obtained as follows. From

the highest resolution layer of the feature pyramid of the segmentation model, each channel

is multiplied with the predicted segmentation mask and then average-pooled. This results in

a 320-dimensional feature vector (corresponding to the number of channels of the highest

resolution layer). The semantic feature vector f I is extracted from the image encoder of the
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CLIP model by feeding it with the masked image crop. To obtain robust image features, we

use OpenCLIP ViT-H-14 [Ilh+21] that showed a high zero-shot performance and is robust to

natural distribution shifts [Rad+21]. The image feature vector is 1024-dimensional.

5.3.3 Training

To train our deep hashing model in a self-supervised manner, we use the Segment Anything 1

Billion (SA-1B) [Kir+23] dataset. It contains class-agnostic mask annotations for 11M images,

i.e., segmentation masks without labels. SA-1B was originally used for training foundation

models for general-purpose object segmentation. Masks can contain regions, objects or parts,

and overlapping masks occur. It is the largest segmentation dataset available. It contains an

average of 100 segmentation masks per image.

Similar to generating the inputs for the hashing network, the concatenated feature vector used

for computing the target cosine distances is extracted directly from the two foundation models.

From the highest resolution layer of the feature pyramid of the segmentation model, each

feature map is multiplied with the groundtruth segmentation mask and then spatially averaged.

The semantic features are obtained from the image encoder by masking the input crop. Both

vectors are then concatenated to form the 1344-dimensional vectors used for computing the

inner-batch target cosine distances.

To learn hash codes in a self-supervised manner, we use

L = ||cos(t1, t2)− cos(hashL(x1), hashL(x2))||22 (5.2)

as our loss function to minimize the difference of the cosine distances within a batch, similar

to Su et al. [Su+18], where t1 and t2 are the concatenated mask and semantic image feature

vectors of a region, as described above for two regions x1 and x2.

We train with batches of 24 images and sample 32 groundtruth masks per image. The effective

mask batch size is then 768 masks. With AdamW [LH18] we train for about 70K batches (about

50M regions). This corresponds to about 5% of the whole SA-1B dataset.

5.3.4 Region Indexing

Adding an image region to the index requires segmenting the image. One possibility could be to

use panoptic segmentation for this purpose. However, this would fall short if, for example, parts

of objects are formulated as a query region. In this case, it is necessary that segmentations of

partial areas are also indexed. We therefore use a more general approach and apply the All
Instance Segmentation step proposed for FastSAM. This typically results in a number in the

order of hundreds of regions. To decrease the number of regions per image in the database, if

necessary, we can, for example, order the objects by size and either drop small objects below a

certain threshold or only keep a maximum of top k masks per image.
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5.4 Experiments

We first evaluate how the proposed combination of semantic features and segmentation

features together with masking improves the performance of Search Anything over the baseline
using CLIP features alone. Next, we evaluate the zero-shot region retrieval performance of

our trained deep hashing model. We apply it to multiple datasets of different domains and

use the datasets’ bounding box and class annotations for indexing and as box prompts for

query images, respectively. Finally, we present qualitative results where we perform several box

queries on the query image. In contrast to our zero-shot retrieval evaluation, in this scenario we

also apply region extraction in the indexing phase. The zero-shot region retrieval performance

is evaluated in terms of mean average precision (mAP). For all experiments, we index binary

hash codes with FAISS [JDJ19].

5.4.1 Datasets

To evaluate our zero-shot object and region retrieval performance, we split the available

segmentation datasets into a set of query regions and a set of database regions, respectively.

For this purpose, we took already existing splits of the datasets (training, validation, test)

and assigned them to a query set and a database set accordingly, whereas the database set is

always larger than the query set. Although all datasets contain natural images, they each differ

in their underlying problems. All datasets are detection datasets, i.e., they have at least one

bounding box annotation per image. These box annotations are used as queries to simulate

user box prompts, as well as for indexing the database of objects. The individual partitions and

dataset-specific challenges are described in more detail below.

COCO 44K is a dataset that we created from COCO [Lin+14]. It is a subset of COCO and

contains 44k images of objects. Since the computations with uncompressed feature vectors

are expensive, instead of using all objects occurring in COCO, we use COCO 44K to evaluate

different feature extraction strategies. The dataset consists of 29,488 query objects (taken from

4,000 validation images) and 289,403 database objects (taken from 40,000 training images). To

evaluate the retrieval performance depending on the object size, we follow the definition of

the COCO dataset to group objects into small (box area smaller than 32 × 32 pixels), medium
(smaller than 96 × 96 pixels) and large (all other objects). The query set contains 8,773 small,

10,547 medium, and 10,168 large objects. The database set contains 86,532 small, 103,168

medium, and 99,703 large objects.

COCO Stuff 25K is a subset we created from COCO Stuff [CUF18]. COCO Stuff extends the

original COCO dataset to a panoptic segmentation dataset by adding 91 stuff categories. All

stuff annotations in the validation set are used as query regions, resulting in 32,801 regions

corresponding to 5,000 images. From the stuff annotations in the COCO training dataset, we

use 126,720 regions from 20,000 images database. By considering only the stuff annotations,

this dataset allows us to more closely examine the retrieval performance of our approach for

regions that are not objects.

PASCAL VOC contains 20 object categories and 1,464 images for training, 1,449 images for

validation. It is widely used as a benchmark for object detection, semantic segmentation, and
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classification. From the training images, we use all 5,823 objects as queries to the database of

5,717 objects.

Oxford-IIIT Pet Dataset [Par+12] contains 37 pet categories corresponding to breed, with
roughly 200 images per category. We use it to evaluate our fine-granular retrieval performance.

There is one bounding box annotation of the head and one segmentation map for the whole

animal for each image. Instead of using the available head annotations, we created bounding

boxes of the segmentation map for evaluating our zero-shot performance, which we consider

as a hard task, since it has a higher intra-class variance. We use the datasets’ training and

validation split to extract 3,669 query regions and 3,680 database regions.

Stanford Cars [Kra+13] has 16,185 images of 196 classes of cars with bounding box annotations.

Class annotations are at the level of make, model, and year. The data is split into 8,144 training

images, which we use as our database set, and 8,041 testing images that we use for querying.

WIDER FACE [Yan+16] has 32,203 images with 393,703 faces. There are multiple annotations

per face: blur, expression, illumination, occlusion, pose, each with 2-3 characteristics, resulting

in 72 possible labels. To be counted as positive, all annotated characteristics must match. We

use faces with an area of at least 96 × 96 pixels, resulting in 2,120 faces (from 3,226 images) as

queries and 8,647 faces (from 12,880 images) as database.

5.4.2 Region Features

The performance of our self-supervised deep hashing model crucially depends on the choice

and extraction of suitable features, since these are used as targets in the cost function. Before

training a deep hashing model on the mask and semantic image features for objects, we verified

that these features are indeed useful for zero-shot image retrieval. Additionally, we confirmed

that zero-shot image retrieval benefits from both mask and semantic image features. For small

objects, we found that it is beneficial to consider the whole area around a query object rather

than masking it. This is reasonable since very small objects often can be visually assigned to a

class when considering its context (see Figure 5.3). The following experiments for extracting

suitable features were conducted on COCO 44K.

Masking

We first evaluated the effect of masking input and feature maps, respectively. We can mask

the features extracted from the feature pyramid of the segmentation model directly. If the

semantic features are obtained from CLIP, the image encoding feature vector has no spatial

dimensions and thus cannot be masked. However, we can mask the input image crop to ignore

the unimportant image regions when computing the semantic features. Table 5.1 shows the

object retrieval results on COCO 44K grouped by object sizes. Masking the input generally

improves performance, however, for small and medium-sized objects we see a slight decrease

in performance, if we mask the object instead of using the crop around the object. Masking

the segmentation features has a higher impact on the quality of retrieval results, as shown in

Table 5.2. The results also show that features of models trained for general-purpose segmenta-

tion, i.e., without class labels, contain some semantic information, even if the performance is
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mAP@k (%)

Size Area 10 25 50 100 250 500 1000

large

box 84.00 81.37 79.20 76.91 73.45 70.23 66.35

mask 86.77 84.95 83.36 81.61 78.81 76.15 72.86

medium

box 79.76 77.11 74.92 72.60 69.09 65.89 62.21
mask 74.56 71.74 69.34 66.89 63.44 60.53 57.38

small

box 60.14 56.59 53.64 50.75 47.10 44.42 41.76
mask 56.10 52.72 49.85 47.04 43.63 41.19 38.79

Table 5.1: Input masking for semantic features (CLIP).

mAP@k (%)

Size Area 10 25 50 100 250 500 1000

large

box 51.77 48.23 44.96 41.82 38.10 35.58 33.24

mask 59.09 55.33 52.05 48.80 44.72 41.84 39.12

medium

box 39.24 36.19 33.45 30.95 27.98 26.10 24.44

mask 43.19 39.63 36.73 33.97 30.62 28.43 26.44

small

box 38.22 35.45 32.91 30.51 27.79 26.01 24.40
mask 38.76 35.52 32.87 30.33 27.39 25.46 23.74

Table 5.2: Feature masking of segmentation feature maps.

still significantly behind image encoders trained with annotated data such as CLIP’s image

encoder.

Context

While masking objects seems to improve retrieval performance, Table 5.1 also shows that this

is not the case for small and medium-sized objects. A possible cause for this effect is evident in

Fig. 5.3. It shows small objects that are visually hard to recognize given only the cropped object,

but with a larger context around the object, it is easier to recognize the object. This motivated

us to consider the context around small objects, and we found that for small and medium-sized

objects, context is generally beneficial. Thus, we next investigate how large the context boxes

around the objects should be to obtain better results for small and medium-sized objects. From

Table 5.3 it is evident that for small objects a context of 3 times the object’s bounding box

gives the best results. Similarly, for medium-sized objects, using a crop box without masking

improves the retrieval performance the most.
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Figure 5.3: Small objects without context (top) and with a 3× larger crop around the object

(bottom). Labels (left to right): bird, person, orange, cell phone, baseball glove, clock,
scissors [Lin+14].

mAP@k (%)

Size 10 25 50 100 250 500 1000

medium

mask 74.56 71.74 69.34 66.89 63.44 60.53 57.38

1.0 79.76 77.11 74.92 72.60 69.09 65.89 62.21
1.5 79.35 76.43 74.06 71.53 67.79 64.44 60.57

2.0 75.37 71.92 69.19 66.42 62.47 59.10 55.38

small

2.5 71.59 68.17 65.38 62.58 58.64 55.44 52.00

3.0 72.13 68.66 65.92 63.08 59.18 55.96 52.49
3.5 71.91 68.44 65.64 62.83 58.97 55.78 52.33

Table 5.3: Context for semantic features.

Concatenated Features

Finally, we selected the best setting for feature extraction for both semantic features and

segmentation features and compared it to combining both, i.e., concatenating the semantic and

segmentation feature vectors. We showed that for large objects the retrieval performance can

be improved when using masks and thereby effectively filtering out unimportant image regions.

By using a foundation model to obtain image regions, we also obtain segmentation features

without the need for additional computations. We therefore decided to use segmentation

features by concatenating them with the semantic feature vector, although the results in Table

5.4 indicate that there is only a minor improvement in object retrieval performance in terms of

average precision. However, some qualitative evaluations show that masked inputs together

with segmentation features lead to better retrieval results, but these do not always translate

into a better mAP value. Figure 5.4 shows the query regions (with red frames) and the top 5

results. The retrieval results in Figure 5.4 obtained by extracting only CLIP features mostly do

not contain wrong classes according to the COCO annotations, but the results using Search
Anything with masking often seem visually closer to the query region-of-interest than those of

CLIP features alone. Our approach can also eliminate ambiguities, as shown in the top row.
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mAP@k (%)

Size 10 25 50 100 250 500 1000

all

segment 47.69 44.14 41.15 38.31 34.87 32.55 30.41

semantic 78.95 76.30 74.18 71.98 68.86 66.16 62.96

concat 79.07 76.43 74.29 72.10 68.98 66.28 63.09

large

segment 59.09 55.33 52.05 48.80 44.72 41.84 39.12

semantic 86.77 84.95 83.36 81.61 78.81 76.15 72.86

concat 86.78 84.96 83.37 81.62 78.84 76.19 72.90

medium

segment 43.19 39.63 36.73 33.97 30.62 28.43 26.44

semantic 79.76 77.11 74.92 72.60 69.09 65.89 62.21

concat 79.71 77.09 74.90 72.59 69.08 65.89 62.22

small

segment 38.76 35.52 32.87 30.33 27.39 25.46 23.74

semantic 72.13 68.66 65.92 63.08 59.18 55.96 52.49

concat 72.20 68.74 66.01 63.18 59.29 56.08 52.61

Table 5.4: Concatenated segmentation and semantic features.

Figure 5.4: Using masked input and segmentation features can improve retrieval results. Images
with frames: query images; other images in each row : 6 retrieval results; upper rows:
semantic features from the crop box (CLIP baseline). lower rows: masked input

and concatenated segmentation features of our approach. Labels: giraffe, person
[Lin+14].
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mAP@3 (%) mAP@5 (%) mAP@10 (%)

Dataset 256 bit 64 bit 32 bit 256 bit 64 bit 32 bit 256 bit 64 bit 32 bit

COCO 44K 67.61 61.52 39.66 67.34 61.26 39.42 65.99 60.07 39.02

COCO Stuff 25K 28.11 24.63 12.95 28.84 25.29 13.05 28.10 24.74 13.19

PASCAL VOC 85.64 80.19 56.73 85.05 79.67 56.61 83.61 78.04 55.28

Oxford-IIIT Pets 66.99 48.02 11.32 65.53 47.47 12.05 61.20 44.16 2.97

Stanford Cars 67.58 43.13 4.14 65.62 42.29 4.22 60.23 38.69 4.16

WIDER FACE 68.07 64.72 55.55 67.37 64.58 56.05 66.11 63.93 56.41

mAP@100 (%) mAP@1000 (%)

Dataset 256 bit 64 bit 32 bit 256 bit 64 bit 32 bit

COCO 44K 58.87 53.51 36.17 50.36 45.96 32.39

COCO Stuff 25K 20.84 18.79 11.89 15.09 13.96 10.03

PASCAL VOC 75.94 70.05 48.06 63.24 57.69 38.63

Oxford-IIIT Pets 40.65 28.17 11.05 24.64 16.58 7.27

Stanford Cars 36.78 22.50 3.29 22.23 12.41 1.98

WIDER FACE 60.97 60.35 55.00 57.39 57.62 53.16

Table 5.5: Zero-shot retrieval performance on different datasets with different code lengths.

Figure 5.5: Example query image with region prompts and top 6 results performed on PASCAL

VOC [Eve+10].

5.4.3 Region Retrieval

Zero-shot Region Retrieval

We follow previous work and evaluated the zero-shot retrieval performance in terms of mean

average precision (mAP@k) for k ∈ {3, 5, 10, 100, 1000}. Depending on query time require-
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ments or the size of the dataset, the length of the binary vectors is important. We therefore

evaluated models for the binary code lengths 32, 64, and 256. We did not investigate shorter

bit lengths, as the performance already decreased significantly at 32 bits. We used all anno-

tated bounding boxes available for the corresponding dataset for indexing and queries. The

model configuration is the one we found before in feature analysis (see Section 5.4.2), where

semantic and mask features are concatenated and mask features are always masked, whereas

for semantic features of medium-sized regions context within the bounding box is considered

and for small regions a 3× larger bounding box is used for features extraction. The results in

Table 5.5 show the zero-shot retrieval results for different data sets and different code length.

In general, our approach works well if the length of the binary codes is not too short, i.e., not

less than 64 bits. Compared to the uncompressed features on COCO, there is still room for

improvement even with the 256-bit model. The results for object-based datasets (i.e., COCO

and VOC) are significantly better compared to the results for COCO Stuff that contains no

objects at all. In this case, the use of masks and segmentation features does not seem to be

helpful. The results are good for fine-granular object classes (i.e., Stanford Cars and Oxford IIIT

Pets), if the code length is not too short, which is the case for Stanford Cars for 32-bit codes.

Region Prompts

Fig. 5.5 demonstrates that our approach can be used to perform a fine-granular region similarity

search. The queries are performed on the PASCAL VOC dataset. For each image, the 25 largest

regions were used for indexing regions with 256-bit codes. Object classes such as wheel or jeans
are not part of the PASCAL VOC class lexicon, but can be searched for via region prompts

using our approach. Only box prompts for image regions are considered in this example, but

other types of region prompts work in the same way.

5.4.4 Efficient Region Retrieval

The most expensive step is the use of the image encoder, which is applied after segmentation

and region selection, and in case of text prompts, additionally before region selection.

Between segmentation and retrieval of similar regions, there is a user interaction (e.g., box

or point prompt), which splits the total time into two phases. In the first phase, the time for

segmentation corresponds to the inference time for point prompts of 40 ms on a single NVIDIA

GeForce RTX 3090 reported for FastSAM [Zha+23]. The second phase requires the application

of the semantic feature extraction method, which accounts for a large part of the computation

time, and the lightweight hashing part, which is negligibly small. Hashcode extraction takes

about 40-50 ms on a single NVIDIA A100 80 GB.

In this section, we take a closer look at the retrieval performance and query time. Therefore,

we evaluate query time and retrieval quality using the FAISS library [JDJ19]. We run the

experiments on a system with an NVIDIA A100 80 GB GPU, 128 AMD EPYC 7713 CPUs, and

225 GB of memory. We use 36,781 objects from the COCO validation split as queries and

114,925 objects from the training split as our database. We evaluate the following settings:

• FAISS on 256 bit vectors (CPU)
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1 2 3 5 10 50 100 200 500 1000

FAISS float (GPU) 69.27 73.39 74.11 73.88 72.26 66.11 63.16 60.04 55.61 52.15
FAISS binary (CPU) 62.26 65.20 65.75 65.49 64.05 58.57 55.89 53.10 49.27 46.37

Table 5.6: Retrieval performance binary vs. float in FAISS (mAP).

1 2 3 5 10 50 100 200 500 1000

FAISS float (GPU) 2.35 5.90 5.92 5.97 6.06 6.45 6.82 7.41 8.87 11.22

FAISS binary (CPU) 2.81 2.84 2.83 2.85 2.88 3.20 3.62 4.46 6.94 10.98

Table 5.7: Query time binary vs. float in FAISS (ms).

• FAISS on 256-d float vectors of output layer without thresholding (GPU)

Table 5.7 shows the results in terms of query time. For longer retrieval lists, using binary

vectors is more efficient, but as shown in Table 5.6, the retrieval quality decreases due to the

quantization error.

5.4.5 Qualitative Results

In this section, we give several examples where we qualitatively evaluate the effect of using

masking and mask features compared to using CLIP features alone. We use the uncompressed

features here, corresponding to the settings in Table 5.4 for semantic and combined features.

In the visualizations of the retrieval results shown below, the query region has a blue frame. The

rows labeled as "CLIP" correspond to using semantic features without masking, as described in

Section 5.4.2. The rows labeled as "Proposed" correspond to additionally usingmask features and

masking, respectively. The blue label above the query region is the label of the corresponding

object in COCO. Retrieval images with a green frame have the same label as the query image,

images with red frames have different labels.

Images and box annotations are taken from COCO 44K (see Section 5.4.1). Query regions are

taken from the validation set, where the database images correspond to the training dataset.

Ambiguities

The retrieval results in Figures 5.6, 5.7, and 5.8 show examples of box queries, where there is

more than one possible region within the box. If features are extracted from the whole box,

those of the irrelevant objects and background clutter have an impact on the retrieval result list.

In contrast, when using masked box queries and segmentation features, the retrieval results

often look better. This is also reflected in a higher zero-shot region retrieval performance, since

there are more matches between query label and retrieval label.
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5 Segmentation-based Image Similarity Search via Region Prompts

Figure 5.6: Ambiguous box prompt 1/3.
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Figure 5.7: Ambiguous box prompt 2/3.
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Figure 5.8: Ambiguous box prompt 3/3.

For example, in Figure 5.6 (2), there are plate, knife, food, and fork within the selected query

region. Accordingly, there is food and other cutlery in the retrieval list, if we only use CLIP

features here. In contrast, by using a region prompt that selects the mask of the knife, we

obtain mostly knifes in the retrieval list. The objects in the retrieval list have also been indexed

according to their masks. Similarly, even if there are only small interfering objects as the cat in

Figure 5.6 (5) or luggage in Figure 5.6 (4), this has a strong impact on the retrieval list without

using masks and mask features.

Region Appearance

Other scenarios in which the use of masks and mask features can be advantageous are shown

in Figures 5.9-5.11. Although no improvement in terms of correct class labels is usually visible

here, the objects in the retrieval list are often closer to the image of the query region in terms

of shape, color or perspective, if masks and mask features are used. For example, in Figure 5.10

(1), both retrieval lists show laptops, but if applying masks and using segmentation features,

the top results are closer to the query object, i.e., an opened laptop seen from behind with a

brand logo. Similarly, the returned crops of elephants shown in Figure 5.9 (1) are viewed from

the same perspective as the query crop. Using masks and mask features for the blue chair in

Figure 5.10 (7) returns two blue chairs as top results in the retrieval list, which are missing

when using CLIP features alone.

Context Boxes

Table 5.8 shows more evaluated context box sizes for small and medium sized objects of

COCO 44K. Crop boxes around objects are evaluated for factors of steps of 0.5 for semantic
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Figure 5.9: Region appearance 1/3.
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Figure 5.10: Region appearance 2/3.

134



5.4 Experiments

Figure 5.11: Region appearance 3/3.

mAP@k (%)

Size 10 25 50 100 250 500 1000

medium

mask 74.56 71.74 69.34 66.89 63.44 60.53 57.38

1.0 79.76 77.11 74.92 72.60 69.09 65.89 62.21
1.5 79.35 76.43 74.06 71.53 67.79 64.44 60.57

2.0 75.37 71.92 69.19 66.42 62.47 59.10 55.38

2.5 71.55 67.96 65.12 62.26 58.27 55.01 51.47

3.0 68.63 64.90 61.98 59.12 55.20 52.02 48.61

3.5 65.91 62.02 59.12 56.20 52.31 49.22 45.91

small

masked 56.10 52.72 49.85 47.04 43.63 41.19 38.79

1.0 60.14 56.59 53.64 50.75 47.10 44.42 41.76

1.5 66.84 63.48 60.63 57.80 53.93 50.91 47.75

2.0 70.05 66.67 63.83 60.97 57.00 53.82 50.43

2.5 71.59 68.17 65.38 62.58 58.64 55.44 52.00

3.0 72.13 68.66 65.92 63.08 59.18 55.96 52.49
3.5 71.91 68.44 65.64 62.83 58.97 55.78 52.33

Table 5.8: Context for semantic features.
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features from CLIP. For medium sized objects, there is only an improvement if a context around

the object is used. Increasing the box size results in decreasing mAP. For small objects, the

performance increases for boxes of a size up to 3 × the object’s bounding box. Larger boxes

decrease the performance.

5.5 Summary

We presented Search Anything, a novel approach to perform similarity search in images, based

on region queries using intuitive prompts. Search Anything is trained in a self-supervised

manner on mask features extracted by the FastSAM foundation model and semantic features

for masked image regions extracted by the CLIP foundation model to learn binary hash code

representations for image regions. By coupling these two foundation models, we can index and

search images at a more fine-grained level than with full image similarity search.

In our experimental evaluations based on several datasets from different domains in a zero-shot

setting, we have shown that combining region masks, segmentation features, and semantic

features improves region retrieval performance. If objects or regions are sufficiently large, an

improvement in retrieval quality can be achieved if they are masked and thus only features

from the image region are considered. For small objects, context is important, and useful

features can be extracted from the context.
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Image Similarity Search in Applications

In this chapter, we present image similarity search in different applications and use cases.

Recently, systems that use image similarity searches have opened up new ways of exploring

large image or video datasets. For example, iArt [Spr+21] is a system that allows to visually

search a large database of art-historical images. It integrates several deep learning models for

content-based image retrieval and offers keyword-based image retrieval. The integrated models

are trained on different datasets and the system enables a facet search. In contrast, the systems

presented in this chapter use a single model based on training data for classification, and the

focus is on query speed by using deep hashing methods and efficient index structures.

We first present two systems in which image similarity search is used to explore large datasets

from different domains. In the first system, image similarity search helps to make a large corpus

of video recordings from GDR television accessible. The first system is used for content-based

image retrieval in media and TV production. Finally, we present a system in which image

similarity search is used to efficiently acquire qualitative training data within this corpus. We

will first highlight the use cases and proposed similarity search methods in the respective

systems, and then present the overall systems in Section 6.1, 6.2, and 6.3.

Image Similarity Search in Archives

In this system, image similarity search is part of a tool set for accessing a large corpus of

digitized videos of the GDR television. Together with video OCR, face recognition and concept

detection, image similarity allows to find similar videos in this large corpus of 3,000 hours of

historical GDR television recordings.

The image similarity search part within the system analyzes keyframes from video shots (the

first, last, and three intermediate frames). These keyframes are processed through a CNN,

converting them into binary codes stored in the database. We use a two-stage approach based

on deep hashing. First, a coarse search with 64-bit binary codes narrows down potential results

using Hamming distance and a vantage point tree for efficient nearest neighbor search. The

short list from this stage is then refined using 256-bit binary codes, ranking images based

on their Hamming distance to the query image. By using hash codes in the second stage as

well, this approach eliminates the need for time-consuming distance computations on high-

dimensional float features during testing, and comes at no additional cost, since the CNN

is trained on both short and long codes, thus sharing CNN parameters for both coarse and

refined search.
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Image Similarity Search in TV and Film Production

In the presented system, image similarity search is used to complement textual content-based

queries, providing more flexibility by allowing arbitrary images to be used to query the video

database for similar content.

The proposed method for image similarity search uses binary hash codes for more efficient

searching in a two-stage approach. It integrates two coding layers (64-bit and 256-bit) into the

same architecture, allowing for concurrent computation at inference time. Keyframes from the

video collection are processed, and the resulting binary hash codes are stored in the database.

For comparing hash codes, the Hamming distance is used, along with a vantage point tree

as an additional index structure to accelerate the search. The method for image similarity

search extends the method proposed in Section 6.2. Additionally, the CNN for similarity search

and for concept detection are merged within one architecture for sharing weights and thus

sharing the computation of binary hash codes for similarity search and the computation of

class probabilities for image classification. When indexing or adding new videos, this halves

the computation time for a keyframe.

Image Similarity Search for Data Acquisition

Within the presented system, image similarity search is part of the deep learning cycle of

iteratively improving a model for concept detection. Initially, image similarity search assists in

the collection of training samples by identifying images that are visually similar to query images

from existing concepts, thereby enriching the dataset and improving the deep learning model.

The idea is, as the model is improved and new concepts are introduced, the image similarity

search system itself is updated as well and refined to recognize new concepts, improving its

ability to find more diverse and relevant training samples in subsequent iterations. In the

context of this system, image similarity search offers a way to extract training data very quickly

from the corpus itself. Additionally, the proposed method for image similarity search drastically

reduces query time by integrating a two-stage approach based on multi-index hashing into

Elasticsearch (see Section 4.2). The approach for image similarity search generates 256-bit

codes for which a two-stage method is proposed. It first uses 64-bit codes for a coarse search

and then 256-bit codes for re-ranking. The 64-bit codes are derived from the 256-bit codes using

the Kernighan-Lin algorithm and multi-index hashing.
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6.1 Content-Based Video Retrieval in Historical Collections of
the German Broadcasting Archive

6.1.1 Introduction

Digital video libraries become more and more important due to new potentials in accessing,

searching and browsing the data [Chr+95; MG02; AJ15]. In particular, content-based analysis

and retrieval in large collections of scientific videos is an interesting field of research. Examples

are Yovisto
1
, ScienceCinema

2
and the TIB|AV portal

3
of the German National Library of Science

and Technology (TIB). The latter provides access to scientific videos based on speech recognition,

visual concept classification and video OCR (optical character recognition) [SP14; HBS13].

The videos of this portal stem from the fields of architecture, chemistry, computer science,

mathematics, physics, and technology/engineering.

The German Broadcasting Archive (DRA) in Potsdam-Babelsberg provides access to another

valuable collection of scientifically relevant videos. It encompasses significant parts of the

audio-visual tradition in Germany and reflects the development of German broadcasting before

1945 as well as radio and television of the former German Democratic Republic (GDR). The DRA

was founded in 1952 as a charitable foundation and joint institution of the Association of Public

Broadcasting Corporations in the Federal Republic of Germany (ARD). In 1994, the former

GDR’s radio and broadcasting archive was established. The archive contains film documents

of former GDR television productions from the first broadcast in 1952 until its cessation in

1991, including a total of around 100,000 broadcasts, such as contributions and recordings of

the daily news program Aktuelle Kamera, political magazines such as Prisma or Der schwarze
Kanal, broadcaster’s own TV productions including numerous films, film adaptations and TV

series productions such as Polizeiruf 110, entertainment programs (e.g., Ein Kessel Buntes),
children’s and youth programs (fairy tales, Elf 99) as well as advice and sports programs. Access

to the archive is granted to scientific, educational and cultural institutions, to public service

broadcasting companies and, to a limited extent, to commercial organizations and private

persons. The video footage is often used in film and multimedia productions. Furthermore,

there is a considerable international research interest in GDR and German-German history.

Due to the uniqueness and importance of the video collection, the DRA is the starting point

for many scientific studies.

International scientists, particularly from the USA and UK, followed by the Netherlands, Japan,

Sweden and Switzerland, use the DRA for their research in the fields of psychology, media,

social, political or cultural science. These studies are, for example: Heavies in East Germany
(Humboldt University Berlin), Space Travel in the GDR (Harvard University, USA), The Jewish
in TV (Ludwig Maximilian University of Munich), Socialism on the Screen (Loughborough

University, UK), Self-made in Consumer Society (University of Mannheim), and Child and Youth
Education in Fictional Subjects (Shizuoka University, Japan). The DRA is answering a wide range

of research requests concerning the life of GDR citizens and social perceptions. The number of

comprehensive and time-consuming requests is considerably increasing, e.g., youth fashion in

1
http://www.yovisto.com

2
http://www.osti.gov/sciencecinema

3
http://av.tib.eu
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the GDR, especially for punks and bluesers, living in East Germany, in particular home furnishings
from Deutsche Werkstätten Hellerau or the socialist city as a model of urban development in the
GDR, specifically pictures including socialist classicism, buildings made with precast concrete slabs,
demolition and spectacular buildings.

Due to the time-consuming task of labeling videos manually, human annotations focus on

larger video sequences and contexts. Furthermore, finding similar images in large multimedia

archives is manually infeasible. Thus, the DRA aims to digitize and index the entire video

collection to facilitate search in videos.

In this section, an automatic video analysis and retrieval system for searching in historical

collections of GDR television recordings is presented. It consists of novel algorithms for visual

concept classification, similarity search, person and text recognition to complement human

annotations and to support users in finding relevant video shots. In contrast to manual annota-

tions, content-based video analysis algorithms provide a more fine-grained analysis, typically

based on video shots. A GDR specific lexicon of 91 concepts including, for example, applause,
optical industry, Trabant, military parade, GDR emblem or community policeman, is used for au-

tomatic annotation. An extension of deep convolutional neural networks (CNN) for multi-label

concept classification, a comparison of a Bag-of-Visual Words (BoVW) approach with CNNs in

the field of concept classification, and a novel, fast similarity search approach are presented.

The results of automatically annotating 2,500 hours of GDR television recordings are evaluated

from a technical and an archival perspective.

Parts of this section have been published in: Markus Mühling, Manja Meister, Nikolaus Korf-

hage, Jörg Wehling, Angelika Hörth, Ralph Ewerth, and Bernd Freisleben. “Content-based

Video Retrieval in Historical Collections of the German Broadcasting Archive.” in: International
Journal on Digital Libraries 20 (2019), pp. 167–183.

6.1.2 A Content-Based Video Retrieval System

In this section, a content-based video retrieval system to support search in historical GDR

television recordings is presented. Its aim is to automatically assign semantic tags to video

shots for the purpose of facilitating content-based search and navigation.

Figure 6.1 shows an overview of the developed video retrieval system. First, the videos are

digitized and preprocessed. The preprocessing step mainly consists of shot boundary detection

with additional tasks, such as video transcoding or thumb generation, which are required for

later visualization purposes. Based on video segmentation, the following automatic content-

based video analysis algorithms are applied: concept classification, similarity search, person

and text recognition. The resulting metadata are written to a database. Given this semantic

index, arbitrary search queries can be processed efficiently. The query results are returned to the

user as a list of video shots, ranked according to the probability of the presence of the desired

content. Due to the large amount of video data and the associated computational requirements,

distributed content-based video analysis is performed in a service-oriented architecture.

In the following, the digitization process, the analysis algorithms, the service-oriented architec-

ture and the workflows are described.
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Figure 6.1: Video retrieval system.

Video Digitization

Overall, 3,100 hours of the analog, historical GDR television recordings have been digitized. The

digitized material has been selected from the large amount of available analog video material

according to its relevance for research. In particular, it consists of socio-political magazines,

the daily news program Aktuelle Kamera and several TV productions. The collection provides a

wide range of themes and reflects everyday life in the former GDR.

The digitization process has been carried out both by the DRA itself and by an external provider.

In a manual preprocessing step, the tapes have been technically prepared and the content has

been reconciled using the FESAD database of the DRA. FESAD (“Fernseharchivdatenbank”)

is a TV database jointly used in the ARD, which is a consortium of public-law broadcasting

institutions of Germany. For the external digitization, technical parameters such as the video

format (e.g., Betacam SP), the duration, and the time codes have been reviewed. About 100

hours of video data have been digitized by the DRA. Depending on the video format, different

digitization devices have been used, such as an AVID workstation, DVS Fuze 5.10, DVS Venice

3.2 or Digital Vision Phoenix 2015. Finally, the digitized videos have been corrected with respect

to their colors.

However, most of the video tapes have been digitized by the worldwide unique automated

digital archiving system ADAM (Automated Digital Archive Migration). ADAM was developed

by the Swiss JORDI AG
4
in collaboration with the WDR media group

5
according to archival

requirements. The core of the system is an industrial robot that transfers the content of the

video tapes automatically into a digital file-based archive. It grabs video tapes from a carousel

4
http://www.jordicom.ch/tv-media/

5
http://wdr-mediagroup.com
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Figure 6.2: Deep convolutional neural network.

and places them in a pool of up to 740 parking slots. The tapes are passed to a video tape

recorder (Sony MSW 2100 EP), and dirty or defective tapes are automatically cleaned.

Content-based Video Analysis

The aim of the content-based video analysis algorithms is to automatically assign seman-

tic tags to videos for the purpose of facilitating content-based search and exploration. The

fundamental problem is to overcome the discrepancy between the extracted features and

the human interpretation of the (audio-)visual data. In the literature, this discrepancy is also

known as “semantic gap”. Smeulders et al. [Sme+00b] describe the semantic gap as “the lack

of coincidence between the information that one can extract from the visual data and the

interpretation that the same data have for a user in a given situation”.

Typically, automatically generated labels are assigned to video shots. Therefore, shot boundary

detection has to be performed. The aim of shot boundary detection is the temporal segmentation

of a video sequence into its fundamental units, the shots. A shot is generally understood as a

video sequence recorded continuously without any interruption. The transitions between shots

can be abrupt (cuts) or gradual (fade in/out, dissolves, wipes). Shots are detected using our shot

boundary detection algorithms [EF04; EF09], some of which belonged to the top approaches

at the TRECVid challenge 2007
6
. To detect gradual transitions more reliably, camera motion

estimation (e.g., see [Ewe+07]) is leveraged for false alarm removal.

Based on the results of the temporal video segmentation, concept classification, person and

text recognition are applied for video analysis to automatically extract high-level content-based

metadata. Furthermore, an index is generated for fast semantic similarity search in large video

databases.

In the following sections, the content-based video analysis algorithms as well as the similarity

search approach are described in more detail.

Visual Concept Classification

The classification of visual concepts is a challenging task due to the large complexity and

variability of their appearance. Visual concepts can be, for example, objects, sites, scenes,

personalities, events or activities. The definition of our GDR specific concept lexicon is based on

6
http://trecvid.nist.gov
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the analysis of user search queries with a focus on queries that were experienced as difficult and

time-consuming to answer manually. Considering the utility or usefulness for search queries,

the observability by humans and the feasibility in the sense of automatic detection, a lexicon

of 91 concepts was defined after analyzing more than 36,000 user queries received within a

five-year period from 2008 to 2013. Therefore, user queries that are assumed to be of future

research interest were summarized thematically and ordered by frequency. The concept lexicon

comprises events such as border control and concert, scenes such as railroad station and optical
industry, objects like Trabant or activities such as applauding. To build the concept models,

training data has to be annotated manually. For this purpose, a client-server based annotation

tool was built to facilitate the process of training data acquisition and to select a sufficient

quantity of representative training examples for each concept. We have defined a minimum

number of 100 positive samples per concept.

Recently, deep learning algorithms fostered a renaissance of artificial neural networks, en-

abled by the massive parallel processing power of modern graphics cards. Deep learning

approaches, especially deep CNNs, facilitated breakthroughs in many computer vision fields

[KSH12; GMH13; Bre+13; Tai+14; SKP15b]. Instead of using hand-crafted features such as SIFT

descriptors [Low99], CNNs learn the features automatically during the training process. A

CNN consists of several alternating convolution and aggregation (i.e., max-pooling) layers with

increasingly complex feature representations and typically has several fully connected final

layers, as shown in Figure 6.2.

Most state-of-the-art network architectures for image recognition [KSH12; Sze+15; He+16]

as well as the current datasets [Den+09; Zho+14] consider only a single concept per image

(“single-label”). In contrast, real world concept classification scenarios are multi-label problems.

Several concepts, such as summer, playground and teenager, may occur simultaneously in an

image or scene. While some approaches use special ranking loss layers [Gon+13], we have

extended the CNN architecture of the GoogleNet [Sze+15] using a sigmoid layer instead of the

softmax layer in combination with a cross entropy loss function.

Since the training of a deep CNN model from scratch requires millions of training images and

due to the relatively small amount of available training data, we have adapted a pre-trained

CNN classification model (GoogleNet [Sze+15] trained on ImageNet [Den+09]) to the new

GDR concept lexicon using our multi-label CNN extension and performed a fine-tuning on the

GDR television recordings. The models were trained and fine-tuned using the deep learning

framework Caffe [Jia+14].

Similarity Search

Since the DRA offers researchers a large number of video recordings containing several millions

of video shots, the need for a system that helps to rapidly find desired video shots emerges.

While scanning through the whole video archive is practically infeasible for humans, a possible

solution is to index the videos via concepts as described in Section 6.1.2. However, this approach

requires manually annotated training images for learning the concept models. Additionally,

search queries are restricted to the vocabulary of predefined concepts and new concept models

have to be developed on demand. In contrast to textual concept-based queries, image-based

queries provide users more flexibility and a new way of searching.
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Figure 6.3: Content-based similarity search.

While query-by-content based on low-level features turned out to be insufficient to search

successfully in large-scale multimedia databases, image representations learned by deep neural

networks greatly improved the performance of content-based image retrieval systems [Wan+14].

They are less dependent on pixel intensities and are clearly better suited for searching semantic

content. However, high-dimensional CNN features are not well suited for searching efficiently

in large video collections. Fast search in large databases is an essential requirement for practical

use. For this purpose, proposals for learning binary image codes for compact representations

and fast matching of images have been made. Krizhevsky and Hinton [KH11], for example,

used deep autoencoders and Lin et al. [Lin+15] extended a CNN to learn binary hash codes for

fast image retrieval.

In this section, an approach for fast content-based similarity search in large video databases

is presented. To efficiently store and match images, the approach is based on leaning binary

codes by deep CNNs. This mapping of images to binary codes is often referred to as “semantic

hashing” [SH09]. The idea is to learn a “semantic hash function” that maps similar images to

similar binary codes. To learn the hash function, a method similar to the approach described by

Lin et al. [Lin+15] is used. Based on a pre-trained CNN classification model, we have devised a

coding layer and an appropriate loss layer for error propagation for the network architecture.

The best results were obtained fine-tuning for one epoch on Chatfield et al.’s VGG-16 network

[Cha+14] trained on the PLACES dataset [Zho+14]. The learning rate is decreased following

a polynomial decay with a power of 4, resulting in a fast decrease of the learning rate early

in the training process. As optimization method, we used SGD with a momentum of 0.9. An

advantage of using pre-trained classification models is the speed-up in training time. To obtain

high-level features, we have built the coding layer on top of the last fully-connected layer.

Furthermore, the hash function can be adapted to unlabeled datasets by using the predictions

of the pre-trained classification model for error propagation.

The overall system for similarity search is based on the analysis of keyframes, i.e., representative

images. In our approach, five frames (the first, the last and three in between) per video shot are

used as keyframes for indexing. Given the hash function, the keyframes of the video collection
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Figure 6.4: Text recognition pipeline.

are fed into the deep CNN and the mapped binary codes are stored in the database. Based

on the resulting index, queries-by-image can be answered by matching the binary code of the

given image to the database. The overall retrieval process is shown in Figure 6.3. Given the

query image, the binary codes are extracted using the learned deep CNN. We use a two-stage

approach based on semantic hashing. First, a coarse search is performed using 64-bit binary

codes, resulting in a comparatively short list of potential results. The Hamming distance is

applied to compare the binary codes. A vantage point tree [Yia93] is used as an additional

index structure that recursively partitions the binary codes in the Hamming space into close

and distant points by choosing so called “vantage points” to significantly accelerate the nearest

neighbor search. The resulting short list consists of 10,000 nearest neighbors.

The longer the binary codes are, the more accurate the image representations are. Therefore,

in the second stage, a refined search using 256-bit binary codes is performed on the short list.

The images are ranked according to the Hamming distance to the query image.

Differently from Lin et al. [Lin+15], hash codes are used for the refined search as well. In our

two-stage approach, both coding layers, for 64-bit and 256-bit binary codes, are integrated

into the same architecture and trained concurrently. Hence, sharing the CNN parameters for

coarse and refined search completely eliminates the time for a fine search formerly required

for distance computations on high dimensional float features at test time. Finally, the resulting

images are mapped to video shots.

Person Recognition

Based on the analysis of user search queries, our GDR specific concept lexicon has been

extended by 9 personalities, including Erich Honecker,Walter Ulbricht, Hilde Benjamin, Sieg-
mund Jähn, Hermann Henselmann, Christa Wolf, Werner Tübke, Stephan Hermlin, and Fritz
Cremer. Instead of using concept classification, persons are recognized using a face recognition

approach [EMF07]. For this purpose, feature representations of known persons are stored

in a face database. A face recognition system has been built that scans the video shots and

recognizes the identity of a detected face image by comparing it to the face database. Finally,

the resulting index of person occurrences can be used in search queries.

The face processing pipeline consists of several components: face detection, face alignment, and

face recognition. For the face recognition component, we evaluated the following approaches:

Fisherfaces [BK97], Local Binary Pattern Histograms [AHP04] and a commercial library, called
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FaceVACs
7
. Furthermore, we evaluated whether a preprocessing step using grayscale histogram

equalization, training data augmentation using Google search queries, or a face tracking

component improve the recognition accuracy. Based on the results of our evaluations, we

finally used the method of Viola and Jones [VJ01] for face detection, and FaceVACs for face

alignment and recognition.

Text Recognition (Video OCR)

Superimposed text often hints at the content of a video shot. In news videos, for example, the

text is closely related to the current report. In silent movies, it is used to complement the screen

action with cross headings. The involved algorithms can be distinguished by their objectives,

whether it is text detection, also called text localization, text segmentation, or optical character

recognition [GE04] (see Figure 6.4).

We have developed a text recognition system that allows users to search for in-scene and

overlaid text within the video archive. For this purpose, the I-frames of the videos are analyzed,

and the recognized ASCII text is stored in the database. Based on the resulting index, OCR

search queries can be answered by a list of video shots ranked according to the similarity to

the query term. Due to low technical video quality and low contrast of text appearances, the

similarities between the query term and the words in the database are calculated using the

Levenshtein distance [Lev66].

For text detection, localization and segmentation in video frames, a method based onMaximally

Stable Extremal Regions (MSER) has been employed [Mat+04; NM12] using the Open Computer

Vision (OpenCV) Library
8
. It can detect both overlaid text, as well as text within the scene, for

example on banners. Experimental results have revealed that the text segmentation component

7
http://www.cognitec.com

8
http://opencv.org
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plays an important role in the case of videos of low technical quality. Text segmentation crops

the detected and as characters classified extremal regions out of the image to yield black letters

on a white background. This step is necessary to feed the result into an OCR algorithm that

transforms the image into machine-readable text. A non-uniform background would normally

impair this process. For OCR, we evaluated two open source libraries: a Long Short-Term

Memory network (LSTM) approach
9
[Bre+13] and Tesseract

10
. Tesseract outperformed the

LSTM-based approach on the GDR television recordings.

Service-Oriented Architecture

A service-oriented architecture is used to deal with the requirements of the content-based video

retrieval system. Due to the large amount of video data and the computationally expensive

video analysis algorithms a distributed heterogeneous architecture is employed to provide

scalability. An overview of the architecture is given in Figure 6.5. User interaction is handled

via web-based client-server applications providing interfaces to use the following web services:

preprocessing, person recognition, video OCR, concept classification and similarity search. The

GUIs of the annotation and retrieval tool are described in more detail in Sections 6.1.2 and

6.1.3.

The web services are executed on different hardware architectures. Here, we have to distinguish

between CPU and GPU algorithms. While face recognition, video OCR and the preprocessing

steps including shot boundary detection are CPU intensive, concept classification and similarity

search mainly use GPU resources.

For the CPU intensive algorithms, the MARC2 computing cluster at the University of Marburg,

Germany, has been used. The MARC2 cluster has 96 compute nodes, each consisting of 4 AMD

Opteron 6276 or 6376 with 16 cores@2.3 GHz each, i.e., 6144 cores. In addition, there are two

head nodes with the same specification. In total, MARC2 has 24 TB RAM and 192 TB of disk

storage space. The operating system is Red Hat Enterprise Linux for the headnodes and CentOS

for the compute nodes. The Sun Grid Engine 6.2u5 (SGE) is used as the job scheduler. For this

purpose, specific interfaces have been defined. The CPU intensive algorithms have been ported

to the MARC2 infrastructure and have been encapsulated in separate jobs. Web services for

preprocessing, face recognition, and video OCR are provided. The preprocessing web service

starts several jobs for transcoding the videos, for shot boundary detection and for extracting

images and thumbs. The web services submit jobs to the SGE, control job execution and

provide status information. For management purposes, the distributed resource management

application API (DRMAA) is used. Instead of transferring user data directly, only references are

sent via parameters during the service call. The images and videos are stored on a data server

and the actual data transport is handled via network file system shares. The advantage is an

overlap of data transfer and service execution, which contributes to the improvement of the

overall runtime performance.

The web services for concept classification and similarity search use GPU resources and are

installed on dedicated servers with Nvidia Geforce GTX 770 graphics cards with 4GB of memory.

9
https://github.com/tmbdev/ocropy

10
http://code.google.com/p/tesseract-ocr/
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Figure 6.6: GUI of the retrieval tool showing the results for the concept demonstration.
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Figure 6.7: Web service dependencies and workflows.

Two similarity search related web services exist. The first one is responsible for hash code

generation from videos, for uploading the extracted codes to the database and for updating

the index structures. The second one provides similarity search, taking a query image as input

and returning a sorted list of the most similar video shots.

While the execution of models for concept classification and similarity search is really fast

on GPUs (only a few milliseconds), training of such deep CNNs is computationally expensive

even on graphics cards. Considering the hardware requirements concerning processing power,

GPU memory, main memory and hard disk capacities, we have built a highly optimized system

for deep learning similar to the Nvidia DevBox
11
to train deep neural network models. The

system consists of four GeForce GTX Titan X GPUs with 12GB RAM and 3072 CUDA cores at

1000/1075 MHz, an Intel Core i7-5930K CPU with six cores at 3.50GHz, 64 GB of DDR-4 RAM,

8 TB of disk space for large datasets and a 250 GB SSD for fast I/O operations.

Workflows

The client-server-based web applications, the annotation and the retrieval tool provide simple

interfaces to perform content-based video analysis and retrieval in a distributed, heterogeneous

environment.

The retrieval tool provides image and scene search in the metadata enriched video collection.

A web-based GUI has been developed to automatically respond to user queries related to

concepts, persons, similar images, or text. The retrieval results are presented to the user in the

form of a ranked list of video shots (see Figure 6.6) where each video shot is represented by

five key frames and a probability score indicating the relevance of the shot. Furthermore, a

video player allows to visually inspect the video shots.

Administrative tasks, video uploads, manual annotations and orchestration of the content-

based video analysis jobs are handled via the annotation tool. It provides an upload page

where videos can be selected and uploaded to the system. The video upload automatically

triggers the preprocessing jobs for shot boundary detection and visualization purposes by

considering algorithm and data parallelism to run as many processes as possible concurrently.

The preprocessing workflow consists of the following jobs: video transcoding, shot boundary

11
https://developer.nvidia.com/devbox

149



6 Image Similarity Search in Applications

detection, keyframe extraction and thumbnail generation (see Figure 6.7). While MPEG-1

videos are necessary as a standardized input for the shot boundary detection algorithm, the

MP4 videos are compressed using the H.264 codec to generate small videos suitable for web

applications. The keyframes are extracted for the subsequent content-based analysis jobs, and

the thumbnails are generated for the visualization of shots.

After the videos have been uploaded and preprocessed, they can be manually annotated for

training data acquisition based on the predefined lexicon of visual concepts. The application

provides GUIs for shot-based and interval-based labeling. The GUI for annotating intervals

mainly consists of a video player and a video slider where concept occurrences can be inserted,

deleted and edited. The interval-based labeling is more accurate than the shot-based labeling,

but also more time-consuming.

As soon as the models for concept classification and person recognition have been built and

installed, the job management page of the annotation tool can be used to start content-based

analysis jobs to generate meta-data for concepts, persons and text as well as hash codes. The

dependencies of the different web services and jobs are visualized in Figure 6.7.

6.1.3 Experimental Results
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Figure 6.8: Performance comparison between the BoVW and the deep multi-label CNN ap-

proach on the NUS-WIDE scene dataset.

Several experiments have been performed. First, the performance of the deep multi-label CNN-

based approach for concept classification has been compared to a BoVW approach, motivating

the use of CNN-based algorithms in the final system. Second, the content-based video retrieval

system has been evaluated on historical GDR television recordings.

The results are evaluated using the average precision (AP) score:

AP(ρ) =
1

|R ∩ ρN |

N

∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik) (6.1)

with ψ(ik) =

 1 if ik ∈ R

0 otherwise
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where N is the length of the ranked shot list, ρk = {i1, i2, . . . , ik} is the ranked shot list up to

rank k, R is the set of relevant documents,

∣∣R ∩ ρk
∣∣
is the number of relevant video shots in

the top-k of ρ and ψ(ik) is the relevance function. Generally speaking, AP is the average of the

precisions at each relevant video shot. To evaluate the overall performance, the mean AP score

is calculated by taking the mean value of the AP scores from different queries.

BoVW vs. Deep Multi-Label CNN

To investigate the performance of the proposed deep multi-label CNN for concept classification,

a comparison between a BoVW approach based on state-of-the-art handcrafted features and

the deep CNN-based approach has been performed on the fully annotated, publicly available

NUS-WIDE scene dataset [Chu+09]. The NUS-WIDE scene subset covers 33 scene concepts

and consists of 34,926 images in total. Half of the images are used as the training set and the

rest as the test set. For the deep multi-label CNN classifier, a GoogLeNet pre-trained on the

ILSVRC 2012 dataset has been fine-tuned on the NUS-WIDE scene training images.

Using the BoVW approach, an image or a video shot is represented as a histogram of visual

words by mapping the local descriptors to a precalculated visual codebook. The BoVW approach

is based on a combination of different feature representations relying on optimized SIFT

variants. These SIFT variants use different sampling strategies: a dense sampling strategy and

a Difference of Gaussians (DoG) keypoint detector [Low99]. Color information is integrated

using concatenated SIFT descriptors from different color channels (transformed color SIFT,

RGB-SIFT) and a combination of SIFT descriptors and local color moments. Furthermore,

spatial information is captured using a spatial pyramid of 1x1 and 2x2 equally sized subregions.

Altogether, four different SIFT variants are used.

The visual codebooks are generated using a K-means algorithm and consist of 5000 visual

words. Instead of mapping a SIFT descriptor only to its nearest neighbor or to all visual words,

the codebook candidates are locally constrained to the five nearest visual words. This locality

constraint has been shown to be superior for BoVW approaches [LWL11].

The different feature representations are combined in a support vector machine (SVM) classifier

using multiple kernel learning [EMF11; Ewe+12; MEF11; Müh+11; MEF15]. For all feature

representations, the χ2
-kernel is used to measure the similarities between the data instances.

Figure 6.8 shows the comparison between the BoVW and the multi-label deep CNN approach

on the NUS-WIDE scene dataset for each concept. While the BoVW approach achieves a mean

AP of 50.3%, the deep CNN approach obtains 58.6%. Thus, the novel deep multi-label CNN

approach significantly outperforms the BoVW approach on the NUS-WIDE scene dataset by a

relative performance improvement of almost 20%. Results on the other NUS-WIDE subsets are

56.3% and 79.62% on NUS-WIDE objects and 40.83% and 55.24% on NUS-WIDE lite for BoVW

and CNN, respectively.

In contrast to binary SVM classifiers, deep neural networks are inherently capable of processing

multiple classes, such that only a single compact model has to be built for all concept classes.

While the runtime of the BoVW approach is already 1.97 seconds for feature extraction on the

CPU and the classification runtime depends linearly on the number of concepts, the multi-label
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CNN takes less than a second on the CPU (Intel Core i5) and is even considerably faster on

the GPU.

Although deep neural networks are computationally expensive in the training phase, they

are very efficient during classification. Altogether, multi-label CNNs provide clearly better

recognition quality, compact models and significantly faster classification runtimes.
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Figure 6.9: Similarity search results for 50 query images from the Internet in terms of average

precision evaluated up to the first 100 video shots.

Historical GDR Television Recordings

In this section, the content-based video retrieval algorithms for concept classification, similarity

search, person recognition and video ocr are quantitatively and qualitatively evaluated based

on the video collection of historical GDR television recordings. In total, more than 3,000 hours

of historical GDR television recordings have been digitized. The video footage is technically

quite challenging. Many recordings are in grayscale and of low technical quality; the older the

recordings, the poorer the video quality. The temporal segmentation of the videos resulted

in approximately 2 million video shots. From these shots, 416,249 have been used for the

training process and 1,545,600 video shots, corresponding to about 2,500 hours of video data,

for testing.

The developed retrieval tool provides a web-based GUI to submit user queries related to

concepts, persons, similar images and text. The retrieval results are presented to the user in

the form of a ranked list of video shots (see Figure 6.6) where each video shot is represented by

five key frames and a probability score indicating its relevance. Furthermore, a video player

allows to visually inspect the video shots. In the following, the results for concepts and persons

as well as sample queries for similar images and text are presented.
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Query image:

Example: A user is searching for material for the film production

Flavors in the GDR and uploads an image of a meal. By using this

query image, the user can carry out the search without words

or meta-data while the ranked results contain a large number of

relevant shots.

Figure 6.10: A similarity search result for a query image showing a meal.

Concept Classification and Person Recognition

In total, 86 concepts, consisting of 77 concepts and 9 persons, were evaluated. From the original

91 concepts, 14 were dismissed due to an insufficient number of training images. However,

another 14 of the 77 evaluated concepts have less than 100 training images. Altogether, 118,020

positive training examples were gathered for learning the concept models. The retrieval results

for concepts and persons were evaluated based on the top-100 and top-200 ranked video shots.
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Concept Top 100 Top 200

Erich Honecker 100 % 100 %

Walter Ulbricht 100 % 100 %

Hilde Benjamin 98.6 % 96.2 %

Siegmund Jähn 98 % 98 %

Hermann Henselmann 85.6 % 85.7 %

Christa Wolf 76.4 % 76.4 %

Werner Tübke 65 % 65%

Stephan Hermlin 64.3 % 47.1 %

Fritz Cremer 61.6 % 61.6 %

Table 6.1: Face recognition results (mAP).

Although 14 concepts have less than 100 training images, and despite poor video quality, we

obtained mean AP scores of 62.4% and 58.0% for the top-100 and top-200, respectively. Even

concepts occurring predominantly in grayscale shots of low video quality yielded good results,

such as daylight mining with 84.3% AP. These results reveal the high robustness of the proposed

multi-label deep CNN approach with respect to the low quality historical video data.

For person recognition, we achieved a very good result of 83.3% mean AP on the top-100 and

81.1% mean AP on the top-200 video shots, and even 100% AP for distinctive and frequently

occurring personalities, such as Erich Honecker and Walter Ulbricht, as shown in Table 6.1. In

total, we achieved a mean AP of 64.6% and 60.5% on the top-100 and top-200, respectively, for

both concepts and persons.

Similarity Search

The interpretation whether two images are similar is subjective and context specific. The

definition of similarity ranges from pixel-based similarity to image similarity based on the

semantic content. Howmuch low-level and semantic similarity contribute to the retrieval results

can be individually adjusted in the GUI. Furthermore, two use cases have been implemented:

searching by video frames selected from the corpus and searching by external images, e.g.,

downloaded from the Internet. In our evaluation shown in Figure 6.9, we focus on the more

difficult task of semantic similarity using 50 external query images from the Internet chosen

collaboratively by computer scientists and archivists. Each retrieval result has been evaluated

up to the first 100 video shots. Altogether, we obtained a mean AP of 57.5%. Furthermore, we

achieved a very fast response time of less than 2 seconds per similarity search query based on

an image corpus of more than 7 million keyframes.

An example result for a query image showing a meal is presented in Figure 6.10. More retrieval

results are visualized in Figure 6.11 where the first column shows the query images downloaded

from the Internet followed by the first six highest ranked keyframe images.
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Figure 6.11: Retrieval results for query images downloaded from the Internet. The first column

shows the query images followed by first six highest ranked images from the

database.
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Figure 6.12: OCR retrieval results for 46 text queries in terms of average precision evaluated up

to the first 100 video shots.

Video OCR

For the task of text retrieval, 46 query terms according to previously observed search query

preferences of DRA users have been evaluated. Based on these 46 search queries, like Ab-
schaffung der Todesstrafe (abolishment of death penalty),Mikroelektronik (microelectronics),
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Öffnungszeiten (opening hours), Protestbewegung (protest movement), Rauchen verboten (no

smoking),Warschauer Vertrag (Treaty of Warsaw), Planerfüllung (plan fulfillment), Gleichbe-
rechtigung (equal rights), Nationale Front (national front), Staatshaushalt (national finances),
or Kinder- und Jugendspartakiade (children and youth spartakiad), a very satisfying retrieval

performance of 92.9% mean AP has been obtained. The average precision results for the 46

queries are shown in Figure 6.12. As expected, the results for overlaid text are significantly

better than for text within the scene.

Archivist’s Perspective

In this section, the presented content-based video retrieval system is evaluated from an

archivist’s perspective with a focus on usability and usefulness for archivists and DRA users.

Since users of the archive are often looking for everyday scenes in the former GDR, concepts

such as pedestrian, supermarket, kitchen, camping site, allotment or production hall, are valuable
contributions to help researchers finding appropriate scenes. Concepts with an AP score of

more than approximately 50% turned out to be very useful in practice. 66% of the concepts

achieved an AP score of more than 50%.

Furthermore, searching manually for persons in videos is a quite time consuming task, par-

ticularly for less known members of the Politbüro and Ministers of the GDR. Thus, the high

quality of the provided automatic person indexing algorithms is a great benefit for archivists

as well as for users of the archive.

The implemented similarity search system significantly extends the accessibility to the data in

a flexible way. It provides complementary search queries that are often hard to verbalize. In

addition, it facilitates incremental search. Previous results may serve as a source of inspiration

for new similarity search queries for refining search intentions.

Another useful search option is offered by video OCR. OCR search results are very helpful since

overlaid text is often closely related to the video content. The system recognizes the majority

of slogans, locations, and other terms correctly.

In the following, the benefits of our content-based video retrieval system are illustrated based

on search requests that arose in the context of the TV production Das Erbe der Nazis (heritage
of the Nazis). While these queries are manually difficult and time-consuming to answer, the

content-based video retrieval system is able to yield fast and practically useful results. Example

queries are:

• Every-day scenes in the GDR across the decades 1950s/60s/70s/80s:
Using the content-based video retrieval system, this query can be answered by specifying

the years and searching for concepts concerning every-day life in the GDR, e.g., pedestrian
or kitchen. These results may serve as a starting point for further similarity search queries.

• Monday demonstrations in 1989, crowds, banners “Wir sind das Volk” (“We are the people”):
The retrieval result for this query can be obtained by combining queries for the concepts

demonstration and banners/slogans, an OCR query for in-scene text and a restriction to

the years 1989.
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• Erich Honecker, parade, 1970s:
Useful results for this query can be found by combining a query for the person Erich
Honecker, a query for the concept military parade and restricting the years to the 70s.

Altogether, the fine-grained automatic annotation is a very valuable supplement to human-

generatedmeta data. Due to the variability of the content-based video retrieval system, different

user needs are taken into account. The combination of different search modalities allows the

DRA to answer a wide range of user queries leading to more precise results in significantly less

time.

6.1.4 Summary

The DRA maintains the cultural heritage of television of the former GDR. The uniqueness and

importance of this archive causes a great interest in the video content. In this section, we have

presented a content-based video retrieval system for searching in historical collections of GDR

television recordings. The recordings have been digitized, a service-oriented architecture for

dealing with a large amount of video data has been implemented and novel algorithms for

visual concept classification, similarity search, person recognition and video OCR have been

developed to complement human annotations and to support users in finding relevant video

shots. Experimental results on about 2,500 hours of GDR television recordings have indicated

the excellent video retrieval quality in terms of mean average precision as well as in terms of

usability and usefulness from an archivist’s perspective.
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6.2 Deep Learning for Content-based Video Retrieval in Film
and Television Production

6.2.1 Introduction

Digitization has fundamentally changed the workflow of professional media production. Today,

recording and production as well as processing and distribution of video contents are accom-

plished in a convenient and efficient manner. However, a meaningful annotation of multimedia

contents still requires a large amount of manual effort provided by human annotators. This

often entails that multimedia material is annotated only superficially, if at all. Due to this

time-consuming annotation process, video annotation is mostly carried out for an entire video,

whereas a frame- or shot-based annotation is required for making the video material searchable

and thus useful for film or television production beyond the scope of the underlying project. As

a consequence of the lack of automatic annotation systems in the domain of media production,

a vast amount of produced high-quality video data remains inaccessible.

Recently, deep learning approaches, particularly deep convolutional neural networks, have led

to breakthroughs in many computer vision fields. Integrating these new technologies into the

media production workflow and leveraging automatic video annotation would allow media

production firms, broadcasting companies, television stations, media archives and footage

agencies to utilize the enormous potential of their stored multimedia data.

In collaboration with a film and television production company, taglicht media Film- & Fernseh-

produktion GmbH
12
, the requirements of automatic content-based video analysis in the field

of media production have been identified. Taglicht media is a leading German production

company of high-quality documentary films with a focus on history, science, nature, wildlife

and societal affairs. The main goal of using content-based video analysis in the field of media

production is to support the process of video cutting and distribution. Since the time intervals

between video shooting, cutting and distribution are often small, the automatic content-based

video analysis process has to be fast and efficient. The process of video cutting will not be fully

automated in the foreseeable future, but the video cutter can be supported by providing pro-

posals and a fast overview of the underlying video footage. Therefore, meta-information about

the occurring persons and general visual concepts are very useful. Furthermore, content-based

similarity search increases the accessibility to the video data. This is also important for media

distribution and sales.

In this section, we present new deep learning algorithms for visual concept detection, similarity

search, face detection, face recognition and face clustering in the context of media production,

bundled in a multimedia tool for fast video inspection and retrieval. Furthermore, a novel

multi-task learning approach for combining concept detection and similarity search, a new

concept lexicon tailored to media production, and novel visualization components, developed in

collaboration with the taglicht media company, are introduced. Experimental results show the

quality of the proposed approaches. The concept detection approach achieves a mean average

precision of approximately 90% on the top-100 video shots, and the face recognition approach

12http://taglichtmedia.de
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outperforms the baseline on the public Movie Trailers Face Dataset [OWS13] by about 20% in

terms of average precision.

Parts of this section have been published in: Markus Mühling, Nikolaus Korfhage, Eric Müller,

Christian Otto, Matthias Springstein, Thomas Langelage, Uli Veith, Ralph Ewerth, and Bernd

Freisleben. “Deep Learning for Content-based Video Retrieval in Film and Television Produc-

tion.” in: Multimedia Tools and Applications 76 (21 Nov. 2017), pp. 22169–22194. issn: 15737721.
doi: 10.1007/s11042-017-4962-9.

6.2.2 Content-based Video Analysis for Media Production

In recent years, the media production workflow has been digitized, starting from video shooting

through video cutting and editing up to video distribution. Although digital videos can be used

conveniently as inputs to automatic content-based video analysis algorithms, the content-

based labeling process is typically still manual, time-consuming and inefficient compared to the

remaining workflow. Hence, video data is only annotated if it is necessary for the underlying

task. In the video shooting stage, for example, video data is labeled only to a very limited

extent to indicate its film or program affiliation. The utilization of video footage beyond the

scope of a current project is impossible without a high manual effort. For video marketing

activities of footage agencies, a fine-grained content-based labeling of videos is quite important

to increase the size of the material that shows great promise for sale. Even in video archives,

human annotators typically focus on larger video sequences and contexts, making search for

dedicated video content in large video archives difficult and time-consuming. Searching for

unlabeled content or finding similar video content manually is currently not feasible.

Our multimedia tool is called GoVideo and has been developed in the context of media produc-

tion. It bundles novel deep learning algorithms for concept detection, similarity search, face

detection, recognition and clustering.

For the purpose of media production, a novel visual concept lexicon has been developed, which

will be introduced in Section 6.2.2 together with the concept detection approach. To find

similar video content, a fast and scalable algorithm for similarity search is proposed in Section

6.2.2. Additionally, a combined multi-task model for concept detection and similarity search

is presented in Section 6.2.2, which helps in reducing memory and runtime requirements.

Furthermore, acting persons play an important role in sorting video footage both for getting an

overview of the occurring persons (i.e., who occurs when in the video) and for searching for a

particular person in the overall data. Section 6.2.2 presents the algorithms for finding persons

in videos.

The labels automatically generated by these algorithms are assigned to the fundamental units

of a video sequence, i.e., video shots, which are generally understood as video sequences

recorded continuously without any interruption. This temporal segmentation is the result of

a shot boundary detection algorithm. We use shot boundary detection algorithms without

thresholds [EF04; EF09] that belonged to the top three approaches at the TRECVid challenge

2007
13
. Concept detection and similarity search are performed on a maximum of five equally

distributed keyframes per video shot (depending on the length of the shot) due to performance

13http://trecvid.nist.gov
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considerations. Frames in one shot usually look very similar to each other and the benefit of

considering all of them is small compared to the high increase of computation costs.

Concept Detection

The fundamental problem of visual concept detection is to overcome the discrepancy between

the extracted features and the human interpretation of the (audio-)visual data. In the literature,

this discrepancy is also known as the “semantic gap”. Smeulders et al. [Sme+00b] describe the

semantic gap as “the lack of coincidence between the information that one can extract from the

visual data and the interpretation that the same data have for a user in a given situation”.

An important building block of the proposed concept detection approach is a suitable concept

lexicon. In collaboration with media producers, a new concept lexicon tailored to media produc-

tion has been developed. The lexicon consists of 58 concepts and is divided into five different

categories: “who”, “what”, “where”, “when” and “how”. An overview of the concepts is shown

in Table 6.2. The lexicon consists of general concepts with a high coverage of video content

and media production specific concepts, such as “full shot”, “medium shot” and “close-up”.

Depending on the time of day, some television programs try to adjust their video content.

Therefore, a distinction between daytime and nighttime is important. Overall, the new concept

lexicon helps to naturally understand the video content for accelerating the process of video

cutting and presorting: “who” indicates how many persons or animals are occurring in a video

scene, “what” is related to actions and events, “where” gives insights into locations and places,

“when” distinguishes between day and night and “how” provides information about shot sizes,

where close-ups of hands are also an important concept since they strongly correlate with

specific actions.

The automatic classification of these concepts is quite challenging due to the large complexity

and variability of their appearance. Recent advances in deep learning have led to a renaissance

of neural networks, in particular deep convolutional neural networks (CNNs), in the field of

computer vision [KSH12; GMH13; Bre+13; Tai+14]. Instead of using hand-crafted features such

as SIFT descriptors [Low99], CNNs learn the features automatically during the training process.

A CNN consists of several alternating convolution and max-pooling layers with increasingly

complex feature representations and typically has several fully connected classification layers.

State-of-the-art neural network architectures for image recognition [KSH12; Sze+15] as well

as most current datasets [Den+09; Zho+14] consider only a single concept per image (“single-

label”). In contrast, real world concept classification scenarios are multi-label problems. Several

concepts, such as “person”, “outdoor” and “total view”, may occur simultaneously in a scene.

Wei et al. [Wei+14] introduced a flexible deep CNN architecture, called Hypotheses-CNN-

Pooling, which produces multi-label predictions. The approach is similar to region-based CNNs,

because it takes object segment hypotheses as inputs. However, the results of the different

hypotheses are finally aggregated using a max-pooling layer. This approach is computationally

very expensive and does not scale to large multimedia archives.

In this section, two approaches are pursued for concept detection. Both of them are based on

adapting pre-trained CNN classification models to the novel concept lexicon and fine-tuning

them for the new training data. Up to 1,000 positive training instances plus negative examples
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have been collected from video footage, documentary films and Google search. The models

were trained and fine-tuned using the deep learning framework Caffe [Jia+14].

The first approach uses a multi-label CNN. While other authors employ special ranking loss

layers to handle multi-label predictions [Gon+13; Cha+14], we have extended the CNN architec-

ture of a Deep Residual Neural Network [He+16] using a sigmoid layer instead of the softmax

layer and a cross entropy loss function. The model is pre-trained on ImageNet [Den+09] and

fine-tuned to the collected data and the new concept lexicon.

The second approach uses a single-label CNN. Here, we use a pre-trained model based on Ima-

geNet [Den+09] and Places [Zho+14], providing 1,365 concepts including 365 scene categories

and 1,000 object categories. These concepts are mapped to the new concept lexicon, and the

final probabilities are the aggregated scores of all related concept categories. For example, all

animal related concepts are aggregated for the concept “animal”. Concepts and their positive

training examples not covered by the mapping are added to the single-label CNN, and the

training process is continued on the overall training data. Several concepts are ignored in the

single-label model due to a large overlap with existing concepts. The concept “full shot”, for

example, always belongs to several concepts, thus cumbering the training process.

Finally, the single-label and multi-label models are combined in a post-processing step. Based

on an evaluation of the models, the probabilities per concept are averaged if the evaluated

performance measures are similar, otherwise the better model is used.

Similarity Search

Similarity search in videos addresses a variety of modalities and similarity measures. For

example, Meddeb et al. [MKA16] perform speech similarity search. Hudelist et al. [Hud+16]

provide interactive search by combining video retrieval with human-based visual inspection. In

our work, we rely on the visual modality and focus on large-scale semantic similarity search.

The definition of similarity ranges from pixel-based similarity to semantic similarity that

corresponds to human understanding. The definition and optimization of similarity functions

is subject to current research [Wan+16; Bla+16].

In contrast to textual concept-based queries that are limited to a set of predefined concepts,

similarity search provides more flexibility. Arbitrary images can be used to query the video

database for similar content.

With an increasing size of a video archive, the need for an efficient image-based search be-

comes important. Query-by-content based on low-level features is often insufficient to search

successfully in large-scale multimedia databases. However, image representations learned

by deep neural networks have greatly increased the performance of content-based image

retrieval systems [Wan+14], since they are less dependent on pixel intensities. Although fast

retrieval in large databases is an essential requirement for practical use, these high-dimensional

CNN features are not suitable to efficiently search in large video databases. Therefore, we

have developed a semantic hashing approach [KH11; Lin+15; SH09] that uses binary image

codes for compact representations rather than full CNN features. Our method extends the ap-

proach introduced by Lin et al. [Lin+15]. We fine-tuned a VGG-16 CNN architecture [Cha+14],

pre-trained on the Places dataset [Zho+14], with an additional coding layer before the final
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Figure 6.13: Content based similarity search.

classification layer. In contrast to the approach of Lin et al. [Lin+15], hash codes are used for

refined search as well. Our two-stage approach integrates two coding layers, a 64-bit and a

256-bit binary coding layer, into the same architecture, enabling concurrent computation at

testing time. The returned hash codes for the keyframes of the video collection (five per shot)

are fed into the deep CNN and the returned binary hash codes are kept in the database. In

order to compare the hash codes, the Hamming distance is used together with a vantage point

tree [Yia93] as an additional index structure to speed up the search. Figure 6.13 shows the

stages of processing a query image.

Multi-Task Learning

Concept detection and similarity search are related tasks. Both use pre-trained CNN models

based on visual recognition tasks. To reduce memory and runtime requirements. a multi-task

CNN architecture is proposed to enable concurrent computation of concept predictions and

image codes at testing time. Therefore, the single-label concept detection CNN architecture (see

Section 6.2.2) is extended by two further branches for 64 and 256-bit codes, respectively. These

branches contain corresponding encoding and decoding layers with additional classification

loss layers, as already described in the previous section. Altogether, the multi-task learning

setting contains three loss layers equally weighted for error back-propagation: one for learning

concept predictions and two for learning short and long binary image codes. The shared CNN

architecture is a deep residual neural network [He+16] pre-trained on ImageNet [Den+09] and

Places [Zho+14]. The new CNN architecture with two tasks and three classification losses is

depicted in Figure 6.14. This architecture efficiently shares the computation of binary hash

codes for similarity search and the computation of class probabilities for image classification.

The CNN is fine-tuned for about one epoch on the training data set. More precisely, the model

is trained for 230,000 iterations with a batch size of 24. We set the initial learning rate to 0.00033

for the three final layers and an order of magnitude smaller for the remaining layers. The

learning rate is decreased following a polynomial decay with a power of 4, resulting in a fast
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Figure 6.14: Multi-task learning of binary image codes and concept predictions.

decrease of the learning rate early in the training process. As an optimization method, we use

Nesterov’s accelerated gradient method [Sut+13; Nes83] with a momentum of 0.9.

Face Recognition

Convolutional neural network approaches for face recognition have recently achieved and

surpassed human performance [SKP15b; PVZ15]. However, for large video archives face recog-

nition is still quite challenging because usually thousands of different persons must be captured,

sometimes over long periods of time, with a large variety of occurrences. Furthermore, the

increasing size of the archives needs to be handled. In the following, we present our face

recognition framework to satisfy these challenges. In a first step, faces are detected and tracked

to extract the relevant video content for face recognition. Subsequently, the facial features of

every image within each track are computed by a convolutional neural network . Based on

the extracted facial features, three tasks are performed: face identification , face retrieval , and

face clustering .

Face Detection and Tracking

To quickly detect faces in a large amount of video data with high precision and recall, we inves-

tigated several approaches. Basic approaches, such as the approach of Viola and Jones [VJ01],

are very fast, but are not able to reliably find non-frontal faces. With the rise of convolutional

neural networks, face detection approaches have been significantly improved in terms precision
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and recall. However, first CNN approaches [FSL15] rely on computationally expensive CNN

calculations that are applied several times in a multi-scale and sliding window fashion. The

task of locating pre-defined concepts in visual content has been improved by utilizing region

proposal networks [Ren+15] (Faster R-CNN) that automatically propose regions and share their

weights with the classification network or more recently without any object proposals [Liu+16b]

resulting in a significant speed-up. The former motivated Jiang and Learned-Miller [JL17] to

apply a R-CNN approach to face detection. Our approach to face detection is based on this

method because it yields state-of-the-art results on the public Face Detection Data set and
Benchmark (FDDB) [JL10] and the IARPA Janurs Benchmark A (IJB-A) [Kla+15]. Similar to Jiang

and Learned-Miller [JL17], we fine-tuned the R-CNN Pascal VOC (Visual Object Classes) model

[Ren+15] on the databaseWIDER FACE [Yan+16]. We omitted training faces with a size below a

particular size (width or height of ground truth below 10 px), because we found that those faces

are not relevant to face identification tasks since they are most likely not depicting a person of

interest. For a faster computation, we utilize the more simplistic Zeiler & Fergus [ZF14] CNN

architecture instead of the VGG16 [SZ14] architecture, while producing comparable results.

Based on the high quality results of our face detection approach, a simple set of conditions is

sufficient for reliable face tracking. Similar to Ortiz et al. [OWS13], we adapt the face overlap

as well as the RGB histogram intersection to decide if the current detection belongs to an

already existing face track or depicts a new identity. During our investigation, we observed that

most of the errors occur in close-up dialogs. Due to the insignificant changes in lighting and

face location, cut detection is often unsuccessful, which leads to face trackings treating both

persons as one face track. To counteract this observation, a simple and fast Local Binary Pattern

(LB) [OPM02] feature vector is additionally extracted for every face to help to distinguish

between different persons. If the face tracker can not establish a connection to a face in the

last 20 frames of the video, the face track is finalized and saved under the condition that it has

a minimal length of 5 detections.

Face Representation

Convolutional neural networks typically require large amounts of training data in order to

learn reliable models. Hence, as mentioned by Masi et. al [Mas+16], current state-of-the-art

approaches on Labeled Faces in the Wild [Lea14] like FaceNet [SKP15b], VGG Face [PVZ15]

or DeepID3 [Sun+15] use millions of face images and very deep CNN architectures. However,

beforeMS-Celeb-1M [Guo+16] has been released recently, the largest publicly available dataset

CASIA-WebFace [Yi+14] contained only around 500.000 images covering about 10.000 person

identities. For this reason, we use the network of Yi et al. [Yi+14], which performs well on public

benchmarks like Labeled Faces in the Wild [Lea14] exploiting CASIA-WebFace. This approach

yields very good results considering the amount of training data. Another advantage is its low

computational cost, due to the smaller CNN structure with only eleven weight layers, as well

as the relatively small 320-dimensional feature vector extracted from the last pooling layer. For

every track t consisting of |t| images in our video archive, we extract the feature vector fi of

every image i, resulting in a set of feature vectors Ft = { f1, · · · , f|t|}. All these sets are stored
in a track dictionary DT = {F1, · · · , F|T|}, where |T| refers to the current number of tracks in

the video archive. This workflow is visualized in Figure 6.15.
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Figure 6.15: An overview of our video indexing workflow.

Face Identification

Face identification algorithms operate in a supervised manner, i.e., they require a dictionary

DP = {F1, · · · , F|P|} of persons P that the user wants to identify in the underlying video

footage. Given a person p, we first extract the facial features Fp of every corresponding image

using the CNN model described in Section 6.2.2. As a result, the person dictionary DP =
{F1, · · · , F|P|} for each person p ∈ P can be computed.

Based on the extracted facial features, we use two different ways of representing a given

face track t when comparing it to a specific person. The first track representation (tr-single)
calculates the cosine similarity of each feature vector fi ∈ Ft, i = 1, · · · , |Ft| to every f j ∈
Fp, j = 1, · · · , |Fp|. The final similarity value is defined by calculating the mean of all |Ft| · |Fp|
comparisons per track. However, this is computationally expensive. For this reason, the second

track representation (tr-mean) uses the mean feature vector of the given face track:

ft =
1
|Ft|

|Ft|

∑
k=1

fk (6.2)

and compares it to all f j ∈ Fp for each character p. This reduces the number of comparisons to

|Fp| per track, making it more suitable for big data applications.

Face Retrieval

In contrast to face identification, face retrieval focuses on extracting similar face tracks in the

video content by providing a query image showing an arbitrary person. The image i is uploaded
by the user (similar to Figure 6.13) and subsequently analyzed by the face detection approach

described in Section 6.2.2. If a face is found, the feature vector fi is extracted. Similar to Section

6.2.2, we compare this feature vector with the track representations tr-single and tr-mean to
measure the similarity to every face track in DT . While the similarity of the query image to

a specific track t can be calculated by only one computation with tr-mean, the mean cosine

similarity value of all |Ft| comparisons is calculated for tr-single.
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Face Clustering

To summarize the content of a video in an unsupervised manner, it is useful to cluster the

appearances of the persons in the video. This can be used for annotation purposes or to

transform raw video footage into actual television broadcasts. Therefore, our framework uses

an agglomerative clustering approach [EMF07] for the face tracks in the dictionary DT for a

given movie. For this purpose, the cosine similarities between the tracks are computed using

the mean feature vectors (tr-mean). As with all hierarchical clustering algorithms, a threshold

is necessary to terminate the combination of clusters when a certain similarity minimum is

reached. Selecting this threshold is one of the perennial issues with data clustering and is

discussed in Section 6.2.4. To avoid single track clusters in our web interface, we reduce the

number of results by omitting those that only contain a single face track and therefore most

likely show an unknown person. As a representation of a cluster in the web interface, we use

the most frontal face of any face track in a given cluster, determined by a feature comparison

with a computer generated standard frontal face.

6.2.3 Video Retrieval Tool

The previously described algorithms for concept detection, similarity search, face detection,

recognition and clustering are bundled in a video analysis and retrieval tool, called GoVideo.

It is based on a service-oriented architecture, as described in Section 6.2.3. User interaction

is handled via a web-based client-server application. The GUI and the novel compenents are

described in more detail in Section 6.2.3.

Service-oriented Architecture

Due to the computationally expensive video analysis algorithms, a distributed, heterogeneous

architecture is used to provide scalability. An overview of the architecture is shown in Figure

6.16. The web services are executed on different hardware architectures. Here, we have to

distinguish between CPU and GPU intensive algorithms.

For the CPU intensive preprocessing algorithms, a compute cluster with a head node and

four compute nodes is used, each node consisting of 4 AMD Opteron processors 6212 with

16 cores@1.4 GHz and 64 GB main memory each. The Sun Grid Engine (SGE) is used as the

job scheduler. Therefore, specific interfaces have been defined. The preprocessing algorithms

have been encapsulated in separate jobs (bash scripts). The preprocessing web service starts

several jobs for transcoding the videos, for shot boundary detection and for extracting images

and thumbnails. The web service submits jobs to the SGE, controls job execution and provides

status information. For connecting the the computational resources, the distributed resource

management application API (DRMAA) is used. Instead of transferring user data directly,

only references are sent via parameters during the service call. The images and videos are

stored on a data server and the actual data transport is handled via network file system shares.

The advantage is an overlap of data transfer and service execution that contributes to the

optimization of the overall runtime performance.

166



6.2 Content-based Video Retrieval in Film and Television Production
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Figure 6.16: Service-oriented architecture for content-based video retrieval.

After the videos have been preprocessed, content-based meta-data generation jobs for concepts,

persons and similarity search are started. The resulting meta-data and indices are used by the

retrieval tool to respond to arbitrary search queries.

The concept detection, similarity search and face processing related web services intensively

use the GPU and are installed on dedicated servers with Nvidia Geforce GTX 770 graphics

cards with 4GB memory and GeForce GTX Titan X GPUs with 12GB RAM, respectively.

Visualization

The client/server-based web application provides an intuitive user interface to perform content-

based video analysis and retrieval in a distributed, heterogeneous environment. The user

management ensures that each user sees only its own video collection.

The GUI (see Figure 6.17) is divided into several areas. The video table at the top of the GUI

handles video selection and uploads. While analyzing a video, the video table additionally

provides progress information. Selecting a video opens a video specific timeline where the

brightness of the events indicates the confidence of the system. The results in the different

components are arranged according to the new concept lexicon. The pages in the timeline,

for example, correspond to the categories of the concept lexicon plus a person clustering. The

person clustering provides a fast overview of the acting persons within a video. Furthermore,

a bar chart is displayed at the bottom of the video player to clearly present the occurring

concepts according to the new concept lexicon. If an event in the timeline is selected, the video

player jumps at the position with the highest confidence within the shot.

Using the search buttons for concepts, persons and similarity on the right hand side forces the

GUI to switch from the timeline view to the retrieval view. The retrieval results are presented

to the user in the form of a ranked list of video shots where each video shot is represented

by the video frame with the highest probability of showing the requested content (see Figure
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Figure 6.17: GUI of the video analysis and retrieval tool.

6.23 for an example of similarity search). The thumbnails are arranged in a data grid with the

probability provided at the bottom of the image. The number of rows in the data grid can be

adjusted to see as much as possible results on a single page.

6.2.4 Experimental Results

In this section, experimental results are presented for concept detection (Section 6.2.4), similarity

search (Section 6.2.4), and face recognition (Section 6.2.4). For the face recognition task, the

scenarios face identification (Section 6.2.4), face retrieval (Section 6.2.4) and face clustering

(Section 6.2.4) are evaluated.

Concept Detection and Similarity Search

Taglicht media uploaded 94 videos, mainly consisting of documentaries. In total, the test set

consists of 41 hours of video data. The concept detection results are evaluated using the average

precision (AP) score that is the most commonly used quality measure in video retrieval. We

calculated the AP score from the list of ranked video shots up to rank N as follows:

AP(ρ) =
1

|R ∩ ρN |

N

∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik) (6.3)

168



6.2 Content-based Video Retrieval in Film and Television Productionaus

Figure 6.18: Visualization of similarity search results for five query images.

with ψ(ik) =

 1 if ik ∈ R

0 otherwise

where ρk = {i1, i2, . . . , ik} is the ranked shot list up to rank k, R is the set of relevant documents,∣∣R ∩ ρk
∣∣
is the number of relevant video shots in the top-k of ρ and ψ(ik) is the relevance

function. Generally speaking, AP is the average of the precisions at each relevant video shot.

To evaluate the overall performance, the mean AP score is calculated by taking the mean value

of the AP scores from different queries. Table 6.2 shows the results of the multi-label and

single-label approach. While the multi-label approach also uses negative training examples,

it achieves an excellent retrieval performance of 87.5% mean AP. Combining the models as

proposed in Section 6.2.2 even results in approximately 90.3% mean AP.

The semantic similarity search also delivers very good retrieval performance. We evaluated the

retrieval results for 21 query images based on the multi-task CNN model on the top-100 video

shots and obtained a mean AP score of 93.5%. Detailed results are shown in Table 6.3. Five

query images downloaded from the WWW together with the top six retrieved video shots are

visualized in Figure 6.18. Another example for similarity search is depicted in Figure 6.23 where

a keyframe of a boat is selected as query image and the results are visualized in the retrieval

view of the application.

While the similarity search results based on the multi-task CNN architecture perform very well

and the concept detection results achieve similar quality (81.8% mean AP (single-task) vs. 78.5%

mean AP (multi-task)), themulti-task approach savesmemory and runtime. Concept predictions

and image codes are concurrently computed so that the image codes for similarity search

are obtained without considerable extra computational effort. The runtime of the combined

webservice for concept detection and image code generation takes about 0.22 seconds per

image on a Nvidia Geforce GTX 770 graphics card including image transfer to the webservice

and preprocessing on the CPU. For analyzing a minute of video data, the runtime depends on
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Multi

Label

Single

Label

W
h
o

one person 0.901 -

two persons 0.947 -

several persons 1.000 -

crowd 1.000 -

no persons 1.000 -

animal - animals 1.000 0.963

W
h
a
t

rail traffic 0.988 0.985

ship traffic 0.991 0.992

air traffic 0.995 1.000

road traffic 0.961 0.931

work 0.626 0.959

sport 0.979 0.983

leisure time activity 0.901 0.731

fire - burning 0.975 0.983

flood - inundation 0.922 0.911

ruin - destruction 0.877 0.980

interview 0.977 0.983

conversation 0.818 0.928

gathering - deployment 0.540 0.955

no action 0.000 0.134

W
h
e
r
e

outside 1.000 0.969

detached house 0.816 0.637

settlement 0.962 0.551

village 0.715 0.330

city 1.000 0.869

open landscape 0.977 1.000

land - field 0.946 0.933

mountains 0.944 0.996

coast - ocean 0.971 0.935

river 0.681 0.674

lake 0.827 0.771

park - garden 0.518 0.857

sports venue 1.000 0.886

forest 0.979 0.985

Multi

Label

Single

Label

W
h
e
r
e
c
o
n
t
.

airport 0.955 0.620

train station 0.870 0.940

inside 0.976 0.984

inside train station 0.960 1.000

inside airport 0.952 0.775

inside train 0.906 0.804

inside airplane 0.942 0.771

inside car 0.940 0.618

inside living room 0.980 0.696

inside kitchen 0.995 0.689

inside office 0.363 0.982

inside repair shop 0.266 0.229

inside factory building 0.805 0.932

inside school - university 0.454 0.115

inside laboratory 1.000 1.000

inside shop - supermarket 0.928 0.974

inside ship 0.958 0.103

W
h
e
n

in the daytime - light 1.000 1.000

at night - dark 1.000 0.984

H
o
w

total 1.000 -

medium shot 1.000 -

close-up 0.937 -

face 0.873 1.000

hands 0.965 0.860

Mean 0.875 0.818

Table 6.2: Concept detection results in terms of average precision based on the top 100 shots

per concept.
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Query image AP

rail traffic 0.942

fire 0.945

air traffic 0.991

river 0.892

mountains 0.913

hands 0.720

coast - ocean 0.978

ship traffic 0.994

road traffic 1.000

animal 1.000

forest 0.999

Query image AP

inside kitchen 0.986

inside car 0.594

city 0.982

sports venue 1.000

inside office 0.998

village 0.836

detached house 0.976

face 0.998

land - field 0.943

crowd 0.943

Mean 0.935

Table 6.3: Similarity search results in terms of average precision based on the top 100 shots per

query image.

the video resolution and the number of video shots or rather keyframes. The average number of

keyframes on the dataset that mainly consists of documentary films is about 30 keyframes per

minute resulting in a computational runtime for concept detection and hash code generation of

about 7 seconds for a one minute video. Once the videos have been analyzed and the concept

probabilities per shot have been stored in the database concept queries can be answered

extremely fast based on an appropriate database index. Even the reponse time for similarity

search queries based on the comparison of image codes achieves an impressiv performance of

less than 2 seconds for searching in up to 10 million keyframes which corresponds in the case

of documentary films to about 5555 hours of video data.

Face Recognition

Since the proposed face recognition framework is designed for large and continuously growing

video archives, the system is evaluated on a suitable test dataset called Movie Trailers Face
Dataset [OWS13] containing 113 movie trailers from 2010. To compare our results to other

approaches, we use the face tracks provided by the authors of the Movie Trailers Face Dataset.
The dataset covers 145 actors who are partially represented in the person dictionary DP
extracted from PublicFig+10 [Kum+09; OWS13]. The fact that only half of the actors actually

appear in the movie trailers offers a great challenge and forces the face identification framework

to find a certain person in a large pool of possible candidates. Another advantage of the Movie
Trailers Face Dataset is that the 4.485 face tracks are separated in 35% known identities and

65% unknown identities which is a realistic representation of a real television broadcast. As

the input for each face recognition task we first extract the image feature vectors of every

face track in the Movie Trailers Face Dataset and store them in the track dictionary DT . In the

following, the experimental setups for face identification (Section 6.2.4), face retrieval (Section

6.2.4) and face clustering (Section 6.2.4) are explained.
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#img AP R90

tr-single

10 71.97 27.35

50 75.71 42.92

60 76.13 45.84
100 76.53 41.75

150 76.31 40.66

200 76.44 41.52

all 76.58 41.85

tr-mean

10 70.33 23.62

50 74.69 36.66

100 75.46 39.43

150 75.70 40.52

200 75.92 42.13
all 76.10 40.66

MSSRC [OWS13] 200 58.70 30.23

Kumar et al. [KNJ14] 100 59.34 25.0
∗ 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.19: Left: Average precision (AP) and recall at 90% precision (R90) of the face identifi-

cation algorithm for different maximum numbers of images per character (#Img)

and the baseline. Right: Corresponding precision-recall curves for the best results

(marked bold). Values marked with
∗
have been estimated from the figures of the

original papers.

Face Identification

For face identification, the same setup as used by the authors of the Movie Trailers Face
Dataset [OWS13] is used for reporting the precision and recall of the system. As explained in

Section 6.2.2 we use the PublicFig+10 dataset to create the person dictionary DP as the input.

Similar to Ortiz et al. [OWS13] we capped the maximum number of images per person in DP
to avoid skewing the results towards people with more images and to find a good tradeoff

between accuracy and computation time. To analyze the influence of the amount of images,

we conducted the experiments with a maximum of 10, 50, 100, 150, 200 images as well as with

all available images of a person. The results of our approach with the track representations

tr-single and tr-mean together with the baselines Mean Sequence Sparse Representation-based
Classification (MSSRC) of Ortiz et al. [OWS13] and Kumar et al. [KNJ14] are shown in Figure

6.19.

It is evident that our proposed approach clearly outperforms these baselines in both average

precision and recall at 90% precision. Another observation is that there is no significant

improvement for a maximum number of images greater than 50. Comparing the results of

tr-single and tr-mean, no difference in the average precision is visible, but the recall is slightly

better for tr-single. Based on these results, we decided to use a maximum number of 50 images

per person and to use the faster, second version of the algorithm due to the insignificant

difference in the performance.
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Person AP R90

tr-single

B. Willis 89.74 76.92

P. Rudd 92.56 82.61

J. Lopez 2.05 0.00

J. Roberts 64.63 27.27

H. Ford 88.79 75.76

C. Diaz 64.50 13.51

mean 67.24 44.09

tr-mean

B. Willis 88.32 71.79

P. Rudd 82.86 67.39

J. Lopez 2.00 0.00

J. Roberts 59.75 30.30

H. Ford 85.76 78.79

C. Diaz 61.60 10.81

mean 59.96 36.11
0.0 0.2 0.4 0.6 0.8 1.0

Recall
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Figure 6.20: Left: Average precision (AP) and recall at 90% precision (R90) for six exemplary

characters (best: green, worst: red) as well as the mean AP (MAP) and mean R90
for the face retrieval algorithm. Right: Precision-recall curve averaged over all 23
queries.

Face Retrieval

To evaluate the performance of the single-image based face retrieval method described in

Section 6.2.2, we manually selected one image from the PublicFig+10 dataset for each person

which also occurs in the Movie Trailers Face Dataset. We ended up selecting 85 images to

measure precision and recall for each query. The results are shown in Figure 6.20.

The figure shows that tr-single that uses every single image of a face track for the comparison

with the query image yields better results. This can be explained by variations like pose and

expression which will more likely matched by comparing the query image with every image

in the face track separately. By averaging the feature vectors in the track with tr-mean this

descriptive information can get lost, so we dismissed it for our final framework. An example

output of our web application can be seen in Figure 6.21.

Face Clustering

Comparing results of face clustering algorithms is a difficult task, since there are no datasets

designed solely for this purpose. We decided to again use the Movie Trailer Face Database for
this purpose with some augmentations. First, to find videos that are useful for a clustering

algorithm, we only consider trailers with at least two known actors who occurred in at least

two different tracks. Furthermore, the majority of the face tracks in the data show unknown

persons who we could not cluster. The reason is that the Unknown label describes more than

one individual in contrast to the other labels. Thus, in our evaluation we omit clusters where
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Figure 6.21: Person retrieval results.
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Figure 6.22: Purity (blue), completeness (green) and f-score (yellow) for different thresholds τS.

unknown persons are the majority of tracks. The purity score [Son08] of a cluster will be

punished if unknown labels occur in it. The purity of a cluster is the number of face tracks

of the most occurring person divided by the size of the cluster. The sum of purities of all

clusters divided by the number of clusters gives the overall purity that we report. Nevertheless,

a clustering result dividing every face track in its own cluster would yield a perfect purity of

1. Hence, a second score is necessary, the so called completeness. It compares the number of

face tracks of the most occurring person to its total count of face tracks in the movie trailer,

yielding only a perfect result if all face tracks of an individual belong to the same cluster.

Selecting a threshold τS for the agglomerative clustering algorithm is one of the key issues in

data clustering, since it highly depends on the quality of the given face images. We evaluated

a range of possible thresholds with their corresponding purity and completeness results in

Figure 6.22.
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The two contradicting scores purity and completeness are combined via the f-score [OWJ16].

It allows us to find an optimal value of τS = 0.23 for our data. Since our face detector provides

more face images, especially in non-frontal poses, due to a higher recall and precision compared

to the one used by Ortiz et al. [OWS13], we have to deal with more face variations. For this

reason, we increased τS to a value of 0.4 in our final system to enhance cluster purity while

still maintaining good completeness.

6.2.5 Summary

Digitization has fundamentally changed the workflow of professional media production, but

the content-based labeling of image sequences and video footage is still performed manually

and thus quite time-consuming. In this section, an automatic content-based labeling system,

necessary for all subsequent stages of film and television production, archival or marketing,

has been presented. Novel deep learning algorithms for visual concept detection, similarity

search, face detection, face recognition and face clustering are combined in a multimedia tool

for efficient video inspection and retrieval. A new visual concept lexicon and novel visualization

components have been developed to support media production activities. Furthermore, a novel

multi-task learning CNN for concurrent concept detection and similarity search has been

introduced. Experimental results have demonstrated the excellent quality of the proposed

approaches. The 58 concepts are detected with a mean average precision of approximately

90% on the top-100 video shots, the similarity search results even achieve 93.5% mean AP on

the top-100 video shots for 21 sample query images. The face recognition approach clearly

outperforms the baseline system on the public Movie Trailers Face Dataset.
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Figure 6.23: The image shows the similarity search results for the keyframe displayed in the

video player. The retrieval results are presented to the user in the form of a ranked

list of video shots where each video shot is represented by the video frame with

the highest probability of showing the requested content.
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6.3 Visual Information Retrieval in Video Archives

6.3.1 Introduction

Automatic content-based video retrieval methods relying on deep learning, in particular deep

convolutional neural networks (CNN), have great potential to unveil the hidden treasures lying

in large digital video archives around the world. A particularly interesting video archive is the

German Broadcasting Archive (Deutsches Rundfunkarchiv, DRA
14
). It maintains the cultural

heritage of radio and television broadcasts of the former German Democratic Republic (GDR).

The DRA preserves, among other things, the video collection of GDR television recordings from

the years 1952 to 1991. Up to now, more than 90% of the historical GDR television recordings

(about 34,000 hours of video footage) are digitized. The archive includes a total of around

100,000 broadcasts, such as contributions and recordings of the daily news program Aktuelle
Kamera, political magazines such as Prisma or Der schwarze Kanal, broadcaster’s own TV

productions including numerous films, film adaptations and TV series productions such as

Polizeiruf 110, entertainment programs (e.g., Ein Kessel Buntes), children and youth programs

(fairy tales, Elf 99) as well as advice and sports programs. Access to the archive is granted

to scientific, educational and cultural institutions, to public service broadcasting companies

and, to a limited extent, to commercial organizations and private persons. The uniqueness and

importance of the archive has sparked considerable international research interest in GDR and

German-German history.

International scientists use the DRA for their research in the fields of psychology, media, social,

political or cultural science. These studies are, for example: Heavies in East Germany (Humboldt

University Berlin), Space Travel in the GDR (Harvard University, USA), The Jewish in TV (Ludwig

Maximilian University of Munich, Germany), Socialism on the Screen (Loughborough University,

UK), Self-made in Consumer Society (University of Mannheim, Germany), or Child and Youth
Education in Fictional Subjects (Shizuoka University, Japan). Furthermore, DRA video footage is

often used in film and multimedia productions.

The DRA is answering a wide range of research, cultural, private, and commercial requests

concerning the life of GDR citizens and social perceptions. The number of comprehensive and

time-consuming requests is considerably increasing, e.g., youth fashion in the GDR, youth

cultures, personalities (e.g., Angela Merkel or Joachim Gauck), sports, music events, sights (e.g.,

Sanssouci in Potsdam or the Brandenburg Gate), living in East Germany, in particular home

furnishings or the socialist city as a model of urban development in the GDR, specifically

pictures including socialist classicism, buildings made with precast concrete slabs, demolition

and spectacular buildings. Besides video recordings, the DRA collection contains numerous

photographs of unidentified persons. Similarity search in the overall archive can provide

important information about the identity of the person. Furthermore, copyright clearance is

an important task of the DRA.

The following four use cases can be derived from the user studies and search requests described

above: (i) visual concept classification for recurring, frequent terms in search queries, (ii) person

recognition for famous personalities, and (iii) image similarity search as well as (iv) person

14https://www.dra.de

177

https://www.dra.de


6 Image Similarity Search in Applications

similarity search for queries by example, e.g., to find images with similar visual content (possibly

for licensing or copyright reasons) or a person’s identity in an image.

In this section, we present deep learning methods for visual concept classification, person

recognition, image similarity search, and person similarity search to support these use cases.

The visual quality of the DRA video footage is quite heterogeneous - the collection includes

color and gray-scale material, low-resolution videos, and even some screen recordings. These

requirements and the GDR specific visual concepts pose challenges for generic video mining

solutions, such as the Microsoft Video Indexer
15
. The retrieval methods, especially the concept

and person recognition models, need to be adapted to the target domain and continuously

updated to the archive users’ changing search requirements. Therefore, the proposed methods

are integrated into a client-server application, called VIVA, that supports all steps from the

acquisition of training material, the annotation of individual images, to the training and

management of deep learning models. The goal is to enable archivists to carry out the entire

training process with a user-friendly interface and to add or update new personalities or visual

concepts to the retrieval process when new requirements arise.

To summarize, we make the following contributions:

• We present VIVA, a software tool based on deep learning methods for visual information

retrieval in videos. To address potentially changing user requirements, VIVA enables

users to build and adapt deep learning models for visual concepts and persons with a

user-friendly interface.

• We present an efficient workflow for collecting training data and building classification

models for concepts and persons with low manual effort. Based on web crawling and

similarity search results, large amounts of training data can be collected quickly. The

(re)training process can be started by just one click to make deep learning user-friendly.

Furthermore, user feedback on the retrieval results for the entire data collection can be

integrated. The workflow is generally repeated several times to continuously improve

the concept or person models.

• Due to the time-consuming task of completely labeling all training images in a multi-label

scenario, we present a cross-entropy loss function for incompletemulti-label ground-truth

data.

• We use VIVA to build deep learning models for 91 GDR specific concepts and 98 person-

alities from the former GDR, based on internal and external DRA user requests.

• We evaluate VIVA for the four use cases (concept classification, person recognition, image

similarity search, and person similarity search) in the context of the DRA using a unique

historical collection of about 34,000 hours of GDR television recordings.

VIVA is published under an open source license at https://github.com/umr-ds/VIVA and

https://github.com/TIBHannover/VIVA.

Parts of this section have been published in: Markus Mühling, Nikolaus Korfhage, Kader Pustu-

Iren, Joanna Bars, Mario Knapp, Hicham Bellafkir, Markus Vogelbacher, Daniel Schneider,

15https://azure.microsoft.com/de-de/services/media-services/video-indexer
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Angelika Hörth, Ralph Ewerth, and Bernd Freisleben. “VIVA: Visual Information Retrieval in

Video Archives.” in: International Journal on Digital Libraries 23.4 (2022), pp. 319–333.

6.3.2 Related Work

To the best of our knowledge, a comparable video retrieval approach that integrates the training

of deep learning models to enable the search for custom concepts and persons in a single

platform does not exist. However, there are several tools related to individual components of

VIVA.

An important part of the presented workflow is the data acquisition step. Various open source

projects exist (e.g., LabelMe [Rus+08]) for labeling image or video datasets. While in some

tools it is possible to upload pre-annotated images or apply an available deep learning model

to support the labeling process, this is usually cumbersome and requires additional manual

effort. In contrast, VIVA provides semi-automatic data acquisition steps so that users can focus

on collecting, labeling, and reviewing images and keyframes. Another important step in the

pipeline is the training of deep learning models. Existing GUI-based tools (such as Nvidia DI-

GITS [Yea+15]) require expert knowledge to conduct the training process to build CNN-based

models. In VIVA, training deep learning models is simplified as much as possible so that even

inexperienced users are able to build, run, and monitor deep neural networks for visual concept

classification, person recognition, and image similarity search on GPUs.

Furthermore, video retrieval results generated using these deep learning models are also

visualized in VIVA. There are several comparable interactive frame-based video retrieval engines

that are similar to VIVA [Lok+19]. Tools such as SOMHunter [Kra+20], VERGE [And+21], Visione

[Ama+21], vitrivr [GRS19], VIREO [Ngu+20] combine different automatic content analysis

methods to facilitate search with different feature modalities. In particular, these tools support

searching for objects, concepts or actions based on pre-defined classes and models built with

publicly available data sets, such as ImageNet [Den+09] or OpenImages [Kuz+20]. Recently,

a library for deep learning for unsupervised image retrieval called PyRetri [Hu+20] has been

introduced. It offers methods for important retrieval steps such as feature extraction, indexing,

and evaluation using off-the-shelf deep learning models. However, in contrast to these works,

VIVA additionally supports the training of individually defined concepts and persons. This

can be a crucial feature when it comes to historical or domain-specific video content. In this

context, current content-based retrieval tools might not be sufficient for the search intent of

an archive user as described in the considered case studies.

6.3.3 Image and Video Retrieval Approaches

The fundamental problem of content-based image and video retrieval is to overcome the

discrepancy between the extracted features and the human interpretation of the (audio-)visual

data. In the literature, this discrepancy is also known as the “semantic gap” [Sme+00b].

Nowadays, deep learning approaches, in particular deep convolutional neural networks, are

applied to almost all computer vision tasks to reduce the semantic gap and even surpass human

performance in many areas such as face or concept recognition [He+15b; Pus+19].
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Figure 6.24: Retrieval results and user feedback for the visual concept “bakery”. A user highlights

correct results in green, wrong results in orange, and unclear/neutral results in

grey.

In the following sections, we present our image and video retrieval approaches for the previ-

ously described use cases. The proposed visual concept classification method is described in

Section 6.3.3. In Section 6.3.3, the similarity search approach is introduced. Finally, the person

identification and person similarity search approach are presented in Section 6.3.3 and 6.3.3,

respectively. As a preprocessing step, a shot segmentation approach [Müh+07; Müh+19] is

applied to the videos to find representative keyframes used for the subsequent content-based

video analysis algorithms. The resulting metadata of the concept and person recognition ap-

proaches are written to a database, including tags and the corresponding probabilities. Given

this semantic index, search queries for persons and concepts can be processed efficiently and

the query results are returned to the user as a retrieval list, ranked according to the probability

of the desired content being present.

Visual Concept Classification

Visual concept classification is a challenging task due to the large variability and complexity

of the possible concepts. To support a wide range of user requests, the DRA conducted a

requirements analysis. The definition of the GDR specific concept lexicon is based on the

analysis of past user search queries with a focus on queries that were experienced as difficult

and time-consuming to answer manually. Considering the utility or usefulness for (future)

search queries, the observability by humans and the feasibility in the sense of automatic

detection, a lexicon of 91 GDR specific concepts has been defined, including objects, sites,

scenes, events, and activities, such as “Brandenburg Gate”, “Elbe panorama”, “baby”, “bakery

(inside)” or “christmas”. The complete list of concepts is presented in Table 6.4.
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Our approach to visual concept classification relies on the EfficientNet architecture [TL19] that

achieves state-of-the-art visual recognition performance. Currently, automatically designed

neural network architectures outperform hand-crafted CNN architectures for content-based

image recognition [EMH19; Liu+18]. The EfficientNet architecture is the result of a neural

architecture search approach that uses a new compound model scaling method and optimizes

recognition quality as well as efficiency. As a tradeoff between quality and efficiency, we use the

B3 variant of the EfficientNet architecture as our base model. Since the training of a deep CNN

model requires millions of training images, the parameters of the base model are initialized

using pre-trained weights from the ImageNet dataset [Den+09] and adapted to the target

domain using a fine-tuning strategy.

Most network architectures for image recognition consider only a single concept per image

(“single-label”) [Sze+15; He+16]. In contrast, the real world task of visual concept classification

is a multi-label problem. However, a complete annotation of the training samples is impractical,

because it is quite time-consuming to specify for each concept whether it occurs in an image or

not. The manual effort for annotating an image or keyframe increases linearly with the number

of concepts. Therefore, we are dealing with incomplete multi-label data.

In the data acquisition phase using a web crawler or our similarity search component, mainly

positive examples of a concept are collected. Negative labels are added via review and user

feedback. Thus, each image in the training set is labeled for at least one concept. Since in some

cases there are very few negative training samples, especially when a deep neural model is built

for the first time, positive training samples for a concept are used as weak negative samples

for the other concepts.

Hence, the proposed network architecture uses an optimized cross-entropy loss with a new

weighting scheme. The weighting scheme consists of two components. First, instead of ignoring

training samples in the loss function for unlabeled concepts, they are included as negative

examples with a lower weighting factor compared to the actually labeled samples. Second,

a modulating factor motivated by the success of focal loss [Lin+17b] in the field of object

detection is introduced to emphasize difficult samples during the training process. The overall

loss is defined as follows:

L =
K

∑
k=1

l(yk, pk), (6.4)

with

l(y, p) =


−αpos(1 − p)γ log(p) if y is positive

−αweak pγ log(1 − p) if y is weakly negative

−αneg pγ log(1 − p) if y is negative

where K is the number of concepts, pk is the predicted probability for the k-th concept, yk
is the k-th ground truth label, αpos is the weighting factor for positive labels, αweak for weak

negative or undefined labels, αneg for negative labels and γ is the focusing parameter.

To further minimize the manual effort for labeling training samples, a deep neural network

model in VIVA is improved iteratively. Starting from an initial set of training samples, a baseline
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Figure 6.25: VIVA GUI showing similarity search results for a query image of a “bakery”. The

query image is downloaded using a web crawler and displayed in the bottom-left

corner of the figure.

model is trained. This model is applied to the entire video collection to find keyframes that

contain the desired concepts. These results are presented to the user in form of a retrieval list

to collect user feedback. The user feedback annotations are added to the training set and thus

lead to iterative improvements. Figure 6.24 shows an example of the concept “bakery”.

Image Similarity Search

Query-by-image is a popular strategy to represent a user’s search intention in content-based

image and video retrieval scenarios [KMF20]. It is useful in many use cases of the DRA from

searching for specific scenes, detecting duplicates, and clearing copyrights to supporting data

acquisition for concept recognition.

Since CNN features are high-dimensional float vectors and linearly searching in large databases

like the video collection of the DRA is time-consuming, several large-scale similarity search

approaches focus on learning compact representations [Wan+15; RCC20; Wan+17] or use

product quantization approaches [JDS10; JDJ19; Wan+21]. To perform fast and accurate image

similarity search on the entire collection of more than 15.7 million keyframes, a method based

on deep hashing is used [KMF21]. Deep hashing methods learn a binary representation of

images to facilitate fast distance computations in Hamming space. Furthermore, the distance

computation complexity is reduced by multi-index hashing [NPF12].

The training of the deep hashing model consists of two phases that both use ADAM [KB15] as

the optimization method because it automatically adapts the learing rate. In the first phase, an

EfficientNetB3 model pre-trained on ImageNet is trained on a dataset with a high number of

different classes to obtain a fine-grained embedding with high generalizability to a wide range

of query images. The dataset used contains all ImageNet classes with more than 1,000 training
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images and all classes from the Places2 [Zho+17] dataset, which results in a total number of

5,390 classes. The model is fine-tuned to this dataset using Softmax with cross-entropy loss.

After training the weights of the last layer with a learning rate of 0.01 for two epochs, all layers

are trained for another 16 epochs with an initial learning rate of 0.0001.

In the second phase, the weights of the classification model from the first phase are used

to initialize the deep hashing model. This model includes an additional coding layer prior to

the classification layer with a tanh activation and 256 outputs to learn the embedding. It is

trained on the same dataset as before, however by combining cross-entropy loss on the output

and hard triplet loss [SKP15b] on the coding layer. This model is trained for 5 epochs with a

learning rate of 0.0001. The parameters for the initial learning rates and the number of epochs

resulted from observation of the training process.

Due to the technically challenging historical video collection, data augmentation is used

in both phases to improve the robustness of the similarity search approach. For example,

brightness modification, mirroring, cropping, zooming, rotation, width/height shifting, and

JPEG compression artifacts are used as augmentation methods.

At this stage, the model generates 256-bit codes. However, using codes of this length in a

linear search on the entire image corpus is too expensive. For this reason, we implemented a

two-stage method, where we first use 64-bit codes for a coarse search and then the 256-bit

codes for re-ranking the candidate retrieval list. The first step involves multi-index hashing in

Hamming space [NPF12]. To extract the 64 most important bits from the 256-bit codes, we

first partition the 256-bit codes into four partitions by applying the Kernighan-Lin algorithm

[KL70] to bit correlations. From each of the decorrelated partitions, we take the first 16 bits to

compose the 64-bit codes.

The multi-index hashing approach is integrated into ElasticSearch
16
. The time for obtaining an

answer for a single query image in ElasticSearch in a corpus of roughly 10 million images is

about 256 milliseconds on an Intel Core i7-4771 processor with 3.5 GHz clock speed. While there

are approaches to similarity search that build on inverted indexes [Ama+17], the integration in

ElasticSearch allows us to use its benefits, such as processing multi-modal queries (text and

image), load balancing, and scalability.

Figure 6.25 shows the VIVA GUI with similarity search results for a query image of a “bakery”.

Person Recognition

A requirements analysis based on user queries has been conducted to define a lexicon of GDR

personalities for the task of person identification. Considering different areas of interest such as

politics, sports or entertainment, the final lexicon includes 98 persons, such as “Angela Merkel”

or “Erich Honecker”.

The task of face recognition is typically tackled by learning discriminative face representations

[SKP15b] using large scale face datasets [Cao+18a; Guo+16]. Recent methods introduce new

loss functions that enhance the discriminative power for large scale face recognition [Den+19a;

Wan+18a].

16https://www.elastic.co
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Figure 6.26: VIVA workflow.

Based on the predefined lexicon, our person identification approach includes several steps.

The face processing steps consist of the following components: face detection, face alignment,

feature extraction, and face recognition. To initially detect faces in the images, the RetinaFace

[Den+19b] detector is used. A subsequent frontal alignment of the detected faces using the

shape predictor of Dlib [Kin09] ensures that detected faces are normalized in their pose. To

reduce annotation overhead and eliminate unwanted (background) persons in images, detected

faces in the training material are grouped using agglomerative clustering. For each person

to be trained, the annotation effort is limited to 100 clusters each. Training face images of

the lexicon personalities are represented by feature vectors that are extracted using FaceNet

[SKP15b]. The used FaceNet implementation
17
is trained on a dataset (VGGFace2 [Cao+18a])

with over 9,000 identities and 3.3 million images and achieves a high accuracy of 99.65% on

the established LFW (Labeled Faces in the Wild) benchmark. For the final identification of

the personalities, a classifier is trained using Support Vector Machines (SVM), for which a

subsampling strategy is applied in order to keep training faces for each class balanced.

Person Similarity Search

Similarity search for persons allows users to display similar persons from the database based

on a query image that portraits a unique person to be searched. The fundamental difference

to concept-based image search is that similarities are evaluated exclusively between detected

faces in images. In this way, unknown persons in photographs, for example, can be identified

by searching them in the entire DRA collection. The context or existing annotations of the

found images or video shots can provide important information about the person’s identity. To

17https://github.com/davidsandberg/facenet
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preprocess the dataset to be indexed and subsequently the query images, face detection, face

alignment, and feature extraction steps described in Section 6.3.3 are performed. Based on the

extracted feature representations, an index using the FAISS library [JDJ19] is built. The index

is based on product quantization [JDS10] and allows efficient comparisons between query

vectors and stored vectors based on cosine similarity and returns nearest neighbors.

6.3.4 VIVA

The approaches presented in the previous section are integrated into a client-server application,

called VIVA, that provides all steps from collecting training samples, through the annotation of

individual images or keyframes, to training the classification models as well as visualizing the

results and collecting user feedback. In a preprocessing step, a shot segmentation approach and

a keyframe extractor are applied to the target video collection, in our case the GDR television

recordings from the DRA. Once the preprocessing is done and the database of VIVA is initialized

with these videos, the user can build concept or person models as well as search and index the

video collection.

The goal is to enable non-expert users to carry out the entire training process. For this purpose,

the application offers an intuitive graphical user interface (GUI) to learn models for new

personalities or concepts. Efficient workflows are provided in the GUI to train and continuously

improve concept and person recognition models with as little manual effort as possible. We

present the GUI, the implemented workflows, and the software architecture of VIVA below.

Since the concept and person recognition workflows involve similar but not identical steps,

VIVA is separated into two applications. Users can simply switch between the concept and

person application via intuitive buttons in the left upper corner of the main window. In both

cases, the workflow is divided into three main stages: the data collection and annotation stage,

the training and evaluation stage, and the retrieval and user feedback stage. Furthermore, VIVA

allows the export of the inference results. The detailed steps of the three stages of the workflow

are shown in Figure 6.26.

The individual steps can be accessed via a menu structure on the left side of the application

window. Users can hide the menu structure to display more keyframes or images, which

is especially helpful in the data acquisition phase. The different steps of the workflow are

described in more detail in the following subsections.

Data Collection and Annotation

In the data collection and annotation stage, new training images or keyframes are acquired

semi-automatically for each concept. For this purpose, a new class (concept or person) has to

be defined or an existing class in the overview table has to be selected. The selected concept is

displayed at the top of the application window. The overview table also shows the number of

positive, negative, and neutral annotations per concept as well as a description of the concept.

Besides positive and negative labels, difficult or indistinct samples can be labeled as neutral.

Classes can be added, removed or renamed at the overview page.
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Figure 6.27: VIVA GUI for starting and monitoring the training process.

A central element for labeling images or keyframes and displaying search results is the grid

view component. The size and number of images per page in the grid can be optimized to the

screen resolution and user preferences by adjusting the number of rows and columns. There

are buttons to navigate between the pages. Within the grid, images can be efficiently labeled as

positive, negative, or neutral. Additionally, there are buttons to label all images on a page at the

same time with the same label. Keyboard shortcuts exist to improve the efficiency. Furthermore,

individual images can be displayed in full screen. In the case of keyframes, the corresponding

video shot can also be played.

VIVA provides several options to acquire training samples semi-automatically for the selected

concept. A web crawler allows users to collect training images from the WWW using search

engines like Google and Bing. Users only have to enter a search term. The resulting images

of the web search are displayed in the grid view and can be labeled for further usage. Only

labeled images are downloaded from the web and stored in the database. Using the web crawler,

hundreds of training samples are acquired quickly. However, to fit the model to the target

domain, training samples from the same distribution are required. Therefore, the positive

training samples from the web search are important because they can be used as similarity

search queries to quickly find new specific training samples from the target domain. Figure 6.25

shows an example image from the WWW and the corresponding domain specific similarity

search results. Again, the search results are labeled directly in the grid component. Besides the

selection of query images from the already labeled positive samples, query images can be also

submitted by URL or uploaded from an image file.

Furthermore, a sequence import allows the upload of labeled video sequences from external

tools. In our case, the imported sequences are search results from the DRA search engine

(FESAD interface) based on human generated metadata. FESAD is the common television

archive database management system of the public German broadcasting association ARD.

At the end of the data acquisition phase, the review page gives an overview of the labeled

positive, negative, and neutral training samples and offers the possibility to correct them.
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Figure 6.28: User review of the labelled faces of the person “Doris Abesser”; positive labels are

marked in green color.

Training and Evaluation

While the data collection and annotation stage is related to a specific concept, the training

and evaluation stage is related to all concepts. Deep neural models are trained, evaluated, and

inferred based on all concepts. The training and evaluation stage is separated into four steps

represented by corresponding menu items and pages. The first step shows a dataset overview.

A minimum of 100 positive training samples is required for using a concept in the training

process. This threshold only provides an initial indication of the number of training samples

required. Of course, the number depends on the complexity of the underlying concept and the

diversity of the collected training data. If necessary, the training data can be extended from

training iteration to training iteration.

The overview page visualizes the number of positive and negative training samples per concept

in a bar chart. The concepts can be ordered by the number of positive samples, and the concepts

not meeting the requirements are highlighted. The user gets a quick overview of concepts

that require further annotation effort. The training data should cover the possible variations

of the underlying concept. The more data is collected and the greater the data diversity, the

lower the risk of overfitting and the better the generalization capabilities of the model can be

estimated.

In the second step, the training process is started. The training page allows non-expert users in

the field of deep learning to build models with minimal configuration effort (see Figure 6.27).

At the top of the page, available GPU resources are listed. After selecting the GPU resources,

a user only needs to press the start button. The images for the training and validation set

are automatically sampled from the labeled instances, as described in Section 6.3.5. Learning
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Figure 6.29: VIVA Software Architecture and Integration into FESAD.

curves visualizing the loss on the training set and the performance in terms of mean average

precision on the validation set are used for monitoring the learning progress. Further available

monitoring tools are a progress bar, a learning rate chart, a window showing the log content as

well as GPU and CPU utilization charts.

Once the training is successfully completed, detailed results on the validation set can be

inspected and compared to the previous model at the evaluation page. If the user is satisfied

with the quality of the results, the model can be applied to the entire video collection at the

inference page by just selecting the GPU resources and pressing the start button. Progress,

CPU, and GPU utilization are again displayed for monitoring purposes.

Retrieval and User Feedback

Finally, the retrieval and user feedback stage is used to show the retrieval results and collect

user feedback to improve the accuracy of the model in the next training phase. Figure 6.24,

for example, shows the retrieval results for the visual concept “bakery” together with the user

feedback annotations.

Concepts and Persons

While the person and concept recognition components follow the same main stages for auto-

matic footage indexing, there are some differences. A key difference for persons is that more

fine-grained annotations of faces are made in the images. Therefore, in the data acquisition

steps, face detection must be performed in the background before users can annotate relevant

(positive) faces (see Figure 6.28). Similarly, for the training and inference steps, face detec-

tion and/or feature extraction are performed before the model is trained or can be used for

classification. Further variations are described in Section 6.3.3.
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Software Architecture

VIVA is realized as a client-server application using the Python web framework Django
18
.

Figure 6.29 shows the software architecture as well as the integration of VIVA into FESAD. The

service-oriented architecture includes a database containing training data and labels, a deep

neural model repository, and web services for providing visual concept classification and person

recognition. The final neural models are automatically exported, optimized, and deployed as

web services using TensorFlow Serving
19
. The web services for concept classification and person

recognition can be used to integrate VIVA functionality into FESAD.

Further components (not shown in the figure) are a backup service and web services for

similarity search and person similarity search.

Individual Docker
20

containers are used to deploy the different components of VIVA. This

containerization strategy improves the portability of the application and allows the distribution

of the software components to different resources. VIVA can also be deployed in Kubernetes
21

environments.

Since there are typically multiple users involved, VIVA provides, besides data acquisition,

annotation, training, and retrieval capabilities, support for user and role management. Different

users can be configured, and the role management allows the assignment of rights for collecting

and annotating training images or keyframes, for training and inference, as well as for the

administration of users.

6.3.5 Experimental Results

In this section, the VIVA tool is evaluated based on the use cases of the content-based video

retrieval approaches using the video collection of historical GDR television recordings.

The results are evaluated using the average precision (AP) score that is the most commonly

used quality measure for retrieval results. The AP score is calculated from a list of ranked

documents as follows:

AP(ρ) =
1

|R ∩ ρN |

N

∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik), (6.5)

with ψ(ik) =

 1 if ik ∈ R

0 otherwise

where N is the length of the ranked document list, ρk = {i1, i2, . . . , ik} is the ranked document

list up to rank k, R is the set of relevant documents,

∣∣R ∩ ρk
∣∣
is the number of relevant

documents in the top-k of ρ and ψ(ik) is the relevance function. Generally speaking, AP is the

18https://www.djangoproject.com/
19https://github.com/tensorflow/serving
20https://www.docker.com/
21https://kubernetes.io/
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Concept Approach

A B C

Advertising column 89.26 92.25 92.15

Autumn 59.53 73.25 76.19

Baby 46.31 73.81 77.70

Baby carriage 81.22 81.68 81.15

Bakery (inside) 45.73 45.23 44.64

Band (Rock Pop) 84.16 93.20 90.56

Barbecue 57.49 55.03 57.53

Bathroom 83.00 89.36 90.44

Bird’s eye view 42.39 61.86 65.78

Brandenburg Gate (Berlin) 99.38 99.26 99.78

Butcher shop (inside) 36.02 37.87 36.15

Car license plate 87.72 92.59 94.19

Cartoon drawing 79.66 83.44 82.50

Cat (pet) 95.28 93.62 95.58

Cemetery 72.66 75.27 73.40

Child 69.04 70.04 72.46

Choir 41.00 41.21 48.77

Christmas 63.90 74.83 71.69

City theater (Weimar) 95.14 98.25 98.23

City-Hochhaus (Leipzig) 97.09 98.52 98.77

Classroom 66.91 73.17 78.44

Close-up 76.09 80.20 77.16

Conference podium 55.14 66.50 69.98

Control room 78.44 78.60 83.25

Dog (pet) 74.25 84.24 85.61

Dove of peace 77.92 89.67 92.28

Elbe panorama (Dresden) 95.43 98.13 99.26

Erfurt Cathedral (Erfurt) 76.97 90.26 92.86

Flag ceremony 78.39 86.52 86.12

Flash 75.68 83.56 84.48

Frau Elster 78.73 86.91 89.36

Gewandhaus (Leipzig) 88.55 88.75 88.04

Hairdresser (inside) 65.37 67.09 68.18

Hammer and sickle 66.99 82.72 82.64

Herr Fuchs 83.12 84.21 87.88

Hiking (in nature) 48.58 51.01 55.23

Jeans 31.52 53.79 60.36

Jugendweihe 93.71 97.37 95.66

Karl Marx Monument 83.99 86.16 83.88

Kremlin (Moscow) 93.00 95.18 95.80

Lange Straße (Rostock) 92.38 92.09 91.17

Library (indoor) 84.27 88.63 90.04

Living room 42.46 39.21 40.73

Magdeburg Cathedral 95.34 96.35 98.37

Map 67.65 79.02 79.09

Market 69.00 55.39 67.05

Concept Approach

A B C

Meissen Cathedral (Meissen) 93.02 93.65 94.25

Mini skirt/dress 33.98 38.49 42.80

Monument statue 28.97 65.72 65.72

Mop top hairstyle 56.29 70.99 69.03

Newscaster 63.51 74.38 71.05

Newspaper magazine 54.05 68.35 81.10

Night (outside) 59.17 58.25 67.60

Nude person 42.67 62.91 65.64

Outside broadcast van 65.92 90.82 93.61

Old person 72.91 83.46 80.76

Olympic rings (logo) 79.76 92.48 89.88

Orchestra 66.59 84.67 87.34

Palace of Culture (Warsaw) 77.42 76.83 76.66

Pharmacy (inside) 74.39 78.49 82.42

Picnic 58.28 77.94 79.65

Pittiplatsch 85.53 91.37 91.09

Press conference 75.01 87.14 89.21

Rain 61.21 70.99 68.68

Red City Hall (Berlin) 81.02 88.31 87.84

Red Tower (Halle) 88.35 87.68 87.13

Sandman 78.23 91.64 91.67

Sanssouci (Potsdam) 89.95 93.42 95.20

Schwerin Castle 87.39 89.72 89.25

Sewing machine 84.69 86.99 86.72

Silhouette 70.35 81.88 84.32

Space 76.21 81.62 82.60

Spire 47.37 49.31 54.55

Spring 41.44 38.91 48.62

St. Thomas church (Leipzig) 95.22 96.64 93.52

Street sign 45.98 64.93 68.28

Subway 24.76 45.65 62.85

Sunrise/sunset 85.24 82.64 87.24

Teepott & lighthouse (Rostock) 97.09 97.95 98.11

Telephone 89.55 94.66 94.60

Television camera 31.47 74.90 75.80

Television set 65.49 84.82 79.18

Television tower (Berlin) 82.81 85.56 86.27

Long shot 52.89 56.77 62.90

Town hall tower (Gera) 93.44 95.33 95.76

Town sign 76.87 81.85 84.42

Tractor 85.71 78.47 83.29

Traditional costumes 55.13 59.55 58.26

Underwater shot 63.74 82.84 79.62

Unitower (Jena) 94.80 96.04 96.08

Wheelchair user 71.25 85.66 88.30

mAP 71.11 78.31 79.88

Table 6.4: Concept classification results for the approaches A, B and C in terms of AP.

190



6.3 Visual Information Retrieval in Video Archives

average of the precisions at each relevant document. To evaluate the overall performance, the

mean AP score is calculated by taking the mean value of the AP scores from different queries.

Experimental results for visual concept classification are described in Section 6.3.5. Section 6.3.5

presents the person recognition results. Our similarity search results for images and persons

are presented in Sections 6.3.5 and 6.3.5, respectively.

For the use cases of image similarity search and person search, we used 40 images downloaded

from the WWW as our query images in each case to estimate the retrieval quality. Each

retrieval result is evaluated up to the first 100 retrieved keyframes. While the evaluation of

the similarity search approaches is based on the entire video corpus of more than 15.7 million

keyframes and 2.8 million faces, the approaches for visual concept classification and person

recognition use a randomly selected validation set of labeled instances, as described in the

corresponding subsections.

Visual Concept Classification

Altogether, the VIVA tool was used to acquire training and validation data for the previously

introduced 91 GDR specific concepts. Several experiments were performed to evaluate the

models trained using the VIVA tool. Since the training of a deep neural network from scratch

is much more challenging in terms of monitoring the training process and requires much more

resources, both concerning data acquisition and computational runtime, a transfer learning

strategy is used. Therefore, the models were initialized with pre-trained weights from ImageNet

and a two-stage approach was applied for fine-tuning the model to the target domain. In the

first stage, only the last layer of the network was trained with a learning rate of 0.001, while

the remaining layers with pre-trained weights were frozen. This prevents that the random

initialization of the last layer harms the learned feature representations of the previous layers.

In the second stage, more layers (the number of layers is empirically set to the top 20 layers)

were involved in the training process to improve the adaptation starting with a learning rate of

0.0001. To train the models, we used the ADAM optimizer [KB15], because it automatically

adapts the learning rate during the training process.

A total of 113,104 positive and 35,500 negative concept annotations are currently in the database

of VIVA. The validation set was randomly sampled from the labeled instances by selecting 30

positive samples for each concept and 20% of the concept’s negative annotations. The remaining

samples were used for training. Altogether, the training set consists of 110,358 positive and

28,370 negative labels and the validation set contains 2,746 positive and 7,130 negative labels.

Three different approaches were evaluated:

• Approach A uses only samples with at least one positive label. The weights of the loss

function are αp = 0.8 and αw = 0.1.

• Approach B uses all training samples with the following weighting scheme: αp = 0.8,
αn = 0.1 and αw = 0.1. The actually labeled negative samples are considered but

weighted as low as the weak negative samples.
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Top 10

Joachim Gauck 100.0

Nina Hagen 100.0

Andreas Holm 100.0

Zsuzsa Koncz 100.0

Jan-Josef Liefers 100.0

Thomas Lück 100.0

Angela Merkel 100.0

John Peet 100.0

Matthias Sammer 100.0

Hilmar Thate 100.0

Bottom 10

Bärbel Wachholz 90.0

Tamara Danz 89.8

Margot Ebert 88.7

Uwe Ampler 87.8

Britt Kersten 85.2

Rosemarie Ambe 83.8

Täve Schur 81.1

Herbert Köfer 76.5

Erich Honecker 75.2

Kurt Masur 64.4

Table 6.5: Person recognition results in terms of AP.

• In approach C, positive and negative samples are weighted equally. Diminishing the

impact of weak negative samples leads to the following weighting scheme: αp = 0.8,
αn = 0.8 and αw = 0.2.

The results of the different approaches investigating the impact of negatively labeled training

samples are presented in Table 6.4. The negatively labeled training samples from the review and

user feedback components are mainly hard negative examples and lead to a clear performance

improvement. Using only the weakly negative samples in approach A achieves a performance

of 71.11% mean AP. Approach C assigns a high weighting factor for both positive as well

as negative labels and a low weighting factor for weakly negative samples. It outperforms

approach B in terms of mean AP and leads to the best performance of 79.88% mean AP.

Person Recognition

To train the recognition model for 98 GDR personalities, around 14,400 person images were

labelled. Applying a subsampling strategy that utilized up to 100 images per person, a linear

SVM using a RBF kernel was trained. To measure the performance of the person recognition

model, a stratified k-fold cross-validation was performed during training. Using k=5 folds, a

mean average precision of 95.10% was obtained across all classes. In Table 6.5, AP results for

the top 10 and bottom 10 persons are presented. While most persons are classified with a high

accuracy, lower AP results occur for persons with less training data and less variance regarding

training samples and poses. Furthermore, misclassifications are often due to differences in

image quality and face occlusions.

Image Similarity Search

To verify the performance of the image similarity search component in the context of VIVA, we

selected query images from the WWW for 40 concepts of our concept lexicon. We computed
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Figure 6.30: AP@100 for 40 query images corresponding to 40 concepts.

the query results based on the entire video collection of more than 15.7 million keyframes. The

ranked retrieval lists are evaluated up to rank 100 using the AP score (AP@100). The results

are shown in Figure 6.30.

Altogether, a mean AP of 81.12% is achieved. In some cases, the interpretation whether two

images are similar is subjective and context specific. In particular, simply presenting an image

as a query is often insufficient to express a user’s intention [KMF20], due to ambiguities in the

query image. For example, if we are searching for an underwater shot using a query image

showing an underwater scene with fishes and a diver, a retrieved image containing a diver in a

boat is incorrect regarding the search intention but also semantically similar.

Despite these ambiguities, our approach for semantic similarity search yields high-quality

search results. Furthermore, the similarity search approach is quite effective for semi-automatic

data acquisition. An example result for a query image showing a “bakery” is presented in Figure

6.25.

Person Similarity Search

Similar to visual concepts, the performance of our person similarity search approach was

evaluated for the top 100 results of randomly selected queries for 40 persons. However, we

ensured that query faces met the criteria of distinctly showing the person of interest with

a reasonable quality (no blur or occlusion). In our experimental evaluation, a mean AP@100

of 81.50% was obtained. The performance results for each person query are shown in Figure

6.31.

Discussion

The presented content-based video retrieval approaches are used to complement human

annotations and to support users in finding relevant video shots. Our visual concept and person
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Figure 6.31: AP@100 for 40 query images corresponding to 40 persons.

models are applied to the entire video collection of historical GDR television recordings of

the DRA containing more than 15.7 million keyframes and more than 2.8 million faces. The

resulting indices are integrated into the FESAD search environment of the DRA and provide

a valuable supplement to the human-generated metadata. Concept, person, and similarity

search queries as well as queries based on human-generated metadata can be combined to

answer a wide range of user queries. Altogether, the very good quality of the presented concept,

person, and similarity search results is highly beneficial for archivists as well as for users of the

archive.

6.3.6 Summary

We presented VIVA, a software tool based on deep learning models for visual information

retrieval in videos. To address potentially changing user requirements, VIVA enables non-expert

users in the field of deep learning to semi-automatically acquire training data with minimal

manual effort, to perform the training process with a user-friendly interface, to visualize

the retrieval results, and to collect user feedback. Considering the four use cases of visual

concept classification, person recognition, similarity search for images, and similarity search

for persons, we evaluated VIVA using a unique historical collection of about 34,000 hours of

GDR television recordings. We used the VIVA tool to build high-quality deep learning models

for 91 GDR specific concepts and 98 personalities from the former GDR. Our experimental

results demonstrated the benefits for both archivists and archive users.

To provide efficient data acquisition and training workflows in VIVA, the video retrieval system

operates on images and keyframes. This leads to limitations with respect to concepts repre-

senting actions. However, the GDR specific concept lexicon contains only very few of such

concepts.
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7
Conclusion

7.1 Summary

Image similarity search is important in many applications. The main focus of this thesis was

on how image segmentation can help to improve image similarity search. First, contributions

were presented in the areas of detection and segmentation, as well as in the area of image

similarity search. Methods from these areas provide the foundation for a novel approach to

segmentation-based image similarity search, which was presented in this thesis for the first

time. It was shown that segmentation-based similarity search not only opens up new search

possibilities, but that the use of features from image regions can also improve the retrieval

quality. Finally, applications of image similarity search in different systems were discussed.

In the area of detection and segmentation, the following contributions were made:

• A new deep learning-based method was presented to significantly accelerate the creation

of an etymological dictionary by automating the detection, alignment, and recognition

of textual stamps on digitized index cards.

• A new approach was presented to identify and segment macrophage cells in complex,

crowded fluorescence microscopy images; it improves segmentation performance by also

considering nucleus features.

In the area of image similarity search, a number of innovations were presented that affect both

the efficiency of the search and the quality of the retrieval results:

• A multi-task learning approach was presented that integrates image classification and

similarity search into a single architecture.

• A method was presented for identifying new textual stamps in a corpus of digitized index

cards using similarity search; it enhances the efficiency of processing philological index

cards.

• A novel intentional image similarity search method was presented; it includes a plugin

mechanism to support specialized models tailored to specific search tasks, using hybrid

features and an analysis technique to find relevant regions to improve the quality of the

retrieved results.

• ElasticHash was presented, a new efficient approach for large-scale semantic image

similarity search in Elasticsearch, using deep hashing and a two-stage search approach.
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• Search Anything was presented, a novel approach to image similarity search using point,

box, and text prompts, employing self-supervised learning and foundation models for

fine-grained region-level indexing and searching.

Finally, three systems with different purposes were presented, in which the application of

image similarity search is a core component:

• A distributed system was introduced for analyzing and retrieving content from GDR

television archives, incorporatingmachine learning algorithms for shot detection, concept

classification, person recognition, and text recognition.

• A system containing various deep learning methods was presented for automating con-

tent labeling in professional media production, enhancing video inspection and retrieval

through visual concept classification, face recognition, and innovative visualization.

• VIVA was presented, a software tool allowing non-expert users creating and using deep

learning models for efficient video retrieval, including a semi-automatic data collection

workflow with web crawling, image similarity search, and user feedback to streamline

the collection of training samples.

7.2 Future Work

There is future work in each of the research areas covered in the thesis: detection and segmen-

tation, image similarity search, and, in particular, region-based image similarity search.

7.2.1 Detection and Segmentation

Stamp Detection and Recognition. In the future, we want to integrate the individual

components of our approach into an end-to-end system for textual stamp detection, alignment,

and recognition. Furthermore, we intend to use an active learning framework to iteratively

improve our deep learning models during operation. Finally, we plan to apply our approach

for textual stamp recognition to index cards of other philological projects by using transfer

learning and to further investigate the generalizability of our approach.

Cell Segmentation. Sharing backbone weights to build a model that can be trained end-

to-end for nucleus/cell detection and segmentation could be interesting. For this purpose,

separate Mask R-CNN heads for nuclei and cells have to be attached to the architecture for

region proposal generation, regression, classification, and segmentation. The integration of

a full-image segmentation loss in addition to an instance-based detection and segmentation

loss should be investigated. Optimizing the anchor box sampling strategies for nuclei and cells

could lead to further performance improvements.
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7.2 Future Work

7.2.2 Image Similarity Search

In this thesis, two approaches that tackle different aspects of similarity search systems were

presented. The approach to intentional image similarity search works well for small datasets.

However, when applied to a large-scale scenario, runtime improvements are necessary for the

relevant region and handcrafted feature extraction stages. A combination with deep hashing

approaches could improve the query times. Another interesting research area in image similarity

search is instance retrieval [Che+22].Methods in this area could also be beneficial for intentional

image similarity search. Furthermore, a user could be interested in searching formultiple regions

in a query image, e.g., for two specific persons. For this purpose, intentional image similarity

search has to be extended by region specific options. Finally, further combinations of CNNs

and handcrafted features should be evaluated to satisfy a user’s intentions. The proposed

two-stage method for efficient image similarity search could be improved in several ways.

Another backbone model could be used to improve retrieval performance. Also, the current

implementation is based on a model trained on a large dataset containing many classes; an

even more general backbone could be another improvement. The backbone model could be

replaced by a foundation model, and the model could be trained in a self-supervised manner

based on more general features. For example, models that are more robust against distribution

shift such as CLIP could be used. It would also be interesting to compare the approach for

efficient similarity search in ElasticSearch with other vector search libraries in terms of energy

consumption. This also includes a detailed comparison of the hardware resources used. While

libraries such as FAISS may heavily utilize available GPU or CPU resources, the performance

of ElasticHash depends primarily on the I/O throughput of the SSD.

7.2.3 Segmentation-based Image Similarity Search

The presented region-based image similarity search approach is a first implementation that is

based on two foundation models, which could be replaced by more powerful or more efficient

ones in the future. The next step is to unify the architecture and to train a model end-to-end.

The training would rely on the SA-1B dataset on the one hand, and on extracted features of a

powerful image encoding model on the other hand. These features that are extracted per mask

could be used to train the model in a knowledge-distillation setting. Furthermore, the proposed

approach currently only works for single-region queries. Thus, we plan to extend it to support

multiple region queries and to take into account spatial relationships between objects. Another

possibility for improvement is the deep hashing block trained to compress the hash codes for

the mask. It is trained with a straightforward unsupervised loss. Here, more investigation and

ablation studies could help to find a better network architecture and loss function. In particular,

the quantization error in the loss function should be taken into account. An improved deep

hashing model could maintain the retrieval performance while decreasing the number of bits

needed, which would reduce storage requirements and accelerate query time. Especially for

region-based similarity searches, this would lead to a significant improvement, since there

can be dozens to hundreds of codes per image. Another way to improve performance is to

reduce the number of regions to consider. In its current implementation, the approach cannot

prioritize regions for indexing other than by size, which does not always correspond to the
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7 Conclusion

importance of a region. Finding a way of integrating information about global attention to help

selecting more relevant regions could be an interesting direction of further research.
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