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Abstract

In the last few years, a new class of atomically thin semiconductors has garnered great

interest across the scientific community: the transition metal dichalcogenides (TMDs).

These materials, formed by a layer of metal atoms sandwiched between two layers of

chalcogen atoms, show fascinating optical properties. Due to the reduced dielectric screening,

tightly bound electron-hole pairs (excitons) dominate the optical response and the dynamics

in these materials even at room temperature. This has been demonstrated in absorption,

emission, photoluminescence and angle-resolved photoemission spectroscopy (ARPES)

spectra as well as transport experiments. Furthermore, the possibility of vertically stacking

two TMD layers into a heterostructure results in fascinating exciton phenomena, including

the emergence of spatially separated bound charge complexes and layer-hybridized excitonic

states. In addition, the twist angle between the layers appears as a new degree of freedom

and offers an unprecedented tool to significantly change excitonic properties, from the

creation of moiré-trapped excitons to delocalized exciton distributions.

Several experiments have recently demonstrated the existence of moiré excitons as

well as the possibilities to tune them with the twist angle. In spite of a continuous progress,

crucial aspects of exciton physics in twisted van der Waals heterostructures have still

remained poorly understood. Charge transfer processes have been measured to occur

at sub-picosecond timescales, but it is not clear why this happens so fast considering

the relatively small wave function overlap between the layers. Recent experiments show

unexpectedly large lifetimes and photoemission of excited moiré exciton states and also

here, the microscopic origin of this phenomenon is not clear.

The aim of this thesis is to close this knowledge gap and to provide a microscopic

understanding of interface exciton physics in TMD heterostructures. Adopting the density

matrix formalism, we develop a microscopic many-particle model to describe exciton optics

and dynamics in these materials. Solving the generalized Wannier equation allows us

to calculate the twist-angle-dependent exciton energy landscape and the solution of the

Boltzmann-scattering equations allows us to analyze the efficiency of possible phonon-

driven scattering channels. With this material-specific and predictive approach, we could

explain the measured ultrafast charge transfer process occurring in TMD bilayers and

trace it back to a two-step phonon-mediated relaxation via momentum-dark hybrid exciton

states. In joint theory-experiment studies with our collaboration partners from Göttingen,

we could clearly confirm this phonon-driven charge transfer in ARPES. We could also
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show that although the latter technique measures photo-ejected electrons, we can still

track even a hole transfer process. We find both in theory and experiment a surprising

and non-intuitive electron energy blue shift during the thermalization process. We can

explain this by the correlated character of the measured electrons, which still maintain

information about the energy and momentum of the remaining hole. Furthermore, we have

predicted pronounced ARPES signatures for identifying hybrid excitons via the emergence

of a characteristic double peak structure reflecting the hybrid character of electrons or

holes.

Finally, we have simulated the phonon-driven relaxation cascade of hot interlayer

excitons in a twisted TMD heterostructure. We demonstrate that at low temperatures

and small twist angles resulting in flat exciton bands, a pronounced relaxation bottleneck

appears, i.e. excitons cannot scatter down to the energetically lowest states resulting in a

non-thermal exciton distribution. We trace this back to the flatness of the moiré exciton

bands and their energetic separation making scattering with optical and acoustic phonons

very inefficient. A direct consequence of the non-thermal distribution are long lifetimes and

high emission intensity of excited exciton states – in excellent agreement with experimental

findings.

Overall, this work provides new microscopic insights into many-particle processes

governing optics and dynamics of excitons in TMD heterostructures, shedding light

on intriguing experimental observations and paving the way towards promising future

optoelectronic devices.
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Zusammenfassung

In den letzten Jahren hat eine neue Klasse atomar dünner Halbleiter großes Interesse

in der wissenschaftlichen Gemeinschaft geweckt: die Übergangsmetall-Dichalkogenide

(TMDs). Diese Materialien, die aus einer Schicht von Metallatomen zwischen zwei Schichten

von Chalkogenatomen bestehen, zeigen faszinierende optische Eigenschaften. Aufgrund

der reduzierten dielektrischen Abschirmung dominieren eng gebundene Elektron-Loch-

Paare (Exzitonen) selbst bei Raumtemperatur die optische Antwort und die Dynamik

dieser Materialien. Dies wurde in Absorptions-, Emissions-, Photolumineszenz- und winke-

laufgelösten Photoemissionsspektroskopie (ARPES) -Spektren sowie in Transportexperi-

menten nachgewiesen. Darüber hinaus führt die Möglichkeit, zwei TMD-Schichten vertikal

zu stapeln, zu faszinierenden Exzitonphänomenen, einschließlich dem Auftreten räumlich

getrennter gebundener Ladungskomplexe und schicht-hybridisierter exzitonischer Zustände.

Zusätzlich erscheint der Drehwinkel zwischen den Schichten als ein neuer Freiheitsgrad

und bietet ein beispielloses Werkzeug, um die exzitonischen Eigenschaften signifikant zu

verändern, von der Erzeugung von Moiré-gefangenen Exzitonen bis zu delokalisierten

Exzitonenverteilungen.

Mehrere Experimente haben kürzlich die Existenz von Moiré-Exzitonen sowie die

Möglichkeiten, sie mit dem Drehwinkel einzustellen, nachgewiesen. Trotz kontinuierlicher

Fortschritte sind entscheidende Aspekte der Exzitonphysik in verdrehten van-der-Waals-

Heterostrukturen immer noch nicht richtig verstanden. Ladungstransferprozesse wurden

gemessen und erfolgen in Zeitskalen von unter einer Pikosekunde, es ist aber nicht klar,

warum dies so schnell geschieht, wenn man die relativ geringe Überlappung der Wellen-

funktionen zwischen den Schichten berücksichtigt. Aktuelle Experimente zeigen unerwartet

lange Lebensdauern und Photoemission von angeregten Moiré-Exzitonenzuständen, und

auch hier ist der mikroskopische Ursprung dieses Phänomens nicht klar.

Das Ziel dieser Arbeit ist es, diese Wissenslücke zu schließen und ein mikroskopisches

Verständnis der Exzitonphysik an TMD-Heterostrukturen zu liefern. Unter Verwendung

des Dichtematrix-Formalismus entwickeln wir ein mikroskopisches Vielteilchenmodell,

um Exzitonoptik und -dynamik in diesen Materialien zu beschreiben. Die Lösung der

verallgemeinerten Wannier-Gleichung ermöglicht es uns, die drehwinkelabhängige Exzi-

tonenergielandschaft zu berechnen, und die Lösung der Boltzmann-Streuungsgleichungen

ermöglicht es uns, die Effizienz möglicher phononengesteuerter Streukanäle zu analysieren.

Mit diesem materialspezifischen und prädiktiven Ansatz konnten wir den gemessenen
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ultraschnellen Ladungstransferprozess in TMD-Bilayern erklären und ihn auf eine zweistu-

fige phononengesteuerte Relaxation über Impuls-dunkle hybridisierte Exzitonzustände

zurückführen. In gemeinsamen Theorie-Experiment-Studien mit unseren Kooperationspart-

nern aus Göttingen konnten wir diese phononengesteuerte Ladungsübertragung in ARPES

eindeutig bestätigen. Wir konnten auch zeigen, dass, obwohl diese Technik photoausgelöste

Elektronen misst, wir dennoch sogar einen Loch-Transferprozess verfolgen können. Sowohl

in Theorie als auch in Experiment konnten wir eine überraschende und nicht intuitive

Blauverschiebung der Elektronenenergie während des Thermalisierungsprozesses finden.

Dies lässt sich durch den korrelierten Charakter der gemessenen Elektronen erklären,

die weiterhin Informationen über die Energie und den Impuls des verbleibenden Lochs

bewahren. Darüber hinaus haben wir ausgeprägte ARPES-Signaturen vorhergesagt, um

hybridisierte Exzitonen durch das Auftreten einer charakteristischen Doppelpeaksstruktur

zur Identifizierung von Elektronen oder Löchern nachzuweisen.

Schließlich haben wir die phononengesteuerte Relaxationskaskade heißer Interlayer-

Exzitonen in einer verdrehten TMD-Heterostruktur simuliert. Wir konnten zeigen, dass bei

niedrigen Temperaturen und kleinen Drehwinkeln, was zu flachen Exzitonbändern führt, ein

ausgeprägter Relaxationsengpass auftritt, d. h. Exzitonen können nicht zu den energetisch

niedrigsten Zuständen streuen, was zu einer nicht-thermischen Exzitonverteilung führt.

Wir führen dies auf die Flachheit der Moiré-Exzitonbänder und ihre energetische Trennung

zurück, was Streuungen mit optischen und akustischen Phononen sehr ineffizient macht.

Eine direkte Konsequenz der nicht-thermischen Verteilung sind lange Lebensdauern und

hohe Emissionsintensität angeregter Exzitonzustände - in ausgezeichneter Übereinstimmung

mit experimentellen Befunden.

Insgesamt liefert diese Arbeit neue mikroskopische Einblicke in Vielteilchenprozesse,

die Optik und Dynamik von Exzitonen in TMD-Heterostrukturen steuern, beleuchtet

faszinierende experimentelle Beobachtungen und ebnet den Weg zu vielversprechenden

zukünftigen optoelektronischen Geräten.
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2. Formation of moiré interlayer excitons in space and time,

D. Schmitt, J. P. Bange, W. Bennecke, A. AlMutairi, G. Meneghini, K. Watanabe,

T. Taniguchi, D. Steil, D. R. Luke, R. T. Weitz, S. Steil, G. S. M. Jansen, S. Brem,

E. Malic, S. Hofmann, M. Reutzel and S. Mathias.

Nature 608.7923 (2022): 499-503.

3. Probing electron-hole Coulomb correlations in the exciton landscape of a

twisted semiconductor heterostructure,

J. P. Bange, D. Schmitt, W. Bennecke, G. Meneghini, A. AlMutairi, K. Watanabe,

T. Taniguchi, D. Steil, S. Steil, R. T. Weitz, G. S. M. Jansen, S. Hofmann, S. Brem,

E. Malic, M. Reutzel, S. Mathias.

Sci. Adv.10,eadi1323 (2024).

4. Hybrid Exciton Signatures in ARPES Spectra of van der Waals Materials,

G. Meneghini, M. Reutzel, S. Mathias, S. Brem, and E. Malic.

ACS Photonics 10.10 (2023): 3570-3575.

5. Excitonic thermalization bottleneck in twisted TMD heterostructures,

G. Meneghini, S. Brem and E. Malic.

Nano Lett. 2024, 24, 15, 4505–4511.

My contribution to the listed publications

As first author in papers 1 and 4-5, I developed the microscopic model, performed the

numerical simulations, analyzed the results and wrote the manuscripts, with the supervision

of Dr. Samuel Brem and Prof. Dr. Ermin Malic. In papers 2 and 3, I developed the

microscopic model, performed the numerical simulations and analyzed the results as the

leading theory author.

v



Publications not appended to this thesis:

6. Ultrafast dynamics of bright and dark excitons in monolayer WSe2 and

heterobilayer WSe2/MoS2,

J. P. Bange, P. Werner, D. Schmitt, W. Bennecke, G. Meneghini, A. AlMutairi,

M. Merboldt, K. Watanabe, T. Taniguchi, S. Steil.

2D Materials, 10 035039 (2023).

7. Ultrafast nano-imaging of dark excitons,

D. Schmitt, J. P. Bange, W. Bennecke, G. Meneghini, A. AlMutairi, M. Merboldt,

J. Pöhls, K. Watanabe, T. Taniguchi, S. Steil, D. Steil, R. T. Weitz, S. Hofmann, S.

Brem, G. S. M. Jansen, E. Malic, S. Mathias, M. Reutzel.

arXiv preprint arXiv:2303.17886 (2023).
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9. Polaron-induced changes in moiré exciton propagation in twisted van der

Waals heterostructures,

W. Knorr, S. Brem, G. Meneghini and Ermin Malic.

Nanoscale (2024), doi: 10.1039/D4NR00136B”.

viii



Contents

Abstract

Zusammenfassung iii

List of Publications v

Liste der Publikationen vii

1 Introduction 1

2 Theoretical framework 7

2.1 Electronic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Many-Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Semiconductor Bloch Equation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Exciton formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Generalizing to bilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Exciton Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Introducing the twist angle . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Exciton Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Beyond the second order Born-Markov approximation . . . . . . . . . . . 31

2.10 Hybrid exciton ARPES signal . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Hybrid exciton thermalization 35

3.1 Energy landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Two-step phonon mediated charge transfer . . . . . . . . . . . . . . . . . . 36

3.3 Temperature and stacking dependence . . . . . . . . . . . . . . . . . . . . 38

3.4 Formation of interlayer excitons . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Hybrid exciton signatures 45

4.1 Energy landscape and hybrid exciton dynamics . . . . . . . . . . . . . . . 45

4.2 Double peak ARPES signal . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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Chapter 1

Introduction

The advent of graphene, after its first isolation and characterization in 2004 [1], represented

a new great possibility for scientific and industrial progress. The exfoliation of single

layers of graphite demonstrated that it is possible to have stable atomic crystals of low

dimensionality, which as a consequence, leave field for the existence of many-body and

strongly correlated effect that are difficult or impossible to observe in bulk systems [2–

4]. On the trend of these studies, researchers found other classes of stable atomically

thin materials, and between them a very promising class has stood up for the future of

Figure 1.1: Artistic representation of a charge transfer process in 2D materials. After an optical

excitation of excitons in one layer, a population of intralayer excitons is created. Thanks to

phonon-mediated scattering, the intralayer excitons relax to the most energetically favorable state,

which for a heterostructure is an interlayer exciton.
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Figure 1.2: a) Three dimensional model of a TMD monolayer. We show the characteristic hexagonal

pattern (top view b)), and highlight from the side view (c) its composition, i.e. a metal atom (M)

sandwiched between two chalcogen atoms (X). The usual notation for TMD monolayers is MX2.

optoelectronic devices, the transition Metal Dichalcogenides (TMDs) [5–8]. These materials

are formed by a layer of metal atoms, sandwiched between two layers of chalcogen atoms

(see figure 1.2), and, for simplicity, they are often denoted by the notation MX2, where

M represents the metal atom and X the chalcogen atom. The similarities with graphene

are not limited to the very low dimensionality, in fact they are characterized by the same

spatial periodicity, which can be described in terms of an hexagonal lattice. The significant

interest in TMDs within the scientific community arises from their response to optical

excitations, governed by correlations involving only few particles [9–14]. To comprehend

this statement, we can briefly introduce the key ideas behind an optical excitation of a

solid. The usual framework used in solid state physics for describing electronic states in

the system is the band theory, where the energy landscape accessible to electrons in the

system can be represented as in the schematic figure 1.3, where non excited electrons fill up

to the higher valence band state. In this context, shining light on these materials triggers

an excitation of valence electrons, which in the case of a direct band gap prompts the

transition of these electrons to the conduction band. Generally, this state of the system can

be theoretically described within the electron-hole formalism: here, the vacancies in the

valence band left by promoted electrons are described as holes, possessing opposite charge

and momentum compared to the missing electrons. Due to the charge difference between

holes and electrons, they naturally tend to attract each other (1.3 a)). In conventional

semiconductors, this effect can be approximately neglected due to the substantial screening

effect of the surrounding medium. However this doesn’t apply to TMDs: their reduced

dimensionality leads to a diminished screening effect (1.3 b)), increasing the Coulomb

attraction between holes and electrons. The strength of their interaction is such that

2



Figure 1.3: a) Sketch of a typical monolayer TMD bandstructure. After an optical excitation of

an electron from the valence band to the conduction band, the left behind hole and the electron

form a bound state due to the strong Coulomb interaction. b) In the monolayer case the change

of dielectric constant of the surroundings (ε2 < ε1) results in an enhancement of the electron-hole

interaction, leading to a strong bound state, described in terms of q quasi-particle, called exciton.

it creates bound states, described in terms of quasi-particles known as excitons, with

binding energies of hundreds of meV. Excitons are thus responsible for large absorption

and emission in TMDs, making these class of materials very promising for realization of

optoelectronic devices such as photodetectors, solar cells or even for light sources generation

devices, as for example single photon emitters [10–12, 15–18]. In this context the possibility

of stacking several layers of this materials on top of each other, while still remaining away

from the bulk limit, has shown lately great possibilities increasing electronic and optical

properties of monolayers [19–34], and offering different tools of tuning the excitations,

tunability that is a key feature for applications in devices. Focusing in particular on

bilayer systems, in addition to strain, dielectric background, electric fields, usual tools

to manipulate light excitations dynamics and transport in monolayers bilayers [35–42],

the stacking twist angle (figure 1.4) and the type two band alignment offset are new and

valuable instruments to investigate TMD heterostructures [43–48]. Recent experiments

have shown that considering different TMD heterostructures and photoexciting only one

of the two layers, results in a ultrafast electron transfer between the layers [49–54]. The

timescales of the process are below the hundred femtoseconds limit, showing a great

potential for terahertz emissions implementations. On the other hand, in contrast to the

ultrafast dissipation of energy during the thermalization described above, experiments

have shown that in the presence of small twist angles, where flat bands appear, the energy

3



Figure 1.4: Representation of the stacking of two different TMD monolayers to form a bilayer

heterostructure. Important quantity for heterostructures properties is the twist angle (θ in the

picture). Small twist angles can bring the arising of a new periodicity in the system, characterized

by the so called moiré pattern.

can not be completely dissipated, inducing long-living low excitations [27, 55, 56]. These

experiments show that the speed and energy scales involved in the thermalization process

are heavily affected by the choice of the materials, distance between the layers, dielectric

environment and twist angle between the layers. For this reason a deep understanding and

a microscopic model of how excitons are formed and how they dissipate thermal energy in

these systems is required to be able of effectively control these huge amount of parameters.

Latest experiments have shown in addition the possibility of observing excitonic signature

with Angle-Resolved Photo-Emission (ARPES) spectroscopy [53, 57–60], providing access

to the momentum-energy map of excitons within the Brillouin zone. This offers a great

opportunity for experiments-theory development giving direct experimental access to the

momentum space in which excitonic quantities are usually theoretically described, and

which are not directly accessible in PL or absorption measurements. Studies of excitonic

signatures in ARPES experiments for monolayer systems have already been conducted.

However a detailed study for bilayer systems, where exciton hybridization and moire

effects become prominent, is still missing in literature but required to have direct access to

exciton features in heterostructures and deepen our understanding of the physics behind

experimental observations.

In this thesis we address these open questions with the aim of providing microscopic

insights on the impact of thermalization dynamics of excitons in TMD heterostructures.

By developing a theoretical model based on the density matrix formalism, we identify in

the layer and momentum hybridization of excitonic states a key to unveil a deep under-

standing of this kind of systems. In the following chapters we will introduce the basic

concepts building the theory, showing the main equations giving access to simulations

and computation of observables needed for understanding experimental results. From
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this we will introduce in detail the main effects resulting from light excitations of TMD

heterostructures, decomposing the exciton relaxation cascade in two main pictures. First

an initial fast dissipation of energy after an optical excitation of one of the TMD layers.

This is driven by a significant hybridization between layers, enabling the charge transfer

mechanism. Second, a subsequent final step of the dynamics, where the presence of the

twist angle becomes predominant. Here we reveal the presence of long-living excited states,

explained in terms of a twist angle and temperature dependent bottleneck effect. We

will follow the complex process of exciton energy relaxation dynamics, comparing with

ARPES experiments and providing new microscopic insights into exciton dynamics in

TMD heterostructures.

The main results of this thesis are listed and summarized below:

Paper 1. Following the intriguing experimental observations of ultrafast charge trans-

fer observed in TMD heterostrucutres, we provide a theoretical description

of the system under study and show that a phonon-driven two-step charge

transfer process via hybridized dark exciton states can predict correctly and

explain the experimental observations. We characterize the charge transfer

mechanism by conducting a stack dependent and temperature dependent

study.

Paper 2. We investigate the formation time of interlayer excitons and excitons re-

laxation cascade in WSe2-MoS2 in an experiment-theory collaboration. We

follow how the light excitations forming layer localized excitons, during

the ultrafast time evolution of the system the interlayer excitonic signal,

occurring due to the electron transfer between the layers. Our prediction of

the two-step charge transfer process is experimentally confirmed, proving

the fundamental importance of momentum-dark highly-hybridized states in

the thermalization process of light excitations, showing results that can be

extended to other van der Waals heterostructures.

Paper 3. We simulate and predict a slower dynamics for the case of hole transfer in

WSe2-MoS23. We predict the presence of an unexpected blue-shift of the

electronic photoemitted ARPES signal, tracing it back to the correlated

nature of the electron-hole pair, with electron carrying residual information

about the hole state.

Paper 4. We investigate the characteristic momentum-energy fingerprint of highly

hybridized states, predicting a characteristic double peak ARPES signal,

with which hybridization can be visualized in ARPES experiments.

Paper 5. Focusing on the twist angle dependent thermalization, we focus on studying

the low excitation regime in the presence of a moiré potential arising from

5



the spatial periodicity arising from the twist angle. Excitons already relaxed

to the lowest energy state, try to dissipate the excessive energy by relaxing

to the ground state, but interestingly, we find a bottleneck effect in the low

twist angle and temperature regime, explaining experimental observations

of long living first excited moiré exciton states with brighter PL signals.

6



Chapter 2

Theoretical framework

In this chapter we introduce the main framework of our theory. Starting from the main

Hamiltonian used in solid state physics for describing electrons in solids, we will then

introduce the Semiconductor Block equation, necessary to study the time evolution of light

excitation in a semiconductor, and move to the introduction of the Wannier equation, in

the case of two dimensional systems. We will then introduce the change of basis required

to derive the exciton formalism, and apply it to derive the exciton Hamiltonian for a

monolayer system. Finally, we will generalize the results to bilayer systems, introducing

the readers to the concept of hybrid excitons. As last step we will include the twist angle

dependence in our equation and introduce the concept of moiré excitons.

2.1 Electronic Hamiltonian

Since our main goal is describing systems of interacting many-particle, an effective way of

treating this problem is writing the total Hamiltonian of the system in second quantization,

giving access to the time evolution, thus the particles dynamics, by solving the Heisenberg

equation of motion for interesting physical observables, as for example the electron density

or the polarization.

In second quantization formalism, each many-body state can be represented in the

Fock space in terms of its occupation. Starting from the vacuum state, each other many-

particle states can be represented by the application of set of creation d†i and annihilation

di operators, acting on specific single particle states, labeled by the quantum number i.

The power of this formalism is the generality of the treatment, independent on the bosonic

or fermionic nature of the particles, which is taken into account thanks to the different

commutation relations

[di, dj ]± =
[
d†i , d

†
j

]
±
= 0 and

[
di, d

†
j

]
±
= δi,j (2.1)

where ± refers to the commutator (-) for bosons or anticommutator (+) for fermions. In

general starting from any observable described with a single particle (o1) or two particles

7



2.1. Electronic Hamiltonian

(o2) operator in first quantization, we can obtain its many-particle second quantized

representation through its expectation value as follows

Ô1 =
∑

ij

⟨o1⟩ij d
†
idj

Ô2 =
1

2

∑

ijlm

⟨o2⟩ijlm d†id
†
jdldm

(2.2)

where we use the compact notation ⟨o⟩i...j = ⟨i..| o |..j⟩ to express the expectation value

computed through the integral of single particle states wavefunctions. The reader is referred

to the following texts for further information [61–65]. Using second quantization, we can

write the general many-body Hamiltonian of a system of electrons in a solid, considering

relevant interaction terms with light and lattice vibrations (phonons), as follows

H = He +Hphon +Hlight +He−e +He−phon +He−light (2.3)

where the first terms describe free Hamiltonians in a crystal lattice for electrons (He),

phonons (Hphon) and light (Hlight), followed by interaction terms, electron-electron (He−e),

electron-phonons (He−phon) and electron-light (He−light).

We will now proceed in analyzing each single contribution entering the total Hamilto-

nian.

Free electrons

The general approach in solid state physics to describe electrons in a crystal is to use the

Born-Oppenheimer approximation, i.e. considering quasi free electrons interacting with

a static potential arising from a lattice of positive charged ions. In this picture, energies

accessible to electrons in the system are then described by a set Eλk of single particle

energies, forming the energetic band structure, where λ refers to the band index and k to

the momentum. Although in principle the spin splitting of the bands plays a role, in our

work we will not consider spin flipping processes, thus we fix the spin configuration to the

one corresponding to the minimum/maximum of the conduction/valence band direct gap,

relevant for the optical excitations. The electronic band structure is material specific and

can be obtained from first principles calculations. In the case of TMDs, the badstructure

can be sketched along a meaningful symmetry path as shown in figure (2.1). Highlighted

we show the so called valleys, high symmetry points in which the electronic dispersion of

conduction and valence band presents stationary points. Of great importance for our study

are maxima and minima of the band structure. This is because optical excitations consist

of promotion of electrons from the valence band to the conduction band, and this usually

occurs with a direct gap in correspondence of a valence band maximum with a conduction

band minimum. In the case of thermal distributions of optically excited conduction band

electrons, these will occupy minima in the conduction band (or in the holes case, maxima

of the valence band). For this reason, having in mind the aim of describing excitons, it is

useful to introduce an effective mass approximation around maxima and minima of the

band structure. This can be easily incorporated in our equations by splitting the total

8



2.1. Electronic Hamiltonian

Figure 2.1: Sketch of a typical monolayer TMD bandstructure along a high-symmetry path in the

Brillouin zone (red line), where we highlight in orange important high symmetry points (valleys),

also marked with the same color in the 2D Brillouin zone of the system. We highlight in blue the

effective mass approximation adopted, with which each maxima and minima of the bandstructure

is treated within a parabolic approximation.

momentum k∗ ∈ BZ (Brillouin zone) into the sum of a valley local momentum coordinate

and a valley momentum ζ (which can be treated as a separate quantum number), i.e.

k∗ = k + ζ. We can then split the total momentum quantum number in k, ζ and the

electron dispersion can be written as ελk∗ → ελζk = ελζ + σλh̄
2k2/(2mλ

ζ ), with effective

mass mλ
ζ reflecting the parabolic curvature approximating the band λ around valley ζ,

and σλ = ±1, positive for conduction bands and negative for valence bands. Throughout

our work we will use this valley local approximation, with all the TMDs effective masses

and relative energies are extracted from DFT calculations [66]. With this considerations,

we can finally write the free electron Hamiltonian He in the effective mass approximation

as follows

He =
∑

λζk

ελζka
†
λζkaλζk (2.4)

with a
(†)
λζk fermionic annihilation (creation) operators, destroying (creating) an electron in

state |λζk⟩.

Phonons

Following from the Born-Oppenheimer approximation, the motion of atoms in the crystal

and how this affects the energy of electrons in the system is taken into account by the

introduction of quasi-particles, describing the quantized collective harmonic oscillations

of the ion lattice. This quasi-particles, called phonons, play a crucial role in the electron

dynamics, since the thermalization of electrons in the system can be described, in this

picture, as an electron-phonon scattering process. We can use the following Hamiltonian

9



2.1. Electronic Hamiltonian

to describe free phonons in the system [61, 62]

Hphon =
∑

κq

h̄Ωκq

(
b†κqbκq +

1

2

)
(2.5)

with h̄Ωκq phonon energy and b
(†)
κq bosonic annhilation (creation) operators, destroying

(creating) a phonon in state |κq⟩ described by the phonon mode κ and momentum q.

Phonon energies are eigenvalues derived from the diagonalization of the dynamical matrix,

taking into account all the repulsive forces arising from the nuclei in the lattice and screened

by the core and valence electrons [67, 68]. As for the electron dispersion, the phonon

dispersion is material specific and computed through first principles calculations, however

we can represent its general form along the usual symmetry path as in figure 2.1. Of great

importance for TMDs are transitions between valleys, thus the highlighted areas in 2.1.

For this reason it is useful to introduce, also in the case of phonons, an approximation to

describe the dispersion around main symmetry points, splitting the phonon momentum in a

local coordinate and a momentum valley index. Following the Debye and Einstein approach

we split the total dispersion of acustic phonons in a linear part Ωζ=Γ,q = v|q| around the Γ

valley, with v sound velocity, and a constant contribution around M,K, i.e. Ωζ=M/K,q =

Ωζ=M/K , and with constant energies around Γ,M,K, Ωζ=Γ/M/K,q = Ωζ=Γ/M/K , for optical

phonons. Throughout this work we include longitudinal and transverse acoustic modes

(LA,TA), as well as the corresponding optical modes (LO, TO) and the out-of-plane optical

mode (A1), and take sound velocities and energies from DFPT calculations in [69].

Light

To obtain a quantized theory of the electromagnetic field in Coulomb gauge, the usual

procedure is starting from the vector potential A, transforming it to an operator

A(r, t) → Â(r, t) =
∑

σ,k

√
h̄

2ϵ0L3ωk
eσ,kcσ,k(t)e

ikr + h.c. (2.6)

where c
(†)
σ,k annihilation(creation) operator (fulfilling bosonic commutation relations) for a

photon in mode σ and wavevector k. With this transformation the Hamiltonian of the

electromagnetic field obtains the convenient form

Hlight =
∑

σk

h̄ωk

(
c†σkcσk +

1

2

)
(2.7)

where each mode of the electromagnetic field is interpreted as an harmonic oscillator with

quantized energy h̄ωk, with photon dispersion ωk = c|k| (light cone) determined by the

light velocity c.

Electron-electron interaction

Being electrons and holes charged particles, of great importance for the description of

our problem is the Coulomb interaction. The non-local two-particles second quantized
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2.1. Electronic Hamiltonian

operator describing the Coulomb interaction in a many-body system can be written in the

momentum space as

He−e =
1

2

∑

ijmn

V ij
mna

†
ia

†
jaman (2.8)

where V ij
mn = ⟨ij|V (r-r′) |mn⟩ =∑q VqFin(q)Fjm(−q), where in the second step we used

the Fourier transformed Coulomb matrix element V (r-r′) =
∑

q Vqe
iq·r and Fin(q) =

⟨i| eiq |n⟩. By using the Bloch theorem we can obtain a simplified form for our Coulomb

matrix element, in fact Fin(q) = δkn−ki,q

〈
u∗ki+q

∣∣ukn

〉
≈ δkn−ki,q, with Bloch functions

uk where in the last step we used that Bloch functions are approximately constant in

proximity of high symmetry points. Thus we obtain

He−e =
1

2

∑

k p q
λλ′ζζ′

Vqa
†
λζk+qa

†
λ′ζ′p-qaλ′ζ′paλζk (2.9)

where we already introduced a valley local coordinate system, and restrict to consider only

intra-valley and band conserving Coulomb processes, neglecting terms related to higher

order processes for the electron-hole bound states we aim to describe. We will consider in

the following sections the non trivial dielectric environment of the system and the specific

dimensionality of the problem, providing a specific form for the coulomb matrix element

of a two dimensional layer TMD, with a specific dielectric constant ϵ0, embedded into a

three dimensional space (characterized by a different dielectric constant), given by

Vq =
e20

2ϵ0Aϵs(q)q

with ϵs(q) = υTMD th

(
1

2

[
dqαTMD − ln

(
υTMD − υbg
κTMD + υbg

)]) (2.10)

with e0 electron charge, A area of the layer, υ =
√
ϵ∥ϵ⊥, α =

√
ϵ∥/ϵ⊥, functions of the

transversal and longitudinal dielectric constant, and d the thickness of the layer, using

subscripts TMD/bg differentiating between the TMD/back ground values. Additional

details on the derivation can be found in [70–72].

Electron-phonon interaction

Following the Born-Oppenheimer approximation, the interaction between electrons and

the lattice vibrations can be derived as an electron-phonon interaction Hamiltonian.

In this case given the two different regimes of motions for electrons and atoms in the

lattice, the small lattice deformation deriving from vibrations of atoms around their

equilibrium position can be taken into account starting from the unperturbed lattice

potential V 0
lattice(r) =

∑
i vatom(r−Ri), Taylor expanding up to the first order for a

small time dependent displacement around the equilibrium position of each atom, i.e.

Vlattice(r, t) = V 0
lattice(r) −

∑
i ∇vatom(r−Ri) · ui(t), where we consider the vector ui

representing the small displacement vector for the i-th atom. Whereas the constant term

is already included in the eigenenergies deriving from eq. 2.5, the second part, using the
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2.1. Electronic Hamiltonian

general procedure to obtain operators in second quantization, by expanding ui in terms of

phonons, let us derive the general electron-phonon interaction contribution

He−phon =
∑

κλζζ′kq

Gκλ
ζ−ζ′,qa

†
λζk+qaλζ′k

(
bκ,ζ−ζ′,q + b†κ,ζ′−ζ,−q

)

with Gκλ
ζ−ζ′,q ≃

√
h̄

2ρAΩjq
G̃κλ
ζ−ζ′,q

(2.11)

expressing scattering processes with emission (b†l ) or absorption (bl) of phonon, where we

restrict again to band conserving processes, major contributions in our approximations.

The electron-phonon couplings Gκλ
ζ−ζ′,q are obtain from ref [69], by applying a deformation

potential approximation, corresponding to a zeroth/first order Taylor expansion of the full

electron-phonon coupling element obtained from DFPT calculations, where A is the area

of the system, ρ the surface mass density of the material, and G̃κλ
ζ−ζ′,q is the scattering

potential, containing information about electron-atoms interaction and polarization vector

of the phonon mode.

Electron-light interaction

A final important interaction we have to introduce in our description is the electron-light

interaction. This interaction, is in fact responsible for the creation of optical excited states,

seen as an interband flux of electrons, which from the valence band are promoted to the

conduction band. This interaction is also responsible for general changes in number of

excitons, since after being excited, excitons can radiatively recombine by emitting photons.

Depending on the process to describe, it is possible to choose between a semi-classical

description, in the case in which the external electromagnetic field can be interpreted directly

as a time dependent perturbation injecting excitons in the system; or a fully quantum

mechanical approach, in the case in which an equivalent classical description is not possible,

as in the case of recombination through spontaneous emission. In our work, given our

interest in the fast dynamics occurring in the system, we will use a semiclassical description,

neglecting processes occurring at much longer timescales, that in contrast would require a

full quantum-mechanical description, like exciton recombination. Recombination processes

occur at picosecond timescales, and thus negligible for the dynamics on the hundreds of

femtoseconds scale. In the semiclassical description of the electron-light interaction one

treats the light as a classical electromagnetic field, and express the interaction with the

minimal coupling Hamiltonian [73]

He−light =
e0
m0

∑

ijσ

Mij
σ ·A(t)a†iaj (2.12)

where Mij
σ = ⟨i|P |j⟩ is the optical matrix element for polarization σ, with momentum

operator P, and the electromagnetic vector potential A(t), electron charge e0 and mass

m0, and can be calculated from first principle methods. To obtain this Hamiltonian we

have to choose the Coulomb gauge and neglect terms proportional to A2. In addition we

apply the dipole approximation, assuming that the vector potential variation is weakly

varying on the timescales of variation of the electronic wavefunction.
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2.2. Many-Body Dynamics

2.2 Many-Body Dynamics

Density Matrix Formalism

With the introduction of the full Hamiltonian, we are ready to move to the derivation of

equations of motion, with which we can study the electron dynamics in the system. In

particular, using the Heisenberg picture, the dynamics of the system can be describe in

terms of time-dependent operators, which time evolution is governed by the Heisenberg

equation, that for an observable Ô reads ih̄dÔ
dt =

[
Ô,H

]
. Throughout our work, we apply

the density matrix theory formalism to describe particles in solid. Within this framework,

expectation values of observables,
〈
Ô
〉
, are accessible exploiting the density matrix of the

system, which in general contains information about populations and correlations of the

states accessible to the system. By introducing the density matrix ρ̂ =
∑

i pi |ψi⟩ ⟨ψi|,
where each quantum state ψi can occur with probability pi, we can compute expectation

values as
〈
Ô
〉
= Tr

(
ρ̂Ô
)
, where Tr() indicates the trace. The time evolution of this

expectation value can then be computed through the Heisenberg equation of motion

ih̄
d
〈
Ô
〉

dt
=
〈
[Ô,H]

〉
. (2.13)

In our study we will be interested in particular in the time evolution of the following

expectation values, as electron occupation ρλk =
〈
a†λkaλk

〉
, microscopic polarization

pkk′ =
〈
a†ckavk′

〉
(where c stands for conduction and v for valence band), and phonon

number njq =
〈
b†jqbjq

〉
. A detailed derivation of how to derive the equations of motions

within the density matrix formalism can be found in Ref. [74].

Hierarchy Problem and Cluster Expansion

A known problem arising when solving the Heisenberg equation for a generic N-particle

operator, is deriving from the presence of many-particle interactions in the Hamiltonian,

which induces a coupling to an (N+1)-particle operator. The dynamics of an N-particle

operator results thus linked to the time evolution of a (N+1)-particle operator, and in

order to proceed with finding the equation of motion for the starting operator, we would

need to solve a separate Heisenberg equation for the (N+1)-particle operator. Continuing,

if we would try to solve the Heisenberg equation for the (N+1)-particle operator, this

would be coupled to the time evolution of a (N+2)-particle operator. This procedure leads

to an infinite hierarchy of coupled equations. For example, if we want to compute the

time evolution of the electron occupation ρλk using equation 2.13, we would obtain terms

of the form
〈
a†ia

†
jakal

〉
, meaning that one requires the solution of equation 2.13 for this

operator to obtain the time evolution of the electron occupation, which then couples to

three-particle operators and so on. To solve this problem one can use the cluster expansion

and expand the (N+1)-particle operator in terms of a sum of products of single-particle

operators (singlets), where the sum is performed over all the possible permutations, plus
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2.2. Many-Body Dynamics

terms containing correlations, i.e.

〈
Ô2

〉
=
∑

i

σiPi

{〈
Ô1

〉〈
Ô1

〉}
+∆

〈
Ô2

〉

〈
Ô3

〉
=
∑

i

σiPi

{〈
Ô1

〉〈
Ô1

〉〈
Ô1

〉}
+
∑

i

σiPi

{〈
Ô1

〉
∆
〈
Ô2

〉}
+∆

〈
Ô3

〉

...
〈
ÔN

〉
= F

(〈
Ô1

〉
,∆
〈
Ô2

〉
, ...,∆

〈
ÔN

〉)

(2.14)

Where P is the permutation operation, with σ = 1 for bosons and σ = −1 for fermions,

∆ refers to the pure correlation part, and F(...) is a function obtained recursively [75].

In this way we are not performing any approximation but just rewriting the equation in

terms of correlations. The approximations, which lead to an effective simplification of the

problem, are then performed on these correlation terms. An example of this procedure is

the Hartree-Fock approximation, where starting from
〈
a†ia

†
jakal

〉
, we obtain an expansion

into products of singlets plus a correlation term that is neglected in a mean field approach,

i.e.
〈
a†ia

†
jakal

〉
=
〈
a†jak

〉〈
a†ial

〉
+
〈
a†jal

〉〈
a†iak

〉
+������
∆
〈
a†ia

†
jakal

〉
. By applying this procedure,

we have a systematic and controlled way of truncating the infinite hierarchy to a precise

order.

Markov Approximation

Another problem arising from the solution of equation 2.13, is deriving from the complex

temporal dependence of correlation terms in its solution. The Heisenberg equation of

motion for S, deriving from solving 2.13, reads

Ṡ(t) = (iω − γ)S(t) + C(t) (2.15)

where C(t) is the source of correlations term, with ω and γ characteristic frequency and

decay rate of the specific quantity under exam. The analytical solution of the previous

equation, assuming a fast decay of the initial value of S(t), is

S(t) =

∫ ∞

0

dτ e(iω−γ)τC(t− τ). (2.16)

A simplification to this solution can be introduced within the Markov approximation

[63, 65]. Here quantum memory effects, taken into account by the full time dependent

integral and resulting in non-linear terms, are neglected to obtain solutions describing

energy conserving scattering. In this case the source of correlations is then approximated

to be independent from past values and approximated to C(t− τ) ≃ C(t)e−iω0τ . With this

approximation we neglect the memory effects in C, but assume that its time dependence

can be well captured by a characteristic frequency ω0. With this approximation the solution

of equation 2.15 becomes

S(t) = −i C(t)

(ω − ω0)− iγ
, (2.17)
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2.3. Semiconductor Bloch Equation

that in the limit of decay going to zero, by applying the Sokhotski–Plemelj theorem, leads

to

S(t) = πC(t)δ(ω − ω0)− iP

(
C(t)

ω − ω0

)
, (2.18)

where P is the principal value. By plugging S(t) back in the equation of motion for the

corresponding single-particle quantity, the first term leads to energy conserving scattering

events, characterized by sharp energy requirements (zeros of the δ function), while the

second term is related to many-particle induced energy-renormalizations, which are usually

divergent and require a self-consistent treatment. For most of our work we will neglect

the influence of the second term, leading to small corrections within our approximations.

However this term has to be taken into account when dealing with phonon dephasing in the

presence of peculiar band topology, where the importance of the temperature dependent

self-consistent broadening of the decay rate can lead to suppression or activation of specific

scattering channels. This is the case for Paper 5, where the appearance of flat bands

require a more sophisticated treatment and will be described in following sections.

2.3 Semiconductor Bloch Equation

Having introduced the basics elements of the theory, we can now introduce the main

equations that will allow us to switch to an excitonic formalism. The key quantity in this

context is the microscopic polarization, pkk′ =
〈
a†ckavk′

〉
. If we apply equation 2.13 to

study its time-evolution, we obtain the Semiconductor Bloch equations [64, 74]. In our

theoretical framework we will always restrict to the case of low light excitations, meaning

that changes in valence and conduction band occupations induced by the laser pulse and

occupation induced energy renormalizations can be neglected. In the low density regime

the Semiconductor Bloch equation can be written in the following form

ih̄∂tpkk′ = −
∑

q

Ṽkk′qpk+q,k′+q − e0
m0

Mcv
k ·Aδkk′

Ṽkk′q = (εck − εvk′) δq,0 − Vq,

(2.19)

equation that describes how the optical excitation, promoting electrons from the valence

to the conduction band changes the optical property of the system. If we now consider

the homogeneous part of this equation, i.e. without including the electromagnetic field

coupling driving the transition, we can derive the energy landscape accessible to light

excitations of the system by solving the related eigenvalue problem related, i.e.

(εck − εvk′)ϕ(k,k′)−
∑

q

Vqϕ(k+ q,k′ + q) = Ek,k′ϕ(k,k′) (2.20)

which can be seen as a two-particle Schrödinger equation for an electron and a hole, and

it is called in literature Wannier equation. By solving numerically this equation for TMD

systems, one finds strongly bound electron-hole states, with bounding energies of hundreds

of meV and strongly localized wavefunctions in momentum space (translated into real space

means large radii compared to the unit cell). This bound states are usually described as
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quasi-particles called excitons. With this clarification, the previously introduced notation

and effective mass approximation around maxima/minima of the BZ, can be used to

express the problem in a more suitable form, obtaining a set of equations, one for each

pair of electron-hole valleys.

In an hydrogen-like atom approach, one can separate the motion of electrons and

holes in terms of center of mass (CoM) momentum Q and relative momentum k, obtaining

energies

εcζke − εvζ′kh
=
h̄2k2

e

2mζ
e

− h̄2k2
h

2mζ′
h

+ Egap =
h̄2k2

2m̃ζζ′
+
h̄2Q2

2Mζζ′
+ Egap

with k =
mζ

e

Mζζ′
ke +

mζ′

h

Mζζ′
kh and Q = ke − kh

(2.21)

where we introduced Egap = εcζ − εvζ′ , reduced mass m̃ζζ′ = (mζ
em

ζ′

h )/(mζ
e +mζ′

h ) and

total mass Mζζ′ = mζ
e +mζ′

h , with effective electron and hole masses around each valley

mζ
e/h. In addition, given that the interaction term only depends on the relative coordinate,

we can assume a separation ansatz for the total wavefunction, i.e. ϕ(k,Q) = ψ(k)Y(Q).

With this we can rewrite the Wannier equation for the relative momentum component

h̄2k2

2µα
ψα(k)−

∑

q

Vqψ
α(k+ q) = Eα

b ψ
α(k) (2.22)

with which we can obtain the binding energies for each excitonic state α, where we

introduced the new quantum number α = (n, ζe, ζh), containing the quantum number

describing the Rydberg-like series of excitonic states and the electron and hole valley

indexes. The total energy of the exciton is computed as Eα
Q = h̄2

Q2

2Mα
+Eα

b +Egap. We note

that since the excitons are now identified by two valley indices, one for the hole and one

for the electron, in the following we will refer to the exciton valley for exciton labeled by α

with ζα = ζhζe (for example ζα = KK, KΛ, ΓK) and use ζαe/h to refer to the electron/hole

substructure of the exciton indices. We will use the same notation for all other excitonic

quantities, for example we will call electron/hole masses of exciton α with mα
e/h, and so

on.

2.4 Exciton formalism

In the previous section we saw that the presence of strongly interacting electron and

holes, creating strongly bound states, changes the optical response of the material, change

that is described by equation 2.19. For non-interacting electrons, the interband transition

energies are simply given by the band gap at the respective momentum. However the

strong Coulomb interaction between electron and holes, couples polarizations at different

momenta, and decreases the energy needed for an optical excitation restructuring the

energy landscape accessible to optical excitations. In this context, becomes useful the

introduction of a formalism based on the existence of excitons. The introduction of this

formalism is conceptually justified by the considerations above, however we will provide in
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2.4. Exciton formalism

the following a mathematical justification and the required change of basis, moving from

an electronic to an excitonic picture. The advantage of changing picture, by introducing a

change of basis directly in our Hamiltonians, brings to a simplification in the derivation

of all the equation of motion. In principle all the equations that will be shown in the

following chapters, can be derived from an electronic picture and applying an Hartree-Fock

approximation in the cluster expansion. However applying the change of basis from the

beginning, decreases drastically the amount of operators involved and helps with the

interpretation of higher order interaction processes as for the exciton-phonon interaction.

The first step in this procedure is introducing the pair operator P †
kk′ = a†ckavk′ ,

describing the creation and annihilation of electron-hole pairs. For this first introduction

part we will neglect the valley index, that can be later reintroduce as part of the exciton

quantum number. The commutation relations for the pair operators are

[
Pij , P

†
kl

]
= δikδjl − Fijkl

with Fijkl = a†vla
†
vjδik + a†ckaciδjl

(2.23)

here the operator Fijkl represents the fermionic substructure of the pair operator, and is

responsible for terms including the Pauli blocking. The key of our derivation is now to

approximate these commutator to be a fully bosonic commutator, by setting Fijkl ≈ 0,

approximation valid in the low excitation limit. To transform Hamiltonian 2.3 in terms of

pair operators, we need as well to express electron intraband contributions into combination

of pair operators [76]

a†ciacj →
∑

l

P †
ilPjl

a†viavj →
∑

l

P †
liPlj .

(2.24)

The electronic part of Hamiltonian 2.3, can now be written as

He +He−e →
∑

kekh

[
(εcke

− εvkh
)P †

kekh
−
∑

q

VqP
†
ke+q,kh+q

]
Pkekh

(2.25)

and by performing an expansion of pair operator into excitonic eigenmodes, by separating

into realative and CoM momenta, i.e. P †
kekh

=
∑

αX
†
α,ke−kh

ψα(mα
e /Mαkh+m

α
h/Mαke) =∑

αX
†
αQψ

α(k), with ψα obtained from the Wannier equation 2.22, we arrive at the diagonal

free exciton Hamiltonian

HX,0 ≈
∑

αQ

Eα
QX

†
αQXαQ (2.26)

It is important to note that Hamiltonian 2.26, describing the energy of free excitons as

single-particle operators, contains within the effective single-particle exciton treatment

the Coulomb interaction. In the electron picture (Hamiltonian 2.3) the Hamiltonian

contained many-particle interactions, that in the equation of motion leads to the hierarchy

problem in Coulomb correlations, as discussed in the previous sections. The Hartree-

Fock approximation to cut the hierarchy problem in that case, it is now fully contained

in the negligence of the fermionic correction term Fijkl in the commutator of the pair
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2.5. Generalizing to bilayers

operator 2.23, and produced an effective single particle problem within the same order

of approximations. By performing the same change of basis in all the other terms of

2.3 we obtain the full exciton Hamiltonian, including exciton-phonon and exciton-light

interactions [77]

HX =
∑

αQ

Eα
QX

†
αQXαQ +

∑

αβj
qQ

Gαβ
jqX

†
αQ+qXβQ

(
bj,q + b†j,−q

)
+
∑

σαq

M̃α
σq ·AX†

αq

with Gαβ
jq = Gjc

ζα
e ζβ

e q
δζph,ζβ

e −ζα
e
δζβ

hζα
h
Fαβ

(
mβ

h

Mβ
(q+ sβαQ)

)
+

−Gjv

ζα
h ζβ

hq
δζph,ζβ

h−ζα
h
δζβ

e ζα
e
Fαβ

(
−mβ

e

Mβ
(q+ sβαQ)

)

and M̃α
σq = δζα,KK Mcv

σQ

∑

k

ψα∗(k)

(2.27)

where the phonon quantum number has been redefined into a superindex j = (κ, ζph)

containing the phonon mode and the phonon valley, form factors with respect to exciton

wavefunctions Fαβ(q) =
∑

k ψ
α(k+ q)∗ψβ(k), sαβ = 1−Mα/Mβ , and the new exciton-

phonon and exciton-light couplings are defined starting from equations 2.11, 2.12. We

note that the hermitian conjugate of the exciton-light term, responsible of spontaneous

recombination of exciton, is not consider in our study, term that would bring a loss of

excitons negligible in the timescales under study (ultrafast exciton dynamics). The full

exciton Hamiltonian 2.27 contains the main elements to describe, through equation 2.13,

the time evolution of exciton densities Nα
Q =

〈
X†

αQXαQ

〉
, following the thermalization of

excitons after an optical excitation of a TMD monolayer [77, 78].

2.5 Generalizing to bilayers

Having introduced the basic effective exciton Hamiltonian for a monolayer system, we can

now move to generalize the previous equations to the bilayer case.

Our work will focus on deriving microscopic based equations and numerically solve

them, to investigate mainly two interesting and unusual experimental results: i) ultrafast

charge transfer in TMD heterostructures and ii) long living and PL brighter signal

of hot exciton states. The general problem of the thermalization of excitons in TMD

heterostructures can be split in two main steps: i) a rapid thermal dissipation to the

ground state and ii) reaching of a Boltzmann-like distribution around the minimum of

the ground state. We will see that the first step of the dynamics can explain the ultrafast

charge process observed in experiments, and can be study independently of the twist angle.

Due to the high energies involved in the relaxation, twist angle dependent modifications

of the bandstructure would impact only marginally the dynamics. For this reason to study

this first thermalization step, we will restrict to only perfectly align TMD bilayers. On

the other hand the specific potential induced by the twist angle cannot be neglected at

low energy comparable to the moiré potential strength. For this reason to study the final

equilibration process we need to include the twist angle in our model.
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2.5. Generalizing to bilayers

Figure 2.2: List of high-symmetry stacking geometries of two TMD layers (blue and red). Here

the perfectly aligned layers are referred to as R-type stackings (with a 0◦ rotation of the layers),

and H-type stackings (with a 60◦ rotation of the layers), meaning that the metal atoms of one

layer are placed on top of the metal (chalcogen) atoms of the other layer, obtaining the Rh
h (Hh

h)

stacking. The other combinations result from lateral shifts of one layer along a high-symmetry

line, so that a metal (M) or a chalcogen atom (X) of the upper layer is above the void (h) of the

other layer, denoted by R
M/X
h .

Due to these two main reasons, we will first proceed with introducing a general model

for perfectly aligned TMD bilayers and afterwards introduce the twist angle dependence.

We will then use the two different models to describe the results in the two different cases

discussed above.

We start by considering the bilayer system as prepared in a fixed stacking configuration

(2.2). Here we present a short summary of the main steps leading to our bilayer Hamiltonian,

for further details refer to the supplemental material of Papers 1-4 attached to this work.

Bandstructure

Starting from the electronic bandstructure in 2.4 for a monolayer system, ελζk, we can

move to a bilayer description by adding an additional quantum number, the layer index

l = 0, 1 (0 for the bottom and 1 for the upper layer), i.e.

ελζk → ελlζk = ελlζ + σλ
h̄2k2

2mλ
lζ

(2.28)
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2.5. Generalizing to bilayers

extension that is also applied to the electron state |λζk⟩ → |λlζk⟩, leading to the bilayer

free electron Hamiltonian

HB
e =

∑

λlζk

ελlζka
†
λlζkaλlζk. (2.29)

The valley dependent masses as well as valley relative positions strongly depend on the

considered materials as well as their stacking. These have to be determined through

first principles calculations or adjustments to experiments. Throughout our work we will

derive the necessary parameters from DFT calculations [66, 79, 80], except for our joint

experiment-theory studies (Paper 2,3) in which we use experimental data.

Electron-electron interaction

In contrast to the bandstructure, that derives straightforwardly from the monolayer case,

the electron-electron interaction needs to take into account that charges in one layer are

affected by the Coulomb potential of charges in the neighbouring layer. This leads to

an attraction between electrons and holes of different layers, leading to the formation

of interlayer excitons, with electron and hole spatially separated in different layers, in

contrast to intralayer excitons where the charges are located within the same layer. To

describe the Coulomb potential of charges in a bilayer system, we need to introduce a

different screening function with respect to 2.10. To do so, we solve the Poisson equation

considering now two different homogeneous dielectric sheets on top of each other immerse

in a background dielectric environment [55, 81]. By solving the Poisson equation we obtain

an effective Coulomb potential of the following form

V ll′
q =

e20
2ϵ0Aq ϵll′(q)

ϵll′(q) =

{
ϵlintra(q), if l = l′

ϵinter(q), if l ̸= l′
(2.30)

where we use the layer index l = 0, 1, and introduced dielectric screenings for interlayer

states ϵinter(q) = υbgg
0
qg

1
qfq , intralayer states ϵlintra(q) =

υbgg
l
qfq

ch(δlq/2)h
1−l
q

, and υ =
√
ϵ∥ϵ⊥,

δl = αldl, α =
√
ϵ∥/ϵ⊥, functions defined from the dielectrick constants of the layers. Here,

we have introduced the following abbreviations:

fq = 1 +
1

2

[
υ̃0bgth(δ0q) + υ̃1bgth(δ1q) + υ̃01th(δ0q)th(δ1q)

]

hlq = 1 +
υbg
υl

th(δlq) +
υbg
υ1−l

th(δ1−lq/2) +
υl
υ1−l

th(δlq)th(δ1−lq/2)

glq =
ch(δlq)

ch(δlq/2)
[
1 +

υbg

υl
th (δlq)

]

(2.31)

with υ̃lς =
(

υl

υς
+ υς

υl

)
, where ς = bg, 0, 1 (bg stands for background). With this introduction

we can write the new bilayer electron-electron Hamiltonian as

HB
e−e =

1

2

∑

λλ′ll′
ζζ′kpq

V ll′
q a†λlζk+qa

†
λ′l′ζ′p−qaλ′l′ζ′paλlζk. (2.32)
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2.5. Generalizing to bilayers

This approach let us treat the system as an effective 2D layer, while all the spatial details

about the z-direction remain encoded into the effective screening.

Electron-phonon and electron-light interactions

Regarding the electron-phonon interaction, in our work we will not consider any stacking

induced changes in the phonon modes of the two monolayers. This approximation is

justified by the weak van der Waals forces between atoms in different layers with respect

to the strong intralayer bonds. For this reason also in this case the extension to a bilayer

system can be easily extended within our formalism by including the phonon layer index

in the superindex j = (lph, κ, ζph) introduced in the previous sections. We obtain the

following bilayer electron-phonon Hamiltonian

HB
e−phon =

∑

jλll′

ζζ′kq

Gjλ
ll′ζζ′qa

†
λlζk+qaλl′ζ′k

(
bj,ζ−ζ′,q + b†j,ζ′−ζ,−q

)
(2.33)

with Gjλ
lilfζiζfq

= Gjλ
ζζ′qδζph,ζ−ζ′δlph,liδlph,lf , where we note that the choice of a decoupled

basis has as main consequence that phonon-mediated scattering within different layers

is forbidden, so that initial and final states have to share the same layer of the phonon.

The generalization of the electron-light interaction term is performed easily by adding the

additional layer quantum number to the creation and annihilation operators and to the

optical matrix elements.

Intralayer and Interlayer excitons

After introducing the layer dependence in the electronic Hamiltonian, we can use the same

method illustrated in 2.4 to move to the exciton picture. Starting from the electron and

hole layer-dependent Wannier equation

h̄2k2

2m̃αlelh

ψα
lelh

(k)−
∑

q

V lelh
q ψα

lelh
(k+ q) = Eαlelh

b ψα
lelh

(k) (2.34)

we obtain a series of excitonic eigenenergies for intra- and interlayer states. For both

intra- and interlayer excitons we find strongly reduced binding energies compared to the

monolayer. For the intralayer exciton this results from the additional screening created

by the second layer. For the interlayer exciton the binding energy is further reduced

due to the distance constraints for the electron and hole. In addition we see that for

heterostructures, interlayer excitons results to be the most energetically favorable states,

given the type II band alignment. This will have great impact in the dynamics of charges

in TMD heterostructures, and will be discussed in details in the following chapters (Papers

1,2,3). In addition, due to their i) spatially indirect character, leading to a recombination

rate of orders of magnitude smaller compared to direct intralayer states, and ii) permanent

electric dipole, these states promise to be technologically highly relevant for information

storage and energy harvesting technologies [54, 82–84].
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2.6. Exciton Hybridization

Figure 2.3: Schematic of the emergence of molecular orbitals from the two starting orbitals ψ1/2.

Molecular orbitals can be seen as a case of hybridization of electronic orbitals, where the new

available states of the compound system, are superpositions of each single system component

wavefunctions.

We can finally write the exciton Hamiltonian for a system of purely intra- or interlayer

states, that introducing a new compound index to describe all the electron and hole quantum

numbers entering in the exciton definition, µ = (nµ, lµe , ζ
µ
e , l

µ
h , ζ

µ
h ), reads [55]

HB
X =

∑

µQ

X†
µQXµQ +

∑

Qq
jµν

G̃µν
jqQX

†
νQ+qXµQ

(
bj,q + b†j,−q

)
+
∑

σQµ

M̃µ
σQ ·A X†

µQ (2.35)

with new exciton-phonon and exciton-light matrix elements derived from the change of

basis

G̃µν
jqQ = Gjc

ζµ
e ζν

e q
δζµ

hζν
h
δ
ζν
e−ζµ

e ,ζph
j

δ
lνe l

ph
j

δlνe l
µ
e
Fµν

(
mν

h

Mµ
(q+ sµνQ)

)
+

−Gjv
ζµ
hζν

hq
δζµ

e ζν
e
δ
ζν
h−ζµ

h ,ζph
j

δ
lνhl

ph
j

δlνhl
µ
h
Fµν

(
−mν

e

Mµ
(q+ sµνQ)

)

M̃µ
σQ =

e0
m0

δζµ
e ζµ

h ,KKMcv
σQ

∑

k

ψµ∗(k)

(2.36)

2.6 Exciton Hybridization

In the last section we showed that extending the exciton formalism to include intra-

and interlayer excitons is straightforward using the procedure introduced in 2.4, by only

adding the dependence on the new electron and hole layer quantum numbers in our exciton

annihilation(creation) operator and redefining a new effective Coulomb potential to contain

details on the specific dielectric screening arising from the presence of a second layer.

However this alone is not yet enough to capture completely the exciton dynamics in a

bilayer system. To understand the reason behind this statement, we have to move slightly

back to the electron picture. In the presence of two different layers in fact, the interlayer

and intralayer contributions to the interband electronic transitions cannot be treated

as decoupled. The reduced distance between the two layers creates regions of overlap

between electronic orbitals around atoms of different layers, bringing to a non-negligible

probability of electron tunneling between the different layers. To understand better the
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2.6. Exciton Hybridization

physical problem we can draw an analogy to the description of two hydrogen atoms. When

the two atoms are brought in close proximity, the electronic states emerging in this context

are the molecular orbitals, superpositions of the single-atom problem orbitals (sketch

in figure 2.3). This can be seen as an example of hybridization of electronic states, and

measuring the splitting between the bonding and anti-bonding state is a direct measure

for the interaction strength between the two initial states.

If we look closely to the bandstructure of TMD bilyers as in [85], we can observe also

in this case the presence of splitting of bands, and the clear emergence of regions in the

energy-momentum map in which the electron results delocalized between the layers, i.e. in

a state that is a superposition of both layers. Similarly to the molecular orbital case, one

can obtain a direct measurement of the tunneling strength emerging from the proximity

of the two layers by looking at the band splitting in the electronic bandstructure.

To describe the problem correctly and obtain physical results we must then include

hybridization in our description. Starting from Hamiltonian 2.29, we introduce an off-

diagonal term in the layer subspace, coupling states from different layers (defining a new

compound index i = (li, ζi))

HT =
∑

ijkqλ

Tλ
ij(q)a

†
λik+qaλjk (2.37)

with Tλ
ij(q) = (1− δlilj ) ⟨λik+ q|V0 + V1 |λjk⟩, where Vl (with l = 0, 1) the electrostatic

potentials generated by the two layers. Assuming tight-binding wave functions, the overlap

of electronic wavefunctions is becoming rapidly very small for q > 0, and thus justifies

the restriction to processes of vanishing momentum transfer q. In our effective model, we

describe electrons and holes in proximity of high-symmetry points of the Brillouin zone

using an effective mass approximation, thus we consider the tunneling dependent only on

the valley index, allowing only valley-local tunneling terms.

We can now apply the general procedure to switch to exciton formalism 2.4, by

expressing the operators in 2.37 in terms of pair operators

P †
ik,lk’ = a†cikavjk’

a†cikacik’ ≈
∑

hp

P †
ik,hpPjk’,hp

a†vikavjk’ ≈ δijk k’ −
∑

hp

P †
hp,jk’Php,ik.

(2.38)

Then, by introducing the expansion in terms of exciton wavefunctions for the tunneling

Hamiltonian, using P †
ik,jp =

∑
µX

†
µk-pψ(m

µ
e /Mµk+mµ

h/Mµp), we obtain

HX,T =
∑

µνQ

TµνX†
µQXνQ (2.39)

where we have introduced the excitonic tunnelling matrix elements

Tµν = δlµhl
ν
h
(1− δlµe lνe )T c

µν − δlµe lνe (1− δlµhl
ν
h
)T v

µν

T c
µν = δζµζνT c

ijFµν and T v
µν = δζµζνT v

ijFµν

(2.40)
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with Fµν form factors defined in section 2.4. We note that in this description, different

exciton states only directly interact via tunneling terms if they either have an electron

or a hole within the same layer. Using now Hamiltonian 2.35, considering only the non-

interacting part, we can include the tunneling term, introducing in this way a term of

mixing between intra- and interlayer excitonic states

HB
X,0 → HB

X,0 +HX,T =
∑

µQ

Eµ
QX

†
µQXµQ +

∑

µνQ

TµνX†
µQXνQ. (2.41)

The incorporation of a non-diagonal term into our Hamiltonian suggests that there is

a more suitable basis for describing our problem, where available states are expressed

as a superposition of pure intra- interlayer states. To do so we diagonalize Hamiltonian

2.41, by introducing a new set of hybrid excitons annihilation(creation) operators Y
(†)
ηQ =

∑
µ c

η(∗)
µ (Q)X

(†)
µQ, these are operators creating or annihilating layer-hybridized states,

consisting of a mixture of intra- and interlayer excitons, where the degree of mixing is

express via the mixing coefficients cηµ(Q). Here the mixing coefficients satisfy orthonormality

relations ∑

µ

cη∗µ (Q)cξµ(Q) = δηξ and
∑

η

cη∗µ (Q)cην(Q) = δµν (2.42)

The mixing coefficients have a key role in our description. Using the orthonormality relation

we can derive that
∑

µ |cηµ(Q)|2 = 1, so the contribution of each excitonic state µ inside

the hybrid state η, can be quantified by a number |cηµ(Q)|2 ∈ [0, 1] that can be interpreted

as a percentage of contribution. The diagonalized Hamiltonian for free hybrid excitons

reads

HY,0 =
∑

ηQ

Eη
QY

†
ηQYηQ (2.43)

with the corresponding hybrid-exciton energies Eη
Q, where the new quantum number η

defines the new hybrid-exciton Rydberg like series of energy states, and inherits the valley

index from µ, due to the valley conserving tunneling. As a final remark, in our work

we focus on the 1s ground state for all exciton species, as higher-energy states in the

Rydberg-like series of excitons exhibit a much smaller scattering probability compared

to the 1s-1s transitions [72]. This has been verified by numerically evaluating phonon-

assisted scattering involving higher-energy states. To understand better the impact of

the hybridization on the bilayer exciton energy landscape we show the energy landscape

of the exemplary WSe2-MoS2 heterostructure, that will be the focus of our study in

the following chapter (study in Paper 3-4). As we can see in Figure 2.4, the tunneling

creates a mixture of intra- and interlayer states, this can be seen in the picture thanks

to the color scheme with which each state is colored with the corresponding different

contributions of excitonic states. We note that states around KΛ and ΓK valleys show a

high degree of hybridization, in contrast to states in the KK valley. This can be explained

in terms of electron wavefunction: for states around Λ and Γ valleys, the electronic orbital

is mostly centered around the chalcogen atoms, creating a larger overlap region with the

neighbouring layer; on the other hand electronic orbitals around K show a localization

around the metal atom, bringing to a negligible overlap [86, 87].
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Figure 2.4: Hybrid exciton energy landscape for WSe2-MoS2 heterostructure. We use different

colors for depicting the four initial intra- and interlayer excitonic states named with Xlh−le (using

only one index for intralayer excitons). We highlight on each state the percentage of the involved

intra- and interlayer exciton states. (Picture adapted from the supporting information of Paper 4)

We can now apply this change of basis directly to the interaction Hamiltonians,

obtaining the final Hamiltonian

HB
Y =

∑

ηQ

Eη
QY

†
ηQYηQ +

∑

jηξ
Qq

Gηξ
jqQY

†
ξQ+qYηQ

(
bj,q + b†j,−q

)
+
∑

σQη

Mη
σQ ·A Y †

ηQ (2.44)

where the new couplings and matrix elements for hybrid-phonons and hybrid-light interac-

tions are defined from the change of basis as

Gηξ
jqQ =

∑

µν

cη∗µ (Q)cξν(Q+ q)G̃µν
jqQ

Mη
σQ =

∑

µ

cηµ(Q)M̃µ
σQ

(2.45)

We will use this Hamiltonian in combination with equation 2.13 in section 2.8 to obtain

the hybrid exciton equation of motion, needed to study exciton thermalization processes

in TMD heterostructures.

2.7 Introducing the twist angle

In the previous section we introduced the main Hamiltonian needed to described a bilayer

TMDs system, where the layers are perfectly aligned at specific high symmetry stacking

configurations. We now introduce the twist angle dependence in our equations. Starting

point is the decoupled Hamiltonian of a bilayer system. While the tunneling is important
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Figure 2.5: Brillouin zone (BZ) of a twisted TMD bilayer. On the left side we plot superimposed

the two Brillouin zone for the separate layers. The twist angle creates a mismatch in the corners

of the two BZs (shown at the K valleys of layer 0/1, Kl=0/1). This results in a new BZ, called

mini Brillouin zone (mBZ), with the two main reciprocal lattice vectors bM
1/2 (right side). Here

the analogue of the high-symmetry points are called with greek letters.

when the electronic bands in both layers are energetically close, for type II heterostructures

and for electronic valleys with protected orbitals such as the K point, we can neglect this

term. We will restrict to the specific derivation of the KK exciton valley, since the ground

state of the system under study is a KK interlayer exciton state. The presence of the

twist angle can be included in our model in terms of an effective potential, arising from

the spatially dependent atomic local alignment [55], denoted as moiré potential. Starting

from the electronic picture, we can write the potential felt by electrons of layer l = 0, 1

generated by nuclei in layer 1− l as

HM =
∑

λlk q

Vλ
l (q,k)a

†
λlk+qaλlk (2.46)

where Vλ
l (q,k) = ⟨λlk+q|V1−l |λlk⟩. To obtain the proper information about the nuclei

alignment, we have to explicitly insert our knowledge about the geometry of the problem.

To do so we expand the potential in terms of lattice vectors and single atomic contributions

Vl(r) =
∑

Rl
vl(r −Rl). Assuming a tight binding approach for the electronic wavefunction

and expanding in the reciprocal lattice vector basis of each layer Gl = a0b
0
l + a1b

1
l (a0/1

integers), we can write our potential as [55]

Vλ
l (q) =

∑

GlG1−l

mλ
l (G1−l)e

i(Gl+G1−l)·Dl/2δq,K1−l−Kl+G1−l−Gl
(2.47)

where mλ
l (q) ∝

∫
dz ρ̃λl (−q)ṽl(q), with charge density ρλl compute with the λ (con-

duction/valence) electronic orbitals and f̃(q) =
∫
dr∥f(r) exp

{
iq · r∥

}
in-plane Fourier

transform, and Dl/2 = (−1)1+lR0
l , where we fix the coordinate system center at the

junction of the two layers. By looking at the equation is important to notice that although

we are focusing around the same valley ζ =K, when including the twist angle the two K

points of the different layers will be displaced from each other by a vector K1−l −Kl. Now

looking at the G-sums, considering the van der Waals nature of the interlayer forces we
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2.7. Introducing the twist angle

can restrict them to the first shell (and incorporate the G = 0 term as an electrostatic

constant shift). In this way we obtain six G vectors. Being these reciprocal lattice vectors

C6 symmetric, we can split the G vectors in two parts, and restrict the sum only to three

of these, including the sum over the other three in the hermitian conjugated Hamiltonian.

We thus obtain
HM =

∑

λlk q

Vλ
l (q)a

†
λlk+qaλlk + h.c.

Vλ
l (q) = mλ

l

2∑

n=0

δqgn

(2.48)

where we used the symmetry over the G vectors and we introduced gn = Cn
3 (G

0
1−l −G0

l ).

Here mλ
l can be extracted from first principle calculations, and we have set D = 0 (without

loss of generality). The new gn vectors, define the new periodicity of our crystal and are

called in literature moiré reciprocal lattice vectors and the lattice arising from this new

periodicity is called superlattice. We will refer to the new Brillouin zone corresponding

to the superlattice as mini Brillouin zone (mBZ). If we now transform Hamiltonian 2.48

from electronic picture into excitonic picture, exposing the layer indexes and using the

delta in equation 2.48, we obtain

HM
X =

∑

Qnll′

Θll′
gn
X†

ll′Q+(−1)lgn
Xll′Q

Θll′
gn

= mc
lFll′

(
mll′

h

Mll′
gn

)
−mv

l′F∗
ll′

(
−mll′

e

Mll′
gn

) (2.49)

with the usual definition of the form factor F , where l and l′ are the layer indexes. Now

since the moiré Hamiltonian is not mixing differet excitonic states, we can split the problem

in N different Hamiltonians, one for each excitonic state and solve the eigenvalue problem

separately for each excitonic state. Since we are mainly interested in the ground state

interlayer exciton of the MoSe2-WSe2 heterostructure, in the following we fix l, l′ to match

the electron and hole layer of the state under exam, and omit them in the following

equations. To show the shape of the moiré potential, we plot in Figure 2.6 the real space

transformed excitonic moiré potential Θll′(r) = F(Θll′
Q ), for the lowest interlayer (l = 0,

l′ = 1) and intralayer (l = 0, l′ = 0) excitonic states of the MoSe2-WSe2 heterostructure.

In order to write the Hamiltonian in a more convenient form, we rewrite our operators in

terms of folded operators by using the new moiré periodicity, splitting the sum over the

total CoM momentum Q into a sum of Q+ g, with g = s1b
M
1 + s2b

M
2 reciprocal moiré

lattice vector and s0/1 as integers and Q ∈ mBZ. Considering the free exciton term and

the moiré potential term, our bilayer free moiré exciton Hamiltonian reads

HB
M,0 = HB

X,0 +HM =
∑

Qg

EQ+gX
†
QgXQg +

∑

Qgg̃

Θ̃gg̃X
†
QgXQg̃

Θ̃gg̃ = Θ
(
δs1,s̃1+(−1)lδs2,s̃2 + δs1,s̃1δs2,s̃2+(−1)l + δs1,s̃1+(−1)lδs2,s̃2+(−1)l

)
+

+Θ∗ (δs1,s̃1−(−1)lδs2,s̃2 + δs1,s̃1δs2,s̃2−(−1)l + δs1,s̃1−(−1)lδs2,s̃2−(−1)l
)

(2.50)

where we exploited the excitonic wavefunction symmetry in the form factors, i.e. Θgn
=

Θg0
= Θ. As seen in the previous section, we can diagonalize this Hamiltonian to obtain a
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2.8. Exciton Dynamics

Figure 2.6: a) Twisted TMD bilayer. Recognizable in the picture the new periodicity generated

from the local displacement of atoms in the two layers, called moiré lattice, where we highlight

the moiré lattice vectors aM1,2. b) and c) show the effective moiré potential seen from intralayer

(b)) and interlayer (c)) excitons.

new basis for our problem, Y
(†)
ηQ =

∑
g c

η(∗)
g (Q)X

(†)
Qg, where now η labels the new set of

minibands periodic in the mBZ, with hybridized states formally similar to the exciton

hybrids seen in the previous section, but instead of being a mixture of different excitonic

states, they are a mixture in momentum shells of the same excitonic state, with |cηg(Q)|2
quantifying the degree of contribution of each momentum shell to the specific miniband

labeled by η. We will refer to these new hybrids as moiré excitons. We show in Figure 2.7 a)

the solution of the eigenvalue problem for the interlayer state under exam, and plot in Figure

2.7 b) the unfolded (i.e. using |cηg(Q)|2 = |cη(Q+ g)|2) mixing coefficients for the lowest

nine minibands, showing that the lowest energy bands are localized within the first few

momentum shells. We note that in general, for exciton states highly affected by tunneling

or where the energy separation induces a high degree of mixture, the problem cannot be

decoupled in finding the minibands separately for each exciton state, but one would need

to include the tunneling Hamiltonian in 2.41 together with the moiré Hamiltonian and

solve the eigenvalue problem, obtaining a set of hybridized moiré minibands.

We can now use this new set of operators to perform a change of basis in the interaction

Hamiltonians arriving to

HB
M =

∑

η

Eη
QY

η†
Q Y η

Q +
∑

ηξj
QQ′g

G̃ηξj
QQ′gY

ξ†
Q′Y

η
Qb

j
Q′−Q+g + h.c.

G̃ηξj
QQ′g =

∑

g′g̃

G̃jQ′−Q+g,Qω
η∗
g̃ (Q)ωξ

g′(Q
′)δg,g′−g̃

(2.51)

where we include only the exciton-phonon interaction, since in the study of Paper 5 we

will not use a laser pulse to excite the system and generate excitons, but initialize the

exciton distribution at a fixed energy.

2.8 Exciton Dynamics

After having introduced the main Hamiltonians 2.44 and 2.51, we have the necessary tools

to solve the Heisenberg equation within the second-order Born-Markov approximation (i.e.
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2.8. Exciton Dynamics

Figure 2.7: a) miniband structure for the interlayer lowest energy excitonic state of MoSe2-WSe2,

shifting the γ mBZ to match the minimum of the lowest energy state (κ→ γ). All the bands are

plotted with respect to the lowest energy state, E0. b) Unfolded mixing coefficients |cη(Q+ gM )|2
of the lowest nine minibands, showing the main localization in the first few shells.

truncating the infinite hierarchy at the second order and using the Markov approximation).

Key quantity for our study is the exciton occupation Nη
Q =

〈
Y †
ηQYηQ

〉
, with which we

can track the exciton distribution in momentum and time, allowing to follow the exciton

dynamics resulting in a phonon driven relaxation cascade, bringing the exciton population

to its equilibrium distribution. We will in this section explain how the exciton equation

of motion for Nη
Q can be derived. We will show the derivation for hybrid excitons, being

formally equivalent to the moiré excitons one, with the only difference contained in the

specific couplings. We start by deriving the phonon-contribution to the equation of motion,

including only the free and the hybrid-phonon terms of the Hamiltonian. Using the

procedure described in Sec. 2.2 we truncate the many-particle hierarchy on the level of

two particle correlations, obtaining the coupled equations

∂tN
η
Q

∣∣
Y−ph

=
2

h̄

∑

ξjQ±
Im
(
Gξη
jQqC

ηξ±
jQq

)

ih̄∂tC
ηξ±
jQq|Y−ph =

(
Eξ
Q−q − Eη

Q ∓ h̄Ωjq

)
Cηξ±

jQq − Gξη∗
jQq

(
χ∓
qN

ξ
Q−q − χ±

qN
η
Q

) (2.52)

introducing Cηξ±
jQq =

〈
Y †
ηQY

†
ξQ−qb

†/()
j,∓q

〉
and χ±

q = 1/2 ∓ 1/2 +
〈
b†jqbjq

〉
. It is important

to note that while obtaining the latter equations, non linear terms are arising from the

exciton bosonic commutator. However we remind that in our derivation, to obtain pure

bosonic relations and introduce the exciton formalism, we restricted to the case of low

density. In this limit linear terms dominate, allowing us to neglect all non-linear terms.

Using the Markov approximation on the correlation term, i.e.

Cηξ±
jQq ≈ iπGξη∗

jQq

(
χ∓
qN

ξ
Q−q − χ±

qN
η
Q

)
δ
(
Eξ
Q−q − Eη

Q ∓ h̄Ωjq

)
(2.53)
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2.8. Exciton Dynamics

brings us to a Boltzmann scattering equation for excitonic densities

∂tN
η
Q =

∑

ξQ′

(
Wξη

Q′QN
ξ
Q′ −Wηξ

QQ′N
η
Q

)

Wηξ
QQ′ =

∑

j±

∣∣∣Gηξ
jQ−Q′

∣∣∣
2
(
1

2
± 1

2
+ nBjQ′−Q

)
δ
(
Eξ
Q′ − Eη

Q ± h̄ΩjQ′−Q

) (2.54)

where nBjQ′−Q is the Bose-Einstein distribution for phonons with the mode j, the momen-

tumQ′ −Q, and the energy ΩjQ′−Q. This equations can be interpreted as a microscopically

based master equation, where the transition probability rates to scatter from a state |ηQ⟩
to a state

∣∣ξQ′〉 are contained in the tensorWηξ
QQ′ , which contains fixed energy conservation

resonances, resembling the Fermi golden rule. An important quantity related to Wηξ
QQ′ ,

is the dephasing rate Γ, i.e. inverse of the coherence lifetime, that can be computed as

Γ = h̄/2
∑

ξQ′ Wηξ
QQ′ .

Equation 2.54 describes the phonon driven dynamics of hybrid exciton. However to be

able of describing the optical excitation of the system, responsible of injecting excitons

in our system, we need to solve the hybrid exciton-light part of the Heisenberg equation.

For our purpose we want to mimic an excitation of the system with a short laser pulse,

which is described by a coherent light pulse, and thus creating a coherent population

of excitons. This consideration brings us to split the exciton occupation in a coherent

and a non-coherent part Nη
Q =

〈
Y †
ηQYηQ

〉
=
〈
Y †
ηQ

〉〈
YηQ

〉
+∆Nη

Q, where we will refer to〈
Y †
ηQ

〉
= P η

Q as coherent population and to ∆Nη
Q as incoherent population. With this

specification, we can write the part of the dynamics driven by the laser field of σ-polarized

light, reflecting the creation of coherent hybrid excitons, as

∂tN
η
Q

∣∣
Y−l

=
2

h̄
Im

(
e0
m0

Mη
σQ ·A

)
δQ,0 (2.55)

where we approximate the light cone to be a fixed delta condition.

In the light of this result, we recompute the phonon driven scattering equations in

terms of coherent and incoherent population obtaining the final result

ih̄∂tP
η = −

(
Eη
Q + iΓQ=0

)
P η − e0

m0
Mη

σQ=0 ·A

∂t∆N
η
Q =

∑

ξ

Wξη
0Q

∣∣P ξ
∣∣2 +

∑

ξQ′

(
Wξη

Q′Q∆Nξ
Q′ −Wηξ

QQ′∆N
η
Q

) (2.56)

where we used P η = P η
Q=0 and Wηξ

QQ′ has been defined in eq. 2.54. With this equation

we are able of tracking the main steps of the hybrid excitons lifetime. Starting from the

coherent excitation, we can follow the phonon mediated scatterings between the exciton

states leading to the thermal equilibration of the system. From the scattering tensor we

can define an additional quantity, the density of in-scattering states for the specific exciton

state η, in order to quantify the density of states contributing the most to the exciton

influx to the specific state η. This reads

DOΓη
in(E) =

∑

ξQ′

Wξη
Q′,Q=0δ

(
E − Eξ

Q′

)
. (2.57)
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2.9. Beyond the second order Born-Markov approximation

2.9 Beyond the second order Born-Markov approxima-

tion

Equation (2.54) is derived by using a second-order Born-Markov approximation [64, 77,

78, 88], thus obtaining fixed resonances from the energy conservation described by the

delta function. However, in the presence of peculiar topology of the energy band structure,

the quantity Γη
Q can diverge due to Van Hove singularities. In this case, to solve the

problem and obtain a finite dephasing we need to go one step further in the infinite

correlation hierarchy. By continuing the correlation expansion taking into account two-

particle correlations and considering only the imaginary part of the self-energy (neglecting

polaron renormalization terms) [89] we can include a self-consistent temperature-dependent

broadening of the dephasing, solving the divergence problem. Considering only the phonon

contribution, we can define the dephasing rate as follows

Γηξ
Q =

h̄
2

∑

j±Q′g

∣∣∣D̃ηξj
Q′Qg

∣∣∣
2
(
1

2
± 1

2
+ nB

jQ′−Q

)
L
Γ
η
Q

+Γ
ξ

Q′

(
∆ηξ±

QQ′

)
(2.58)

where we introduced ∆ηξ±
QQ′ = Eξ

Q′ − Eη
Q ± ΩjQ′−Q. This consist of a system of coupled

equations that can be solved self-consistently. Here, LΓ corresponds to the Cauchy/Lorentz

distribution with the width Γ. We can notice that the equation is formally equivalent to

the dephasing derived within the second-order Born-Markov approximation, with the only

difference that instead of having fixed energy resonance, these result in being softened by

a Lorentzian function.

2.10 Hybrid exciton ARPES signal

In Paper 4, we introduce new theoretical tools, required to describe excitonic signature of

hybrid states in ARPES experiments. While the main results and study will be discussed

in Chapter 4, we introduce here the main derivation to derive the equation for describing

the ARPES signal in the hybrid exciton basis.

Starting from a three step model to describe the photoemission of electrons [90], the

intensity of the ARPES signal can be derived from the Fermi-Golden rule

I(k, hν; t) ∝
∑

i,f

|⟨fk|Hint |i⟩|2Ni(t)δ (Efk − Ei − hν) (2.59)

where |i/f⟩ are the initial/final state of the system where we consider eigenstates of the

two-body Hamiltonian with initial/final eigenergies Ei/f . The energy of the photon is

denoted by hν and the initial state occupation by Ni(t). The key idea behind the procedure

is expressing the initial and final states in the expectation value above into electronic

picture, using a pure monolayer eigenstates basis.

The final state |f⟩, can be described by the product of a free electron and a hybrid hole,

where the latter is obtained by solving the eigenvalue problem for the bilayer Hamiltonian

HB
e + HT (equations 2.29,2.37). The solution of the eigenvalue problem leads to a set
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2.10. Hybrid exciton ARPES signal

of hybridized electronic valence and conduction bands, that reads as function of the two

decoupled layer energies ελ0ζk, ελ1ζk

Eλ
kγ =

1

2
(ελ0ζk + ελ1ζk)±

1

2

√
(ελ0ζk − ελ1ζk)

2
+ 4|T λ

01|
2

(2.60)

with γ = (±, ξ) labeling the two new states (± solutions) and the valley index ξ. The

corresponding eigenvectors are obtained from the same 2x2 eigenvalue problem which we

write as a superposition of the old monolayer states as

|γλp⟩ =
∑

l

gγlpa
†
λlpξ |0⟩

with the mixing coefficients gγl . Since the final state is composed by two unbound particles,

we can use as final state the tensor product of a free electron state and the above derived

hybrid hole,

|f⟩ = |k, γvp⟩ =
∑

l

gγlpa
†
fkavlpξh |0⟩ (2.61)

with free electron operator a†fk.

The initial state |i⟩, on the other hand, is represented by a hybrid exciton state, so

we have to express it in terms of monolayer electrons. In this case, we have to proceed

backward in the derivation in section 2.6, expressing the hybrid state in terms of electron

operators. Starting from the hybrid exciton state |ηQ⟩, and performing a series of backward

transformations from hybrid exciton operators to exciton operators arriving finally to

electron operators Y † → X† → a†a, we finally obtain

|i⟩ = |ηQ⟩ = Y †
ηQ |0⟩ =

∑

µ

cη∗µ (Q)X†
µQ |0⟩ =

=
∑

µk

cη∗µ (Q)ψµ∗(k)a†c,k+m̃eQ,µe
av,k−m̃hQ,µh

|0⟩
(2.62)

with the compound index η = (n, ξ) describing the hybrid degrees of freedom, cη∗µ (Q)

excitonic mixing coefficients, µ = (L, ξ) describing the excitonic degrees of freedom, with

L = (le, lh) and ξ = (ξe, ξh), and we use the notation µe/h to refer to the quantum numbers

inside µ labelled by e/h. Inserting the initial and final states in Eq. (2.59) we obtain

I(k, hν) ∝
∑

ηγ
pQ

|⟨k, γvp|Hint |ηQ⟩|2 ·Nη
Q(t) δ

(
Ee

k − Ev
γ,p − EX

η,Q − hν
)

(2.63)

where p is the hole momentum, Nη
Q(t) denotes the hybrid exciton time-dependent occupa-

tion for the hybrid exciton state η at the center-of-mass momentum Q, relative to the

valley. Moreover, Ee
k corresponds to the free electron energy, Ev

γ,p to the hybrid valence

band energy, EX
η,Q to the hybrid exciton energy.

The last ingredient missing is Hint. The interaction to be included here is again the

hybrid electron-light interaction, that in hybridized electron bands reads

Hint =
∑

pkγ

Mpkξea
†
fpa

γ
ck =

∑

pkγl

gγlkMpkξea
†
fpacklξe (2.64)
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2.10. Hybrid exciton ARPES signal

with the optical matrix element Mpkξe containing the optical selection rules. If we now

take the expectation value, computed on the initial and final states just derived we obtain

a series of selection rules, that together with conservation of the total electron momentum

and neglecting all other momentum dependencies in the optical selection rule term, i.e.

Mpkξ = M̃δp∥,k+ξ, let us arrive to the final equation for the ARPES signal

I(k, hν; t) ∝
∑

η,γ,p

|Gηγ

pk̃
|2Nη

k̃−p
(t) δ

(
Ee

k − Ev
γ,p − EX

η,k̃−p
− hν

)

Gηγ

pk̃
=
∑

µ

gγ∗lhpM̃cη∗µ (k̃− p)ψµ∗(m̃ep+ m̃hk̃) · δξγh,ξµh .
(2.65)

where we used k̃ = k− ξe. The new coupling Gηγ

pk̃
contains the momentum dependence of

the ARPES signal, i.e. superposition of the excitonic wavefunctions weighted by the mixing

coefficients and the hole hybridization coefficients. Note that ARPES signals stemming

from different electron valleys are additionally weighted by different photoemission matrix

elements M, which is neglected here.
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Chapter 3

Hybrid exciton thermalization

Having introduced the theoretical framework for our description of optical excitations in

TMD bilayers, we can now investigate in detail the thermalization process of excitons,

focusing on the huge impact of hybridization on the exciton dynamics. With the tools

developed in Chapter 2, we analyze in Paper 1 the details behind the thermalization

process in TMD heterostructures at fixed stackings, focusing on the exemplary case

of the MoSe2-WSe2 heterostructure in Rh
h stacking configuration (other stackings and a

different heterostructure, MoS2-WS2, are studied in the SI), we unravel the resulting charge

transfer as the consequence of a phonon-mediated two-step relaxation via highly hybridized

states. In addition in Paper 2-3 we study the different charge transfer mechanisms in the

WSe2-MoS2 heterostructure, predicting and explaining the presence of a blue shift in the

measured energetic ARPES signal of the photoejected electron.

3.1 Energy landscape

In the past few years, some experimental observations have shown that, exciting with

a laser one of the two layers of a TMD heterostructure, i.e. resonantly to the intralayer

A exciton of one of the two layers, was causing a charge transfer to the opposite layer

[49–54]. Surprisingly, the charge transfer process has been measured to be on the order of

sub-picoseconds timescales, thus appealing for future terahertz applications [91].

In order to have access and to understand the process we start by computing the

energy landscape of the system. This is done by solving the Wannier equation in the

hybrid-exciton basis (see procedure leading to equation 2.43), obtaining a set of hybrid

exciton bands for each excitonic valley. By looking at the resulting hybrid exciton band

structure, we plot in Figure 3.1 a) the energy minima of the hybrid exciton parabolas,

choosing an energy window accessible to an optical excitation of a bright intralayer W-W

state. As additional and necessary information to understand the dynamics, we quantify

the contribution of each state to the new hybrid-exciton states by evaluating the mixing

coefficients. We use |cηµ(Q)|2 as a color tool, interpreting it as the percentage of the exciton
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3.2. Two-step phonon mediated charge transfer

Figure 3.1: a) Hybrid exciton energy landscape for MoSe2-WSe2 heterostructure. We adopt a color

scheme using the mixing coefficients (coefficients of the change into hybrid basis) as percentage of

the contribution of an excitonic state into a hybrid state. b) Momentum integrated hybrid exciton

occupation, resolved for the different channels W-W (intralayer states), hyb (highly hybridized

momentum-dark states, with electron probability in Λ smeared across both layers), and W-Mo

(interlayer states). (Figure adapted from Paper 1)

state µ inside the hybrid state η. We adopt a color scheme in which hybrid states of

a pure intralayer or interlayer character are just red or blue, respectively. In contrast,

strongly hybridized states consist of different colors. In the presence of strong tunneling,

the hybrid states are heavily influenced by different excitonic species, this is the case for

the momentum-dark states hyb. In contrast, a weak tunneling results in hybrid states

that are almost purely intra- or interlayer excitons, as in the case of KK excitons. The

energetically lowest states of the system are interlayer state (W-Mo), this is justified by the

type II band alignment of the heterostructure. From the presented context, we can envision

that an excitation resonantly to the intralayer W-W bright state will be followed by a

phonon-mediated cascade, leading to the dissipation of thermal energy until reaching an

equilibrium configuration. It is essential to emphasize that, for phonon-mediated scattering

to occur between two states, they must partially share the same layer. This arises from

the phonon selection rules encapsulated in equations 2.54,2.56. Phonons, being a local

process with respect to the layer index, cannot directly mediate charge transfers between

layers. In this context, the existence of highly hybridized states not only alters the energy

landscape but also significantly influences relaxation dynamics by activating scattering

channels through which phonons can indirectly mediate charge transfers in conjunction

with tunneling.

3.2 Two-step phonon mediated charge transfer

This is completely manifest if we have a closer look at the time evolution of the system.

To focus only on the important aspects of the dynamics, given the huge amount of states

involved in the relaxation, we opt to simplify the starting condition and choose a static

initialization of the system. We place an initial distribution of excitons in the bright W-W
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3.2. Two-step phonon mediated charge transfer

Figure 3.2: Illustration of a charge transfer process in TMD heterostructures: starting from the

left, following an optical excitation of one layer, a population of intralayer excitons is excited.

This population undergoes a two-step relaxation process driven by phonon-mediated scatterings.

Initially, the relaxation occurs through highly hybridized states, states in which the electron and

hole exist in a superposition across both layers. Subsequently, in the final step, the process leads

to the formation of the most energetically favorable interlayer state.

intralayer state and use equation 2.56 to have access to the momentum and time resolve

hybrid exciton occupation Nη
Q during its time evolution. In Figure 3.1 b) we plot the

momentum integrated occupation, to be able to follow the relaxation path across the

different states. At 0 fs, we see the orange line at full occupation, reflecting the choice

of our initial conditions. The dynamics can then be explained in terms of a two-step

process: at an early stage of the dynamics (0-100 fs), excitons rapidly relax down to the

highly hybridized hyb (purple lines), in which the hole is fixed in the excited layer and the

electron is in a superposition of both layers. Once the electron has been scattered into

a hybridized state, that is, into a superposition between both layers, there is a nonzero

probability of further scattering into the opposite layer. This is what we see at later stage

of the dynamics in which the hybrid exciton population is being transferred to interlayer

states W-Mo. The latest stage of the dynamics consist finally of the thermal equilibration

between the almost degenerate interlayer ground states. From this study, we can draw

significant conclusions. Firstly, by incorporating tunneling and phonons into our model,

the exciton dynamics in a bilayer system, following excitation in either of the two layers,

occur very rapidly, on the order of hundreds of femtoseconds through a two-step process.

Secondly, in the context of our description, returning to an electronic picture, the process

we elucidated represents a charge transfer: electrons in one layer, due to optical excitation,

form bound states with holes in the same layer. Through scattering with phonons, the

electrons bound to holes acquire momentum, moving to occupy momentum-dark states.

The substantial overlap between the atomic orbitals of the two layers is responsible for a

strong tunneling effect, increasing the electron probability of being found in the second
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Figure 3.3: a) Characteristic electron transfer time as a function of temperature for MoSe2-WSe2

in different high-symmetry stackings. The time is extracted from an exponential fit of the layer-

dependent electron probability Pe(t) as shown in part b). We find a considerable decrease in

the charge transfer time with temperature reflecting a more efficient exciton-phonon scattering.

Interestingly, we predict a much faster transfer time for RX
h stacking, as here the highly hybridized

hyb states are very close to the interlayer W-Mo states (cf sI Paper 1). The faster electron transfer

speed comes at the cost of a more incomplete transfer process as the stationary occupation of the

hyb excitons is relatively high, where the electrons is delocalized between both layers.

layer. This non-negligible probability facilitates phonon scattering with the opposite layer.

The phonon mediated scattering enables the relaxation to the more energetically favorable

interlayer state.

Another crucial consideration is that our microscopic model successfully explains the

experimentally observed ultrafast charge transfer predicting the same timescales for the

overall process.

3.3 Temperature and stacking dependence

To further characterize the charge transfer process, we introduce the characteristic charge

transfer time τ to have a measurable quantity for easy comparison. We then investigate

the process as a function of different stackings and temperatures. The results of this

analysis are depicted in Figure 3.3, where we plot τ against temperature, using distinct

colors for the various analyzed stackings. In Figure 3.3 a), we observe that the charge

transfer process, being phonon-mediated, is highly influenced by temperature regardless of

the stacking. The process varies from a characteristic time around 70 fs at 40, settling

between 30 and 40 fs at room temperature. This holds true for Rh
h and RM

h , owing to

the similar energetic composition of the band structure. On the other hand, the drastic

convergence of hybrid states to the interlayer state and the reduced energy difference

between the initial and final states in the case of RX
h stacking lead to an increase in

velocity. However, this difference is accompanied by an additional effect. By calculating

the probability of finding an electron in either layer as a function of time (see SI Paper 1

for details), we can compare the difference between Rh
h and RX

h (Figure 3.3 b)). Here, in

the case of Rh
h, we observe a complete charge transfer. In contrast, for RX

h , despite the
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process being faster, we witness a partial charge transfer. This is attributed to the close

energetic proximity between interlayer W-Mo and hyb states. Given the two states are

energetically close, the equilibrium distribution predicts that the population is thermally

distributed between them, with KL states where electrons overlap between the two layers,

i.e. still not completely transferred to the opposite layer.

From this considerations we can understand that the charge transfer mechanism is

strictly material and transfer specific, and in the additional study performed in a different

heterostructure (MoS2-WS2) in the SI of Paper 1, we show that both charge transfer of

electron and holes are possible depending on the specific energy landscape of the system

under study.

3.4 Formation of interlayer excitons

The possibility of having an interlayer exciton as the ground state, characterized by a

permanent electric dipole with charges spatially separated in the two layers, has proven to

be an effective tool for controlling light excitation [54, 82–84, 92]. This justifies the interest

in unraveling its formation process. In Paper 2 and 3 we investigate this formation process

in the WSe2-MoS2 heterostructure, analyzing the two different charge transfer mechanisms

bringing the exciton population from the intralayer states in the two opposite layers to the

ground state interlayer state. Thanks to an experiment-theory collaboration we investigate

electron and hole charge transfer using time-resolved angle-resolved photoemission electron

spectroscopy (trARPES). The significant advantage of ARPES experiments lies in the

capability to acquire momentum-energy-time maps of photoemitted electrons after an

optical excitation creating bound electron-hole pairs. This proves advantageous as the

model introduced in Chapter 2 grants us direct access to the same quantity.

Electron transfer

For describing the physical system under examination, we had to tailor the previously

introduced model to the specific case: the investigated structure features an angle of

approximately 9-10 degrees. At this angle, the model initially devised to handle the twist

angle via a moiré potential becomes unsuitable for describing the problem (the model was

derived in the small-angle limit of 0-5◦). This is because the period of the superlattice

would be so small as to be comparable to the Bohr radius of excitons. On the other hand,

employing the perfect stacking model wouldn’t be entirely appropriate either, as the energy

bands and mixing coefficients turn out to be non-isotropic in this case. Thus, we introduce

an adaptation of the model in which the twist angle is incorporated as a rigid rotation

of one layer’s valleys relative to the other, extracting non-isotropic mixing coefficients.

Subsequently, assuming that the large twist angle leads to fast intravalley equilibration

through elastic co-scattering (e.g., with defects). Hence, we perform an average over the

valley local angle of the exciton momentum, assuming that the population stays almost

isotropic at all times. We define angle-averaged quantities δNη
Q ≈ δÑη

Q with the 1D density

Ñη
Q depending only on the radial component of the CoM momentum. We then integrate
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3.4. Formation of interlayer excitons

Figure 3.4: a) Hybrid energy landscape for WSe2-MoS2. b) Momentum integrated hybrid exciton

occupation. Here we plot with solid lines the theoretical results and with dots the experimental

data. Figure adapted from Papers 2-3.

equation 2.56 over the momentum to obtain averaged scattering rates W̃ ηξ
QQ′ =

∑
θ,θ′ W

ηξ
QQ′ .

After this initial clarification we can now enters in the details of the process under exam.

In the two different papers we analyze the different charge transfer processes consequently

to a different excitation of the system: in Paper 2 we analyze the formation of interlayer

excitons after excitations resonantly to W-W, intralayer state in W-based layer, while in

Paper 3 resonantly to Mo-Mo, intralayer state in Mo-based layer. These two studies show

remarkably different dynamics, here we provide a detailed summary of the results. We start

by computing the specific energy landscape of the heterostructure under study (Figure 3.4

a)), where we fix our parameters for band alignment and valleys offset to the experimental

values (instead of the DFT parameters used for Paper 1-4-5). Adopting the same color

scheme used in section 3.1, we plot the hybrid exciton states with energy accessible to both

the intralayer excitations. We can see that in this specific heterostructure in addition to

the strongly hybridized hybΛ states, in the case of Mo-Mo excitations also the hybΓ states

lay below the excitation energy, thus will be of great importance for the time evolution of

the system.

We start by analyzing the case of excitation resonantly to W-W. In this scenario, in

a similar process to the one studied in Paper 1, the formation of interlayer excitons occurs

through a two-step electron transfer process: by injecting excitonic population into the

W-based layer (W-W exciton state), excitons rapidly dissipate their excess thermal energy,

by relaxing and populating interlayer states (W-Mo state), thanks to the energetically

accessible hybrid KΛ(′) states (hyb states in Figure 3.4 a)). This is evident from Figure

3.4 b), where we illustrate the temporal evolution of the system, plotting the momentum

integrated hybrid exciton density N(t). The data points represent experimental results,

and the solid lines the theoretical simulation results (each state is normalized to its own

maximum). As observed, despite numerous approximations in the model, we manage to

quantitatively reproduce the temporal scales of the ongoing charge transfer effectively.
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3.4. Formation of interlayer excitons

Figure 3.5: a) Hybrid energy landscape for WSe2-MoS2. We highlight with black arrows the

hole-transfer relaxation cascade and with green arrows the electron transfer relaxation cascade.

b)-c) Momentum integrated hybrid exciton occupation as function of the probe delay. Here we

plot in b) the experimental data and in c) the theoretical results. Figure adapted from Papers 2-3.

Hole transfer

Now, let’s delve into the case of resonant excitation at Mo-Mo energies, thus injecting exci-

tons into the layer opposite to the one just described. In this scenario, the energies involved

during relaxation are significantly higher (initial state 300-400 meV more energetic) as can

be seen from Figure 3.5 a), and this profoundly impacts our model. Firstly, the effective

mass approximation is valid only in the vicinity of the valleys. Therefore, considering such

high energies forces us to extend the bands further, encompassing scattering that could

either overestimate or underestimate contributions derived from the actual topology of

the electron bands. Moreover, a second complication stems from the experimental side:

exciting so intensely out of equilibrium requires very powerful lasers, causing non-resonant

excitation of the opposite layer as well. Specifically, this means that in addition to injecting

Mo-Mo excitons, W-W excitons are also created in a ratio of 5:1. This dual excitation must

be considered in our simulations to obtain comparable results. This second point leads

to an additional complication due to the large number of states involved in the process,

resulting in a high numerical complexity of the simulations. Given these observations, we

decide to focus more on the qualitative analysis of the process, emphasizing the differences

from the process electron transfer. Now, focusing on the dynamics, we can divide it into

two parts: the first part concerning resonant excitation in the Mo layer, creating excitons

in the Mo-Mo state, and the second part involving non-resonant excitation in the W layer,

resulting in the creation of W-W excitons. Analyzing the first part, we observe that the
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3.4. Formation of interlayer excitons

states affected during relaxation are the highly hybridized ΓK states. These states play a

role similar to the KΛ states analyzed in Papers 1-2, activating the hole transfer between

the layers. The dynamics of this first part is substantially slower (timescales of ps compared

to the hundreds of fs for electron transfer within the same heterostructure). This is due to

two main reasons: i) the significant intravalley relaxation component necessary to reach

energies suitable for intervalley scatterings and ii) the presence of the threefold degeneracy

for Λ valleys in the case of the electron transfer, in contrast to the single Γ-based relaxation

channel for the hole transfer.

The second part of the dynamics consists of the exact electron transfer process

described above (Paper 2). The two parts of the dynamics are decoupled, since they

occur through different relaxation channels with negligible interactions. For the hybrid

exciton phonon scatterings, in fact, scattering processes hybΛ ↔ hybΓ require simultaneous

phonon absorption/emission from both electron and hole, being this scattering process of

higher order, it can be safely neglected. Although occurring through different channels,

both processes (e-transfer and h-transfer) lead to the final population of energetically

favorable states, i.e., interlayer W-Mo. In Figure 3.5, we can observe the comparison of

these two parts of the dynamics. In both figures, representing (b) experimental data and

(c) theoretical simulations, we observe the same trends with good qualitative agreement.

When considering the electron-only transfer process (green symbols 3.5(b)), the interlayer

exciton signal increases rapidly with pump-probe delay and saturates on the sub-200

fs timescale. In contrast, the joint build-up of interlayer W-Mo excitons via electron-

and hole-transfer processes after 1.9 eV excitation, saturates on the 1 ps timescale for

experimental data (black symbols 3.5(b)). The huge difference notable between experiment

and theory is a combination of the considerations we have introduced before about the

limits of our model, and ,in addition, due to the not included recombination processes,

that on timescales of ps should impact more on the exciton occupation. Despite predicting

a similar order of magnitude for the transfer (experiments 1 ps and theory 4 ps for the

saturation of the interlayer via electron- and hole-transfer signal) we can not obtain a

quantitative comparison. Both experimental and simulated data suggest that the interlayer

hole-transfer mechanism across the WSe2-MoS2 heterointerface is substantially slower

compared to the electron-transfer mechanism.

The most surprising result of this experiment, however, comes from the analysis of

the energy-time map of the ARPES signal. As seen in Figure 3.6, the ARPES signal is

completely different from that analyzed in the case of electron transfer. While there, the

energy relaxation of excitons was accompanied by energy relaxation of the photo-emitted

electron, here the final signal is at a higher energy than the initial excitation. Despite

this seemingly inexplicable blue shift, an explanation can be found by considering the

electron-hole complex. The ARPES-derived signal, in fact, only partially accounts for

energy exchanges in the system, capturing information related to electrons only. In contrast,

the excitonic system before the breakdown through light pulse is a bound electron-hole

system, so the energy of the system is conserved only in this picture. This has already being

discussed when deriving equation 2.65, the delta function appearing there, in fact, fixes

energy conservation for the system. Generally, for the excitonic signal in a monolayer, the
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3.4. Formation of interlayer excitons

Figure 3.6: a) Energy-time map of the ARPES intensity. b) Hybrid exciton occupation as function

of energy, using respectively as zero: in black the W-valence band, and in red the Mo-valence

band. Figure adapted from Paper 3.

reference energy is the valence band, with the excitonic signal appearing a binding energy

below the conduction band, i.e., Ee = εv,l + EX = εc,l − Eb, where Ee is the energy of

the photo-ejected electron, εv/c,l valence/conduction band energy maximum/minimum for

layer l, Eb binding energy and EX total energy of the exciton state. In our case, however,

in the presence of a bilayer, we have two valence bands. This has two main consequences:

i) we cannot define uniquely a binding energy for an hybrid state, ii) the excitonic signal

must be referenced to the valence band corresponding to the layer of the hole forming the

excitonic state. In the examined case, since there is a layer exchange for the hole, the photo-

emitted electron’s energy at the beginning of the process is Ei
e = εv,Mo + EMo−Mo + h̄ω

and at the end Ef
e = εv,W + EW−Mo + h̄ω, where we use i/f refer to the initial/final

stage of the process, and ελ,l usual notation for electron energy in a state labeled by

band index λ and layer l. This layer exchange of the hole leads to an energy gain for the

electrons due to the relative difference between excitonic energies and reference valence

bands, i.e. ∆Ee = ∆εv +∆EX ≈ 0.17 eV. Despite the energy gain of the electron, the

hole+electron system has followed the normal energy relaxation process. With this result

we have strengthen the idea that femtosecond momentum microscopy is a powerful tool to

study the correlated interaction between the exciton’s electron and hole in twisted TMD

heterostructures, thanks to the photo-emitted electron still carrying information about

the precedent bound state with the hole.

In this chapter, we established the theoretical framework for understanding optical

excitations in TMD bilayers, focusing on the thermalization process of excitons and
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emphasizing the significant impact of hybridization on exciton dynamics. Experimental

observations in TMD heterostructures, particularly in the MoSe2-WSe2 system, revealed

a remarkable charge transfer process between layers following resonant excitation. This

ultrafast charge transfer, occurring on the hundreds femtosecond timescale, holds promise

for future terahertz applications. Utilizing the tools developed in Chapter 2, we delved into

the details of the thermalization process in TMD heterostructures, specifically exploring

the MoSe2-WSe2 heterostructure in the Rh
h stacking configuration. We employed the

hybrid-exciton basis to compute the energy landscape, revealing the crucial role of highly

hybridized states in the relaxation cascade. Our analysis demonstrated a two-step charge

transfer process: initially, excitons rapidly relax to highly hybridized states, where electrons

and holes exist in a superposition across both layers. Subsequently, the process leads to

the formation of the most energetically favorable interlayer state, facilitated by phonon-

mediated scatterings. The existence of highly hybridized states not only alters the energy

landscape but also significantly influences relaxation dynamics by activating scattering

channels through which phonons mediate the charge transfers. The study’s key findings

include the rapid charge transfer process, occurring within hundreds of femtoseconds,

and the successful explanation of the experimentally observed ultrafast charge transfer.

Moreover, the characteristic charge transfer time, τ , was introduced as a measurable

quantity, demonstrating its dependence on temperature and stacking configurations.

In the following chapter, we extend our exploration by investigating the ARPES

signature of highly hybridized states. The choice of this topic is inspired by the intriguing

questions raised from the results presented in this chapter. Specifically, we investigate

how highly hybridized states are manifesting in ARPES experiments, providing valuable

insights into the specific fingerprint of these states and enhancing our understanding of

their properties.
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Chapter 4

Hybrid exciton signatures

In our earlier papers (Paper 2-3), we employed ARPES experiments in a joint experiment-

theory collaboration to investigate the interlayer exciton formation process, highlighting

the significance of hybridized states. Building upon these results, we investigate the

distinguishing signature of highly hybridized signal in ARPES. We predict here the arising

of a double peak signal stemming from these hybrid states.

4.1 Energy landscape and hybrid exciton dynamics

We utilize the tools developed in Section 2.10 to calculate the ARPES signal of the

naturally available homobilayer MoS2-MoS2 in Hh
h stacking. This choice is motivated by

two main reasons. First, the most energetically favorable states are momentum-dark Γhyb

hybrid excitons, that, due to a lack of lower-lying states and their momentum/layer indirect

character, exhibit long lifetimes facilitating their observation in ARPES spectra. Second,

the strong interlayer tunneling results in a large splitting of the valance bands at the

Γ point. As a result, the hole in Γhyb excitons is delocalized over a large spectral range

and we expect to find pronounced hybrid hole signatures in ARPES spectra. To begin

our analysis, we study the energy landscape available to optical excitation in this specific

TMDs structure and use it in combination with equation 2.56 to study the dynamics of the

system. We decide to update our notation and use the exciton valley index to name each

hybrid state, using as subscript the respective electron/hole layer or hyb in the presence of

hybridized electron or hole. Looking at Figure 4.1 a) we can see that an optical excitation

at ≃ 1.9eV , reflecting an injection of excitons resonant to the intralayer K1K1 state, leads

to an ultrafast population transfer from the initially occupied intralayer state to the highly

hybridized ΓhybK
(′) states. This is followed by a thermalization process in which the

charge is redistributed between the two lowest lying almost degenerate states. We note

that, from the Figure 4.1 b), ΓhybΛhyb exciton could, in principle, be important for the

dynamics considering its low energy. However this can be neglected for two main reasons.

(i) the direct scattering would require a simultaneous electron and hole scattering from
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Figure 4.1: a) Hybrid exciton (hX) dispersion illustrating possible relaxation channels (note that

ΓhybK
(′) states are almost degenerate in energy). b) Hybrid exciton dynamics. After optical

excitation of a MoS2 homobilayer at ≃ 1.9eV (resonant to the K1K1 exciton), ultrafast exciton

relaxation dynamics occurs resulting in the highest occupation Nη of the energetically most

favorable momentum-dark ΓK(′) hybrid exciton (red and purple lines). Picture adapted from

Paper 4.

the K1K1 state. This two-phonon process is thus of higher-order and has been neglected

in our equations of motion derivation; (ii) the indirect scattering involving one-phonon

processes, K1K1 → KΛhyb → ΓhybΛhyb and K1K1 → ΓhybK
(′)
1 → ΓhybΛhyb are based on

phonon absorption processes, leading to a negligible role in the relaxation dynamics.

4.2 Double peak ARPES signal

After having determined the hybrid exciton occupation time evolution, we can now focus on

evaluating equation 2.65 to investigate the time- and momentum-resolved ARPES signal

in MoS2 homobilayers. Previous studies [59, 93], have shown that the excitonic ARPES

signal in monolayers appears at the momentum corresponding to the electron valley and it

is spectrally located one excitonic energy above the valence band (or one exciton binding

energy below the conduction band). The shape of the signal is characterized by a negative

curvature reflecting the valence band one (reflecting the hole dispersion), if the exciton

population is very sharp in momentum. Focusing on the energy-momentum map in Figure

4.2, we follow the time evolution of the ARPES signal. Starting from time 0 fs, we observe

an ARPES signal reflecting the nature of the almost purely intralayer K1K1 exciton which

is characterized by a well pronounced single peak (Fig. 4.2(a)). On a sub-100 fs timescale,

we see the appearance of the strongly hybridized ΓhybK
(′)
1 excitons. They are characterized

by two peaks, one slightly above the K1K1 exciton and one red-shifted by more than

600 meV (Fig. 4.2(b)). The last step of the dynamics leads to a thermalization of the

hybrid excitons occupation. After 400 fs, the entire population has reached an equilibrium

distribution (Fig. 4.2(c)), where only the signatures stemming from ΓhybK
(′)
1 excitons have

remained. Focusing on the shape of the signal we see that momentum-narrow excitonic

distribution, results in a signal with a negative curvature (Fig. 4.2(a)) while thermally

distributed populations are smeared out in momentum and energy, where the shape of the
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Figure 4.2: Momentum-resolved ARPES map. Hybrid exciton dynamics tracked in a tr-ARPES

signal (a) revealing the excitation of the nearly purely intralayer K1K1 exciton state (0 fs), (b)

the formation of the strongly hybridized ΓhybK1 state (200 fs) and (c) the thermalized hybrid

exciton distribution (600 fs). The dashed lines show the shifted split valence bands of the hybrid

hole at the K point (with the splitting ∆Ev
K) and at the Γ point (with the splitting ∆Ev

Γ). The

energies are shown with respect to the upper hybrid valence band (εv,K) at the K point. Picture

taken from Paper 4.

final ARPES signal is reflecting a mixture of the hybrid valence bands (curved downwards)

and the hybrid exciton parabola (curved upwards), cf. Fig.4.2 (c). Our work’s main result is

predicting a distinctive double-peak ARPES signal, characteristic of hybrid exciton states.

In the case of the MoS2 homobilayer, the ARPES signal is governed by the energetically

lowest ΓhybK1 hybrid exciton, which ARPES signal exhibits (Figure 4.2(c)) the two peaks

that are separated by approximately 0.6 eV. Their position corresponds to the energy of

the split hybrid valence bands (illustrated by dashed lines in the picture).

We can justify the presence of the double peak signal by considering the single

particle picture of the correlated electron-hole pair. The two valence bands (|±⟩) at Γ are

completely delocalized across both layers, i.e. |±⟩ = (|1⟩ ± |2⟩) /
√
2, where |n⟩ indicates

the valence band of the pure monolayer n. In this picture, the hybrid exciton is formed with

an electron that is strongly localized in one of the two layers (at the K point), e.g. layer 1.

The Coulomb interaction partially drags the hole into the same layer to reduce the energy,

favouring a hole wave function that is mostly in layer 1 too, i.e. |1⟩ = (|+⟩ + |−⟩)/
√
2.

Consequently, the energetically most favourable two-body state (ΓhybK1 hybrid exciton) is

build by a superposition of the two hybrid valence bands |±⟩. When the K1 electron from

the ΓhybK1 hybrid exciton is ejected, a Γ hole is left behind, remaining in the superposition

that has previously formed the exciton. The conservation of energy and momentum ensures

that by measuring the energy of the ejected electron, we obtain information about the

energy of the hole as well. While the hole within the hybrid exciton is in a quantum

mixture of two energy levels, the relative energy between electron and hole is fixed by

the two-particle exciton energy. This correlation between electron and hole transfers the

superposition of hole energies to the electron, whose energy is consequently undefined

as well. Measuring the energy of ejected electrons therefore allows us the reconstruct

the underlying energy distribution of the holes. The appearing of the double peak can
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Figure 4.3: Momentum-integrated ARPES map. (a) Energy- and time-resolved ARPES signal,

showing the characteristic double-peak structure reflecting the hybrid hole being spread over two

valence bands at K point (initial signal) and at the Γ point (final thermalized signal). (b) ARPES

signal at fixed times plotted as a function of energy. The energies are shown with respect to the

upper hybrid valence band (εv,K) at the K point as reference. Picture taken from Paper 4.

be better observed in the momentum integrated ARPES intensity plotted in Figure 4.3.

As last remark, although the choice of MoS2 homobilayer is favorable for the reasons

eplained at the beginning, the hybridization of the hole (50% - 50%) is similar to the

exciton hybridization giving rise to the predicted relatively small double-peak intensity

ratio. Being the percentage of hybridization of both excitons and valence bands the key

behind the peak intensity ratio, we expect that heterostructures exhibiting a considerably

different degree of hybridization for holes and excitons should give rise to larger intensity

ratios that are easier accessible in ARPES experiments. For more details about the peak

intensity ratio and more details about the theory we refer to the SI of Paper 4.

In conclusion, we’ve thoroughly investigated the distinct signals that hybrid exciton

states in MoS2 homobilayers leave in ARPES experiments. The double-peak pattern in the

ARPES signal, particularly from the ΓhybK1 hybrid exciton, offers crucial insights into

how electrons and holes interact. As we move into the next chapter, our aim widens to look

at the broader picture of exciton thermalization, especially at lower energies. This chapter,

focusing on ARPES intricacies, complements our earlier study of high-energy dissipation.

In the upcoming discussion, we focus into the final stages of thermalization, aiming to

understand the final intravalley equilibration step, that normally leads to a Boltzmann-like

equilibrium. However, things get intriguingly complicated when twist angles come into play,

reshaping the landscape and significantly impacting thermalization dynamics. Exploring

this twist-induced complexity will enhance our overall understanding of exciton dynamics

in 2D semiconductor structures.
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Chapter 5

Moiré exciton thermalization

In the previous chapters, we analyzed the thermalization of excitons in heterostructures,

without considering any twist angle between the layers. Using the tools presented in

Sections 2.7,2.8,2.9, we study the final step of the thermalization process, focusin on energy

ranges heavily affected by the the twist angle dependent moiré potential.

5.1 Energy landscape and moiré exciton dynamics

Studying the relaxation process in TMD heterostructures in the previous chapters,

we have explained the general pathways of hybrid excitons during their thermalization

process. The possibility of neglecting the twist angle in the previous description is possible

thanks to the energy scales involved in the process. Exciting resonantly to an intralayer

excitons in fact, requires hundreds of meV. However, in Section 2.7, we observed that in

the presence of a twist angle, excitonic parabolas are deformed, creating a new periodicity.

We expect, as in the quantum well case, that the higher the energy, the less impact the

moiré potential effect has on the bands. On the other hand, near the parabolic minimum,

the effect of the twist angle is much greater, and therefore, we expect the moiré potential

to significantly influence the intravalley relaxation.

In the case of heterostructures, the process studied in Papers 1-4 describing intervalley

energy relaxation leads to reach the ground state of the system, in which subsequently

excitons reach a Boltzmann equilibrium distribution around the minimum. However in the

presence of twist angle this final step can be strongly influenced by the deformation induced

by the moiré potential (Figure 5.1 (a)). The energy-momentum relaxation description is

translated into real space as a change in the spatial exciton distribution, where starting

from a delocalized configuration excitons relax into the pockets of moiré potential (Figure

5.1 (b)). Recent experiments have emphasized that, in the presence of a twist angle, the

low-energy excitonic relaxation dynamics deviate from a Boltzmann-like relaxation. They

show long-lived excited states [27, 43, 94] that, in Photoluminescence experiments, exhibit

brighter responses [27], closely related to the increased occupation of these bands. Despite
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Figure 5.1: Sketch of exciton dynamics in a twisted TMD heterostructure. (a) After optical

excitation of intralayer excitons (Xintra) in one of the layers, exciton population relaxes to the

energetically lowest states (interlayer excitons Xinter in the case of MoSe2-WSe2 investigated

here) via momentum-dark hybrid excitons Xhyb. We depict the exemplary case of parabolic bands,

in which a new periodicity (gM reciprocal lattice moiré vector) arises, forming the new mini

Brillouin Zone (mBZ). In the case of small twist angles, there is, in addition to the new periodicity,

a change in the band curvature, resulting in flat bands. (b) Exciton relaxation in momentum

space is reflected by the change of exciton localization in real space: the thermalization process

brings the exciton population (purple dots) from a delocalized phase to the most favourable

configuration of trapped states. Picture taken from Paper 5.

these intriguing and unconventional experimental results, there is no microscopic study in

the literature that justifies the observations.

Building upon these results, we delved into the dynamics in the final stages of

relaxation, within an energy window highly influenced by the moiré potential.

We focus here on studying the exemplary case of the MoSe2-WSe2 heterostructure,

where, as seen previously, the interlayer KK state is the most energetically favorable.

The starting point is to calculate the energy band structure of the system, relying on

equation 2.50. Solving the eigenvalue problem, in the small twist angle limit (≃ 1◦, we

can observe that the moiré potential highly modifies the band topology. At these small

twist angles, the bands not only acquire a new periodicity, defined by the mini-Brillouin

zone (mBZ), but also undergo deformation, becoming flat [95]. From previous works, the

emergence of flat bands in the energy structure is related to strongly trapped states,

characterized by strongly localized wavefunctions around minima of the moiré potential

[55] (flat bound states X0,1,2,3), and free states (Xfree) which show a more delocalized

wavefunction [55]. Our goal now is to excite the system to a relatively low energy near

to the ground state and observe the modifications brought by the presence of flat bands

in the exciton thermalization. Therefore, we initialize an exciton population at ≃ 40-50

meV from the ground state, and numerically solve equation 2.56, using the beyond-second

order Born-Markov approach corrections for the dephasing (2.9). Our study focuses on the
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Figure 5.2: Interlayer exciton energy landscape of the MoSe2-WSe2 heterostructure (with a 1◦

twist angle) consisting of bound states (X0,1,2), intermediate states (X3), and free states (Xfree),

plotted with respect to the ground state (E0). Superimposed on the bands, the energy- and

momentum-resolved exciton occupation (red-orange shaded) at subsequent steps of the dynamics

at 40 K: (a) at 0 fs an initial hot distribution of excitons. (b) At an early stage of the dynamics

(10 fs), the emission of optical phonon drives the population predominantly to the first degenerate

excited states X1,2. (c) X0 is occurring at a much slower speed, driven by the filling of intermediate

states X3 due to the scattering with acoustic phonons (100 fs). This different energy dependence,

becomes clear by analyzing the density of in-scattering states DOΓη
in(E) (normalized) for X0 and

X1,2. (d) In the final stage of the dynamics on the timescale of a few ps, we observe a bottleneck

effect. This results in a strong out-of-equilibrium exciton distribution, where excited states show

a higher occupation than the ground state. Picture taken from Paper 5.

temporal evolution of excitons for the system in the low temperature regime (≃ 40 K).

The result of the dynamics is very different from the usual relaxation as can be seen

from figure 5.2, where we plot the band structure with the excitonic density N(E,Q)

superimposed as a function of time and energy at different time frames. In panel (a),

we highlight the initial excitation condition. The subsequent thermalization of moiré

excitons can be described in terms of two competing processes, driven by emission of

optical and acoustic phonons, respectively. Scattering with acoustic phonons, characterized

by a small transfer of energy and momentum, populates the adjacent energy bands, i.e. the

intermediate states X3. The scattering with optical phonons makes excitons dissipate faster

and relax further down to the first excited states X1,2, cf. the arrows in Fig. 5.2(b). In

order to understand the next step, we utilize the density of in-scattering states 2.57, with

which we calculate the states contributing the most to the incoming flux for the ground

state and the first excited states, as shown alongside panels (b) and (c). From the analysis

of these graphs, we can observe that the excitonic population at intermediate energies X3

contributes more to filling the ground state, while energies within the range of free states

contribute more to filling the first excited states (X1,2). Figure 5.2(d) shows that, even for

longer times of a few ps, the occupation of the ground state remains clearly lower than the

one of the first excited states - in contrast to what we would expect from a thermalized

distribution. This indicates the emergence of a pronounced relaxation bottleneck that

keeps the exciton occupation out of thermal equilibrium.
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5.2. Time resolved photoluminescence

Figure 5.3: (a) Photoluminescence spectrum as a function of energy and time and (b) at different

fixed time cuts. We include the absorption spectrum as inset in (b) to highlight the optical

selection rules of different states. Here, the solid grey line shows the total absorption, while red

and blue lines denote the contribution of the σ− and σ+ circularly polarized light, respectively.

Picture taken from Paper 5.

5.2 Time resolved photoluminescence

The much higher occupation of the first excited states is affecting also the optical response

of this states. If we compute the photoluminescence spectrum for the process under study

(figure 5.3), we can see in the energy-time map of the signal 5.3(a), that after the initial

fast relaxation, leading most of the population into X1,2, the dynamics result in being

stacked, with brighter response on first excited states when comparing with the ground

state. To contextualize better, the PL intensity depends on the exciton occupation in a

certain state weighted by its optical matrix element. The latter describes the oscillator

strength of the states and can be directly accessed in a linear absorption spectrum (cf. the

inset 5.3(b)). Looking at the selection rules expressed through the absorption spectrum,

a higher PL peak of X1,2 means that its occupation has to be significantly larger than

the one of X0, which is only the case for a highly non-equilibrium exciton distribution

emerging as a consequence of a pronounced relaxation bottleneck. This results in clear

agreement with the experimental observations of long living excited states and brighter

response of excited states.
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5.3. Characteristic relaxation time

5.3 Characteristic relaxation time

In order to characterize in more details the bottleneck effect, we conduct a temperature

dependent study. A suitable quantity to track the emergence of the bottleneck is the

relaxation time from the first excited states to the ground state, τ1→0 = 1/Γ1→0, where

Γ1→0 is the out-scattering from state X1 to X0. As first step, we compare in figure 5.4

(a-b) the momentum-integrated time-dependent exciton occupation at 40 K and 300 K.

The two dynamics are of course different, but the key point we can observe is that while at

40 K the occupation is far away from the Boltzmann distribution (the occupation should

be almost entirely in the ground state), at 300 K the relaxation reaches a Boltzmann-like

equilibrium, showed in the picture by blue and orange solid lines reaching the dashed lines.

This hints to the presence of a temperature dependent activation of the bottleneck effect.

Plotting τ1→0 as a function of temperature shows that our initial guess is correct, with

τ1→0 varying of several order of magnitude from the low to the high temperature regime,

with temperature lower than 100 K slowed down,resulting in an extremely large relaxation

time being on a timescale comparable or even longer than the recombination time of

interlayer excitons of typically ≃ 102−103 ps [46]. In the inset of figure 5.4(b) we show the

out-scattering rate from Γout
1→0 (that is the inverse of τ1→0), separating the two acoustic

and optical phonon contributions. To explain the predominant role of optical phonons we

can use an energy and center-of-mass momentum argument. The conservation of energy

contained in equation 2.58, reading ∆ηξ±
QQ′ = Eξ

Q′ −Eη
Q±ΩjQ′−Q, in combination with the

flatness of the bands, imposes a strong boundary to the available scattering partners for

this transition. Given the excitonic flat dispersion for both the initial (X1,2) and the final

state (X0), the energy conservation plays the key role. The energy difference between X1,2

and X0 is ≃ 16 meV. Acoustic phonons with their linear dispersion, would require a huge

momentum transfer to be able to dissipate this amount of energy. The momentum required

is larger than 10 moiré Brillouin zones, where the exciton-phonon matrix element becomes

negligibly small, as the overlap of the moiré exciton wavefunctions of the involved states

is mostly localized in the first and second mBZ, as seen in Figure 2.7 [55]. In contrast,

optical phonons exhibit an energy of ≃ 20− 25 meV that is closer to the energy condition

required for the transition. The activation of this channel is then explained in terms of

the temperature-dependent broadening of the phonon-induced dephasing.

5.4 Real space equilibrium distribution

The moiré exciton relaxation dynamics discussed so far in the momentum space, can be also

tracked in the real space. Focusing in particular on the final equilibrium distribution, we can

observe how the greater occupation of first excited states impact the space distribution of

excitons. To understand this statement, we have to focus on the moiré excitons wavefunction.

The ground state X0 is characterized by an s-type wave function, whereas the excited

states X1,2 are described by p-type wave functions [55]. In the absence of bottleneck,

the relaxation dynamics starts with free states, characterized by a spatially delocalized

wavefunction, bringing the population to relax into a localized equilibrium distribution in
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5.4. Real space equilibrium distribution

Figure 5.4: Momentum-integrated exciton dynamics at (a) 40 K and (b) 300 K. At low temperatures,

we observe a much larger stationary occupation of the first excited states X1,2, highlighting the

importance of the relaxation bottleneck leading to a strong deviation from a thermal distribution.

In contrast, at higher temperatures, the exciton occupation clearly relaxes into a Boltzmann

distribution (dashed lines). (c) The relaxation time τ1→0 from the first excited state to the ground

state as function of temperature, showing that the bottleneck effect becomes significantly strong at

temperatures smaller than approximately 100 K leading to recombination times in ns or even µs

range. In the inset, we plot the out-scattering rate Γout
1→0 (inverse of τ1→0), identifying the different

contributions of acoustic and optical phonons. (d,e) Equilibrium moiré exciton distribution in real

space, highlighting the different situation in the case of (d) highly occupied excited states with a

p-type orbital character and (e) highly occupied ground state with an s-type orbital character.

Picture taken from Paper 5.

the ground state with a threefold s-type orbital that is maximally centered at each moiré

potential minimum (5.4 (d)). In presence of a pronounced bottleneck instead, one has

an equilibrium distribution with excitons occupying both the ground state and excited

states. Translated in real space, this results in a mixture of s-type and p-type orbitals

around the moiré traps (5.4 (e)). As p-type states are characterized by a broader excitonic

wavefunction than their s-type counterpart, one finds a larger excitonic wavefunction

overlap between different spatial traps, resulting in an increase of the tunneling probability.
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5.5. Initial conditions

Figure 5.5: Study of the moiré exciton dynamics at 40 K for different initial conditions. We

initialize the system with a uniform energy distribution of excitons centered at (a) Ei =55 meV,

(b) Ei =62 meV and (c) Ei =70 meV. In the top row we show energy-resolved and momentum-

integrated exciton occupation at different time cuts with the red dashed line corresponding to the

Boltzmann distribution. In the bottom row, we show photoluminescence spectra as a function of

energy at different fixed time cuts. Picture taken from Paper SI 5.

5.5 Initial conditions

As final analysis is important to discuss the importance of initial conditions for our

simulations. Looking again at DOΓ, we see that the quantity is not uniform in energy,

meaning that different close in energy initial conditions, can lead to very different outcomes.

Although this is true for the specific ratio of exciton population in X0 and X1,2, the main

message of our study remains unchanged, i.e. the equilibrium distribution is deviating from

a Boltzmann distribution due to the bottleneck effect. In order to verify this statement, we

perform a study varying the energy initial conditions, reporting the results in Figure 5.5.

Here we plot on the first row the momentum-integrated energy-resolved exciton occupation,

while on the second row the PL spectra. Moving from an initial condition of 55 (a), to 62

(b) to 70 (c) meV, we see that although the relative intensity of the peaks changes there is

a common pattern. Focusing on the upper row, comparing the equilibrium distribution

(red line) with the Boltzmann distribution (red dashed line), all the initial conditions bring

to a deviation from the usual thermal equilibrium described by the Boltzmann distribution.

The specific ratio of occupation, influencing the final optical PL response of the system is

strongly initial condition dependent, since the amount and the predominant scattering

channels are varying across the energy landscape.
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5.6. Large twist angle limit

5.6 Large twist angle limit

To complete our analysis we provide a additional study investigating the opposite limit

we investigated, i.e. the large twist angle limit (3◦). We show the results of this study in

Figure 5.6. As can be seen from panel (a) we choose an initial condition comparable to

the case of small twist angle. We can see that the energy band structure, still resents of

the moiré potential presenting a non trivial band topology. Comparing panel (b) and (c),

where we plot the momentum integrate moiré exciton occupation as function of time for

40 and 300 K, we can observe that the presence of the bottleneck effect at 40 K results

softened allowing a slow exchange of excitons between the two lowest energy states. This

can be much better observed and quantitatively appreciated by comparing the relaxation

time τ1→0 for 1◦ and 3◦ (respectively line blue and red in 5.6 (d)). The largest difference

in the relaxation time is found at low temperatures. The slowed-down relaxation process

at 1◦ can be traced back to flat exciton bands and the restricted scattering efficiency due

to the energy conservation. This is pronounced, in particular, at low temperatures, where

the broadening of states is small and thus a strict energy conservation needs to be fulfilled.

The effect is much less pronounced at 3◦ exhibiting parabolic bands, where the number of

possible scattering partners is much higher than in the case of flat bands at 1◦. As the

temperature increases the relaxation time at both twist angles starts to merge leading to

a comparable relaxation time at room temperature. Overall, we can conclude that the key

ingredient for the emergence of the relaxation bottleneck is the peculiar flat bandstructure

of moiré excitons.

To summarize, in this study, we have investigated the relaxation dynamics of interlayer

excitons in a twisted MoSe2-WSe2 heterostructure exhibiting flat moiré bands. Using

the microscopic model introduced in Chapter 2, we demonstrate the relaxation cascade

of an initial hot distribution of interlayer excitons and identify a pronounced relaxation

bottleneck at low temperatures and low twist angles. This results in quasi-stationary

exciton occupations far away from the Boltzmann distribution. As a direct consequence

the higher occupation of excited exciton states explains their larger emission compared to

the ground state, explaining the experimental observations in photoluminescence spectra

of twisted TMD heterostructures. Furthermore, we studied the temperature-dependent

activation of the relaxation bottleneck, identifying its microscopic origin to a combination

of the energy separation and the flatness of the involved moiré exciton sub-bands.
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5.6. Large twist angle limit

Figure 5.6: Relaxation dynamics at the larger twist angle of 3◦. (a) Moiré exciton band structure,

where the initial momentum-dependent occupation is highlighted with a color scheme. We plot

the momentum-integrated and time-dependent exciton occupation for each band relevant for the

relaxation process at (b) 40 K and (c) 300 K. (d) Direct comparison of the temperature-dependent

relaxation time at 1◦ and 3◦ showing that the X1 → X0 transition is slow even for 3◦, but still

several orders of magnitude faster than at 1◦, where the flat bands strongly restrict the number

of possible scattering states. Picture taken from SI Paper 5.
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Chapter 6

Conclusions

In conclusion, our work represents a significant advancement in the theoretical framework

for studying optical excitations in heterostructures consisting of vertically stacked transition

metal dichalcogenides (TMDs). We have introduced novel theoretical tools and expanded

our microscopic model to account for hybrid exciton states, crucial for investigating charge

transfer and exciton thermalization processes in these materials. In joint theory-experiment

collaborations with our colleagues from Göttingen, we have shed light on hybrid exciton

dynamics and their optical signatures as well as tracked the relaxation path of moire

excitons in twisted TMD heterostructures.

We summarize here the key insights of our research:

We provided a microscopic explanation for the experimentally observed ultrafast

charge transfer mechanism. Investigating the MoSe2-WSe2 and MoS2-WS2 het-

erostructures, we characterize the process and predict it in terms of a two-step

phonon-mediated process via momentum-dark hybrid states. This process has been

further characterized through a temperature- and stacking-dependent study.

We explored and explained different timescales of electron and hole transfer mecha-

nisms in the WSe2-MoS2 heterostructure. We uncovered a surprising gain in energy

for the photo-emitted electron during a hole transfer process and traced it back to

the correlation between the measured ejected electron and the remaining hole.

We developed equations to describe the ARPES signal for hybrid excitons and applied

this tool to a MoS2-MoS2 homobilayer. Our findings indicate that the characteristic

signature of hybrid excitons manifests as a double-peak signal, arising from the

strong correlation between the electron and a hole in a superposition of the two layers.

We investigated the relaxation cascade of hot interlayer excitons in a twisted TMD

heterostructure. We identified a pronounced relaxation bottleneck at low tempera-
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tures and in the small twist angle regime, resulting in highly non-thermal exciton

distribution. This explains the experimental observations of long-lived excited states

with bright emission in PL spectra.

Our research contributes significantly to a better microscopic understanding of charge

transfer, exciton optics, and relaxation dynamics in TMD heterostructures. Future research

is needed to spatially track deformations, changes in dielectric constants, and layer distances

that can be correlated with exciton dynamics and relaxation timescales. Furthermore,

the presence of twist angle dependent lattice reconstructions, the tunability of strained

heterostructures, and strongly correlated states, such as generalized Wigner crysals and

Mott insulators represent further fascinating aspects to investigate in this fascinating

material system. Our work and the presented theoretical framework lay the foundation for

further advancements in the field of atomically thin semiconductors.
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[48] V Ongun Özcelik, Javad G Azadani, Ce Yang, Steven J Koester, and Tony Low.

Band alignment of two-dimensional semiconductors for designing heterostructures

with momentum space matching. Physical Review B, 94(3):035125, 2016.

[49] Xiaoping Hong, Jonghwan Kim, Su-Fei Shi, Yu Zhang, Chenhao Jin, Yinghui Sun,

Sefaattin Tongay, Junqiao Wu, Yanfeng Zhang, and Feng Wang. Ultrafast charge

transfer in atomically thin mos2/ws2 heterostructures. Nature nanotechnology, 9(9):

682–686, 2014.

[50] Frank Ceballos, Matthew Z Bellus, Hsin-Ying Chiu, and Hui Zhao. Ultrafast charge

separation and indirect exciton formation in a mos2–mose2 van der waals heterostruc-

ture. ACS nano, 8(12):12717–12724, 2014.

[51] Ziheng Ji, Hao Hong, Jin Zhang, Qi Zhang, Wei Huang, Ting Cao, Ruixi Qiao, Can

Liu, Jing Liang, Chuanhong Jin, et al. Robust stacking-independent ultrafast charge

transfer in mos2/ws2 bilayers. ACS nano, 11(12):12020–12026, 2017.

[52] Philipp Merkl, Fabian Mooshammer, Philipp Steinleitner, Anna Girnghuber, K-Q Lin,

Philipp Nagler, Johannes Holler, Christian Schüller, John M Lupton, Tobias Korn,

et al. Ultrafast transition between exciton phases in van der waals heterostructures.

Nature Materials, 18(7):691–696, 2019.

[53] David Schmitt, Jan Philipp Bange, Wiebke Bennecke, AbdulAziz AlMutairi, Kenji

Watanabe, Takashi Taniguchi, Daniel Steil, D Russell Luke, R Thomas Weitz, Sabine

Steil, et al. Formation of moire interlayer excitons in space and time. arXiv preprint

arXiv:2112.05011, 2021.

[54] Thorsten Deilmann and Kristian Sommer Thygesen. Interlayer excitons with large

optical amplitudes in layered van der waals materials. Nano Letters, 18:2984, 2018.

[55] Samuel Brem, Christopher Linderälv, Paul Erhart, and Ermin Malic. Tunable phases
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moiré superlattices. Nature Nanotechnology, 17(3):227–238, 2022.

[57] Neil R Wilson, Paul V Nguyen, Kyle Seyler, Pasqual Rivera, Alexander J Marsden,

Zachary PL Laker, Gabriel C Constantinescu, Viktor Kandyba, Alexei Barinov,

67



Bibliography

Nicholas DM Hine, et al. Determination of band offsets, hybridization, and exciton

binding in 2d semiconductor heterostructures. Science advances, 3(2):e1601832, 2017.

[58] Dominik Christiansen, Malte Selig, Ermin Malic, Ralph Ernstorfer, and Andreas

Knorr. Theory of exciton dynamics in time-resolved arpes: Intra-and intervalley

scattering in two-dimensional semiconductors. Physical Review B, 100(20):205401,

2019.
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Abstract
Van der Waals heterostructures built by vertically stacked transition metal dichalco-
genides (TMDs) exhibit a rich energy landscape, including interlayer and intervalley
excitons. Recent experiments demonstrated an ultrafast charge transfer in TMD het-
erostructures. However, the nature of the charge transfer process has remained
elusive. Based on a microscopic and material-realistic exciton theory, we reveal that
phonon-mediated scattering via strongly hybridized intervalley excitons governs the
charge transfer process that occurs on a sub-100fs timescale. We track the time-
, momentum-, and energy-resolved relaxation dynamics of optically excited excitons
and determine the temperature- and stacking-dependent charge transfer time for
different TMD bilayers. The provided insights present a major step in microscopic
understanding of the technologically important charge transfer process in van der
Waals heterostructures.
Key Points:∙ Microscopic and fully quantum-mechanic model is developed to calculate exciton
dynamics in van derWaals heterostructures∙ Charge transfer occurs on a femtosecond timescale and is a phonon-mediated two-
step process∙ Strongly hybridized dark exciton states play a crucial role for the charge transfer

KEYWORDS
charge transfer dynamics, dark excitons, exciton dynamics, exciton hybridization, van der Waals
heterostructures

Transition-metal dichalcogenides (TMDs) have been in the focus of
current research due to their enhanced light-matter and Coulomb
interaction leading to a rich energy landscape of tightly bound
excitons.1–4 Stacking TMD monolayers into van der Waals het-
erostructures introduces spatially separated interlayer states adding
another exciton species with long lifetimes and an out-of-plane
dipole moment.5–14 Recent experiments demonstrated the ultrafast

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
© 2022 The Authors.Natural Sciences published byWiley-VCHGmbH.

charge transfer in optically excited TMD heterobilayers resulting in
a formation of interlayer states on a sub-picosecond timescale.15–20
Typically, TMD heterobilayers exhibit a type-II band alignment21,22
favoring the tunneling of an electron or hole into the opposite layer.
However, the underlying microscopic nature of the charge transfer
process has not yet been well understood. In an early previous work,
we have suggested a defect-assisted interlayer tunneling directly at

Nat Sci. 2022;e20220014. wileyonlinelibrary.com/journal/ntls 1 of 7
https://doi.org/10.1002/ntls.20220014
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F IGURE 1 Sketch of the charge transfer process. Starting from an
exciton localized in the bottom layer, phonon-mediated scattering to a
hybrid exciton state (where, e.g., the electron lives in both layers)
allows for the transfer of the charge (here electron) to the upper layer
resulting in a spatially separated interlayer exciton state. In analogy,
hole transfer can also take place if hybrid excitons with delocalized
holes are present

the K point.18,23 Alternatively, a phonon-mediated charge transfer
could occur involving intervalley scattering to the strongly hybridizedΛ or Γ valleys.24–26 A sophisticated microscopic model of such a
phonon-assisted formation of interlayer excitons is still missing.

In this work, we address this open question and reveal the cru-
cial many-particle mechanism behind the ultrafast charge transfer
in TMD heterostructures. To this end, we combine first-principle
calculations27 with the excitonic density matrix formalism28,29
to obtain a material-realistic model of the excitonic energy land-
scape, the internal substructure of different exciton species, and
the phonon-mediated scattering into layer-hybridized dark inter-
valley states.30,31 We first calculate the exciton energy landscape
of the exemplary MoS2-WS2 and MoSe2-WSe2 heterostructures
by solving the Wannier equation for perfectly layer-polarized intra-
and interlayer excitons and subsequently computing hybrid excitons
based on first-principle interlayer tunneling parameters.18,23,28,30,31
Then, we develop and numerically solve equations of motion
describing the time- and momentum-resolved evolution of hybrid
excitons. This allows us to track the relaxation dynamics of exci-
tons from optically excited intralayer excitons toward charge
separated interlayer exciton states. We identify the phonon-
mediated intervalley scattering from intralayer KK into the strongly
hybridized KΛ′ excitons, followed by the relaxation into ener-
getically lower interlayer KK(′) states, as the crucial mechanism
behind the ultrafast charge transfer in these heterostructures, cf.
Figure 1. We further determine the characteristic temperature-
and stacking-dependent charge transfer time that can guide future
experiments investigating interlayer excitons in van der Waals
heterostructures.
Microscopic approach
The starting point of this work is the Hamilton operator describing
electrons and holes of the heterostructure in the basis of mono-

layer eigenstates (localized in one of both layers). Here, we include
a stacking-dependent alignment shift of the two monolayer band
structures32 as well as interlayer tunneling terms resulting from the
wave function overlap between the adjacent layers. The necessary
material-specific parameters have been extracted from first-principle
calculations.27 Moreover, we include many-particle interaction Hamil-
tonians, such as electron–light and electron–phonon coupling, as well
as the Coulomb interaction between electrons and holes. Here, the
scattering between electrons and photons/phonons preferably occurs
locally within one of the two layers, whereas we explicitly include
the Coulomb interaction between particles residing in different lay-
ers. The different intra- and interlayer Coulomb matrix elements are
computed with a modified Keldysh-type potential23,28,30 accounting
for the dielectric environment created by the TMD layers and the
substrate.33 To achieve a numerically feasible model, we set the twist-
angle between the two monolayers to zero and study the charge
transfer in a spatially homogeneous system characterized by a single
atomic alignment. Although the twist-angle is known to have a large
impact on the hybridization of exciton states,30 we expect the qual-
itative charge transfer behavior to remain the same also in twisted
heterostructures. Moreover, we do not consider spin-flipping pro-
cesses and restrict our model to the optically active (A exciton) spin
configuration, as the spin-flipping processes are expected to occur on
a slower timescale.34,35

Now, we derive the dynamics of the system by initially perform-
ing a series of basis transformations. First, we solve the Wannier
equation for pure intra- or interlayer excitons23 and use the eigen-
fuctions 𝜓𝜇(k) to introduce a new set of excitonic operators30 X𝜇†Q =∑

k 𝜓𝜇(k)a†c,𝜁e,Le,k+𝛼Qav,𝜁h,Lh,k−𝛽Q with the compound quantum number𝜇 = (n, 𝜁, L) labeling the excitonic states. Here, n is associated with the
series of Rydberg-like states determining the relative electron-hole
motion, 𝜁 = (𝜁e, 𝜁h) denotes the electron and hole valleys, and the layer
compound index L = (Le, Lh) contains the electron and hole layer. Fur-
thermore, we have introduced the center-of-mass momentum Q and
the relative momentum k between electrons and holes. The operator
a(†)i is annihilating (creating) electrons with the set of quantum num-
bers denoted by i.We use the new exciton operators to perform a basis
transformation to obtain an effective single-particle Hamiltonian for
excitons, reading

HX = ∑
𝜇Q E𝜇QX𝜇†Q X𝜇Q + ∑

𝜇𝜈Q 𝜇𝜈X𝜇†Q X𝜈Q (1)

with the exciton energy E𝜇Q obtained from the Wannier equation and
the excitonic tunneling matrix elements 𝜇𝜈 , which contain apart from
electronic tunneling rates also the overlap of excitonic wave functions.

Next, we diagonalize the exciton Hamiltonian Equation (1) by
introducing a new set of operators Y𝜂Q = ∑𝜇 c𝜂𝜇(Q)X𝜇Q describing
hybrid excitons. These are layer-hybridized states consisting of
intra- and interlayer excitons with the mixing coefficients c𝜂𝜇(Q) and
the new quantum number 𝜂 defining the hybrid-exciton bands. The
diagonalized Hamiltonian reads in this basis HY = ∑𝜂 𝜂QY𝜂†Q Y𝜂Q with
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F IGURE 2 Hybrid-exciton energy landscape forMoSe2-WSe2 (Rhhstacking).We use different colors for depicting the four initial intra-
and interlayer excitonic states namedwith Xlh−le (using only one indexfor intralayer excitons). The final hybrid exciton states are denoted
with two capital letters (K,Λ) describing the valley and the subscripts
(W,Mo) describing the layer, in which the hole (first letter) and
electron (second letter) are localized.We highlight for each hybrid
exciton the percentage of the involved intra- and interlayer exciton
states. Due to the strong tunneling experienced by electrons, the
states in the KΛ(′) valleys are strongly hybridized. Note that we plot
only a selection of low-energy hybrid exciton states contributing
directly to the relaxation dynamics.

the corresponding hybrid-exciton energies 𝜂Q. With the procedure
described above, we have a microscopic access to the full spectrum
of strongly or weakly hybridized exciton states, including bright KK as
well as momentum-dark intervalley states,36,37 such as KΛ′ and KK′,
cf. Figure 2 that will be discussed further below.

Finally, we consider the interaction of hybrid exciton states with
phonons. As we restrict our study to the low-density regime, exciton-
exciton scattering can be neglected.38 Starting from the electron-hole
picture and performing the same change of basis as described above,
we obtain the following Hamiltonian for the hybrid–exciton–phonon
interaction30

HY-ph = ∑
Q,q,j,𝜂,𝜉

𝜉𝜂jqQY𝜉†Q+qY𝜂Qbj,q + h.c. (2)

as well as for the hybrid–exciton–light coupling HY-l =∑𝜎,Q,𝜂 A ⋅𝜂𝜎QY𝜂Q∥ + h.c. All details on the basis transformation and
the resulting hybrid matrix elements can be found in the Supporting
Information.

Havingdetermined theHamiltonoperatorH = HY + HY-ph + HY-l for
hybrid-excitons and their interaction with phonons and light, we can
nowderive equations ofmotion describing the exciton dynamics. Here,
we exploit the Heisenberg equation of motion for the occupation num-
bersN𝜂Q = ⟨Y𝜂†Q Y𝜂Q⟩, truncating theMartin–Schwinger hierarchy arising
from the exciton phonon-scattering within the second-order Born–
Markov approximation.36,39–41 Considering separately the coherent
polarization P𝜂Q = ⟨Y𝜂†Q ⟩ and the purely incoherent population 𝛿N𝜂Q =

N𝜂Q − |P𝜂Q|2, we arrive at the semiconductor Bloch-equations in hybrid-
exciton basis

iℏṖ𝜂0 = −(𝜂0 + iΓ𝜂0)P𝜂0 −𝜂0 ⋅ A(t) (3)

𝛿Ṅ𝜂Q = ∑
𝜉 W𝜉𝜂0Q|P𝜂0|2 + ∑

𝜉,Q′
(W𝜉𝜂Q′Q𝛿N𝜉Q′ −W𝜂𝜉QQ′ 𝛿N𝜂Q).

The details on the scattering tensor W𝜂𝜉QQ′ can be found in the Sup-
porting Information. Equation (3) provides full microscopic access to
the dynamics of hybrid excitons, including optical excitation as well as
phonon-scattering-induced relaxation across intra- and intervalley as
well as intra- and interlayer states, effectively giving rise to amulti-step
charge transfer process.
HYBRID EXCITON LANDSCAPE
We focus here on the two most studied heterostructures in literature,
MoS2-WS2 and MoSe2-WSe2. For simplicity, we show the results for
the latter in the main text and the former in the Supporting Informa-
tion.We start by presenting the hybrid exciton landscape that has been
calculated by solving theWannier equation in the hybrid-exciton basis,
cf. Figure 2. This energy landscape is the key to understanding the
charge transfer process. We use the following notation for the hybrid
exciton states: the capital letters describe the valley and the subscript
the layer, where the first letter denotes the hole and the second the
electron. To give an example, KWK′Mo means that the hole is located
at the K point of the WSe2 layer, while the electron is localized at the
K′ valley of theMoSe2 layer. Furthermore, we use the subscript hyb to
underline that the electron/hole in the corresponding valley is strongly
hybridized between both layers, for example, in KWΛhyb, the electron
at theΛ valley lives in both layers.

Figure 2 shows the energy landscape of hybrid-excitons in the
MoSe2-WSe2 heterostructure for the case of Rhh stacking, that is, themetal atoms of one layer are placed on top of the metal atoms of
the other layer. The corresponding landscape for the other two high-
symmetry stackings RXh and RMh 27 (where either the chalcogen atom X
or the metal atom M of the upper layer is above the hole/void of the
other layer) as well as for theMoS2-WS2 heterostructure can be found
in the Supporting Information. We show only the hybrid exciton states
that are energetically close to or lower than the intralayer KWKW exci-
ton in the WSe2 layer, since we will resonantly excite the material at
this exciton energy and phonon-driven relaxation processes will dis-
tribute the excitons toward lower energies. We have checked that the
contribution of higher exciton states to the relaxation dynamics and
the charge transfer process, that is, due to absorption of phonons, is
negligible. Note that for this particular heterostructure, ΓK excitons
do not play a role for the charge transfer process, while these are cru-
cial for the MoS2-WS2 heterostructure considered in the Supporting
Information.

In the exciton basis, the hybridization of electronic states cor-
responds to a mixing of intra- and interlayer excitons. We quantify
the contribution of each state to the new hybrid-exciton states by
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evaluating the mixing coefficients. Here, |c𝜂𝜇(Q)|2 can be interpreted
as the percentage of the exciton state 𝜇 inside the hybrid state 𝜂. In
the presence of strong tunneling, the new hybrid states are expected
to be heavily influenced by different excitonic species. In contrast, a
weak tunneling should result in hybrid states that are almost purely
intra- or interlayer excitons. The degree of hybridization of each
state is illustrated in Figure 2 by adopting a color scheme, where we
highlight for each hybrid state the different exciton contributions.
Here, a hybrid state of a pure intralayer or interlayer character is just
red or blue, respectively. In contrast, strongly hybridized states consist
of different colors. Figure 2 illustrates that hybrid states involving
excitons at the Λ valley (KWΛhyb, KWΛ′hyb) contain large contributionsof several species, whereas the states at theK valley are either intra- or
interlayer excitons to a very high percentage. The weak hybridization
of KK excitons is well known in literature.42,43 The electronic wave
functions at the K valley are mostly composed of d orbitals localized
at transition metal atoms, which are sandwiched by the selenium
atoms preventing an efficient overlap of wave functions. In contrast,
the electronic wave function at the Λ valley has large contributions at
the selenium atoms resulting in much more efficient hybridization of
KWΛ(′)hyb states.30,31,42,43The energetically lowest states in the investigated MoSe2-WSe2
heterostructure are KWK(′)Mo excitons that are almost purely of inter-
layer exciton character (blue). When exciting the material resonantly
to the intralayer KWKW state (orange), there are a number of spectrally
lower-lying states that will give rise to a phonon-mediated cascade of
transitions down to the energetically lowest states. Note that the scat-
tering process between two hybrid states requires that the initial and
final states live at least partially in the same layer. Therefore, we expect
the strongly hybridized exciton states KWΛ(′)hyb to play a major role for
the relaxation dynamics and the charge transfer process.

HYBRID EXCITON DYNAMICS
Now,we investigate the time- andmomentum-resolved relaxation cas-
cade of hybrid excitons after an optical excitation resonant to the
purely intralayerKWKW exciton localized in theWSe2 layer, cf. Figure2.
To focus on the charge transfer process and to avoid interplay effects
with the exciting laser pulse, we directly initialize the system with a
population in the KWKW state. We have also performed calculations,
including the laser pulse and the interference of optical excitation
and relaxation dynamics, which are presented in the Supporting Infor-
mation. Note that we focus on the 1s ground state for all exciton
species, as higher-energy states in the Rydberg-like series of exci-
tons exhibit a much smaller scattering probability compared to the
1s-1s transitions.44 This has been verified by numerically evaluating
phonon-assisted scattering involving higher-energy states.

Evaluating the semiconductor Bloch equations (cf. Equation 3), we
have full microscopic access to the time-, energy-, and momentum-
resolved relaxation cascadeof nonequilibriumexcitons. Figure 3 shows
the momentum-integrated exciton dynamics in MoSe2-WSe2 (in Rhhstacking) at 77K.Wesee adecreaseof the initially populated intralayer

F IGURE 3 Momentum-integrated hybrid-exciton dynamics at 77
K forMoSe2-WSe2 in Rhh stacking. By solving Equation (3), we havemicroscopic access to the phonon-mediated relaxation dynamics of
hybrid exciton and the resulting charge transfer mechanism. Starting
with an initial occupation of intralayer KWKW excitons localized in the
WSe2 layer (orange line) via phonon-mediated scattering into the
strongly hybridized KW Λ(′)hyb states (purple lines), we end up in theenergetically lowest interlayer KW K(′)Mo excitons (blue lines), that is,the electron has been transferred to theMoSe2 layer

KWKW exciton state (solid orange line). At the same time, we find
an ultrafast increase in the population of the hybrid KWΛ(′)hyb exci-
tons on a timescale of sub-100fs (solid and dashed purple lines). The
microscopic origin of this efficient scattering lies in the nature of
the hybrid–exciton–phonon coupling. Phonons can only couple states
that share the same layer quantum number L = (Le, Lh) as exciton-
phonon scattering is considered to be a local process. For this reason,
phonons can couple pure intra- and interlayer states only through scat-
tering via hybrid states. Once the electron/hole has been scattered
into a hybridized state, that is, into a superposition between both
layers, there is a nonzero probability of further scattering into the
opposite layer.

Following the relaxation cascade, we can track the population trans-
fer fromthehybridizedKWΛ(′)hyb to the interlayerKWK(′)Mo excitons (solidand dashed blue lines in Figure 3). After 100 fs, the initially populated
intralayer KWKW exciton states has been almost completely emptied
and most occupation is found in the interlayer KWK(′)Mo excitons, whereelectrons and holes are spatially separated. As a result, the transfer of
electrons from the initial WSe2 layer into the opposite MoSe2 layer
occurs on sub-100fs timescale.

To further illustrate the main scattering processes governing the
relaxation cascade, Figure 4 shows the momentum-resolved exci-
ton dynamics for different times. We find that in the first step, the
hybridized KWΛhyb and KWΛ′hyb states are not populated (0 fs). The
scattering into the latter happens on a faster timescale, as here M
phonons are involved, which are known to give rise to a very effi-
cient scattering with excitons.45 With some delay, there is an efficient
phonon-mediated scattering from these hybridized states into the
interlayer KWKMo and KWK′Mo excitons. The population of the latter
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F IGURE 4 Momentum-resolved hybrid-exciton dynamics at (a) 0
fs, (b) 20 fs, and (c) 500 fs. Starting from a population created in the
intralayer KWKW exciton, we highlight themost important
phonon-driven scattering processes. Note that the blue-shading in the
parabolas corresponds to amicroscopically calculated exciton
occupation. The charge transfer of electrons occurs in a two-step
process with an initial partial transfer into the hybrid KW Λ(′)hyb excitonstates (with the electron living in both layers) followed by the
complete transfer to the energetically lower interlayer KW K(′)Mo states(with the electron localized in the second layer).

occurs faster again due to the involved M phonons. In the final step,
this state becomes partially depopulated in favor of the energetically
lowest KWKMo state. After approximately 500 fs, a thermalized exciton
distribution is reachedwith the highest occupation in KWKMo followed
by a certain thermal occupation in KWK′Mo. All other states have only anegligible population.

So far, we have investigated the simplified situation of an initially
populated KWKW. In a real experiment, this state will be continuously
optically excited throughout a finite time window, and there will be
an interplay of excitation and phonon-mediated scattering. Evaluating
Equation (3), we can resolve this interplay and find the same gen-
eral behavior as described above, cf. the Supporting Information. We
observe the same main relaxation steps and a very similar timescale
for the charge transfer mechanism. However, tracking the dynamics
becomes more complicated during the initial phase of the relaxation
due to the simultaneous pumping of excitons in the system that imme-
diately start to relax very rapidly. The main difference between the
simulation with a pump pulse (Figure S3) and the instantaneous initial-
ization is that at the time when the laser pulse reaches its maximum,
a large fraction of excitons has already relaxed to lower energy states,
which quantitatively modifies the delay between peak populations of
hybrid and interlayer exciton states. This suggests that we can capture
the main features of the process using instantaneous excitation, which
allows us to gain a much more intuitive picture of the charge transfer
without losing generality.

INTERLAYER CHARGE TRANSFER
Summarizing the exciton dynamics in a nutshell, the initially inserted
occupation of the intralayer KWKW excitons is distributed to the

F IGURE 5 (a) Characteristic electron transfer time as a function of
temperature forMoSe2-WSe2 in different high-symmetry stackings.
The time is extracted from an exponential fit of the layer-dependent
electron probability Pe(t) as shown in part (b).We find a considerable
decrease in the charge transfer timewith temperature reflecting a
more efficient exciton-phonon scattering. Interestingly, we predict a
much faster transfer time for RXh stacking, as here the hybridΛ(′)hybstates are very close to the interlayer KWK(′)Mo states, cf the SupportingInformation. The faster electron transfer speed comes at the cost of a
more incomplete transfer process as the stationary occupation of theΛ(′)hyb excitons is relatively high, where the electrons are delocalizedbetween both layers, cf. the dashed versus solid lines in part b

energetically lowest interlayer KWK(′)Mo states through an intermedi-
ate step involving strongly hybridized KΛ∕Λ(′) states. This means that
the charge transfer is a two-step process, where the electron is first
transferred into a hybrid state (representing a superposition of both
layers) and in a second step, it is transferred to the opposite layer.
The characteristic charge transfer time 𝜏 is illustrated in Figure 5a as
a function of temperature for different high-symmetry stackings. We
can quantify the charge transfer speed by computing the layer- and
stacking-dependent probability Pe(t) = ⟨a†cac⟩ of one electron being
localized in the MoSe2 layer after excitation of an intralayer state in
theWSe2 layer, cf. Figure 5b. By exponentially fitting the temporal evo-
lution of Pe(t), we can extract the characteristic electron transfer time𝜏. We find an ultrafast transfer rate of 𝜏 = 33 fs for MoSe2-WSe2 in
Rhh stacking at room temperature. The electrons are almost completely
transferred from the initially occupiedWSe2 layer to the MoSe2 layer,
that is, one finds the electron with a probability of 95% after 200 fs, cf.
the solid red and blue lines in Figure 5b.

Since the relaxation cascade is mediated by phonons, we find a pro-
nounced temperature dependence of the transfer time. Concretely, we
predict an increase in 𝜏(T) by approximately a factor of 2 to 𝜏 = 67 fs
at 40 K for Rhh stacking. The reason is the reduced scattering efficiencywith phonons at lower temperatures. Nevertheless, even at cryogenic
temperatures, we find an ultrafast charge transfer as the relaxation
cascade occurs toward energetically lower exciton states and is driven
by phonon emission.
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Interestingly, we find an unexpected acceleration of the charge
transfer for RXh stacking (whereas, RMh stacking is rather similar to the
Rhh stacking investigated so far). This originates from the hybrid-energy
landscape for different stackings (cf. the Supporting Information). The
stronger tunneling at the KΛ valley for the RXh stacking27 and the
resulting larger red-shift of exciton energies has as a consequence
that the relevant energy levels are closer than in other stackings, cf.
Figure S2a. In particular, the strongly hybridized KΛhyb states and
the interlayer KWK(′)Mo excitons are nearly degenerate. As a result, thesecond step in the charge transfer process is muchmore efficient com-
pared to the Rhh stacking. Note, however, that while the charge transferis indeed faster for the RXh stacking, there is only an incomplete trans-
fer. This means that the electron is not transferred to almost 100%
as in the case of Rhh stacking, but there is still a probability of approx-imately 40% to find the electron in the initially populated layer, cf.
the dashed lines in Figure 5b. The reason behind this is that a large
percentage of the hybrid-exciton population remains in the hybrid
KΛhyb state as it is threefold degenerate and very close in energy with
the lowest interlayer KWKMo state. Hence, the electron remains par-
tially delocalized between the two layers and the charge transfer is
incomplete.

So far, we have investigated the MoSe2-WSe2 heterostructure. The
comparison with MoS2-WS2 (shown in the Supporting Information)
yields the same general behavior for the hybrid-exciton relaxation
dynamics. We find a somewhat slower charge transfer with 𝜏 = 88 fs
for Rhh stacking at room temperature, mainly due to the much larger
energywindow involved in the relaxationdynamics, cf. the energy land-
scape in Figure S4. Analyzing the results in more detail, we find the
main difference originating from the importance of ΓhybK excitons. The
strong tunneling occurring in the Γ valley results in a large red-shift
of the corresponding exciton states making them energetically lowest
in MoS2-WS2. Interestingly, we find that in contrast to MoSe2-WSe2
discussed above, we find here the slowest charge transfer for the RXhstacking. This can be explained by considering Γhyb KW states, which
trap excitons. The reason behind this is that despite KΛ(′)hyb excitons
being close in energy and sharing the same composition a scattering
into these states requires a simultaneous electron and hole transfer
and is thus a negligible higher-order process. A more detailed descrip-
tion of the relaxation dynamics as well as temperature- and stacking-
dependent charge transfer times in the MoS2-WS2 heterostructure
can be found in the Supporting Information.

In conclusion, we have developed a microscopic and material-
specific theory allowing us to access the relaxation dynamics of hybrid
excitons in van der Waals heterostructures. In particular, we iden-
tify the extremely efficient phonon-mediated relaxation via strongly
hybridized KΛhyb excitons as the crucial mechanism behind the ultra-
fast charge transfer process in the MoSe2-WSe2 heterostructure. We
predict charge transfer times in the range of tens of femtoseconds
that are strongly dependent on temperature and stacking of the layers.
Our work presents an important step toward a microscopic under-
standing of the relaxation cascade and ultrafast charge transfer in
technologically promising van derWaals heterostructures.

ACKNOWLEDGMENTS
Weacknowledge the support fromDeutsche Forschungsgemeinschaft
(DFG) via SFB 1083 (Project B9) and the European Unions Horizon
2020 Research and Innovation Program, under Grant Agreement No.
881603 (Graphene Flagship).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
GiuseppeMeneghini: formal analysis, investigation, software, writing -
review& editing. Samuel Brem: conceptualization, supervision, writing
- review & editing. ErminMalic: conceptualization, funding acquisition,
project administration, supervision, writing - review& editing.

ETHICAL STATEMENT
The authors confirm that they have followed the ethical policies of the
journal.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

PEER REVIEW
The peer review history for this article is available at https://publons.
com/publon/10.1002/ntls.20220014

ORCID
GiuseppeMeneghini https://orcid.org/0000-0002-1889-2380
Samuel Brem https://orcid.org/0000-0001-8823-1302
REFERENCES
1. He K, Kumar N, Zhao L, et al. Tightly bound excitons in monolayer

WSe2. Phys Rev Lett. 2014;113:026803.2. Chernikov A, Berkelbach TC, Hill HM, et al. Exciton binding energy
and nonhydrogenic Rydberg series in monolayer WS2. Phys Rev Lett.2014;113:076802.

3. Wang G, Chernikov A, Glazov MM, et al. Colloquium: excitons
in atomically thin transition metal dichalcogenides. Rev Mod Phys.
2018;90:021001.

4. Mueller T, Malic E. Exciton physics and device application of two-
dimensional transition metal dichalcogenide semiconductors. npj 2D
Mater Appl. 2018;2:1-12.

5. Rivera P, Schaibley JR, Jones AM, et al. Observation of long-lived
interlayer excitons in monolayer MoSe2–WSe2 heterostructures. NatCommun. 2015;6:1-6.

6. Miller B, Steinhoff A, Pano B, et al. Long-lived direct and indirect
interlayer excitons in van der Waals heterostructures. Nano Lett.
2017;17:5229-5237.

7. Kunstmann J, Mooshammer F, Nagler P, et al. Momentum-space indi-
rect interlayer excitons in transition-metal dichalcogenide van der
Waals heterostructures.Nat Phys. 2018;14:801-805.

8. Jin C, Regan EC, Yan A, et al. Observation of Moiré excitons in
WSe2/WS2 heterostructure superlattices.Nature. 2019;567:76-80.9. Tran K, Moody G, Wu F, et al. Evidence for Moiré excitons in van der
Waals heterostructures.Nature. 2019;567:71-75.



NATURAL SCIENCES 7 of 7

10. Seyler KL, Rivera P, Yu H, et al. Signatures of Moiré-trapped valley
excitons inMoSe2/WSe2 heterobilayers.Nature. 2019;567:66-70.11. Alexeev EM, Ruiz-Tijerina DA, Danovich M, et al. Resonantly
hybridized excitons in Moiré superlattices in van der Waals
heterostructures.Nature. 2019;567:81-86.

12. Ruiz-Tijerina DA, Fal’ko VI. Interlayer hybridization and Moiré super-
lattice minibands for electrons and excitons in heterobilayers of
transition-metal dichalcogenides. Phys Rev B. 2019;99:125424.

13. Sigl L, Troue M, Katzer M, et al. Optical dipole orientation of
interlayer excitons in MoSe 2- WSe 2 heterostacks. Phys Rev B.
2022;105:035417.

14. Holler J, Selig M, Kempf M, et al. Interlayer exciton valley polarization
dynamics in largemagnetic fields. Phys Rev B. 2022;105:085303.

15. HongX, Kim J, Shi S-F, et al. Ultrafast charge transfer in atomically thin
MoS2/WS2 heterostructures.Nat Nanotechnol. 2014;9:682-686.

16. Ceballos F, Bellus MZ, Chiu H-Y, Zhao H. Ultrafast charge separa-
tion and indirect exciton formation in a MoS2–MoSe2 van der Waals
heterostructure. ACS Nano. 2014;8:12717-12724.

17. Ji Z, Hong H, Zhang J, et al. Robust stacking-independent ultrafast
charge transfer in MoS2/WS2 bilayers. ACS Nano. 2017;11:12020-
12026.

18. Merkl P, Mooshammer F, Steinleitner P, et al. Ultrafast transition
between exciton phases in van derWaals heterostructures.NatMater.
2019;18:691-696.

19. Schmitt D, Bange JP, BenneckeW, et al. Formation ofMoire interlayer
excitons in space and time. arXiv preprint arXiv:2112.05011. 2021.

20. Deilmann T, Thygesen KS. Interlayer excitons with large optical ampli-
tudes in layered van derWaals materials.Nano Lett. 2018;18:2984.

21. Hill HM, Rigosi AF, Rim KT, Flynn GW, Heinz TF. Band align-
ment in MoS2/WS2 transition metal dichalcogenide heterostructures
probed by scanning tunnelingmicroscopy and spectroscopy.Nano Lett.
2016;16:4831-4837.

22. ÖzcelikVO,Azadani JG, YangCe, Koester SJ, LowT. Band alignment of
two-dimensional semiconductors for designing heterostructures with
momentum spacematching. Phys Rev B. 2016;94:035125.

23. Ovesen S, Brem S, Linderälv C, et al. Interlayer exciton dynamics in van
derWaals heterostructures. Commun Phys. 2019;2:1-8.

24. Wang Y, Wang Z, Yao W, Liu G-B, Yu H. Interlayer coupling in com-
mensurate and incommensurate bilayer structures of transition-metal
dichalcogenides. Phys Rev B. 2017;95:115429.

25. Zheng Q, Saidi WA, Xie Y, et al. Phonon-assisted ultrafast charge
transfer at van der Waals heterostructure interface. Nano Lett.
2017;17:6435-6442.

26. Liu F, LiQ, ZhuX-Y.Direct determination ofmomentum-resolved elec-
tron transfer in the photoexcited van der Waals heterobilayer W S
2/Mo S 2. Phys Rev B. 2020;101:201405.

27. Hagel J, BremS, LinderälvC, Erhart P,Malic E. Exciton landscape in van
derWaals heterostructures. Phys Rev Res. 2021;3:043217.

28. Brem S, Linderalv C, Erhart P, Malic E. Tunable phases of Moiré
excitons in van derWaals heterostructures. Nano Lett. 2020;20:8534-
8540.

29. Katsch F, Selig M, Carmele A, Knorr A. Theory of exciton–exciton
interactions inmonolayer transitionmetal dichalcogenides.Phys Status
Solidi (b). 2018;255:1800185.

30. Brem S, Lin K-Q, Gillen R, et al. Hybridized intervalley Moiré excitons
and flat bands in twisted WSe 2 bilayers. Nanoscale. 2020;12:11088-
11094.

31. Merkl P,Mooshammer F, Brem S, et al. Twist-tailoring Coulomb corre-
lations in van derWaals homobilayers.Nat Commun. 2020;11:1-7.

32. Kormányos A, Burkard G, Gmitra M, et al. k⋅p theory for two-
dimensional transition metal dichalcogenide semiconductors. 2D
Materials. 2015;2:022001.

33. Laturia A, Put ML, VandenbergheWG. Dielectric properties of hexag-
onal boron nitride and transition metal dichalcogenides: from mono-
layer to bulk. npj 2DMater Appl. 2018;2:1-7.

34. Song Y, Dery H. Transport theory of monolayer transition-metal
dichalcogenides through symmetry. Phys Rev Lett. 2013;111:026601.

35. Glazov MM, Amand T, Marie X, Lagarde D, Bouet L, Urbaszek B. Exci-
ton fine structure and spin decoherence in monolayers of transition
metal dichalcogenides. Phys Rev B. 2014;89:201302.

36. Selig M, Berghäuser G, Richter M, Bratschitsch R, Knorr A, Malic E.
Dark and bright exciton formation, thermalization, and photolumines-
cence in monolayer transition metal dichalcogenides. 2D Materials.
2018;5:035017.

37. Deilmann T, Thygesen KS. Finite-momentum exciton landscape in
mono- and bilayer transition metal dichalcogenides. 2D Materials.
2019;6:035003.

38. Erkensten D, Brem S, Wagner K, et al. Dark exciton–exciton anni-
hilation in monolayer transition-metal dichalcogenides. Phys Rev B.
2021;104:L241406.

39. Haug H, Koch SW. Quantum Theory of the Optical and Electronic
Properties of Semiconductors. World Scientific Publishing Company;
2009.

40. Thränhardt A, Kuckenburg S, Knorr A, Meier T, Koch SW. Quan-
tum theory of phonon-assisted exciton formation and luminescence in
semiconductor quantumwells. Phys Rev B. 2000;62:2706.

41. Brem S, SeligM, Berghaeuser G, Malic E. Exciton relaxation cascade in
two-dimensional transitionmetal dichalcogenides. Sci Rep. 2018;8:1-8.

42. Cappelluti E, Roldán R, Silva-Guillén JA, Ordejón P, Guinea F. Tight-
binding model and direct-gap/indirect-gap transition in single-layer
andmultilayerMoS 2. Phys Rev B. 2013;88:075409.

43. Gillen R,Maultzsch J. Interlayer excitons inMoSe2/WSe2 heterostruc-tures from first principles. Phys Rev B. 2018;97:165306.
44. Brem S, Zipfel J, Selig M, et al. Intrinsic lifetime of higher excitonic

states in tungsten diselenide monolayers. Nanoscale. 2019;11:12381-
12387.

45. Jin Z, Li X, Mullen TJ, Kim WK. Intrinsic transport properties of elec-
trons and holes in monolayer transition-metal dichalcogenides. Phys
Rev B. 2014;90:045422.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Support-
ing Information section at the end of this article.

How to cite this article: Meneghini G, Brem S,Malic E.
Ultrafast phonon-driven charge transfer in van derWaals
heterostructures.Nat Sci. 2022;e20220014.
https://doi.org/10.1002/ntls.20220014



Ultrafast phonon-driven charge transfer in van der Waals heterostructures

Supplementary Information

Giuseppe Meneghini,1, ∗ Samuel Brem,1 and Ermin Malic1, 2

1Department of Physics, Philipps University of Marburg, 35037 Marburg, Germany
2Department of Physics, Chalmers University of Technology, 41258 Göteborg, Sweden

THEORETICAL APPROACH

Keldysh potential: To describe the TMD bilayer system we need to include the correct dielectric screen-
ing originating from the presence of two different TMDs monolayers. Choosing a reference at z = 0 at the
interface of the two layers, we can address the position of a charge placed in the middle of one of the two
layers (denoted by the index L = 0, 1), i.e. z = ±dL/2 with the layer width dL, addressing the background
dielectric constant (with the subscript bg). We can write the general dielectric constant as

ϵL(r) =





ϵLbg, if z < −d0
ϵL0 , if − d0 < z < 0

ϵL1 , if 0 < z < d1

ϵLbg, if z > d1

(1)

and solve the Poisson equation for the system using as boundary conditions Eq. (1) [1, 2]. This way we
obtain an analytical expression for the screened Coulomb matrix element

WLL′
q =

e20
2ϵ0Aq ϵLL′(q)

ϵLL′(q) =

{
ϵLintra(q), if L = L′

ϵinter(q), if L ̸= L′

(2)

with ϵinter(q) = κbgg
0
qg

1
qfq and ϵLintra(q) =

κbgg
1−L
q fq

ch(δ1−Lq/2)hL
q
, κ =

√
ϵ∥ϵ⊥, δL = αLdL, α =

√
ϵ∥/ϵ⊥. Here,

have introduced the following abbreviations:

fq = 1 +
1

2

[(
κ0
κbg

+
κbg
κ0

)
th (δ0q) +

(
κ1
κbg

+
κbg
κ1

)
th (δ1q) +

(
κ0
κ1

+
κ1
κ0

)
th (δ0q) th (δ1q)

]

hLq = 1 +
κbg
κL

th (δLq) +
κbg
κ1−L

th (δ1−Lq/2) +
κL
κ1−L

th (δLq) th (δ1−Lq/2)

gLq =
ch (δLq)

ch (δ1−Lq/2)
[
1 +

κbg

κL
th (δLq)

]

(3)

Tunnelling Hamiltonian: In this section, we provide details on the transformation of the tunneling
Hamiltonian into the exciton basis [3]. Starting from the electron-hole picture we can write the tunnelling
Hamiltonian in the following way:

T =
∑

i,j,k,λ

Tλ
ij(kq)a

†
λik+qaλjk (4)

with Tλ
ij(kq) = (1−δLiLj ) ⟨λik+ q|V0+V1 |λjk⟩, where λ = c, v is the band index, i/j = (L, ζ) and VL (with

L = 0, 1) the electrostatic potentials generated by the two layers. Assuming tight-binding wave functions, the
overlap of electronic wavefunctions is becoming rapidly very small for q > 0, and thus justifying the restriction



2

to processes of vanishing momentum transfer q. In our effective model, where we describe electrons and holes
in proximity of high-symmetry points of the Brillouin zone using an effective mass approximation, this allows
only intravalley tunneling. We now perform the change of basis into the excitonic picture, as explained in
the theory section of the main part yielding:

TX =
∑

µ,ν,Q

TµνX
µ†
Q Xν

Q. (5)

We have introduced the excitonic tunnelling matrix elements

Tµν = δLµ
hL

ν
h
(1− δLµ

eLν
e
)T c

µν − δLµ
eLν

e
(1− δLµ

hL
ν
h
)T v

µν

T c
µν = δζµζνT c

ijFµν and T v
µν = δζµζνT v

ijFµν

(6)

with Fµν =
∑

k ψ
µ∗(k)ψν(k) and Tλ

ij defined as in Eq. (4) with i, j describing the electron/hole quantum
numbers.

Hybrid-exciton-phonon and hybrid-exciton-light Hamiltonian: The contribution of the electron-
phonon interaction to the Hamiltonian reads in second quantization

He−ph =
∑

m,n,λ,j

D
ζλ
mζλ

nλ
j,km−kn

a†λ,maλ,n
(
bj,kn−km

+ b†j,km−kn

)

with D
ζλ
mζλ

nλ
j,q ≈

√
ℏ

2ρLph
j
AΩjq

D̃
ζλ
mζλ

nλ
j,q

and D̃
ζλ
mζλ

nλ
j,q =




D̃λ

ζ q if ζλm = ζλn = ζ and κj = TA,LA

D̃λ
ζλ
mζλ

n
else

and Ωjq =

{
vjq if κj = TA,LA

Ω
j

else

(7)

where a
λ(†)
m are electron (creation) annihilation operators with λ as the band index and m = (km, ζm, Lm)

labelling the different electronic quantum states. Here, km denotes the electron momentum with respect to

the main high-symmetry point labeled by ζm. Furthermore, we have introduced b
(†)
j,q as phonon (creation)

annihilation operators with j = (κj , ζ
ph
j , Lph

j ) as compound index including the phonon branch κj , the phonon

valley index ζphj and the phonon layer index Lph
j . Finally, ρ denotes the surface mass density of the TMD

layer. The strength of the electron-phonon coupling D̃λ
ζλ
mζλ

n
, the sound velocities (vα) and energy of optical

phonons (Ωλ
ζph
j

) are taken from DFT calculations [4].

Now, we change into the excitonic basis yielding the exciton-phonon Hamiltonian

HX−ph =
∑

j,Q,q,µ,ν

D̃νµ
j,q,QX

ν†
Q+qX

µ
Qbj,q + h.c.

with D̃νµ
j,q,Q = D

ζe
µζ

e
νc

j,q δζh
µζh

ν
δζe

ν−ζe
µ,ζ

ph
j
δLe

ν ,L
ph
j
δLe

ν ,L
e
µ
Fµν (βν [q+ sµνQ]) +

−D
ζh
µζh

ν v

j,q δζe
µζ

e
ν
δζh

ν −ζh
µ ,ζph

j
δLh

ν ,L
ph
j
δLh

ν ,L
h
µ
Fµν (−αν [q+ sµνQ])

and Fµν (q) =
∑

k

ψµ∗(k+ q)ψν(k)

(8)

with the excitonic eigenfunction ψµ(k) and with sµν = 1−Mν/Mµ. Since sµνQ is a small vector in comparison
to the phonon momentum in the intervalley scattering process, we can neglect the Q-dependence in the form
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factors F . This implies Dνµ
j,q,Q ≈ Dνµ

j,q. Finally, we perform the change into the hybrid-exciton basis [3], as
introduced in the main text, and we arrive at the following final hybrid-exciton-phonon Hamiltonian

HY−ph =
∑

j,Q,q,η,ξ

Dξη
j,q,QY

ξ†
Q+qY

η
Qbj,q + h.c.

with Dξη
j,q,Q =

∑

µ,ν

cη∗µ (Q)cξν(Q+ q)D̃νµ
j,q.

(9)

To include an optical excitation with a laser pulse, we use the interband part of the light-electron interaction
Hamiltonian

He−l =
e0
m0

∑

m,n,σ

A ·Mcv
mn,σa

†
c,mav,n (10)

where e0,m0 are the electron charge and mass, respectively. Furthermore, Mcv
mn,σ = −iℏ ⟨nv| ∇ |mc⟩ is the

optical matrix element containing the selection rules for the system with σ describing the polarization and
A the vector potential of the light pulse. Now, we change to the exciton picture obtaining

HX−l =
∑

σ,Q,µ

A · Mµ
QσX

µ
Q∥

+ h.c.

with Mµ
Qσ =

e0
m0

δζµ
e ζµ

h ,KKMcv
Qσ

∑

k

ψµ∗(k).

(11)

It is important to notice that inside Mcv
Qσ the selection rules imply that the electron and hole have to be

localized at the K valley, since photons exhibit only a negligible momentum and can only induce direct
transitions. In the hybrid-exciton basis, we obtain

Hybrid-exciton dynamics: After truncating the hierarchy problem to include only single-particle and
two-particle contributions, we obtain two coupled equations

∂tN
η
Q =

2

ℏ
∑

ξ,Q,±
Im
(
Dξη

j,qCηξ,±
jqQ

)

iℏ∂tCηξ,±
jqQ =

(
Eξ
Q−q − Eη

Q ∓ ℏΩjq

)
Cηξ,±
jqQ −Dξη∗

j,q

(
β∓
q N

ξ
Q−q − β∓

q N
η
Q

) (12)

where we have defined Cηξ,±
jqQ =

〈
Y η†
Q Y ξ

Q−qb
†/()
j,∓,q

〉
, and β±

q = 1/2∓1/2+
〈
b†qbq

〉
. To obtain the second equation

we have neglected non-linear terms in the densities (∝ N2). Now, we apply the Markov approximation [5–8]

for solving the equation for Cηξ,±
jqQ yielding

Cηξ,±
jqQ ≈ iπDξη∗

j,q

(
β∓
q N

ξ
Q−q − β±

q N
η
Q

)
δ
(
Eξ
Q−q − Eη

Q ∓ ℏΩjq

)
(13)

which inserted in the first equation of Eq. (12) results in the Boltzmann scattering equation

∂tN
η
Q =

∑

ξ,Q′

(
W ξη

Q′QN
ξ
Q′ −W ηξ

QQ′N
η
Q

)

W ηξ
QQ′ =

2π

ℏ
∑

j,±

∣∣∣Dηξ
j,Q′−Q

∣∣∣
2
(
1

2
± 1

2
+ nphj,Q′−Q

)
δ
(
Eξ
Q′ − Eη

Q ∓ ℏΩjQ′−Q

) (14)

We introduce the coherent hybrid polarization P η
Q =

〈
Y η†
Q

〉
and the incoherent hybrid exciton population

δNη
Q =

〈
Y η†
Q Y η

Q

〉
−
〈
Y η†
Q

〉〈
Y η
Q

〉
= Nη

Q −
∣∣∣P η

Q

∣∣∣
2

. (15)
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FIG. 1: (a) Hybrid-exciton energy landscape and (b) momentum-integrated dynamics for MoSe2-WSe2 in
RM

h stacking at 77 K.

FIG. 2: (a) Hybrid-exciton energy landscape and (b) momentum-integrated dynamics for MoSe2-WSe2 in
RX

h stacking at 77 K.

As next, we derive the equation of motion for the coherent polarization

iℏ∂tP η
0 = −(Eη

0 + iΓη
0)P

η
0 − M̃η

0 ·A(t) (16)

where 0 refers to Q = 0 due to the condition that the laser pulse only creates hybrid excitons around Q = 0
at the K valley. The incoherent dynamics is given by

δṄη
Q = ∂t

(
Nη

Q −
∣∣∣P η

Q

∣∣∣
2
)

= Ṅη
Q − 2Re

{
Ṗ η
QP

η∗
Q

}
δQ=0 (17)

which yields the equation of motion for incoherent hybrid exciton densities

δṄη
Q =

∑

ξ

W ξη
0Q|P η

0 |
2
+
∑

ξ,Q′

(
W ξη

Q′QδN
ξ
Q′ −W ηξ

QQ′δN
η
Q

)
(18)

We use the last equation to track the dynamics of hybrid excitons in TMD heterostructures including the
polarization to population transfer creating incoherent excitons as well as phonon-assisted exciton relaxation
into an equilibrium Boltzmann distribution.
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CHARGE TRANSFER IN THE MOSE2-WSE2 HETEROSTRUCTURE

In the main manuscript, we have discussed the hybrid exciton landscape and dynamics in Rh
h stacking.

Here, we show the other two high-symmetry stackings RM
h and RX

h . The main difference originates from a
more pronounced tunneling at the Λ point. This is due to wave function overlap around the Λ point which
has a significantly high contribution also from chalcogen atoms in these stackings [9]. This results in larger
red-shifts of KΛhyb excitons bringing them closer to the energetically lowest interlayer KWKMo excitons, cf.
Figs. 1(a) and 2(a). The hybrid-exciton dynamics remains generally the same as for the Rh

h stacking, i.e.
the charge transfer occurs in a two-step process via phonon-mediated scattering into the strongly hybridized
KΛhyb excitons, cf. Figs. 1(b) and 2(b). The main difference is a larger stationary population of the hybrid
KΛhyb excitons state as they are closer in energy to the KWKMo excitons (cf. solid purple line in Figs. 1(b)
and 2(b)). This means that the charge transfer is more incomplete compared to the Rh

h stacking. This is in
particular the case for the RX

h stacking, where KΛhyb and KWKMo excitons are nearly degenerate, cf. Figs.
2(a), as further discussed in the main text.

INTERPLAY OF OPTICAL PUMPING AND DYNAMICS

While in the main text we have considered the situation of an instantaneous initial non-equilibrium pop-
ulation in the intralayer KWKW exciton and the subsequent relaxation cascade, we investigate here the
hybrid-exciton dynamics taking explicitly into account the interplay of optical pumping and relaxation dy-
namics.

We apply a laser pulse with a width of 50 fs and an energy resonant to KWKW excitons and investigate
the MoSe2-WSe2 heterostructure in Rh

h at 77 K, cf. Fig. 3. Comparing the dynamics with the instantaneous
initial population in the main text, we observe the same qualitative behaviour in terms of the two-step
charge transfer process via phonon-mediated scattering into the strongly hybridized KΛhyb excitons. The
main difference occurs in the early stage of the dynamics, i.e. as soon as hybrid-excitons are generated they
start relaxing to lower energy state. As a result, the maximum occupation of KWKW does not go beyond 0.5.

FIG. 3: Momentum-integrated hybrid-exciton dynamics at 77 K for MoSe2-WSe2 in Rh
h stacking after

optical excitation with a laser pulse that is resonant to the KWKW excitons in the WSe2 layer and has
width of 50 fs. During the laser pulse there is an interplay of optical excitation and phonon-mediated
hybrid-exciton relaxation and charge transfer processes.
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FIG. 4: (a) Hybrid-exciton energy landscape and (b) momentum-integrated dynamics for MoS2-WS2 in Rh
h

stacking at 77 K.

FIG. 5: (a) Hybrid-exciton energy landscape and (b) momentum-integrated dynamics for MoS2-WS2 in RM
h

stacking at 77 K.

Other than that the hybrid exciton dynamics is almost identical with the one in the main text. However, the
interplay of an inward and outward flux of hybrid-excitons from the initial state add an external dependence
on the excitation processes, which makes the evaluation of an intrinsic timescale for the charge transfer more
complicated. As the dynamics is the same, we have decided to study the charge transfer using the simpler
initialization in the main text.

CHARGE TRANSFER IN THE MOS2-WS2 HETEROSTRUCTURE

Here, we present the results for the MoS2-WS2 heterostructure and discuss in particular the differences
compared to the MoSe2-WSe2 heterostructure discussed in the main part. The main difference in the hybrid-
exciton energy landscape is the appearance of the ΓhybKMo exciton as the energetically lowest state for all
three high-symmetry stackings, cf. Figs. 4, 5, and 6. We find that it is a highly hybridized state consisting
of interlayer and intralayer excitons in the Mo layer. This means that for the MoS2-WS2 heterostructure the
charge transfer will be a three-step process. There is first a phonon-mediated electron transfer that occurs
via scattering to the hybridized KWΛhyb excitons to the interlayer KWKMo states - similar to the situation
in the MoSe2-WSe2 bilayer, discussed in the main part. In contrast to the latter, in MoS2-WS2, the electron
transfer is followed by a consecutive hole transfer to the energetically lowest ΓhybKMo excitons. This occurs
on a slower timescale in the range of hundreds of femtoseconds, cf. the red solid lines in Figs. 4(b), 5(b),
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FIG. 6: (a) Hybrid-exciton energy landscape and (b) momentum-integrated dynamics for MoS2-WS2 in RX
h

stacking at 77 K.

and 6(b).
The much larger energy window and the relative energy difference between the states relevant for the

relaxation cascade make the charge transfer processes slower in MoS2-WS2. We predict a characteristic time
for the charge transfer to be τ = 142 fs for Rh

h stacking at 77 K (Fig. 7(a)), which is almost double as large
as for MoSe2-WSe2. Furthermore, the stacking dependence is more pronounced, since the strong tunnelling
at the Γ point and the corresponding red-shift makes the ΓhybKW state accessible through scattering with
phonons in the case of RM

h and RX
h stacking (cf. Figs. 5(a) and 6(a)). This state considerably slows down the

FIG. 7: (a) Characteristic charge transfer time for MoS2-WS2 for all three high-symmetry stackings at 77
K. The time is evaluated through an exponential fit of the electron probability Pe plotted in part (b). We
observe a complete charge transfer for Rh

h stacking (solid lines), while there is only a partial charge transfer
for RX

h and RM
h stackings (dashed and dashed-dotted lines).
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electron transfer, since the population entering the state is trapped and cannot further relax. There is only
the KWΛhyb state in the vicinity which has a similar composition and could be a scattering partner. However,
the scattering into this state requires a simultaneous electron and hole scatter, which is a weak high-order
process. As the ΓhybKW state is relatively low in energy in the RX

h stacking, the percentage of population
trapped in this state is higher with respect to the RM

h stacking (Pe = 0.38 for RX
h against Pe = 0.61 for RM

h ,
cf. Fig. 7(b)). This explains the slowest charge transfer found for RX

h stacking.
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Formation of moiré interlayer excitons in 
space and time

David Schmitt1, Jan Philipp Bange1, Wiebke Bennecke1, AbdulAziz AlMutairi2, 
Giuseppe Meneghini3, Kenji Watanabe4, Takashi Taniguchi5, Daniel Steil1, D. Russell Luke6, 
R. Thomas Weitz1,7, Sabine Steil1, G. S. Matthijs Jansen1, Samuel Brem3, Ermin Malic3,8, 
Stephan Hofmann2, Marcel Reutzel1 ✉ & Stefan Mathias1,7 ✉

Moiré superlattices in atomically thin van der Waals heterostructures hold great 
promise for extended control of electronic and valleytronic lifetimes1–7, the 
confinement of excitons in artificial moiré lattices8–13 and the formation of exotic 
quantum phases14–18. Such moiré-induced emergent phenomena are particularly 
strong for interlayer excitons, where the hole and the electron are localized in 
different layers of the heterostructure19,20. To exploit the full potential of correlated 
moiré and exciton physics, a thorough understanding of the ultrafast interlayer 
exciton formation process and the real-space wavefunction confinement is 
indispensable. Here we show that femtosecond photoemission momentum 
microscopy provides quantitative access to these key properties of the moiré 
interlayer excitons. First, we elucidate that interlayer excitons are dominantly 
formed through femtosecond exciton–phonon scattering and subsequent charge 
transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer 
excitons exhibit a momentum fingerprint that is a direct hallmark of the 
superlattice moiré modification. Third, we reconstruct the wavefunction 
distribution of the electronic part of the exciton and compare the size with the 
real-space moiré superlattice. Our work provides direct access to interlayer  
exciton formation dynamics in space and time and reveals opportunities to study 
correlated moiré and exciton physics for the future realization of exotic quantum 
phases of matter.

The advent of two-dimensional van der Waals materials21 has led to 
remarkable strategies to manipulate correlated material properties. 
In transition-metal dichalcogenides (TMDs), exceptional light–matter 
coupling and weak Coulomb screening of photoexcited electron–
hole pairs allows the realization of novel spin, valley and excitonic 
properties of matter22,23. Even more intriguing material properties 
can be accomplished in TMDs by stacking several monolayers into 
heterostructures19,20,24. In type II band-aligned stacks, novel excitonic 
states can be created, where the electron and the hole contribution to 
the exciton are separated between the van der Waals-coupled TMDs13 
(Fig. 1e). A key question that remains unanswered is how these inter-
layer excitons (ILXs) are formed. Furthermore, the lattice mismatch 
and the twist angle between the TMDs induce a moiré superlattice, 
which makes it necessary to understand how precisely the interac-
tion of the exciton and the moiré potential determines the material 
properties (Fig. 1d). Most intriguingly, it has been shown by optical10–12  
and momentum microscopy13 experiments that ILXs can be confined 
within the moiré potential minima. However, a substantial open 

challenge is the experimental identification of universal hallmarks 
that indicate signatures of the moiré superlattice imprinted onto 
the ILX.

Experimental quantitative insight into the ILX formation process 
and the influence of moiré modulation on the ILX is currently limited. 
All-optical spectroscopy techniques are sensitive only to transitions 
within the light cone25 and thus lack the momentum information that 
is necessary to gain access to the time-dependent energy–momentum 
fingerprints of the probed quasiparticles26–28. Using multidimensional 
time- and angle-resolved photoelectron spectroscopy (trARPES) on 
a tungsten diselenide/molybdenum disulfide (WSe2/MoS2) hetero-
structure, we experimentally find that ILXs are dominantly formed 
through exciton–phonon scattering via intermediate dark excitonic 
states at the Σ valleys of the hexagonal Brillouin zones. These results 
are fully supported by a microscopic model including exciton–light 
and exciton–phonon interaction on a microscopic footing. Further-
more, we observe a complex momentum fingerprint of the ILX, and we 
show that this fingerprint is a direct hallmark signature of the moiré 
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superlattice modification. From this data, we then reconstruct the 
real-space wavefunction probability density of the electronic part of 
the exciton’s wavefunction, which we compare with the moiré super-
lattice size.

Electronic band structure of WSe2/MoS2

We focus our study on the model system WSe2/MoS2 with a twist angle 
of 9.8 ± 0.8° (Extended Data Figs. 1 and 4)29 and use our customized 
trARPES system that combines a momentum microscope30 with a 
high-repetition-rate high-harmonic generation beamline (Fig. 1a and 
Methods)31,32. The 100-μm2 heterobilayer region can be identified in 
the real-space distribution of the measured photoelectron yield (Fig. 1c 
and Extended Data Fig. 1e,f). By placing an aperture into the real-space 
image plane of the microscope (red circle in Fig. 1c), we can selectively 
probe the occupied band structure of WSe2/MoS2. The sample quality 
is evidenced by the sharp spectral features of the occupied electronic 
structure and the signature of interlayer hybridization of the valence 
bands of WSe2 and MoS2 at the Γ valley33 (Fig. 1b, energy resolution of 
about 200 meV; Extended Data Figs. 2 and 3).

Femtosecond ILX formation dynamics
We follow the build-up process of the ILX by resonantly exciting the 
optically bright AW exciton of WSe2 with 1.7 eV, 50 ± 5 fs pulses and study 
the subsequent ILX formation via photoemission with 26.5 eV, 21 ± 5 fs 
extreme ultraviolet (XUV) probe pulses (see Extended Data Fig. 5 for 
spectral assignment of the valence and conduction bands and the WSe2 
and MoS2 A excitons). Figure 2a shows the highest spectral weight for 
the electronic part of the bright AW exciton at a delay of around 0 fs and 
1.7 eV above the valence-band maximum (orange dashed line; exciton 

density (5.4 ± 1.0) × 1012 cm−2; compare with Extended Data Fig. 8b)26–28,34.  
On the few-hundred-femtosecond timescale, we observe the formation 
of a second peak at lower photoemission energy (red dashed line). We 
identify this peak as the photoemitted electronic contribution of the 
ILX. The long-lived photoemission signature is detected below the AW 
exciton resonance at about 1.1 eV above the valence-band maximum 
of WSe2, in agreement with static photoluminescence experiments 
on a WSe2/MoS2 heterobilayer35. For the unambiguous attribution of 
the photoemission yield to an interlayer effect, we repeated the same 
analysis with data obtained from monolayer WSe2 (Fig. 2b and dashed 
orange circle in Fig. 1c). Here, no spectral weight is observed in the ILX’s 
energetic region, which clearly shows that the spectral weight in the 
heterobilayer measurement results from the charge transfer of the 
electron contribution of the exciton into the MoS2 layer. We note that 
the identification of the ILX is in agreement with a recent trARPES study 
on 2°-twisted WSe2/MoS2 (ref. 13). Interestingly, in addition to the elec-
tron contribution to the ILX, ref. 13 also identified the hole contribution 
to the ILX in energy–momentum-resolved spectra. Such a signature is 
not found in our analysis (Fig. 1b), which is most likely related to the 
different twist angles and related exciton confinement effects.

The exact mechanism of the ILX formation and the corresponding 
ultrafast charge separation is still a major open question20. It has been 
proposed that the ILX can be formed through interlayer tunnelling of 
its electron contribution at the K valleys5,6, or, alternatively, through the 
intermediate formation of dark intralayer excitons, where the electron 
contribution is first scattered to the Σ valley and, subsequently, trans-
ferred to the neighbouring layer4,36,37. In this context, the strength of 
the trARPES experiment is that the femtosecond evolution of optically 
dark ΣW excitons can be explicitly monitored26–28. In Fig. 2c, we therefore 
investigate the delay-dependent transfer of spectral weight between 
the electronic parts of the bright WSe2 AW exciton, the dark WSe2 ΣW 
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Fig. 1 | Inter- and intralayer excitons in WSe2/MoS2 probed by femtosecond 
momentum microscopy. a, Illustration of the experimental set-up and the 
WSe2/MoS2/hBN sample. b, The valence bands of WSe2 (2), MoS2 (3) and hBN  
(4) are labelled in the energy–momentum cut. At 0 fs, bright AW excitons (1) are 
detected at the KW and K′W valleys of WSe2. c, The heterostructure can be 
identified in the real-space mode of the microscope. The WSe2/MoS2 and WSe2 
regions of interest are indicated by red and orange circles, respectively  

(10-µm diameter; Methods). d, The hexagonal Brillouin zones of WSe2 (orange) 
and MoS2 (dark red) are misaligned by a twist angle Θ. e, Bright AW and AMo 
excitons of WSe2 (orange) and MoS2 (dark red) can be resonantly excited with 
1.7-eV and 1.9-eV pump photons, respectively (VBW and VBMo, valence-band 
maxima; CBW and CBMo, conduction-band minima). The hole and the electron 
contribution of the ILX resides in the WSe2 and MoS2 layers, respectively.



Nature  |  Vol 608  |  18 August 2022  |  501

exciton and the ILX (data handling in Extended Data Figs. 6 and 7;  
long-term picosecond dynamics in Extended Data Fig. 9). Initially, 
during the duration of the pump pulse, we find that bright WSe2 AW 
excitons are efficiently excited (orange data points). Subsequently, 
the weight of their photoemission signature decreases in intensity, 
whereas, concomitant, spectral yield is detected for the WSe2 ΣW exciton 
(grey) and the ILX (red). In particular, we find that for the time evolu-
tion after the optical excitation and the initial build-up, the decrease of 
spectral weight of the electronic contribution of the ΣW exciton is syn-
chronous to the increase of spectral weight of the ILX, strongly hinting 
at an ILX formation process through intermediate scattering through 
the ΣW valley. Here, a quantitative analysis yields delayed onsets with 
respect to the AW-exciton signal of 33 ± 6 fs for the ΣW-exciton forma-
tion and 54 ± 7 fs for the ILX (Extended Data Fig. 9a). To corroborate 
the proposition of interlayer charge transfer through the ΣW valley, 
we compare the trARPES data with predictions stemming from a fully 
microscopic model. We combine the density matrix formalism6,38 with 
material-specific parameters from first principle calculations to simu-
late the formation dynamics of interlayer excitons after the optical exci-
tation of intralayer excitons. In the model, we include the full exciton 
landscape of bright and dark intralayer, interlayer and hybrid excitons 

and all phonon-assisted transition channels between these states. We 
find that the most efficient exciton relaxation pathway is given by the 
cascade of optically excited exciton states AW → ΣW → ILX (inset in Fig. 2c; 
compare with  Supplementary Information). The direct comparison of 
experiment (symbols) and theory (lines) in Fig. 2c confirms an excellent 
agreement. This shows, from both an experimental and a theoretical 
point of view, that phonon-assisted scattering through dark-layer mixed 
states is indeed the dominant pathway for the formation of the ILX in 
the 9.8 ± 0.8°-twisted WSe2/MoS2 heterostructure.

The ILX moiré superlattice hallmark
Although trARPES with XUV pulses is an ideal approach to study the 
ILX formation process, the combination with multidimensional 
momentum microscopy allows the identification of momentum-space 
signatures that are caused by the real-space moiré superlattice. In this 
manner, Fig. 3a–c shows the momentum structure of the AW exciton, 
the ΣW exciton and the ILX, respectively (additional data in Extended 
Data Fig. 6). Although the momentum fingerprints of the AW exciton 
and the ΣW exciton appear as expected26,27, the ILX momentum structure 
is clearly more complex. Without consideration of the moiré superla-
ttice, for the ILX, one would expect to detect photoemission yield at 
the in-plane momentum of the electron contribution to the quasipar-
ticle, that is, at the KMo (K′Mo) valleys of MoS2 (corners of the dotted dark 
red hexagon in Fig. 3c). However, the measured momentum fingerprint 
shows a strikingly richer structure. We observe a complex momentum 
structure that is dominated by three peaks that are centred around the 
KW (K′W) valleys (orange hexagon in Fig. 3c). Apparently, the ILX momen-
tum fingerprint exhibits additional features that are not observed for 
any other spectral feature in our data: so far, all other occupied bands 
and excitonic states were unambiguously assignable to the periodicity 
of either the WSe2 top layer or the MoS2 bottom layer.

The most interesting question now is whether the observed ILX 
momentum structure may be identified as a hallmark of the moiré 
superlattice that is created by the 9.8 ± 0.8°-twisted Brillouin 
zones of WSe2 and MoS2. To answer this question, we construct the 
momentum-space equivalent of the real-space moiré periodicity, 
which is the mini Brillouin zone (mBZ) that is shown on top of the 
momentum-resolved photoemission data of the ILX in Fig. 3c (red 
hexagon). Within the mBZ, we can now unambiguously identify that 
the three-peak structure is indeed a fingerprint of the moiré superlat-
tice, as the spectral features clearly coincide with the high-symmetry 
κ valleys of the mBZ.

Having identified the correlation between the ILX momentum 
fingerprint and the moiré superlattice, we aim to model the distinct 
photoemission intensity distribution of the ILX. For this purpose, we 
make use of previous studies on interlayer interaction in incommen-
surate atomic layers39. In particular, we follow the notation in ref. 39,  
where the interlayer coupling in reciprocal space is expressed in 
terms of a generalized umklapp process (Fig. 3d; details in Methods). 
A straightforward geometrical construction following this work yields 
the intensity distribution shown in Fig. 3d: the highest photoemission 
yield is expected for momenta marked by circles, which correspond 
to the κ points of the mBZ. Weaker photoemission yield is expected in 
areas marked by squares, which indeed are partially and faintly visible 
in the data. Finally, negligible signal is expected in momentum areas 
marked by triangles, consistent with our experimental data.

However, despite the good agreement of the data with this generalized 
umklapp process, the interpretation of the momentum structure being 
a result of interlayer interaction is not obvious, because interlayer cou-
pling at the K valleys was mostly regarded as negligibly small owing to the 
in-plane orbital character in this valley4,36. A regular final-state scattering 
can be excluded, as only the ILX signal is exhibiting these replicas. The 
threefold signal should also not be a result of an exciton wavefunction 
that is confined in a single moiré potential well, as a modification of the 
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relative or centre-of-mass motion of the electron–hole pair becomes 
important for only large moiré wavelengths, that is, for twist angles less 
than 2° (refs. 10–12), in agreement with a recent momentum microscopy 
experiment13 (Extended Data Fig. 10). Instead, as the photoemitted 
electron of the ILX has been bound to a hole that remains in the hetero-
structure, we find here that the umklapp process is transferred through 
the Coulomb interaction. Thus, to imprint the moiré superlattice onto 
the excitonic photoemission signal, it is necessary that the electron 
and the hole components are found in the neighbouring TMD layers 
such that the quasiparticle experiences the lattice periodicities of both.  

In consequence, for intralayer AW and ΣW excitons, where electron and 
hole reside in WSe2, we do not expect and also do not observe the moiré 
superlattice hallmark in the momentum-resolved photoemission inten-
sity (Fig. 3a,b and Extended Data Fig. 4). To unambiguously assign the 
microscopic origin of the moiré hallmark in the excitonic momentum 
fingerprint, however, further theory on photoemission from excitonic 
quasiparticles is necessary. Nevertheless, our analysis shows that the 
complex momentum structure of the ILX is a hallmark fingerprint of 
moiré superlattice modification that has not been observed so far and 
is clearly unique for the ILXs in a twisted heterostructure.
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ILX real-space wavefunction analysis
Finally, we determine the electron contribution to the real-space wave-
function of intra- and interlayer excitons. We follow the framework of 
photoemission orbital tomography40 and recent developments that 
have been carried out for TMD excitons13,28,34. We use the relation 
I k k Ψ r r( , ) ∝ FT{ ( , )}x y x y

2∣ ∣  that connects the real-space wavefunction 
Ψ r r( , )x y  with the momentum-resolved photoemission intensity 
I k k( , )x y  within the plane-wave approximation28,40 (Methods). The mul-
tidimensional data collection scheme now facilitates the direct com-
parison of the real-space extension rx,y of the electronic wavefunction 
contribution of the excitons with the spatial extension of the moiré 
unit cell (Fig. 4). We extract the respective Bohr radii as rB

ILX = 1.6 ± 0.2 nm 
and rB

AW  = 1.1 ± 0.1 nm (root mean square), which is in agreement with 
a recent analysis13 (Methods). We can draw two conclusions. The exten-
sion of the electronic contribution to the ILX wavefunction is larger 
than the moiré period of the 9.8 ± 0.8°-twisted heterostructure 
(|Rmoiré| = 1.84 ± 0.15 nm), that is, the ILX can propagate laterally through 
the heterostructure and is not confined to a single moiré potential well. 
Second, the analysis shows that the ILX extension is significantly 
broader than that of the WSe2 AW exciton. The charge separation across 
the two TMD layers leads to a weaker attractive interaction between 
the electron and the hole contribution to the exciton, and the wavefunc-
tion exhibits a larger spread in real space.
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Methods

Heterostructure fabrication
The WSe2/MoS2/hexagonal boron nitride (hBN) heterostructures were 
assembled using mechanical exfoliation and dry transfer, as sum-
marized in Extended Data Fig. 1a–d. First, a p+-silicon (Si) substrate 
(1–10 Ωcm) with polished native oxide was plasma cleaned with oxygen  
gas (100 W, 10 standard cubic centimetres per minute, 10 min). hBN 
was immediately mechanically exfoliated on the substrate using 
standard office tape. Using optical contrast, a hBN flake with thickness 
between 20 nm and 30 nm was identified. In parallel, MoS2 and WSe2 
(HQ graphene) were mechanically exfoliated using blue tape (Ultron 
Systems 1008R-6.0) on a polydimethylsiloxane (PDMS) sheet (Gel-Pak 
PF-20/17-X4). Similar to hBN exfoliation, optical contrast was used to 
identify monolayer MoS2 and WSe2. Unlike the standard dry-transfer 
assembly, the assembly of the heterostructure was started by assem-
bling the WSe2/MoS2 heterostructure on PDMS first. The two flakes 
were aligned visually and the MoS2 flake was dry transferred on top of 
the WSe2 flake on PDMS. Then the WSe2/MoS2 heterostructure was dry 
transferred on top of the hBN. During the last transfer, the multilayer 
part of the WSe2 flake was intentionally placed in direct contact with 
the Si substrate to reduce sample charging (compare with Extended 
Data Fig. 1e,f). It is worth noting that although the exfoliation part was 
done in ambient conditions, the heterostructure assembly was done in 
a controlled argon environment in a glovebox with oxygen and water 
<0.1 ppm. An optical microscope image of the van der Waals stack is 
shown in Extended Data Fig. 1e.

Sample preparation for photoemission spectroscopy
The Si wafer with the heterostructure is clamped onto a sample holder 
under ambient conditions and transferred into ultrahigh vacuum. 
In an ultrahigh-vacuum preparation chamber (background pressure 
<5 × 10−9 mbar), the sample is annealed for 2 h at a temperature of 
approximately 670 K; such sample treatment has shown successful 
ARPES results on similar sample systems, for example, ref. 41. Subse-
quently, the sample is transferred into the momentum microscope. 
All experiments have been performed at room temperature at a back-
ground pressure of approximately 1 × 10−10 mbar.

Femtosecond momentum microscopy
The experimental set-up is detailed and benchmarked in ref. 31. It con-
sists of two major parts, namely, a time-of-flight momentum micro-
scope30 (ToF Momentum Microscope , Surface Concept), shown 
schematically in Fig. 1a, and a high-power femtosecond laser system 
(Active Fiber Systems). In the following, we briefly describe the experi-
mental set-up.

The strength of the time-of-flight momentum microscope is the 
simultaneous measurement of the two-dimensional in-plane momenta 
and the kinetic energy of the photoelectrons within the full photoemis-
sion horizon30. To study high-quality TMD heterostructures with a diam-
eter of approximately 10 µm, the key advantage of the set-up lies in the 
microscopy-type photoelectron detection scheme. In the electrostatic 
lens system, a real- and a reciprocal-space image of the photoelectrons 
is formed and either image can be projected onto the photoelectron 
detector (Fig. 1a). The real-space mode of the microscope is used to 
map the spatial structure of the sample system (Fig. 1c and Extended 
Data Fig. 1f). In direct comparison with an optical microscope image 
(Extended Data Fig. 1e), the monolayer WSe2 and MoS2 regions as well 
as the WSe2/MoS2 heterobilayer region can be identified through the 
differing photoemission contrast. By placing an aperture into the 
real-space plane of the microscope, either photoelectrons originat-
ing from the WSe2 monolayer or the WSe2/MoS2 heterobilayer can be 
selected and projected onto the detector (Extended Data Fig. 2). By 
exploiting this capability of the time-of-flight momentum microscope, 
we collect in-plane momentum- and energy-resolved photoelectron 

distributions for the regions of interest highlighted by circles in Fig. 1c. 
The energy resolution of the momentum microscope combined with 
the spectral width of the 26.5-eV XUV light pulses lead to an overall 
Gaussian broadening of the measured photoelectron signal with a 
full-width at half-maximum of 200 ± 30 meV (ref. 31). The achievable 
momentum resolution of the instrument is <0.01 Å−1 (ref. 42). From a 
fit of the cut-off of the photoemission horizon, we can verify that the 
momentum resolution for the given experimental settings in the paper 
is better than 0.04 ± 0.01 Å−1. The time resolution is 54 ± 7 fs for infrared 
pump pulses of 50 ± 5 fs and XUV probe pulses of 21 ± 5 fs as used in this 
experiment31. This value is confirmed with a fit to the replica signal 
caused by the laser-assisted photoelectric effect (LAPE)31,43 (see, for 
example, Fig. 3a or Extended Data Fig. 6c at 0-fs delay), which yields 
an infrared-pump–XUV-probe cross-correlation of 49 ± 1 fs.

The laser set-up is based on a 300-W fibre laser system (Active Fiber 
Systems) that operates at a repetition rate of 500 kHz and drives a 
high-harmonic generation beamline and a high-power optical para-
metric amplifier (OPA, Orpheus-F/HP from Light Conversion). To first 
induce and subsequently probe excitonic dynamics occurring in the 
TMD heterostructure (Fig. 2), we use a pump–probe scheme. First, 
bright WSe2 AW excitons are excited with light pulses generated with 
the OPA (1.7 eV, 50 ± 5 fs measured per autocorrelation). Subsequently, 
the femto- to picosecond evolution of the intra- and interlayer exci-
tonic dynamics is probed with an XUV light pulse (26.5 eV, p-polarized, 
21 ± 5 fs (ref. 31)), which photoemits the electron contribution of the 
quasiparticle into the detector. Additional experiments are performed 
with 1.9-eV and 2.4-eV pump light, which is generated through the OPA 
and frequency doubling of the compressed laser output, respectively. 
The data in Figs. 1b and 2, and Extended Data Figs. 4c,d, 5, 7, 8a,b and 9 
are obtained with an s-polarized pump light. The data in Figs. 3 and 4,  
and Extended Data Figs. 4a,b and 6 are obtained with a p-polarized 
pump light. For the p-polarized pump, one creates band replicas owing 
to the LAPE, which then can be used to determine pump– probe overlap 
(time zero) and the time resolution32,43. For the s-polarized pump, the 
time-resolved signal is free of such LAPE replicas, which is helpful for 
the analysis of spectral features and exciton dynamics.

Real-space imaging and static band mapping of WSe2/MoS2/hBN
After preparation of the van der Waals stack for the momentum micros-
copy experiment, we first perform real-space imaging of the sample 
with an ultraviolet diode delivering 4.96-eV photons. In Extended Data 
Fig. 1e,f, the photoemission real-space map is compared with an opti-
cal microscope image. In both images, the WSe2/MoS2/hBN hetero-
structure, the doped Si substrate, the bulk hBN, the WSe2 and MoS2 
monolayers, and the bulk WSe2 can be distinguished.

Having identified the regions of interested, we place an aperture into 
the real-space image of the microscope to selectively probe the energy- 
and momentum-resolved photoelectron distribution of the WSe2 
monolayer and the WSe2/MoS2 heterobilayer (compare with Fig. 1a).  
Using an aperture with a diameter of 100 µm and a lens setting with 
a magnification of 10, we are sensitive to photoelectrons originating 
from an effective area with diameter of 10 µm on the heterostructure 
(circles in Fig. 1c).

Static band mapping of the occupied electronic band structure is 
shown in Extended Data Fig. 2. The high quality of the van der Waals 
stack is evident from the well resolved features in the band structure 
and, in particular, by the visible spin-splitting of the WSe2 valence bands 
at the KW and K′W valleys44 (marked with 1 and 2 in Extended Data Fig. 2). 
In addition, only in the heterobilayer region, we resolve clear signatures 
of the valence-band maximum of MoS2 at −1.1 eV with respect to the 
valence-band maximum (EVBM) of WSe2 (marked with 3 in Extended Data 
Fig. 2b). Owing to interlayer interaction between the WSe2 and MoS2 
layers, we resolve the expected hybridized valence bands at the ΓW,Mo 
valley (marked with 4 and 5 in Extended Data Fig. 2b)33. The observation 
of these hybridized bands is a clear signature that the blisters found in 



the real-space image in Extended Data Fig. 1e,f do not dominate the 
photoemission yield from the heterobilayer. In contrast, in the mon-
olayer WSe2 region, the valence band at the ΓW valley is a single band 
(Extended Data Fig. 2a). Furthermore, the valence-band maximum is 
localized at the KW (K′W) valley, as expected for the monolayer limit of 
WSe2, where it becomes a direct bandgap semiconductor33. In addition, 
we observe a clear signature of the valence band of hBN that we label 
with 6 in Extended Data Fig. 2a. Within our energy and momentum 
resolution, we do not resolve moiré induced mini-band replicas of the 
valence bands, such as discussed in refs. 41,45.

Inhomogeneous broadening from sample
In our experiment, the energy resolution is mainly limited by the 
bandwidth of the short-pulse XUV light source. Convolved with the 
instrument resolution, we achieve a total energy resolution on the 
order of 200 ± 30 meV (ref. 31). For reference, Extended Data Fig. 3 
shows an exemplary energy-distribution curve obtained in a momen-
tum region of ±0.10 Å−1 centred at the K′W valley. As in the case of ref. 26,  
we extract a full-width at half-maximum of 280 ± 10 meV. However, 
our spectrum is broadened by 200 meV by the light source and the 
instrument, so that the full-width at half-maximum peak width of the 
valence-band maximum is on the order of 200 meV. This broadening 
is attributed to, for example, inhomogeneity of the sample and local 
field effects.

Twist-angle determination of the WSe2/MoS2 heterostack
In trARPES experiments, it is known that the electron contribution 
of the A excitons are identified through spectral weight at the cor-
responding K valleys of the TMD structure26–28. Consequently, the 
photoemission signature of the AW and AMo excitons can directly be 
used to determine the twist angle of a heterostructure. Here, for the 
unambiguous identification of the AW and AMo excitons in the KW and 
KMo valleys, we carry out resonant excitation using 1.7-eV and 1.9-eV 
pump light, respectively.

In Extended Data Fig. 4, we show momentum maps of the resonantly 
pumped WSe2 AW exciton (Extended Data Fig. 4a), the resonantly 
pumped MoS2 AMo exciton (Extended Data Fig. 4c), and the correspond-
ing signature of the ILX after a delay of 1 ps (Extended Data Fig. 4b,d). 
From the misalignment of the Γ–KW and Γ–KMo directions (orange and 
dark red dashed lines), we calculate the momentum mismatch between 
the KW and the KMo valleys, and, accordingly, determine the twist angle 
to Θ = 9.8 ± 0.8°. The direct comparison with the 1-ps data in Extended 
Data Fig. 4b,d then facilitates the correlation of the ILX momentum 
signature to the in-plane momenta of the KW and the KMo valleys.

Spectral assignments of conduction and valence bands and the 
AW,Mo excitons
We study the ultrafast exciton dynamics of the heterobilayer after reso-
nant excitation of the AW exciton of WSe2 with 1.7-eV pump pulses. To 
unambiguously identify the photoemission signatures shown in Figs. 2 
and 3 as excitons, Extended Data Fig. 5a,b shows energy–momentum 
cuts when using above-bandgap excitation conditions with 2.4-eV pump 
pulses to the monolayer WSe2 region indicated by the orange circle in 
Fig. 1c. In temporal overlap of the pump and probe laser pulses (0 fs), 
above-bandgap excitation allows for the transient occupation of the 
conduction band and we correspondingly observe parabolic bands 
with positive dispersion centred at E − EVBM = 1.8 eV at the KW valley. 
As the delay is increased to 300 fs, the spectral yield at the KW valley 
shifts to smaller energies and the parabolic signature transfers to a 
more spherical shape. We attribute the photoemission yield from the 
parabolic dispersion at 0 fs to photoelectrons originating from both 
higher-quantum-number excitons and charge carriers from the con-
duction band of WSe2, as has been described previously and is in full 
agreement with ref. 26. Subsequently, the delay-dependent shift of the 
spectral weight to smaller energies can be understood by the formation 

of excitons (compare with the energy-distribution curves in Extended 
Data Fig. 5b). In Extended Data Fig. 5c, we compare the above-bandgap 
excitation results with energy-distribution curves obtained from the 
1.7-eV pump-light experiment. Under these resonant excitation condi-
tions, already at 0-fs pump–probe delay the exciton signal is observed 
at E − EVBM = 1.7 eV. Importantly, the signal does not decrease in energy 
with proceeding delay and does not show a positive parabolic disper-
sion (compare with Fig. 1b and Extended Data Fig. 6).

By repeating the same analysis as described above for a monolayer 
MoS2 sample, we can discriminate the AMo exciton from charge carri-
ers in the conduction-band minimum (Extended Data Fig. 5d–f). It is 
noted that we do not resolve the pump–probe delay-dependent energy 
shift for the case of MoS2, but the parabolic momentum dispersion 
at 0 fs can again be distinguished from the more spherical shape at  
250 fs.

Additional time-resolved momentum microscopy data of the 
twisted WSe2/MoS2 heterostructure
Extended Data Fig. 6 summarizes, in addition to Fig. 3, E(k) and kx–ky 
momentum maps of the formation dynamics of the ILX.

Filtering excitonic photoemission signatures in energy and 
momentum space
The time-of-flight momentum microscope collects in-plane momen-
tum and energy-resolved data cubes for each pump–probe delay31. 
To monitor the pump–probe delay-dependent exciton dynamics, the 
excitonic photoemission signatures need to be filtered on these coor-
dinates to avoid mixing of different photoemission signals. Therefore, 
in Extended Data Fig. 7a,b, we show two momentum maps that are 
integrated for all measured pump–probe delays in an energy window 
between E − EVBM = 1.5–2.4 eV and E − EVBM = 0.8–1.3 eV, respectively. 
First, we recognize that the signal of the ΣW exciton (black circle) can 
be easily separated from the AW exciton (orange) and the ILX (red) in 
momentum space. Still, we choose the lower bound of the integration 
window for the ΣW-exciton signal well above the energy of the ILX on the 
energy axis to determine the pump–probe-delay-dependent spectral 
weight plotted in Fig. 2c (integration window E − EVBM = 1.5–2.4 eV). The 
separation of the spectral weight of the AW exciton and the ILX needs to 
be further analysed and filtered on the energy axis as, in momentum 
space, the regions of interest are close to each other. From the evolution 
of the energy-distribution curves of the AW-exciton-momentum-filtered 
areas in Extended Data Fig. 7c (upper panel), it is obvious that the 
AW photoemission signal strongly dominates over the ILX signal for 
E − EVBM > 1.5 eV. Consequently, in Fig. 2c, we plot the AW-exciton signal 
as obtained within the momentum region indicated by the orange 
circles in Extended Data Fig. 7a and for E − EVBM = 1.5–2.4 eV (orange 
boxed energy region in Extended Data Fig. 7c, upper panel). For the ILX 
signal, the correct identification of the energy-integration window is 
more complex and therefore further analysed based on the evolution 
of the energy-distribution curves of the ILX-momentum-filtered areas 
in Extended Data Fig. 7c (middle panel). To separate the signal of the 
ILX, which is centred at E − EVBM ≈ 1.1 eV, from the photoemission yield 
at higher energies, we systematically vary the energy window that is 
used to integrate the ILX signal (blueish boxes in Extended Data Fig. 7c, 
middle panel). The resulting spectral weight versus pump–probe 
delay plots are shown in the lower panel of Extended Data Fig. 7c. For 
small-energy-integration boxes (dark blue and blue), we find an identi-
cal evolution of the spectral weight that we attribute to the ILXs. How-
ever, as the box becomes too large (light blue), at about 50 fs, spurious 
signal from higher energies leads to deviations. Consequently, we use 
the appearance of this additional photoemission signal at about 50 fs 
to determine the upper bound of the maximum energy-integration 
window for the ILXs to E − EVBM < 1.3 eV. This sets the boundaries for 
the energy-integration box of the ILXs to E − EVBM = 0.8–1.3 eV, which 
is plotted in Fig. 2c.
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Correction of space-charge and photovoltage effects
In trARPES experiments, even in the sub-1 mJ cm−2 fluence regime, 
one often observes space-charge and/or photovoltage effects. These 
effects are induced by Coulomb interaction of the photoelectrons or 
the remaining holes, which were excited by the pump and the probe 
laser pulses46–48. These effects are well known in the trARPES com-
munity and, in a moderate regime, cause only a rigid spectral shift of 
all probe photoelectrons, that is, a shift of the entire photoelectron 
spectrum. In this regime, one automatically monitors space-charge- 
and photovoltage-induced shifts when collecting the trARPES data 
and one correspondingly corrects for these ‘rigid’ shifts before ana-
lysing the data. For all data presented in our paper, we observe such 
rigid shifts of the full ARPES spectrum, which is on the order of several 
millielectronvolts up to a maximum of about 70 meV (Extended Data 
Fig. 8a). The pump–probe-delay-dependent energy difference ΔE is 
calculated by fitting a selected peak in the full momentum-integrated 
energy-distribution curves and subtracting its energy position from the 
reference measurement data shown in the inset. Although this energy 
difference ΔE is small compared with our energy resolution and barely 
influences the analysis procedure, we routinely correct our data for 
these effects before carrying out the data analysis. This means that 
all data shown in this paper are corrected for this rigid energy offset. 
It is noted that for the analysis of the ILX momentum fingerprint, the 
energy shift is irrelevant, because the data are analysed on the pico-
second timescale.

Determination of the exciton density
It has been shown in TMDs that for optical pumping with sufficiently 
high fluence, a Mott transition from excitonic states to free carriers 
can be induced when the excited exciton density is in the range of 
1012−1014 cm−2 (refs. 49–53). This transition leads to giant bandgap renor-
malizations of up to 500 meV (ref. 49) and thus might influence our 
interpretation of AW-exciton generation and the subsequent dynamics. 
In the following, we describe the calculation of the exciton density in our 
experiment, and subsequently show pump–probe-delay-dependent 
energy-distribution curves of the valence-band maxima of WSe2 to 
directly exclude the contribution of band renormalizations to our 
experimental analysis.

Using the real-space mode of the microscope, we can extract the 1/e2 
radius of the pump beam on the sample to 151 ± 1 µm. For the data shown 
in Fig. 2c, the heterostructure was irradiated with s-polarized 1.7-eV pho-
tons with a peak fluence of 280 ± 20 µJ cm−2. By following the analysis of 
ref. 50, we calculate the absorbed fluence to be 1.5 ± 0.2 µJ cm−2, which 
results in an exciton density of (5.4 ± 1.0) × 1012 cm−2. As this exciton 
density is in the 1012−1014 cm−2 threshold regime49–53, it is important to 
provide experimental evidence that our experiment probes excitons 
and not quasi-free carriers in the conduction bands.

We therefore analyse our data for the possible generation of 
quasi-free carriers and the corresponding renormalization of the 
band structure. In Extended Data Fig. 8b, we monitor the position of 
the WSe2 valence-band maximum at the KW valley compared with the 
position at −2 ps as a function of delay, which, in the case of generation 
of quasi-free carriers, is expected to strongly upshift in energy (com-
pare with ref. 49). In ref. 53, using trARPES, for example, the energetic 
position of the valence-band maximum shifts up by 360 meV and 
then relaxes back to its unperturbed value on the picosecond time-
scale. Importantly, within the scattering of our data (about ±50 meV in 
Extended Data Fig. 8b), the photoemission energy of the valence-band 
edge at the KW valley does not change with pump–probe delay. In 
particular, it does not upshift in energy, as would be expected for an 
exciton density above the Mott threshold. This directly implies that 
the dominant excitation in our experiment is governed by AW excitons 
in WSe2, from which the subsequent exciton dynamics is induced, 
whereas the role of quasi-free carriers is negligible. It is noted that the 

error bars around 0 fs are enlarged because of a typical broadening 
of the occupied bands in temporal overlap (compare with Extended 
Data Fig. 6a,b).

Quantitative analysis of charge-transfer times to the ΣW excitons 
and the ILX
The intermediate steps of the exciton dynamics occurring in the WSe2/
MoS2 heterostructure are summarized in the excitation diagram shown 
in the inset of Fig. 2c. AW excitons are resonantly excited with 1.7-eV 
pump photons, exciton–phonon scattering leads to the formation of 
ΣW excitons and, subsequently, ILXs are formed through interlayer 
charge transfer at the Σ valleys. Typically, one would use a rate-equation 
model to quantify the respective charge-transfer times. However, this 
approach is not feasible here, as it does not accurately describe the 
coherent polarization induced when the pump pulse is present on the 
sample27. In addition, because of photoemission cross-section effects, 
we cannot unambiguously correlate the measured photoemission 
signal to the exciton occupation density, as would be necessary to 
extract meaningful transfer rates from a rate-equation model. There-
fore, we assume the most simple model for a quantitative analysis. The 
states are filled by a Gaussian excitation or transfer rate. This rise in 
spectral weight follows an error function. In Extended Data Fig. 9a,  
we fit the pump–probe-delay-dependent spectral weight with error  
functions I I t t w/ = 0.5 × (erf(( − )/ ) + 1)imax , which give us access to the 
delayed onset tΣW and tILX of the photoemission yield from the ΣW exci-
ton and the ILX, respectively, compared with the build-up of the AW 
exciton (tAW). We calculate delayed onset times of tΣW − tAW = 33 ± 6 fs 
and tILX − tAW = 54 ± 7 fs. These delayed onsets are in overall agreement 
with earlier reports on charge transfer on the WSe2/MoS2 system54,55; 
however, the momentum-resolved data collection scheme now facili-
tates the separate extraction of this dynamics for the intermediate ΣW 
excitons.

Long-term picosecond relaxation dynamics of the observed 
excitons
Extended Data Fig. 9b shows the picosecond exciton relaxation dynam-
ics of the WSe2/MoS2 heterostructure. In accordance with the snapshots 
in Extended Data Fig. 6, at 10-ps pump–probe delay, photoemission 
yield from the AW exciton and the ΣW exciton is at the detection limit of 
the experiment. In contrast, for the ILX, notable photoemission yield 
is still present at this time delay and remains beyond delays of 50 ps, 
which is the largest delay measured in our experiment. In Extended Data 
Fig. 9b, we quantify this observation and fit the relaxation dynamics 
of the excitons with single-exponential decays, for which we extract 
lifetimes of 3.1 ± 0.3 ps, 3.0 ± 0.4 ps and 33.2 ± 4.7 ps for the AW exciton, 
the ΣW exciton and the ILX, respectively. We find that the ILX lifetime is 
an order of magnitude larger than the lifetimes of the intralayer exci-
tons, in agreement with earlier reports55. In addition, we note that the 
lifetimes of the intralayer excitons in the heterostructure are consider-
ably quenched compared with the lifetime of the intralayer excitons 
in the WSe2 monolayer (Fig. 2a,b), which is caused by the additional 
decay channel into the ILX.

Construction of the ILX momentum fingerprint in the extended 
zone scheme
We follow the interlayer interaction model in ref. 39 to describe the 
intensity distribution of the ILX fingerprint in momentum space. In 
Fig. 3d, we plot the measured ILX momentum distribution at 10-ps 
pump–probe delay together with the twisted extended zone schemes 
of WSe2 (orange hexagons) and MoS2 (dotted dark red hexagons). The 
KMo valleys, at which the electron contribution to the ILX is expected 
without contribution of the moiré superlattice, are labelled with red 
filled symbols. The increasing momentum distance of the KMo valleys 
in higher-order Brillouin zones with respect to the Γ valley of the centre 
Brillouin zone is indicated by the changing red symbols, that is, the 



transition from circles to squares and to triangles. By umklapp scat-
tering with the reciprocal lattice vector i

WG  of WSe2 (black arrows), that 
is, the periodicity of the layer where the hole contribution to the ILX is 
localized, the momenta indicated with open symbols can be reached. 
As detailed in refs. 39,56, the efficiency of umklapp scattering decreases 
with increasing distance from the Γ valley of the centre Brillouin zone. 
Consequently, we observe a strong hierarchy of photoemission signal 
from the ILX. The strongest photoemission signal is found and expected 
at the momenta labelled with circles. The weaker and negligible signal 
is found at the momenta labelled with squares and triangles, respec-
tively.

For heterostructures with different twist angles, the ILX momentum 
structure is modified accordingly. This is exemplarily illustrated in 
Extended Data Fig. 10 for twist angles of 9° and 2°. Here, the 2° illustra-
tion corresponds to the sample structure in a recent study13, and shows 
that for finite momentum resolution and small twist angles, the ILX 
momentum structure that we found in our work cannot be resolved.

Real-space reconstruction
Following the plane-wave model for photoemission, the measured 
ARPES intensity I(k) can be expressed as

k A k rI ψ δ E E ϕ ω( ) = | ⋅ | |FT{ ( )}| ( + + − ),2 2
b kin ℏ

which includes the Fourier transform of the real-space electronic wave-
function ψ ( )r , a polarization factor ⋅ 2A k∣ ∣  that depends on the vector 
potential A of the incident radiation and electron momentum k, and a 
Dirac delta function that ensures conservation of energy (Eb: binding 
energy, Ekin: kinetic energy of electrons, Φ: work function, ℏω: photon 
energy). As the electronic contribution to the interlayer excitonic quasi-
particle is confined to a single MoS2 monolayer, we can treat it similar to 
how it is done for orbital tomography of molecular orbitals in planar aro-
matic molecules40,57, in agreement with the approach that has been recently 
carried out for excitons in TMDs13,28,34. Here, the wavefunction is assumed 
to be thin in the vertical dimension and photoemission is therefore 
assumed to be independent of the out-of-plane momentum kz.

We start our analysis based on the momentum maps of the AW exciton 
and the ILX. As highlighted in the main text based on the insets in 
Fig. 4a,b, we perform separate two-dimensional Fourier transforms to 
each excitonic photoemission feature to reconstruct the real-space 
extension of the electronic contribution to the exciton wavefunction, 
as plotted in Fig. 4a,b for the ILX and the AW exciton, respectively. In 
this analysis, we have eliminated broadening effects owing to the finite 
momentum resolution of the momentum microscope (0.04 Å−1) using 
Wiener–Hunt deconvolution and subtracted a weak background deter-
mined from the full dataset. Finally, we assumed a flat phase profile 
over the full accessible momentum range, following the approach 
detailed in ref. 28. To determine the Bohr radii, we calculate the 
root-mean-square radii of the real-space probability density distribu-
tion. The Bohr radii for the electron contribution to the ILX and the AW 
exciton are rB

ILX = 1.6 ± 0.2 nm and rB
AW = 1.1 ± 0.1 nm, respectively, and 

were acquired by taking the weighted average of the Bohr radii deter-
mined for individual κ and KW valleys. For the ILX, only the features 
with a signal-to-noise ratio better than 10 were taken into account.

It is noted that on the heterostructure with a twist angle of more  
than 5°, we can safely assume in our analysis that the centre-of-mass 
momentum is narrowly distributed around zero11,38, and the momentum 
width of the photoemission signatures at the κ and KW valleys relates 
to the relative coordinate of the excitons13. In a recent report on a 2°- 
twisted WSe2/MoS2 heterostructure, ref. 13 reported the root-mean- 
square radius of the relative coordinate to the ILX wavefunction to 
2.6 ± 0.4 nm. This corresponds to a root-mean-square radius of the 

probability density of 1.8 ± 0.3 nm, which is in agreement with our 
analysis of a Bohr radius of rB

ILX = 1.6 ± 0.2 nm. Similarly, our recon-
structed Bohr radius of the AW exciton of rB

AW = 1.1 ± 0.1 nm is in agree-
ment with the root-mean-square radius of the probability density of 
WSe2 of ref. 34 (about 1.0 nm).

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. 
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Extended Data Fig. 1 | Fabrication and real-space imaging of the of the 
WSe2/MoS2/hBN heterostructure. a–d Schematic of the WSe2/MoS2/hBN 
heterostructure assembly on a Si substrate with a native oxide layer. a A PDMS 
stamp with monolayer MoS2 flake (red) is aligned with another PDMS stamp 
holding a monolayer WSe2 (yellow), then the top PDMS stamp is brought in 
contact with bottom PDMS. b The top PDMS stamp is then withdrawn, leaving 
the MoS2 on top of the WSe2. c The PDMS stamp holding the WSe2/MoS2 is then 
brought into contact with SiO2/Si substrate with hBN (blue). d the PDMS is then 

withdrawn, leaving behind the final WSe2/MoS2/hBN heterostructure. e/f The 
WSe2/MoS2/hBN heterostructure, the uncovered SiO2/Si substrate, bulk hBN, 
the WSe2 and MoS2 monolayers, and bulk WSe2 are labelled in the e optical 
microscope and the f photoemission real-space image (ħω = 4.96 eV). Point-like 
structures (blisters) in the heterostructure region can be attributed to residual 
gas trapped either at the MoS2/hBN or the WSe2/MoS2 interface. The blisters in 
the monolayer WSe2 region are most likely trapped at the WSe2/hBN interface.



Extended Data Fig. 2 | Static band mapping of the monolayer WSe2 and  
the heterobilayer WSe2/MoS2. a,b Energy–momentum representation of  
the static photoemission intensity obtained in the momentum microscopy 
experiment along the K’W-Γ-KW direction (see inset). The important 

spectroscopic features are labelled in the figure: (1, 2) spin-split valence bands 
of WSe2; (3) valence band of MoS2; (4, 5) valence bands at the ΓW,Mo valley;  
(6) valence band of hBN. c, d Energy-distribution curves taken around the KW 
and ΓW,Mo (ΓW) valley indicated by the coloured boxes in a and b.
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Extended Data Fig. 3 | Inhomogeneous broadening of the photoemission 
spectra. The energy-distribution-curve is obtained in a ± 0.10 Å−1 
region-of-interest centred at the K’W valley of WSe2. Gaussian fitting of the 
valence band maximum centred at E-EVBM = 0 eV yields a full-width at half- 
maximum of 280 ± 10 meV.



Extended Data Fig. 4 | Determination of the twist angle Θ of the WSe2/MoS2 
heterostructure. The momentum maps in a and c show the photoemission 
fingerprint of the AW- and AMo-excitons when excited resonantly with 1.7 eV  
and 1.9 eV photons, respectively, at 0 fs pump–probe delay. Since the MoS2 
AMo-exciton and the ILX are, within our energy resolution, spectrally 
degenerate, faint signatures of the ILX are already visible c at 0 fs delay. The 
dashed lines indicate the Γ -KW (orange) and Γ-KMo (dark red) direction. From 
their misalignment, the twist angle is extracted to Θ = 9.8 ± 0.8°. b, d At 1-ps 

pump–probe delay, the ILX momentum fingerprint can be identified, as 
described by the mBZ (red). The dashed lines indicate the relation of the ILX 
momentum fingerprint and the Γ -KW and Γ-KMo directions. Note the distinctly 
different intensity distribution of the combined spectral weight of the 
AMo-exciton and the faint ILX in c vs. the pure signature of the ILX at 1-ps delay in d.  
For each momentum-map, the photoelectron energy with respect to the 
valence band maximum of WSe2 and the pump–probe delay are noted in the 
lower left and right corner, respectively.
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Extended Data Fig. 5 | Above-band-gap excitation of monolayer WSe2 and 
monolayer MoS2. Photoemission yield from bright intralayer excitons and 
charge carriers in the conduction can be discriminated based on above-band- 
gap excitation data collected on a–c monolayer WSe2 (orange circle in Fig. 1c) 
and d–f monolayer MoS2 (real-space image not shown). a and d show  
energy–momentum cuts along the K-Σ direction measured on WSe2 and MoS2, 
respectively, at 0 fs and 300 fs (respectively 250 fs) pump–probe delay. At 0 fs, 

a parabolic signature with positive dispersion is detected at the K valley  
(noted by the black dashed parabolic line). At 300 fs (250 fs), the signature 
becomes more spherical. b and e show energy-distribution curves at the  
K valleys (momentum-integration region based on the boxes in a, d). The peak 
maxima is indicated by grey horizontal lines. c and f show the corresponding 
energy-distribution curves when excited on resonance with the AW- and 
AMo-exciton, respectively.



Extended Data Fig. 6 | Additional trARPES data of the ILX formation. a E(k) 
cut along the KW- Γ-K’W direction integrated in the k-region shown by the black 
dashed box in b, 0 fs. The arrowheads on the right side of the figure indicate the 
photoelectron energies where the momentum maps in b and c are centred.  
b Within the energy window of the k-map (E- EVBM = 1.7 eV) and increasing pump–
probe delay, spectral weight from the bright AW-excitons (orange hexagon) is 
transferred via exciton–phonon scattering to form dark ΣW-excitons  
(grey hexagon). c Interlayer charge transfer via the Σ-valleys forms the ILX, 

which is observed at E-EVBM = 1.1 eV. The Brillouin zone of MoS2 is indicated with 
a dotted dark red hexagon and the mBZ with a red hexagon. Spectroscopic 
signatures of the AW-exciton, the ΣW-exciton, and the ILX are indicated by 
orange, grey, and red circles, respectively, in the 1 ps data. The pump–probe 
delay and the binding energy of the k-maps are noted in the top and bottom left 
corner, respectively. Note that at 0 fs, the strong signal in c is mainly caused by 
LAPE. In addition, in b (0 fs), LAPE leads to photoemission yield at the Γ point.
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Extended Data Fig. 7 | Selected regions of interest for the analysis of the AW-, 
ΣW-, and ILX formation dynamics shown in Fig. 2c. a and b show momentum 
maps integrated over all measured pump–probe delays in the energy intervals 
of E-EVBM = 1.5–2.4 eV and 0.8–1.3 eV, respectively. The regions-of-interest that 
are used for filtering the excitonic photoemission signatures in momentum 
space are indicated by orange, black, and red circles for the AW-exciton, the 

ΣW-exciton, and the ILX, respectively. The grey shaded areas indicate artefacts 
of the detector. c (top and middle panel) Pump–probe delay evolution of the 
energy- distribution curves filtered for the orange and red regions of interest.  
c (bottom panel) Intensity vs. pump–probe delay plots for the energy boxes 
indicated by the bluish arrows in the middle panel.



Extended Data Fig. 8 | Correction of space-charge/photovoltage-induced 
shifts and exclusion of photoinduced band renormalizations. a The rigid 
band shift ΔE of maximal 70 meV is corrected for each pump–probe delay. ΔE is 
obtained by fitting (red) momentum-integrated energy-distribution curves 
(black) for each delay, as exemplary shown for the −2000 fs measurement in the 
inset. The error bars are standard deviations obtained in each fit. b We fit the 

pump–probe delay-dependent energetic peak position of the valence band 
maximum of WSe2 at the KW valley with Gaussian distributions (red, inset) and 
calculate the energy difference ΔE with respect to the −2000 fs measurement 
that is plotted in the inset. Within the scattering of the data, ΔE does not upshift 
with pump–probe delay, excluding a dominant contribution of photoinduced 
band renormalization such as discussed in refs. 49,53.
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Extended Data Fig. 9 | Charge-transfer and charge recombination times of 
the AW exciton (orange), the ΣW exciton (grey), and the ILX (red). a The 
short-time dynamics (symbols) is fitted with error functions (dashed lines), 
from which the delayed onset times ti are extracted, as detailed in the text.  

The solid lines reproduce the model calculations initially shown in Fig. 2c of the 
main text. b The charge recombination time is extracted by performing 
single-exponential fits to the data for pump–probe delays larger than 1 ps.



Extended Data Fig. 10 | Sketch of the moiré mBz for small and large twist 
angles. The twist angle Θ defines the size of the moiré mBz (red hexagon) and 
the related moiré reciprocal lattice vectors GG 1 2

M
,  (black arrows). a For twist 

angles larger than a few degree, GG 1 2
M

,  is larger than the momentum width of a 
single κ valley (dark reddish filled circles). All three κ valleys (and higher-order 
umklapp processes) are detected in the momentum microscopy experiment 
(Fig. 3c, d). The electronic contribution to the ILX wavefunction is spread 
across several moiré potential wells (Fig. 4). b For sufficiently small twist 
angles, GG 1 2

M
,  can become smaller than the width of a single κ valley, and the ILX 

wavefunction can be confined in a single moiré potential well. If the momentum 
microscopy experiment is performed with a finite momentum resolution, the 
photoelectron signal from the ILX can appear as a single peak, as reported in 
Ref. 13 for a 2° twisted WSe2/MoS2 heterostructure.
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SUPPLEMENTAL INFORMATION

Microscopic Model - Overview. For the microscopic model of the interlayer charge transfer

dynamics we have derived effective Boltzmann equations for the exciton-phonon scattering

involving hybridized electronic states that are delocalized across the bilayer system. The en-

ergies of the involved conduction and valence bands are extracted from the experiment or de-

rived from ab initio calculations. The Coulomb potential is treated on an Hartree-Fock level

using a generalized Rytova–Keldysh potential for 2D films. Starting from a many-particle

Hamilton operator for electrons and holes, we derive the energies and effective interaction

matrix elements for layer-hybridized excitonic states within a low density limit. Finally,

we derive the dynamics of the excitonic density matrix after an optical excitation using the

Heisenberg equation of motion. The latter is truncated within a second-order Born-Markov

approximation and solved numerically with a Runge-Kutta algorithm. Details about the the-

oretical model are presented in the following section.

As presented in the main text, the direct comparison of experiment and theory in Fig. 2c

(main text) confirms an excellent agreement and shows that phonon-assisted scattering via

dark layer-mixed states is indeed the dominant pathway for the formation of ILX in the

9.8±0.8◦ twisted WSe2/MoS2 heterostructure.

However, we note that a critical comparison of the experimental data and the microscopic

model also shows minor deviations for the quantitative formation time of the ΣW-exciton and

the ILX, and for the decay times of the AW- and ΣW-excitons. Possible explanations for this

discrepancy might be additional scattering channels such as direct interlayer tunneling at the

KW and KMo valleysS1–S3 or Auger-type recombination processesS4,S5, which are neglected

in the microscopic model. However, femtosecond momentum microscopy, which is explicitly

sensitive to bright as well as dark intra- and interlayer excitons, clearly provides the capability

to retrieve the necessary transfer rates from future twist-angle-dependent studies, and thereby

to elucidate such additional processes. Therefore, future experiments performed at higher

exciton densities can elucidate how Auger-type recombination processes or electron-hole

plasmas contribute to the formation dynamics of ILX.
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Microscopic Model - Detailed description. In this section, we introduce the main concepts

for the theoretical approach applied to calculate the charge transfer dynamics in TMD bi-

layers. First, we introduce the many-particle Hamilton operator for the non-twisted TMD

bilayer in the electronic picture, and, using consecutive basis transformations, we show how

the internal quantum structure of hybrid excitons is obtained. Finally, we describe how we

compute the phonon-driven dynamics of hybrid excitons.

We start with the Hamiltonian for conduction- (c(†)) and valence band electrons (v(†)) in

a decoupled bilayer system interacting via the Coulomb potential,

H0 = ∑
i,p

(
εc

ipc†
ipcip + εv

ipv†
ipvip

)
+ ∑

i, j
p,p′,q

WLiL jqc†
ip′+qv†

jp−qv jpcip′, (1)

with the total electron momentum pt = ζ +p, where ζ encodes a high-symmetry point (val-

ley) within the first Brillouin zone. The valley is treated as a discrete quantum number that is

contained in the compound index i=(ζi,Li) additionally containing the layer index (L= 0,1).

The energy dispersion ελ
i,p = ελ

i,0+ h̄2 p2/(2mλ
i ) is obtained from a valley-local effective mass

approximation, where the band gap and band offset at the K valley are extracted from exper-

iments in the main paper and all the other required parameters (effective masses, spin-orbit

splitting and energetic separations of valleys) are taken from ab initio calculationsS6. The

Coulomb matrix element WLiL jq takes into account the dielectric background screening due

to the presence of the two different TMD layersS2,S7. We account for the formation of strongly

correlated electron-hole pairs, by transforming the Hamiltonian into an excitonic basisS8–S10,

H0
X = ∑

µ,Q
Eµ

QX µ†
Q X µ

Q

with X µ†
Q =∑

k
ψµ(k)c†

µ,k+αµ Qvµ,k−βµ Q

and Eµ
Q =Ec

ζ µ Lµ
e
−Ev

ζ µ Lµ
h
+Eµ

bind +Eµ
Q,kin,

(2)

where µ = (nµ ,ζ µ
e ,ζ

µ
h ,L

µ
e ,L

µ
h ). Here, nµ is the quantum number associated with the new

set of excitonic eigenstates. Moreover, the electron-hole mass ratios enter via α(β ) =

me(h)/(me +mh). The exciton eigenfunctions and eigenenergies ψµ and Eµ
bind are obtained

after solving a bilayer Wannier equationS10,S11. Finally, Ec/v
ζ µ Lµ

e
are the conduction and va-
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lence band energy and Eµ
Q,kin = h̄2Q2/(2Mµ) is the kinetic energy of the exciton, which is

created/annihilated by the operator X (†).

So far, all excitations are decomposed into pure intra- (Le = Lh) or interlayer excitons

(Le 6= Lh). Next, we take into account the hybridization of electronic states via the interlayer

tunneling Hamiltonian,

HT = ∑
i, j,p

T c
i jc

†
ipc jp +T v

i jv
†
ipv jp (3)

where T λ
i j = 〈λ ip|H |λ jp〉(1− δLiL j)δζiζ j . After transformation into excitonic basis we ob-

tain

H = H0 +HT = ∑
µ,Q

Eµ
QX µ†

Q X µ
Q + ∑

µ,ν ,Q
TµνX µ†

Q Xν
Q (4)

with excitonic tunnelling matrix elements

Tµν = (δLµ
h Lν

h
(1−δLµ

e Lν
e
)δζ µ ζ ν T c

µe,νe
−δLµ

e Lν
e
(1−δLµ

h Lν
h
)δζ µ ζ ν T v

µh,νh
)∑

k
ψµ∗(k)ψν(k) (5)

, where T c/v are obtained by averaging DFT values of MoSe2-WSe2 and MoS2-WS2 het-

erostructures inS12. Finally, we diagonalize the above Hamiltonian to obtain intralayer-

interlayer-hybrid excitons by solving the eigenvalue problem,

Eµ
Qcη

µ(Q)+∑
ν
Tµνcη

ν (Q) = E η
Q cη

µ(Q) (6)

defining the new hybrid excitonsS10,S12,

H = ∑
η

E η
QY η†

Q Y η
Q and Y η

Q = ∑
µ

cη
µ(Q)X µ

Q . (7)

As the leading contribution to the exciton relaxation process we take into account the

electron-phonon scattering, where the phonon coupling and energies are taken from DFPT

calculationsS13. We perform the change into hybrid exciton basis, which is in detail described

in Ref.S10, yielding

HY−ph = ∑
j,Q,q,η ,ξ

D̃ξ η
j,q,QY ξ †

Q+qY η
Q b j,q +h.c. (8)

The excitation of the system through a laser pulse is described semi-classically via the

minimal-coupling Hamiltonian. After transforming into hybrid basisS10 we obtain

HY−l = ∑
σ ,Q,η

A ·M̃ η
σQY η

Q‖
+h.c. (9)
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Details on the transformation and the definition of the hybrid interaction matrix elements are

given in the Supplementary Information of Ref.S10,S12. Finally, we compute the dynamics

of excitons exploiting the Heisenberg equation of motion for the hybrid occupation Nη =

〈Y η†Y η〉, including H = HY +HY−ph +HY−l . We truncate the Martin-Schwinger hierarchy

using a second order Born-Markov approximationS14–S16. Moreover, we separate coherent

Pη
Q = 〈Y η†

Q 〉 and incoherent hybrid populations δNη
Q = 〈Y η†

Q Y η
Q 〉− 〈Y

η†
Q 〉〈Y

η
Q 〉 = Nη

Q−|P
η
Q |2

yielding the coupled equations,

ih̄∂tP
η
0 =−(E η

0 + iΓη
0 )P

η
0 −M̃ η

0 ·A(t)

δ Ṅη
Q = ∑

ξ
W ξ η

0Q
∣∣Pη

0

∣∣2 + ∑
ξ ,Q′

(
W ξ η

Q′QδNξ
Q′−W ηξ

QQ′δNη
Q

)

with W ηξ
QQ′ =

2π
h̄ ∑

j,±

∣∣∣Dηξ
j,Q′−Q

∣∣∣
2
(

1
2
± 1

2
+nph

j,Q′−Q

)
δ
(
E ξ

Q′−E η
Q ∓ h̄Ω jQ′−Q

)
(10)

The large twist angle in the experiment gives rise to very short periods of the moire pattern

with a length scale comparable with the exciton Bohr radius. Therefore, a strong modifica-

tion of the excitons center-of-mass motion, i.e. a moire-trapping of excitons is not expectedS9

and experimentally confirmed in Fig. 4. Therefore, we introduce the twist angle as a simple

rotation of the two layers’ Brillouin zones. The presence of this rotation has the consequence

that hybrid bands E η
Q and the respective exciton mixing coefficients cη

µ(Q) are not isotropic

in momentum. We assume that any anisotropy in the valley local population is quickly equi-

librated e.g. by elastic scattering with disorder. Hence, we perform an average over the valley

local angle of the exciton momentum assuming that the population stays almost isotropic at

all times. We define angle-averaged quantities δNη
Q ≈ δ Ñη

Q with the 1D density Ñη
Q depend-

ing only on the radial component of the CoM momentum. We then integrate eq.10 over the

momentum to obtain averaged scattering rates W̃ ηξ
QQ′ = ∑θ ,θ ′W

ηξ
QQ′ .
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Supplemental Fig. 1. Hybrid exciton dispersion and scattering rates. Hybrid exciton bandstruc-

ture including all possible s-type exciton states with energies below or close to the optically excited

intralayer KK state (left). The orange arrows indicate possible relaxation channels, with the corre-

sponding scattering rates displayed on the right.

Microscopic Model - Analysis. In our numerical evaluation of the microscopic model de-

scribed above, we consider all extrema of the valence (K, K’ and Γ) and conduction band

(K, K’, Σ, and Σ’)S6 and all possible layer/valley configurations for electron-hole pairs. Fur-

thermore, the exciton-phonon scattering tensor W ηξ
QQ′ is computed for all possible initial and

final exciton states, summing over all available phonon modes (LA, TA, LO, TO, A1) in both

layersS17. In supplemental Fig. 1a we illustrate the corresponding hybrid exciton bandstruc-

ture including all possible s-type exciton states with energies below or close to the optically

excited state intralayer KK exciton. The colored boxes indicate which group of exciton states

gives rise to the energetically broad photoemision signal in the main text denoted with AW

(electron at K or K’ point of WSe2), Σ (electron at Σ or Σ’ point) and ILX (electron at K or K’

point of MoS2, but at lower energies). The orange arrows denoted with Γ1-Γ5 indicate pos-

sible relaxation channels for the optically excited intralayer KK exciton. The scattering rates

for these channels Γη→ξ =∑Q′W
ηξ
QQ′ |Q=0 are shown in the right panel of supplemental Fig. 1.
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We find that Γ3 ≈ 0.1 f s−1 is by orders of magnitude the fastest relaxation channel. Here the

electron of the KK exciton is scattered from the K to the Σ’ valley by emitting a zone-edge

M phonon, which exhibits the most efficient electron-phonon coupling in TMDsS17. In con-

trast, the direct transition from the KK intralayer to the KK interlayer exciton (Γ1) is strongly

suppressed. To understand this we consider the coefficients cη
ν (Q) from Eq. (6), determining

how strong the interlayer tunneling is mixing pure intra- and interlayer excitons into hybrids.

TABLE I. Energies of the lowest two s-type exciton states for each valley configuration. Colomns

4-7 show the contribution of all possible intra- and interlayer excitons (W-W=intralayer , W-

Mo=interlayer, hole first). The last column indicates nomenclature used in Tab. II.

Mixing Coefficients

Valley State # Energy (eV) W-W Mo-W W-Mo Mo-Mo Name

KK 1 1.24 0 0 1 0 ILX

2 1.66 1 0 0 0 AW

KΣ 1 1.37 0.30 0 0.70 0 ΣW

2 1.74 0.70 0 0.30 0 -

KΣ′ 1 1.48 0.18 0 0.82 0 Σ′W

2 1.91 0.82 0 0.18 0 -

ΓK 1 1.66 0 0 0.88 0.12 -

2 2.07 0.93 0.07 0 0 -

KK’ 1 1.25 0 0 1 0 ILX’

2 1.61 1 0 0 0 A′W

Table I shows the energies of the lowest two s-type exciton states for each valley con-

figuration along with the fractional contribution of all possible intra- and interlayer excitons

contributing to this hybrid state. Here "W-W" is denoting the intralayer exciton in the tung-

sten layer, whereas "W-Mo" corresponds to the fraction of interlayer excitons with the hole

in the tungsten and the electron in the molybdenum layer. We find that the KK exciton states

are strongly layer-polarized, either being pure intra- or interlayer excitons. Since the electron

of the AW exciton and the ILX are located in different layers, their wavefunction overlap is
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small, drastically quenching the phonon-transition amplitude for this direct charge transfer

process. In contrast, the KΣ exciton is strongly hybridized, i.e. by 30% an intra- and by 70%

an interlayer exciton. In the electron-hole picture this means that the Σ electron is delocalized

across both layers, enabling efficient transitions to (from) final (initial) states in both layers.

As a result, the charge transfer occurs in a two-step process via phonon-mediated transition

into the strongly hybridised KΣ excitons.

Finally, in Table II we show the out-scattering rates Γη→ξ at Q = 0 for all initial exciton

states resolved into all possible final states. By evaluating the most efficient relaxation chan-

nels for each state, starting from the optically excited AW , we determine the predominant for-

mation channel for ILX. We find that the multistep cascade AW → Σ′W → ΣW → ILX ′→ ILX

is giving rise to the ultrafast formation of the ILX photoemission signal discussed in the main

text (ILX+ILX’), involving the transient occupation of momentum dark states (ΣW +Σ′W ).

TABLE II. Phonon-driven out-scattering rates at Q = 0 for all initial exciton states resolved into all

possible final states (in ps−1). Channels with "0" are decoupled due to energy conservation for the

considered one-phonon processes.

from

to
AW A′W ΣW Σ′W ILX ILX’

AW - 3.7 2.0 127.1 10−3 10−4

A′W 0 - 92.8 5.8 10−4 10−3

ΣW 0 0 - 0 1.0 8.7

Σ′W 0 0 121.8 - 3.2 10−4

ILX 0 0 0 0 - 10−4

ILX’ 0 0 0 0 10−4 -
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O P T I C S

Probing electron-hole Coulomb correlations  
in the exciton landscape of a twisted 
semiconductor heterostructure
Jan Philipp Bange1, David Schmitt1, Wiebke Bennecke1, Giuseppe Meneghini2,  
AbdulAziz AlMutairi3, Kenji Watanabe4, Takashi Taniguchi5, Daniel Steil1, Sabine Steil1,  
R. Thomas Weitz1,6, G. S. Matthijs Jansen1, Stephan Hofmann3, Samuel Brem2, Ermin Malic2,7, 
Marcel Reutzel1*, Stefan Mathias1,6*

In two-dimensional semiconductors, cooperative and correlated interactions determine the material’s excitonic prop-
erties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle 
correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that 
the ultrafast transfer of an exciton’s hole across a type II band-aligned semiconductor heterostructure leads to an un-
expected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the 
two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signa-
ture, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the 
exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method 
to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capabil-
ity and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.

INTRODUCTION
An exciton is a prime example of a quasiparticle that is built up by 
electrons and holes bound together via Coulomb interaction. As in 
the case of a hydrogen atom, the exciton’s properties are described 
by its quantum number, its binding energy, and its Bohr radius (1). 
For low-dimensional materials, these key parameters can be sub-
stantially altered by cooperative interactions with surrounding qua-
siparticles (2, 3). To study such cooperative and emergent behavior, 
artificial stacks of two-dimensional transition metal dichalcogen-
ides (TMDs) have been shown to provide an exceptional playground 
for manipulating exciton properties. Examples include the ultrafast 
formation of interlayer excitons whose electron and hole compo-
nents are charge-separated across the neighboring TMD layers (4–8), 
the confinement of excitons in a moiré potential well (9–12), the 
creation of correlated interlayer exciton insulators (13, 14) and ex-
citon crystals (15, 16), and even the stabilization of Bose-Einstein 
condensates (17).

It is therefore of fundamental importance to obtain insight 
into the energy landscape and the ultrafast dynamics of the two-
particle correlated exciton state (18, 19). In TMD semiconductors, 
momentum-indirect and spin-forbidden excitons play a substantial 
role but are mostly inaccessible (7, 20) using all-optical experimental 
techniques (21, 22). Recently, time- and angle-resolved photoelectron 
spectroscopy (trARPES) experiments have been shown to be a pow-
erful technique to fill this gap and to simultaneously probe the 

energy landscape and dynamics of optically bright and dark excitons 
in monolayer (23–25) and twisted bilayer (8, 12, 26, 27) TMDs. 
When using photoelectron spectroscopy, there is a fundamental 
aspect that needs to be considered (Fig. 1A): In the photoemission 
process, the Coulomb correlation between the electron and hole 
components of the exciton is broken. This is because a single-particle 
photoelectron is collected with the detector and a single-particle 
hole remains in the material (28–31). In consequence, photoelec-
trons originating from excitons are detected at the exciton bind-
ing energy below the conduction band minimum (8, 23–25, 32) and 
show a hole-like energy-momentum dispersion (32, 33). In this 
way, trARPES provides natural access to the electron contribution 
of the exciton and can be used to quantify the charge transfer of the 
exciton’s electron across a type II band-aligned heterostructure 
(Fig. 1B) (8, 27). However, to this day, only very limited energy- 
and momentum-resolved spectroscopic information on the exciton’s 
hole component is reported (12). Specifically, in contrast to all-
optical spectroscopies (4–6, 18, 34–37), it has not been shown that 
trARPES can be applied to monitor the charge-transfer dynamics of 
the exciton’s hole across the TMD interface (Fig. 1C).

Here, we demonstrate how the Coulomb interaction between the 
electron- and the hole components of the intra- and interlayer exci-
tons facilitates the study of the ultrafast hole-transfer mechanism in 
a twisted WSe2/MoS2 heterostructure. We experimentally observe 
an increase in the exciton’s photoelectron energy upon the hole-
transfer process across the interface. This is unexpected at first be-
cause the electron remains rigid in the conduction band minimum 
during this hole-transfer process (Fig. 1C) and because any relax-
ation mechanism is typically expected to cause an overall decrease 
in the measured electronic quasiparticle energies. However, when 
taking the correlated nature of the electron-hole pair into account, 
despite an overall decrease in the quasiparticle energies, we show 
that such an increase due to hole transfer must be expected for the 
corresponding exciton’s photoelectron. Our work provides micro-
scopic insights into the ultrafast hole-transfer mechanism and, more 
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generally, highlights the potential of time-resolved momentum mi-
croscopy to probe optically inaccessible correlated excitonic and 
electronic states of matter.

RESULTS
Energy landscape and photoemission fingerprints of bright 
and dark excitons
We start the analysis of the hole-transfer dynamics by first calculat-
ing the full energy landscape and formation dynamics of bright and 

dark excitons in the twisted WSe2/MoS2 heterostructure on a micro-
scopic footing (details in Supplementary Text). The optically excited 
A1s excitons in the WSe2 and the MoS2 layer and their cascaded re-
laxation via layer-hybridized excitons to the lowest energy interlayer 
excitons are illustrated in Fig. 2A. If the heterostructure is excited 
resonantly to the A1s-exciton of WSe2 with 1.7 eV pulses, then only 
intralayer KW-KW A1s excitons are optically excited and decay in a 
cascaded transition via layer hybridized KW-Σ excitons to interlayer 
KW-KMo excitons, as we have discussed in detail in our earlier work 
(8, 27) (i.e., KW-KW → KW-Σ → KW-KMo; Fig. 2A, left-hand side). In 
the single-particle picture, this cascaded transition can be associated 
with the transfer of the exciton’s electron across the TMD interface 
(Fig. 1B).

Complementary, if the hole-transfer process across the WSe2/
MoS2 interface is considered (Fig. 1C), then the dynamics must be 
initiated by an excitation of MoS2 A1s excitons with 1.9 eV light 
pulses (KMo-KMo excitons in Fig. 2A, right-hand side). Exploiting 
the density matrix formalism, we calculate the excitonic energy 
landscape (details below), and track the exciton dynamics, finding 
that the most efficient mechanism to form interlayer KW-KMo exci-
tons occurs via layer hybridized Γ-KMo excitons, where the exciton’s 
electron resides in the KMo valley of MoS2 and the exciton’s hole can 
be found in the layer-hybridized valence bands at the Γ valley (38). 
Hence, the hole-transfer dominantly occurs via the KMo-KMo → Γ-
KMo → KW-KMo exciton cascade.

To differentiate the spectral contributions of different excitons in 
the experiment, we apply our setup for femtosecond momentum 
microscopy (39, 40) that provides direct access to the photoemission 
energy-momentum fingerprint of excitons (Fig. 2, B to E). In Fig. 2E, 
the momentum map of the intralayer KMo-KMo exciton is shown af-
ter resonant optical excitation with 1.9-eV pump pulses. Photoelec-
trons are detected at the in-plane momenta of the KMo and K′Mo 
valleys (0 ps). For better visibility, the Brillouin zone of MoS2 is over-
laid in dark red. Because 1.9-eV pump photons also non-resonantly 
excite KW-KW excitons in WSe2, the momentum map in Fig. 2C 
shows photoemission yield at the KW and K′W valleys of WSe2 (or-
ange hexagon, 0 ps). Note that the Brillouin zone of WSe2 is rotated 
by 9.8∘ ± 0.8∘ with respect to MoS2. Moreover, weak photoemission 
yield from hybrid KW-Σ excitons is detected at the Σ and Σ' valleys 
(grey hexagon). At a pump-probe delay of 10 ps (Fig. 2D), the major 
part of the intralayer excitons has decayed either via the electron- or 
the hole-transfer process, and spectral yield is dominated by the en-
ergetically most stable excitation, i.e., the interlayer KW-KMo exci-
tons (fig. S4). For these interlayer excitons, the electron and the hole 
contributions are now separated between both monolayers of the 
heterostructure, and the exciton photoemission momentum finger-
print has to be described within the moiré mini-Brillouin zones built 
up by the κ valleys whose in-plane momentum can be constructed 
by the reciprocal lattice vectors of WSe2 and MoS2 (Fig. 2D, black 
hexagon) (8, 26).

Hole- and electron-transfer dynamics
Having identified the exciton fingerprints in the photoemission ex-
periment, we can now proceed with the analysis of the hole-transfer 
dynamics. For this, fig. S4 provides an overview of the pump-probe 
delay-dependent evolution of photoemission intensity from intra-
layer KMo-KMo and KW-KW excitons, the hybrid KW-Σ exciton, and 
the interlayer KW-KMo exciton after optical excitation with 1.9 eV 
(fluence: 140 μJ/cm2; optically excited exciton densities of 7 ×1011 

Fig. 1. Probing Coulomb-correlated electron-hole pairs and their femtosec-
ond dynamics using momentum microscopy. (A) Schematic illustration of the 
photoemission process from excitons. Visible femtosecond light pulses (red) are 
used to optically excite bright excitons that fully reside in the MoS2 monolayer. The 
transfer of the hole component into the WSe2 monolayer leads to the formation of 
charge-separated interlayer excitons (black arrow). A time-delayed extreme ultra-
violet laser pulse (blue) breaks the exciton; single-particle electrons are detected in 
the photoelectron analyzer and single-particle holes remain in the WSe2 mono-
layer. (B and C) Single-particle energy-level alignment of the valence and conduc-
tion bands (v and c) of MoS2 and WSe2. KW-KMo excitons are formed due to 
interlayer charge transfer of the exciton’s hole or electron, respectively, from intra-
layer KMo-KMo or KW-KW excitons. Note that in (C), the electron contribution to the 
exciton remains rigid in the conduction band minimum of MoS2 during the hole-
transfer process. In the abbreviation of the excitons, the capital letters and the sub-
scripts denote the valley (K, Σ, and Γ) and the layer (W and Mo) where the exciton’s 
hole (first letter) and electron (second letter) are localized. It is not differentiated 
between momentum-direct and momentum-indirect excitons (e.g., KW/Mo and 

K'W/Mo or Σ and Σ') because those cannot be differentiated in the photoemission 

experiment (see fig. S7).
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and 3.5 ×1012 cm−2 in WSe2 and MoS2 (41), respectively). The for-
mation and thermalization dynamics of all accessible excitons indi-
cate that electron- and hole-transfer processes contribute to the 
formation of interlayer KW-KMo excitons, which, in consequence, we 
have to distinguish. To do so, we directly compare the interlayer KW-
KMo exciton rise time for 1.7- and 1.9-eV pumping. In Fig. 3A, the 
black data points show the pump-probe delay-dependent buildup of 
interlayer KW-KMo exciton photoemission intensity that is formed 
by electron- and hole-transfer processes (1.9-eV pump photons). 
For comparison, the green data points show the pump-probe delay-
dependent buildup of the interlayer KW-KMo exciton intensity that is 
formed only via the electron transfer process (1.7-eV pump pho-
tons, fluence: 280 μJ/cm2, exciton density: 5.4 ×1012 cm−2). It 
is directly obvious that there is a strong hierarchy of timescales 
for the electron- and hole-transfer processes: When considering the 
electron-only transfer process (green symbols), the interlayer exci-
ton signal increases rapidly with pump-probe delay and saturates 
on the sub-200-fs timescale. A quantitative evaluation with rate 
equation modeling yields a formation time of te − transfer = 40 ± 10 fs 
(see Supplementary Text). In contrast, the joint buildup of interlayer 

KW-KMo excitons via electron- and hole-transfer processes after 1.9-eV 
excitation saturates on the 1-ps timescale (black symbols). For fur-
ther analyzing this dataset, we assume that the 1.9-eV pump pulses 
excite A1s excitons in WSe2 and MoS2 in a 1:5 ratio, as estimated 
from the optical absorption coefficient of both monolayers (41), and 
take the already deduced electron-transfer time te − transfer = 40 ± 10 fs 
into account. From this fit, we extract th − transfer = 2.2 ± 1 ps, which 
is more than an order of magnitude larger than the electron-transfer 
time te − transfer (see rate equation analysis based on fig. S3).

Hence, our experimental data imply that the interlayer hole-
transfer mechanism across the WSe2/MoS2 heterointerface is sub-
stantially slower compared to the electron-transfer mechanism. To 
understand our findings on a microscopic footing, we exploit the 
density matrix formalism to derive excitonic equations of motion 
within the energy landscape of excitons shown in Fig. 2A and fig. S7 
(see details in Supplementary Text) (38, 42). Here, we incorporate 
exciton-light and exciton-phonon interaction and assume again that 
the 1.9-eV pump pulses excite A1s excitons in WSe2 and MoS2 in 
a 1:5 ratio (41). We find an excellent qualitative agreement of the 
microscopic model calculations (Fig. 3B) with the experimentally 

Fig. 2. Energy landscape and energy-momentum fingerprints of excitons in WSe2/MoS2. (A) Calculated low-energy exciton landscape of intralayer, hybrid, and inter-
layer excitons. The electron- and hole-transfer processes can be initiated via excitation with 1.7- and 1.9-eV light pulses, respectively, and proceed via the KW-KW → KW-Σ→ 
KW-KMo and KMo-KMo → Γ-KMo → KW-KMo cascades. The solid and dashed arrows, respectively, indicate exciton-phonon scattering events leading to inter- and intravalley 
thermalization of the exciton occupation. The effective mass of the exciton dispersion is extracted from many-body calculations. The inset schematically shows the align-
ment of the WSe2 and MoS2 Brillouin zones and indicates the high-symmetry points in the first Brillouin zone. (B) Energy- and momentum-resolved photoemission spec-
trum along the Γ-Σ-KW direction (inset) measured on the WSe2/MoS2 heterostructure after photoexcitation with 1.9-eV light pulses at a delay of 10 ps. The WSe2 and MoS2 
valence band maxima are labeled with EW

v
 and EMo

v
 , respectively. (C to E) Photoemission momentum fingerprints of the (C) intralayer KW-KW exciton (0 ps), the (D) inter-

layer KW-KMo exciton (10 ps), and the (E) intralayer KMo-KMo exciton (0 ps) after photoexcitation with 1.9-eV light pulses. The photoelectron energies of the momentum 
maps are given in the figure with respect to the energy of the WSe2 valence band maximum and are indicated by colored arrowheads in (B). The energetic width of the 
arrowheads indicates the energy range used for generating the momentum maps (C, D, and E). The Brillouin zones of WSe2, MoS2, and the moiré superlattice are overlaid 
on the data by orange, dark red (dashed), and black hexagons, respectively.
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quantified rise time (Fig. 3A) of interlayer KW-KMo excitons: The 
electron-only transfer process saturates for delays <200 fs (green), 
while the combined electron- and hole-transfer dynamics lead to an 
increasing interlayer KW-KMo exciton occupation for substantially 
longer delays (black). Hence, in experiment and theory, we find that 
the electron-transfer dynamics is roughly one order of magnitude 
faster than the hole-transfer dynamics.

To understand this drastic difference in the rise time of interlayer 
KW-KMo exciton formation via the electron- versus the hole-transfer 
process, we evaluate the calculated exciton dynamics in more detail 
and make two major observations: First, it is important to realize 
that the exciton energy difference between the optically excited in-
tralayer exciton and the interlayer exciton is roughly 200 meV larger 
in the case of 1.9-eV excitation, which initiates the hole-transfer 
process (see exciton energies in Fig. 2A and fig. S7). The dissipation 

of this extra amount of energy via exciton-phonon scattering events 
with typical phonon frequencies of 0.03 eV (43) leads to overall 
slower hole-transfer dynamics (arrows in Fig. 2A) (42, 44). In addi-
tion, the first step of the exciton cascade leading to the formation of 
either KW-Σ or Γ-KMo excitons in the electron- and hole-transfer 
process, respectively, is markedly different. In the first Brillouin zone, 
the Σ and Σ' valleys are each threefold degenerate, while there is 
only one Γ valley (Fig. 2A, inset). Therefore, the density of final states 
for the KW-KW → KW-Σ versus the KMo-KMo → Γ-KMo transition 
is notably different (42, 43, 45–47). In consequence, hybrid KW-Σ 
excitons are more efficiently formed than hybrid Γ-KMo excitons, 
favoring faster interlayer exciton formation dynamics for the 
electron-transfer channel compared to the hole-transfer channel.

Last, we want to point out two important deviations in the exci-
ton dynamics between experiment and theory. First, on the few 
picosecond timescale, we find that the calculated occupation of in-
terlayer KW-KMo excitons increases up to ≈4 ps and is composed of 
a 1:5 ratio of interlayer excitons that are formed from A1s excitons 
initially excited in the WSe2 and MoS2 layers (fig. S8). In contrast, in 
the experiment, the respective photoemission intensity saturates at 
roughly 1 ps and the 1:5 ratio cannot be identified (1.9-eV excitation; 
Fig. 3). This deviation between experiment and theory can be un-
derstood by the fact that radiative and defect-assisted decay pro-
cesses of intralayer, hybrid, and interlayer excitons with lifetimes 
ranging from 1 ps to tenths of picoseconds (8, 27, 34, 35) are not 
included in the model calculations. Hence, the model calculations 
overestimate the exciton occupation at large pump-probe delays.

Second, we find that the experimental data for 1.7- and 1.9-eV 
excitation rises faster than estimated from the model calculations 
(sub-200-fs timescale in Fig. 3). This deviation could be related to 
the fact that the model calculations do not consider exciton-exciton 
scattering events, which might already contribute to the dynamics 
in the experiment (25, 48, 49). Although an in-depth pump fluence-
dependent analysis of these dynamics appears to be highly interest-
ing, it is beyond the scope of this manuscript, and, in the following, 
we focus on the identification of a spectroscopic fingerprint of the 
hole-transfer process.

The spectroscopic signature of a correlated 
hole-transfer process
On the basis of this hierarchy of timescales between the electron- 
and the hole-transfer process, it is possible to separate the interlayer 
exciton formation dynamics: For delays >200 fs, the change in the 
exciton photoemission yield from the interlayer KW-KMo exciton is 
mainly caused by hole-transfer processes. Hence, the final ambition 
of our work is the unambiguous discrimination of the photoemis-
sion spectral signature of intralayer KMo-KMo and interlayer KW-KMo 
excitons, where, in both cases, the electron contribution to the exci-
ton is situated in the conduction band minimum of the MoS2 layer 
(compare Fig. 1C).

In the most naive picture of photoemission, it might be expected 
that trARPES only yields information on the exciton’s electron. 
Hence, the experiment would not distinguish between photoelectrons 
being emitted from the conduction band minimum of MoS2, irre-
spective of whether they result from the breakup of intralayer KMo-
KMo or interlayer KW-KMo excitons (Fig. 1C). However, it is known 
that the spectral function in photoemission contains information 
about many-body interactions (50), and this is also the case for the 
correlated electron-hole pair. This leads to a very nonintuitive and 

Fig. 3. Femtosecond-to-picosecond evolution of the hole- and electron-transfer 
dynamics. (A) Direct comparison of the interlayer KW-KMo exciton formation dy-
namics if the heterostructure is excited resonantly to the intralayer KW-KW exciton 
energy of WSe2 (1.7 eV, green circles) or the intralayer KMo-KMo exciton of MoS2 (1.9 eV, 
black circles). While the electron-only transfer process (1.7 eV) leads to a saturation 
of photoemission yield from interlayer KW-KMo excitons on the <200-fs timescale, 
the combined electron- and hole-transfer dynamics (1.9 eV) leads to an increasing 
photoemission yield up to 1 ps. The momentum-filtered regions of interest (black 
circles) used in the 1.7-eV (green contour) and 1.9-eV (black contour) measure-
ments are shown in the bottom panel. The κ valley that overlaps with the original 
KMo valley is excluded in the analysis of the 1.9-eV measurement. (B) Microscopic 
model calculations of the interlayer KW-KMo exciton formation dynamics. The green 
curve describes the temporal evolution of the occupation of interlayer KW-KMo ex-
citons after photoexcitation of intralayer KW-KW excitons. For the black curve, the 
interlayer KW-KMo exciton formation dynamics is induced by the initial excitation of 
intralayer KW-KW and KMo-KMo excitons. Note that the model calculations do not 
include additional decay processes.
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intriguing experimental observation. Figure 4A shows the pump-
probe delay evolution of energy distribution curves (EDCs) filtered 
for photoelectron yield at the κ valley, whose momentum coincides 
with the KMo valley, i.e., the momentum region where photoelectron 
yield from intralayer KMo-KMo and interlayer KW-KMo excitons is 
expected (Fig. 4A, inset). Astonishingly, we find that the energy of 
the photoelectrons shifts up as a function of pump-probe delay from 
E − EW

v
= 0.93 ± 0.03 eV at 15 fs to E − EW

v
= 1.10 ± 0.03 eV at 1 ps, 

i.e., a shift of ΔEh−transfer
PES

= 0.17 ± 0.04 eV (Fig. 4B). At first glance, 
this is an unexpected observation: In temporal overlap of the pump 
and the probe laser pulses, the optical excitation deposits energy into 
the system, and the system subsequently relaxes from its excited 
state to energetically more favorable states via scattering processes. 
In consequence, energy-resolved pump-probe photoemission spec-
troscopies of single-particle charge carriers typically show that the 
mean kinetic energy of the photoelectrons decreases with pump-
probe delay (51). An increasing mean kinetic energy might indicate 
higher-order scattering processes such as Auger recombination (49, 52). 
For Auger recombination, however, we would expect to observe a 
decreasing mean kinetic energy on the few-picosecond timescale as 
the overall exciton density and thus the efficiency for Auger recom-
bination decreases. However, the long-time evaluation of the mean 
photoelectron energy clearly excludes this scenario (Fig. 4A). In ad-
dition, by evaluating the pump-probe delay evolution of the energy 
position of the MoS2 valence band maxima, we can exclude a photo-
induced renormalization of the band energies (53, 54) (fig. S5). We thus 
search for the origin of the apparent increase of the mean kinetic 
energy beyond the single-particle picture, i.e., in the photoemission 
from excitons whose occupation is dynamically transferring from 
intralayer KMo-KMo to interlayer KW-KMo excitons.

So far, we have referenced the energies of all emitted single-
particle photoelectrons to the valence band maximum of WSe2 (left 
energy axis in Fig. 4B). However, especially for the intralayer KMo-
KMo exciton that fully resides in the MoS2 layer, this is clearly not the 
intrinsically relevant energy axis. We overcome this shortcoming by 
using an energy scale that is more direct to photoemission from ex-
citons by relating the total energy before (E = E0 + Eexc + ℏω) and 
after (E = E0 − Ehole + Eelec) the breakup of the correlated electron-
hole pair (55). Here, Eexc is the energy necessary to resonantly excite 
an exciton with a two-particle binding energy Ebin (compare exciton 
energy landscape in Fig. 2A); Ehole and Eelec denote the energy of the 
single-particle hole and electron state after the breakup of the exciton, 
respectively; E0 is the ground state energy and ℏω is the photon en-
ergy. As energy needs to be conserved when the exciton is broken, the 
energy of the detected single-particle electron can be expressed as

Therefore, Eq. 1 fixes the energy of the single-particle hole Ehole 
remaining in the sample as the natural reference point of the photo-
electron energy axis for each probed exciton (at a given probe photon 
energy ℏω). For the intralayer KMo-KMo excitons and the interlayer 
KW-KMo excitons, respectively, the valence band maxima of MoS2 
( EMo

v
 ) and WSe2 ( EW

v
 ) set the energy scale [see Fig. 1 (B and C) and 

band energies labeled in Fig. 2B)]. Following Eq. 1, we can directly 
quantify the exciton energies of intralayer KMo-KMo and interlayer KW-KMo 
excitons from the photoemission data to EMoMo

exc
= 1.93 ± 0.08 eV and 

EWMo

exc
= 1.10 ± 0.03 eV , respectively, which are in excellent agreement 

with earlier results obtained with photoluminescence spectroscopy 
[(EMoMo

exc,PL
= 1.9 eV and EWMo

exc,PL
= 1.1 eV ; horizontal lines in Fig. 4B)] 

Eelec = Ehole + Eexc + ℏ𝜔 (1)

Fig. 4. Coulomb correlation–induced excitonic energy fingerprints. (A) Pump-probe delay evolution of the energy distribution curves (EDCs) filtered at the momen-
tum region of the KMo valley of MoS2 (region of interest indicated in the inset, 1.9-eV excitation). At this high-symmetry point, photoemission yield from intralayer KMo-KMo 
and interlayer KW-KMo excitons is expected (see Fig. 1C). As intralayer KMo-KMo excitons decay and form interlayer KW-KMo excitons, the peak maxima of the photoelectron 
energy shows an upshift by ΔEh−transfer

PES
= 0.17 ± 0.04 eV (curved arrow). (B) Selected EDCs for pump-probe delays of 15 fs (dark red) and 1 ps (black) illustrating an ener-

getic upshift of the exciton photoemission signal. The horizontal bars indicate expected photoelectron energies for the intralayer KMo-KMo (dark red) and interlayer KW-KMo 
(black) excitons calculated with Eq. 1 and data from photoluminescence measurements (56, 57). The left and right energy axes in black and dark red show the correspond-
ing energy scales with respect to the valence band maximum of WSe2 and MoS2.
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(56, 57). In consequence, we can explain the experimentally observed 
upshift of the photoelectron energy by ΔEh−transfer

PES
= 0.17 ± 0.04 eV 

with the energy difference between the single-particle electron final 
states Eelec of the interlayer KW-KMo and the intralayer KMo-KMo exci-
tons, i.e., with (EW

v
+ EWMo

exc
+ ℏω) − (EMo

v
+ EMoMo

exc
+ ℏω) ≈ 0.17 eV 

(with EW

v
− EMo

v
= 1.00 ± 0.07 eV , see Fig. 2B). Hence, the energetic 

upshift is a direct consequence of the breakup of the correlated 
electron-hole pair during the photoemission process.

Although the photoelectron energy increases during the hole-
transfer process, we strongly emphasize that the overall energy of the 
system relaxes by ΔEh−transfer

exc
= EWMo

exc
− EMoMo

exc
= − 0.83 ± 0.09 eV 

(see Fig. 2A). Consistently, if the same analysis is performed for the 
electron-only transfer process after photoexcitation with 1.7 eV pump 
pulses, then we find a reduction of the overall exciton energy by 
ΔEe−transfer

exc
= EWMo

exc
− EWW

exc
= − 0.46 ± 0.07 eV (fig. S6). In this case, 

where the exciton’s hole remains in the WSe2 VBM (Fig. 1B), the 
reduction of the exciton energy directly translates to a reduction of the 
single-particle photoelectron energy ( ΔEe−transfer

PES
= − 0.46 ± 0.07 eV ). 

Therefore, as expected, interlayer charge transfer always leads to a 
reduction of the exciton energy Eexc, which might, however, result in 
an up- or a downshift of the photoelectron energy in the photoemis-
sion spectrum.

DISCUSSION
We have shown that femtosecond momentum microscopy is a pow-
erful tool to study the correlated interaction between the exciton’s 
electron and hole in twisted semiconductor heterostructures. Exem-
plarily, we show that the photoelectron of the correlated two-particle 
exciton contains direct information about the hole state. We use this 
correlation in combination with microscopic and material-specific 
theory to directly follow an ultrafast interlayer hole-transfer process 
that would otherwise be elusive. Our work opens up means for the 
future study of correlated states of matter in two-dimensional quan-
tum materials.

MATERIALS AND METHODS
The time- and angle-resolved photoemission data are measured with 
a time-of-flight momentum microscope (Surface Concept) (58, 59) 
that is connected to a table-top high harmonic generation beamline 
driven by a 300-W fiber laser system (AFS Jena) (40, 60). The overall 
experimental setup and its application to exfoliated two-dimensional 
materials are described in (39) and (8), respectively.

In all experiments, the exciton dynamics are induced by resonant 
optical excitation of the A1s-excitons of WSe2 or MoS2. Therefore, 
1.7- and 1.9-eV pump pulses with a duration of 50 fs are used (s-
polarized), respectively. After a variable pump-probe delay, photo-
emission is induced by 26.5-eV light pulses (20 fs, p-polarized).

For the characterization of the temporal resolution and the de-
termination of absolute time zero of the experiment, we have mea-
sured the pump-probe delay-dependent photoemission yield of 
sidebands of the valence bands formed due to the laser-assisted pho-
toelectric effect (40, 61). In fig. S1, a cross-correlation of the pump 
and probe laser pulse is shown, where both laser pulses are p-
polarized (1.9-eV pump pulses). The gray line is a Gaussian fit to the 
data yielding a full width at half maximum of 60 ± 5 fs.

The 9.8∘ ± 0.8∘ twisted WSe2/MoS2 heterostructure is stamped 
onto a 20- to 30-nm-thick hBN (62) spacer layer and a p +-doped 

native oxide silicon waver. Before the momentum microscopy ex-
periments, the sample is annealed for 1 hour to 670 K. Details on the 
sample fabrication and characterization (e.g., twist angle) are de-
scribed in (8).
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Supplementary Text

Figure S1: Cross-correlation measurement of the pump and probe laser pulses as ob-
tained in the photoemission experiment due to the measurement of photoemission side-
bands formed due to the laser-assisted photoelectric effect.



Correction of rigid band shifts

As a result of pump- and probe-induced space-charge and surface photovoltage effects, we ob-

serve transient energy shifts of the momentum-integrated photoemission spectrum by ±80 meV

(Fig. S2) (63) . This energy offset is extracted from the data by fitting the spectral weight max-

ima at ≈-2.4 eV (Fig. S2B) for each pump-probe delay. The blue and the black data points

show the pump-probe dependence of this peak before and after correction, respectively. The

correction is done prior to the data analysis discussed in the main text.

Figure S2: Correction of rigid energy shifts. (A) At each pump-probe delay, the momentum-
integrated energy spectrum has a distinct rigid energy shift (blue squares) that is evaluated by
fitting the red marked peak c lose to E-Ev

W =  -2.4 eV in (B). After the correction of this rigid 
energy shift, all energy-distribution-curves are aligned (black circle data points in (A)).



Quantitative analysis of the exciton dynamics - Rate equation modelling

Fig. 3A in the main text and Fig. S3C show the pump-probe delay-dependent photoemission in-

tensity from interlayer KW-KMo excitons in the case that electron- and hole-transfer processes

(black circles, 1.9 eV) or that electron-only-transfer processes (green circles, 1.7 eV) contribute.

In order to quantitatively analyze the characteristic formation dynamics, we apply a rate equa-

tion model to fit the experimental data. The model is schematically shown in Fig. S3A and S3B

and the rate equations are listed in the following

dNW

dt
= gW(t)− NW

te−transfer

, (S1)

dN e−only
KW−KMo

dt
=

NW

te−transfer

− N e−only
KW−KMo

τdecay
, (S2)

dNMo

dt
= gMo(t)−

NMo

th−transfer

− NMo

τintra
, (S3)

dN e&h
KW−KMo

dt
=

NMo

th−transfer

+
NW

te−transfer

− N e&h
KW−KMo

τdecay
. (S4)

NW and NMo are the intralayer exciton occupation in the WSe2 and MoS2 layer, respectively,

that are populated with Gaussian shaped excitation gW(t) and gMo(t) (FWHM = 50 fs). As

the probe laser pulse duration is sufficiently short (20 fs), it is neglected in the rate equation

fit. te−transfer and th−transfer, respectively, describe the electron- and hole-transfer times from the

initialNW andNMo states into the finalN e&h
KW−KMo

andN e−only
KW−KMo

states. Based on the absorption

coefficients of MoS2 and WSe2 at excitation with 1.9 eV laser pulses (41), we expect to excite 

the respective intralayer A1s excitons in a 1:5 ratio, i.e., gMo(t) = 5 · gW(t). It is important 

to note that because of photoemission matrix element effects (25), the direct correlation of the 

photoemission intensity from excitons to the excitonic occupation is not possible. Hence, the 

excitation ratio cannot experimentally be extracted from the pump-probe delay-dependent anal-

ysis of the photoemission intensity from intralayer KW-KW and KMo-KMo excitons (Fig. S4).



At first glance, it might be expected the the electron-transfer and hole-transfer processes also

contribute to the interlayer exciton occupation with a ratio of 1:5. However, this assumption ne-

glects additional decay processes that must be taken into account. In particular, we observe that

the hole-mediated interlayer KW-KMo exciton photoemission yield increases on an time-scale

of up to 1 ps (Fig. 3A). On this comparably long time-scale, radiative and defect-assisted decay

processes of intralayer and hybrid excitons with lifetimes in the regime of a few picoseconds

clearly become relevant (8, 27, 34, 35). Hence, not all initially excited intralayer excitons are

converted to interlayer excitons. In order to capture these processes in our fit routine, we add

the decay constant τintra as a free fit parameter to equation (S3). Moreover, the interlayer exci-

ton state depopulates with a fixed decay time of τdecay = 33 ps, which was estimated from an

exponential decay fit to the long-term dynamics (8).

In our analysis, we first fit the 1.7 eV pumped data set. In the fit routine, equations (S1)

and (S2) are solved numerically yielding the delay-dependent evolution of the state N e−only
KW−KMo

.

This is then compared to the data. Fit parameters are amplitude of the excitation and electron 

transfer time te−transfer. Optimization for best fit parameters yields t e−transfer = 40 ± 10 fs.

In a second step, we fit the 1.9 eV d ata. Equations (S1), (S3) and (S4) are solved by incor-

porating the fixed electron-only transfer time t e−transfer =  40 ± 10 fs from the previous fit and 

gMo(t) = 5 ·gW(t) (see above). The remaining fit parameters are the amplitude of the excitation, 

the hole-transfer time th−transfer and the decay time τintra of the initial NMo state. The optimiza-

tion for the best fit parameters yields a hole-transfer time of t h−transfer = 2.2 ± 1 ps. Moreover, 

the fitted decay time τ intra = 600 ± 200 fs is in a reasonable order in comparison to earlier work 

on radiative and defect decay processes of intralayer and hybrid excitons (8, 27, 34, 35).



Figure S3: Quantitative analysis of the interlayer KW-KMo exciton formation dynamics.
(A) Schematic overview of the rate equation model: Exciton population in the WSe2 layer NW

is excited by a Gaussian pump pulse. Electron charge-transfer leads to the formation of inter-
layer KW-KMo excitons ( N e−only

KW−KMo
) with the scattering time te−transfer. (B) Exciton population

in the MoS2 (WSe2) layer NMo (NW) is excited by a Gaussian pump pulse. Hole (electron)
charge-transfer leads to the formation of interlayer KW-KMo excitons (N e&h

KW−KMo
) with the scat-

tering time th−transfer (te−transfer). (C) The pump-probe delay-dependent build-up of photoemis-
sion intensity of interlayer KW-KMo excitons is shown after resonant excitation of KMo-KMo

excitons in MoS2 (1.9 eV, black circles) and after resonant excitation of KW-KW excitons in
WSe2 (1.7 eV, green circles), respectively. Note that resonant excitation of KMo-KMo excitons
also leads to off-resonant excitation of KW-KW excitons, so that the interlayer exciton occupa-
tion is build-up both by hole and electron transfer. Solid lines depict best fit results of the rate
equation model. Green and dark red solid lines describe the proportion of the interlayer exciton
population that is created due to the electron-only (N e−only

KW−KMo
) and hole-only charge transfer,

respectively. The black line corresponds to the sum of electron- and hole-transfer processes
N e&h

KW−KMo
.



Femtosecond dynamics of intra- and interlayer excitons

Figure S4 shows an overview of the pump-probe delay-dependent evolution of photoemission

intensity for all measured excitons after excitation with 1.9 eV light pulses. The first two rows

show the optical excitation of intralayer KW-KW excitons (orange) and the subsequent forma-

tion of hybrid KW-Σ excitons (grey). The bottom two panels show the photoemission intensity

of selected κ valleys of the moiré mBz. In the case that the κ valley overlaps with the KMo

valley (dark red), photoemission intensity is composed of signal from intralayer KMo-KMo and

interlayer KMo-KW excitons. This κ valley is evaluated in Fig. 4 of the main text. Complemen-

tary, if the two κ valleys are evaluated (black) that do not overlap with the KMo valley, only

photoemission signal from interlayer KMo-KW excitons is detected. These data are shown in

Fig. 3A of the main text. Error bars of the data depicted in Fig 3A of the main text and Figure

S1, S3B and S4 show the 1σ interval of the Poisson distributed count statistics.



Figure S4: Femtosecond intra- to interlayer exciton transfer dynamics. The dynamics for 
the different exciton signals are depicted: KW-KW (orange), KW-Σ (grey), KMo-KMo and KW-
KMo (dark red) and KW-KMo (black). The round insets show the position of the momentum 
apertures used for filtering the exciton photoemission s ignatures. If the κ valley coincides with 
the KMo valley (dark red), photoemission yield is composed of contributions from intralayer 
KMo-KMo and interlayer KW-KW excitons (see Fig 4 of the main text). In the case that those 
high-symmetry points do not overlap (black), only photoemission signal from interlayer KW-
KMo excitons is detected (see Fig. 3 of the main text). Momentum filters have a  diameter of 
0.17 Å−1 and the signal is summed over all 6 corners of the first Brillouin zone. Energy binning 
is 2.3-1.3 eV for KW-KW and KW-Σ and 1.42-0.75 eV for KW-KMo and KMo-KMo.



Excluding photoinduced band renormalizations

The major spectroscopic signature of interest in our manuscript is a pump-probe delay-dependent 

upshift of the energy of photoelectrons being emitted from excitons (Fig. 4). We attribute this 

energy upshift to the formation of interlayer KMo-KW excitons from intralayer KMo-KMo exci-

tons. However, it is well-known that photo-induced band renormalizations (53) can lead to a 

similar shift of photoemission signatures (54), which, hence, must be excluded.

In addition to photoemission signals from excitons, the multidimensional data acquisition 

scheme allows to monitor the energetic position of the occupied valence band of MoS2. If the 

electronic bands would renormalize in response to the optical excitation, we would expect to 

observe an energetic shift of this occupied valence band (54). In Fig. S5, we directly compare 

the energy position of the MoS2 valence band and the excitonic photoemission signal. We 

observe that after the excitation with the pump pulse the excitonic peak position at the KMo point 

exhibits an upshift, while the valence band maximum of the MoS2 layer remains comparably 

constant. Hence, we can exclude photo-induced band renormalizations as the origin for the 

energetic upshift of the main photoemission signal in Fig. 4.



Figure S5: Excluding photo-induced band renormalizations. The top and the bottom rows
show the peak position of the exciton photoemission signal and the MoS2 valence band max-
imum, respectively. In the middle panels, selected EDCs taken at the KMo valley are shown
for 15 fs (dark red) and 1 ps (black). In the left panels, the fitted peak maxima of such EDCs
are plotted as a function of pump-probe delay. The right panels show the filtered momentum
regions (black circles), whereas the momentum-momentum maps are taken at the respective
energies of the excitonic photoemission signal and the MoS2 valence band maximum.



Exciton energy relaxation during electron- and hole-transfer process

In Fig. 4 of the main text we show an upshift of the photoelectron energy of the exciton signal

caused by the hole charge-transfer process. Figure S6 depicts this photoemission signature

when pumping with 1.9 eV (Fig. S6A) in comparison to the photoemission signature upon

1.7 eV pumping (Fig. S6B). For the latter case that initiates the electron charge-transfer process,

we observe a reduction in the photoelectron energy in agreement with our earlier report (8). We

note that in both cases the exciton relaxes towards the energetically lowest lying state in the

overall exciton energy landscape, i.e. to the interlayer exciton, as shown by the analysis in the

main text.

Figure S6: Pump-probe delay evolution of the exciton energy fingerprints for the case of the 
hole- and the electron-transfer process. (A) Pump-probe delay evolution of the momentum 
filterd energy-distribution curves (EDC) with a  pump energy of 1.9 eV resonant to intralayer 
KMo-KMo excitons. The momentum filter is placed at the KMo high-symmetry point (inset). The 
mean photoelectron energy shows an apparent upshift on the < 200 fs scale as the excitonic 
energy relaxes. (B) Pump-probe delay evolution of EDCs including the KW point and all three 
κ points. When applying a pump energy of 1.7 eV resonant to intralayer KW-KW excitons the 
mean photoelectron energy reduces as the exciton energy relaxes.



Microscopic modelling

In this section, we introduce the main concepts of the theoretical approach applied to calculate

the dynamics in TMD bilayers. We start with the excitonic Hamilton operator

H = H0 +HT =
∑

µ,Q

Eµ
QX

µ†
Q X

µ
Q +

∑

µ,ν,Q

TµνXµ†
Q X

ν
Q (S5)

where we used the superindex µ = (nµ, ζµe , ζ
µ
h , L

µ
e , L

µ
h) to describe the exciton states, Eµ

Q =

Ec
ζµLµ

e
− Ev

ζµLµ
h
+ Eµ

bind + Eµ
Q,kin are the excitonic energies, where Eµ

bind are obtained after

solving a bilayer Wannier equation (44, 64), Ec/v

ζµLµ
e

are the conduction and valence band energy

and Eµ
Q,kin = h̄2Q2/(2Mµ) is the kinetic energy of the exciton with mass Mµ = (mµ

e +

mµ
h). Moreover we introduced the excitonic tunneling between the TMD monolayers with the

tunnelling matrix elements

Tµν = (δLµ
hL

ν
h
(1− δLµ

eLν
e
)δζµζνT

c
µe,νe − δLµ

eLν
e
(1− δLµ

hL
ν
h
)δζµζνT

v
µh,νh

)
∑

k

ψµ∗(k)ψν(k), (S6)

where ψµ is the excitonic wave function of the state µ defined over the relative momentum

between electron and hole, T λij = ⟨λip|H |λjp⟩ (1 − δLiLj
)δζiζj are the electronic tunneling

elements obtained by averaging DFT values of MoSe2-WSe2 and MoS2-WS2 heterostructures

in (65). Diagonalizing Eq. S5 leads to a new set of hybrid excitonic energies EηQ that are

obtained by solving the hybrid eigenvalue equation (64, 65),

Eµ
Qc

η
µ(Q) +

∑

ν

Tµνcην(Q) = EηQcηµ(Q). (S7)

Now, we can define a diagonal hybrid exciton Hamiltonian (8, 42)

H =
∑

η

EηQY η†
Q Y η

Q (S8)

with the hybrid exciton annihilation/creation operators Y η(†)
Q =

∑
µ c

η
µ(Q)X

µ(†)
Q . Evaluating the

above eigenvalue equation, we predict the hybrid exciton energy landscape for the investigated 

WSe2-MoS2 heterostructure, see Fig. S7.



The hybrid exciton-phonon scattering plays a crucial role at the low excitation regime (42,

66). The corresponding Hamiltonian can be written as (64)

HY−ph =
∑

j,Q,q,η,ξ

D̃ξη
j,q,QY

ξ†
Q+qY

η
Qbj,q + h.c. (S9)

with the hybrid exciton-phonon coupling D̃ξη
j,q,Q. The electron-phonon coupling matrix ele-

ments, single-particle energies and effective masses are taken from DFPT calculations (43).

The excitation of the system through a laser pulse is described semi-classically via the minimal-

coupling Hamiltonian that can be written as (64)

HY−l =
∑

σ,Q,η

A · M̃η
σQY

η
Q∥

+ h.c. (S10)

with hybrid exciton-light coupling M̃η
σQ. Details on the transformation and the definition of the

hybrid interaction matrix elements and couplings are given in Ref. (64, 65).

Exploiting the Heisenberg equation of motion for the hybrid occupation Nη = ⟨Y η†Y η⟩,

including H = HY + HY−ph + HY−l, and truncating the Martin-Schwinger hierarchy using

a second order Born-Markov approximation (67–69), separating coherent P η
Q = ⟨Y η†

Q ⟩ and

incoherent hybrid populations δNη
Q = ⟨Y η†

Q Y η
Q⟩ − ⟨Y η†

Q ⟩⟨Y η
Q⟩ = Nη

Q − |P η
Q|2, leads to the

coupled semiconductor Bloch equations

ih̄∂tP
η
0 = −(Eη0 + iΓη0)P

η
0 − M̃η

0 ·A(t)

δṄη
Q =

∑

ξ

W ξη
0Q|P η

0 |2 +
∑

ξ,Q′

(
W ξη

Q′QδN
ξ
Q′ −W ηξ

QQ′δN
η
Q

) (S11)

with W ηξ
QQ′ = 2π

h̄

∑
j,± |Dηξ

j,Q′−Q|2
(

1
2
± 1

2
+ nphj,Q′−Q

)
δ
(
EξQ′ − EηQ ∓ h̄ΩjQ′−Q

)
as the phonon

mediated scattering tensor.

The large twist angle in the experiment gives rise to very short moire periods with a length 

scale comparable with the exciton Bohr radius. Therefore, a strong modification of the exciton 

center-of-mass motion, i.e. a moire-trapping of excitons is not expected (70) therefore, we 

neglect the twist angle dependence.



Resonant excitation of the KMo-KMo exciton leads also to a non-resonant excitation of the

KW-KW state. The ratio in the exciton occupation of NMo/NW ≃ 5 can be extracted from

optical absorption coefficients (41). To model this effect in our simulations, we include one

main pulse exciting the KMo-KMo state, and a secondary less intense pulse exciting the KW-KW

state, imposing the same ratio of the coherent population as in the experiment.

The resulting evolution of exciton population for all contributing states is shown in Figure

S8. Note that states with a valley degree of freedom cannot be distinguished in experiment.

Therefore these states are summed up, e.g. KMo-KMo and KMo-K′
Mo.

Figure S7: Hybrid-exciton energy landscape for the WSe2/MoS2 heterostructure. We use dif-
ferent colors for depicting the percentage of intralayer tungsten (W, orange), intralayer molyb-
denum (Mo, red) or interlayer (blue) exciton character of the corresponding states. Due to the
strong tunneling experienced by electrons or holes, Kh- Σ(′)

e and Γh-K(′)
e states are strongly hy-

bridized. Note that we plot only a selection of low-energy hybrid exciton states contributing
directly to the relaxation dynamics.



Figure S8: Exciton occupation dynamics calculated for the electron- and the hole-transfer
process. Note that states with a valley degree of freedom cannot be distinguished in experiment.
Therefore these states are summed up, e.g. KMo-KMo and KMo-K′

Mo excitons are termed KMo-
KMo in the legend.

from
to

KW-KW KW-K′
W KW-Σ KW-Σ′ KW-KMo KW-K′

Mo Γ-KMo Γ-K′
Mo KMo-KMo KMo-K′

Mo

KW-KW - 5.07 0.43 22.55 7E-04 1E-04 1E-04 0 0 0
KW-K′

W 4E-09 - 18.95 1.04 8E-05 2E-03 0 3E-05 0 0
KW-Σ 0 0 - 0 1.59 13.33 0 0 0 0
KW-Σ′ 0 0 142.77 - 5.43 0.83 0 0 0 0

KW-KMo 0 0 0 0 - 0.47 0 0 0 0
KW-K′

Mo 0 0 0 0 0 - 0 0 0 0
Γ-KMo 0 0 0 0 1.13 0 - 0 0 0
Γ-K′

Mo 0 0 0 0 0 1.00 0 - 0 0
KMo-KMo 3E-06 2E-07 5E-04 7E-03 2E-03 1E-04 1.62 0 - 0
KMo-K′

Mo 3E-07 2E-06 7E-03 6E-04 1E-04 2E-03 0 1.61 0.80 -

Table S1: Exciton-phonon scattering induced out-scattering rates for all initial exciton states
resolved into all possible final states (ps−1, for Q = 0). Out-scattering rates that are given with
”0” are fully suppressed due to energy conservation in the one phonon processes.
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ABSTRACT: Van der Waals heterostructures show fascinating physics
including trapped moire exciton states, anomalous moire exciton transport,
generalized Wigner crystals, etc. Bilayers of transition metal dichalcogenides
(TMDs) are characterized by long-lived, spatially separated interlayer
excitons. Provided strong interlayer tunneling, hybrid exciton states
consisting of interlayer and intralayer excitons can be formed. Here,
electrons and holes are in a superposition of both layers. Although crucial for
optics, dynamics, and transport, hybrid excitons are usually optically inactive
and have therefore not yet been directly observed yet. Based on microscopic
and material-specific theory, we show that time- and angle-resolved
photoemission spectroscopy (tr-ARPES) is a direct technique to visualize
these hybrid excitons. Concretely, we predict a characteristic double-peak
ARPES signal arising from the hybridized hole in the MoS2 homobilayer.
The relative intensity is proportional to the quantum mixture of the two
hybrid valence bands at the Γ point. Due to the strong hybridization, a peak separation of more than 0.5 eV can be resolved in
ARPES experiments. Our study provides a concrete recipe for how to directly visualize hybrid excitons and how to distinguish them
from the usually observed regular excitonic signatures.
KEYWORDS: hybrid excitons, exciton dynamics, ARPES, TMD heterostructures

■ INTRODUCTION
The research on atomically thin nanomaterials has become one
of the most active fields in condensed matter physics, showing
fascinating phenomena ranging from moire exciton effects to
exotic strongly correlated states. Here, the material class of
transition metal dichalcogenides (TMDs) has been the focus
of many investigations due to their unprecedented properties.
TMD monolayers are characterized by tightly bound excitons
that govern optics, dynamics, and transport phenomena at
room temperature.1−4 Artificially stacked TMD bilayers exhibit
long-lived spatially separated interlayer excitons, where the
Coulomb-bound electrons and holes are located in different
layers. Furthermore, due to a large tunneling probability (in
particular in TMD homobilayers), hybrid excitons (hX)
appear, in which Coulomb-bound electrons and/or holes are
strongly delocalized over the two layers; cf. Figure 1a. These
new quasi-particles can be considered as a quantum super-
position of the involved electron and hole states in both layers.
The importance of interlayer excitonic states has been

demonstrated in a series of experiments.5−14 They exhibit a
long lifetime and a large dipole moment and thus offer a
possibility of controlling exciton optics and transport by
external electric fields.15−18 In contrast, hybrid excitons have
been less intensively studied, although they combine a high
oscillator strength (intralayer excitons) with a sensitivity to

electric fields (interlayer excitons) enabling tunability of their
properties. It is meanwhile well-known that hX are important
in particular in TMD homobilayers;19,20 however, they have
not been directly observed, yet. Recently, time- and angle-
resolved photoemission spectroscopy (tr-ARPES) has been
demonstrated as a powerful technique to directly visualize
momentum-dark exciton states in TMD monolayers as well as
interlayer exciton dynamics in TMD heterostructures.21−25

Here, we show that this technique can be further exploited to
even map out the wave function of hybrid exciton states. Based
on a fully microscopic and material-specific approach, we
model the tr-ARPES signal in TMD bilayers. We focus on the
exemplary material system of a MoS2 homobilayer in Hh

h

stacking exhibiting a large hybridization of excitons.20 We
predict the emergence of a characteristic double-peak ARPES
signal reflecting the strongly hybridized hole at the Γ point that
is left behind after the ejection of the electron. Here, the
relative intensity of the peaks sensitively depends on the degree
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of hole hybridization. This is in strong contrast to the single
excitonic signal observed so far in the ARPES experiments.
The developed method has been applied to the exemplary
TMD homobilayer, but it is of general nature and thus can be
applied to a wide range of exciton-dominated material systems.

■ RESULTS
ARPES Signal of Excitons. To microscopically model the

hX dynamics, we first start by defining the electronic Hamilton
operator for a TMD bilayer, including tunneling between the
two layers. The required material-specific input parameters are
obtained from first-principle calculations.26,27 Then, we
transform the Hamiltonian first into an exciton and then into
a hybrid exciton basis. This allows us to determine the hybrid
exciton band structure and calculate the optical selection rules
by solving the Wannier equation for a bilayer system.19,20,28,29

Furthermore, we obtain microscopic access to the hybrid
exciton relaxation dynamics via exciton−phonon scattering,
where we describe the thermalization process after optical
excitation via the Boltzmann scattering equation.30 These are
the key ingredients for a material-specific model for the ARPES
experiments. Here, it is crucial to define the initial and final
states, as illustrated in Figure 1. First, the TMD bilayer is

optically excited by using a laser pulse. The subsequent
relaxation into the energetically most favorable state creates a
population of hybrid excitons (Figure 1a). In the second step,
the system is illuminated with a second laser pulse that breaks
the Coulomb-bound electron−hole pairs into ejected electrons
and remaining holes (Figure 1b). The single particle nature of
the final state can be effectively portrayed in an electron−hole
picture, where the hybridization of the electronic bands causes
a huge splitting of the valence band in correspondence to the Γ
valley (Figure 1). In an ARPES measurement, the ejected
electron is collected in a detector, leaving behind the hole in
the material. The latter, in the case of hybrid excitons, will
remain in a superposition of the two valence band states that
were involved in the photodissociated exciton (cf. the split
valence bands at the Γ point in Figure 1b). The ARPES signal
allows to reconstruct the exciton energy from the electron
information measured, since the Coulomb-bound electrons
and holes present a strongly correlated system.
The photoemission probability can be described using a

time-dependent perturbation theory yielding Fermi’s golden
rule31 for the ARPES signal

| | | |h t f H i N t Ek k( , ; ) , ( ) ( )
if

i f i kint
2

, ,
(1)

where ΔEf,i,k = ℏ2k2/(2m0) + Ef − Ei − hν with the free-
electron momentum k and the photon energy hν. Further-
more, |i/f⟩ is the initial/final states of the system with
eigenergies Ei/f and the initial state occupation Ni(t). The
interaction Hamiltonian = †H a acint f describes the
excitation of an electron from the conduction band to the free
state, with a(†) denoting the electronic creation/annihilation
operator. Note that we use the suffix f for a free state and c/v
for a conduction-valence band state. The optical selection rules
are contained in the optical-matrix element .
Since the interaction Hamiltonian is defined in terms of

single-particle operators, it is important to also determine the
initial and final states, |i⟩, |f⟩, entering this equation on a single-
particle basis. To reach this, we perform a series of
transformations to express the hybrid exciton states with
electron operators, as detailed in the Supporting Information
(SI). The final state is described by an uncorrelated product of
a free electron state and a hybrid hole state, which we derive by
solving the eigenvalue problem for the electronic Hamiltonian
of a bilayer system, obtaining hybridized valence and
conduction bands Ekγ

λ , with γ = (±,ξλ) being the compound
index consisting of the quantum number for the split layer-
hybridized bands (±), the valley index ξ = Γ, Λ(′), K(′), and the
band index λ = c, v. We denote the splitting of the hybrid
conduction or valence bands with ΔEk

λ = Ek+
λ − Ek−λ , i.e., in

particular, the hybrid valence band splitting at the K and Γ
point relevant for this work read ΔEK

v and ΔEΓv , respectively.
Inserting the initial and final state discussed above (and

explicitly shown in the SI) in eq 1, we obtain the final equation
for the ARPES signal of hybrid excitonic states

| |h t N t Ek( , ; ) ( ) ( )
p

k p p kpk
2

, ,
(2)

where ΔEγ,p,k
η = Ek

e − Eγ,p
v − Eη,k−p

X − hν. The ARPES signal is
significantly influenced by the hybrid exciton occupation NQ

η (t)
in the hX state η at center-of-mass momentum Q. The
dynamic occupation is determined microscopically by solving a
semiconductor Bloch equation in the second-order Born−

Figure 1. ARPES signature of the hybrid excitons. The figure
represents the system in real and momentum space (a) during the
relaxation and (b) after photon-induced electron ejection via a probe
pulse from an excited MoS2 homobilayer. On the left, after exciting
the intralayer bright A exciton in one layer with a first light pulse
(yellow arrow), the phonon-induced relaxation (black arrow) brings
the population of excitons to the most energetically favorable state, a
momentum-dark ΓK hybrid exciton with the hole being strongly
delocalized between the layers. The hybrid exciton, via a high
energetic probe pulse (in the extreme ultraviolet range, purple arrow),
breaks down into an ejected free electron and a superposition of
hybrid holes. This gives rise to a characteristic double-peak ARPES
signal reflecting the hole superposition between the two hybrid
valence bands at the Γ point. The signal appears at the K point and
exhibits the negative curvature of the Γ valence bands.
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Markov approximation and explicitly including all phonon-
mediated scattering channels within the hybrid exciton
landscape,30 cf. SI for more details. Moreover, the energy
conservation during the photoemission is of key importance,
with Ek

e denoting the free-electron energy, Epγ
v the hybrid

valence band energy, and Ek−p
Xη the hybrid exciton energy. The

new optical-matrix element pk depends on the excitonic wave
function and on the overlap between the layer-mixed hybrid
hole and hybrid exciton. A detailed derivation is shown in the
SI.
Hybrid Exciton Dynamics. We exploit the theoretical

framework described above to study the exemplary MoS2
homobilayer, h-BN encapsulated and at room temperature,
in naturally available Hh

h stacking. This material is ideal for our
study for two reasons: (i) The most energetically favorable
states are momentum-dark ΓhybK 1

(′) hybrid excitons. Due to a
lack of lower-lying states and their momentum/layer indirect
character, they exhibit long lifetimes facilitating their
observation in ARPES spectra. (ii) The strong interlayer
tunneling results in a large splitting of the valence bands at the
Γ point. As a result, the hole in ΓhybK excitons is delocalized
over a large spectral range and we expect to find pronounced
hybrid hole signatures in ARPES spectra.
We start with discussing the relaxation dynamics of hybrid

excitons, as the temporal evolution of the exciton occupation is
of crucial importance for ARPES spectra, cf. eq 2. Solving the
Wannier equation for a bilayer system allowed us to resolve the
hybrid exciton landscape. We show the relevant states
contributing in the relaxation process in the inset of Figure
2. For studying the dynamics, we start with an initial exciton

population in layer 1 centered around the energy of ≃1.9 eV,
modeling a typical experimental optical excitation resonant to
the intralayer K1K1 exciton. We solve the equation of motion
for the hybrid exciton occupation, including all phonon-
mediated scattering channels in the low-density regime. This
allows us to track the method of initially excited hybrid
excitons in momentum and time. Figure 2 illustrates the

relaxation dynamics of momentum-integrated hybrid exciton
densities Nη(t). We observe an ultrafast population transfer
from the initially occupied K1K1 exciton (red line), that is
almost completely intralayer-like, to the most energetically
favorable momentum-dark hybrid exciton states ΓhybK 1

(′)
(purple and blue lines). This is followed by a thermalization
process, in which the charge is redistributed between the two
almost degenerate ΓhybK 1

(′) states. The different dynamics of
the almost degenerate ΓhybK 1

(′) is explained by considering that
the bright K1K1 population relaxes via phonon emission to the
ΓhybK state. Note that to observe a phonon-mediated transition
from K1K1 to ΓhybK 1′, simultaneous scattering of electron and
hole must occur, which is a higher-order process and thus very
inefficient. For this reason, only after the ΓK state is populated,
the thermalization with ΓK′ state can take place.
The KΛhyb states are not involved in the relaxation process,

since they are located above the excitation energy, cf. the inset
of Figure 2. Furthermore, the ΓhybΛhyb exciton could, in
principle, be important for the dynamics considering its low
energy, however, this can be neglected for two main reasons.
(i) The direct scattering would require a simultaneous
scattering of both electron and hole from the K1K1 state.
This two-phonon process is thus of higher-order and can be
neglected. (ii) The indirect scattering involving one-phonon
processes, K1K1 → KΛhyb → ΓhybΛhyb and K1K1 → ΓhybK 1

(′) →
ΓhybΛhyb involve phonon absorption processes and will
therefore have a negligible role in the relaxation dynamics.
Hybrid Exciton Signatures in ARPES. Having deter-

mined the hybrid exciton occupation, we can now evaluate eq
2 to investigate the time- and momentum-resolved ARPES
signals in MoS2 homobilayers. In recent studies it has been
shown that the excitonic ARPES signal appears at the
momentum corresponding to the electron valley, and it is
spectrally located one excitonic energy above the valence band
(or one exciton binding energy below the conduction
band).21,24,32 The shape of the signal is expected to be
characterized by the negative curvature of the valence band
(where the hole left behind is located), if the exciton
population is very sharp in momentum.23,33 Note, however,
that for a thermally distributed exciton occupation the ARPES
signal will be smeared out in energy and momentum. Figure 3
shows the momentum-resolved ARPES map for different time
snapshots, where we have fixed the highest valence hybrid
band at the K point (EK

v ) as a reference energy determining the
position of ARPES signals, cf. also Figure S2 in the SI. At the
center of the optical excitation pulse (0 fs), we observe an
ARPES signal reflecting the nature of the almost purely
intralayer K1K1 exciton which is characterized by a well
pronounced single peak (Figure 3a). We find that the sub-100
fs formation of strongly hybridized ΓhybK 1

(′) excitons
corresponds to a delayed appearance of the ARPES signal
arising from these states. This can be traced back to the
ARPES intensity being dependent not only on the exciton
occupation, but also on the exciton wave function and hole
hybridization coefficients. They are characterized by two peaks,
one slightly above the K1K1 exciton and one red-shifted by
more than 600 meV (Figure 3b). The last step of the dynamics
leads to thermalization of the hX occupation. After 400 fs, the
entire population has reached an equilibrium distribution
(Figure 3c), where only the signatures stemming from ΓhybK 1

(′)
excitons have remained.
Regarding the shape of the ARPES signals, we find that a

narrow distribution in momentum leads to a negative

Figure 2. Hybrid exciton dynamics. After optical excitation of a MoS2
homobilayer at ≃1.9 eV (resonant to the K1K1 exciton), ultrafast
exciton relaxation dynamics occurs resulting in the highest occupation
Nη of the energetically most favorable momentum-dark ΓK(′) hybrid
exciton (red and purple lines). The inset shows the hybrid exciton
dispersion illustrating possible relaxation channels (note that ΓhybK(′)
states are almost degenerate in energy).
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dispersion, reflecting the curvature of the valence band. This
can be observed for the initial occupation of intralayer K1K1
excitons in layer 1 (Figure 3a). The phonon-driven exciton
relaxation dynamics and the subsequent thermalization bring
the system into a thermal equilibrium. At room temperature,
this results in a broad exciton distribution over the center-of-
mass momentum. For this reason, the shape of the final
ARPES signal is reflecting a mixture of the hybrid valence
bands (curved downward) and the hybrid exciton parabola
(curved upward), cf. Figure 3c). A more detailed discussion on

how the center-of-mass distribution affects the shape of the
signal can be found in the SI.
The most important message of our work is the prediction of

a double-peak ARPES signal that is characteristic of hybrid
exciton states. For the considered MoS2 homobilayer, the
ARPES signal is governed by the energetically lowest ΓhybK1
hybrid exciton. Figure 3c clearly exhibits two peaks that are
separated by approximately 0.6 eV. Their position corresponds
to the energy of the split hybrid valence bands (illustrated by
dashed lines). To explain this observation, we consider the
spatial (layer) distribution of the single-particle states

Figure 3. Momentum-resolved ARPES map. Hybrid exciton dynamics tracked in a tr-ARPES signal (a) revealing the excitation of the nearly purely
intralayer K1K1 exciton state (0 fs), (b) the formation of the strongly hybridized ΓhybK1 state (200 fs), and (c) the thermalized hybrid exciton
distribution (600 fs). The dashed lines show the shifted split valence bands of the hybrid hole at the K point (with the splitting ΔEK

v ) and at the Γ
point (with the splitting ΔEΓv ). The energies are shown with respect to the upper hybrid valence band (EK

v ) at the K point (cf. also Figure S2 in the
SI).

Figure 4. Momentum-integrated ARPES map. (a) Energy- and time-resolved ARPES signal, showing the characteristic double-peak structure
reflecting the hybrid hole being spread over two valence bands at the K point (initial signal) and at the Γ point (final thermalized signal). (b)
ARPES signal at fixed times plotted as a function of energy. The energies are shown with respect to the upper hybrid valence band (EK

v ) at the K
point as reference.
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contributing to the entangled electron−hole pair. The two
valence bands (|±⟩) at Γ are completely delocalized across
both layers, i.e., |± = | ± |( 1 2 )/ 2 , where |n⟩ indicates the
valence band of the pure monolayer n. Now, the hybrid exciton
is formed with an electron that is strongly localized in one of
the two layers (at the K point), e.g., layer 1. The Coulomb
interaction partially drags the hole into the same layer to
reduce the energy, favoring a hole wave function that is mostly
in layer 1, too, i.e. | = | + + |1 ( )/ 2 . Consequently,
the energetically most favorable two-body state (hX) is built by
a superposition of the two hybrid valence bands |±⟩.
When the K1 electron from the ΓhybK1 hybrid exciton is

ejected, a Γ hole is left behind, remaining in the superposition
that previously formed the exciton. The conservation of energy
and momentum ensures that measuring the energy of the
ejected electron, we obtain information about the energy of the
hole as well. While the hole within the hybrid exciton is in a
quantum mixture of two energy levels, the relative energy
between the electron and hole is fixed by the two-particle
exciton energy EXη. This entanglement between electron and
hole transfers the superposition of hole energies to the
correlated electron, whose energy is consequently undefined as
well. Measuring the energy of ejected (initially entangled)
electrons therefore allows us the reconstruct the underlying
energy distribution of the holes.
To resolve this better, Figure 4 shows the momentum-

integrated ARPES signal. At first glance, we observe that the
ΓhybK1 hybrid exciton has a long lifetime. The ARPES signal
remains over picoseconds, since this exciton is the energetically
lowest state without any scattering partners at lower energies
(cf. the inset of Figure 2). We find that a clear transfer from the
initially excited K1K1 excitons to the momentum-dark ΓhybK1
hybrid excitons occurs on a sub-100 fs time scale. In this time,
a double-peaked ARPES signal is formed that is characteristic
for a hybrid exciton state and that reflects the splitting ΔEK

v of
the hybrid valence bands at the Γ point. Since the single
particle states at the K point are strongly layer-polarized, we do
not expect to see a well pronounced double-peak ARPES signal
for K1K1 excitons. However, even this state is weakly
hybridized and has a small contribution of an interlayer
exciton due to a weak tunneling of holes at the K point. This
gives rise to a second signal with low-intensity that is red-
shifted by about 200 meV reflecting the splitting of the hybrid
valence bands ΔEK

v at the K point, cf. Figure 4b. Note that the
ratio of the measured intensity of the double peak signal can be
exploited to directly estimate the hole layer polarization (see SI
for a detailed discussion).
In summary, our work demonstrates how hybrid excitons

can be identified in the tr-ARPES spectra. The investigated
MoS2 homobilayer is an exemplary case and the developed
approach can be applied to a much larger class of exciton-
dominated materials.

■ CONCLUSION
Based on a microscopic and material-specific theory, we
predict pronounced signatures of hybrid excitons in tr-ARPES
spectra. We investigate the exemplary case of a MoS2
homobilayer in the naturally available Hh

h stacking and find a
characteristic double-peak ARPES signal arising from the split
hybrid valence bands at the Γ point where the left-behind hole
is located. This double-peaked signal can be considered as a
clear fingerprint for the existence of hybrid exciton states, and

should be experimentally accessible with the current
experimental limits for the energy resolution (≃200 meV).21

In particular, materials with an efficient interlayer tunneling
resulting in a large spectral splitting of the hybrid valence
bands are favorable, as the double-peak signal is then easy to
resolve in the experiment. Furthermore, the presence of
energetically lowest dark hybrid exciton states is of advantage,
as they exhibit a long lifetime facilitating the experimental
observation. Although the choice of MoS2 homobilayer is
favorable for these reasons, the hybridization of the hole (50%/
50%) is similar to the exciton hybridization giving rise to the
predicted relatively small double-peak intensity ratio. Hetero-
structures exhibiting a considerably different degree of
hybridization for holes and excitons should give rise to larger
intensity ratios that are more easily accessible in ARPES
experiments. Overall, our work provides a concrete recipe for
how to directly visualize hybrid exciton states in ARPES
measurements and will trigger new experimental studies in
atomically thin semiconductors and related materials.
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THEORETICAL APPROACH

Bandstructure and Dynamics

In order to track the tr-ARPES signal in our work we use the theoretical framework based on a density
matrix formalism1–3. First, we set up an excitonic Hamiltonian for a TMD bilayer system, including exciton-
phonon and exciton-light interactions yielding

HX =
∑

µQ

Eµ
QX

µ†
Q Xµ

Q +
∑

µνQ

TµνX
µ†
Q Xν

Q

HX−ph =
∑

j,Q,q,µ,ν

D̃νµ
j,q,QX

ν†
Q+qX

µ
Qbj,q + h.c.

HX−l =
∑

σ,Q,µ

A · Mµ
QσX

µ
Q∥

+ h.c.

(1)

with the exciton energy Eµ
Q = ℏ2Q2/(2Mµ) + Eg

µ + Eb
µ at the center-of-mass momentum Q with Eg

µ en-

ergy gap between valence and conduction band and Eb
µ binding energy, obtained from solving the Wannier

equation, containing the free exciton energy and the monolayer energies extracted from DFT calculations
shifted by the layer polarization-induced alignment potential4, and with the exciton annihilation (creation)
operators X(†). The appearing excitonic tunnelling matrix elements Tµν = ⟨µ|V0 + V1 |ν⟩, where V0/1 are
the effective electrostatic potential created by the nuclei and core electrons of layer 0/1 and |µ/ν⟩ excitonic
wave functions2,5. Furthermore, the exciton-phonon and the exciton-light matrix elements are defined as

D̃νµ
j,q,Q = D

ζe
µζ

e
νc

j,q δζh
µζh

ν
δζe

ν−ζe
µ,ζ

ph
j
δLe

ν ,L
ph
j
δLe

ν ,L
e
µ
Fµν (m̃ν

h [q]) +

−D
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ν v

j,q δζe
µζ

e
ν
δζh

ν −ζh
µ ,ζph

j
δLh

ν ,L
ph
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ν ,L
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µ
Fµν (−m̃ν

e [q])

Fµν (q) =
∑

k

ψµ∗(k+ q)ψν(k)

Mµ
Qσ =

e0
m0

δζµ
e ζµ

h ,KKMcv
Qσ

∑

k

ψµ∗(k)

(2)

with the electron-phonon coupling D
ζµζνλ
j,q for electron/hole in the conduction or valence bands λ = c/v taken

from DFPT calculations6. The coefficients m̃e/h = me/h/(me+mh) take into account the electron-hole mass
asymmetry. The main high-symmetry points are labeled by ζ and L denotes the layer index, where we use the
suffix e/h/ph for electrons, holes, or phonons, respectively. Furthermore, Mcv

mn,σ = −iℏ ⟨nv| ∇ |mc⟩ denotes
the optical matrix element in electron-hole picture and contains the optical selection rules with σ describing
the polarization and A the vector potential of the light pulse.

We diagonalize the excitonic Hamiltonian in Eq. (1) by introducing a new set of operators Y η
Q =∑

µ c
η
µ(Q)Xµ

Q describing hybrid excitons, with the mixing coefficients cηµ(Q) and the new quantum num-

S1



S2

ber η defining the hybrid-exciton bands. We obtain the final form of the hybrid exciton Hamiltonian

HY =
∑

η

Eη
QY

η†
Q Y η

Q

HY−ph =
∑

j,Q,q,η,ξ

Dξη
j,q,QY

ξ†
Q+qY

η
Qbj,q + h.c. with Dξη
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∑
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cη∗µ (Q)cξν(Q+ q)D̃νµ
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QσY

η
Q∥

+ h.c. with M̃η
σQ =

∑

µ

cη∗µ (Q)Mµ
Qσ

(3)

with the corresponding hybrid-exciton energies Eη
Q.

We use the derived Hamiltonian to compute the equation of motion for the hybrid exciton densities

Nη
Q = δNη

Q +
∣∣∣P η

Q

∣∣∣
2

with the coherent polarization P η
Q =

〈
Y η†
Q

〉
and the incoherent exciton density

δNη
Q =

〈
Y η†
Q Y η

Q

〉
−
〈
Y η†
Q

〉〈
Y η
Q

〉
. Solving the Heisenberg equation, we obtain the following equations of

motion7,8

iℏ∂tP η
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0 + iΓη
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Q

) (4)

where 0 refers to the vanishing center-of-mass momentum Q = 0 due to the condition that the laser pulse
only creates hybrid excitons around Q = 0 at the K valley. The appearing scattering rates are related via
2Γη

Q/ℏ =
∑

Q′ξW
ξη
QQ′ with

W ηξ
QQ′ =

2π

ℏ
∑

j,±

∣∣∣Dηξ
j,Q′−Q

∣∣∣
2
(
1

2
± 1

2
+ nphj,Q′−Q

)
δ
(
Eξ
Q′ − Eη

Q ∓ ℏΩjQ′−Q

)

where nphj,Q′−Q is the Boltzmann distribution for phonons9.

Modelling the ARPES signal

We introduce the basic steps for the derivation of an equation describing ARPES measurements. The
starting point of our result is the three-step model10 with the main contribution to the ARPES signal
stemming from Fermis-Golden rule:

I(k, hν; t) ∝
∑

i,f

|⟨fk|Hint |i⟩|2Ni(t)δ (Efk − Ei − hν) (5)

where |i/f⟩ are the initial/final state of the system where we consider eigenstates of the two-body Hamiltonian
with initial/final eigenergies Ei/f . The energy of the photon is denoted by hν and the initial state occupation
by Ni(t). The initial states in our system are hybrid excitons, while the final state consists of an ejected free
electron and a left-behind hole in a hybridized valence band of the bilayer. We proceed in evaluating the
above expectation value by expressing the initial and final states in electronic operators of pure monolayer
eigenstates. The final state can be described by the product of a free electron and a hybrid hole, where the
latter is obtained by solving the eigenvalue problem for the following bilayer Hamiltonian

H =
∑

klλ

Eλlka†λklaλkl +
∑

kll′λ

Tλll′a†λkl′aλkl (6)

with λ = c, v indicating the band index and a
(†)
λkl conduction/valence band annihilation(creation) operators

and Tλll′ band-dependent tunnelling strength between the two layers ll′. The solution of the eigenvalue
problem leads us to a set of hybridized valence and conduction bands

Eλ
kγ =

1

2
(Eλ,1k + Eλ,2k)±

1

2

√
(Eλ,1k − Eλ,2k)2 + 4|Tλ,12|2 (7)



S3

with γ = (±, ξ) labeling the two new states (± solutions) and the valley index ξ. The corresponding
eigenvectors are obtained from the same 2x2 eigenvalue problem which we write as a superposition of the old
monolayer states as

|γλp⟩ =
∑

l

gγlpa
†
λlpξ |0⟩

with the mixing coefficients gγl . Since in the final state the two particles are not bound by the Coulomb

interaction, we can describe the final state as a product of a free electron state (a†fk) and the above derived
hybrid holes,

|f⟩ = |k, γvp⟩ =
∑

l

gγlpa
†
fkavlpξh |0⟩ (8)

with free electron operator a†fk.
We now proceed in expressing the initial state in terms of monolayer electrons. To do so we start from the

hybrid exciton state |ηQ⟩ and perform a series of backward transformation from hybrid exciton operators to
exciton operators arriving finally to electron operators Y † → X† → a†a, obtaining

|i⟩ = |ηQ⟩ = Y †
ηQ |0⟩ =

∑

µ

cη∗µ (Q)X†
µQ |0⟩ =

∑

µk

cη∗µ (Q)ψµ∗(k)a†c,k+m̃eQ,µe
av,k−m̃hQ,µh

|0⟩

with the compound index η = (n, ξ) describing the hybrid degrees of freedom, cη∗µ (Q) excitonic mixing
coefficients, µ = (L, ξ) describing the excitonic degrees of freedom, with L = (le, lh) and ξ = (ξe, ξh), and we
use the notation µe/h to refer the quantum numbers inside µ labelled by e/h. Note that we include only the
lowest 1s excitonic states. Inserting the initial and final states in Eq. (5) we obtain

I(k, hν) ∝
∑

ηγ
pQ

|⟨k, γvp|Hint |ηQ⟩|2 ·Nη
Q(t) δ

(
Ee

k − Ev
γ,p − EX

η,Q − hν
)

(9)

where p is the hole momentum, Nη
Q(t) denotes the hybrid exciton time-dependent occupation for the hX

state η at the center-of-mass momentum Q, relative to the valley. Moreover, Ee
k corresponds to the free

electron energy, Ev
γ,p to the hybrid valence band energy, EX

η,Q to the hybrid exciton energy. The electron-
light Hamiltonian reads

Hint =
∑

pkγ

Mpkξea
†
fpa

γ
ck =

∑

pkγl

gγlkMpkξea
†
fpacklξe (10)

with the optical matrix element Mpkξe containing the optical selection rules. In the hybrid exciton basis, we
find

⟨k, γvp|Hint |ηQ⟩ = ⟨0|
∑

lh

gγ∗lhpa
†
v,p,lhξh

afk
∑

p′k′
γ′le

gγ
′

lek′Mp′k′ξea
†
f,p′ac,k′,leξe ·

∑

µq

cη∗µ (Q)ψµ∗(q)a†
c,q+m̃eQ,l′eξ′e

av,q−m̃hQ,l′
h
ξ′
h
|0⟩ .

By considering the expectation value of these operators we have

⟨0| a†v,p,lhξhaf,ka
†
f,p′ac,k′,leξea

†
c,q+m̃eQ,l′eξ

′
e
av,q−m̃hQ,l′hξ

′
h
|0⟩ = δp,q−m̃hQδk,p′δk′,q+m̃eQδlh,l′hδle,l′eδξh,ξ′hδξe,ξ′e

For the photo-emission process, we claim conservation of the total electron momentum and neglect all other
momentum dependencies,

Mpkξ = M̃δp∥,k+ξ

we can rewrite the total ARPES signal as follows

I(k, hν; t) ∝
∑

η,γ,p

|Gηγ

pk̃
|2Nη

k̃−p
(t) δ

(
Ee

k − Ev
γ,p − EX

η,k̃−p
− hν

)
(11)
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with

Gηγ

pk̃
=
∑

µ

gγ∗lhpM̃cη∗µ (k̃− p)ψµ∗(m̃ep+ m̃hk̃) · δξγh,ξµh . (12)

where we used k̃ = k− ξe . The new coupling Gηγ

pk̃
contains the momentum dependence of the ARPES signal,

i.e. superposition of the excitonic wavefunctions weighted by the mixing coefficients and the hole hybridization
coefficients. Note that ARPES signals stemming from different electron valleys are additionally weighted by
different photoemission matrix elements M, which is neglected here.

HYBRID EXCITON FINGERPRINT

Fig. S1: Schematic of the electronic
band structure of the MoS2 homo-
bilayer, highlighting the position of
the main ARPES signals from the
main text. The referece point is the
highest valence band at the K point.
Signals arising from the K1K1 and
ΓhybK1 hybrid state are red and blue,
respectively.

In the main text we have discussed the differences between
ARPES signals stemming from pure excitonic and hybrid excitonic
states. We predict the appearance of a double-peaked ARPES sig-
nal that is characteristic for hybrid exciton states. Here, we discuss
in more detail the position and the shape of the ARPES signals.
FigureS1 illustrates the expected position of ARPES signals as-
suming the highest valence band at the K point as reference. We
mentioned in the main text that the shape of the ARPES signal is
linked to the center-of-mass momentum distribution of the hybrid
excitons occupation. We show here how considering very narrow
initial distributions, we can see in a much more pronounced way
the negative curvature of the ARPES signal reflecting the disper-
sion of the involved valence bands. Another interesting point is
the role of the ΓhybΛhyb states. In some studies11, the conduction
band at the Λ and K points are almost degenerate, resulting in the
ΓhybΛhyb hybrid exciton being the energetically lowest state. As a
consequence, this state would carry the most occupation in equi-
librium. This would result in an additional relaxation step from
the ΓhybK1 to the ΓhybΛhyb hybrid exciton. As the latter state is
also characterized by a hybrid hole at the Γ point, the predicted
ARPES signal would be qualitatively the same, however, the signal
would be monitored at the Λ point. In Fig. S2 we performed a
static computation neglecting the dynamics of excitons. Instead,
we use an extremely narrow Gaussian exciton density distribution
in Eq. (5). By centering the distribution for each hybrid state
separately we obtain the ARPES signals shown in Figs. S2(a,b,c).
We observe nicely the negative curvature of the signals. For the
case of the ΓhybΛhyb state we predict the same behaviour as for
the ΓhybK state, since the two state share the same type of hybrid
hole valley. The only differences are the momentum and the exact
energy position of the ARPES signals.
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Fig. S2: Hybrid excitons ARPES fingerprints. (a) Sketch of the MoS2 electronic band structure,
highlighting the possible hybrid excitonic species contributing to the relaxation dynamics. (b,c,d) ARPES
signal in the case that the population is placed in different hybrid exciton states (KK, ΓK, ΓΛ), with a very
narrow momentum distribution around each excitonic valley. The signal reflects the curvature of the hybrid
valence band(dashed lines). In the case of hybrids excitons, we find the characteristic two-peaked ARPES
signal reflecting the splitting in the hybrid valence bands.

PEAKS INTENSITY RATIO AND HOLE LAYER POLARIZATION

The characteristic presence of the double peak signal provides experimental access to the inner quantum
structure of the hybrid exciton. The intensity ratio between these peaks is intrinsically linked to the hole
layer polarization, as explained in the following. If we consider the maximum intensity of the momentum-
integrated ARPES signal for the one of the peaks stemming from the hybrid state, we can write, by exploiting
Eq. 11,

I(Eγ
max) := Iγ =

∑

p,k

|Gγ
pk|2Nk−p δ

(
Ee

k − Ev
γ,p − EX

k̃−p
− Eγ

max

)

where we use γ =↑ / ↓ for the upper and lower valence bands at Γ (arising from the layer hybridization).
We omit the index η = ΓK, since both contributions of the double peak signal arise from the same hybrid
exciton. For the stationary state in the low temperature limit we can approximate NQ = NQδQ,0. Using Eq.
12 where gγ∗lhp = gγ∗lh , we can rewrite the equation for the APRES intensity in terms of CoM (Q) and relative
(q) momenta

Iγ =
∑

Q,q

∣∣∣∣
∑

µ

gγ∗lh c∗µ(Q)ψµ∗(q)

∣∣∣∣
2

NQδQ,0 δ
(
Ee

q+m̃eQ − Ev
γ,q−m̃hQ

− EX
Q − E↓

max

)

=
∑

q

∣∣∣∣
∑

µ

gγ∗lh c∗µ(0)ψ
µ∗(q)

∣∣∣∣
2

N0 δ
(
Ee

q − Ev
γ,q − EX

0 − Eγ
max

)
.

Using the specific form for the hybrid valence band coefficients (|γ⟩ = 1/
√
2(|0⟩ ± |1⟩) and choosing as a

base the layer of the hole |lh⟩) and for the excitonic mixing coefficients (ΓK made mainly of |cintra|2 ≃ 39%
and |cinter|2 ≃ 61%), we obtain

Iγ =
∑

q

|c∗intraψ∗
intra(q)± c∗interψ

∗
inter(q)|2N0 δ

(
Ee

q − Ev
γ,q − EX

0 − Eγ
max

)

= N0|c∗intraψ∗
intra(0)± c∗interψ

∗
inter(0)|2.
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Fig. S3: Ratio of the maximum ARPES intensity of the two peaks arising from the hybrid ΓK exciton as a
function of the hole layer polarization. The dashed orange line shows the artificial case in which we neglect
the excitonic intra-interlayer wavefunction difference, while the solid blue shows the full calculation.

where the delta function in energy fixes the exciton’s relative momentum ℏ2q2/(2me)+ℏ2q2/(2mh)−Ev
γ,0−

EX
0 − Eγ

max = 0 =⇒ q = 0. Finally using the completeness of the mixing coefficients, we have |c∗intra|2 =
1− |c∗inter|2. We can interpret |c∗inter|2 as the degree of hole layer polarization induced by the exciton bound
state. Thus, we define the hole exciton-induced polarization as σh = |cinter|2, where σh = 0 stands for hole
in the same layer of the electron and σh = 1 in the opposite. Inserting this in the previous equation we find

Iγ = N0 |
√
1− σhψ

∗
intra(0)− σhψ

∗
inter(0)|2.

Now considering the ratio of Iγ for the two different hybrid valence bands, i.e. I↓/I↑, we obtain an equation
with the ratio of the maximum intensity of the momentum-integrated ARPES signal as a function of the hole
layer polarization:

I↓
I↑

=
|√1− σhψ

∗
intra(0)− σhψ

∗
inter(0)|2

|√1− σhψ∗
intra(0) + σhψ∗

inter(0)|2

Figure S3 shows the intensity ratio at the maximum energy for the two peaks as function of the hole layer
polarization. We compare the artificial symmetric case neglecting the intra- and interlayer wavefunction
difference with the full calculation taking the dependence on wavefunctions into account. Without the
presence of a light excitation, the energetically favorable state for the hole would be the highest hybrid
valence band, i.e. a 50%-50% mixture of the two layers’ ground states. In the presence of optical excitation,
the electron-hole bound state (exciton) induces a symmetry breaking of this mixture, inducing a polarization
of the hole. If the exciton hybridization would not break the symmetry, keeping the hole in a 50%-50%
mixture the expected intensity ratio would be zero (hole polarization ≃ 0.5 corresponds to a ratio ≃ 0, as
can be seen from the dashed orange line in fig.S3), meaning that only one peak (I↑) would be visible in
the ARPES signal (Figs. 4/5 in the main text). Only when the exciton state breaks the symmetry of the
homobilayer, attracting the hole closer to one of the two layers, the hole has to form a superposition of single
particle states to minimize the energy, resulting in the appearance of contributions from both hybrid valence
bands. Considering the difference between intra- and interlayer wavefunctions, we obtain the expected non-
symmetric dependence (cf. the solid blue line in Fig.S3), where a ”measured” ratio of ≃ 0.15 corresponds to
a hole polarization of ≃ 40%.
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ABSTRACT: Twisted van der Waals heterostructures show intriguing
interface exciton physics, including hybridization effects and emergence of
moire ́ potentials. Recent experiments have revealed that moire-́trapped
excitons exhibit remarkable dynamics, where excited states show lifetimes
that are several orders of magnitude longer than in monolayers. The origin
of this behavior is still under debate. Based on a microscopic many-particle
approach, we investigate the phonon-driven relaxation cascade of non-
equilibrium moire ́ excitons in the exemplary MoSe2−WSe2 heterostructure.
We track exciton relaxation pathways across different moire ́ mini-bands and
identify the phonon-scattering channels assisting the spatial redistribution of
excitons into low-energy pockets of the moire ́ potential. We unravel a
phonon bottleneck in the flat band structure at low twist angles preventing
excitons from fully thermalizing into the lowest state, explaining the
measured enhanced emission intensity and lifetime of excited moire ́ excitons. Overall, our work provides important insights into
exciton relaxation dynamics in flat-band exciton materials.
KEYWORDS: van der Waals heterostructures, moire ́ excitons, exciton dynamics, relaxation bottleneck

Van der Waals heterostructures consisting of monolayers of
transition metal dichalcogenides (TMDs) have been

intensively studied in the past years.1−4 The type-II
heterostructure facilitates the emergence of interlayer excitons,
where the Coulomb-bound electrons and holes are spatially
separated in opposite layers.4−7 These states are characterized
by a long lifetime and exhibit a permanent out-of-plane dipole
moment, making them promising for technological applica-
tions.8−10 In addition, the presence of a strong tunneling
between the layers allows the existence of layer-hybridized
states, in which the intra- and interlayer nature can be
controlled by electrical fields.11,12 Hybrid excitons have been
shown to play a key role for the charge transfer process in these
materials13−15 as well as for the transport behavior.12 The
possibility of introducing a twist angle between two vertically
stacked TMD layers has opened the door to fascinating
physical phenomena that are governed by periodic moire ́
potentials.16,17 In the range of small twist angles (≤2°), long-
lived moire-́trapped exciton states have been demonstrated,
resulting in a multipeaked structure in photoluminescence
(PL) spectra.18−20 The microscopic origin of the moire-́peak
series can be traced back to the radiative recombination of
excitons located in different moire ́ sub-bands. The latter are
flat at small twist angles, reflecting their localization in real
space.
A thorough microscopic understanding of moire ́ exciton

physics is highly interesting for fundamental science and also of
key importance for the technological application potential of

van der Waals heterostructures.21−23 The strong localization
and the nontrivial band topology give rise to remarkable
quantum many-body effects,24,25 varying from spin-liquid
states26,27 to Mott insulating states28−30 and even super-
conductivity.31,32 Several models have studied these exotic
states, applying the common approach of mapping the system
to Hubbard-like models.26,28,33−35 The starting point and
common assumption for these models are that all carriers
occupy the lowest mini-band/localized orbital. However, in
typical experiments, excitation with a laser creates a population
of hot excitons that first have to dissipate their thermal energy
to reach the ground state. A microscopic modeling of the
relaxation cascade of hot excitons along the moire ́ sub-band
structures that consists of many flat bands is a challenging task.
Experimental observations hint at the presence of nonthermal
exciton distributions resulting in long-lived excited states.
Several experimental studies have demonstrated that their
lifetime is on the order of nanoseconds in marginally twisted
van der Waals heterostructures.18,36,37 PL spectra show that the
optical response of excited states can be much brighter
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compared to the ground state, indicating a strong non-
equilibrium exciton distribution.18 Although these experiments
clearly hint at an unconventional relaxation dynamics in the
presence of a moire ́ potential, there is still little known about
the underlying microscopic processes.
In this work, we study the phonon-driven relaxation cascade

of hot interlayer excitons in the exemplary twisted MoSe2−
WSe2 heterostructure. We focus on the low twist angle regime
characterized by moire-́trapped excitons and a flat moire ́ sub-
band structure.18,19,38,39 Our study is based on a microscopic
many-particle approach and allows us to track the phonon-
driven relaxation pathway of excitons from an initial hot
exciton distribution toward the ground state. We conduct a
temperature-, momentum- and time-dependent study of the
exciton relaxation dynamics identifying the presence of a
pronounced relaxation bottleneck for small twist angles (≃ 1°)
and low temperatures (<100 K), in particular preventing
excitons to efficiently scatter from the first and second excited
states to the ground state. We calculate the time-dependent PL
and show that the bottleneck effect manifests in a significant
occupation of excited states and results in their unexpectedly
high emission�in excellent qualitative agreement with
observations in experimental PL spectra.18 Based on our
theoretical framework, we find a microscopic explanation for
the experimental observations of long-lived excited moire ́
exciton states and their unexpected bright emission in PL
spectra. Unraveling the origin of the highly nonthermal moire ́
exciton distribution based on the pronounced relaxation
bottleneck has a major impact on exciton transport in twisted
TMD heterostructures.
To microscopically understand the exciton dynamics in

twisted van der Waals heterostructures, we first need to derive
the key equations describing the motion of excitons in the
presence of a periodic moire ́ potential. We start from the
general Hamilton operator for TMD bilayers within the
effective mass approximation. We include the energy of intra-
and interlayer excitons and their interaction with phonons
using a valley-local approach within the Einstein−Debye
approximation of the phonon dispersion40,41 yielding

= + +†
+
†H X X D X X b h c. .

j
j jQ Q Q

qQ
qQ Q q Q q

with Q as the free excitonic energy, DjqQ
μν as the exciton−

phonon matrix element, and bjq as the phonon annihilation
operator labeled by the phonon mode j and the momentum
transfer q. The Hamiltonian includes XQ

μ† as the exciton
creation/annihilation operator with Q as the center-of-mass
momentum of the electron−hole pair and μ as the compound
index containing the excitonic quantum numbers μ = n, ξe, ξh,
le, and lh, where n denotes the series of Rydberg-like states, ξe/h
is the electron and hole valley index, and le/h is the layer index.
Further details on the bilayer Hamiltonian can be found in the
Supporting Information. Since our goal is to understand the
exciton relaxation cascade in the presence of a moire ́ potential,
we focus on the lowest interlayer exciton series of states that
are known to be located at the K point in the MoSe2−WSe2
heterostructure investigated here. Note that one can neglect
the hybridization of intra- and interlayer exciton states as here
the wave function overlap is known to be small, while the
energetic detuning is large.41−44
The presence of a twist angle can be included within a tight-

binding approach in terms of an effective potential, arising

from the spatially dependent atomic local alignment,19 denoted
as moire ́ potential = +

†V X XQg g Q g QM . Here, we have
introduced g = s1G1

M + s2G2
M, with G1/2

M as reciprocal moire ́
lattice vectors and s1/2 as integers and g refers to the
effective exciton potential generated by the local displacement
of the two twisted layers (more details can be found in the
Supporting Information). By changing into a moire ́ exciton
basis and introducing creation and annihilation operators for
moire ́ excitons YQη =∑gωg

η(Q)XQ+g with the mixing coefficient
ωg

η(Q) corresponding to the Bloch wave function, we
transform the Hamilton operator described above into19

= + +† †
+H E Y Y Y Y b h c. .

j

j j
Q Q Q

Q g
QQ g Q Q Q Q g

, Q

with j
QQ g as the exciton−phonon coupling tensor in the new

basis containing the overlap of initial and final moire ́ states.
Now, we use this moire ́ exciton Hamiltonian to solve the
Heisenberg equation of motion for the exciton occupation NQ

η

= ⟨YQη†YQη ⟩. Within the second-order Born−Markov approx-
imation, we obtain a Boltzmann scattering equation describing
the phonon-mediated relaxation dynamics of the exciton
occupation45−48

= [ ]N t N t N t( ) ( ) ( )Q
Q

Q Q Q QQ Q
(1)

with the scattering tensor QQ containing the microscopi-
cally calculated transition rates between different exciton states
driven by emission and absorption of optical and acoustic
phonons. Here, we include a collisional broadening (third-
order terms) to take into account a self-consistent temper-
ature-dependent broadening that softens the energy con-
servation (more details can be found in the Supporting
Information). Note that we focus on the low-density regime
without doping, where exciton−exciton processes (such as
Auger-type scattering) and more involved Coulomb complexes
(such as biexcitons and trions) can be neglected.49 This
equation allows us to track the relaxation cascade of excitons
from an initially created hot distribution toward the ground
state resolved in time and momentum.
In the following, we focus on the analysis of the time

evolution of momentum-integrated exciton occupation Nη(t) =
∑QNQ

η (t) and energy- and momentum-resolved occupation
N(E,Q,t) = ∑ηNQ

η (t)δ(E − EQη ). In addition, we introduce the
d e n s i t y o f i n - s c a t t e r i n g s t a t e s

= =E t t E EDO ( , ) ( ) ( )Q Q Q 0 Qin , , quantifying the
density of states contributing the most to the influx of excitons
to a specific state η. To perform a quantitative analysis and be
able to compare our predictions with experiments, we compute
the time- and energy-dependent photoluminescence intensity
IPL(E,t) using

50

= =I E t N t E E( , ) ( ) ( )Q 0 Q 0PL
, (2)

with γσ
η containing the optical selection rules for moire ́ excitons

and denoting the Cauchy−Lorentz distribution. The
width = =/2 Q Q 0 Q, , is determined by evaluating
the exciton scattering tensor at Q = 0. To be able to quantify
the efficiency of the relaxation process, we introduce the
r e l a x a t i o n t i m e = 1/( ) ( w h e r e
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= /2Q Q QQ and Γ̃ represents the momentum
average) describing the scattering efficiency from the state η to
ξ. Further details on the theoretical approach can be found in
the Supporting Information.
We now apply the theoretical framework described above

and numerically evaluate eq 1 for the specific case of the
twisted MoSe2−WSe2 heterostructure, focusing on small twist
angles (≃1°) and low temperatures (≃40 K). Our aim is to
study the relaxation cascade of injected hot interlayer excitons
in the presence of a periodic moire ́ potential (Figure 1a).

Typically in heterostructures with a high degree of hybrid-
ization, intralayer excitons are optically excited in one of the
two layers and they then scatter down to the energetically
lower interlayer exciton states.14,15 Here, the excess energy is
different from zero, and the last step of the dissipation process
requires an intravalley phonon-mediated cascade in the range
of energies heavily affected by the moire ́ potential. In this
work, we focus on the final stage of this dynamics, i.e., the
relaxation cascade within the series of interlayer moire ́ mini-
bands. Atomic reconstruction is typically more important at
smaller twist angles and has thus been neglected here.51

We start our analysis by investigating how the presence of a
moire ́ potential modifies the interlayer exciton landscape in the
twisted MoSe2−WSe2 heterostructure. The energy landscape is
obtained by solving the eigenvalue problem including the
angle-dependent moire ́ potential. This gives us access to the
new eigenenergies of the system, EQη , as shown in Figure 2. We
can distinguish nearly flat bound states (X0,1,2,3), characterized
by wave functions localized around minima of the moire ́

potential, and free states (Xfree) which show a more delocalized
wave function.19 After having calculated the exciton energy
landscape, our first goal is to reveal the microscopic origin of
the measured long lifetimes of the excited moire ́ state.36,52 To
address this question, we analyze the phonon-driven transition
rates and the relaxation time from the excited states (X1,2) to
the ground state X0.
We first investigate the time evolution of the exciton

occupation N(E,Q) that we plot superimposed on the moire ́
exciton band structure in Figure 2. This way, we can directly
track the relaxation pathway of excitons. We start with an
initial exciton distribution in the energy range of free states,
specifically around 40−50 meV away from the ground
interlayer exciton state (Figure 2a). The subsequent thermal-
ization of moire ́ excitons can be described in terms of two
competing processes, driven by emission of optical and
acoustic phonons, respectively. Scattering with acoustic
phonons, characterized by a small transfer of energy and
momentum, populates the adjacent energy bands, i.e., the
intermediate states X3. The scattering with optical phonons
makes excitons dissipate faster and relax further down to the
first excited states X1,2 (cf. the arrows in Figure 2b).
To better understand the relaxation path of excitons, we

show in Figure 2b,c the density of in-scattering states DOΓin
η

for the ground state μ = 0 and for the first excited states μ = 1,
2. This quantity discloses the energy window of initial states
contributing the most to the population of the final state μ.
Considering the case of the first excited states, we find that the
energy window including the free states that have been initially
populated contributes the most (Figure 2b). On the other
hand, the ground state is mostly populated from the in-
scattering from the intermediate states X3 (Figure 2c). As a
result, the occupation of X1,2 that is driven by emission of
optical phonons occurs on a much faster time scale of a few
tens of femtoseconds compared to the population of the
ground state on a time scale of hundreds of fs. For the latter to
be filled, excitons have first to relax via acoustic phonons to the
intermediate states X3. Figure 2d illustrates that, interestingly,
even for longer times of a few picoseconds, the occupation of
the ground state remains clearly lower than the one of the first
excited states, in contrast to what we would expect from a
thermalized distribution. This indicates the emergence of a
pronounced relaxation bottleneck that keeps the exciton
occupation out of thermal equilibrium.
Note that the initial condition chosen for the study is based

on the observation of the DOΓin
1 (E). In order to obtain the

strongest out-of-equilibrium distribution of excitons, one has
to excite in an energy window in which the population is
scattering faster to X1,2 than to X3. Exciting in a different
energy window changes the quantitative distribution of the
excitonic occupation of X0 and X1,2, but our key result, i.e. the
emergence of a relaxation bottleneck giving rise to nonthermal
exciton distributions at low temperatures, remains unaffected.
A more detailed discussion can be found in the Supporting
Information, where we explicitly show the impact of different
initial conditions on the relaxation dynamics of moire ́ excitons.
To be able to compare our predictions with experiments, we

determine the consequences of the predicted nonequilibrium
exciton occupation on time-dependent PL spectra by
evaluating eq 2. We find a clearly higher emission from the
first excited state X1,2 than from the ground state X0 (Figure 3),
reflecting directly the higher occupation of X1,2 shown in
Figure 2d. This finding is in excellent qualitative agreement

Figure 1. Sketch of exciton dynamics in a twisted TMD
heterostructure. (a) After optical excitation of intralayer excitons
(Xintra) in one of the layers, exciton population relaxes to the
energetically lowest states (interlayer excitons Xinter in the case of
MoSe2−WSe2 investigated here) via momentum-dark hybrid excitons
Xhyb. We focus here on microscopic modeling the relaxation cascade
of hot interlayer excitons. We depict the exemplary case of parabolic
bands, in which a new periodicity (GM reciprocal lattice moire ́ vector)
arises. In the case of small twist angles, there is, in addition to the new
periodicity, a change in the band curvature, resulting in flat bands.
This modifies drastically the allowed scattering channels. (b) Exciton
relaxation in momentum space is reflected by the change of exciton
localization in real space: the thermalization process brings the
exciton population (purple dots) from a delocalized phase to the most
favorable configuration of trapped states.
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with experimental measurements.18 According to eq 2, the PL
intensity depends on the exciton occupation in a certain state
weighted by its optical matrix element. The latter describes the
oscillator strength of the states and can be directly accessed in
a linear absorption spectrum (cf. inset to Figure 3b). We find
that the absorption peak of X1,2 has half intensity with respect

to the ground state X0, and that only one of the two degenerate
states X1,2 is optically active.

19 For these reasons, a higher PL
peak of X1,2 means that its occupation has to be significantly
larger than the one of X0, which is only the case for a highly
nonequilibrium exciton distribution emerging as a conse-
quence of a pronounced relaxation bottleneck. Note that the
predicted excited state peaks can be well differentiated from
other multiexcitonic features in temperature- and power-
dependent studies.
To further characterize the relaxation bottleneck effect, we

performed a temperature-dependent study of the exciton
relaxation dynamics. A suitable quantity to track the emergence
of the bottleneck is the relaxation time from the first excited
states to the ground state, τ1→0. We directly compare the
momentum-integrated time-dependent exciton occupation at
40 and 300 K (cf. Figure 4). We find qualitatively different
exciton dynamics: in the low-temperature case, we observe a
strong out-of-equilibrium distribution of excitons, with excited
states X1,2 containing a roughly 8 times larger population than
the ground state X0 (Figure 4a). This behavior is not seen at
room temperature, where the initially hot excitons dissipate all
their excess energy, reaching a Boltzmann distribution on a
subpicosecond time scale (cf. the solid and dashed lines in
Figure 4b). This hints at a temperature-dependent activation of
the bottleneck effect and is further confirmed by analyzing the
temperature-dependent relaxation time τ1→0, shown in Figure
4b. Here, we find a huge variation of several orders of
magnitude in τ1→0: for temperatures lower than 100 K, the
transition from X1,2 to X0 becomes drastically slowed down,
resulting in an extremely large relaxation time τ1→0 being on a
time scale comparable to or even longer than the
recombination time of interlayer excitons of typically ≃102−
103 ps.53 In addition to the temperature dependence, we show
in the inset of Figure 4c a twist-angle-dependent study for a
fixed temperature of 40 K. This analysis clearly reveals that in
addition to the temperature-dependent activation of the
bottleneck, also the twist angle plays a crucial role. Moving
from the small (≤2°) to the large (≥3°) twist angle limit, we
observe the same behavior found in the temperature-

Figure 2. Interlayer exciton energy landscape of the MoSe2−WSe2 heterostructure (with a 1° twist angle) consisting of bound states (X0,1,2),
intermediate states (X3), and free states (Xfree). All energies are plotted with respect to the ground state (E0). We show superimposed on the bands
the energy- and momentum-resolved exciton occupation (red-orange shaded) at subsequent steps of the dynamics at 40 K. (a) We start at 0 fs with
an initial hot distribution of excitons (created through scattering from optically excited intralayer exciton states, cf. Figure 1a). (b) At an early stage
of the dynamics (10 fs), the emission of optical phonon drives the population predominantly to the first degenerate excited states X1,2. (c) X0 is
occurring at a much slower speed, driven by the filling of intermediate states X3 due to the scattering with acoustic phonons (100 fs). This different
energy dependence in the relaxation becomes clear by analyzing the density of in-scattering states DOΓin

η (E) (see the text for the definition) for X0
and X1,2, illustrating which energy window contributes the most to the increase of the exciton population of these lower states. (d) In the final stage
of the dynamics on the time scale of a few ps, we observe a bottleneck effect, i.e. the scattering to the ground state is almost completely suppressed.
This results in a strong out-of-equilibrium exciton distribution, where excited states show a higher occupation than the ground state.

Figure 3. (a) Photoluminescence spectrum as a function of energy
and time and (b) at different fixed time cuts. We include the
absorption spectrum as an inset in (b) to highlight the optical
selection rules of different states. Here, the solid gray line shows the
total absorption, while red and blue lines denote the contribution of
the σ− and σ+ circularly polarized light, respectively.
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dependent analysis, i.e. a variation of several orders of
magnitude in the relaxation time.
These temperature and twist angle studies help us reveal the

microscopic origin of the bottleneck effect. This can be
understood in terms of exciton energies and the center-of-mass
momenta. The conservation of energy contained in j

QQ g, in
combination with the flatness of the bands appearing in the
small twist angle limit, impose a strong boundary condition to
the available scattering partners for this transition. Given the
excitonic flat dispersion for both the initial (X1,2) and the final
state (X0), the energy conservation plays the key role. The
energy difference between X1,2 and X0 is ≃16 meV. Acoustic
phonons, given their linear dispersion, would require a huge
momentum transfer to be able to dissipate this amount of
energy. The momentum required is larger than 10 mini
Brillouin zones (mBZs), where the exciton−phonon matrix
element becomes negligibly small, as the overlap of the moire ́
exciton wave functions of the involved states is mostly localized
in the first mBZ.19 In contrast, optical phonons exhibit an
energy of ≃20−25 meV that is closer to the energy condition

required for the transition. The activation of this channel is
explained in terms of temperature-dependent broadening of
the phonon-induced dephasing.
Given the energetic arguments presented above, the key

quantities for the emergence of the bottleneck are the
dispersion of the first excited state and the ground state and
the energy gap between them. Increasing the twist angle
significantly modifies the dispersion of exciton bands toward a
regular parabolic shape. At the same time, the gap between the
bands becomes smaller, allowing for more scattering partners
for both acoustic and optical phonon-driven scattering. A
direct consequence is the decreasing importance of the
relaxation bottleneck at the larger twist angles. The relaxations
dynamics for 3° is shown and further discussed in the
Supporting Information.
The moire ́ exciton relaxation dynamics discussed so far in

the momentum space also has a consequence in real space,
modifying the equilibrium moire ́ exciton distribution within
the moire ́ trap. A detailed analysis can be found in the
Supporting Information.
In this study, we have investigated the relaxation dynamics

of interlayer excitons in a twisted MoSe2−WSe2 hetero-
structure exhibiting flat moire ́ bands. Based on a microscopic
model including the twist-angle-dependent moire ́ potential, we
demonstrate the relaxation cascade of an initial hot distribution
of interlayer excitons and identify a pronounced relaxation
bottleneck at low temperatures and low twist angles. This
drastically slows the thermalization of excitons, resulting in
quasi-stationary exciton occupations far away from the
Boltzmann distribution. A direct consequence is a higher
occupation of excited exciton states explaining their larger
emission compared to the ground state, in excellent qualitative
agreement with experimental observations in photolumines-
cence spectra of twisted TMD heterostructures. Furthermore,
we studied the temperature-dependent activation of the
relaxation bottleneck, tracing back its microscopic origin to a
combination of the energy separation and the flatness of the
involved moire ́ exciton sub-bands. Overall, our study provides
important microscopic insights into the exciton relaxation
behavior in the presence of flat moire ́ bands in twisted van der
Waals heterostructures.
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THEORETICAL APPROACH

In this section we introduce a detailed derivation of the equations of motion shown in the main text.

Exciton bandstructure and dynamics

First, we introduce the change of basis to obtain the moiré Hamilton operator. The starting point is the
Hamiltonian in second quantization describing a TMD bilayer system1,2, where we include the free exciton
energy and the exciton-phonon interaction yielding

H =
∑

µQ

Eµ
QX

µ†
Q Xµ

Q +
∑

jQqµν

D̃µν
jqQX

ν†
Q+qX

µ
Qbj,q + h.c. (1)

Here, we use a valley-local approach including the exciton quantum number µ = (nµ, ζµe , ζ
µ
h , l

µ
e , l

µ
h), where n

describes the series of Rydberg-like states determining the relative electron-hole motion. Furthermore, ζe/h
and le/h = 0, 1 correspond to the electron/hole valley and the layer index, respectively. We use also in the

case of phonons a compound mode index j = (κj , ζ
ph
j , lphj ), where κ is the phonon mode, ζ and l phonon

valley and layer respectively. Moreover, we have introduced the exciton annihilation (creation) operators
X(†) and the exciton energy Eµ

Q = ℏ2Q2/(2Mµ)+E
g
µ+E

b
µ at the center-of-mass momentum Q with the mass

Mµ = mµ
e +mµ

h (me/h electron/hole mass). Here, Eg
µ corresponds to the energy gap between the valence

and the conduction band and Eb
µ denotes the exciton binding energy, obtained from solving the Wannier

equation.
For the exciton-phonon contribution, we have introduced the exciton-phonon coupling element D̃νµ

jqQ read-
ing

D̃µν
j,q,Q = D

ζe
µζ

e
νc

j,q δζh
µζh

ν
δζe

ν−ζe
µ,ζ

ph
j
δleν ,l

ph
j
δleν ,leµFµν

(
mν

h

Mν
[q+ sµνQ]

)
+

−D
ζh
µζh

ν v

j,q δζe
µζ

e
ν
δζh

ν −ζh
µ ,ζph

j
δlhν ,l

ph
j
δlhν ,lhµF

µν

(
−mν

e

Mν
[q+ sµνQ]

)
.

(2)

Here, we use the subscript ph to label phonon quantum numbers, and the terms δ
ζ
e/h
µ ζ

e/h
ν
δ
ζ
h/e
ν −ζ

h/e
µ ,ζph

j
fix

the momentum conservation of the scattering process with the phonon momentum q̃ = ζphj + q. In addition
we have introduced the form factors Fµν (q) =

∑
k ψ

µ∗(k)ψν(k+ q) with the excitonic eigenfunction ψµ(k),

sµν = 1 −Mν/Mµ, and D
ζλ
mζλ

nλ
j,q as the electron/hole-phonon coupling element for TMD monolayers, taken

from first-principle calculations3, yielding

D
ζλ
mζλ

nλ
j,q ≈

√
ℏ

2ρlphj
AΩjq

D̃
ζλ
mζλ

nλ
j,q

with D̃
ζλ
mζλ

nλ
j,q =




D̃λ

ζ q if ζλm = ζλn = ζ and κj = TA,LA

D̃λ
ζλ
mζλ

n
else

and Ωjq =

{
vjq if κj = TA,LA

Ω
j

else.

(3)
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Here, λ = c, v corresponds to the electronic band index, TA,LA to the acoustic transversal and longitudinal
phonon modes, and with the ”else” we refer to the optical modes and intervalley contributions. Furthermore,
A denotes the area of the system, ρlphj

the surface mass density in the specific phonon layer lphj , and vj

the sound velocity in the TMD layer. For our study, we focus only on low-energy excitations close to
the ground state. Therefore, we can neglect the tunnelling-induced mixing of intra- and interlayer states,
since the ground state in the investigated MoSe2-WSe2 heterostructure is a KK interlayer exciton and the
electron/hole tunneling is negligible around the K valley4. In this context, we treat the effect of the twist
angle as an effective potential, the so-called moiré potential reading2

VM =
∑

Qg̃g

Mg̃gX
†
Qg̃XQg (4)

where the exciton quantum number µ is fixed to be the exciton ground state and thus omitted in the following.
Furthemore, Q ∈ 1stMBZ and g = s1G

M
1 + s2G

M
2 with GM

1/2 as the reciprocal moiré lattice vector and s1/2
as integers (where we use MBZ to refer to the moiré Brillouin zone accounting for the new periodicity arising
from the moiré potential). The moiré matrix elements are defined as follows

Mg̃g = Θ
(
δs1,s̃1+(−1)le δs2,s̃2 + δs1,s̃1δs2,s̃2+(−1)le + δs1,s̃1+(−1)le δs2,s̃2+(−1)le

)
+

+Θ∗ (δs1,s̃1−(−1)le δs2,s̃2 + δs1,s̃1δs2,s̃2−(−1)le + δs1,s̃1−(−1)le δs2,s̃2−(−1)le

) (5)

where Θ = vcleF(mh

M g0) − vv∗lh F(me

M g0) with v
c/v
le/h

= γ
c/v
1 + γ

c/v
2 e2πi/3 as the effective atomic potentials for

the conduction and the valence bands in the neighbouring layer. The parameters γ
c/v
1/2 are obtained from

first-principle calculations, and gn = Cn−1
3 (G1

1 −G0
1), where G

l
m refers to the m = 1, 2 reciprocal lattice

vector for layer l = 0, 1. By introducing the moiré potential and using the new periodicity of the system
we can rewrite the free exciton Hamiltonian for the ground state in the presence of moiré potential in the
following way2

HM =
∑

Qg

EQgX
†
QgXQg +

∑

Qg̃g

Mg̃gX
†
Qg̃XQg (6)

where we decompose the total center-of-mass momentum in terms of the new moiré reciprocal lattice vector

Q̃ = Q+ g with the new quantum number g. This Hamiltonian is diagonal for moiré excitons, i.e. Y
η(†)
Q =

∑
g ω

η(∗)
g (Q)X

(†)
Qg, when the momentum-mixing coefficients ω

η(∗)
g (Q) fulfill the eigenvalue problem

EQgω
η
g(Q) +

∑

g̃

Mg̃gω
η
g̃(Q) = Eη

Qω
η
g(Q). (7)

Using these states to perform a change of basis in the full Hamiltonian in Eq. (1) leads us to the final
Hamilton operator

H̃ =
∑

η

Eη
QY

η†
Q Y η

Q +
∑

ηξj
QQ′g

D̃ηξj
QQ′gY

ξ†
Q′Y

η
Qb

j
Q′−Q+g + h.c. (8)

where the moiré exciton-phonon coupling elements are defined as follows

D̃ηξj
QQ′g =

∑

g′g̃

D̃jQ′−Q+g,Qω
η∗
g̃ (Q)ωξ

g′(Q
′)δg,g′−g̃. (9)

These are expressed in terms of exciton-phonon coupling elements D̃jQ′−Q+g,Q defined in Eq. (2).
With the full Hamiltonian, we solve the Heisenberg equation of motion for moiré excitons occupation Nη

Q =〈
Y η†
Q Y η

Q

〉
, truncating the Martin-Schwinger hierarchy using a second-order Born-Markov approximation,

obtaining5,6

Ṅη
Q =

∑

ξQ′

(
Wξη

Q′QN
ξ
Q′ −Wηξ

QQ′N
η
Q

)
. (10)
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The phonon-mediated scattering tensor, including emission and absorption processes (±), reads

Wηξ
QQ′ =

∑

j±g

∣∣∣D̃ηξj
Q′Qg

∣∣∣
2
(
1

2
± 1

2
+ nBjQ′−Q+g

)
δ
(
∆ηξ±

QQ′g

)
(11)

with the energy conservation ∆ηξ±
QQ′g = Eξ

Q′ − Eη
Q ± ΩjQ′−Q+g, where n

B
jQ′−Q+g is the Bose-Einstein dis-

tribution for phonons with the mode j, the momentum Q′ −Q+ g, and the energy ΩjQ′−Q+g. Using the
scattering tensor we can define the density of in-scattering states for the specific moiré exciton state η,
yielding

DOΓη
in(E) =

∑

ξQ′

Wξη
Q′,Q=0δ

(
E − Eξ

Q′

)
. (12)

This quantifies the density of states contributing the most to the influx of excitons to a specific state η.
Additionally, an important quantity to monitor how the optical selection rules of interlayer excitons are
influenced by the moiré potential is the absorption reading2

α(E) =
∑

ησ

|γησ|2 LΓη (Eη
Q=0 − E)

with γησ =
∑

g

ωη
g(Q = 0)γ̃σ(g)

with γ̃σ(q) = ΩL

2∑

n=0

e−i2nπ/3δq,gn

Cn−1
3 (Kl)

|Kl|
· eσ

(13)

with ΩL ∝∑k ψL(k) and L = (le, lh). All equations are evaluated at Q = 0 corresponding to the minimum
of the moirè exciton dispersion. This means that in the case of intralayer excitons the zero would be exactly
at Q = 0, since the relative momentum displacement of electrons and holes is zero. In contrast, for interlayer
excitons the equations are evaluated at Q = κ (K point of the MBZ), reflecting the mismatch of the Brilloin
zones of the two layers.

Self-consistent dephasing rate, photoluminescence intensity, and relaxation time

Fig. S1. Comparison of the temperature de-
pendent out-scattering rate from the first ex-
cited states to the ground state using the self-
consistent approach and a fixed width of the
Cauchy/Lorentz distribution in Eq. (14).

Equation (11) is derived by using a second-order Born-
Markov approximation5–8, thus obtaining fixed resonances
from the energy conservation described by the delta func-
tion. A more general approach can be used to include a
self-consistent temperature-dependent broadening. The lat-
ter can be obtained by continuing the correlation expansion
taking into account two-particle correlations and considering
only the imaginary part of the self-energy (neglecting polaron
renormalization terms)9. Considering only the phonon con-
tribution, we can define the dephasing rate as follows

Γηξ
Q =

ℏ
2

∑

j±Q′g

∣∣∣D̃ηξj
Q′Qg

∣∣∣
2
(
1

2
± 1

2
+ nB

jQ′−Q+g

)
L
Γ
η
Q

+Γ
ξ

Q′

(
∆ηξ±

QQ′g

)

(14)

resulting in a system of coupled equations that can be
solved self-consistently. Here, LΓ corresponds to the
Cauchy/Lorentz distribution with the width Γ. We directly
compare a self-consistent calculation of the out-scattering rate
from the first excited states to the ground state including the
temperature-dependent broadening with a calculation based
on a fixed width Γ = 1 meV of the Cauchy/Lorentz distribution (chosen to be close to the value of the lowest
temperature of the self-consistent treatment), cf. Fig. S1. We find an out-scattering that is by orders of
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magnitude more pronounced at enhanced temperatures for the self-consistent treatment reflecting the soften-
ing of the strict energy conservation. Finally, we use Eq. (14) to determine the time- and energy-dependent
photoluminescence intensity IPL(E, t) for moiré excitons2,10 reading

IPL(E, t) ∝
∑

η,σ

|γησ|2Nη
Q=0LΓη (Eη

Q=0 − E). (15)

Fig. S2. Out-scattering rate Γout
1→0 from the first

excited states to the ground state (inverse of
τ1→0) as a function of temperature. We iden-
tify the different contributions of acoustic and
optical phonons, showing the predominant role
of the latter for the relaxation dynamics.

In addition, we define the relaxation time τη→ξ quantifying
the scattering from the moiré exciton state η to the state ξ
yielding

τη→ξ =
1

Γ̃ηξ
. (16)

with Γ̃ηξ being the momentum-average of the previously de-
fined Γηξ

Q . We use this equation in the main text to character-
ize the relaxation bottleneck effect and study its temperature
dependence. There, we highlighted the predominant impact
of the bottleneck effect and attributed it to optical phonons,
which are usually responsible for the fast relaxation due to
their higher energy. To better justify this, we present in Fig.
S2 the out-scattering rate Γout

1→0 decomposed in its acoustic
and optical phonon contributions. We find clearly that the
most efficient contribution to exciton thermalization arises
from optical phonons, being at least one order of magnitude
larger than the scattering with acoustic phonons.

DEPENDENCE ON THE INITIAL EXCITATION CONDITIONS

In the main text we have briefly discussed that the specific ratio of exciton occupation distributed between
the ground state and the first excited states is strongly influenced by the initial excitation condition, more
specifically on the excitation energy window. We show in this section that, although the specific output of
the dynamics can be dependent on the initial condition, the general physical result is still valid, i.e. the final
distribution of excitons at low temperatures and low twist angles deviates from a Boltzmann distribution
due to the emergence of a relaxation bottleneck effect. In particular, we vary the initial exciton energy
distribution Ei = 55, 62, 70 meV, and calculate the final steady-state exciton distribution, cf. Fig. S3. The
top row in Fig. S3 shows different time cuts of the momentum-integrated energy-resolved moiré exciton
occupation. A common aspect of the exciton dynamics is the very fast initial dissipation of energy that
brings the initial distribution of excitons to intermediate states. Focusing on the 1000 fs time cut, we see
that the dynamics has already reached a stationary solution, and we find a clear deviation states from the
thermal Boltzmann distribution at 40 K (dashed line). The quantitative percentage of deviation depends on
the initial condition: if excitons can emit optical phonons during the dissipation process to reach efficiently
intermediate states (X3 states), the occupation of the ground state becomes greater than the first excited
states. This is the case for initial exciton occupations at 62 and 70 meV and is explained in terms of the X3

states scattering efficiently to the ground state, cf. Fig. S3 (b,c). In contrast, states at energies around 55
meV scatter more efficiently to the first excited states, cf. Fig. S3 (a). The larger occupation of the ground
state is accompanied by a brighter response of X0 in PL spectra, cf. the lower panels in Fig. S3.

TWIST ANGLE DEPENDENCE OF THE RELAXATION BOTTLENECK

In the main text we focus on analyzing the small twist angle regime, pointing out that the appearance of
flat bands has a key role for the emergence of the relaxation bottleneck during the exciton thermalization
process.



S5

Fig. S3. Study of the moiré exciton dynamics at 40 K for different initial conditions. We initialize the system with
a uniform energy distribution of excitons centered at (a) Ei =55 meV, (b) Ei =62 meV and (c) Ei =70 meV. In the
top row we show energy-resolved and momentum-integrated exciton occupation at different time cuts with the red
dashed line corresponding to the Boltzmann distribution. In the bottom row, we show photoluminescence spectra as
a function of energy at different fixed time cuts.

To better emphasize this we have conducted a twist-angle-dependent study (inset of Fig. 4 in the main
text). We find that for twist angles ≤ 2◦, where the moiré-induced deformation of the exciton bandstructure
is significant, the relaxation time increases rapidly leading to the activation of the bottleneck effect. Here,
we show an intermediate twist angle (≃ 3◦), where exciton bands are not entirely flat any longer but present
flat regions in the dispersion of the first excited state, cf. Fig. S4(a). To understand better the peculiar
dynamics for this specific case, we conduct the same characterization performed in the main manuscript.
To be consistent with the study in the main text, we choose an initial condition for the excitation in the
same energy window (≃ 48 meV from the ground state minimum). Following the time evolution and con-
ducting the same temperature-dependent study, we determine the relaxation time τ1→0 that is now strongly
momentum- dependent. We can clearly observe that although the general definition of τ1→0 adapted to
the twist angle comparison in Fig.4 in the main text suggests a faster relaxation, we observe a still quite
pronounced bottleneck effect. This difference can be explained in terms of two competing processes: (i)
intraband scattering leading to the relaxation towards the minima of the band (flat regions of X1 in S4), and
(ii) scattering to the ground state. Although excitons occupying higher energy regions of the X1 miniband
would scatter faster to the ground state than excitons in the flat regions (due to the energy condition of the
optical phonons responsible for the bottleneck), intraband relaxation turns out to be much faster and traps
excitons in the flat regions, creating again a relaxation bottleneck. To better grasp the effective timescale
of the process we compute the local relaxation time τ1→0 around the minima of X1, obtaining in this way a
better insight of the dynamics. We show the exciton dynamics at 40 K and 300 K in Figs. S4(b)-(c). We
directly compare τ1→0 in the small (red line) and the large (blue line) twist angle regime, cf. Fig.S4(d). The
largest difference in the relaxation time is found at low temperatures. The slowed-down relaxation process
at 1◦ can be traced back to flat exciton bands and the restricted scattering efficiency due to the energy
conservation. This is pronounced, in particular, at low temperatures, where the broadening of states is small
and thus a strict energy conservation needs to be fulfilled. The effect is much less pronounced at 3◦ exhibiting
parabolic bands, where the number of possible scattering partners is much higher than in the case of flat
bands at 1◦. As the temperature increases the relaxation time at both twist angles starts to merge leading to
a comparable relaxation time at room temperature. As can be understood from this analysis, intermediate
twist angles exhibit a peculiar bottleneck effect, and in this case the definition of the relaxation time used in
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Fig. S4. Relaxation dynamics at the larger twist angle of 3◦. (a) Moiré exciton band structure, where the initial
momentum-dependent occupation is highlighted with a color scheme. We plot the momentum-integrated and time-
dependent exciton occupation for each band relevant for the relaxation process at (b) 40 K and (c) 300 K. (d) Direct
comparison of the temperature-dependent relaxation time at 1◦ and 3◦ showing that the X1 → X0 transition is slow
even for 3◦, but still several orders of magnitude faster than at 1◦, where the flat bands strongly restrict the number
of possible scattering states.

the general twist-angle-dependent study of Fig.4 in the main text, needs to be interpreted as a lower bound
of the relaxation time.

Overall, we can conclude that the key ingredient for the emergence of the relaxation bottleneck is the
peculiar flat bandstructure of moiré excitons. The results obtained, although specifically calculated for the
exemplary MoSe2-WSe2 heterostructure, are applicable to other TMD heterostructures. We predict the
appearance of a relaxation bottleneck in all the materials, where the moiré potential leads to flat subbands
with an energetic separation between the first excited and ground state that is larger than the energy of the
optical phonons dominating the thermalization process.

MOIRÉ EXCITON DISTRIBUTION IN REAL SPACE

In the main text we briefly state that the relaxation bottleneck also influences the real space distribution of
excitons - depending on which state is mostly occupied at equilibrium. This is in particular valid for small
twist angles, where the ground state and the first excited states exhibit very different excitonic wavefunctions.
While the ground state wavefunction is of an s-type character, the first excited states are rather p-type-like2.
We investigate the change in the exciton distribution in the real space for a twist angle of 1◦ (i) for an initial
exciton occupation in the energy window of 40-50 meV resulting in highly occupied excited states (Fig. S5(a))
and (ii) for an initial exciton occupation around 62 meV resulting in a highly occupied ground state (Fig.
S5(b)). In the first case, we find that excitons have a p-type shape around each moiré trap in real space,
while in the second case the exciton distribution has the characteristic s-type shape centered at each moiré
trap. As p-type orbitals have a broader profile in real space, this results in a larger overlap of the excitonic
wavefunctions of neighbouring traps, thus affecting the tunneling rate between them.
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Fig. S5. Equilibrium moiré exciton distribution in real space, highlighting the different situation in the case of (a)
highly occupied excited states with a p-type orbital character (obtained for initial exciton occupations in the energy
window of 40-50 meV) and (b) highly occupied ground state with an s-type orbital character (obtained for an initial
exciton occupation around 62 meV).
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