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Summary I 

 

Summary 

Protein secretion involves several important sequential steps. First, proteins to be secreted must be 

recognized and their translocation-competent conformation must be ensured. This is followed by the 

overcoming of two barriers, the cell membrane and the cell wall. The active transport across the 

membrane can occur by several well-studied mechanisms, the most notably of them are known as 

"general secretory" (Sec) and "twin-arginine translocation" (Tat). For the passage through the cell 

wall, on the other hand, understanding is still almost completely lacking. 

In this work, I investigated this process, using super-resolution fluorescence microscopy to visualize 

AmyE-mCherry during secretion in Bacillus subtilis and Bacillus licheniformis. The overexpressed 

fusion protein localized as distinct foci in the cell envelope, which were mostly lost upon degradation 

of the bacterial cell wall through treatment with lysozyme. I could also show that AmyE is released 

from the cells at discrete zones, similar to the localization of fluorescently labeled AmyE as foci 

inside the envelope. High-level protein secretion peaked at the transition from exponential growth 

to the stationary phase and appears to be restricted to a subpopulation of cells, which presumably is 

also the case for general protein secretion. Time lapse experiments revealed the AmyE-mCherry foci 

to be statically positioned throughout several minutes, in contrast to the lateral mobility of Sec-

machinery associated membrane proteins SecA and SecDF, labeled with mNeonGreen. 

Interestingly, the AmyE-mCherry foci displayed considerable fluctuations of fluorescence 

intensities within a minutes-time-scale, suggesting visualized diffusion of proteins along the passage 

through the cell walls meshwork. This idea of diffusion is supported by recent AFM Imaging results 

of B. subtilis, revealing a heterologous cell wall structure with deep pores its peptidoglycan surface. 

For large parts of industrial biotechnology, the secretion of microbially produced enzymes and 

proteins into the culture supernatant is of enormous relevance, due to the lower costs for subsequent 

processing associated with this method as compared to the disruption of the producing cells. Studies 

investigating secretion efficiency in Bacillus species, have revealed numerous influencing factors.  

Since the bacterial cell wall is often overlooked in the search for secretion bottlenecks, I targeted 

autolysins that can affect cell wall thickness and the density of the meshwork. While absence of 

LytD had little effect on secretion, deletion of lytC and lytF significantly impaired AmyE transport 

to the outside of the cell. By introducing additional genes encoding the autolysins LytC and LytF or 

the cell wall hydrolase PBP5 (dacA), I was able to improve secretion by up to 200%. These findings 

suggest that cell wall permeability for secreted proteins is modulated by autolysin activity.   

Flotillins, which are thought to form functional membrane microdomains (FMM) in B. subtilis, are 
often linked with secretion, although the nature of this connection is not exactly clear. To approach 

this subject, I used a ∆yuaG (FloT) deletion strain with reduced AmyE secretion and showed that 

the addition of the membrane fluidizer benzyl alcohol could recover the AmyE secretion level of the 

wild type. This result indicates, that flotillins affect protein secretion in B. subtilis through the ability 

to improve membrane fluidity. Furthermore, I was able to double the efficiency of AmyE secretion 

of B. subtilis by introducing an additional gene encoding FloT.  
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Zusammenfassung 

Die Proteinsekretion umfasst mehrere wichtige aufeinander folgende Schritte. Zunächst müssen die 

zu sekretierenden Proteine erkannt und ihre translokations-kompetente Konformation gewährleistet 

werden. Danach müssen zwei Barrieren überwunden werden, die Zellmembran und die Zellwand. 

Der aktive Transport durch die Membran kann durch mehrere gut untersuchte Mechanismen 

erfolgen, insbesondere durch den sogenannten "general secretory" (Sec) und den "twin-arginine 

translocation" (Tat). Für die Passage durch die Zellwand hingegen fehlt das Verständnis noch fast 

vollständig. 

In dieser Arbeit untersuchte ich diesen Prozess in Bacillus subtilis und Bacillus licheniformis, indem 

ich AmyE-mCherry während der Sekretion, mittels superhochauflösender Fluoreszenz-

mikroskopie, sichtbar machte. Das überproduzierte Fusionsprotein lokalisierte als deutliche Foci in 

der Zellhülle, welche beim Abbau der bakteriellen Zellwand, durch Behandlung mit Lysozym, 

größtenteils verloren gingen. Ich konnte zeigen, dass AmyE an bestimmten Zonen aus den Zellen 

freigesetzt wird, die Ähnlichkeit zu den Foci von fluoreszenzmarkiertem AmyE in der Hülle 

aufweisen. Die hochperformante Proteinsekretion erreichte ihren Höhepunkt beim Übergang vom 

exponentiellen Wachstum zur stationären Phase und scheint auf eine Teilpopulation von Zellen 

beschränkt zu sein, was vermutlich auch für die native Proteinsekretion zutrifft. 

Zeitrafferexperimente zeigten, dass die AmyE-mCherry-Foci über mehrere Minuten hinweg statisch 

fixiert blieben, im Gegensatz zur hohen lateralen Mobilität der Sec-Maschinen-assoziierten 

Membranproteine SecA und SecDF, die mit mNeonGreen markierten wurden. Interessanterweise 

zeigten die AmyE-mCherry-Foci erhebliche Fluoreszenzintensitätsschwankungen innerhalb von 

Minuten, was auf eine sichtbare Diffusion des Proteins entlang der Passage durch die 

Zellwandmatrix hindurch schließen lässt. Diese Annahme von Diffusion wird durch jüngste AFM-

Imaging-Ergebnisse von B. subtilis unterstützt, die eine heterologe Zellwandstruktur mit tiefen 

Poren in der Oberfläche des Peptidoglykans zeigen. 

Für weite Teile der industriellen Biotechnologie ist die Sekretion von mikrobiell produzierten 

Enzymen und Proteinen in den Kulturüberstand von enormer Bedeutung, da diese Methode im 

Gegensatz zum Aufschluss der produzierenden Zellen, mit geringeren Kosten für die 

Weiterverarbeitung verbunden ist. Untersuchungen zur Sekretionseffizienz bei Bacillus-Vertretern 

haben zahlreiche Einflussfaktoren enthüllt.  

Da die bakterielle Zellwand bei der Suche nach Sekretionsengpässen oft übersehen wird, habe ich 

mich auf Autolysine konzentriert, welche die Zellwanddicke und die Dichte des Maschenwerks 

beeinflussen können. Während das Fehlen von LytD nur geringe Auswirkungen auf die Sekretion 

hatte, beeinträchtigte die Deletion von LytC und LytF den Transport von AmyE in die Umgebung 

der Zelle erheblich. Durch die Einführung zusätzlicher Gene, die für die Autolysine LytC und LytF 

oder die Zellwandhydrolase PBP5 (dacA) kodieren, konnte ich die Sekretion um bis zu 200% 

verbessern. Diese Ergebnisse deuten darauf hin, dass die Durchlässigkeit der Zellwand für 

sekretierte Proteine durch die Autolysin-Aktivität moduliert wird.   
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Flotilline, von denen man annimmt, dass sie in B. subtilis funktionelle Membranmikrodomänen 

(FMM) bilden, werden oft mit der Sekretion in Verbindung gebracht, obwohl die Art dieser 

Verbindung noch unklar ist. Um sich diesem Thema zu nähern, habe ich einen ∆yuaG (FloT)-

Deletionsstamm mit verminderter AmyE-Sekretion verwendet und konnte zeigen, dass die Zugabe 

des Membranfluidisators Benzylalkohol, das Wildtyp-Sekretionsniveau wiederherstellen kann. 

Dieses Ergebnis deutet darauf hin, dass Flotilline die Proteinsekretion in B. subtilis durch ihre 

Fähigkeit zur Verbesserung der Membranfluidität beeinflussen. Außerdem konnte ich die Effizienz 

der AmyE-Sekretion von B. subtilis verdoppeln, indem ich ein zusätzliches Gen einführte, das für 

FloT kodiert. 
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1 Introduction 

1.1 Biotechnology   
Long before their discovery, microorganisms were used to preserve foods such as milk, fruits and 

vegetables, and to produce others like cheese, bread, pickled foods and vinegar. (Demain et al., 

2017). It was not until the late 17th century, that Antonie van Leeuwenhoek reported to the Royal 

Society of London, seeing tiny moving organisms (animalcules), which he found via microscopy in 

a sample of his dental plaque (Dobell, 1932). This moment is widely regarded as the first discovery 

of microorganisms, that opened the door to a whole new science. However, the biotechnological 

importance of these organisms was still overlooked until Pasteur concluded in 1858, that 

fermentation is a living process driven by yeast (Pasteur, 1858). Since that point, compounds derived 

from microorganisms have been utilized in industries like agriculture, food and medicine (Sanchez 

et al., 2012; Dias et al., 2012). 

Now, bio-pharma, industrial biotech and agricultural biotech account for nearly 70% of the global 

biotech market, with a size estimated to be around 295 billion dollars (Martin et al., 2021). These 

industries are shaped by countless products, proteins and enzymes derived from microorganisms. 

Examples of agricultural biotechnology are the potent antifungal glycolipids ieodoglucomide C and 

ieodoglycolipid, isolated from marine bacterium Bacillus licheniformis, which act against common 

plant pathogenic fungi like Aspergillus niger and Rhizoctonia solani (Tareq et al., 2015). Hydrolytic 

enzymes such as proteases, amylases and lipases account for the majority of the global industrial 

enzyme production (Kahled et al., 2022). Dominant in that market are proteases, which are used in 

numerous processes in the food and feed industry, (Olempska-Beer et al., 2006) for the production 

of leather goods (Lageiro et al., 2007) and numerous other areas (Rao et al., 1998; Gupta et al., 

2002; Haki & Rakshit, 2003). Representing the second largest group, amylases and cellulases play 

a role in the starch-, textile-, detergent- and baking-industries (Godfrey & Reichelt, 1982; Kirk et 

al., 2002).  Streptomyces is of particular importance for the pharma industry, since many antibiotics 

have been derived from this genus: streptomycin from Streptomyces griseus (Waksman et al., 1946) 

chloramphenicol from S. venezuelae (Duggar, 1948) or   from S. aureofaciens (Ehrlich et al., 1947). 

Also, in the fight against cancer biotechnology is relevant. Geldanamycin is a benzoquinone 

ansamycin compound derived from S. hygroscopicus var. geldanus which acts as an anticancer agent 

in multiple myeloma, breast, and prostate cancer (Singh et al., 2010, Gorska et al., 2012). 

Biotechnology is even used to tackle environmental problems, by creating bioplastic via compounds 

produced by fungi and bacteria (Degli et al., 2021). Furthermore, the breakthrough of the 

CRISPR/Cas system (Jinek et al., 2012), which was awarded the Nobel Prize in chemistry 2020, has 

multiple far-reaching applications in agriculture and biotechnology. Numerous emerging 

biotechnologies based on CRISPR–Cas aim to increase plant yield, quality, disease resistance (Zhu 

et al., 2020) or improve multiplexed engineering and high throughput screening (Ding et al., 2020). 
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Therapeutic and FDA-approved compounds are mainly produced by Escherichia coli, 

Saccharomyces cerevisiae, and Pichia pastoris (Ferrer-Miralles et al., 2009). The most commonly 

used production hosts for proteins would be E. coli and gram-positive members of the genus Bacillus 

(Westers et al., 2004). In 2007, about 60% of all commercially produced enzymes were produced 

with different Bacillus hosts (Fu et al., 2007). The genus Bacillus is economically very important 

and is used for the production of various molecules and enzymes for the food, pharmaceutical, 

environmental and agricultural industries (Su, et al., 2020; Soltani et al., 2019; Sumi et al., 2015; 

Vary et al., 2007). For example, the alkaline serine proteases produced by the species B. clausii, 

B. amyloliquefaciens and B. halodurans, represent the main detergent enzymes on the market 

(Schallmey et al., 2004; Saeki et al., 2007). Also, B. megaterium and B. stearothermophilus produce 

the extracellular enzyme α-galactosidase, with broad applications in beet sugar, pulp and paper 

industries, soya food and animal feed processing (Gote et al., 2004; Patil et al., 2010). Among the 

Bacillus species, B. thuringiensis is widely used within the agricultural industry due to its production 

of insecticidal parasporal crystals (Höfte and Whiteley, 1989; Schnepf et al., 1998), which result in 

the release of protoxin proteins upon ingestion by insects (Höfte and Whiteley, 1989; Gill et al., 

1992). However, in the field of biotechnology, certain species are preferred because they have 

excellent fermentation properties and can produce a variety of heterologous proteins, toxin-free and 

in high yields, such as B. subtilis, B. amyloliquefaciens, and B. licheniformis (Pham et al., 2019). 

Among these, B. subtilis is most extensively studied species due to its flexibility during genetic 

engineering and its fermentation and secretion capacity, which allows protein production of several 

grams per liter on an industrial scale (Schallmey et al., 2004; Pham et al., 2019). In addition, its 

ability to adapt to varying environmental conditions as well as its classification as “generally 
regarded as safe” (GRAS) has contributed tremendously to its success in the industrial platform 
(Baysal & Yildiz, 2017). 
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1.2 Bacterial Secretion 

Due to production with strong controllable promoters being, in general, more effective in E. coli 

(Schallmey et al., 2004), it might come as a surprise that Bacillus species are often preferred for 

production. One of the main reasons is the utilization of the extracellular secretion systems of 

Bacillus species, while E. coli, mostly uses intracellular production strategies that require expensive 

and often difficult purification processes (Pham et al., 2019). As a consequence, many attempts have 

been made for E. coli to target recombinant proteins to the culture medium (Fakruddin et al., 2013). 

Protein secretion was improved for example via the co-expression of bacteriocin release protein 

(BRP) (Rahman et al., 2005; Beshay et al., 2007), the fusion as 'passenger' proteins linked to YebF 

which is naturally secreted (Zhang et al., 2006) and through exploration of the autotransporter 

pathway for virulence factors (Jong et al., 2010). Although high level secretion by E. coli is not 

impossible, it is generally still problematic (Choi & Lee, 2004; Yoon et al., 2010). The outer 

membrane hinders the secretion of proteins into the extracellular environment often leading to 

accumulation of the expressed proteins in the periplasm as inclusion bodies (Mergulhao & Monteiro, 

2004). To gain access to the intracellularly produced proteins, cells must be digested, which can be 

elaborate and expensive (Sørensen & Mortensen, 2005; Graumann & Premstaller, 2006). The 

cytoplasm is a reducing environment that hinders the formation of disulfide bonds, so the secretion 

of proteins can also lead to better folding conditions, which prevents the formation of inclusion 

bodies (Li et al., 2004; Van Dijl and Hecker, 2013). As a Gram-positive bacterium, B. subtilis lacks 

an outer membrane and is able to secrete the enzymes straight into the medium, which allows for an 

easy recovery of purified proteins and less expensive down-stream processing (Zweers et al., 2008).  

It has been estimated, that bacteria secrete 5–10% of the proteins encoded on their chromosomes 

(Holland, 2004). Proteins that are transported to the periplasm, cell envelope, or membrane are also 

often referred to as "secreted proteins," although the term is primarily used to describe proteins that 

are secreted into the environment. Further exploration of bacterial secretion within this work will be 

focused on the secretion into the surrounding. For bacteria, secretion is an essential process 

necessary for numerous purposes, such as the interaction with the surrounding, export of antibiotics 

and virulence factors, cell-cell interactions, biofilm formation and accessibility of nutrients. Toxins 

and antibacterial agents are used by many microorganisms to secure their habitat and gain a 

competitive edge against other microorganisms (Cornforth & Foster, 2015). Earliest and most 

famous example of this is penicillin G produced and secreted by the fungus Penicillium notatum, 

which was discovered by Fleming in 1929. Further examples of secreted antibacterial substances 
are cephalosporin C from Cephalosporium acremonium (Newton & Abraham, 1955) which 

interferes with cell wall synthesis (Tipper & Strominger, 1968), erythromycin from 

Saccharopolyspora erythraea, which inhibits protein production by binding to the 50s subunit of 

the bacterial ribosome (Haight & Finland, 1952) and vancomycin from Amycolatopsis orientalis 

which is inhibiting proper cell wall synthesis in Gram-positive bacteria (Hammes & Neuhaus, 1974). 

Various pathogenic microorganisms can use their secretion systems to manipulate the host and 

establish a replicative niche by secreting virulence factors. In the case of Mycobacterium 
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tuberculosis, secreted virulence factors can assist the bacterium to adapt physiologically and 

metabolically in the hostile host environment or to disrupt the host signaling network (Forrellad et 

al., 2013; Sharma et al., 2017). The capsule of B. anthracis is also a virulence factor, that inhibits 

bacterial phagocytosis during infection and is comprised of multiple secreted components (Makino 

et al., 2002). Another area in which secretion plays a role are biofilms, as formed by microorganisms 

such as B. subtilis (Branda et al., 2001). Biofilms are multicellular microbial communities of cells, 

embedded in a matrix of secreted extracellular polymeric substances (EPS) (Wingender et al., 1999). 

Microbial EPS are biopolymers consisting of proteins and nucleic acids (Frølund et al., 1996; 

Nielsen et al., 1997; Dignac et al., 1998) as well as amphiphilic compounds including (phospho)-

lipids (Neu, 1996; Takeda et al., 1998). Bacteria secrete EPS to contribute to the formation of 

microbial aggregates (Geesey, 1982), gain a protective barrier and additional benefits like better 

retention of water (Donlan, 2002). Also, B. subtilis reduces surface tension through the secretion of 

surfactants, which allows for gliding over solid surfaces, furthering the swarming-motility reach 

(Kinsinger et al., 2003). 

Since organic nutrients in the environment such as amino acids, nucleic acids, and sugars are often 

present as oligomers too large to be imported, they must be partially digested outside the cell by 

secreted enzymes (Cezairliyan & Ausubel, 2017). Examples include the secretion of the α-amylase 

AmyE by B. subtilis to digest large starch molecules (Ingle & Erickson, 1978) and the secretion of 

multiple proteases by Pseudomonas aeruginosa to utilize large proteins as a nutrient source (Van 

Delden et al., 1998). Since bacteria commonly live in diverse communities, this process creates 

possibilities for other neighboring organisms. Increasing the accessibility of nutrients in the 

surrounding environment by producing and secreting proteases (Diggle et al., 2007; Sandoz et al., 

2007) or iron-scavenging siderophores (Griffin et al., 2004), provides opportunities for non-

producers to exploit these public goods for a fitness benefit (Asfahl & Schuster, 2017). 

Bacterial cells can respond via quorum sensing to cell-population density, as well as integrate 

environmental cues of nutrient accessibility to regulate and optimize secretion strategies (Schuster 

and Greenberg 2006; Venturi 2006; Srivastava and Waters 2012).. In the 1970s, Khokhlov et al. 

discovered a small molecule, the so-called A-factor, which is secreted by a Streptomycete, that 

autoinduces both sporulation and antibiotic production, upon accumulation in the medium. A 

number of studies have revealed several other communicatory molecules with biological effects 

similar to that of the A-factor, secreted into the medium (Voloshin & Kaprelyants, 2004). 

Furthermore, Gram-negative bacteria with type VI secretion systems (T6SSs), are capable of 

transporting effector proteins from one bacterium to another in a contact-dependent manner, which 

is believed to play a role in bacterial communication and interactions in the environment (Russell et 

al., 2014).  

For B. subtilis most proteins are secreted via the general secretion pathway or the twin-arginine 

pathway, but there are also ABC transporters and non-classical secretion. 
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1.2.1 ABC Transporter 
ATP-binding cassette (ABC) transporters are one of the largest superfamilies of membrane 

transporters and can be found in all domains of life (Holland et al., 2003; Rismondo & Schulz, 

2021). Bacteria, archaea, fungi, plants and human parasites all have ABC transporters that catalyze 

essential functions (Leprohon et al., 2011; Rea, 2007; Martinoia et al., 2002) and are often called 

traffic ATPases (Ames et al., 1990). Besides the conserved ATP binding motif (Fath & Kolter, 

1993), all bacterial ABC transporters share two transmembrane domains (TMDs), two nucleotide 

binding domains (NBDs) and a substrate-binding site (Song et al., 2015). The TMDs are typically 

composed of twelve transmembrane helices, which form the translocation pathway across the 

membrane bilayer and also contain the substrate-binding site (Beis, 2015). The two NBDs, which 

can bind and hydrolyze ATP (Locher, 2016), contain multiple stretches of highly conserved 

sequences (Higgins et al., 1986, 1990; Decottignies & Goffeau, 1997), in contrast to the diverse 

translocator units of the TMDs (Hollenstein et al., 2007). Since the majority of ABC transporters 

are highly specific, most feature a substrate binding protein (SBP), additionally to NBDs and TMDs, 

for the capturing and transfer of substrates to the transporter (Boos, 1999; Berntsson et al., 2010; 

Maqbool et al., 2015). Interestingly, SBPs are typically soluble and periplasmic in Gram-negative 

bacteria, and anchored to the membrane via an N-terminal hydrophobic lipid extension in Gram-

positive bacteria (Quentin et al., 1999). For the actual translocation across the membrane, ABC 

transporters have to pump substrates against a chemical gradient, via ATP hydrolysis as the driving 

force. Once ATP is hydrolyzed by the NBDs, conformational changes are transmitted from the 

NBDs to the TMDs, which leads to a reorientation of the substrate-binding site from an inward-

facing to an outward-facing conformation, resulting in the translocation across the membrane (Ward 

et al., 2007; Dawson & Locher, 2006; Seeger & van Veen, 2009; Locher, 2016). 

During the sequencing of the B. subtilis genome, more and more ABC transporters have been 

identified in a relatively short time (Fath & Kolter, 1993; Kunst et al., 1997; Linton & Higgins, 

1998). Genome analyses have revealed 78 ABC transporters in B subtilis, which can be split into 38 

importers and 40 exporters (Quentin et al., 1999). However, there is potentially a high degree of 

redundancy (Orelle et al., 2019) as bacteria, such as B. subtilis, S. aureus and E. coli carry up to 30 

putative drug efflux pumps (Hassan et al., 2007; Paulsen et al., 2001). ABC transporters can 

translocate a variety of molecules across the cell membrane in an ATP-dependent manner. This 

includes toxic substances (Wong et al., 2014; Seeger et al., 2009), the uptake of nutrients (Davidson 

et al., 2008; Cui et al., 2011) and the translocation of building blocks for cell-wall assembly (Raetz 

et al., 2007; Ruiz et al., 2008; Cuthbertson et al., 2010). ABC transport systems contribute not only 

to the translocation of proteins, but are also involved in the transport of cyclic β-glucans (Roset et 

al., 2004; Breedveld & Miller, 1994), polysaccharides (Feng et al., 2004), sialic acid (Nsahlai et al., 

2003) and a wide variety of small peptide signaling molecules and bacteriocins (Dirix et al., 2004; 

Young & Holland, 1999). Others possess regulatory functions such as FtsEX of B. subtilis, which 

activates the D,L-endopeptidase CwlO (Meisner et al., 2013) or opuB and opuC operons, which 

mediate osmoprotection (Kappes et al., 1999).  



Introduction 6 

 

1.2.2 Non-classical Secretion 

Facilitated by the availability of the genome sequence of B. subtilis (Kunst et al., 1997), exported 

proteins are usually identified and characterized by featuring a signal peptide (Tjalsma, et al., 2000). 

Most frequently, extracellular proteins are secreted either by the Sec-pathway, the Tat-pathway or 

in some instances via an ABC transporter. Nevertheless, multiple proteomic analyses of the 

secretome in various bacteria have revealed a number of proteins in the extracellular environment, 

that were previously characterized as cytosolic, lacking any form of signal peptides (Tjalsma et al., 

2004; Antelmann et al., 2006; Wang et al., 2016).  Among these non-classically secreted proteins 

are fibrinogen-binding protein A and enolase of Listeria monocytogenes (Schaumburg et al., 2004; 

Dramsi et al., 2004), glucose-6-phosphate isomerase of Streptococcus agalactiae (Hughes et al., 

2002), glutamine synthetase of Mycobacterium tuberculosis (Harth et al., 1997) and the pullulanase 

PulA of B. subtilis (Zhen et al., 2021). The long-held assumption was, that detection of these proteins 

in the extracellular environment had to be attributed to cell lysis. However, the works of Yang et al., 

2011 and Ebner et al., 2016 could prove this assumption wrong and confirm that non-classical 

secretion is a general phenomenon B. subtilis and S. aureus respectively. Speculations for the 

mechanism include specific loosening of the cell membrane (Pasztor et al., 2010), some unknown 

specific protein channels (Ebner et al., 2017) or membrane vesicles (Wang et al., 2013). Despite a 

lot of speculation, the mechanism of the non-classical secretion pathway has not yet been identified 

(Jiang et al., 2022). Reports have shown that the transport of some of these proteins seems to be 

coupled with their multimer state (Zhao et al., 2017), conformational motifs (Yang et al., 2018) or 

translation stress (Morra et al., 2018). Additional investigations indicate, that the N-terminal and/or 

C-terminal sequences of proteins appear to be essential for non-classical secretion in E. coli (Gao et 

al., 2016; Xin, et al., 2019) and B. subtilis (Pan et al., 2016; Niu et al., 2021), even though no form 

of signal peptide was found. Interestingly, proteins are likely exported as a single unit via the non-

classical secretion system (Zhao et al., 2017) and always concentrate in the cell poles and septum 

during secretion (Kang et al., 2020). Despite the usually low secretion levels of recombinant proteins 

using the non-classical secretion pathway (Chen et al., 2016), recently, the Sec-pathway dependent 

secretion of γ-CGTase could be increased by expression without the signal peptide, utilizing non-

classical secretion (Jiang et al., 2022).  

 

1.2.3 Sec-Pathway 

The general secretion pathway (Sec) is essential for viability and is ubiquitously found in all domains 

of life, being conserved in bacteria, archaea, and eukaryotes (Papanikou et al., 2007, Bolhuis et al., 

2004; Rothman & Orci, 1992). Together with the twin arginine translocation (Tat) pathway, it is the 

most commonly used bacterial secretion system to transport proteins across the cytoplasmic 

membrane (Green & Mecsas, 2016). The Sec system primarily translocates proteins in their unfolded 

state (Harwood & Cranenburgh, 2008) and consists of a protein targeting component, a motor 



Introduction 7 

 

protein and a membrane integrated conducting channel, called the SecYEG translocase (Papanikou 

et al., 2007).   

Secretory proteins are identified via intrinsic signals that govern their transport and localization in 

the cell, called signal peptides, a discovery that was awarded the Nobel Prize in Physiology or 

Medicine in 1999. The signal peptides of the Sec system are hydrophobic N-terminal extensions of 

pre-proteins that allow them to be recognized by the export machinery (Chatzi et al., 2013; von 

Heijne, 1990) and delay early folding in the cytoplasm (Tjalsma et al., 2000). B. subtilis exhibits a 

great diversity of signal peptides with more than 100 different sequences identified, so optimal signal 

peptides are often unique for different proteins (Brockmeier et al., 2006; Petersen et al., 2011). 

While sequences may vary, signal peptides share common structural features, such as a positively 

charged N-terminus, followed by a hydrophobic core and a short cleavage region (von Heijne, 1990; 

Harwood & Cranenburgh, 2008). The selective recognition of the signal peptide and the subsequent 

transport to the SecYEG channel in the membrane can be achieved in different ways (Fig. 1.1). The 

ATPase SecA primarily recognizes the pre-protein after release from the ribosome (Hartl et al., 

1990; Chun and Randall, 1994) and binds the N-terminal signal sequences via a shallow groove 

within its preprotein-binding domain (Gelis et al., 2007; Grady et al., 2012). The pre-protein is then 

transferred by SecA to the translocon, where SecA can bind with high affinity to the cytosolic loops 

of SecY (Douville et al., 1995; Mori and Ito, 2006). In addition, SecA can also directly bind the 

ribosome (Huber et al., 2011, Singh et al., 2014) to facilitate co-translational substrate recognition 

(Karamyshev and Johnson, 2005; Steinberg et al., 2018), which was observed for multiple 

translocated proteins (Huber et al., 2017; Rawat et al., 2015; Wang et al., 2017).   

While the ATPase SecA is found exclusively in bacteria and chloroplasts (Pohlschröder et al., 1997; 

Pohlschröder et al., 2005), the signal recognition particle (SRP) is universally conserved and 

essential in almost all cells (Lütcke, 1995; Dalbey et al., 2017). SRP binds to the ribosome at the 

same binding site as SecA and many other ribosome-associated chaperones and processing factors 

(Kramer et al., 2009; Denks et al., 2017; Knüpffer et al., 2019). After binding to the ribosome, SRP 

can recognize and bind the signal peptide of a nascent chain in a co-translational manner (Shan & 

Walter, 2005; Akopian et al., 2013). SRP, which consists of multiple proteins and RNA (Struck et 

al., 1989; Nakamura et al., 1999), then targets the ribosome-associated nascent chains to the 

membrane-bound SRP receptor FtsY and ultimately to the SecYEG translocase complex (Kuhn et 

al., 2017; Angelini et al., 2005; Macao et al., 1997). 

Although the translocation process in B. subtilis and E. coli is principally very similar (Tjalsma et 

al., 2004), the latter possesses an additional chaperone called SecB, which can support the 

translocation competence of the unfolded pre-protein (Collier et al., 1988; Huang et al., 2016). SecB 

can bind to a small number of secretory proteins (Bechtluft et al., 2010) and cooperates with SecA 

to facilitate their translocation (Fekkes et al., 1998; Zhou & Xu, 2003). The chaperone CsaA is 

assumed to serve as a SecB homolog in B. subtilis, as it can directly interact with SecA and precursor 

proteins to influence their secretory efficiency (Müller et al., 2000; Shapova & Paetzel, 2007). 
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However, it was found not to bind to the conserved SecB-binding domain in SecA (Müller et al., 

2000) and it is still unclear whether CsaA can recognize signal peptides (Yan & Wu, 2017). 

In its minimal form, the Sec translocase consists of the SecYEG protein-conducting channel, 

consisting of the proteins SecY, SecE and SecG (Manting et al., 2000). SecY, the major subunit of 

this complex, is forming a clamshell-like structured pore, with two halves of transmembrane 

segments, to open the lipid bilayer (van den Berg et al., 2004; Gumbart & Schulten, 2007). SecE 

stabilizes the structure of SecY in a crucial way, as SecY has been reported to be rapidly degraded 

by the membrane protease FtsH in the absence of SecE (Kihara et al., 1995; a Nijeholt et al., 2013). 

In contrast to SecY and SecE, the subunit SecG is not essential to the cell, but stabilizes the closed 

SecY channel (Belin et al., 2015) and leads to protein transport defects upon deletion (Nishiyama et 

al., 1994). Together they form the SecYEG translocon complex, an hourglass-shaped pore in the 

cell membrane (Van den Berg et al., 2004). Additional to its functional monomeric state (Kedrov et 

al., 2011), SecYEG seems to form dimers (Breyton et al., 2002; Bessonneau et al., 2002) and higher 

oligomers or other heteromeric complexes (Schulze et al., 2014; Komar et al., 2016), which likely 

allow the Sec-translocase to adapt to a wide variety of different substrates and to different 

physiological conditions. Structural analysis of SecYEG revealed that in its resting state, the exit 

site of the hourglass pore is sealed by an α-helical plug that folds back into the channel (Park & 

Rapoport, 2011; Tam et al., 2005), which prevents ion leakage (Maillard et al., 2007). The ATPase 

SecA is often described as the motor that drives the translocation event (Cooper et al., 2008; Gupta 

et al., 2020), since it provides the energy for this process through repetitive ATP hydrolysis cycles 

(Knyazev et al., 2018). Upon binding of SecA to SecY, conformational changes are initiated that 

open up the channel of SecYEG and displace the plug domain (Zimmer et al., 2008; Li et al., 2016). 

SecA then directs the preprotein in a stepwise manner into the pore (Economou & Wickner, 1994, 

du Plessis et al., 2011).  

It is noteworthy that there are additional factors that contribute to efficient protein secretion. The 

chaperone PrsA, located on the outer surface of the cytoplasmic membrane, assists maturation and 

folding of exported proteins (Kontinen et al., 1991; Kontinen & Sarvas, 1993). RasP is an 

intramembrane protease that can impact secretion of different proteins (Neef et al., 2017, Neef et 

al., 2020) through the degradation of cleaved signal peptides (Saito et al., 2011) and SecDF, 

associated with the SecYEG translocon, aids secretion using the proton motive force (PMF) 

(Tsukazaki et al., 2011) and is proposed to pull out the precursor protein from the SecYEG channel 

into the periplasm via repeated conformational transitions (Tsukazaki, 2018). 

Following the secretion through the SecYEG translocon, the signal peptide of the pre-protein is 

removed by a signal peptidase. B. subtilis encodes genes for five type I signal peptidases (sipT, sipS, 

sipU, sipV and sipW) (van Rosmaalen et al., 2004) and one type II signal peptidase (lspA) (Prágai et 

al., 1997), of which only SipS and SipT appear to be essential (Tjalsma et al., 1998). When the 

signal peptide is cleaved, the pre-protein is released from the translocation machinery for folding or 

further trafficking (Auclair et al., 2012). 
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SecYEG also cooperates with the insertase YidC by forming a SecDF stabilized complex 

(Samuelson et al., 2000) to facilitate membrane protein insertion (Sachelaru et al., 2013; Sachelaru 

et al., 2017; Petriman et al., 2018). Although the mechanistic details of the YidC-SecYEG-

dependent protein insertion remain elusive at the molecular level (Polasa et al., 2022), the protein 

chain likely is transferred from SecYEG to YidC through a lateral gate, followed by insertion via 

hydrophobic pressure (Dalbey et al., 2014; Kleinbeck & Kuhn, 2021). Alternatively, YidC can insert 

membrane proteins independently of SecYEG (Serek et al., 2004), when pre-proteins are delivered 

to the insertase via SRP and FtsY (Welte et al., 2012) or by binding the translating ribosome directly 

(Kedrov et al., 2013). 

 

Figure 1.1: Schematic depiction of the Sec pathway. The signal recognition particle (SRP) binds to 

the ribosome to recognize and bind the signal peptide (SP) of a nascent chain in a co-translational 

manner. The translating ribosome is then brought to the SecYEG translocon through an interaction 

between SRP and its membrane receptor FtsY. The ATPase SecA primarily recognizes the pre-

protein post-translationally, after release from the ribosome. It binds the N-terminal SP and transfers 

the pre-protein to the SecYEG translocon, where SecA then binds to SecY and initiates ATP-driven 

secretion through the hourglass-shaped pore of SecYEG. SecDF is associated with the SecYEG 

translocon and aids secretion via the proton motive force (PMF). Following the secretion through 

the SecYEG translocon, the signal peptide of the pre-protein is removed by a signal peptidase 

(SPase).  
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1.2.4 Twin-arginine translocation system 

In the early 1990’s, it was noticed that a subset of polypeptides could be translocated through the 
thylakoid membrane of chloroplasts independently of ATP hydrolysis and instead relied solely on 

the proton gradient (Mould & Robinson, 1991). This translocation was facilitated by the twin-

arginine translocation system (Tat), named after the characteristic twin-arginine (RR) motif of the 

N-terminal signal peptide, which predestines a substrate to be exported from the cytoplasm by the 

Tat-pathway (Chaddock et al., 1995; Berks, 1996). The Tat system is found in a variety of organisms 

(Palmer et al., 2012), such as thylakoids (Hynds et al., 1998), archaea (Pohlschröder et al., 2005), 

Gram-positive (Jongbloed et al., 2002) and Gram-negative bacteria (Müller, 2005). While the 

general secretion pathway (Sec) can only translocate proteins in an unfolded state, the Tat pathway 

stands out by its specialization in the export of fully folded proteins, which often require a cofactor 

insertion or immediate oligomerization (Palmer et al., 2005; Berks, 2015; Frain et al., 2019). The 

number of Tat-dependent cargo proteins ranges from over 100 in Streptomyces species 

(Schaerlaekens et al., 2001, 2004; Widdick et al., 2006; Joshi et al., 2010), to roughly 30 proteins 

in E. coli and Salmonella (Palmer et al., 2010) and only a few in B. subtilis (Goosens et al., 2013) 

and Staphylococcus aureus (Yamada et al., 2007; Biswas et al. 2009), while in Lactobacillus 

species, none are known (Bolotin et al., 2001; Kleerebezem et al., 2003). Among the few proteins 

targeted by the Tat system in B. subtilis, is the Rieske iron‑sulfur protein QcrA, which is translocated 

into the cytoplasmic membrane (Goosens et al., 2014). YkuE, a metallophosphoesterase, is directed 

to the cell wall (Monteferrante et al., 2012) and the hemoprotein EfeB both to the membrane-cell 

wall interface as well as the extracellular milieu (Miethke et al., 2013).  

The core components identified in E. coli that make up the translocase are TatA, TatB, and TatC 

(Sargent et al., 1998; Sargent et al., 1999; Palmer et al., 2005). Intriguingly, certain TatA proteins, 

like the TatA proteins from B. subtilis, were demonstrated to be bifunctional and replace both E. coli 

TatA and TatB in the TatA-B-C system (Blaudeck et al., 2005; Barnett et al., 2008; Barnett et al., 

2011). As a result, B. subtilis lacks the third component TatB, that is important to Tat systems of 

Gram-negative bacteria and thylakoids (Jongbloed et al., 2006; Barnett et al., 2009). Its core 

translocase TatAyCy is composed of only two necessary components, the constitutively expressed 

TatAy and TatCy proteins (Fig. 1.2) (Jongbloed et al., 2000; Pop et al., 2002). A second translocase 

namely TatAdCd, consisting of TatAd and TatCd, is detectable only under phosphate starvation 

conditions to enable secretion of the phosphodiesterase PhoD (Jongbloed et al., 2000; Jongbloed et 

al., 2004). Whereas TatC is a relatively large integral membrane protein (28–28.9 kDa) with six 

transmembrane domains (Nolandt et al., 2009; Rollauer et al., 2012), the TatA component is smaller 

(6–7.4 kDa) and has only one N-terminal transmembrane domain (Yen et al., 2002; Lange et al., 

2007).  

Despite almost three decades of research, the mechanism for the twin-arginine translocation system 

is not entirely understood (Frain et al., 2019; Palmer & Stansfeld, 2020). However, what is currently 

agreed upon is that the process is initiated when a substrate with the correct RR-signal peptide 
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interacts with a docking complex composed of TatC and a TatA-like protein (Bolhuis et al., 2001; 

Kneuper et al., 2012; Whitaker et al., 2012). Once the cargo protein has docked, the translocation 

complex is formed and a large number of TatA proteins are recruited to the translocation site in a 

proton-motive force-dependent manner (Mori & Cline 2002; Alami et al., 2003; Dabney-Smith et 

al., 2006). As for the actual mechanism of translocation through the membrane via the Tat pathway, 

multiple models have been proposed (Hao et al., 2022). In one model, multiple TatAs are forming 

a pore around the incoming transport substrate by inserting the TMHs into the membrane (Gohlke 

et al., 2005; Frain et al., 2019). Another model assumes that, under the influence of all Tat subunits, 

the substrate itself, and the driving proton motive force, the membrane thins locally until the bilayer 

collapses and lipid-lined toroidal pores form through which the substrates cross the membrane 

(Brüser & Sanders, 2003; Hou et al., 2018; Asher & Theg et al., 2021). After translocation through 

the cytoplasm membrane, the signal peptide is cleaved by a signal peptidase to release the mature 

protein (Jongbloed et al., 2004; Lüke et al., 2009; Dalbey et al., 2012).  

 

Figure 1.2: Schematic depiction of the twin-arginine translocation system (Tat) in B. subtilis. The 

translocation process is initiated when a substrate with the correct twin-arginine-(RR)-signal 

interacts with a docking complex composed of TatC and a TatA-like protein. Multiple TatAs are 

forming a proteinaceous pore around the incoming transport substrate, by inserting the TMHs into 

the membrane, through which the substrates cross the membrane. 

 

 

 



Introduction 12 

 

1.3 Cell wall 
Bacteria can be classified into two different groups, Gram-positive and Gram-negative, based on an 

ancient staining technique developed by Hans Christian Gram in the 19th century (Gram, 1884). 

Gram-negative bacteria are characterized generally by a thin cell wall layer that is covered by an 

inner cytoplasmic membrane and an additional outer membrane (Matias et al. 2003; Vollmer and 

Höltje 2004), while Gram-positive bacteria exhibit a thick cell wall without an additional outer 

membrane (Shockman et al., 1983; Beveridge & Matias, 2006). Despite exemptions from the rules, 

e.g. cyanobacteria, which share characteristic features of both groups (Hoiczyk & Hansel, 2000), 

both stain and classification are still in widespread use. The bacterial cell wall is a sieve-like 

meshwork mainly consisting of peptidoglycan, whose structure was first recognized by Wolfhard 

Weidel and his group at the Max Planck Institute for Biology in Tübingen (Weidel & Primosigh, 

1958). The peptidoglycan sacculus constitutes a rigid layer, that is essential for bacteria to maintain 

their characteristic shapes (Young, 2003) and to withstand the high internal turgor pressure that can 

reach 5 atm in Gram-negative and up to 50 atm in Gram-positive bacteria (Archibald et al., 1993; 

Seltmann & Holst, 2002). Peptidoglycan consists of a polysaccharide backbone with β-(1,4) 

glycosidically linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) 

molecules (Schleifer & Kandler, 1972), which is attached to an oligopeptide chain consisting of 

L-Ala-D-Glu-L-meso-diaminopimelic acid-D-Ala-D-Ala (Atrih et al., 1999). While the cell wall of 

Gram-negative bacteria like E. coli was determined to be between 3 to 8 nm (Yao et al., 1999; Leduc 

et al., 1989), the Gram-positive cell wall consists of several layers and is 30 - 100 nm thick, 30 – 40 

nm in B. subtilis (Rohde, 2019; Beveridge & Murray, 1979; Graham & Beveridge, 1994). 

Combining AFM with size exclusion chromatography revealed that the inner surface of B. subtilis 

cell walls consist of ca. 50-nm-wide glycan chains running circumferentially around the short axis 

with a length of up to 200 μm (Hayhurst et al. 2008, Turner et al., 2018). With the emerging method 

of electron microscopy, the peptidoglycan cell wall could be visualized for the first time (Mudd et 

al., 1941; Salton & Horne 1951). Further advances have allowed visualizations of the cell wall in an 

unprecedented resolution, revealing a disordered peptidoglycan landscape characterized by large 

and deep pores (Fig. 1.3) (Tank et al., 2021; Pasquina-Lemonche et al., 2020).  

The B. subtilis cell wall is negatively charged due to the presence of teichoic acids (Sonnenfeld et 

al., 1985; Hyyryläinen et al., 2007), which are essential for maintaining cell shape in rod-shaped 

bacteria (Swoboda et al., 2010). They are unique to Gram-positive bacteria and can be differentiated 

into wall teichoic acids (WTAs) which are covalently attached to peptidoglycan and membrane 

anchored lipoteichoic acids (LTAs) (Neuhaus & Baddiley, 2003, Ward, 1981). Teichoic acids are 

considered one of the major contributors to envelope structure and function, since these polymers 

can collectively account for up to 60% of the mass of the Gram-positive cell wall (Silhavy et al., 

2010). In addition to teichoic acids, the cell wall surface is decorated with a variety of proteins, some 

of which are anchored in the membrane, and others are covalently attached to or associated tightly 

with peptidoglycan (Scott & Barnett, 2006). Among them are various peptidoglycan synthases like 

the penicillin-binding proteins (PBPs), Mtg monofunctional glycosyltransferases and shape, 
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elongation, division and sporulation (SEDS) proteins (Bhavsar & Brown, 2006; Meeske et al., 

2016).  

Since the cell wall is so essential, almost every single step of its biosynthesis pathway is targeted by 

at least one antibiotic (Bugg et al., 2011; Schneider & Sahl, 2010). Old pulse-labeling studies 

suggested an inside-to-out-side flux of wall material, where new wall is synthesized and integrated 

along the cytoplasmic membrane and older cell wall material is removed from the exterior by 

autolysins (Merad et al., 1989; Pooley, 1976). It has since been calculated for this autolysin-

mediated cell wall turn-over to affect as much as 50% of cell wall material per generation, which is 

then recycled by the cells (Park & Uehara 2008; Reith & Mayer 2011; Borisova et al., 2016). The 

steady degradation and resynthesis of the peptidoglycan envelope allows the bacterial cell wall to 

balance between flexibility and rigidness (Vermassen et al., 2019). 

 

Figure 1.3: Depiction of the B. subtilis cell wall. A: Cross section model of a Gram-positive cell 

envelope; LTA: lipoteichoic acid; WTA: wall teichoic acid; IMP: integral membrane protein; CWP: 

covalently attached protein; PL: phospholipid; GlcNAc: N-acetylglucosamine; MurNAc: N-

acetylmuramic acid. B: AFM images showing the peptidoglycan surface of living B. subtilis cells, 

adapted from Pasquina-Lemonche et al., 2020. 
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1.4 Autolysin 

Autolysins are bacteriolytic enzymes that digest the cell wall peptidoglycan of the bacteria that 

produce them (Shockman & Hölltje, 1994), whereas other peptidoglycan hydrolases are not 

classified as autolysins, if they cannot cause cell lysis on their own (Foster, 1994). Although 

potentially lethal, it appears that autolysins are universal among all bacteria that possess 

peptidoglycan (Shockman et al., 1996; Shockman et al., 1994). Initially, only a few autolytic 

enzymes were known (Young, 1966; Brown & Young, 1970), but genome analysis revealed the 

presence of 35 definite or predicted autolysins in B. subtilis that cluster in 11 different protein 

families (Kunst et al., 1997; Smith et al., 2000). The abundance of autolysins leads to a great number 

of functional redundancies (Smith et al., 1996). For example, for each amide bond in the 

peptidoglycan, there are several amidases capable of hydrolyzing the bond (Walter & Mayer, 2019). 

Since autolysins are potentially lethal, their expression and activity must be tightly regulated. The 

flagellar motility and chemotaxis sigma factor σD (Márquez et al., 1990) controls expression of the 

major vegetative autolysin genes lytC and lytD, together with the minor vegetative endopeptidase 

gene lytF, with a peak in activity at the start of stationary phase (Kuroda & Sekiguchi, 1993; Margot 

et al., 1994, Margot et al., 1999). Additionally, it seems like the autolysins are post-translationally 

regulated, as multiple reports of B. subtilis strains with inactivated protease genes, exhibiting 

increased susceptibility to autolysis, indicate (Cho et al., 2004; Stephenson et al., 1999; Coxon et 

al., 1991). Physical and chemical factors like alkaline medium (Jolliffe et al., 1983) or excess of 

monovalent cations (Svarachorn et al., 1989) can also influence autolytic activity.  

Autolysins are involved in numerous cellular processes including sporulation, cell separation, cell 

shape, cell wall turn-over, motility and many more (Smith et al., 2000). In the differentiation 

processes of sporulation, the autolysins SleB and CwlJ are required for spore germination (Chirakkal 

et al., 2002), while LytH is involved in maturation of the spore cortex (Horsburgh et al., 2003). The 

release of spores occurs through lysis of the mother cell, a step that involves numerous autolysins, 

such as CwlB, CwlC (Shida et al., 2001), LytC, CwlC and CwlH (Nugroho et al., 1999; Smith and 

Foster, 1995). Like the separation of spore and mother cell, the cell separation during vegetative 

growth requires autolytic activity (Blackman et al., 1998). The two genes encoding autolysins that 

are known to play a key role in cell separation are lytC and lytF, since their inactivation leads to 

chain formation, especially in the ∆lytF mutant (Ohnishi et al., 1999; Chen et al., 2009). LytF, 

together with three other D,L-endopeptidases (LytE, CwlO, and CwlS) is also involved in cell 

morphology maintenance, with varied roles e.g. in cell elongation (Hashimoto et al., 2018). 

Investigations of cell wall turn-over using pulse-chase experiments were able to show, that 

inactivation of LytC leads to a sharp decrease in the turn-over rate of the cell wall (Margot et al., 

1994; Blackman et al., 1998). While LytD inactivation alone has no effect, it will further reduce 

turn-over in a ∆lytC background (Margot et al., 1994). Autolysins also play a role in bacterial 

motility, as B. subtilis cells lacking LytC and LytD activity exhibit greatly diminished swarming 

motility (Blackman et al., 1998; Rashid et al., 1993). Likewise, the less well studied lytic 

transglycosylase CwlQ was found to be essential for swarming motility (Sanchez et al., 2021). 
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Interestingly, autolysins are also associated with phenomena such as cannibalism, which is a social 

behavior occurring in B. subtilis populations during the early stages of sporulation (González-Pastor, 

2011). The cannibalistic toxin SDP (Liu et al., 2010), rapidly collapses the protonmotive force of 

other cells and induces autolysin mediated lysis (Lamsa et al., 2012). 

Among the many cell wall hydrolases, the N-acetylmuramoyl-L-alanine amidase LytC and the 

N-acetyl-glucosaminidase LytD are the most significant autolysins, accounting for around 95% of 

the autolytic activity of the cell (Kuroda & Sekiguchi, 1991; Lazarevic et al., 1992). LytC is an 

N-acetylmuramoyl-L-alanine amidase (Kuroda & Sekiguchi, 1991), which localizes uniformly in 

the cell envelope and hydrolyzes the linkage of N-acetylmuramoyl-L-alanine in peptidoglycan 

(Fig. 1.4) (Yamamoto et al., 2003). As one of the two major autolysins in B. subtilis, LytC is 

involved in a variety of cell functions like sporulation (Smith & Foster, 1995), swarming motility 

(Yamamoto et al., 2003), cell separation and cell wall turn-over (Blackman et al., 1998). LytD is an 

endo-β-N-acetyl-glucosaminidase that forms a homodimer (Margot et al., 1994) and localizes at the 

cell separation sites and both cell poles, similar to LytF (Yamamoto et al., 2003). First described as 

an endolysin, LytD can cleave the bacterial cell wall at the covalent bond between the 

N-acetylglucosamine (GlcNAc) and the N-acetylmuramie acid (MurNAc) of the glycan chain 

(Rogers et ai, 1980). LytF, a γ-D-glutamate meso-diaminopimelate muropeptidase, acts as the 

primary autolysin involved in vegetative daughter cell separation (Margot et al., 1999, Chen et al., 

2009). Immunofluorescence microscopy shows LytF localizing at the pole and the septum dependent 

on the presence of WTAs, which inhibit the sidewall localization (Yamamoto et al., 2008). LytF 

cuts the peptidoglycan γ-D-glutamate-meso-diaminopimelate bond, but alone has only a minor cell 

wall lytic activity in vitro (Ohnishi et al., 1999, Margot et al., 1999). LytE and CwlO are D,L-

endopeptidases that can hydrolyze the linkage of d-γ-glutamyl-meso-diaminopimelic acid in 

peptidoglycan (Yamaguchi et al., 2004; Ishikawa et al., 1998). LytE localizes to the septum and 

poles, but also like CwlO, at the lateral wall in a helix-like manner (Hashimoto et al., 2012; Kasahara 

et al., 2016). While the single knockout mutants of either autolysin are viable, a double deletion of 

lytE and cwlO is lethal, indicating similar functions (Bisicchia et al., 2007). As LytE interacts with 

MreBH (Carballido-López et al., 2006) and CwlO with Mbl (Dominguez-Cuevas et al., 2013), they 

influence two of the three actin homologs in B. subtilis. Expression of both LytE and CwlO is 

regulated by the WalR-WalK two-component signaling system, with the ability to sense 

peptidoglycan cleavage products, generated by LytE and CwlO and up- or downregulate their 

activity accordingly (Dobihal et al., 2019). 
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Figure 1.4: Simplified schematic structure of mature B. subtilis peptidoglycan cell wall. Examples 

of each type of bond attacked: 1. glucosaminidase (LytD), 2. muramidase/lytic transglycosylase 

(CwlQ), 3. amidase (LytC) and 4. endopeptidase (LytF) are indicated by arrows on each structure. 
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1.5 Flotilline 

The common theory to describe membrane organization and behavior is called fluid mosaic model, 

which suggests that the membrane behaves like a two-dimensional fluid with heterogeneous lateral 

mobility of the membrane components (Singer & Nicolson, 1972; Jacobson et al., 1995). A variety 

of lipid species, that are present in the cell membrane, tend to segregate laterally into discrete 

regions, and likewise do proteins that concentrate preferentially in specific membrane domains 

(Yeagle et al., 2004; Matsumoto et al., 2006). Through visualization tools like the cardiolipin-

specific dye NAO (10-N-nonyl acridine orange), it was shown that the region of the cell pole is 

especially enriched in cardiolipins (Romantsov et al., 2007), whereas other negatively charged lipids 

appear to localize in a helical pattern along the longitudinal axis (Muchova et al., 2010). Membrane 

proteins of many organisms, from bacteria to humans also frequently show non-uniform localization 

patterns (Lingwood & Simons, 2010; Simons & Gerl, 2010). Eukaryotic cells organize a variety of 

proteins related to signal transduction and membrane trafficking into discrete cholesterol- and 

sphingolipid-enriched microdomains or rafts (Simons & Ikonen, 1997) through the affinity of the 

membrane proteins for specific heterogeneously localized lipids (Levental et al., 2010).  

Flotillins were first discovered in the cell membrane of eukaryotes (Schulte et al., 1997), but have 

since been established as an evolutionarily conserved class of proteins found across all organisms 

(Hinderhofer et al., 2009). A lot of research has been dedicated to their numerous functions in 

eukaryotes, where they play a role in endocytosis (Doherty & McMahon, 2009), cytoskeleton 

rearrangements (Ludwig et al., 2010), cell-cell adhesion (Resnik et al., 2011), nutrient uptake (Ge 

et al., 2011) and cell signaling (Staubach et al., 2011). They affect so many different aspects of the 

cell, because flotillins act as scaffolding proteins in membrane domains, providing a platform for 

the recruitment of multiprotein complexes (Langhorst et al., 2005; Ludwig et al., 2010; Resnik et 

al., 2011). Members of the family of Flotillin proteins are known to accumulate in detergent-resistant 

microdomains (DRMs) of eukaryotic membranes and generally serve as a lipid raft marker (Bickel 

et al., 1997; Browman et al., 2007; Borner et al., 2005). Genes encoding flotillins or flotillin-like 

proteins are ubiquitous and can be found in genomes of metazoans, plants, fungi and bacteria 

suggesting a fundamental well conserved function (Rivera-Milla et al., 2006; Bramkamp & Lopez, 

2015).  

As for the bacterial membrane, several investigations increased the evidence for the existence of 

non-homogenous lipid distribution (Renner et al., 2011; Mukhopadhyay, et al., 2008; Muchova et 

al., 2010). B. subtilis encodes two flotillin homologs, FloT and FloA, which like their eukaryotic 

counterparts have also been detected in DRM fractions (López & Kolter et al., 2010). The protein 

family of flotillins is characterized by an N-terminal transmembrane domain, the flotillin domain 

and the conserved SPFH domain, named after stomatin, prohibitin, flotillin and HflC/K, (Browman 

et al., 2007; Hinderhofer et al., 2009). Besides FloA and FloT, YdjI was identified in B. subtilis as 

a putative flotillin, containing the SPFH-domain (Cozy et al., 2012). But YdjI does not co-localize 

with the other flotillins and other than FloA and FloT, YdjI was found exclusively in the detergent-
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soluble membrane (DSM) fraction (Scholz et al., 2021). The main flotillin in B. subtilis is FloT, 

while the functions of FloA are partially redundant (Lopez & Kolter, 2010). Both, the continuously 

expressed FloA and FloT, which is increasingly expressed upon entry into the stationary phase, are 

genetically regulated by the sigma factor σW (Huang et al., 1999), which in turn is triggered by 

membrane stressors (Petersohn et al., 2001; Wiegert et al., 2001). FloA and FloT represent integral 

membrane proteins, that localize in defined focal structures independent of each other, within the 

cell membrane and move in a highly dynamic manner (Donovan & Bramkamp, 2009; Dempwolff 

et al., 2016). Interestingly flotillin operon structures harboring genes encoding for proteins with 

NfeD domains is observed all over the prokaryotic kingdom (Hinderhofer et al., 2009), which leads 

to the assumption that a conserved interaction between these two proteins is probable. While it was 

demonstrated that the NfeD protein YuaF, colocalizes with FloT and influences its behavior, the 

NfeD protein YqeZ and FloA seem to act independently (Dempwolff et al., 2012).  

The exact functions of bacterial flotillins are not yet clearly understood. In B. subtilis the absence of 

one of the flotillins only leads to mild defects like a delay in the differentiation process of sporulation 

and cell-widening (Donovan & Bramkamp, 2009). Whereas the absence of both flotillins results in 

loss of proper cell shape, cell division defects (Dempwolff et al., 2012), altered membrane fluidity 

(Lee et al., 2012; Bach and Bramkamp, 2013) and defective signaling events during the transition 

into the biofilm growth style (Lopez & Kolter, 2010). Also, an excess of flotillins can lead to defects, 

namely the considerable shortening of cells, which is in part caused by an unusual stabilization of 

the raft-associated protease FtsH (Yepes et al., 2012; Mielich-Süss et al., 2013). While it is 

established for eucaryotic flotillins to act as scaffolding proteins in defined membrane domains, it 

is eagerly disputed, whether their bacterial counterparts fulfill a similar role. Flotillins were co-

isolated from DRM fractions with NfeD proteins, the signaling receptor KinC, cell wall synthesis 

enzyme Pbp5, secretory protein SecY and many more, leading to the hypothesis of flotillin organized 

lipid rafts or functional membrane microdomains (FMMs), which harbor these proteins (Lopez & 

Kolter, 2010; Bach & Bramkamp, 2013; Bramkamp & Lopez, 2015; Lopez & Koch, 2017). KinC 

for example was found to co-localize and interact in a beneficial way with FloT (Lopez & Kolter, 

2010; Schneider et al., 2015). This interaction was disturbed in cells lacking YisP, a suspected 

squalene synthase (Lopez & Kolter, 2010), associated with synthesis pathways of lipids needed for 

bacterial raft formation (Jermy, 2010). However, subsequent studies suggested YisP to act as a 

phosphatase, with no squalene catalytic activity, catalyzing the formation of farnesol instead (Feng 

et al., 2014). Furthermore, super resolution microscopy showed that the flotillins and other proteins 

found in DRMs do not colocalize and have different dynamic behaviors (Dempwolff et al., 2016), 

making it unlikely that FMMs are regions in the membrane that offer a favorable environment in 

which these membrane proteins are continuously present and active. Others question the method of 

DRM extraction, arguing that it is an artificial process that does not reflect native membrane 

organization (Brown, 2006; Scholz et al., 2021). Additionally, flotillins appear to be required for the 

formation of regions with increased fluidity, which are the counterparts to the FMMs (Zielinska et 

al., 2020). While flotillins are often linked with SecY and it has been observed that protein secretion 
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is reduced in strains lacking flotillins (Bach & Bramkamp, 2013), there is a need for further 

investigation, since the cause is unclear.  

1.6 Aims of research 

Secretion is an essential process of bacteria and highly relevant for the biotechnological production 

of proteins. Although this area has been the subject of extensive research, many aspects such as the 

passage through the cell wall or the role of flotillins have not yet been studied. The key aim of this 

work was to develop an understanding of the location and dynamics of secretion including and 

focusing on cell wall passage, using super-resolution fluorescence microscopy. Furthermore, the 

influence of flotillins and autolysins on protein secretion in Bacillus will be investigated in this 

project and the possibility of improving secretion is going to be explored. 
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Supplementary Material 

 

 

Fig. S1 Western blot showing the presence of SecDF-mNeonGreen and SecA-mNeonGreen 

fusion proteins (calculated Mw: 100 kDa and 120 kDa respectively) in cell lysates of B. subtilis 

and after 16 h of growth using polyclonal antibodies against mNeonGreen. 
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Fig. S2 Amylase activity in the medium analyzed via Phadebas test shows a reduction of 

secreted AmyE in the B. subtilis ∆secDF strain. The fusion of mNeonGreen to SecDF has no 

negative impact on the AmyE secretion. 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

WT AmyE AmyE ∆secDF AmyE secDF-

mNeonGreen

n
o

rm
a

li
ze

d
 a

m
y

la
se

 a
ct

iv
it

y
 

 [
d

E
/m

in
 x

O
D

6
0

0
]



Article and Manuscripts 45 

 

 

Fig. S3 SecDF and SecA mNeonGreen localization is not affected by AmyE overproduction in 

B. subtilis. (A) Localization of SecDF-mNeonGreen with and without additional plasmid-based 

overexpression of AmyE (B) Localization of SecA-mNeonGreen with and without additional plasmid-

based overexpression of AmyE. 
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Fig. S4 Analysis of fluctuating AmyE-mCherry foci in two B. licheniformis cells. (A, C) SIM 
time lapse images showing cells with AmyE-mCherry foci fluctuating in fluorescence intensity over 
time. (B, D) Fluorescence intensity analysis of the foci confirming the fluctuation against the 
background and calculation of the change in fluorescence intensity. Scale bars 2 µm. 
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Fig. S5 SecA-mNeonGreen and SecDF-mNeonGreen foci showing no intensity fluctuations 

over time. SIM time lapse images of SecDF-mNeonGreen in (A) and SecA-mNeonGreen (B) in 

B. subtilis, and fluorescence intensity analysis over time of 6 picked foci and the background. Scale 

bars 2 µm. 
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Fig. S6 Localization of AmyE in B. subtilis and B. licheniformis cells determined by its activity. Cells 

without plasmid-based expression of AmyE referred to as WT (wild type), showing virtually no 

fluorescence signal produced by hydrolysis of starch-BODIPY-FL.  
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2.2 Manuscript I 
This manuscript is part of an invention disclosure. The results are currently investigated to 

assess their patentability. Therefore, premature efforts to publish the contents of the 

manuscript have been suspended. 

 

The Influence of cell wall hydrolases on amylase secretion in Bacillus subtilis  

Manuel Strach1, Klaus Liebeton2, Peter L. Graumann1* 

 

1Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität 

Marburg, 35032 Marburg, Germany 

2BRAIN Biotech AG, Darmstädter Str. 34-36, 64673 Zwingenberg, Germany 

 

Abstract 

Bacillus subtilis is a Gram-positive model organism that is also widely used for industrial protein 

production, due to its high capacity of secretion. Although many aspects of the secretion process 

have been thoroughly investigated, the passage of the cell wall and the proteins that affect it have 

received little attention. Therefore, we have studied the influence of some of the most prominent 

cell wall hydrolases on protein secretion in the Bacillus subtilis PY79 strain. We constructed deletion 

strains and inducible overexpression systems of the major autolysins LytC, LytD, LytF, and of the 

D-alanyl-D-alanine carboxypeptidase PBP5 (dacA). Effects on secretion were assessed by following 

the secretion of the amylase AmyE, expressed from a high copy number plasmid. Examination of 

the deletion strains showed a significant decrease in AmyE secretion in ∆lytC and ∆lytF mutants. 

Upon increasing the expression level of LytC, LytF, and PBP5 by expression of a second gene copy 

from the endogenous amyE locus, plasmid-derived AmyE secretion was significantly increased and 

in the case of PBP5 even doubled. Our findings support the hypothesis that especially the secretion 

of large proteins like AmyE in B. subtilis is limited by the exclusion size of the murein meshwork, 

which can be overcome by the expression level of cell wall-modulating enzymes.  
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Introduction 

Members of the genus Bacillus are famous for their use in the industrial production of exoenzymes, 

and are widely used in biotechnological applications (Harwood, 1992; Schallmey et al., 2004; 

Danilova & Sharipova, 2020). Protein secretion is a two-step process, involving transport across the 

cell membrane, and passage through the several-layered peptidoglycan (PG) cell wall. Previously 

the influence on secretion of many secretion-associated factors has been investigated e.g., signal 

peptides (Degering et al., 2010), chaperones (Wahlström et al., 2003; Chen et al., 2015), teichoic 

acid D-alanylation (Hyyryläinen et al., 2000) and proteases (Stephenson & Harwood, 1998). The 

Gram-positive cell wall has been described to form a sieve-like meshwork, which is easier passable 

for small proteins (Demchick & Koch, 1996). The effects of cell wall hydrolases on secretion are 

mostly examined in combination with other regulators or proteins (Berger et al., 2011; Zobel et al., 

2015) or focus on growth effects rather than modulation of the cell wall (Ren et al., 2022). Despite 

a reported decrease in cell wall permeability of mutants with reduced autolytic activity (Williamson 

& Ward 1981), the possibility of increasing permeability through additional genes of autolysins is 

yet to be explored. 

Cell wall hydrolases are found in all bacteria with peptidoglycan, Bacillus subtilis alone encodes as 

many as 35 different ones. They are very likely regulated by exogenous proteases as B. subtilis 

strains with inactivated protease genes become highly susceptible to autolysis (Stephenson et al., 

1999, Cho et al., 2004). LytC is an N-acetylmuramoyl-L-alanine amidase with three cell wall 

binding (CWB) repeat regions at the N-terminus and a catalytic region at the C-terminus (Kuroda & 

Sekiguchi, 1991, Yamamoto et al., 2003). It localizes uniformly and hydrolyzes the linkage of N-

acetylmuramoyl-L-alanine in peptidoglycan (Yamamoto et al., 2003). LytD is an endo-β-N-acetyl-

glucosaminidase that forms a homodimer (Margot et al., 1994). It is predicted to have an N-terminal 

SH3B cell wall binding domain but further details about the localization are currently not known 

(Bateman et al., 2022). Initially described as an endolysin, LytD can cleave the bacterial cell wall at 

the covalent bond between the N-acetylglucosamine (GlcNAc) and the N-acetylmuramie acid 

(MurNAc) of the glycan chain (Rogers et al, 1980). LytF an α γ-D-glutamate meso-diaminopimelate 

muropeptidase, that acts as the primary autolysin involved in vegetative daughter cell separation 

(Margot et al., 1999, Chen et al., 2009). It consists of an N-terminal LysM cell wall binding domain 

and a catalytic region at the C-terminus (Margot et al., 1999). Immunofluorescence microscopy 

shows LytF localizing at the pole and the septum dependent on the absence of WTAs, which inhibit 

the sidewall localization (Yamamoto et al., 2008). LytF cuts the peptidoglycan γ-D-glutamate-meso-

diaminopimelate bond but on its own has only a minor cell wall lytic activity in vitro (Ohnishi et 

al., 1999, Margot et al., 1999).  

Transcription of three major autolysins lytC, lytD and lytF is controlled by the alternative sigma 

factor σD (Márquez et al., 1990). LytD and LytC account for ~ 95% of the autolytic activity of the 

cell (Smith et al., 2000). Both LytC and LytD play a role in cell separation, swarming motility and 

wall turnover (Blackman et al., 1998). LytC also lyses the mother cell at the end of sporulation 

(Smith & Foster, 1995). 
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The gene dacA encodes for the low-molecular-weight (low-MW) penicillin-binding protein PBP5 

and is the major D-alanyl-D-alanine carboxypeptidase of vegetative B. subtilis cells (Lawrence & 

Strominger, 1970). In native conditions, the protein forms a homodimer with a C-terminal membrane 

anchor (Skoog et al., 2011, Pratt et al., 1986). Fluorescence microscopy showed that PBP5 localizes 

at the septum and in concentrated spots along the lateral cell wall (Scheffers et al., 2004). Because 

PBP5 can cleave the D-Ala-D-Ala from the pentapeptide of the peptidoglycan, a dacA knockout 

mutation leads to a substantial increase in muropeptides with a pentapeptide side chain. 

Interestingly, overexpression of PBP5 in the Gram-negative bacterium Escherichia coli has been 

shown to increase the secretion of amylase K, suggesting that altered cell wall crosslinking could 

affect bacterial protein secretion in general (Yang et al., 2022). 

 

Results  

Missing autolysins negatively impact secretion of an overproduced protein 

In this study, we aimed to examine the impact of cell wall hydrolases on α-amylase secretion in B. 

subtills. We, therefore, constructed single deletion mutants of the cell wall modifying enzymes LytC, 

LytD, LytF (hereafter collectively named cell wall hydrolase) and PBP5 (dacA) (cell wall modifier) 

in combination with AmyE overexpression. All these enzymes are capable to hydrolyze 

peptidoglycan or its precursors, influencing cell separation, swarming motility, autolysis, and 

crosslinking of glucan strands. The absence of these proteins can influence the structure of the cell 

wall, which is one of the two structural hurdles for the passage of secretory proteins from the 

cytoplasm to the extracellular space.  

In this study, the commonly used 72.6 kDa α-amylase AmyE was selected as a model secreted 

protein to quantify secretion efficiency of different strains. Here AmyE is expressed through the 

non-integrating plasmid pM11K_amyEBs provided by the B.R.A.I.N. AG (Zwingenberg, 

Germany). To analyze the effects of the different mutations of cell wall hydrolases on the amount 

of secreted AmyE the α-amylase activity was determined by the Phadebas method (Pen et al., 1992). 

Interestingly despite having only minor lytic activity and being mostly responsible for cell 

separation, LytF had a significant effect on the secretion of AmyE (Fig. 1). In the ∆lytF strain, α-

amylase activity detected in the media was reduced by 15% compared to the control strain. The 

Absence of LytC had a major impact on the extracellular appearance of AmyE. The deletion resulted 

in a 50% loss of amylase activity in the supernatant suggesting that the lytC gene product had the 

strongest effect on protein secretion in B. subtilis (Fig. 1). No significant impact of the lytD mutation 

could be detected. 
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Figure 1: Amylase activity in a culture supernatant of B. subtilis PY79 mutants ∆lytC, ∆lytF, ∆lytD. AmyE: 

strain with plasmid-based expression of AmyE. Significance of differences was estimated via two-tailed T-

test. AmyE, ∆lytC and ∆lytF: n = 34; ∆lytD: n = 12. 
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Increased levels of cell wall hydrolases can improve secretion  

In order to verify the effects of these cell wall hydrolases on protein secretion, B. subtilis further 

experiments regarding the enzymes were conducted. Based on the results generated through the 

deletion strains (Fig. 1), we focused on lytC, lytF, and dacA in the following experiments. Additional 

cell wall hydrolase genes under the control of inducible promoters were ectopically inserted into the 

native amyE-locus of B. subtilis. The genes lytF and dacA were expressed using the IPTG-inducible 

promoter Phyper-spank while lytC was expressed using the xylose-inducible promoter Pxyl. Strains 

containing additional cell wall hydrolase genes and the AmyE overexpressing plasmid were 

investigated for the impact on protein secretion. To this end, extra hydrolase gene expression was 

induced by addition of 0.5 mM IPTG or 0.25% (v/v) xylose respectively, 3 h after inoculation. 

Secretion efficiency was evaluated after 8 h of growth, through assessment of the amylase activity 

in the media.  

Our results show that upon induction of lytF expression, the amylase activity in culture supernatants 

was increased by 70%, indicating the detection of elevated AmyE secretion levels in B. subtilis (Fig. 

2). In the absence of promoter induction, no significant increase in amylase activity was found in 

the supernatant. 

 

Figure 2: Amylase activity in culture supernatant of B. subtilis PY79 with lytF overexpression. 

AmyE: strain with plasmid-based expression of AmyE. lytF: strain with amyE::Phyper-spank-lytF. 

IPTG indicates the addition of 0.5 mM of this inductor. Significance of differences was estimated 

via two-tailed T-test. n = 10. 
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While testing the B. subtilis strain containing the extra inducible lytC gene, we found strongly raised 

levels of amylase activity in the culture supernatant. Upon inducing the expression of the additional 

lytC gene through xylose, the detected amylase activity was increased by 150%. (Fig. 3). 

Interestingly, the introduction of an additional lytC gene at the amy-site without inducing expression, 

resulted in a ~70% increase in amylase activity compared to the control strain.  

                 

 

Figure 3: Phadebas assay of amylase activity in culture supernatant of B. subtilis PY79 with an extra ectopic 

lytC gene. AmyE: strain with plasmid-based expression of AmyE. lytC: strain with amyE::Pxyl-lytC. Xylose 

indicates the addition of 0.25% (v/v) of this inductor. Significance of differences was estimated via two-tailed 

T-test. AmyE: n = 24; lytC: n = 28, lytC + xylose: n = 12. 
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Similar to lytC, the introduction of an additional dacA gene without its induction resulted in a ~70% 

increase in amylase activity in the supernatant compared to the control strain (Fig. 4). The induction 

of the additional dacA by 0.5 mM IPTG improved the secretion by additional 50% compared to the 
non-induced cells. It seems that the extra PBP5 produced through the leakiness of the Phyper-spank 

promoter is sufficient to more than double the secretion capacity for AmyE of B. subtilis. With the 

α-amylase activity in the supernatant not increasing as much upon IPTG induction, a saturation 

effect possibly sets in.  

 
Figure 4: Phadebas assay of amylase activity in culture supernatant of B. subtilis PY79 with an extra 

dacA gene. AmyE: strain with plasmid-based expression of AmyE. dacA: strain with amyE::Phyper-

spank-dacA. If marked, 0.5 mM IPTG was added to the culture. Significance of differences was 

estimated via two-tailed T-test. n = 12. 

 

Discussion 

Autolysins are often considered when exploring strategies to improve bacterial protein production 

in an industrial context (Ren et al., 2022). These bacteriolytic enzymes can hydrolyze the cell wall 

peptidoglycan of the bacteria that produce them (Shockman & Hölltje, 1994) and are found in high 

abundance (Smith et al., 1996). The Among the many cell wall hydrolases, the N-acetylmuramoyl-

L-alanine amidase LytC and the N-acetyl-glucosaminidase LytD are the most significant autolysins 

(Rogers et al., 1984; Margot et al., 1994), accounting for around 95% of the autolytic activity of the 

cell (Kuroda & Sekiguchi, 1991; Lazarevic et al., 1992). LytF, an α γ-D-glutamate meso-

diaminopimelate muropeptidase is also a very interesting autolysin, since it acts as the primary 

autolysin involved in vegetative daughter cell separation (Margot et al., 1999, Chen et al., 2009). 

PBP5 (dacA) is the major DD-carboxypeptidase in B. subtilis, cleaving the C-terminal D-Ala-D-Ala 

peptide bond of the stem peptide (Lawrence & Strominger, 1970). The absence of the terminal D-

Ala in the stem peptide prevents the formation of a crosslinking peptide bridge between the glycan 

strands. In this work, we could show that, an increased PBP5 expression level results in a substantial 
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increase in secretion efficiency of AmyE. Considering the cell wall modulating effects of PBP5, we 

advocate that the extra enzyme activity reduced the number of cross-linkable stem peptides, which 

increased the peptidoglycan mesh size and thus made the cell wall more permeable for the secreted 

amylase. Interestingly, overexpression of dacA in the Gram-negative bacterium Escherichia coli has 

been shown to increase amylase K yield in the supernatant (Yang et al, 2022). This positive effect 

was attributed to increased permeability of the outer membrane (Yang et al, 2022), which represents 

a greater hurdle for secretion in Gram-negative bacteria like E. coli, than their thin cell wall 

(Wandersman, 1992; Mergulhao et al., 2004) 

To further examine the impact of cell wall modifying enzymes on α-amylase secretion in B. subtills, 

we constructed single deletion mutants of lytC, lytD and lytF in combination with AmyE 

overexpression. While the deletion of lytF had a mild impact, the lytC deletion resulted in a 50% 

loss of amylase activity in the supernatant. No significant impact of the lytD mutation could be 

detected. Notably, it is hard to measure the effect of ∆lytD, as LytC has been reported to be able to 

compensate for this deletion (Blackman, 1998). These results suggest that missing autolysins have 

a detrimental effect on protein secretion, since their autolytic activity influences the properties of 

the cell wall, which represents a barrier for secreted proteins. This idea is supported by the fact that 

strains with impaired cell wall hydrolase activity exhibit a thicker cell wall than wild type strains 

(Fan et al., 1971). A thicker cell wall could be reasonably considered an increased hindrance for 

protein secretion and consequently should lead to decreased secretion levels. Additionally, work by 

Williamson and Ward in 1981 provides evidence that reduced autolytic activity in B. subtilis as well 

as Streptococcus pneumoniae will lead to a decreased permeability of the cell wall.  

In order to investigate the impact of increased autolytic activity on AmyE secretion, additional 

copies of cell wall hydrolase genes lytC and lytF under the control of inducible promoters were 

introduced into B. subtills. While lytF was under the control of the Phyper-spank promoter, lytC 

expression was controlled by the xylose-inducible promoter Pxyl. Since lytC encodes for the major 

cell wall hydrolase LytC, which can lead to autolysis (Garcia et al., 1999; Smith et al., 1995), we 

chose to express this gene via Pxyl as it leads to weaker expression levels and less leakiness in 

comparison to Phyper-spank (Vavrová et al. 2010). We demonstrated that the induction of the additional 

lytF gene via IPTG resulted in a 70% increase in amylase activity in the culture supernatant. Upon 

inducing the expression of the additional lytC gene through xylose, the detected amylase activity 

was increased by 150%. This represents an increased secretion efficiency of AmyE in B. subtilis as 

a result of elevated autolysin expression. Our findings imply that the permeability of the cell wall 

for secreted proteins can be modified through up or down-regulating the activity of certain 

autolysins.  

This represents a novelty as autolysins are usually considered an impediment to secretion rather than 

beneficial (Ren et al., 2022). Since autolysins are bacteriolytic enzymes that digest the cell wall 

peptidoglycan, they can lead to cell lysis and are thought to be responsible for a significant reduction 

in cell biomass and the associated limitation of product expression and fermentation efficiency 

(Westers et al., 2003). While older studies suggest that inactivation of the main autolysins LytC, 
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LytD or LytF does not affect cell growth (Margot & Karamata, 1992; Margot et al., 1994), our 

experiments show a slightly increased OD600 with the ∆lytC strain (data not shown). However, this 

did not translate into an overall positive effect on the secretion. Contrary to our findings, two reports 

show that reducing cell autolysis in B. subtilis via deletion of lytC, leads to increased secretion of 

recombinant proteins, by maintaining more stable growth over a longer period of time (Kabisch et 

al., 2013; Wang et al., 2014). However, Wang et al. used a mutant with multiple additional deletions 

for the cannibalism factors skfA, sdpC, as well as the prophage gene xpf, which hinders the precise 

assessment of the ∆lytC-specific effects on secretion. Also, the reported increase in biomass was not 

accounted for, in the evaluation of secretion levels in both studies.  

Studies supporting our findings on the benefits of autolysins for secretory processes report the 

inactivation of LytC and/or LytD impedes secretion of proteins by B. subtilis (Smith et al., 2000). 

Also, Zobel et al., 2015 observed a strong reduction of the enniatin secretion in a ∆lytC mutant. 

Interestingly another study investigating a B. subtilis mutant with reduced protease activity, found 

increased levels of autolytic activity and secretion (Fahnestock and Fisher 1987), providing early 

evidence of a positive connection. Additional work confirmed that autolysins are regulated by 

protease activity in B. subtilis, as a mutant with 8 deleted exported proteases exhibited a higher 

quantity of the dominant autolysins LytC, LytD, LytE and LytF (Kodama et al., 2007). 

In this work, we demonstrate a novel approach to utilize induced expression of specific autolysins 

to improve secretion efficiency of AmyE, an example of a large secreted protein with a molecular 

weight of nearly 60 kDa.  

 

Material & methods 

Bacterial strains and plasmids 

The B. subtilis strain used was PY79 (derivative of Bacillus 168) shown in table T1. Bacillus strains 

were grown at 37°C overnight on nutrient agar plates using commercial nutrient broth LB solidified 

by addition of 1% (w/v) agar. Overnight cultures in tubes were inoculated from a fresh agar plate 

and incubated overnight at 37°C and 200 rpm. Day cultures in 100 ml shake flasks with 10 ml media 

were inoculated to a cell density of OD600 of 0.1 in LB from the overnight cultures and then incubated 

at 37°C and 200 rpm.  

For the analysis of α-amylase AmyE secretion, the plasmid pM11K_amyEBs provided by the 

B.R.A.I.N. AG (Zwingenberg, Germany) was used. This plasmid provides the HpaII-promoter 

(Zyprian & Matzura, 1986) to drive the expression of amyE and a high copy number pUB110-like 

replicon. This non-integrating plasmid carries a kanamycin resistance for selection with 25 µg/ml 

kanamycin in Bacillus. The plasmid is available, upon reasonable request, after signing a Material 

Transfer Agreement. 

The B. subtilis PY79 deletion strains were created via gDNA transfer from B. subtilis 168 deletion 

strains, obtained from the Bacillus Genetic Stock Center (BGSC) (Columbus, Ohio, https://bgsc.org/) 
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(Koo et al., 2017). To create clean deletions the kanamycin resistance cassette was removed (pDR 

244 Cre-lox) following the method of Koo et al., 2017.  

To generate isopropyl-b-D-thiogalactoside-inducible copies of lytF and dacA at the amylase locus, 

the genes were PCR amplified from PY79 gDNA and cloned via Gibson Assembly downstream of 

hyperspank promoter in plasmid pDR111 (a kind gift from D. Rudner, Harvard Medical School). 

To generate a xylose-inducible lytC copy at the amylase locus, the gene was PCR amplified from 

PY79 gDNA and cloned via Gibson Assembly downstream of xylose promoter in plasmid pSG1191 

(Feucht and Lewis, 2001). 

 

Phadebas test for amylase activity 

For the quantification of α-amylase activity in the culture supernatant, the Phadebas Amylase Test 

(Phadebas AB, Uppsala, Sweden) was used. The principle behind the Phadebas test, is the release 

of a water-soluble blue dye after starch microspheres with the dye cross-linked to the starch is 

digested by amylase enzymes. One Phadebas tablet was dissolved in 20 ml buffer solution (0.1 M 

acetic acid, 0.1 M potassium acetate, 5 mM calcium chloride, pH 5). Cultures of Bacillus in the 

stationary growth phase were centrifuged at 14000 rpm for 2 minutes in a microfuge, 20 µl 

supernatant was mixed with pre-warmed 180 µl substrate solution and incubated for 10 min at 37°C 

and 1000 rpm in a thermomixer (Eppendorf Thermomixer comfort). The reaction was stopped by 

the addition of 60 µl 1 M sodium hydroxide. The reaction tubes were centrifuged and the absorption 

of 100 µl of the supernatant was measured at 620 nm via a microplate reader (Tecan Infinite 200 

PRO, Tecan, Switzerland). Activities were corrected for dilution and normalized to the cell density 

(OD600) of the culture. Experiments were performed at least as biological triplicates with additional 

technical replicates, the total number of which is stated as “n”.  
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Table 1 Strains used in this study 

Strain  Relevant features Reference of source 

B. subtilis PY79 Wild type Richard Losick Harvard 

University 

B. subtilis PY79 pM11K_amyEBs This study 

B. subtilis PY79 ∆lytC This study 

B. subtilis PY79 ∆lytD This study 

B. subtilis PY79 ∆lytF This study 

B. subtilis PY79 ∆lytC, pM11K_amyEBs This study 

B. subtilis PY79 ∆lytD, pM11K_amyEBs This study 

B. subtilis PY79 ∆lytF, pM11K_amyEBs This study 

B. subtilis PY79 amyE::Phyper-spank-lytF This study 

B. subtilis PY79 amyE::Phyper-spank-dacA This study 

B. subtilis PY79 amyE::Pxyl-lytC This study 

B. subtilis PY79 amyE::Phyper-spank-lytF, pM11K_amyEBs This study 

B. subtilis PY79 amyE::Phyper-spank-dacA, pM11K_amyEBs This study 

B. subtilis PY79 amyE::Pxyl-lytC, pM11K_amyEBs This study 
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2.3 Manuscript II 
This manuscript is part of an invention disclosure. The results are currently investigated to 

assess their patentability. Therefore, premature efforts to publish the contents of the 

manuscript have been suspended. 
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Abstract 

Bacillus subtilis is a Gram-positive model organism that is also widely used for industrial protein 

production, due to its high capacity of secretion. Although flotillins have a known connection to the 

translocase, a strategy to improve protein secretion via flotillins has yet to be explored. Therefore, 

we have studied the influence of FloT on protein secretion in the Bacillus subtilis PY79 strain. We 

constructed a yuaG deletion strain and a strain with an IPTG inducible overexpression system 

amyE::Phyper-spank-yuaFG. Effects on secretion were assessed by following the secretion of the 

amylase AmyE, expressed by a constitutive promoter from a high copy number plasmid. The FloT 

deletion strain showed a significant decrease in AmyE secretion. By adding 0.1% benzyl alcohol to 

the media, which has been shown to mitigate the reduction in membrane fluidity of flotillin deletion 

strains, the secretion capacity was recovered to the level of the control strain. Upon increasing the 

expression level, plasmid-derived AmyE secretion was doubled. Our findings indicate that the 

reduction in membrane fluidity of the ∆yuaG strain is responsible for its decreased AmyE secretion 

and expression of additional FloT improves translocation efficiency.  
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Introduction  

Flotillins were first discovered in eukaryotes (Schulte et al., 1997), where they play a role in a wide 

variety of membrane dynamics (Doherty & McMahon, 2009; Ludwig et al., 2010; Resnik et al., 

2011; Ge et al., 2011). Flotillin-like proteins form detergent-resistant microdomains (DRMs) or lipid 

rafts in eukaryotic cells and act as scaffolding proteins (Langhorst et al., 2005; Browman et al., 

2007; Bickel et al., 1997; Babuke & Tikkanen, 2007).  In Bacillus subtilis the flotillin-like proteins 

FloT and FloA can also be found in DRMs fractions (López and Kolter, 2010) and are often assumed 

to organize functional membrane microdomains (FMMs) (García-Fernández et al., 2017; López and 

Kolter, 2010). Flotillins are characterized by a central SPFH domain (named after the proteins 

Stomatin, Prohibitin, Flotillin and HflK C), an N-terminal transmembrane domain and the flotillin 

domain (Hinderhofer et al., 2009; Dempwolff et al., 2012). The main flotillin of B. subtilis is FloT 

expressed via the yuaG gene, while yqfA encodes the second flotillin FloA, whose functions are 

partially redundant (Lopez & Kolter, 2010). FloA is constitutively expressed, whereas FloT is 

expressed primarily during stationary growth, cell wall stress and sporulation (Schneider et al., 2015; 

Huang et al., 1999; Nicolas et al., 2012). Both proteins localize in defined focal structures 

independent of each other, within the cell membrane and move in a highly dynamic and random 

manner (Dempwolff et al., 2016). The flotillins play a role in sporulation processes (Donovan & 

Bramkamp, 2009), cell shape maintenance and cell division (Dempwolff et al., 2012). Through 

deletion and overproduction of flotillins, it has been shown, that they control the membrane fluidity 

(Lee et al., 2012; Bach & Bramkamp, 2013) in a way that influences other proteins, like MreB 

(Zielińska et al., 2020). 

Flotillins are often linked with secretion, since translocase components like SecY appear to be 

integrated within the flotillin clusters in the membrane (Bach & Bramkamp, 2013; Dempwolff et 

al., 2016). While it has been observed that protein secretion is reduced in strains lacking flotillins 

(Bach & Bramkamp, 2013), the cause is unclear and the possibility that flotillins could have a 

beneficial effect on secretion has never been explored. This project aims to further investigate the 

effects of flotillins on secretion and the novel strategy of using FloT to enhance protein secretion in 

B. subtilis. 
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Results  

Since FloT is considered the main flotillin of B. subtilis and the functions of FloA are partially 

redundant, we focused on FloT in our experiments. To analyze the effects of flotillins on secretion, 

the α-amylase activity of a yuaG deletion strain was determined via the Phadebas method (Pen et 

al., 1992). We compared the amylase activity in the media of the deletion mutant B. subtilis ∆yuaG 

PY79 with that of a control strain after 20 h of incubation. Both strains were overproducing AmyE 

via the pM11K_amyEBs plasmid. Our results show that missing the FloT protein leads to less 

amylase activity in the supernatant, due to a reduced secretion capacity (Fig.1). 

 

 

Figure 1: Phadebas assay of amylase activity in culture supernatant of B. subtilis PY79 mutant ∆yuaG. 

AmyE: strain with plasmid-based expression of amyE. Significance of differences was estimated via two-

tailed T-test: n = 9.  
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To further investigate the mechanisms responsible for the negative effects of the yuaG deletion on 

secretion, we looked to restore functions of FloT in the deletion strain. Zielińska et al., 2020 have 

shown that a ∆yuaG mutation in B. subtilis PY79 leads to reduced membrane fluidity. But they could 

compensate for this by adding 0.1% benzyl alcohol, a membrane fluidizer, to the medium. If the 

reduction of AmyE secretion in the ∆yuaG mutant is related to the decreased membrane fluidity, the 

effect may be compensated through addition of benzyl alcohol. 

First, we determined a benzyl alcohol concentration that doesn’t affect the growth of the AmyE 
overproducing B. subtilis strains. Different concentrations of benzyl alcohol were added to cultures 

of the wild type with and without AmyE overproduction and the yuaG mutant with AmyE 

overproduction. The impact on growth was analyzed by measuring the optical density (OD) of the 

cultures after 20 h of incubation.  While no negative effects on growth were observed at 

concentrations of 0.1% and 0.2% benzyl alcohol, 0.5% resulted in serious growth inhibition (Fig.2). 

 

Figure 2: Effects of various benzyl alcohol concentrations on the growth of B. subtilis. Growth was measured 

by optical density (OD) at 600 nm after 20 h incubation. Benzyl alcohol concentrations added to the growth 

media are shown as  0%   0.1%  0.2%  0.5%; n = 6. 
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We investigated whether the addition of the membrane fluidizer benzyl alcohol could recover the 

negative impact of the yuaG deletion on secretion. After 2 h of initial growth in LB (OD of ~ 0.5 

reached), 0.1% benzyl alcohol was added to the cultures, followed by an additional 18 h of 

incubation. Subsequently, the amylase activity in the media was determined. Our results show that 

the addition of benzyl alcohol to the ∆yuaG mutant strain, could in fact recover the AmyE secretion 

level to that of the control strain (Fig. 3). This leads to the assumption that the negative impact of 

the yuaG deletion on secretion is caused by a reduction in membrane fluidity. 

 

 

Figure 3: Phadebas assay of amylase activity in culture supernatant of B. subtilis PY79 mutant ∆yuaG. 

AmyE: strain with plasmid-based expression of AmyE. If marked, 0.1% benzyl alcohol (BnOH) was added 

to the culture Significance of differences was estimated via two-tailed T-test: AmyE: n = 22; ∆yuaG 17; 

∆yuaG + BnOH: n = 24. 
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Here we investigate the impact of additional and inducible yuaG gene on AmyE secretion in 

B. subtilis. To study this we introduced an Isopropyl-β-D-thiogalactopyranosid (IPTG) inducible 

copy of yuaFG into the original AmyE locus creating the B. subtilis PY79 amyE::Phyper-spank-yuaFG 

strain. Since yuaG is placed within an operon structure including the NfeD domain-harboring gene 

yuaF and the two proteins influence each other’s localization behavior (Dempwolff et al., 2012), we 

decided to use the yuaFG combination for our experiments.  

Interestingly just the introduction of the additional yuaFG, without the IPTG induction, resulted in 

the amylase activity in the supernatant to double compared to the control (Fig.4). Overproducing 

FloT by induction with 1 mM IPTG did not result in further improvement of secretion processes. 

This leads us to believe that the additional FloT protein expressed via the leakiness of the Phyper-spank 

promoter system was enough to saturate the beneficial effect FloT can have on the secretion of 

AmyE. 

 

 

Figure 4: Phadebas assay of amylase activity in culture supernatant of B. subtilis PY79 an extra ectopic yauG 

gene. AmyE: strain with plasmid-based expression of AmyE. FloT: strain with amyE::Phyper-spank-yuaFG If 

marked, 1 mM IPTG was added to the culture Significance of differences was estimated via two-tailed T-

test. AmyE: n = 24; FloT n = 22 
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Discussion 

Flotillins play a role in sporulation processes (Donovan & Bramkamp, 2009), cell shape 

maintenance and cell division (Dempwolff et al., 2012). They are often linked with secretion, since 

FloT and the translocase component SecY were co-eluted in DRM fractions (Bach & Bramkamp, 

2013; Dempwolff et al., 2016). Previously Bach & Bramkamp (2013) showed a general reduction 

of protein secretion in flotillin deletion strains ∆yuaG, ∆yqfA and ∆yuaG;∆yqfA. Our data 

contributes evidence that flotillins play a large role in influencing secretion processes. We showed 

that the AmyE secretion of a ∆yuaG, deletion strain is significantly decreased. But secretion was 

recovered to the level of the control by addition of membrane fluidizer BuOH in the same way 

Zielińska et al. (2020) elevated the reduced membrane fluidity of the mutant strain back to the wild 

type level. Through deletion and overproduction of flotillins, it has been shown, that flotillins impact 

membrane fluidity (Lee et al., 2012; Bach & Bramkamp, 2013) in a way that influences other 

proteins, for example, MreB (Zielińska et al., 2020).  

Flotillins are commonly believed to act as scaffolding proteins in defined membrane domains for 

other proteins also found in DRM fractions (Lopez & Kolter, 2010; Lopez & Koch, 2017). In a 

recent study the SPFH domain, which is sufficient to form multimers (Kuwahara et al., 2009), was 

used to anchor enzymes into FMMs to improve their production capacity (Lv et al., 2020). Thus, it 

can be speculated that flotillins can affect secretion with this domain in a similar manner. The 

SecYEG translocon could be anchored into FMMs or its multimerization could be encouraged. But 

as it was shown in in vitro experiments, that only a single SecYEG translocon is necessary for a 

translocation event to occur (Kedrov et al., 2011; Taufik et al., 2013), and the benefit of potential 

multimerization is not certain. Furthermore, other publications show that flotillins and other proteins 

found in DRMs do not colocalize and have different movement dynamics (Dempwolff et al., 2016). 

However, another interaction in which flotillins may be indirectly involved in is possibly more 

impactful. It was suggested some time ago, that the creation of a specific lipid environment might 

be necessary for translocation (Hendrick & Wickner, 1991). SecA anchors in the lipid bilayer 

interface with its amphipathic N-terminal helix, which activates SecA for high affinity binding to 

the translocon (Lill et al., 1990; Breukink et al., 1992; Koch et al., 2016). Here the membrane 

composition is of great importance, since unsaturated fatty acids (UFAs) cause loose packing of 

lipid head groups, where the N-terminal amphipathic helix of SecA docks. Kamel et al. (2022) could 

recently increase protein secretion in vitro by an artificial membrane, that was less tightly packed 

and more fluid. The UFAs used, promoted SecA binding to the membrane, which stimulated 

SecA:SecYEG-mediated protein translocation. In a similar manner, FloT could indirectly improve 

SecA binding, through its contribution to membrane fluidity and thereby positively affecting protein 

secretion. A FloT deletion mutant exhibiting a more rigid cell membrane should therefore feature 

an impaired SecA binding leading to the decreased secretion we reported. FMMs on the other hand 

are enriched in isoprenoid lipids (García-Fernández et al., 2017; López and Kolter, 2010) and 

display increased order and thickness compared with the surrounding bilayer (van Tilburg et al., 

2022). So, it is unlikely that FMMs are regions in the membrane that offer a favorable environment 
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for secretion processes involving SecA (e.g. secretion of AmyE). As it was shown in this work, the 

negative effect on secretion of missing FloT can be compensated for, by addition of a membrane 

fluidizer. Therefore, it is likely that the effect stems from the reduced membrane fluidity of the 

∆yuaG mutant.  

In a novel approach, we used additional FloT expression to influence secretion in a beneficial 

manner. Upon introduction of an additional yuaFG, controlled by the Phyper-spank promoter, we 

observed a doubling of the AmyE secretion capacity. Increased levels of FloT in the PY79_ 

amyE::Phyper-spank-yuaFG strain may consequently lead to more membrane fluidity, which would 

improve secretion through the SecA:SecYEG interaction.   

While the ∆yuaG mutation leads to changes in the lipid order, no changes in the overall fatty acid 

composition of the membranes have been detected (Zielinska et al., 2020). The mechanism by which 

FloT influences membrane fluidity is currently not entirely understood. 

 

Material & methods 

Bacterial strains and plasmids 

The B. subtilis strain used was PY79 (derivative of Bacillus 168) shown in table T1. Bacillus strains 

were grown at 37°C overnight on nutrient agar plates using commercial nutrient broth LB solidified 

by addition of 1% (w/v) agar. Overnight cultures in tubes were inoculated from a fresh agar plate 

and incubated overnight at 37°C and 200 rpm. Day cultures in 100 ml shake flasks with 10 ml media 

were inoculated to a cell density of OD600 of 0.1 in LB from the overnight cultures and then incubated 

at 37°C and 200 rpm.  

For the analysis of α-amylase AmyE secretion, the plasmid pM11K_amyEBs provided by the 

B.R.A.I.N. AG (Zwingenberg, Germany) was used. This plasmid provides the HpaII-promoter 

(Zyprian & Matzura, 1986) to drive the expression of amyE and a high copy number pUB110-like 

replicon. This non-integrating plasmid carries a kanamycin resistance for selection with 25 µg/ml 

kanamycin in Bacillus. The plasmid is available, upon reasonable request, after signing a Material 

Transfer Agreement. 

To generate an isopropyl-b-D-thiogalactoside-inducible copy of yuaFG at the amylase locus, the 

genes were PCR amplified from PY79 gDNA and cloned via Gibson Assembly downstream of 

hyperspank promoter in plasmid pDR111 (a kind gift from D. Rudner, Harvard Medical School).  

Phadebas test for amylase activity 

For the quantification of α-amylase activity in the culture supernatant, the Phadebas Amylase Test 

(Phadebas AB, Uppsala, Sweden) was used. One Phadebas tablet was dissolved in 20 ml buffer 

solution (0.1 M acetic acid, 0.1 M potassium acetate, 5 mM calcium chloride, pH 5). Overnight 

cultures of Bacillus were centrifuged at 14000 rpm for 2 minutes in a microfuge, 20 µl supernatant 

was mixed with 180 µl substrate solution and incubated for 10 min at 37°C and 1000 rpm in a 
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thermomixer (Eppendorf Thermomixer comfort). The reaction was stopped by addition of 60 µl 1 

M sodium hydroxide. The reaction tubes were centrifuged and the absorption of 100 µl of the 

supernatant was measured at 620 nm via a microplate reader (Tecan Infinite 200 PRO, Tecan, 

Switzerland). Activities were corrected for dilution and normalized to the cell density (OD600) of the 

culture. IPTG and/or benzyl alcohol was added 2-3 h (OD ~0,5) after inoculation of the cultures. 

Table 1 Strains used in this study 

Strain  Relevant features Reference of source 

B. subtilis PY79 Wild type Richard Losick Harvard 

University 

B. subtilis PY79 pM11K_amyEBs This study 

B. subtilis PY79 ∆yuaG Dempwolff et al., 2012 

B. subtilis PY79 ∆yuaG, pM11K_amyEBs This study 

B. subtilis PY79 amyE::Phyper-spank-yuaFG, pM11K_amyEBs This study 
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3 General  iscussion 

Bacillus subtilis, a model organism for Gram-positive bacteria, is widely known for its capacity as 

a host for expression and secretion of various industrially relevant proteins (Pham et al., 2019). This 

proteobacteria is highly valued for advantages like easy and inexpensive culturing methods, high 

cell densities, GRAS status and efficient secretion processes due to the absence of an outer 

membrane. Of the known secretory routes, the Sec-pathway can direct the majority of secretory 

proteins to the growth medium (Green & Mecsas, 2016). The path of a protein to the outside of the 

cell is a process that can be divided into multiple stages, from the gene to the passage through the 

membrane and the cell wall. For almost every step in the production and secretion, bottlenecks are 

investigated and approaches aimed at optimization are pursued. 

Signal peptides, of which there are well over 100 in B. subtilis (Brockmeier et al., 2006), enable 

proteins to be recognized by the export machinery (von Heijne, 1990). To optimize this part of the 

secretion process, extensive high-throughput screening approaches were pursued to find the ideal 

signal peptide, which lead to an improved yield of several target proteins (Degering et al., 2010). It 

is however impossible to predict which signal peptide would result in better secretion of a given 

extracellular target protein (Degering et al., 2010). Since SecA can bind the signal peptide of a pre-

protein and transfer it to the translocon (Gelis et al., 2007; Douville et al., 1995), it is also a popular 

research target. Secretion of some proteins was improved via truncation of SecA’s not well 
conserved C-terminal (Kakeshtia et al., 2010) and elevated levels of SecA have been reported to 

enhance the yield of secreted levansucrase in B. subtilis (Leloup et al., 1999). Furthermore, a hybrid 

protein comprised of SecA from B. subtills and SecB from E. coli was able to improve protein export 

of SecB-dependent proteins in B. subtilis. The SecYEG protein-conducting channel, consisting of 

the proteins SecY, SecE and SecG, is facilitating the translocation through the membrane (Manting 

et al., 2000). Increasing the amount of translocons in the membrane to boost translocation has been 

tried multiple times with varying success. While some report a considerable increase in protein 

secretion (Mulder et al., 2013), others observed only marginal benefits (Chen et al., 2015) or even 

a reduction in secretion efficiency upon secYEG overexpression (Ma et al., 2018). Following the 

translocation through the membrane, the signal peptide of the secreted protein is removed by a signal 

peptidase. The remnant signal peptides left behind are then digested by proteases like SppA (Ichihara 

et al., 1984). Interestingly, Cai et al., 2017 demonstrated that protein secretion dramatically 

decreased in a sppA deficient strain, whereas extracellular protein yields were significantly increased 

in a strain overexpressing SppA, identifying an unexpected bottleneck. Since foreign proteins are 

often sensitive to degradation by the extracellular proteases of the host, the strategy of generating 

protease-deficient B. subtilis strains was able to increase the yield of multiple heterologous secreted 

proteins (Stephenson & Harwood, 1998; Zhang et al., 2005). In another approach to the same 

problem, Chen et al. (2015) overexpressed the periplasmic chaperone PrsA to facilitate and support 

the folding of secreted proteins, resulting in less degradation and an increased secretion yield. 

Additionally, the microenvironment of the cell wall plays an important role in influencing protein 

folding. Teichoic acids make up a large portion of the cell wall (Beveridge et al., 1982) and 
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determine its charge to a large extent (Perego et al., 1995). The dlt-operon is responsible for the D-

alanylation of teichoic acids, which results in the neutralization of the negatively charged phosphates 

of the teichoic acids, with free amino groups, making the cell wall more positively charged (Perego 

et al., 1995, Lambert et al., 1975). Thus, deletion of the dlt-operon leads to a more negatively 

charged cell wall that allows further binding of metal cations (Beveridge et al., 1980; Petit‑Glatron 

et al., 1993), which increases the yield of many secreted proteins, that depend on cations for folding 

(Hyyryläinen et al., 2000; Thwaite et al., 2002). 

 

3.1 Cell wall hydrolases and secretion  
Following the membrane, the cell wall is the next barrier for secreted extracellular proteins to 

overcome. The Gram-positive cell wall has been described to form a sieve-like meshwork, which 

allows diffusion of proteins up to a molecular weight of 25 kDa (Demchick & Koch, 1996). This is 

not problematic for smaller (5 - 6 kDa) secreted antimicrobial peptides such as EpeX and sublancin 

(Butcher et al., 2007; Paik et al., 1998) or the extracellular nuclease NucB with a molecular weight 

of only 14.8 kDa (Akrigg, 1978). However, numerous secreted proteins would be considered too 

large to easily pass through the cell wall, exceeding the threshold of 25 kDa, such as the alkaline 

protease AprE at 39 kDa (Stahl & Ferrari 1984) or the α-amylase AmyE with 72.6 kDa (Yang et al., 

1983). Although many aspects of the secretion process have been thoroughly investigated, the 

passage through the cell wall and the proteins that affect it have received not as much attention 

(Forster & Marquis, 2012).  

Autolysins are bacteriolytic enzymes that digest the cell wall (Shockman & Hölltje, 1994) and are 

universally found in all bacteria that possess peptidoglycan (Shockman et al., 1996; Shockman et 

al., 1994). Among the many cell wall hydrolases, the N-acetylmuramoyl-L-alanine amidase LytC 

and the N-acetyl-glucosaminidase LytD are the most significant autolysins, accounting for around 

95% of the autolytic activity of the cell (Kuroda & Sekiguchi, 1991; Lazarevic et al., 1992). LytC 

is involved in a variety of cell functions like sporulation (Smith & Foster, 1995), cell separation, cell 

wall turn-over (Blackman et al., 1998) and together with LytD, swarming motility (Yamamoto et 

al., 2003). LytF is an α γ-D-glutamate meso-diaminopimelate muropeptidase, that acts as the primary 

autolysin involved in vegetative daughter cell separation (Margot et al., 1999, Chen et al., 2009). 

Also involved in shaping the cell wall structure is the major D-alanyl-D-alanine carboxypeptidase 

PBP5 (dacA) of vegetative B. subtilis cells (Lawrence & Strominger, 1970). PBP5 can cleave the 

C-terminal D-Ala-D-Ala peptide bond of the peptidoglycan stem peptide, which prevents the 

formation of a crosslinking peptide bridge between the glycan strands (Lawrence & Strominger, 

1970). 

This work investigates the role of cell wall hydrolyzing enzymes and their impact on secretion 

efficiency in the Gram-positive model organism B. subtilis. Since the meshwork of the cell wall 

represents a hurdle in the secretion process, we hypothesized that cell wall hydrolyzing activity 



General Discussion 78 

 

should lead to a more permeable barrier and thus increase secretion. To test this hypothesis, deletion 

mutants of the main autolysins LytC, LytD and LytF were created and the effect of the missing cell 

wall hydrolyzing activity on secretion was analyzed. For this purpose, the commonly used α-amylase 

AmyE was selected as a model secreted protein, expressed through a non-integrating plasmid. While 

the ∆lytD mutation showed no significant impact on AmyE secretion, both ∆lytF and ∆lytC resulted 

in a significant loss of 15% and 50% amylase activity in the supernatant. Although results regarding 

∆lytF and ∆lytC are in line with our hypothesis, the question arises why no significant impact on 

secretion was detected for ∆lytD. The abundance of autolysins leads to a great number of functional 

redundancies (Smith et al., 1996). This is also the case for LytD, which makes it challenging to 

measure any effect of ∆lytD, given that lytC can compensate for this deletion (Blackman, 1998). 

Overall, the results show that the deletion of genes encoding autolysins and the consequently 

reduced cell wall hydrolyzing activity leads to a diminished secretion efficiency of AmyE in 

B. subtilis. 

Contrary to these findings, two reports show that reducing autolysis in B. subtilis via deletion of lytC 

can lead to increased secretion of recombinant proteins, by maintaining more stable growth over a 

longer period of time (Kabisch et al., 2013; Wang et al., 2014). Since the elevated biomass of the 

mutant strains was not considered in these assessments, it can be concluded that the increased 

secretion was caused by higher cell densities producing more product protein, while secretion 

processes were not improved. Other studies suggest that inactivation of the main autolysins LytC, 

LytD or LytF does not affect cell growth (Margot & Karamata, 1992; Margot et al., 1994), indicating 

that the positive effects on growth could be dependent on additional factors. Furthermore, 

inactivation of LytC has also been reported to impede the secretion of proteins by B. subtilis, 

supporting our findings (Smith et al., 2000; Zobel et al., 2015). Here, an OD-normalized secretion 

assessment was applied, accounting for possible effects on growth. This approach was also used in 

this work. Our hypothesis is further substantiated by the fact that strains with impaired cell wall 

hydrolase activity exhibit a thicker cell wall than wild type strains (Fan et al., 1971). A thicker cell 

wall could be reasonably considered an increased hindrance for protein secretion and consequently 

should lead to decreased secretion efficiency. Confirming this concept is the work of Williamson 

and Ward (1981), who reported that reduced autolytic activity in B. subtilis as well as Streptococcus 

pneumoniae will lead to a decreased permeability of the cell wall. 

Subsequently, we wondered whether an increase in cell wall hydrolyzing activity through the 

overexpression of corresponding enzymes would improve the secretion capacity of cells. Additional 

cell wall hydrolase genes under the control of inducible promoters were ectopically inserted into the 

native amyE-locus of B. subtilis. The genes lytF and dacA were expressed using the IPTG-inducible 

promoter Phyper-spank while lytC was expressed using the xylose-inducible promoter Pxyl. Since 

autolysins are bacteriolytic enzymes that digest the cell wall peptidoglycan, their overexpression can 

potentially lead to cell lysis. Previous studies demonstrated unproblematic overexpression of lytF 

(Margot et al., 1999) and dacA (Scheffers et al., 2004), so expression through Phyper-spank was 

considered feasible without risking cell lysis. Overexpression of lytC on the other hand can 



General Discussion 79 

 

reportedly result in excessive autolysis (Wang et al., 2018), hence the Pxyl promoter system was 

selected, as it leads to weaker expression levels and less leakiness in comparison to Phyper-spank 

(Vavrová et al. 2010). Expression was induced by addition of 0.5 mM IPTG or 0.25% (v/v) xylose 

respectively, 3 h after inoculation. Upon induction of the expression, strongly increased amylase 

activity was detected in the supernatant in all three cases. Additional expression of lytF resulted in 

a 70% increase of AmyE secretion, while 150% was detected for lytC and 225% for dacA. These 

results show a tremendous improvement in secretion performance and strengthen our hypothesis 

that increased cell wall hydrolytic activity leads to a more permeable cell wall and facilitates passage 

for secreted proteins. 

Multiple reports of B. subtilis strains with inactivated protease genes, exhibiting increased 

susceptibility to autolysis indicate that autolysins are post-translationally regulated (Cho et al., 2004; 

Coxon et al., 1991). Primarily responsible for this control of autolytic activity in B. subtilis are the 

proteases NprE and AprE (Stephenson et al., 1999). Notably, another study investigating a B. subtilis 

mutant with reduced protease activity, found increased levels of autolytic activity and secretion 

(Fahnestock & Fisher 1987). This case provides early evidence for the positive connection between 

increased autolytic activity and improved secretion, described in this work. 

Interestingly, the additionally introduced lytC and dacA genes also have had positive effects on 

AmyE secretion even without induction, whereas no such effect was detected for lytF. It is 

reasonable to assume that the observed effect was caused by the leakiness of the implemented 

promoter systems. The additional enzymes produced this way may already have been sufficient to 

increase the secretory capacity for AmyE in the B. subtilis strains. The additional lytF expressed 

through leakiness without IPTG induction has not produced a similar effect. Deletion and 

overexpression of lytF impacted protein secretion to a lesser extent compared to the other enzymes, 

indicating that small amounts of lytF expressed through promoter leakiness would also influence 

secretion to a lesser extent. 

Many factors might influence cell wall permeability, such as electrostatic interactions (Ou & 

Marquis, 1970), the average length of glycan chains (Vollmer et al., 2008) and even the size of the 

secreted protein (Leloup et al., 1997). Levansucrase (50 kDa) is translocated twice as fast, as the 

larger α-amylase (69 kDa) (Leloup et al., 1997). Additionally, 20% of the peptide chains are cross-

linked in B. subtilis (Ward, 1973; Atrih et al.,1998; Hayhurst et al., 2008), which probably also 

influences cell wall permeability. Considering the cell wall modulating effects of PBP5, we advocate 

that the extra enzyme activity reduced the number of cross-linkable stem peptides, which increased 

the peptidoglycan mesh size and thus made the cell wall more permeable for the secreted amylase. 

Interestingly, overexpression of dacA in the Gram-negative bacterium Escherichia coli has also been 

shown to increase amylase yield in the supernatant (Yang et al, 2022). Although the positive effect 

in that case was attributed to increased permeability of the outer membrane and it remains unclear 

how the outer membrane was influenced by PBP5.  
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LytF was shown to be responsible for cell separation leading to single cells when expressed rather 

than long chains (Ohnishi et al., 1999; Chen et al., 2009). This is potentially relevant for its effect 

on secretion since it is speculated for S. pyogenes that protein transport across the cell wall might be 

more efficient at sites of bacterial division (Rosch & Caparon, 2004; Forster & Marquis, 2012). 

Overexpression of lytF results in less chain formation and more single cells, providing more free 

division sites from which to secrete, potentially explaining the beneficial effect of LytF on secretion. 

However, in this work it was shown through fluorescence microcopy, that AmyE is not increasingly 

secreted at the division sites in B. subtilis, contradicting this theory. Immunofluorescence 

microscopy showed LytF localizing at the pole and the septum dependent on the presence of WTAs, 

which inhibit the sidewall localization (Yamamoto et al., 2008). Though, it is unclear whether this 

confined localization of LytF is still maintained upon overexpression.  

Alterations in cell wall permeability could be investigated, as well as the effects of other cell wall 

hydrolyzing enzymes such as LytE (Margot et al., 1998) and PBP4a (dacC) (Pedersen et al., 1998). 

These investigations could further verify our ideas regarding the mechanism responsible for the 

increased secretion efficiency by additional cell wall hydrolysis activity. Since autolysins are 

bacteriolytic enzymes that digest the cell wall peptidoglycan, they can lead to cell lysis and are 

therefore usually associated with a reduction in cell biomass and fermentation efficiency (Westers 

et al., 2003). Therefore, it is possible that increased autolysis may counteract the beneficial effects 

of cell wall hydrolases on secretion efficiency during fermentation and additional protective 

measures for osmotic stabilization should be considered.  

Most research investigating possible improvements to protein secretion through the cell wall is 

focused on protein folding (Stephenson et al., 1998; Forster & Marquis 2012) either through 

chaperones like PrsA (Vitikainen et al., 2001; Hyyrylainen et al., 2010) or the net charge attracting 

divalent metal cations (Perego et al., 1995; Hyyrylainen et al., 2010). Despite mutants with reduced 

autolytic activity reportedly exhibiting a decreased cell wall permeability (Williamson & Ward 

1981), the possibility of increasing permeability through additional genes of autolysins was yet to 

be explored. In this work, we showed that secretion of AmyE, an example of a large secreted protein 

with a size of 72.6 kDa, can be increased by induced expression of a second gene copy of the cell 

wall hydrolases LytC, LytF or PBP5. The resulting improvements of up to 225% increased secretion 

represents an overwhelming success of a novel strategy. As this approach seemingly improves cell 

wall permeability, a moderate increase of autolysin activity may be applicable for the enhancement 

of secretion of any protein of interest. Furthermore, cell wall hydrolases are found in all bacteria 

with peptidoglycan, thus a great potential to extend the approach can be anticipated. 
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3.2 Flotillins and secretion 

Flotillins were first discovered in the cell membrane of eukaryotes (Schulte et al., 1997), but have 

since been established as an evolutionarily conserved class of proteins found across all organisms 

(Hinderhofer et al., 2009). Flotillins are characterized by their conserved SPFH domain (Browman 

et al., 2007) and play a role in sporulation processes (Donovan & Bramkamp, 2009), cell shape 

maintenance and cell division (Dempwolff et al., 2012). In the case of B. subtilis there have been 

two flotillin homologs identified, FloT (yuaG) and FloA (yqfA), which were co-isolated from DRM 

fractions together with the secretory protein SecY (Lopez & Kolter, 2010). Based on this association, 

it has been suggested that flotillins affect protein secretion. 

The main flotillin in B. subtilis is FloT, while the functions of FloA are partially redundant (Lopez 

& Kolter, 2010). To explore the effects of FloT on protein secretion a B. subtilis ∆yuaG strain with 

plasmid-based AmyE overproduction was constructed. Our results show that the absence of the FloT 

protein leads to a decreased secretory capacity, as evidenced by lower amylase activity in the 

supernatant. This solidifies the previous findings of Bach & Bramkamp 2013, who showed a general 

reduction of protein secretion in the flotillin deletion strains ∆yuaG, ∆yqfA and ∆yuaG∆yqfA. In 

order to gain information about the mechanisms involved, we aimed to raise the protein secretion of 

the mutant strain back to wild type levels. Zielińska et al. (2020) were able to compensate for 

reduced membrane fluidity in the ∆yuaG mutant by adding 0.1% of the membrane fluidizer benzyl 

alcohol. This compound can anchor in the membrane via its benzyl ring, which leads to an increase 

in membrane fluidity without changing the lipid composition (Chin & Goldstein, 1977; Goldstein, 

1984). Consequently, we investigated if the addition of benzyl alcohol could recover the negative 

impact of the ∆yuaG deletion on secretion. Our results show that the addition of this membrane 

fluidizer could in fact recover the AmyE secretion level of the wild type, in the ∆yuaG mutant strain. 

Since the lowered secretion efficiency could be compensated by the addition of the membrane 

fluidizer benzyl alcohol, we propose that the negative impact of the ∆yuaG deletion on secretion is 

caused by a reduction in membrane fluidity. 

Furthermore, it was reported that overexpression of FloT and NfeD2 resulted in an altered membrane 

fluidity (Lee et al., 2012). Therefore, we pursued the approach of introducing an additional and 

inducible yuaG gene into B. subtilis, to improve protein secretion. Interestingly just the introduction 

of the additional gene, without the induction, resulted in the amylase activity in the supernatant 

doubling compared to the wild type. Overproducing FloT by induction with 1 mM IPTG did not 

result in further improvement of secretion processes. This leads us to believe that the additional FloT 

protein expressed via the leakiness of the Phyper-spank promoter system was sufficient to fully exhaust 

the beneficial effect of FloT on the secretion of AmyE. Considering the results gained via the 

deletion strains, we suggest that FloT regulates membrane fluidity which can be enhanced through 

additional FloT to improve protein secretion. However, it must be considered that while the 

reduction of membrane fluidity upon deletion of yuaG has been demonstrated, the enhancement of 

membrane fluidity through additional FloT was not tested for. To clarify this part of the hypothesis, 
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the membrane fluidity of the B. subtilis amyE::Phyper-spank-yuaFG strain could be determined in future 

experiments via the LAURDAN fluorescent dye (Parasassi et al., 1997; Harris et al., 2002). 

Since eucaryotic flotillins are established to act as scaffolding proteins in defined membrane 

domains (Langhorst et al., 2005; Ludwig et al., 2010; Resnik et al., 2011), the view that their 

bacterial counterparts must fulfill a similar role is very common (Lopez & Kolter, 2010; Lopez & 

Koch, 2017). Like their eukaryotic counterparts, the two flotillin homologs of B. subtilis, FloT and 

FloA, have also been detected in DRM fractions along with NfeD proteins, signaling receptor KinC, 

cell wall hydrolase PBP5, secretory protein SecY and many more, supporting the lipid raft or 

functional membrane microdomain (FMM) hypothesis (Lopez & Kolter, 2010; Bach & Bramkamp, 

2013; Bramkamp & Lopez, 2015; Lopez & Koch, 2017). FMMs are enriched in isoprenoid lipids 

(García-Fernández et al., 2017; Lopez & Kolter, 2010) and display increased order and thickness 

compared with the surrounding bilayer (van Tilburg et al., 2022). Bacterial flotillins do not recruit 

specific, more rigid lipids, such as hopanoids and carotenoids, associated with FMMs, but are 

themselves being recruited as flotillins preferentially bind to these lipids and oligomerize in the 

corresponding domains (Bramkamp & Lopez, 2015; García-Fernández et al., 2017). However, 

super-resolution microscopy showed that the flotillins and other proteins found in DRMs do not 

colocalize and have different dynamic behaviors (Dempwolff et al., 2016). Others question the 

method of DRM extraction, arguing that it is an artificial process that does not reflect native 

membrane organization (Brown, 2006; Scholz et al., 2021). Additionally, flotillins appear to be 

required for the formation of regions with increased fluidity, which are the counterpart to the rigid 

and less fluid FMMs (Zielinska et al., 2020). Our results demonstrate that the connection between 

FloT and protein secretion is most likely based on the flotillin’s effect on membrane fluidity. 
However, we cannot rule out the possible involvement of lipid rafts, as benzyl alcohol can show 

strong effects on membrane organization and especially the formation of lipid rafts (Peters, 2008). 

There are various raft-acting drugs, typically characterized as those that decrease membrane fluidity, 

induce ordering and lead to lipid raft formation and others that increase membrane fluidity, induce 

disordering and lead to lipid raft disruption (Tsuchiya & Mizogami, 2020). These raft-acting drugs 

could be used to further investigate the connections of FloT, secretion and FMMs, as they are 

reported to severely affect raft-associated protein localization (Hering et al., 2003). Although it 

would be difficult to separate effects specific to FMMs from the general influence on membrane 

fluidity.  

Membrane fluidity depends on its lipids with a special importance on the fatty acid composition. 

While saturated fatty acid acyl chains can be tightly packed, unsaturated fatty acid’s rigid kink of 
the cis double bond leads to much poorer chain packing due to the steric hindrance (Mansilla et al., 

2004; Vigh et al., 1998; de Mendoza & Cronan, 1983). In E. coli low levels of anionic phospholipids 

in the membrane, like phosphatidylglycerol and cardiolipin, reduce membrane fluidity (Nenninger 

et al., 2014) and weaken SecYEG translocon stability and integrity (Ryabichko et al., 2020). 

Correspondingly secretion of AmyE, as well as other proteins, can be greatly reduced by inhibiting 

fatty acid synthesis in microorganisms (Paton, 1979). Furthermore, a strain with a modulated 
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membrane composition resulting in an enhanced membrane fluidity showed improved membrane 

insertions of membrane proteins (Kanonenberg et al., 2019). SecA anchors in the lipid bilayer 

interface with its amphipathic N-terminal helix, which activates SecA for high affinity binding to 

the translocon (Lill et al., 1990; Koch et al., 2016). Here the membrane composition is of great 

importance since unsaturated fatty acids cause loose packing of lipid head groups, where the N-

terminal amphipathic helix of SecA docks (Breukink et al., 1992). Kamel et al. (2022) could recently 

enhance protein secretion in vitro via an artificial membrane with increased levels of unsaturated 

fatty acids. In this study, the less tightly packed and more fluid membrane promoted SecA binding 

to the membrane, which stimulated SecA:SecYEG-mediated protein translocation. The presence of 

flotillins reportedly enhanced the fluidity of a model membrane and in vivo, the membranes of 

flotillin-mutant cells are less fluid (Zielińska et al., 2020). Along with our findings, this leads us to 

believe that the positive impact of additional FloT on AmyE secretion is likely a result of increased 

membrane fluidity, which in turn results in a stimulated SecA:SecYEG-mediated protein 

translocation through a promoted SecA binding to the membrane.  

However, no changes in the overall fatty acid composition of the membranes have been detected in 

the ∆yuaG mutants, suggesting fluidity was impacted through changes in the lipid ordering 

(Zielinska et al., 2020). Also, it should be noted that while the phospholipid composition of the 

B. subtilis membrane remains relatively unchanged during growth (Gidden et al., 2009), FloT is 

increasingly expressed upon entry into the stationary phase (Huang et al., 1999). This growth phase 

marks also the beginning of an enhanced secretion capacity, as shown in this work, further 

reinforcing the favorable connection of flotillins and protein secretion. The mechanism by which 

FloT influences membrane fluidity is currently not known. Nevertheless, increased membrane 

mobility should improve SecA binding, even if it is not caused by increased unsaturated fatty acid 

levels. However, further testing needs to be conducted in order to confirm whether the hypothesis 

of FloT indirectly affecting SecA binding is correct.  Admittedly, since membrane fluidity affects 

so many processes, it is not that simple to determine what exactly leads to the observed effects. 

Interestingly, even the diffusion of membrane-targeted mRNAs is affected by membrane fluidity, 

altering the translation of inner membrane proteins (Bergmiller et al., 2022). 
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3.3 The cell wall passage 

Most proteins intended for secretion feature an N-terminal signal peptide that enables targeting by 

the secretion system (Tjalsma et al., 2000) and are translocated in an unfolded state via the general 

secretory (Sec) pathway (Harwood & Cranenburgh, 2008). Here they are transported through the 

cytoplasmic membrane via the hourglass-shaped translocon complex SecYEG, (van den Berg et al., 

2004), a process catalyzed by SecA (Driessen & Nouwen, 2008). On the other side, the signal 

peptide of the secreted protein is removed by a signal peptidase and the protein is released from the 

membrane (van Roosmalen et al., 2004). After overcoming the membrane, the passage through the 

cell wall is the next barrier for extracellular proteins which was described as a rate-limiting step in 

the secretion of the α-amylase in B. subtilis (Leloup et al., 1997; Haddaoui et al., 1999). Whereas 

the translocation of proteins across the cell membrane has been thoroughly investigated, it is still 

unclear how proteins cross the cell wall in Gram-positive bacteria.  

Since there is no evidence of channels facilitating active transport of proteins across the cell wall, 

several different hypotheses have been proposed. One of them is based on the link between flagella 

and the secretion of proteins. Disruption of the flgE gene, encoding a flagellar hook protein in 

B. subtilis, caused inhibition of mobility and a striking 200–300% increase in α‑amylase production 
yield (Fehler et al., 2022). Also, the Pclass2 and Pclass3 promoters associated with flagellar genes in 

S. typhimurium (Chilcott & Hughes, 2000) are continuously regulated in response to protein 

secretion rates (Brown et al., 2008). These indicators lead to the speculation that proteins could be 

released from the (damaged) flagella, using the breach in the cell wall necessary for the flagella 

(Tjalsma et al., 2004). Also, passive leakage of secreted proteins through damaged surface areas or 

leakage sites has been reported by Tao et al. (2020). Although this phenomenon closely resembles 

lysis and is consequently perceived as such (Osamura et al., 2023). As suggested by the location of 

the Sec translocon in S. pyogenes, protein transport across the cell wall might be more efficient at 

sites of bacterial division (Rosch & Caparon, 2004). Naturally, it is also possible in B. subtilis or 

other bacteria, that the poles are involved in secretion, although this has not been substantiated with 

further evidence. Another hypothesis revolves around the turn-over of the Gram-positive cell wall, 

which can reach a rate of 50% per generation during growth (Koch and Doyle, 1985). The inside-

to-outside model suggests that autolysins hydrolyze and remove the oldest wall material from the 

outer surface, to allow newly synthesized peptidoglycan to expand and become stress-bearing 

(Graham & Beveridge, 1994). Cell wall-bound proteins are as a result of cell wall turn-over simply 

released into the surrounding (Antelmann et al., 2002). Hence the idea, that secreted proteins may 

be incorporated into the newly synthesized cell wall, to be later released with old peptidoglycan 

through the turn-over effect. Also, common is the view that the cell wall allows proteins to traverse 

the cell wall by simple diffusion, since it is considered a porous peptidoglycan structure or a sieve-

like meshwork (Demchick & Koch, 1996). To investigate the process of passage through the cell 

wall, we have studied the secretion of α-amylase AmyE within two different Bacillus strains, 

B. subtilis and B. licheniformis. 
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3.3.1 Protein secretion zones  
To advance the understanding of the location and dynamics of secretion, focusing on cell wall 

passage, we sought to visualize this process using fluorescence microscopy. During secretion, the 

cytosol and membrane are followed by the oxidizing environment of the periplasm, which promotes 

disulfide bridge formations (Missiakas & Raina, 1997), impairing folding of fluorophores with 

cysteine residues and preventing fluorescence (Feilmeier et al., 2000). Therefore, we used the 

fluorophore mCherry, which does not feature any cysteine (Shaner et al., 2004) and is described as 

foldable and fluorescent in the bacterial periplasm (Dinh & Bernhardt 2011). Since amylases 

represent one of the most important enzyme groups within the field of biotechnology, they are 

commonly used as model secreted proteins in scientific research (Naidu & Saranraj, 2013; Yan & 

Wu, 2017). We generated a fusion of AmyE-mCherry expressed via constitutive promoter from a 

high copy plasmid in B. subtilis and B. licheniformis. Microscopy revealed punctate fluorescent 

AmyE-mCherry signals associated with the periphery of the cells, during the transitional growth 

phase. As the fusion is targeted by the Sec-system, it remains in an unfolded, secretion-competent 

state, until translocated out of the cytosol. This indicates that the fluorescent signal detected is 

localized either in the periplasm or cell wall. When cells expressing AmyE-mCherry were treated 

with lysozyme, they lost their cell wall and were forming spheroplasts, while the detected 

fluorescence diminished drastically. This further suggests that the detected signal originates from 

AmyE-mCherry molecules that are on their way out of the cells. However, with the spatial resolution 

available, it was not possible to clearly distinguish between signals in the cell wall and in the 

periplasm. The periplasmic space, first visualized by transmission electron cryo-microscopy 

(CryoTEM) in B. subtilis (Matias & Beveridge, 2005), contains proteins, small molecules, and 

membrane-anchored lipoteichoic acids (Reichmann & Grundling, 2011; Matias & Beveridge, 2008). 

It has been previously suggested that the periplasm is gel-like and diffusion opportunities are limited 

due to molecular crowding (Hahn et al., 2021). However, recently it has been shown that DNA taken 

up by B. subtilis cells during the state of competence can freely diffuse or at least move with high 

velocity through the periplasm (Burghard-Schrod et al., 2022). Consequently, the observation of 

discrete foci strongly argues against accumulation within the periplasm, since the protein would 

diffuse freely in this space and not form foci. However, ultimately our experiments cannot rule out, 

that some visualized AmyE-mCherry molecules are within the periplasm.  

When evaluating these results, it must be considered, that the AmyE-mCherry fusion used to 

visualize secretion processes is overproduced from a plasmid. Therefore, the fluorescent foci shown 

could possibly be the result of accumulation of aggregated proteins. As we see massive activity of 

AmyE-mCherry in culture supernatants, it is unlikely that the foci are aggregated protein, but 

suggests that foci contain active amylase-mCherry fusions. The foci could also be interpreted as 

evidence of an overburdened secretion process, but since the cells do not show any defects or 

abnormal growth, we safely assume that they are not overly stressed and the secretion system is not 

overwhelmed. To further verify the results indicating that AmyE passes the cell wall in different 

secretion zones, we used microscopy in combination with starch-BODIPY-FL. This labeled 
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substrate becomes fluorescent upon “digestion” by an amylase, in this case AmyE. Coating 
B. subtilis cells with this substrate allows for the visualization of secreted AmyE emerging from the 

cell wall. Imaging shows that active enzyme exits from discrete patches, ruling out that AmyE-

mCherry accumulation within secretion zones is entirely based on accumulation of aggregated 

proteins within the cell wall. The idea of secretion zones within the Bacillus cell wall implies that 

when amylase transits through the PG layers in defined zones, it should also emerge similarly from 

the cell envelope. That this holds true was demonstrated and visualized using the starch-BODIPY-

FL substrate.  

Furthermore, our results are in agreement with the findings of Campo et al. (2004) who also reported 

foci of AmyQ being secreted using immunofluorescence microscopy. Since in this case native 

amylase expression levels were used, it is unlikely that the AmyE-mCherry secretion zones are the 

result of overexpression. We propose that increased synthesis of AmyE allowed us to track the path 

of molecules, as opposed to a low production level, which does not allow tracking the passage of 

fewer molecules versus background fluorescence. Also, we favor the view that this also holds true 

for the secretion of proteins produced at wild type-level, i.e., not overexpressed molecules. 

Visualization of secreted proteins during their passage through the cell wall in living B. subtilis cells, 

represents a great novelty and fills an important knowledge gap. 

 

3.3.2 Secretion is influenced by the growth phase  
Early investigations of bacterial growth described different phases, 1. lag phase, 2. acceleration 

phase, 3. exponential phase, 4. retardation or transitional phase, 5. stationary phase and 6. phase of 

decline (Lane-Claypon, 1909; Monod, 1949). Coupled with the growth state of the cells, bacteria 

undergo a series of changes that affect morphology, metabolism (Buchanan, 1918; Clark & Ruehl, 

1919) and gene expression (Klumpp et al., 2009). In B. subtilis examples of growth phase specific 

systems are cell division during exponential growth (Edwards & Errington, 1996), regulation of 

competence and motility during the transitional growth phase (Strauch & Hoch, 1993) and spore 

formation in the stationary growth phase (Errington, 2003). 

Despite the fact that AmyE-mCherry is expressed via a constitutive promoter system, we noticed 

differences in secretion levels of the fusion over the growth period. Naturally, we were interested in 

determining at what time the protein is secreted in B. subtilis and B. licheniformis. So, the expression 

profile of Bacillus cells overproducing AmyE-mCherry during the growth cycle were determined, 

based on Western blots and fluorescence levels and amylase activity in the culture supernatant. The 

results showed that AmyE-mCherry is released at a higher rate at the transition into and during the 

stationary phase. Interestingly, the Western blots indicated a normal and constant expression of 

AmyE-mCherry via the constitutive promoter system. Therefore, although AmyE-mCherry is 

produced during the exponential phase, it is not efficiently secreted, whereas this is the case as soon 

as the cells enter the stationary phase. Our results fit the literature regarding increased secretion in 
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the transitional growth phase. Cells of both Bacillus subtilis and Bacillus licheniformis reportedly 

secrete the highest amount of proteins in the onset stationary growth phase (Voigt et al., 2008), 

which is also true for AmyE specifically (Hamada et al., 1967). Possibly related, this is also the 

point of maximum secA expression (Herbort et al., 1999), which would facilitate secretion events. 

In the stationary growth phase, the cell wall degradation is slowed down (Doyle et al., 1988), the 

peptidoglycan synthesis is down-regulated (Lam et al., 2009) and cell wall turn-over is negligible 

(Glaser & Lindsay 1977). In consideration of these circumstances, the hypothesis of a passage 

through the cell wall facilitated by the cell wall turn-over becomes much less likely for secreted 

proteins. Instead, these results give rise to the idea that a series of changes at the exit from 

exponential growth, possibly involving modification of the cell wall, is required for efficient high-

level protein secretion and possibly normal protein secretion. 

 

3.3.3 Subpopulation-dependent secretion  
Heterogeneity in transcriptional expression of genes is a well-established phenomenon in bacteria 

(Graumann, 2006). In fact, populations of genetically identical B. subtilis usually comprise 

numerous distinct cell types. In addition to spores, cells can become genetically competent, motile, 

produce extracellular matrix or degradative enzymes, or secrete toxins that allow them to cannibalize 

their neighbors (Lopez et al., 2008). Also, the production of antibiotics has been shown to occur in 

a heterogeneous manner (Dewachter et al., 2019) and even DNA repair enzymes can be found in 

only a subset of exponentially growing cells, leading to heterogeneity of DNA damage response, 

based on extremely low numbers of molecules per cell (Uphoff et al., 2016). Likewise, cyclic-di-

GMP signaling components of B. subtilis cells are found to be absent in a considerable subpopulation 

of cells, due to low abundance of proteins within the network (Kunz et al., 2020). 

We sought to analyze the proportion of cells displaying AmyE-mCherry fluorescence using 

fluorescence microscopy. Interestingly, overproduction of AmyE-mCherry followed a very strong 

pattern of heterogeneity, with a maximum of 23% of cells showing AmyE-mCherry secretion zones 

during the transition phase, and 34% during stationary phase. Although antibiotics were used at all 

times to select for the overexpression plasmid, loss of the plasmid by a subpopulation could also 

account for the observed heterogeneity. Indeed, for plasmid-based production of proteins in 

B. megaterium, fluctuating plasmid abundance was observed, which resulted in population 

heterogeneity (Münch et al., 2015). Also, a recent review suggested that sigma factor σD may play 

a role in the overproduction of α-amylases which may be subpopulation dependent (Yan & Wu, 

2019). This sigma factor may help to hold back the proteases HtrA and HtrB, which can degrade 

α-amylases (Darmon et al., 2002; Ploss et al., 2016). 

The heterogeneity of cells displaying AmyE-mCherry signal was surprising because the 

heterogeneous expression pattern did not match the labeled components of the secretory machinery 

SecA and SecDF, which were detected homogeneously in the culture. However, despite the 
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homogeneous occurrence, widely varying numbers on the cellular concentration of SecA have been 

reported, ranging from 37 up to 13,000 SecA copies per cell (Oliver & Beckwith, 1982; Akita et al., 

1991; Or et al., 2002; Seinen et al., 2021). Some of the variances of SecA numbers are likely related 

to the different methods used to evaluate the figures, e.g., radiolabeling, quantitative immunoblotting 

and microscopic single-molecule tracking. Although, large cell-to-cell differences are also found 

within the individual assessments, indicating some inherent heterogeneity of SecA molecule count. 

As SecA drives secretion (Cooper et al., 2008), cells with a particularly large amount of SecA would 

be expected to be capable of higher secretion levels. In the case of levansucrase, an increased level 

of SecA has been reported to significantly enhance the secretion yield (Leloup et al., 1999). 

However, another study found only a marginal improvement in AmyE secretion upon secA 

overexpression (Chen et al., 2015).  

Naturally, the question arises as to how large a proportion of cells express AmyE-mCherry to begin 

with. By visualizing the AmyE-mCherry fusion lacking its signal peptide, we showed that about 

50% of cells exhibit intracellular accumulation of an AmyE-mCherry fusion lacking a signal peptide, 

indicating that only half of the population actively expresses the protein. When considering these 

results, we come to the conclusion that not all cells that do express AmyE can efficiently secrete the 

protein. Interestingly, AmyE-mCherry lacking a signal peptide did not accumulate in a 

homogeneous manner within the cytosol, but often displayed membrane association. These 

observations suggest that synthesis of AmyE-mCherry occurs in a membrane-proximal manner. 

Translating ribosomes and mRNAs of membrane proteins have been previously localized close to 

the cell membrane and the polar regions of the cells (Lewis et al., 2000; Nevo-Dinur et al., 2011). 

These findings substantiate the hypothesis that proteins are synthesized close to their intended 

location (Buxbaum et al., 2015). Western Blot analyses revealed that AmyE-mCherry proteins 

missing the signal peptide were more heavily degraded than the full-length version of the fusion. 

Seemingly, proteins lacking the signal peptide are more prone to proteolysis within the cytosol than 

full-length proteins which are likely to be rapidly secreted.  

We suspect that the subpopulation capable of efficient secretion exhibits a more permeable cell wall, 

which allows the overexpressed AmyE-mCherry to pass through the cell wall more easily. The cell 

wall protects the cell against environmental stress, from bursting due to internal turgor pressure and 

is responsible for cell shape (Silhavy et al., 2010). A culture entering stationary phase may thus be 

evolved to allow for a subpopulation of cells bears the risk of a more porous cell wall, in order to 

provide large amounts of extracellular enzymes for the rest of the population. Share of labor between 

cells is a well-studied phenomenon in bacteria. A clear example of this is the ability of B. subtilis to 

produce and secrete large quantities of extracellular proteases in only a fraction of cells when 

cultures reach the stationary phase (Veening et al., 2008). Although only a subpopulation expends 

energy for the production and secretion of these exoproteases, the whole community benefits. The 

small peptides derived from protein degradation can be used and metabolized by all cells, regardless 

of whether they belong to the subpopulation that actually produced the exoproteases (Msadek, 

1999). Furthermore, the expression of both the eps and yqxM operons, responsible for 
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exopolysaccharide-rich (EPS) matrix production, follows reportedly a heterogeneous pattern (Chai 

et al., 2008; Vlamakis et al., 2008). Although the production of the extracellular matrix is observed 

in only a subpopulation, all the cells that form the biofilm are encased in this extracellular matrix 

and can benefit from it. 

The results revealed that about 50% of cells produce AmyE-mCherry, as deduced from the non-

secreted version of the fusion. And furthermore, only a subpopulation showed accumulation of 

AmyE-mCherry foci in the cell envelope. The data also suggests that AmyE-mCherry is rapidly 

secreted out of the cytosol, to accumulate within the periplasm and the cell wall, as deduced from 

the formation of fluorescent foci. 

 

3.3.4  ynamics of Secretion  
The secretion machinery in B. subtilis is composed of a multitude of components (Simonen & Palva, 

1993). The SecYEG translocon as well as the motor protein SecA seem to be organized in specific 

clusters in the membrane (Campo et al., 2004). Super‑resolution microscopy revealed, that while a 
some SecA molecules are cytosolic, the protein is predominantly membrane-associated (Seinen et 

al., 2021). Another protein involved in secretion is SecDF, which is evenly distributed over the 

membrane (Rubio et al., 2005). SecA as well as SecY are dynamically moving through the cell 

membrane, forming assembling and disassembling oligomers, suggesting secretory events 

(Dajkovic et al., 2016; Koch et al., 2021).  

While the localization and dynamic of membrane-associated components of the secretion machinery 

are well researched, this is not the case for secreted proteins. Therefore, we utilized time lapse 

imaging to track dynamic movement of AmyE-mCherry and the components of secretion machinery 

SecA and SecDF. Unfortunately, a functional SecYEG fusion could not be generated for this task. 

Presumably, a fusion with a fluorophore creates spatial interferences with interaction partners, as 

others have reportedly been unsuccessful as well (Dajkovic et al., 2016). The experiments showed 

that AmyE-mCherry foci remain statically positioned for many minutes and do not display lateral 

mobility within the cell. This supports our view, that the fusion proteins are in the process of passing 

through the cell wall and are not highly mobile or still connected to the membrane-bound secretion 

machinery. Even slow-diffusing membrane proteins forming large clusters such as the flotillin FloT, 

diffuse throughout the entire cell membrane of B. subtilis cells in a time-scale of 1.5 minutes 

(Dempwolff et al., 2016). SecA-mNeonGreen also showed the formation of focal assemblies, but 

displayed much higher lateral dynamics than the AmyE secretion zones. Likewise, SecDF showed 

much higher dynamics, moving in the cell membrane, than the AmyE-mCherry fusion. These data 

are in agreement with our observation that SecA and SecDF co-localized with AmyE-mCherry foci 

in less than 20% of the cells showing both fluorescence signals. Furthermore, the distribution pattern 

of SecDF and SecA fusions was not affected by overexpression of AmyE. The hypothesis that 

protein transport might be more efficient at sites of bacterial division, is based on the location of the 
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Sec translocon at those sides in S. pyogenes (Rosch and Caparon, 2004). However, the localization 

data obtained in this work regarding Sec-machinery components and AmyE, contradict this idea and 

lead to the conclusion that the results from S. pyogenes cannot be transferred to B. subtilis. 

In order to obtain a better spatiotemporal resolution of SecA dynamics, we employed single 

molecule tracking. Corresponding to previous studies (Seinen et al., 2021), we found three 

populations of SecA molecules having strongly different average diffusion constants. These 

populations can be best explained by molecules actively transporting secreted proteins at the 

translocon (~20%), SecA molecules having bound cargo in search of a translocon (~50%), and freely 

diffusing SecA dimers (~30%). SecA can penetrate into lipid monolayers with its N-terminal 

amphipathic helix (Breukink et al., 1992), which primes SecA for high-affinity binding to SecYEG 

(Koch et al., 2016). The binding to the large SecYEG translocon likely leads to the reduced average 

diffusion constant. The highly dynamic behavior supports a model in which SecA diffuses along the 

membrane surface in between SecYEG translocons to facilitate transportation of AmyE molecules. 

Upon overproduction of AmyE, the slow mobile population increased to about 30%, while the freely 

diffusing molecules decreased to 20% and the medium mobile fraction remained constant. This 

indicates that more SecA molecules are involved in active transport, but that there is still a substantial 

pool of free SecA molecules to enable efficient general protein secretion. Therefore, we propose, 

that the secretion system is not overloaded by the overexpression of AmyE and may reflect a state 

reasonably similar to the native condition. Interestingly, average dwell times of SecA did not change, 

suggesting that average transport times, as well as exchange of SecA molecules between translocons, 

remain constant, but the number of molecules dwelling at the translocon increased. Cytosolic and 

membrane proteins involved in AmyE secretion across the cell membrane will come and go to the 

involved SecYEG translocons, while AmyE will continue to vertically diffuse through the wall 

towards the exterior of cells. 

 

3.3.5 Protein secretion through the cell wall  
The first reported observation of protein transport across the cell wall involved the secretion of α-

amylase and an undefined protease by B. amyloliquefaciens (Gould et al., 1975). It was discovered 

that transport of these two enzymes would continue for approximately 15 min after blocking de novo 

protein synthesis with chloramphenicol. This phenomenon appears to be independent of 

translocation by the Sec translocon, as ATPase inhibition had no impact. Furthermore, these detected 

enzymes were absent in protoplasts, leading to the conclusion that secreted proteins accumulate on 

the trans side of the cell membrane and that transport of these proteins across the cell wall is 

restricted.  

The fluorescence measurements performed in this work indicate, that passage through the wall may 

take place at a minutes-time-scale, possibly occurring in a pulse-like manner. These results are 

confirming the duration of cell wall passage of an amylase determined by previous pulse-chase 
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experiments (Lepoup et al., 1997; Haddaoui et al., 1999). The prevalence of many stationary AmyE-

mCherry foci, which could remain static for up to 30 minutes, suggests that AmyE-mCherry slowly 

diffuses through the lateral cell wall at several loci. When analyzing time courses of AmyE-mCherry 

foci, we found that a considerable quantity of foci showed noticeable fluctuations in fluorescence 

intensity. Since the intensity of the foci not only decreased but also increased bleaching should not 

be considered as a possible cause for this effect. And as the minor fluctuations of the background 

fluorescence did not match the fluctuations of AmyE-mCherry foci, fluctuations of the excitation 

light were also ruled out. Maturation of mCherry, which must occur after membrane passage, 

requires several minutes, such that the fluctuating increase and decrease of fluorescence that was 

observed in a minutes-time-scale possibly includes maturation kinetics of mCherry. Additionally, it 

must be kept in mind that degradation products for AmyE-mCherry were detected via Western-blot 

analysis, therefore the observed fluctuations could also include proteolytic events. But amylase 

activity as well as mCherry fluorescence was detected in the supernatant of strains expressing full-

length AmyE-mCherry, indicating that the functional fusion is successfully secreted to the outside 

of the cells. We show that levels of AmyE-mCherry fluorescence change within a minute time frame, 

independent of fluorescence bleaching, showing decrease as well as increase. We assume that these 

fluctuations in fluorescence of discrete signals reflect changes in numbers of amylase molecules 

within a secretion zone over time. This would be consistent with the constrained diffusion of a 

protein along a passage through a meshwork of a thickness of about 30-40 nm. The cell wall slows 

down free diffusion through a solution, which would normally occur in a time frame of milliseconds 

for nanometer distances (Trovato & Tozzini, 2014). Our findings suggest that AmyE-mCherry, after 

being transported across the cell membrane, diffuses and accumulates through defined positions in 

the cell wall, when produced in high amounts. However, the obstructive features for the passage of 

large proteins are not homogeneous, but discontinuous, including areas of lower meshwork density. 

Such structures have been hinted at by recent AFM visualization of the B. subtilis cell wall (Turner 

et al., 2018; Pasquina-Lemonche et al., 2020). Here, molecules may diffuse laterally into pores until 

they find a site that is wide enough to allow for their passage to the outside. This would imply that 

smaller molecules can move through the cell wall at more sites than larger ones, assuming a variety 

of different meshwork sizes within the wall. Judging from the dimensions derived from 

crystallization of B. subtilis α-amylase (Mizuno et al., 1993; Kagawa et al., 2003), a minimal pore 

size of the wall to allow passage of an amylase molecule would be in the range of at least 7.5 nm. 

Pores have been described to account for 5% of the total cell wall volume of B. megaterium and 

were found to have a mean pore radius of 12.5 nm (Scherrer et al., 1977). Pasquina-Lemonche et 

al., 2020 revealed even pores of up to 60 nm in diameter in the B. subtilis cell wall. Note that these 

pores in the cell wall are not tunnels, but random connections to the outside, that do not have to be 

straight and most probably are not. Diffusion through the cell wall, facilitated by these pores, does 

not represent directed movement so pulse-like accumulations and releases likely occur at narrow 

bottlenecks. 
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The question arises, where the pores are coming from and how they are formed. Although cell wall 

synthesis is directed by the MreB protein family (Garner et al., 2011; Dersch et al., 2020), a perfect 

and seamlessly-organized meshwork does not emerge. A combination of AFM, SIM and STORM 

revealed a characteristic irregular banding or striped pattern of newly synthesized peptidoglycan 

(Tank et al., 2021). The observed gaps and pores may provide a template that can subsequently be 

filled in, by envelope-spanning class-A penicillin-binding proteins (aPBPs) and lipoprotein 

cofactors (Lpos) (Pasquina-Lemonche et al., 2020; Vigouroux et al., 2020), which act as repair 

enzymes and are activated at sites with defects or large pores in the cell wall (Typas et al., 2012; 

Cho et al., 2016). However, recent data suggest that the filling of pores happens randomly, so that 

large pores are not preferentially filled (Tank et al., 2021). Thus, pores in the cell wall could arise 

simply by chance, during synthesis. Alternatively, enzymes with peptidoglycan hydrolyzing activity 

are involved in the formation of pores in the cell wall. Bacterial growth requires constant remodeling 

of the peptidoglycan meshwork, which is mediated by cell wall-anchored autolysins (Jolliffe et al., 

1981; Blackman et al., 1998), predominantly LytC and LytD (Kuroda & Sekiguchi, 1991; Lazarevic 

et al., 1992). LytC is an N-acetylmuramoyl-L-alanine amidase (Kuroda & Sekiguchi, 1991), which 

localizes uniformly in the cell envelope and hydrolyzes the linkage of N-acetylmuramoyl-L-alanine 

in peptidoglycan (Yamamoto et al., 2003). The sigma factor σD controls expression of the major 

vegetative autolysin genes lytC, lytD and lytF, with a peak in activity at the start of the stationary 

phase (Margot et al., 1994, Margot et al., 1999). Interestingly, this peak in autolysin expression 

corresponds to the growth phase with elevated AmyE secretion we reported in this work. 

Furthermore, a majority of cells do not seem to express these autolysins. Studying expression 

patterns of the σD-dependent autolysins LytC, LytD, and LytF, Chen et al. (2009) found these 

enzymes predominantly in the same subpopulation that expressed the flagellar filament. Here again, 

a connection to our work can be found, since we were similarly able to detect strong secretion of 

AmyE-mCherry only in a subpopulation of the B. subtilis culture. Authors of a recent review 

suggested a probable link between heterogeneous amylase secretion and σD-driven gene expression 

and wondered whether the two involve the same subpopulation (Yan & Wu, 2019). Investigating 

this idea further would be an interesting project for the future. 

Murosomes with lytic activity punch wall perforations (pores) into the peripheral cell wall at the 

start of cell separation in S. aureus (Giesbrecht et al., 1998; Giesbrecht et al., 1998). This is an 

interesting example for the capability of bacteria to use autolytic enzymes to create cell wall pores 

for a beneficial or necessary effect. Furthermore, a protein secretion system for chitinase utilizing a 

holin membrane protein in tandem with the cell wall-editing enzyme ChiX was recently described 

for the Gram-negative Serratia marcescens (Palmer et al., 2021). ChiX is a peptidoglycan hydrolase 

with L-Ala D-Glu endopeptidase activity, whose cell wall-editing activity is absolutely critical for 

chitinase secretion (Owen et al., 2018). Another example in which the protein secretion is linked 

with autolytic activity can be found in Salmonella enterica serovar Typhi. Here the secretion of 

Typhoid toxin relies on the muramidase TtsA, which was also encoded at the typhoid toxin locus 

(Hodak & Galan, 2013). 
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Fluctuations of AmyE-mCherry fluorescence suggest that secretion zones allow for an oscillating 

passage of many molecules, including bursts of release and phases of re-accumulation, through gaps 

in the PG structure. Thus, the multilayered PG envelope of firmicutes efficiently counteracts high 

intracellular turgor, but appears to leave many spots for passage of proteins. While highly 

speculative, it is possible that the cell wall hydrolyzing activity of the enzyme might mediate the 

secretion of substrate proteins from the periplasm into the cell interior (Fig. 3.1) 

 

 

Figure 3.1: Schematic depiction of secreted AmyE molecules passing through a pore in the cell wall the 

cell wall.  
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4 General Material and Methods  

4.1 Kits and chemicals 

In this work, the standard chemicals were purchased from AppliChem GmbH (Darmstadt, 

Germany), Carl Roth GmbH & Co. KG (Karlsruhe, Germany), Sigma-Aldrich Chemie GmbH/ 

Merck KGaA (Taufkirchen/ Darmstadt, Germany) and GE HealthCare GmbH (Frankfurt am Main, 

Germany). Enzymes, DNA polymerases, reagents for Gibson assembly (molecular cloning), and 

DNA and protein standards were supplied by New England Biolabs GmbH (Frankfurt am Main, 

Germany). The plasmid extraction was performed with the Monarch Plasmid Miniprep kit by New 

England Biolabs GmbH (Frankfurt am Main, Germany) or the GeneJET Plasmid Miniprep Kit by 
Thermo Fischer Scientific Co. (St. Louis, MO, USA) and the extraction of genomic DNA with 

innuPREP DNA extraction kit by Analytic Jena GmbH (Jena, Germany). Kits for PCR purification 

and gel extractions were performed using kits from Qiagen GmbH (Hilden, Germany). 

4.2 Bacterial strains 

E. coli strain DH5α (Woodcock et al., 1989) was used for the construction and propagation of 
plasmids. All B. subtilis strains constructed during this work are derivatives of the wild type PY79 
(Youngman et al., 1983). All B. licheniformis strains used during this work were kindly provided 
by B.R.A.I.N. Biotech AG (Zwingenberg, Germany). 

4.3 Bacterial growth media 

E. coli, B. subtilis and B. licheniformis cells were grown in Luria-Bertani (LB) medium or on solid 

plates containing 1.5% agar (w/v) at 37°C. The LB medium was mixed with the antibiotic required 

for the appropriate selection. Incubation of the liquid culture was then performed at 200 rpm and a 

temperature of 37°C. Cultivation on growth plates was also performed at a temperature of 37°C. 
Prior to inoculation in liquid media from frozen stock, B. subtilis strains were streaked on LB 1.5 % 
(w/v) agar plates. The growth was monitored by measuring the optical density at 600 nm. Activation 

of inducible promoters was accomplished by addition of the appropriate amount of xylose or 

isopropanol-b-D-thiogalactopyranoside (IPTG). For microscopy examinations, the growth 

temperature was reduced to 30°C. In case of single molecule tracking, cells were grown in S750 

minimal medium prior to microscopy.  
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Table 1: Antibiotics and supplements that were used in this study 

Name  Final concentration  
Ampicillin  100 μg/ ml  
Chloramphenicol  5 μg/ ml  
Kanamycin  50 μg/ ml  
Spectinomycin  100 μg/ ml  
Tetracycline  25 μg/ml  
D-Xylose  up to 0.5% (w/v)  
IPTG  0.25 mM  

 

Table 2: Bacterial growth media 

Medium  Composition  Final concentration  
LB medium Trypton  10 g/l 
 Yeast extract  5 g/l 
 NaCl  10 g/l 
 Agar-Agar  15 g/l 
 pH 7.0 ± 0.2   
   
S750 medium 10 x S750 salts  1 x  
 100 x S750 metals  1 x  
 D-glucose  1 % (w/v)  
 Glutamic acid  0.5 mM  
 Casamino acids  0.004% (w/v) 
10 x S750 salts MOPS  500 mM  
 (NH4)2SO4 100 mM  
 KH2PO4 50 mM 
 adjusted pH to 7.0 (KOH)  
100 x S750 metals MgCl2  0.2 M  
 CaCl2  70 mM  
 MnCl2  5 mM  
 ZnCl2  0.1 mM  
 Thiamine-HCL  0.01% (w/v)  
 HCl  2 mM  
 FeCl3  0.5 mM  

 

4.4 Preparation of chemically competent E. coli  H5α cells and 
transformation 

E. coli cells were grown in LB medium at 37°C to an optical density of OD600 0.5. After entering 
the desired exponential growth phase, cells were incubated on ice for 30 minutes. This was followed 
by pelleting the cells at 4°C and 5000 rpm for 10 minutes. The resulting supernatant was discarded 
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and the cell pellet was resuspended in 5 mL of competent buffer (0.1 M CaCl2, 15% Glycerol). For 
storage, cells were aliquoted into 1.5 mL Eppendorf tubes with 150 μl each. Competent cells were 
deep-frozen in liquid nitrogen and stored at -80°C.  

For transformation, DNA was added to the cells before thawing them on ice for 20 minutes. Then 
the cells were exposed to a heat shock of 42°C for 2 minutes and again incubated on ice for 10 
minutes. After the incubation on ice, pre-warmed LB medium was added and the cells were 
incubated for 1 hour at 37°C and 200 rpm. Subsequently, the culture was spread on an LB solid plate 
containing the appropriate antibiotic and incubated overnight at 37°C to select for successful 
transformation. 

 

4.5 Preparation and transformation of competent B. subtilis cells 

At the transition from exponential to stationary phase, a subpopulation of B. subtilis is naturally able 
to take up exogenous DNA and incorporate this DNA into its chromosome (Albano et al., 1987). 
Laboratory strains of B. subtilis such as strain PY79 and strain 168, are renowned for high-frequency 
natural transformation (Zafra et al., 2012; Konkol et al., 2013). For transformation of B. subtilis, 
cells were grown overnight in liquid LB at 37°C and 200 rpm. For the 1x Modified Competence 
Medium (MCM) (Spizizen, 1958), 1 ml 10x MC medium was mixed with 8.7 ml sterile H2O and 
0.333 ml M MgSO4. 10 ml MCM medium was inoculated via the overnight culture to an OD600 of 
0.1 and incubated at 37°C and 200 rpm. When cultures reached an OD600 of 1.3-1.5, plasmid or 
genomic DNA was added to 1 ml of cell suspension. After further incubation at 37°C and constant 
shaking for at least 1-2 hours, the culture was spread on an LB solid plate containing the appropriate 
antibiotic and incubated overnight at 37°C to select for successful transformation.  

Table 3: 10x MC competence medium 

Composition  Final concentration (250 ml) 
K2HPO4 x 3 H2O  35.1 g  
KH2PO4  13.1 g  
D-Glucose  50 g  
Potassium glutamate  5 g  
Casein hydrolysate  2.5 g  
Sodium citrate (300 mM) 25 ml  
ferric ammonium citrate 
(22 mg/ml) 

2.5 ml  

adjusted pH to 7.0  

Mixed components were sterile filtrated and stored at -20°C. 
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4.6 Preparation and transformation of competent B. licheniformis 
cells 

All B. licheniformis strains proved by B.R.A.I.N. Biotech AG (Zwingenberg, Germany) were 
equipped with the competence-inducing plasmid pMMcomK (Hoffmann et al., 2010). ComK is the 
key regulator responsible for the development of genetic competence in Bacillus, controlling the 
transcription of all genes involved in DNA binding, processing, uptake, and homologous 
recombination of DNA (Haijema et al., 1996; Hamoen et al., 2003). The pMMcomK plasmid 
carrying the comK gene under the control of the Pxyl promoter allowing for xylose inducible 
expression of the key regulator, resulting in highly competent strains (Hoffmann et al., 2010). 

For the transformation of B. licheniformis, cells carrying the pMMcomK plasmid were grown 
overnight in liquid LB with 25 μg/ml tetracycline at 37°C and 200 rpm. A 60 ml main culture (LB 
with 25 μg/ml tetracycline) was inoculated with the overnight culture to an OD600 of 0.1 and 
incubated at 37°C and 200 rpm until an OD600 of 0.5 was reached. The main culture was divided 
into two 30 ml cultures, and each was transferred into separate Erlenmeyer flasks. In culture A, 
ComK expression was induced with addition of 0.25% xylose, whereas culture B served as the 
uninduced negative control. Both of the cultures (A and B) were incubated for an additional 3 h.  
The successfully induced competence in culture A was determined on the basis of a lower OD600

 in 
comparison to the negative control culture B, with a targeted gap of >1. After competence was 
successfully induced, cells of culture A were pelleted at 4°C and 5000 rpm for 10 minutes and 
resuspended in 2 ml supernatant. After the addition of 15% Glycerol, competent cells were deep-
frozen in liquid nitrogen and stored at -80°C.  

For the transformation, 50 µl competent cells were transferred to a tube containing DNA and 300 µl 
LB media containing 25 μg/ml tetracycline and 0.25% xylose. The cells were incubated for 30 min 
at 37°C and 200 rpm. Then the cells were pelleted at 14000 rpm for 1 minute, resuspended in 500 
µL pre-warmed SOC media and incubated for an additional 30 min at 37°C and 200 rpm. After 
incubation, cells were spread on two LB solid plates (250 µl each) containing the appropriate 
antibiotic and incubated overnight at 37°C to select for successful transformation. Since the 
pMMcomK plasmid is not integrated into the genome, subsequent addition of tetracycline to the 
media is required to avoid loss of the plasmid, if it is still needed.  
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Table 4: SOC media 

Composition  Final concentration  
bacto-tryptone 2%  
Bacto-yeast extract 0.5% 

NaCl                                  
   

10 mM 

KCl                                    
   

2.5 mM 

MgCl2  10 mM  
MgSO4                              10 mM                            
Glucose 20 mM  
adjusted pH to 7.0 (NaOH)  

 

 

4.7 Polymerase chain reaction (PCR) 
PCR is a method that allows DNA segments to be specifically amplified in vitro (Mullis et al., 1986). 
The PCR process consists of several cycles, each consisting of three different steps (denaturation, 
hybridization and elongation), that take place in a thermal cycler. One PCR reaction was usually 
composed of 1x buffer (5x Phusion® High-Fidelity reaction buffer, NEB), 50-100 ng chromosomal 
DNA, 200 mM dNTPs, 0.5 mM of each oligonucleotide (primer) and 0.02 U/μl polymerase 
(Phusion® High-Fidelity DNA Polymerase, NEB). 

Following analysis by agarose gel electrophoresis, DNA fragments were purified from enzymes, 
nucleotides and salts using the QIAquick® PCR Purification Kit (Qiagen) according to the 
manufacturer’s instructions. 

 

Table 5: PCR cycling program 

Steps °C time  
Initial 
denaturation 

98 1 min  

Denaturation  98 20 sec  
Annealing  55-65 30 sec 30x   
Extension  72 30 sec/ kb  
Final 
extension 

72 5 min  

Hold 4 Pause  
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4.8 Isolation of chromosomal  NA 

Chromosomal DNA was isolated using the innuPREP DNA extraction kit by Analytic Jena GmbH 

(Jena, Germany). Cells from a 2-ml overnight culture of Bacillus were pelleted at 14000 rpm for 1 
min, and then chromosomal DNA was isolated according to the manufacturer's protocol. 

4.9 Isolation of plasmid  NA 

Plasmids that were amplified by E. coli cells were isolated using the method described in the 
Monarch Plasmid Miniprep kit by New England Biolabs GmbH (Frankfurt am Main, Germany) 

following the manufactures instructions. 

For isolation of plasmid DNA from Bacillus, 2 ml of an overnight culture was pelleted at 14000 rpm 
for 1 min and resuspended in 250 µL SET buffer. Then 50 µl lysozyme (stock 40 mg/ml) was added 
and carefully mixed. Cells were incubated at 37 °C for 20-30 min, followed by the addition of 250 
µl of lysis buffer from the GeneJET plasmid miniprep kit (Thermo Fischer Scientific). From this 
step, plasmid DNA was isolated according to the manufacturer's protocol. 

Table 6: SET Puffer  

Composition  Final concentration  
Saccarose 25% 

EDTA 50 mM 

Tris 50 mM 

adjusted pH to 8.0   

 

4.10  NA sequencing 

To verify correct cloning and mutagenesis of genes or gene fragments, DNA sequencing was 
performed by the following companies: GATC Biotech (Konstanz, Germany) or Eurofins Genomics 
(Ebersberg, Germany). Purified plasmids were provided in a concentration of 50-100 ng/μl and 
oligonucleotides according to the corresponding companies´ instructions. 

 

4.11 Molecular cloning 

For the construction of plasmids, the Gibson Assembly technique (Gibson et al., 2009) was applied, 
using the commercially available Gibson assembly by New England Biolabs GmbH (Frankfurt am 
Main, Germany). 

For the cloning at the original locus, the pSG1164 plasmid (Lewis & Marston, 1999) was used. The 
last 500 base pairs from the gene of interest (without the stop codon) were inserted into the multiple 
cloning site (MCS) of the plasmid to create a C-terminal fluorescence protein fusion. The resulting 
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vector allows homologous recombination via a single Campbell-type integration at the original 
locus. 

For the overexpression of certain genes, the vectors pSG1191 and pDR111 were used. The pSG1191 
has been originally designed for the generation of N-terminal fluorescent protein fusions that 
integrate into the chromosome by double homologous crossover at the amyE locus of B. subtilis 
(Feucht & Lewis, 2001). Expression of integrated genes can be controlled from the xylose-inducible 
Pxyl promoter. In this work, the gene encoding the fluorescent protein was removed from the vector 
by the RF-cloning method (Van Den Ent & Löwe, 2006; Unger et al., 2010) to allow xylose-
inducible expression of genes without creating fusion proteins. The pDR111 plasmid is a derivative 
of the Phyper-spank plasmid pJQ43 (Quisel et al., 2001) that allows expression of integrated genes under 
the control of the LacI-repressible, isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter 
Phyper-spank. The plasmid contains an additional lacO binding site to achieve better repression in the 
absence of the inducer IPTG and similar to pSG1191 amyE homologous regions for double 
crossover at the amyE locus of B. subtilis. For the integration in B. licheniformis the regions 
homologous to amyE were replaced for regions homologous to amyS from B. licheniformis, allowing 
for integration into the chromosome by double homologous crossover at the amyS locus of B. 
licheniformis. Successful integration of these plasmids was confirmed by loss of amylase function. 

 

4.12 S S-PAGE 

SDS-PAGE was performed to separate proteins according to their molecular mass under 
denaturating conditions. A culture at the desired growth phase was pelleted and resuspended in a 
corresponding amount of lysis buffer for a 10-fold concertation of cells. Samples were incubated at 
37°C until lysis was visually observed. Samples were mixed with 4x SDS loading buffer, boiled for 
10 minutes at 95 °C and loaded on the gel. The visualization of samples was carried out with self-
prepared polyacrylamide gels of 10% or 12% (v/v) polyacrylamide gels obtained from BIO-RAD 
(Mini-PROTEAN® TGX™ Precast Protein Gels). Gels were prepared according to Laemmli (1970) 
using the Mini-PROTEAN® system (BIO-RAD). Electrophoresis was carried out in a Mini-
PROTEAN® Tetra Cell with 100-140 V (Electrophoresis power supply, Consort EV243). 
PageRuler™ Plus from Thermo Scientific was used as protein ladder. 

 

Table 7: 4x SDS loading buffer 

Composition  Final concentration  
Tris-HCl pH 6,8 50 mM 

SDS 8% (w/v) 
Glycerin 40% (v/v) 
β-mercaptoethanol 20% (v/v) 
bromophenol blue 0.01% (w/v) 
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Table 8: Lysis buffer 

Composition  Final concentration  
NaCl 100 mM 

EDTA 50 mM 

Lysozyme (added fresh) 5 mg/ml 

 

4.13 Western blotting and immunodetection  
A western blot with subsequent immunostaining was performed to specifically detect proteins of 
interest. In this procedure, the proteins, previously separated by an SDS-PAGE, are transferred onto 
a nitrocellulose membrane for further detection. After the SDS-PAGE, proteins were transferred 
onto a nitrocellulose membrane (pore size 2 μm; 82 mm thick; Protran BA83, Whatman™, GE 
Healthcare), using the Trans-Blot Turbo Transfer System (Bio-Rad) according to the manufacturer’s 
protocol. To this end, three layers of Whatman papers soaked in transfer buffer, a nitrocellulose 
membrane soaked in transfer buffer, the SDS-PAGE gel and another three layers of soaked 
Whatman papers were placed on top of each other inside the blotting apparatus. The proteins were 
visualized using rabbit polyclonal antiserum binding to the protein of interest and secondary 

peroxidase-conjugated goat-anti-Rabbit-IgG (dilution 1:10.000) for detection signal amplification 

(Sigma-Aldrich). Prior to detection, the nitrocellulose membrane was incubated in blocking buffer 

(PBS, 0.1%, Tween-20, 5% w/v nonfat dry milk) for 1 h under constant shaking, followed by 
incubation overnight with the first antiserum diluted in blocking solution. After incubation, three 
washing steps with PBS (3 x 10 min) followed, the incubation with the secondary antibody for 1 h 
and three final washing steps (3 x 10 min) with PBS. Detection was performed using an Immobilon® 

Forte Western membrane substrate (Merck KGA, Darmstadt, Germany) and signal detection via the 
ChemiDoc™ MP Imaging System (BIO-RAD). Proteins were visualized by chemiluminescence, as 
a consequence of enzymatic luminol oxidation by the IgG coupled horseradish peroxidase.  

Table 9: Transfer buffer 

Composition  Final concentration  
Tris 48 mM 

glycine 39 mM 

SDS 1.3 mM 
EtOH 20% 
adjusted pH to 9.8  
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4.14 Structured Illumination Microscopy (SIM) 
Cell samples were diluted to an OD600 of ~0.5 and mounted on ultrapure-agarose slides dissolved in 
LB (1%) for immobilization of cells prior to image acquisition. For localization experiments, image 
Z-stacks (∼100 nm steps) were acquired using brightfield (BF) image acquisition (transmitted light) 
or illumination microscopy (SIM) with a ZEISS ELYRA PS.1 setup (Andor EMCCD camera, 80 
nm 1.15 size; 3× rotations and 5× phases per z-slice; with an excitation wavelength 561 nm at 15% 
intensity or 488 nm at 10% intensity; ZEISS alpha Plan-Apochromat 100x/NA 1.46 Oil DIC M27 
objective). SIM reconstructions were processed using ZEN-Black software by ZEISS. ImageJ2/FIJI 
version 1.52p was used for visualization and image processing (Schindelin et al., 2012; Linkert et 
al., 2010; Rueden et al., 2017). No automatic features like autofocus or drift correction were used. 
For time lapse imaging the acquisition time was set to 1 minute. SIM reconstructions were manually 
cropped in axial and lateral dimensions, depending on the plausibility of cellular positions, using the 
“Duplicate”-function. Signal not connected to the cells was considered to be background and was 
therefore in most cases eliminated. For single-particle tracking, spots were identified with the LoG 
Detector of TrackMate v6.0.1(Tinevez et al., 2017), implemented in Fiji 1.53 q, an estimated 
diameter of 0.5 μm and sub-pixel localization activated. Spots were merged into tracks via the 
Simple LAP Tracker of TrackMate, with a maximum linking distance of 500 nm, one frame gaps 
allowed, and a gap closing max distance of 800 nm.  

 

4.15 Generation of protoplasts 

Bacillus cells in the transitional growth phase were treated according to the protocol of Chang & 
Cohen (1979) to obtain protoplasts. Cells were grown in PAB medium at 37°C and 200 rpm to a cell 
density of 1 x 108 cfu/ml or approx. OD600 1. The culture was then pelleted at 5000 rpm for 10 
minutes and resuspended in a corresponding amount of SMMP media for a 10-fold concertation of 
cells. After addition of 2 mg/ml lysozyme, the cells were incubated at 37 °C and 55 rpm for 2 h to 

obtain >90% protoplasts. During the process, antibiotics were added to the media to maintain the 
selection pressure for plasmids. Imaging of the cells before and after the incubation with lysozyme 
was performed by SIM microscopy. 

Table 10: PAB media 

Composition  Final concentration  
Beef extract 1.5 g/l 
Yeast extract 1.5 g/l 
Peptone                              5 g/l 
D-glucose 1 g/l 
NaCl 3.5 g/l 
K2HPO4 3.68 g/l 
KH2PO4 1.32 g/l 
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Table 11: 2x SMM buffer 

Composition  Final concentration  
sucrose 1 M 

maleate 0.04 M 

MgCl2 0.04 M 
adjusted pH to 6.5  

 

Table 12: SMMP media 

Composition  Final concentration  
2x SMM Puffer 50% 

4x PAB Medium 50% 

 

4.16 Microscopy with starch BO IPY-FL 

For the microscopy of cells with starch BODIPY-FL, a protocol adapted for Bacillus from Rosch & 
Caparon (2005) was used. Strains were cultivated in LB medium at 37°C and 200 rpm mixed with 

the antibiotic required for the appropriate selection until the transitional growth phase. The culture 
was pelleted at 4000 rpm for 2 min, the resulting supernatant was discarded and the pellet was 
resuspended in fresh LB containing 1% of the “DQ starch substrate stock solution” (1 mg/ml, 
EnzChek Ultra Amylase Assay Kit, Invitrogen Detection Technologies, Carlsbad, CA, USA). Cells 
were mounted on ultrapure-agarose slides dissolved in LB (1%) for immobilization of cells and 
incubated for 30 minutes at 37°C.   

Imaging was performed via epi-fluorescence microscopy, using a Nikon Eclipse Ti-E, Nikon 
Instruments Inc with a CFI Apochromat objective (TIRF 100× oil, NA 1.49) and an EMCCD camera 
(ImagEM X2 EM-CCD, Hamamatsu Photonics KK). The samples were illuminated with Nikon C-
HGFIE Intensilight (Precentered Fiber Illuminator) and the YFP-channel filter cube ET 500/20, T 
515 LP, ET 535/30. Images were processed with MetaMorph (version 2.76), and ImageJ (Rueden 
et al., 2017). 

 

4.17 Phadebas test 
For the quantification of α-amylase activity in the culture supernatant, the Phadebas Amylase Test 
(Phadebas AB, Uppsala, Sweden) was used. One Phadebas tablet was dissolved in 20 ml Phadebas 
buffer solution. A culture of Bacillus, usually grown overnight, was pelleted at 14000 rpm for 2 min, 
20 µl supernatant was mixed with 180 µl the prepared Phadebas buffer solution and incubated for 
10 min at 37°C and 1000 rpm in a thermomixer (Eppendorf Thermomixer comfort). The reaction 
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was stopped by addition of 60 µl 1 M sodium hydroxide. The reaction tubes were centrifuged and 
the absorption of 100 µl of the supernatant was measured at 620 nm via a microplate reader (Tecan 
Infinite 200 PRO, Tecan, Switzerland). The activity values were corrected for dilution and 
normalized to the cell density (OD600) of the culture.  

Table 13: Phadebas buffer 

Composition  Final concentration  
acetic acid 0.1 M 

potassium acetate 0.1 M 

calcium chloride 5 mM 
adjusted pH to 5  
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Supplements 

Single Molecule Tracking of AmyE-SNAP-tag in B. subtilis 

In this work, we aimed to visualize secretion processes in Bacillus. In an early, approach we used 

the SNAP-tag to create a labeled amyE-SNAP fusion protein in B. subtilis. The α-amylase AmyE 

was selected as a model secreted protein, since it is commonly used in scientific research (Naidu & 

Saranraj, 2013; Yan & Wu, 2017). Secretion of AmyE out of the cytoplasm is facilitated by the Sec-

machinery, which translocates proteins in their unfolded state (Harwood & Cranenburgh, 2008). As 

the oxidizing environment of the periplasm promotes disulfide bridge formations (Missiakas & 

Raina, 1997), folding of fluorophores with cysteine residues is typically impaired and fluorescence 

prevented (Feilmeier et al., 2000). The SNAP-tag is a small polypeptide based on mammalian O6-

alkylguanine-DNA-alkyltransferase (AGT), that can be self-labeled through addition of a 

fluorescent substrate, that covalently binds to the SNAP-tag with its benzyl group (Keppler et al., 

2003; Kolberg et al., 2013). As the fluorescent substrate is already folded upon addition, 

visualization of proteins in the periplasm is reportedly unproblematic (Ke et al., 2016). Furthermore, 

the tag was described as highly specific, allowing even multicolor single molecule tracking (Benke 

et al., 2012).  

We employed single molecule tracking (SMT) using the SMTracker tool (Rösch et al., 2018), to 

track and visualize the labeled AmyE-SNAP molecules in vivo in B. subtilis. The results showed a 

strong unspecific binding of the used SNAP-Cell 505 substrate (New England BioLabs) to the cell 

wall of the WT control strain, lacking the SNAP-tag labeled AmyE (Fig. S1.1). Even after several 

additional washing steps, the control strain displayed strong substrate fluorescence (Fig. S1.1). 

Several additional steps were taken to mitigate the unspecific binding of the substrate, such as 

reducing the substrate concentration and using a blocking agent (New England BioLabs). 

Unfortunately, the objective could not be achieved with this method. It appears that the substrate 

used in B. subtilis, can bind non-specifically to the cell wall or its components such as proteins or 

teichoic acids. Perhaps this is why, the visualization of proteins via the SNAP-tag method is mainly 

used by researchers working with eukaryotic cells (Hoelzel & Zhang, 2020). Systematic screening 

of 22 dyes for optimal performance in single-molecule microscopy revealed that many dyes suffer 

from either rapid photobleaching or high nonspecific staining (Bosch et al., 2014). However, 

numerous different dyes are available (Dreyer et al., 2023), so the problems in this work might not 

have occurred with the selection of an alternative substrate. 
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Figure S1.1: Heat maps of single-molecule localization of SNAP-tag substrate binding in Bacillus subtilis 

cells. The distribution of tracks is indicated by a color shift from yellow (low probability) to black (highest 

probability). A) Fluorescent SNAP-tag substrate localized throughout the cell envelope in both the strain 

expressing the labeled amyE-SNAP fusion protein and the wild-type (WT) control strain. Cells were washed 

one time with PBS after incubation with the SNAP-tag substrate. B) Cells were washed five times with PBS 

after incubation with the SNAP-tag substrate. 
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Effects of B. subtilis FloT and PBP5 on secretion in B. licheniformis 

In this work, we planned to combine the enhanced expression of the main Sec-pathway components 
with a simultaneous overexpression of flotillins to achieve a positive effect on secretion 
performance. For this purpose, the B. licheniformis strain MC8.4a was used, which is characterized 
by the co-expression of an artificial operon consisting of the secY, secE and secG genes. This operon 
is under the control of the oppA promoter. An additional copy of yuaFG, encoding FloT and NfeD2 
from B. subtilis, was integrated to the native amyS gene locus of B. licheniformis MC8.4a under the 
control of an IPTG- inducible promoter.   

Figure S1.2 shows that the additional production of FloT together with co-expression of secYEG, 
did not improve the secretion performance of the B. licheniformis strain. Since the additional 
expression of yuaFG in B. subtilis resulted in increased AmyE secretion, it is reasonable to assume 
that the FloT protein from B. subtilis does not have the same effects on fluidity and lipid composition 
of the membrane in B. licheniformis.  

 

 

 

Figure S1.2: Amylase activity in culture supernatant of B. licheniformis MC8.4a cells in stationary 

phase of growth, AmyE: strain with plasmid-based expression of AmyE. FloT: strain with 

amyS::Phyper-spank-yuaFG. If marked, 1 mM IPTG was added to the culture. Significance test "two-

tailed T-test". Duplicates from biological triplicates are shown. 
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In addition, B. licheniformis strain MC6 was used for the additional expression of FloT. This strain 

does not show any additional expression of secYEG. Again, the additional production of FloT from 

B. subtilis did not result in any improvement of the secretion capacity of AmyE in the 

B. licheniformis strain (Fig. S1.3). 

 

 

 

Figure S1.3: Amylase activity in culture supernatant of B. licheniformis MC6 cells in stationary 

phase of growth. AmyE: strain with plasmid-based expression of AmyE. FloT: strain with 

amyS::Phyper-spank-yuaFG. If marked, 1 mM IPTG was added to the culture. Significance test "two-

tailed T-test". Duplicates from biological triplicates are shown. 

 

It is possible that the FloT from B. subtilis is subject to proteolysis when expressed in 
B. licheniformis. As the mechanism by which FloT increases membrane fluidity is currently not 
completely understood, it is also imaginable that other unknown proteins or systems of B. subtilis 

are involved. Although, it is unlikely since Zielińska et al. (2020) showed that the addition of FloT 
alone can increase membrane fluidity of liposomes in vitro. In contrast to the well-known flotillin-
like proteins of B. subtilis FloA and FloT, the closely related B. licheniformis genome contains only 
one SPFH family member, the BLi02729 protein (Hinderhofer et al., 2009). As FloT may not be 
similar enough to the native flotillin, it perhaps cannot produce the same effect. For this reason, an 
overexpression of BLi02729 in the extra secYEG harboring B. licheniformis MC8.4a strain may be 
more promising.  
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PBP5 (dacA) is the most significant DD-carboxypeptidase in B. subtilis cleaving the C-terminal D-
Ala-D-Ala peptide bond of the stem peptide (Lawrence & Strominger, 1970) and thereby 
contributing to control the degree of cell wall cross-linking. Increasing PBP5 activity should reduce 
the number of cross-linkable stem peptides and a subsequent increase in cell wall mesh size. This 
would lead to a more permeable cell wall and facilitate the passage through this barrier for secreted 
protein. With this goal, an additional copy of the dacA gene, under the control of an IPTG-inducible 
promoter, was integrated at the native amyS gene locus of B. licheniformis MC6. 

Although the secretion efficiency in B. subtilis was improved in this way, no significant 
improvement could be achieved in B. licheniformis by the additionally expressed dacA gene (Fig. 
S1.4). The reason for this could be a stronger post-translational control of PBP5 by proteases in B. 

licheniformis, so that an increased expression of dacA does not lead to increased activity of the 
protein. Another explanation for the non-significant effect would be that PBP5 from B. subtilis may 
not fulfill the same effectiveness in B. licheniformis as a heterogeneously expressed protein. For this 
reason, an overexpression of the native dacA gene of B. licheniformis, may be more likely to lead to 
the intended effect on secretion.  

 

 

Figure S1.4: cells in stationary phase of growth, AmyE: strain with plasmid-based expression of 

AmyE. dacA: strain with construct amyS::Phyper-spank-dacA. If marked, 1 mM IPTG was added to 

the culture. Significance test "two-tailed T-test 
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