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Zusammenfassung

Wavelets haben große Bedeutung im Bereich der Angewandten Mathematik erlangt,
wo sich Konzepte der Numerik, der Signalanalyse sowie der Funktionalanalysis ver-
knüpfen. Der Begriff Wavelet wurde von A. Grossman und J. Morlet Anfang der
1980er Jahre eingeführt und ist eine Übersetzung des französischen Wortes “on-
delette”, welches “kleine Welle” bedeutet. Wavelets werden zur Konstruktion von
Basen des Raumes der quadratintegrierbaren Funktionen L2(Rn) verwendet. Diese
Basen entstehen durch skalieren, dilatieren und translatieren einer endlichen Menge
{ψi}i∈I von Funktionen, die auch Mother Wavelets genannt werden:

{ψi,j,k(x) := 2jn/2ψi(2
jx− k), i ∈ I, j ∈ Z, k ∈ Zn}.

Da sich Signale für gewöhnlich als Funktionen f ∈ L2(Rn) modellieren lassen,
können wir solche Basen nutzen, um eine Waveletdarstellung des Signals f zu er-
halten:

f(x) =
∑
i∈I

∑
j∈Z

∑
k∈Zn

ci,j,kψi,j,k(x). (0.1)

Die Mother Wavelets können so konstruiert werden, dass sie exponentiell abfallend
sind oder einen kompakten Träger haben. Folglich können wir eine Darstellung er-
halten, die lokal in der Zeit ist und bei der sich kleine Änderungen des Signals nur
auf wenige Koeffizienten ci,j,k auswirken. Dies ist ein Vorteil gegenüber der Fourier-
transformation, die nur im Frequenzbereich lokalisiert ist. Andere wünschenswerte
Eigenschaften sind eine hohe Anzahl an verschwindenden Momenten, welche eine
dünne Darstellung von f zur Folge hat oder Orthogonalität, welche zu einer ein-
fachen Berechnung der Koeffizienten ci,j,k führt.
Ein Beispiel für eine Waveletbasis ist die sogenannte Haar-Basis, welche von A.

Haar im Jahr 1910 konstruiert wurde, siehe [43]. Das Mother Wavelet ist definiert
durch

ψ(x) : =


1 , 0 ≤ x < 1

2
,

−1 , 1
2
≤ x < 1,

0 , sonst.

Für weitere Beispiele verweisen wir auf [75, 60, 29].
Um Waveletbasen zu konstruieren, nutzt man einen systematischen Ansatz, der

unter dem Namen Multiskalenanalyse bekannt ist. Dieser Ansatz wurde von S.
Mallat und Y. Meyer im Jahr 1986 entwickelt, siehe [57, 62].
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Zusammenfassung

Definition 0.1.
Eine Folge abgeschlossener Unterräume {Sj}j∈Z, Sj ⊂ L2(R), heißt Multiskalenana-
lyse, wenn die folgenden Bedingungen erfüllt sind:

(M1) . . . ⊂ Sj−1 ⊂ Sj ⊂ Sj+1 ⊂ . . . ,

(M2)
∞⋃

j=−∞

Sj = L2(R),

(M3)
∞⋂

j=−∞

Sj = {0},

(M4) f ∈ Sj ⇔ f(2 ·) ∈ Sj+1,

(M5) es existiert ein Generator φ ∈ S0, auch Skalierungsfunktion genannt, dessen
Translate {φ(· − k), k ∈ Z} eine Riesz-Basis für S0 bilden.

Dass die ganzzahligen Translate von φ eine Riesz-Basis für S0 bilden sollen be-
deutet, dass

S0 := span{φ(· − k), k ∈ Z} (0.2)

und dass die ganzzahligen Translate von φ stabil sind. Stabil heißt, es existieren
Konstanten C1, C2 > 0, sodass

C1∥c∥ℓ2(Z) ≤

∥∥∥∥∥∑
k∈Z

ckφ(· − k)

∥∥∥∥∥
L2(R)

≤ C2∥c∥ℓ2(Z), c = {ck}k∈Z ∈ ℓ2(Z).

Die Bedingungen (M1), (M4) und (M5) stellen sicher, dass die Skalierungsfunktion
φ verfeinerbar ist. Das bedeutet φ erfüllt die Verfeinerungsgleichung

φ(x) =
∑
k∈Z

akφ(2x− k) (0.3)

mit der Maske a = {ak}k∈Z ∈ ℓ2(Z). Aufbauend auf dem Konzept der Multiskalen-
analyse werden Wavelets als Basen der Komplementräume Wj := Sj+1 ⊖ Sj, j ∈ Z,
konstruiert. Aus den Bedingungen (M4) und (M5), bzw. (0.2), ergibt sich, dass sich
das Wavelet ψ durch die Gleichung

ψ(x) =
∑
k∈Z

bkφ(2x− k) (0.4)

bestimmen lässt.
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Zusammenfassung

Das Konzept der Multiskalenanalyse können wir leicht ins multivariate Setting
übertragen. Dazu betrachten wir das Tensorprodukt von n univariaten Multiskalen-
analysen. In diesem Fall hat der Generator die Form

φ(x) := φ(x1) · φ(x2) · . . . · φ(xn) für x = (x1, . . . , xn) ∈ Rn.

Man nennt ihn separabel. Für weitere Informationen zum Tensorproduktansatz
verweisen wir auf [58]. Ein Nachteil dieses Ansatzes ist die Fokussierung auf die
Koordinatenachsen. Diese Fokussierung kann Probleme in Anwendungen wie der
Bildanalyse verursachen, bei der es darauf ankommt, mehr als nur horizontale
und vertikale Strukturen zu erkennen. Einen Ausweg stellt die Wahl eines nicht
separablen Generators dar. Wir verweisen an dieser Stelle auf die Lehrbücher
[62, 29, 18, 81, 64], welche eine gute Übersicht zum Thema univariate und mul-
tivariate Wavelets ermöglichen.
Darüber hinaus ist es vorteilhaft, das Konzept der Multiskalenanalyse zu verall-

gemeinern. In (0.1) ist es wünschenswert, die notwendigen Berechnungen zu re-
duzieren. Eine Möglichkeit dies zu tun, ist die Anzahl an Mother Wavelets, bzw.
die Kardinalität von I, zu reduzieren. Dies erreicht man durch das Einbinden von
expandierenden Matrizen mit ganzzahligen Einträgen in die multivariate Variante
von Bedingung (M4). Diese Matrizen nennt man Dilations- oder Skalierungsma-
trizen und deren Determinante bestimmt die Anzahl an Mother Wavelets. Es gilt
die Formel | detM | − 1, siehe [61]. In der Literatur wurde der Fall M = 2I über
die Jahre eingehend studiert. Bei dieser Skalierungsmatrix werden 2n − 1 Mother
Wavelets benötigt. Wir sehen, dass ein Anstieg der Raumdimension n einen expo-
nentiellen Anstieg der benötigten Anzahl an Mother Wavelets zur Folge hat. Aus
diesem Grund ist man daran interessiert, eine Skalierungsmatrix mit kleiner Deter-
minante in den Konstruktionsprozess einzubinden. Ein weiterer Vorteil von allge-
meinen Skalierungsmatrizen ist, dass sich die oben beschriebene Fokussierung auf
die Koordinatenachsen durch Einbau einer Rotationskomponente abmildern lässt.
Neben der Wahl eines geeigneten Dilationsparameters ist die Wahl eines geeigne-

ten Generators wichtig. Das liegt daran, dass das Wavelet einen Großteil seiner
Eigenschaften vom Generator erbt. Jedoch gibt es spezielle Kombinationen von
Eigenschaften, wie orthogonal und interpolierend zu sein oder orthogonal und sym-
metrisch mit kleinem Träger und Approximationsordnung größer eins zu sein, die ein
Generator alleine nicht besitzen kann, siehe [29, 53, 74]. Dieses Problem lässt sich
lösen, indem man die Anzahl an Generatoren erhöht, siehe beispielsweise [53, 40, 66].
In diesem Zusammenhang spricht man von einer Multiskalenanalyse mit Vielfach-
heit. Diese wurde in [3, 41, 46] Anfang der 1990er Jahre eingeführt. Wavelets,
die mithilfe einer solchen Multiskalenanalyse konstruiert werden, nennt man Mul-
tiwavelets. Wir bemerken, dass ein Anstieg der Generatoren auch einen Anstieg
der Anzahl benötigter Mother Wavelets zur Folge hat. Insgesamt benötigen wir
(| detM | − 1)N Mother Wavelets, wobei N für die Anzahl an Generatoren steht,
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Zusammenfassung

siehe [16, 82]. Für N > 1 ist diese Formel jedoch nicht für den Tensorprodukt-
ansatz gültig. In Beispiel 3.1 dieser Arbeit zeigen wir auf, dass im Fall M = 2I
sogar (2n−1)N2 Mother Wavelets benötigt werden. Für weitere Informationen zum
Thema Multiwavelets verweisen wir den Leser auf [52, 67].
Abhängig von den gewünschten Eigenschaften der (Multi)Waveletbasis, ist der

Konstruktionsprozess mehr oder weniger restriktiv. Um eine kompakt getragene, or-
thornomale Waveletbasis zu erhalten, benötigt man einen kompakt getragenen Gene-
rator mit orthonormalen Translaten. Es ist notwendig, dass die Translate orthonor-
mal sind, denn ansonsten würde das Durchführen einer Orthogonalisierungsproze-
dur den Verlust des kompakten Trägers verursachen. Die Konstruktion eines solchen
Generators ist alles andere als trivial wie I. Daubechies in [28] für den Fall n = 1
aufzeigt. Wie in [21] nachgewiesen, ist bereits eine Anpassung ihrer Methode für
die Dimension 2 mit großen Einschränkungen verbunden. Das führt uns zu den
sogenannten Pre-Wavelets, welche von G. Battle eingeführt wurden, siehe [7] und
Definition 1 in [8]. Eine Waveletbasis ist eine Pre-Waveletbasis, falls

⟨ψi,j,k, ψi′,j′,k′⟩L2(Rn) = 0 für j ̸= j′, j, j′ ∈ Z, i, i′ ∈ I endlich, k, k′ ∈ Zn,

erfüllt ist. Das bedeutet, es liegt nur Orthogonalität zwischen verschiedenen Skalen
vor. Aus diesem Grund ist es eine schwächere Bedingung als die Orthonormalitäts-
bedingung

⟨ψi,j,k, ψi′,j′,k′⟩L2(Rn) = δi,i′ δj,j′ δk,k′ , i, i′ ∈ I endlich, j, j′ ∈ Z, k, k′ ∈ Zn.

Das hat den Vorteil, dass wir an Flexibilität gewinnen und der kompakte Träger
eines Generators ohne große Einschränkungen erhalten werden kann.
Aufbauend auf den vorherigen Ausführungen ist diese Arbeit durch die folgenden

zwei Fragestellungen motiviert:

(Q1) Was sind Minimalanforderungen, sodass eine Konstruktion von Pre-Wavelet-
basen und Pre-Multiwaveletbasen noch möglich ist?

(Q2) Wie können wir die Anzahl an Mother-Wavelets minimieren?

Frage (Q1) ist von theoretischem Interesse. Sie zielt darauf ab, die Grenzen der
Theorie aufzuzeigen. Frage (Q2) ist von theoretischem und praktischem Interesse.
Reduziert man die Anzahl an Mother Wavelets, so werden weniger Berechnungen
in Anwendungen benötigt. Darüber hinaus sind wir in dieser Arbeit hauptsächlich
daran interessiert, kompakt getragene Pre-(Multi)Wavelets ausgehend von kompakt
getragenen Generatoren zu konstruieren. Die Kombination von kompaktem Träger
und einer minimalen Anzahl an Mother Wavelets ist unter anderem in der Signal-
und Bildverarbeitung von besonderem Interesse. Hier ist es so, dass die Wavelet-
Zerlegung eines Signals mittels Hochpass- und Tiefpassfiltern erfolgt, wobei diese aus
den Koeffizienten der Verfeinerungsgleichung (0.3) bzw. der Funktionalgleichung des
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Zusammenfassung

Wavelets (0.4) gewonnen werden, siehe [57]. Diese Gleichungen haben für allgemeine
Skalierungsmatrizen die Form

φ(x) =
∑
k∈Zn

akφ(Mx− k)

sowie

ψi(x) =
∑
k∈Zn

bi,kφ(Mx− k), 1 ≤ i ≤ detM − 1.

Der kompakte Träger der Generatoren reduziert für gewöhnlich die Länge der Folge
{ak}k∈Zn und daher die Länge des Tiefpassfilters. Der kompakte Träger des Wavelets
hingegen reduziert für gewöhnlich die Länge der Folge {bi,k}k∈Zn , 1 ≤ i ≤ detM −1,
und daher die Länge des Hochpassfilters. Zusätzlich resultiert eine Minimierung
von detM − 1, bzw. eine Minimierung der Anzahl von Mother Wavelets, in einer
Minimerung der Anzahl an Hochpassfiltern insgesamt.
Im Hinblick auf die Frage (Q1) reduzieren wir die Annahmen, die in der Defini-

tion der Multiskalenanalyse getroffen werden, auf die multivariaten Versionen von
(M1), (M2) und (M3). In diesem Zusammenhang sprechen wir von einer verallge-
meinerten Multiskalenanalyse. Anzumerken ist, dass diese Definition einer verall-
gemeinerten Multiskalenanalyse nicht mit der in der Literatur geläufigen Definition
übereinstimmt, siehe [6, 59]. Hier ist eine verallgemeinerte Multiskalenanalyse eines
separablen Hilbertraums H als Folge abgeschlossener Räume {Sj}j∈Z in H definiert,
sodass Folgendes gilt:

(1) Sj ⊂ Sj+1,

(2)
∞⋃

j=−∞

Sj = H,

(3)
∞⋂

j=−∞

Sj = {0},

(4) δ(Sj) = Sj+1,

(5) S0 ist invariant unter der Anwendung von Υ,

wobei Υ eine abzählbare, abelsche Gruppe unitärer Operatoren auf H ist und δ ein
unitärer Operator auf H ist, sodass δ−1Υ δ ⊂ Υ gilt. Mit anderen Worten: Die Au-
toren in [6] haben Translation und Dilation durch allgemeinere Operatoren ersetzt.
Darüber hinaus ist einer der Hauptunterschiede zu unserer Definition die Existenz
der Annahme (4). Daher sprechen wir hier von einer stationären Multiskalenana-
lyse, während unsere Definition als nicht stationäre Multiskalenanalyse klassifiziert
werden kann.
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Zusammenfassung

Im Hinblick auf die Frage (Q2) binden wir eine Skalierungsmatrix in unser Setting
ein. Dies erfolgt durch das Hinzufügen der Annahme, dass die Räume {Sj}j∈Z M−j-
shift-invariante Räume sein sollen. Zusammenfassend erhalten wir die nachfolgende
Definition.

Definition 0.2.
Eine Folge abgeschlossener,M−j-shift-invarianter Unterräume {Sj}j∈Z, Sj ⊂ L2(Rn),
heißt verallgemeinerte Multiskalenanlayse, wenn die folgenden Bedingungen erfüllt
sind:

(M1) . . . ⊂ Sj−1 ⊂ Sj ⊂ Sj+1 ⊂ . . . ,

(M2)
∞⋃

j=−∞

Sj = L2(Rn),

(M3)
∞⋂

j=−∞

Sj = {0}.

Dieser Ansatz ist inspiriert durch Resultate von C. de Boor, R. A. DeVore und
A. Ron. In [30] konstruierten sie kompakt getragene und stabile multivariate Pre-
Wavelets. Ihre Konstruktionen passen in unser Setting für den Spezialfall M = 2I.
Aus diesem Grund sind wir bestrebt, verallgemeinerte Konstruktionsprozeduren
für allgemeine Skalierungsmatrizen zu finden, welche uns Pre-Wavelets und Pre-
Multiwavelets liefern. Neben [30] gibt es weitere Publikationen, die rund um das
Thema Pre-(Multi)Wavelets und Skalierungsmatrizen erschienen sind. Das Haupt-
interesse galt hier der stationären Multiskalenanalyse mit einem Generator und
M = 2I. In diesem Setting haben sowohl Micchelli [63] als auch Chui und Wang [20]
die Existenz von kompakt getragenen univariaten Pre-Wavelets untersucht. Dabei
nahmen sie an, dass der Generator φ ganzzahlige stabile Translate besitzt und sowohl
verfeinerbar als auch kompakt getragen ist. Im multivariaten Setting beschäftigten
sich Jia and Micchelli [49] mit der Existenz von stabilen Pre-Wavelets. Die zugrunde-
liegenden Annahmen an den Generator waren seine Verfeinerbarkeit mit einer Maske
a in ℓ1(Zn), Stabilität seiner ganzzahligen Translate und

∑
k∈Zn |φ(·−k)| ∈ L2(T

n).
Des Weiteren konstruierten sie kompakt getragene Pre-Wavelets unter der Annahme,
dass φ kompakt getragen ist. Wir merken an, dass diese Ergebnisse auf der Erwei-
terbarkeit einer endlichen Menge von Laurentpolynomen und dem Quillen-Suslin
Theorem beruhen, siehe [68, 77]. In [54] erweiterte M.-J. Lai die Annahmen von
Micchelli, bzw. Chui und Wang, und konstruierte kompakt getragene und stabile
Pre-Wavelets. Darüber hinaus beschäftigte sich R. A. Zalik mit der Konstruktion
von Pre-Multiwavelets im Fall einer stationären Multiskalenanalyse und einer allge-
meinen Skalierungsmatrix. In [82] leitete er in dem soeben beschriebenen Setting
eine explizite Darstellung der Fouriertransformation von stabilen Pre-Multiwavelets
her.
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Zusammenfassung

Im Gegensatz zu den vorgenannten Publikationen, reduzieren wir die anfänglichen
Annahmen durch Verwendung der verallgemeinerten Multiskalenanalyse, siehe Defi-
nition 0.2. Bei der Konstruktion von Pre-Wavelets in Kapitel 6 ist unsere Hauptan-
nahme

supp φ̂j = Rn, j ∈ Z,

wobei φj der Generator des Raumes Sj sei und φ̂j die Fouriertransformierte dieses
Generators. Dies ist keine besonders restriktive Annahme. Im Hinblick auf prak-
tische Anwendungen ist man daran interessiert, mit gut lokalisierten Funktionen
zu arbeiten, das heißt Funktionen mit kompaktem Träger. In diesem Fall besagt
das Paley-Wiener Theorem, dass der Träger der Fouriertransformierten ganz Rn ist.
Außerdem ist zu betonen, dass wir nicht annehmen, dass eine Verfeinerungsgleichung
der Form

φj =
∑
k∈Zn

ak φj+1(·+M−(j+1)k) (0.5)

gilt, wobei a eine Folge in ℓ2(Zn) ist. Wir hingegen arbeiten mit einer Gleichung der
Form

φ̂j = A φ̂j+1, (0.6)

wobei A 2π(MT )j+1Zn-periodisch ist. Diese folgt direkt aus der Schachtelung der
M−j-shift-invarianten Räume, siehe Kapitel 4. Die Gleichung (0.5) ist nicht äquiva-
lent zu der Gleichung (0.6). Angenommen φj+1 besitztM

−(j+1)Zn-stabile Translate,
dann ist (0.5) äquivalent zu

φ̂j = Aφ̂j+1, A :=
∑
k∈Zn

ake
i⟨ · ,−M−(j+1)k⟩ ∈ L2(C̃j+1),

wobei C̃j+1 := (MT )j+1[−π, π)n, siehe [35]. Im Gegensatz dazu könnten wir die

Funktion A in (0.6) so wählen, dass sie nicht lokal quadrat-integrierbar auf C̃j+1 ist.
Wenn es um die Konstruktion von Pre-Multiwavelets geht, nimmt (0.6) die FormÖ

φ̂j1
...

φ̂jN

è
= Ã

Ö
φ̂j+1
1
...

φ̂j+1
N

è
an. Hierbei ist Ã eine Matrix mit 2π(MT )j+1Zn-periodischen Funktionen als Einträ-
gen und φj1, . . . , φ

j
N sind die Generatoren des Raumes Sj, j ∈ Z. Daneben haben wir

zwei Hauptannahmen. Die erste Annahme besteht darin, dass spezielle Translate
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Zusammenfassung

der Generatoren in Φj := {φj1, . . . , φ
j
N} eine Basis für den Raum Sj+1(Φj+1) liefern.

Die zweite Annahme ist eine Gleichung der FormÖ
φ̂j+1
1
...

φ̂j+1
N

è
= Γ

Ö
φ̂j1
...

φ̂jN

è
, j ∈ Z,

wobei Γ eine quadratische Matrix ist, welche fast überall nicht-singulär ist und
2π(MT )j+1Zn-periodische Einträge besitzt. Weitere Details sind in Kapitel 7 zu
finden.
Diese Arbeit ist wie folgt aufgebaut: In Kapitel 1 führen wie Lebesgue- und

Hilberträume sowie fundamentale Hilfsmittel ein, die wir stets benötigen werden. In
Kapitel 2 stellen wir dem Leser zunächst das klassische multivariate Wavelet-Setting
vor, bei dem man mit einem Generator und der SkalierungsmatrixM = 2I arbeitet.
Im Hinblick auf die Fragen (Q1) und (Q2) verallgemeinern wir dieses Setting in Kapi-
tel 3. Insbesondere führen wir hier das Konzept der verallgemeinerten Multiskalen-
analyse ein. Die Räume in dieser Art Multiskalenanalyse sind so gewählt, dass sie
M−j-shift-invariant sind, wobei M einer allgemeinen Skalierungsmatrix entspricht.
Dabei unterscheiden wir, ob die Räume von einem oder von mehreren Generatoren
erzeugt werden. In Kapitel 4 werden wir beide Arten von shift-invarianten Räumen
charakterisieren und wir werden analysieren, wann diese die Bedingungen (M2) und
(M3) erfüllen. Anschließend diskutieren wir in Kapitel 5 orthogonale Projektionen
von Funktionen des Raumes L2(Rn) auf shift-invariante Räume und wie man eine
explizite Darstellung ihrer Fouriertransformation herleiten kann. Dies ist wichtig für
die nachfolgenden zwei Kapitel, die der eigentlichen Konstruktion von Pre-Wavelets
und Pre-Multiwavelets gewidmet sind. In Kapitel 6 beschäftigen wir uns mit der
Konstruktion von kompakt getragenen Pre-Wavelets. Wir verdeutlichen unseren
Konstruktionsprozesss durch ein Beispiel, bei dem wir exponentielle Box-Splines als
Generatoren für die Räume Sj, j ∈ Z, wählen. Der Vorteil von exponentiellen Box-
Splines im Zusammenhang mit nicht-stationären Multiskalenanalysen ist, dass sie
für die Reproduktion von trigonometrischen Funktionen verwendet werden können,
siehe [23]. Im Anschluss diskutieren wir die Konstruktion von stabilen Pre-Wavelets.
In Kapitel 7 verallgemeinern wir unsere Konstruktionsprozedur für kompakt getra-
gene Pre-Wavelets um kompakt getragene Pre-Multiwavelets zu erhalten. Genauer
gesagt konstruieren wir Pre-Multiwavelets für den Fall, dass die Räume Sj, j ∈ Z,
endlich viele Generatoren besitzen und wir konstruieren kompakt getragene Pre-
Multiwavelets für den Fall, dass wir zwei oder drei Generatoren pro Raum Sj haben.
Wir beobachten, dass dieser Zuwachs an Generatoren von einem Zuwachs an An-
nahmen an die Generatoren begleitet wird. Neben der Verallgemeinerung der Kon-
struktionsprozedur verallgemeinern wir des Weiteren auch das Beispiel mit den ex-
ponentiellen Box Splines aus dem vorherigen Kapitel. Abschließend ziehen wir ein
Fazit und diskutieren offene Probleme und Ideen für die zukünftige Forschung.
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Zusammenfassung

Zusammenfassend lassen sich die Fragen (Q1) und (Q2) wie folgt beantworten:

(Q1) Während des Verallgemeinerungsprozesses der Resultate in [30] für eine allge-
meine Skalierungsmatrix und endlich viele Generatoren, begegnen wir eini-
gen Schwierigkeiten. Eine der größten Schwierigkeiten tritt auf, wenn es
darum geht sicherzustellen, dass die Determinante einer Grammatrix, welche
sich aus speziellen Translaten der Generatoren von S0 ergibt, ungleich 0 ist.
Für nähere Informationen verweisen wir auf die Abschnitte 6.1.1 und 7.1.1.
Für einen Generator ist dies unter einer relativ schwachen Annahme möglich,
siehe Korollar 6.1.9. Für zwei und drei Generatoren hingegen müssen bereits
komplexere Abschätzungen erfüllt sein, siehe (7.4) und (7.5). Für endlich
viele Generatoren verschärft sich die Situation weiter, siehe (7.1). Daher
müssen wir eine eher starke Annahme an die Generatorenmengen der Räume
Sj hinzufügen. Darüber hinaus ist es alles andere als trivial, die Konstruktions-
prozedur einer kompakt getragenen Basis in das Setting mit zwei bzw. drei
Generatoren pro Raum Sj zu verallgemeinern, siehe Theorem 7.1.10. Dies
weist alles darauf hin, dass es nicht möglich erscheint, die Annahmen in der
Definition der verallgemeinerten Multiskalenanalyse noch weiter zu reduzieren.

(Q2) Wir schaffen es, eine allgemeine Skalierungsmatrix in unseren Konstruktions-
prozess einzubauen. Daher ist es möglich, die Anzahl an benötigten Mother
Wavelets zu minimieren, indem man eine Skalierungsmatrix mit Determinante
±2 auswählt.
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Introduction

Wavelets have become a very powerful tool in the field of applied mathematics where
concepts of numerics, signal analysis and functional analysis are brought together.
The term “wavelet” was first introduced by A. Grossman and J. Morlet in the early
1980s and it is a translation of the french word “ondelette” which means “little
wave”. Wavelets are used to construct bases for the space of square integrable
functions L2(Rn). These bases are obtained by scaling, dilating and shifting a finite
set {ψi}i∈I of functions, also referred to as mother wavelets :

{ψi,j,k(x) := 2jn/2ψi(2
jx− k), i ∈ I, j ∈ Z, k ∈ Zn}.

Since signals are usually modeled by a function f ∈ L2(Rn), we can use such bases
to obtain a wavelet representation of a signal f :

f(x) =
∑
i∈I

∑
j∈Z

∑
k∈Zn

ci,j,kψi,j,k(x). (0.7)

The mother wavelets can be constructed such that they are exponentially decaying
or compactly supported. Hence, we may obtain a representation which is local in
the time domain and small changes in the signal affect only a few coefficients ci,j,k.
This is an advantage in comparison to the Fourier Transform which is only localized
in the frequency domain. Other desirable properties are a high number of vanishing
moments which results in a sparse representation of f or orthogonality which leads
to an easy computation of the coefficients ci,j,k.
An example of a wavelet basis is the so-called Haar-basis which was constructed

by A. Haar in 1910, see [43]. The mother wavelet is given by

ψ(x) : =


1 , 0 ≤ x < 1

2
,

−1 , 1
2
≤ x < 1,

0 , otherwise.

For more examples we refer the reader to [75, 60, 29].
In order to construct wavelet bases one uses a systematic approach called mul-

tiresolution analysis which was developed by S. Mallat and Y. Meyer in 1986, see
[57, 62].

Definition 0.3.
A sequence of closed subspaces {Sj}j∈Z, Sj ⊂ L2(R), is called multiresolution anal-
ysis if the following conditions are fulfilled:

1
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(M1) . . . ⊂ Sj−1 ⊂ Sj ⊂ Sj+1 ⊂ . . . ,

(M2)
∞⋃

j=−∞

Sj = L2(R),

(M3)
∞⋂

j=−∞

Sj = {0},

(M4) f ∈ Sj ⇔ f(2 ·) ∈ Sj+1,

(M5) there exists a generator φ ∈ S0, also called scaling function, whose translates
{φ(· − k), k ∈ Z} provide a Riesz basis for S0.

By saying that the integer translates of φ provide a Riesz basis for S0, we mean
that

S0 := span{φ(· − k), k ∈ Z}

and that the integer translates of φ are stable, i.e., there exist constants C1, C2 > 0
such that

C1∥c∥ℓ2(Z) ≤

∥∥∥∥∥∑
k∈Z

ckφ(· − k)

∥∥∥∥∥
L2(R)

≤ C2∥c∥ℓ2(Z), c = {ck}k∈Z ∈ ℓ2(Z).

Conditions (M1), (M4) and (M5) ensure that the scaling function φ is refinable.
This means that φ satisfies the refinement equation

φ(x) =
∑
k∈Z

akφ(2x− k), (0.8)

with the mask a = {ak}k∈Z ∈ ℓ2(Z). Based on the concept of multiresolution
analysis, wavelets are constructed such that they provide bases for the complement
spaces Wj := Sj+1 ⊖ Sj, j ∈ Z. Hence, conditions (M4) and (M5) yield that the
wavelet ψ can be determined by the equation

ψ(x) =
∑
k∈Z

bkφ(2x− k). (0.9)

The concept of multiresolution analysis can be easily transferred to the multi-
variate setting by considering the tensor product of n univariate multiresolution
analyses. Then the generator is of the form

φ(x) := φ(x1) · φ(x2) · . . . · φ(xn) for x = (x1, . . . , xn) ∈ Rn.

2
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Such a generator is called separable. For more details concerning the tensor product
approach see [58]. However, this approach leads to a bias towards the coordinate
axes. This bias can cause problems in applications like image analysis where it is
important to detect not only horizontal or vertical structures. To overcome this
problem we can work with a non-separable generator. We refer the reader to the
textbooks [62, 29, 18, 81, 64] for a good overview of univariate and multivariate
wavelets.

It is beneficial to generalize the concept of multiresolution analysis. In (0.7) it is
desirable to reduce computations to a minimum. One possibility is to reduce the
number of mother wavelets which is equivalent to reducing the cardinality of I. This
can be done by incorporating expanding integer matrices M into the multivariate
counterpart of condition (M4). These matrices are called dilation or scaling matrices
and their determinant is related to the number of mother wavelets by the formula
| detM | − 1, see [61]. In literature the case M = 2I was intensively studied over
the years. This choice for the dilation matrix leads to 2n − 1 mother wavelets. We
observe that as we increase the spatial dimension n, the number of mother wavelets
increases exponentially. Hence, one is interested in incorporating a dilation matrix
with a small determinant into the construction procedure. Another advantage of
general scaling matrices is that the bias towards the coordinate axes can be reduced
by incorporating a rotation component.

Besides the choice of an appropriate dilation parameter, the choice of an appro-
priate generator is important. This is due to the fact that wavelets inherit most of
their properties from their generator. But there are specific combinations of proper-
ties like being orthogonal and interpolating that a single generator cannot possess.
Another example is orthogonality and symmetry with small support and approx-
imation order greater than one, see [29, 53, 74]. This problem can be overcome
by an increase of the number of generators, see, e.g., [53, 40, 66]. In this context
we talk about multiresolution analyses with multiplicity which were introduced in
[3, 41, 46] in the early 1990s. Wavelets which are constructed with such multires-
olution analyses are called multiwavelets. However, more generators lead to more
mother wavelets. In total, we need (| detM | − 1)N mother wavelets where N de-
notes the number of generators, see [16, 82]. This formula does not remain valid for
the tensor product approach if N > 1. In Example 3.1 of this work we derive that
(2n − 1)N2 mother wavelets are required in case M = 2I. For more information on
multiwavelets we refer the reader to [52, 67].

In general, the construction procedure of a (multi)wavelet basis is more or less
restrictive depending on the desired properties of the basis. In order to obtain a
compactly supported and orthonormal wavelet basis, a compactly supported gen-
erator with orthonormal shifts is needed. Orthonormality of the shifts is necessary
because otherwise an orthogonalization procedure would cause the loss of the de-
sired compact support. The construction of such a generator is far from being trivial
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as I. Daubechies illustrates in [28] for n = 1. As shown in [21], an adaptation of
her method for two dimensions is already accompanied by major restrictions. This
brings us to the so-called pre-wavelets which were introduced by G. Battle, see [7]
and Definition 1 in [8]. A wavelet basis is called pre-wavelet basis if

⟨ψi,j,k, ψi′,j′,k′⟩L2(Rn) = 0 for j ̸= j′, j, j′ ∈ Z, i, i′ ∈ I finite, k, k′ ∈ Zn,

is satisfied, i.e., we only have orthogonality between different scales. Hence, it is a
weaker condition in comparison to the orthonormality condition

⟨ψi,j,k, ψi′,j′,k′⟩L2(Rn) = δi,i′ δj,j′ δk,k′ , i, i′ ∈ I finite, j, j′ ∈ Z, k, k′ ∈ Zn.

This additional flexibility allows to preserve compact support without major restric-
tions.
Based on the above considerations, this work is mainly motivated by the following

two questions:

(Q1) What are minimal requirements such that a construction of multivariate pre-
wavelet and pre-multiwavelet bases is still possible?

(Q2) How can we minimize the number of mother wavelets?

Question (Q1) is of theoretical interest. It aims to detect limitations of the existing
theory. Question (Q2) is of theoretical and practical interest. Reducing the num-
ber of mother wavelets leads to less computations in applications. Moreover, we
are mainly interested in constructing compactly supported pre-(multi)wavelets from
compactly supported scaling functions in this work. The combination of compact
support and a minimal number of mother wavelets is of special interest in signal
and image analysis for instance. In this field high-pass and low-pass filters are used
to obtain the wavelet decomposition of a signal. These filters are obtained from the
coefficients of the refinement equation (0.8) and the functional equation (0.9), see
[57]. For general dilation matrices these equations turn into

φ(x) =
∑
k∈Zn

akφ(Mx− k)

and

ψi(x) =
∑
k∈Zn

bi,kφ(Mx− k), 1 ≤ i ≤ detM − 1.

Compact support of the generator usually reduces the length of the sequence {ak}k∈Zn

and as a result the length of the low-pass filter. Compact support of the wavelets
usually reduces the length of the sequences {bi,k}k∈Zn , 1 ≤ i ≤ detM − 1, and as
a result the length of the high-pass filters. In addition, minimizing the number of
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mother wavelets, i.e., minimizing detM − 1, leads to a minimization of the total
number of high-pass filters.
In view of (Q1), we reduce the assumptions made in the definition of the multires-

olution analysis. We only assume that the multivariate versions of conditions (M1),
(M2) and (M3) hold. In this context we talk about a generalized multiresolution
analysis. We remark that this definition does not coincide with the definition usually
found in the literature, see [6, 59]. Here, a generalized multiresolution analysis of a
separable Hilbert space H is a sequence of closed subspaces {Sj}j∈Z of H such that

(1) Sj ⊂ Sj+1,

(2)
∞⋃

j=−∞

Sj = H,

(3)
∞⋂

j=−∞

Sj = {0},

(4) δ(Sj) = Sj+1,

(5) S0 is invariant under the action of Υ,

where Υ is a countable abelian group of unitary operators on H and δ is a unitary
operator on H such that δ−1Υ δ ⊂ Υ. In other words, the authors in [6] replaced
translations and dilation by more general operators. Moreover, we observe that
the main difference to our definition of a generalized multiresolution analysis is the
existence of assumption (4). Therefore, we talk about a stationary multiresolution
analysis while our definition can be classified as a non-stationary multiresolution
analysis.
In view of (Q2), we incorporate a dilation matrix into our setting by assuming

that the spaces {Sj}j∈Z are M−j-shift-invariant spaces. In summary, we obtain the
subsequent definition.

Definition 0.4.
A sequence of closed, M−j-shift-invariant subspaces {Sj}j∈Z, Sj ⊂ L2(Rn), is called
generalized multiresolution analysis if the following conditions are fulfilled:

(M1) . . . ⊂ Sj−1 ⊂ Sj ⊂ Sj+1 ⊂ . . . ,

(M2)
∞⋃

j=−∞

Sj = L2(Rn),

(M3)
∞⋂

j=−∞

Sj = {0}.

5
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This approach is inspired by the work of C. de Boor, R. A. DeVore and A. Ron.
In [30] they constructed compactly supported and stable multivariate pre-wavelets.
Their constructions fit into our setting for the special case M = 2I. Hence, we
are eager to find generalized construction procedures for arbitrary dilation matri-
ces which lead to pre-wavelets and pre-multiwavelets. Besides [30] there are more
publications which evolved around pre-(multi)wavelets and dilation matrices. The
main interest centered around stationary multiresolution analysis with one genera-
tor andM = 2I. In this setting Micchelli [63] as well as Chui and Wang [20] studied
the existence of univariate compactly supported pre-wavelets in case φ is refinable,
compactly supported and has stable integer translates. In the multivariate setting
Jia and Micchelli [49] studied the existence of stable pre-wavelets under the assump-
tion that φ is refinable with a mask a ∈ ℓ1(Zn), φ has stable integer translates and∑

k∈Zn |φ(· − k)| is in L2(T
n). Moreover, compact support was obtained in case

φ is compactly supported. We remark that their investigations are based on the
notion of extensibility of a finite set of Laurent polynomials and the Quillen-Suslin
Theorem, see [68, 77]. In [54] M.-J. Lai extended the assumptions of Micchelli, Chui
and Wang, and constructed compactly supported and stable pre-wavelets. Besides
that, R. A. Zalik was concerned with pre-multiwavelets in case of a stationary mul-
tiresolution analysis and an arbitrary dilation matrix. In [82] he derived an explicit
representation of the Fourier transform of stable pre-multiwavelets associated with
such a multiresolution analysis.
In contrast to the aforementioned papers, we reduce the amount of initial as-

sumptions by using the generalized multiresolution analysis defined in Definition
0.4. When it comes to the construction of pre-wavelets in Chapter 6, our main
assumption is

supp φ̂j = Rn, j ∈ Z,

where φj is the generator of the space Sj with Fourier transform φ̂j. This is not a
very restrictive assumption. For practical applications one is interested in working
with well-localized functions, i.e., functions with compact support. Due to the Paley-
Wiener Theorem, such functions have a Fourier transform supported on Rn. Besides
that, we emphasize that we do not assume to have a refinement equation of the form

φj =
∑
k∈Zn

ak φj+1(·+M−(j+1)k), (0.10)

where a is a sequence in ℓ2(Zn). Instead, we work with an equation of the form

φ̂j = A φ̂j+1, (0.11)

where A is 2π(MT )j+1Zn-periodic. Formula (0.11) holds true in our setting due
to the fact that we work with nested M−j-shift-invariant spaces, see Chapter 4.

6
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Notice that (0.10) is not equivalent to (0.11). To this end, suppose that φj+1 has
M−(j+1)Zn-stable shifts. Then (0.10) is equivalent to

φ̂j = Aφ̂j+1, A :=
∑
k∈Zn

ake
i⟨ · ,−M−(j+1)k⟩ ∈ L2(C̃j+1),

where C̃j+1 := (MT )j+1[−π, π)n, see [35]. In contrast, (0.11) would allow us to

choose A such that it is not locally square-integrable on C̃j+1. When it comes to
the construction of pre-multiwavelets, (0.11) turns intoÖ

φ̂j1
...

φ̂jN

è
= Ã

Ö
φ̂j+1
1
...

φ̂j+1
N

è
.

Here, Ã is a matrix with 2π(MT )j+1Zn-periodic functions as entries and φj1, . . . , φ
j
N

are the generators for the space Sj, j ∈ Z. Besides that we have two main as-
sumptions. The first assumption states that special translates of the generators in
Φj := {φj1, . . . , φ

j
N} provide a basis for the space Sj+1(Φj+1). The second assumption

is an equation of the formÖ
φ̂j+1
1
...

φ̂j+1
N

è
= Γ

Ö
φ̂j1
...

φ̂jN

è
, j ∈ Z,

where Γ is a quadratic matrix which is non-singular almost everywhere and has
2π(MT )j+1Zn-periodic entries. For more details see Chapter 7.
This thesis is organized as follows. In Chapter 1 we introduce Lebesgue and

Hilbert spaces as well as fundamental tools which we use throughout this thesis.
In Chapter 2 we present the classical multivariate wavelet setting where one works
with a single generator and the dilation matrix M = 2I. In view of (Q1) and (Q2),
we then generalize this setting in Chapter 3. In particular, we introduce the con-
cept of a generalized multiresolution analysis. The spaces {Sj}j∈Z in this kind of
multiresolution analysis are chosen to be M−j-shift-invariant spaces where M is an
arbitrary dilation matrix. In case these spaces are generated by a single function we
talk about principal shift-invariant spaces and in case they are generated by finitely
many functions we talk about finitely generated shift-invariant spaces. In Chapter 4
we characterize both types of shift-invariant spaces and analyse under which assump-
tions they fulfill conditions (M2) and (M3). Next, we discuss in Chapter 5 orthogonal
projections of functions in L2(Rn) onto such spaces and how we can derive explicit
representations of their Fourier transforms. This is important for the following two
chapters which are dedicated to the actual construction of pre-wavelets and pre-
multiwavelets. In Chapter 6 we are concerned with the construction of compactly

7
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supported pre-wavelets. We illustrate our construction procedure by an example
where we choose exponential box splines as generators for the spaces Sj, j ∈ Z. The
advantage of exponential box splines in the context of a non-stationary multireso-
lution analysis is that they can be used to reproduce trigonometric functions, see
[23]. Afterwards, we also discuss the construction of stable pre-wavelets. In Chapter
7 we generalize the construction procedure of compactly supported pre-wavelets in
order to obtain compactly supported pre-multiwavelets. More precisely, we con-
struct pre-multiwavelets in case the spaces Sj, j ∈ Z, have finitely many generators
and we construct compactly supported pre-multiwavelets in case each space Sj has
two or three generators. We observe that this increase in generators is accompa-
nied by additional assumptions concerning the generators. Besides generalizing the
construction procedure, we also generalize the example concerning exponential box
splines from the previous chapter. Finally, we draw conclusions and discuss open
problems and ideas for future research.
In summary, we can answer the questions (Q1) and (Q2) as follows:

(Q1) During the process of generalizing the results from [30] for a general dilation
matrix and finitely many generators, we encounter several difficulties. One
of the main tasks is to provide sufficient conditions such that the Gramian
matrix corresponding to special translates of the generators of S0 is nonzero,
see Section 6.1.1 and Section 7.1.1. For a single generator this is possible
under a mild assumption but for two and three generators more sophisticated
estimates have to be fulfilled, see Corollary 6.1.9, (7.4) and (7.5). For finitely
many generators the situation is even more complex, see (7.1). Hence, we
have to add a rather strong assumption concerning the generator sets. Besides
that, it is far from being trivial to generalize the construction procedure of a
compactly supported basis such that it is applicable in the setting where each
space Sj has two or three generators, see Theorem 7.1.10. This indicates that
it seems not possible to reduce the assumptions made in the definition of a
generalized multiresolution analysis any further.

(Q2) We manage to incorporate a general dilation matrix into our construction
procedures. Hence, we can minimize the number of required mother wavelets
by choosing a dilation matrix with determinant ±2.

8



Chapter 1

Preliminaries

This chapter is dedicated to the repetition and introduction of mathematical con-
cepts which are important for this thesis. It is divided into three sections which
address Lebesgue and Hilbert spaces, the Fourier transform and the bracket prod-
uct.

1.1 Lebesgue and Hilbert Spaces

In this section we define Lebesgue and Hilbert spaces. Moreover, we introduce
the notion of orthogonal projections in Hilbert spaces. We close this section by
summarizing some auxiliary results which we will need in Chapter 4.

Definition 1.1.1.
For 1 ≤ p ≤ ∞, we define the space

Lp(Rn) :=
{
f : Rn → Cmeasurable

∣∣∣ ∥f∥Lp(Rn) <∞
}
,

where the (semi-)norm ∥ · ∥Lp(Rn) is given by

∥f∥Lp(Rn) : =

(∫
Rn

|f(x)|p dx

)1/p

, p <∞,

∥f∥L∞(Rn) : = ess sup
x∈Rn

|f(x)| <∞.

In addition, we define the following equivalence relation for functions f, g ∈ Lp(Rn) :

f ∼ g :⇐⇒ ∥f − g∥Lp(Rn) = 0.

Then Lp(Rn) := Lp(Rn)/ ∼ with ∥ · ∥Lp(Rn) := ∥ · ∥Lp(Rn) is called Lebesgue space.

The Lebesgue spaces are Banach spaces and for p = 2 we have a Hilbert space.

9



Preliminaries

Definition 1.1.2.
A Banach space H where the norm ∥ · ∥H is induced by an inner product
⟨·, ·⟩H : H×H → C, that is,

∥ · ∥H =
»
⟨·, ·⟩H ,

is called a Hilbert space.

For the most part of this thesis, we are going to work with the Hilbert space
L2(Rn) where the inner product is given by

⟨f, g⟩L2(Rn) =

∫
Rn

f(x)g(x) dx

for functions f, g ∈ L2(Rn).
Based on the existence of an inner product in a Hilbert space H, we can say that

f, g ∈ H are orthogonal if ⟨f, g⟩H = 0. Moreover, we can work with the notion of
an orthogonal projection.

Theorem 1.1.3. - [5, Chapter 3.2]
Let S ⊂ H be a closed subspace of a Hilbert space H and let S⊥ be the orthogonal
complement of S in H, i.e., H = S ⊕ S⊥. Then there exists a unique mapping
PS : H → S, called orthogonal projection, which satisfies

h− PS(h) ∈ S⊥, h ∈ H. (1.1)

Formula (1.1) can be expressed equivalently as

⟨h− PS(h), s⟩H = 0 for all s ∈ S.

Proposition 1.1.4. - [45, Theorem 8.3.6]
Let (en)n∈N be an orthonormal sequence in a Hilbert space H and let S be given
by S = span{en, n ∈ N}. Then the orthogonal projection of h ∈ H onto S can be
written as

PS(h) =
∑
n∈N

⟨h, en⟩H en.

Finally, let us present some results which we will apply in Chapter 4. One of these
results is the continuity of translations in Lp(Rn).

Lemma 1.1.5.
The translation in Lp(Rn), 1 ≤ p <∞, is continuous. For every r ∈ Rn it holds

lim
|r|→0

∥u(·+ r)− u∥Lp(Rn) = 0, u ∈ Lp(Rn).

10



1.1 Lebesgue and Hilbert Spaces

Proof.
We follow the proof of Theorem 4.21 in [36] where the lemma above was stated in
a similar manner.
The space of continuous functions with compact support C0

0(Ω) is dense in Lp(Rn).
Moreover, a continuous function with compact support is uniformly continuous. Let
ϕ be such a function. Then, for all ε > 0 there exists a δ = δ(ϕ, ε) such that

|ϕ(·+ r)− ϕ| < ε for |r| < δ.

For δ → 0, we obtain

lim
|r|→0

∥ϕ(·+ r)− ϕ∥L∞(Rn) = 0.

Since we consider functions with compact support, we have Lq(Ω) ⊆ Lp(Ω) for
1 ≤ p ≤ q ≤ ∞. Consequently,

lim
|r|→0

∥ϕ(·+ r)− ϕ∥Lp(Rn) = 0.

Finally, we consider the estimate

∥u(·+ r)− u∥Lp(Rn)

≤ ∥u(·+ r)− ϕ(·+ r)∥Lp(Rn) + ∥ϕ(·+ r)− ϕ∥Lp(Rn) + ∥ϕ− u∥Lp(Rn).

For |r| → 0, the right-hand side tends to 2∥ϕ − u∥Lp(Rn). But since the continuous
functions with compact support are dense in Lp(Rn), we can choose the function ϕ
such that ∥ϕ− u∥Lp(Rn) ≤ ε. The proof is complete.

Besides that we collect results concerning weak convergence in Hilbert spaces. A
sequence (xn) in a Hilbert space H is weakly convergent to x ∈ H, written xn

w→ x,
if

⟨xn, y⟩H → ⟨x, y⟩H for all y ∈ H.

The weak limit x is unique, see Lemma 3.6.3 in [44]. For the proof of Theorem
4.1.12 we will need the following results.

Theorem 1.1.6. - [34, Theorem 9.12]
Every bounded sequence in a Hilbert space has a weakly convergent subsequence.

Proposition 1.1.7. - [83, Proposition 21.23]
A bounded sequence (xn) in a Hilbert space H converges weakly to x if every weakly
convergent subsequence of (xn) has the same limit x.

Theorem 1.1.8. - [34, Theorem 9.10]
Let (xn) be a sequence in a Hilbert space H. Then, xn → x if and only if xn

w→ x
and ∥xn∥ → ∥x∥.

11
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Moreover, the proof of Theorem 4.1.12 requires knowledge of weakly closed sets.
A subset K of a Hilbert space H is called weakly closed if (xn) ∈ K and xn

w→ x
implies x ∈ K.

Theorem 1.1.9. - [34, Theorem 9.16]
A convex set is closed if and only if it is weakly closed.

Finally, we present a result which takes advantage of the fact that the notion of
orthogonality exists in a Hilbert space.

Theorem 1.1.10. - [22, Theorem 2.6]
Let S be a closed linear subspace of a Hilbert space H. Moreover, let h ∈ H and let
f0 be the unique element of S such that ∥h− f0∥ = dist(h, S). Then h− f0 ⊥ S.
Conversely, if f0 ∈ S such that h− f0 ⊥ S, then ∥h− f0∥ = dist(h, S).

1.2 Fourier Transform

One of the most important tools in wavelet analysis is the Fourier transform. In
this section we give the definition of the Fourier transform and the Fourier series
and recall some basic properties, see [65], Chapter III in [76] and [80].

Definition 1.2.1.
Let f be a function in L1(Rn). Then the Fourier transform F of the function f ,
denoted by f̂ , is defined by

f̂(ξ) := Ff(x) =

∫
Rn

f(x) e−ξ(x) dx,

where eξ(x) := eix·ξ for ξ ∈ Rn. Here, x · ξ denotes the Euclidean inner product of
x and ξ.

The following two results are well-known.

Theorem 1.2.2.
Let f and f̂ be functions in L1(Rn). Then the Fourier inversion formula

f(x) = (f̂(ξ))∨ := F−1f̂(ξ) =
1

(2π)n

∫
Rn

f̂(ξ)ex(ξ) dξ

holds true for almost every x ∈ Rn.

Theorem 1.2.3.
Let f, g be functions in the space L1(Rn). Then the Fourier transform of the convo-
lution of f and g can be written as the product of the Fourier transforms of f and
g, that is, ÷(f ∗ g) = f̂ ĝ.
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Next, we introduce the Fourier coefficients and the Fourier series.

Definition 1.2.4.
Let f ∈ L1(T

n) where T n denotes the n-dimensional torus. Then the Fourier
coefficients of f are defined by

cf (k) :=
1

(2π)n

∫
Tn

f(x)e−k(x) dx, k ∈ Zn.

The Fourier series of f is given by∑
k∈Zn

cf (k)ex(k).

The following lemma shows that under a certain assumption on the Fourier coef-
ficients, a function f ∈ L1(T

n) can be represented by a Fourier series.

Lemma 1.2.5. - [73, Chapter VII, Corollary 1.8]
Let f ∈ L1(T

n) and let {ak}k∈Zn be the Fourier coefficients of f . Moreover, let∑
k∈Zn |ak| <∞. Then it holds

f(x) =
∑
k∈Zn

ak ek(x) almost everywhere.

The definition of the Fourier transform can be extended such that it is also ap-
plicable to functions in the Hilbert space L2(Rn).

Theorem 1.2.6.

i) The Fourier transform F and the inverse Fourier transform F−1 have unique
extensions F ,F−1 on L2(Rn) such that it holds

(2π)n ⟨f, g⟩L2(Rn) = ⟨Ff,Fg⟩L2(Rn) =
¨
f̂ , ĝ

∂
L2(Rn)

, f, g ∈ L2(Rn). (1.2)

ii) For a function h ∈ L1(Rn) ∩ L2(Rn), we have Fh = Fh and F−1h = F−1h.

iii) Let f ∈ L2(Rn) and

fℓ(ξ) :=

∫
|x|≤ℓ

f(x)e−ξ(x) dx, f ∗
ℓ (x) :=

1

(2π)n

∫
|ξ|≤ℓ

f(ξ)ex(ξ) dξ.

Then we have

Ff = lim
ℓ→∞

fℓ and F−1f = lim
ℓ→∞

f ∗
ℓ .

13
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Lemma 1.2.7.
Let f, g ∈ L2(Rn). Then it holds

F(af(x) + bg(x))(ξ) = a f̂(ξ) + b ĝ(ξ), a, b ∈ C, ξ ∈ Rn,

F(f(x− a))(ξ) = e−a(ξ)f̂(ξ), a, ξ ∈ Rn. (1.3)

Proof.
The Fourier transform is linear because

F(af(x) + bg(x))(ξ) = lim
ℓ→∞

∫
|x|≤ℓ

(af(x) + bg(x)) e−ξ(x) dx

= a lim
ℓ→∞

∫
|x|≤ℓ

f(x)e−ξ(x) dx+ b lim
ℓ→∞

∫
|x|≤ℓ

g(x)e−ξ(x) dx

= a f̂(ξ) + b ĝ(ξ).

Next, we verify that a translation of a function results in a modulation of the cor-
responding Fourier transform. The definition of the Fourier transform yields

F(f(x− a))(ξ) = lim
ℓ→∞

∫
|x|≤ℓ

f(x− a)e−ξ(x) dx.

We set y = x− a and deduce

lim
ℓ→∞

∫
|x|≤ℓ

f(x− a)e−ξ(x) dx = lim
ℓ→∞

∫
|y+a|≤ℓ

f(y)e−ξ(y + a) dy

= e−ξ(a) lim
ℓ→∞

∫
|y|≤ℓ

f(y)e−ξ(y) dy

= e−ξ(a)f̂(ξ)

= e−a(ξ)f̂(ξ).

Lemma 1.2.8.
Let M ∈ Rn×n be a non-singular matrix and f ∈ L2(Rn). Then we have

F(f(Mx))(ξ) =
1

| detM |
F(f)(M−T ξ). (1.4)

14
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Proof.
First, we insert the definition of the L2-Fourier transform into F(f(Mx))(ξ) to
obtain

F(f(Mx))(ξ) = lim
ℓ→∞

∫
|x|≤ℓ

f(Mx)e−ξ(x) dx

=
1

| detM |
lim
ℓ→∞

∫
|x|≤ℓ

f(Mx)| detM |e−ξ(M−1Mx) dx.

Then the transformation formula yields

1

| detM |
lim
ℓ→∞

∫
|x|≤ℓ

f(Mx)| detM |e−ξ(M−1Mx) dx

=
1

| detM |
lim
ℓ→∞

∫
|M−1u|≤ℓ

f(u)e−ξ(M
−1u) du

=
1

| detM |
lim
ℓ→∞

∫
|u|≤ℓ

f(u)e−M−T ξ(u) du

=
1

| detM |
F(f)(M−T ξ).

The following two theorems are versions of the so-called Paley-Wiener Theorem.
They require knowledge about entire functions of exponential type. An entire func-
tion g on C is of exponential type σ if and only if for every ε > 0 there exists a
constant Cε such that

|g(z)| ≤ Cε e
(σ+ϵ)|z| for all z ∈ C.

Theorem 1.2.9. - [73, Chapter III, Theorem 4.1]
Let f, g ∈ L2(R). Then g = Ff with supp f ⊂

[
− σ

2π
, σ
2π

]
if and only if g is the

restriction of an entire function of exponential type σ to the real axis.

Theorem 1.2.9 can be generalized for functions f, g in L2(Rn). Beforehand, let us
introduce symmetric bodies and polar sets which are needed for this generalization.
A compact and convex set in Rn which is symmetric about the origin and has non-
empty interior is called symmetric body. Let K denote such a symmetric body. Then
the polar set K∗ of K is defined by

K∗ := {ξ ∈ Rn : x · ξ ≤ 1 for all x ∈ K}.
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K∗ is a symmetric body as well. Now, an entire function g on Cn is of exponential
type K∗ if and only if for every ε > 0 there exists a constant Cε such that

|g(z)| ≤ Cεe
2π(1+ε)∥z∥∗ for all z ∈ Cn.

Here, the dual norm ∥ · ∥∗ is defined by ∥z∥∗ := supy∈K |y · z|.
Theorem 1.2.10. - [73, Chapter III, Theorem 4.9]
Let f, g ∈ L2(Rn) and let K be a symmetric body. Then g = Ff is the Fourier
transform of a function f with supp f ⊂ K if and only if g is the restriction to Rn

of a function of exponential type K∗, where K∗ denotes the polar set of K.

1.3 Bracket Product

Another very important tool for our construction procedure of a pre-(multi)wavelet
basis will be the so-called bracket product. In this section we summarize its most
important properties.

Definition 1.3.1.
Let f, g ∈ L2(Rn). Then the 2π(MT )jZn-periodization of fg, i.e.,

[f, g]j :=
∑

β∈2π(MT )jZn

f(·+ β) g(·+ β), j ∈ Z, (1.5)

is called bracket product. We set [f̂ , ĝ] := [f̂ , ĝ]0.

A standard procedure for evaluating integrals of bracket products is to partition the
domain of integration into fundamental domains.

Definition 1.3.2. - [1, Definition 5.8]

Let D be either a lattice contained in Rn or Rn itself. Furthermore, let C̃ be
an arbitrary subset of D and let L be a lattice contained in D. The set C̃ is a
fundamental domain of the lattice L in D if C̃ intersects each coset of D/L in
exactly one point.

Definition 1.3.3.
Let L be a lattice. Then the dual lattice L∗ is defined by

L∗ := {ℓ∗ ∈ Rn : ℓ∗ · ℓ ∈ 2πZ for ℓ ∈ L}.

In this thesis we are interested in the lattice Lj = M−jZn and its dual lattice

L∗
j = 2π(MT )jZn, j ∈ Z. Therefore, we set D = Rn, C̃j = (MT )j[−π, π)n and thus,

we can identify the space L2(D/L∗
j) with the space L2(C̃j). We mention that if we

set j = 0, we obtain the n-dimensional torus given by T n = Rn/2πZn.
Next, we verify that the bracket product [f, g]j is an element of the space L1(C̃j)

and hence, well-defined. Therefore, we need the subsequent lemma which was proven
in [72, Lemma 1.1.5] for β ∈ Zn. The following version can be proven analogously.
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Lemma 1.3.4.
Let f, g ∈ L2(Rn). Then the series

∑
β∈2π(MT )jZn |f(·+β)g(·+ β)|, j ∈ Z, converges

almost everywhere.

Proof.
First, we remark that fg is measurable as a product of measurable functions. Now,
let us consider the series∑

β∈2π(MT )jZn

∫
‹Cj

∣∣∣f(x+ β)g(x+ β)
∣∣∣ dx =

∑
β∈2π(MT )jZn

∫
‹Cj+β

∣∣∣f(x)g(x)∣∣∣ dx
=

∫
Rn

∣∣∣f(x)g(x)∣∣∣ dx.
By Hölder’s inequality, we deduce∫

Rn

∣∣∣f(x)g(x)∣∣∣ dx ≤ ∥f∥L2(Rn) ∥g∥L2(Rn) <∞. (1.6)

We conclude by the Levi-Theorem, see [2, Theorem 11.18], that the series∑
β∈2π(MT )jZn |f(x+ β)g(x+ β)| is integrable and that∫

‹Cj

∑
β∈2π(MT )jZn

|f(x+ β)g(x+ β)| dx =
∑

β∈2π(MT )jZn

∫
‹Cj

∣∣∣f(x+ β)g(x+ β)
∣∣∣ dx.

The assertion follows.

Lemma 1.3.5.
Let f, g ∈ L2(Rn). Then [f, g]j ∈ L1(C̃j) for j ∈ Z.

Proof.
Due to the Lemma 1.3.4, we know that the series in (1.5) converges almost every-
where. The proof of this Lemma yields∫

‹Cj

|[f, g]j(x)| dx ≤
∫
‹Cj

∑
β∈2π(MT )jZn

|f(x+ β)g(x+ β)| dx <∞.

The following result is a special case of Theorem 3.1 in [49].
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Lemma 1.3.6.
Let f and g be compactly supported functions in L2(Rn). Then the sequence
c(f, g) := {c(f, g)k}k∈Zn with

c(f, g)k :=

∫
Rn

f(x)g(x− k) dx

is an element of the sequence space ℓ1(Zn).

The bracket product is related to the L2-inner product, see, e.g., [30].

Lemma 1.3.7.
Let f, g ∈ L2(Rn).

i) The inner product ⟨f(· − k), g⟩L2(Rn) , k ∈ Zn, is the k-th Fourier coefficient of

the bracket product [f̂ , ĝ], which means that

⟨f(· − k), g⟩L2(Rn) =
1

(2π)n

∫
‹C0

e−k(ξ)[f̂ , ĝ](ξ) dξ. (1.7)

ii) It holds ⟨f(· − j), g(· − k)⟩L2(Rn) = 0 for j, k ∈ Zn, if and only if [f̂ , ĝ] = 0
almost everywhere.

iii) If f, g are compactly supported functions, then the bracket product [f̂ , ĝ] is a
trigonometric polynomial.

Proof.
In order to prove part i), we use (1.2) and (1.3) first to deduce

⟨f(· − k), g⟩L2(Rn) =

∫
Rn

f(x− k)g(x) dx

=
1

(2π)n

∫
Rn

e−k(ξ)f̂(ξ)ĝ(ξ) dξ

=
1

(2π)n

∑
β∈2πZn

∫
‹C0

e−k(ξ)f̂(ξ + β)ĝ(ξ + β) dξ. (1.8)

Since f̂ , ĝ ∈ L2(Rn), we can use (1.6) to obtain
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1.3 Bracket Product

1

(2π)n

∑
β∈2πZn

∣∣∣∣∣∣∣
∫
‹C0

e−k(ξ)f̂(ξ + β)ĝ(ξ + β)

∣∣∣∣∣∣∣ dξ
≤ 1

(2π)n

∑
β∈2πZn

∫
‹C0

|e−k(ξ)||f̂(ξ + β)ĝ(ξ + β)| dξ

=
1

(2π)n

∑
β∈2πZn

∫
‹C0

|f̂(ξ + β)ĝ(ξ + β)| dξ

=
1

(2π)n

∫
Rn

|f̂(ξ)ĝ(ξ)| dξ <∞.

Therefore, we can interchange the sum and the integral in (1.8) which yields

⟨f(· − k), g⟩L2(Rn) =
1

(2π)n

∫
‹C0

∑
β∈2πZn

e−k(ξ)f̂(ξ + β)ĝ(ξ + β) dξ

=
1

(2π)n

∫
‹C0

e−k(ξ)[f̂ , ĝ](ξ) dξ.

Now, let us prove part ii). We have already derived the relation

⟨f(· − j), g(· − k)⟩L2(Rn) =
1

(2π)n

∫
‹C0

ek−j(ξ)[f̂ , ĝ](ξ) dξ, j, k ∈ Zn. (1.9)

If [f̂ , ĝ] = 0 almost everywhere, it follows directly from (1.9) that the translates of
the functions f and g are orthogonal to each other. Conversely, assume that the
L2-inner product vanishes for all j, k ∈ Zn. Then by (1.9), we have

0 =
∑

j,k∈Zn

| ⟨f(· − j)g(· − k)⟩L2(Rn) | =
∑

j,k∈Zn

∣∣∣∣ 1

(2π)n

∫
‹C0

ek−j(ξ)[f̂ , ĝ](ξ) dξ

∣∣∣∣. (1.10)

Since [f̂ , ĝ] ∈ L1(C̃0), see Lemma 1.3.5, and since the sequence of the Fourier co-
efficients of the bracket product is in the space ℓ1(Zn), see (1.10), all conditions of
Lemma 1.2.5 are fulfilled. Applying this lemma yields the desired result, i.e.,

[f̂ , ĝ] = 0 almost everywhere.
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It remains to prove part iii). Again, we will use relation (1.7) and the fact that

[f̂ , ĝ] ∈ L1(C̃0). In addition, the sequence c(g, f) = {c(g, f)k}k∈Zn with

c(g, f)k =

∫
Rn

f(x− k)g(x) dx

is an element of the sequence space ℓ1(Zn), see Lemma 1.3.6. Thus, we can apply
Lemma 1.2.5 to deduce that

[f̂ , ĝ](x) =
∑
k∈Zn

(
1

(2π)n

∫
‹C0

e−k(ξ)[f̂ , ĝ](ξ) dξ

)
ek(x) (1.11)

=
∑
k∈Zn

⟨f(· − k), g⟩L2(Rn) ek(x) almost everywhere.

Hence, we have equality in the L1-sense. Moreover, the functions f and g are com-
pactly supported. Consequently, there are finitely many non-vanishing coefficients.
Thus, (1.11) is a trigonometric polynomial.

Lemma 1.3.8.
Let f, g ∈ L2(Rn).

i) If τ is a 2π(MT )jZn-periodic function, we have [τ f̂ , ĝ]j = τ [f̂ , ĝ]j = [f̂ , τ ĝ]j
for j ∈ Z.

ii) Let f, g ∈ L2(Rn). Then we have the estimate

|[f, g]j|2 ≤ [f, f ]j[g, g]j, j ∈ Z. (1.12)

Proof.
For the proof of part i), we only need the 2π(MT )jZn-periodicity of τ . We have

[τ f̂ , ĝ]j =
∑

β∈2π(MT )jZn

(τ f̂)(·+ β)ĝ(·+ β)

=
∑

β∈2π(MT )jZn

τ(·+ β)f̂(·+ β)ĝ(·+ β) (1.13)

= τ
∑

β∈2π(MT )jZn

f̂(·+ β)ĝ(·+ β)

= τ [f̂ , ĝ]j.

20



1.3 Bracket Product

Then the assumption follows by (1.13) because

[f̂ , τ ĝ]j =
∑

β∈2π(MT )jZn

f̂(·+ β)(τ ĝ)(·+ β) =
∑

β∈2π(MT )jZn

f̂(·+ β)τ(·+ β)ĝ(·+ β).

In order to prove part ii), we have to verify that the bracket product

[·, ·]j : L2(Rn)× L2(Rn) → C

satisfies the properties of the inner product, see, e.g., [79, Chapter 1.2]. In particular,
we have to check the following conditions:

(1) It holds [f, f ]j ≥ 0 for all f ∈ L2(Rn) and [f, f ]j = 0 if and only if f = 0.

(2) It holds [f, g]j = [g, f ]j for all f, g ∈ L2(Rn).

(3) It holds [λf, g]j = λ[f, g]j for all f, g ∈ L2(Rn), λ ∈ C.

(4) It holds [f + h, g]j = [f, g]j + [h, g]j for all f, g, h ∈ L2(Rn).

First, we prove condition (1). Since

[f, f ]j =
∑

β∈2π(MT )jZn

|f(·+ β)|2 ≥ 0,

it follows directly that [f, f ]j = 0 if and only if f = 0. Next, we verify condition (2).
By Lemma 1.3.4, we have

[g, f ]j =
∑

β∈2π(MT )jZn

g(·+ β)f(·+ β) =
∑

β∈2π(MT )jZn

f(·+ β)g(·+ β) = [f, g]j.

Moreover, condition (3) is satisfied as well because

[λf, g]j =
∑

β∈2π(MT )jZn

λf(·+ β)g(·+ β) = λ
∑

β∈2π(MT )jZn

f(·+ β)g(·+ β) = λ[f, g]j.

Finally, condition (4) is fulfilled because

[f + h, g]j =
∑

β∈2π(MT )jZn

(f + h)(·+ β)g(·+ β)

=
∑

β∈2π(MT )jZn

f(·+ β)g(·+ β) + h(·+ β)g(·+ β)

=
∑

β∈2π(MT )jZn

f(·+ β)g(·+ β) +
∑

γ∈2π(MT )jZn

h(·+ γ)g(·+ γ)

= [f, g]j + [h, g]j.

Consequently, the claim follows from the Cauchy-Schwarz inequality.
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Chapter 2

The Classical Setting

Before we begin with the construction of wavelet and multiwavelet bases with gen-
eral dilation matrices, we recall the classical wavelet setting. This case has been
intensively studied over the years and it is ideal to explain the basic concepts and
motivate our approach.
A finite set of functions {ψi}i∈I ⊂ L2(Rn) is called a wavelet basis if the set

{ψi,j,k := 2jn/2 ψi(2
j · −k), i ∈ I finite, j ∈ Z, k ∈ Zn}

provides a basis for the function space L2(Rn). The functions ψi are also referred to
as mother wavelets. If in addition the condition

⟨ψi,j,k, ψi′,j′,k′⟩L2(Rn) = δi,i′ δj,j′ δk,k′ , i, i′ ∈ I finite, j, j′ ∈ Z, k, k′ ∈ Zn, (2.1)

is satisfied, we obtain a so-called orthonormal wavelet basis. If (2.1) is weakened to

⟨ψi,j,k, ψi′,j′,k′⟩L2(Rn) = 0 for j ̸= j′, j, j′ ∈ Z, i, i′ ∈ I finite, k, k′ ∈ Zn,

we call it a pre-wavelet basis. For the construction of such wavelet bases Y. Meyer
and S. Mallat developed a systematic approach named multiresolution analysis, see
[57, 62].

Definition 2.1.
A sequence of closed subspaces {Sj}j∈Z, Sj ⊂ L2(Rn), is called multiresolution
analysis if the following conditions are fulfilled:

(M1) . . . ⊂ Sj−1 ⊂ Sj ⊂ Sj+1 ⊂ . . . ,

(M2)
∞⋃

j=−∞

Sj = L2(Rn),

(M3)
∞⋂

j=−∞

Sj = {0},
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(M4) f ∈ Sj ⇔ f(2 ·) ∈ Sj+1,

(M5) there exists a generator φ ∈ S0, also called scaling function, whose translates
{φ(· − k), k ∈ Zn} provide a Riesz-basis for S0.

In literature it is not uncommon to assume that {φ(· − k), k ∈ Zn} provides an
orthonormal basis for S0. We remark that this case is covered by condition (M5), see
[4]. Moreover, the properties (M1), (M4) and (M5) ensure that the scaling function
φ is refinable. This means that φ satisfies the refinement equation

φ(x) =
∑
k∈Zn

akφ(2x− k), (2.2)

with the mask a = {ak}k∈Zn ∈ ℓ2(Zn). Applying the Fourier transform to (2.2) yields

φ̂(ξ) =
1

2
as(e−1/2(ξ)) φ̂(ξ/2),

where as denotes the symbol defined by as(z) =
∑

k∈Z akz
k with

z ∈ {(z1, . . . , zn) ∈ Cn | |zi| = 1, i = 1, . . . , n} and zk = (zk11 , z
k2
2 , . . . , z

kn
n ).

By taking the concept of multiresolution analysis into consideration, we proceed
as follows to obtain a wavelet basis of L2(Rn). First, we define the functions ψi, i ∈ I
finite, whose integer translates span the nontrivial complement W0 of S0 in S1, i.e.,
S1 = W0 ⊕ S0 or equivalently W0 = S1 ⊖ S0 with

W0 := span{ψi(· − k), i ∈ I finite, k ∈ Zn}.

The spaces Wj are given by

Wj := {f ∈ L2(Rn) | f(2−j·) ∈ W0}, j ∈ Z. (2.3)

We can easily check that Sj+1 = Sj ⊕Wj for j ∈ Z. Let f be a function of the
space Sj+1. By (M4), we know that f(2−j·) ∈ S1. A function in S1 has a unique
decomposition of the form

f(2−jx) = s0(x) + w0(x), s0 ∈ S0, w0 ∈ W0.

Set y = 2−jx to obtain f(y) = s(y) + w(y) with s := s0(2
j·) and w := w0(2

j·).
Property (M4) implies s ∈ Sj and (2.3) implies w ∈ Wj.
Moreover, the subspaces {Sj}j∈Z are dense in L2(Rn) by definition and we observe

∞⋃
j=−∞

Sj = S0 ⊕

(
∞⊕
j=0

Wj

)
= L2(Rn).
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The subspace S0 has the equivalent representation

S0 =

(
−1⋂

j=−∞

Sj

)
⊕

(
−1⊕

j=−∞

Wj

)
.

By property (M3), the zero function is the only element in the intersection of the
subspaces {Sj}j∈Z and consequently, we obtain the following decomposition of the
space L2(Rn):

L2(Rn) =
∞⊕

j=−∞

Wj.

When using appropriately scaled, translated and dilated versions of the mother
wavelets ψi, we finally obtain the wavelet basis

Ψ = {ψi,j,k := 2jn/2 ψi(2
j · −k), i ∈ I finite, j ∈ Z, k ∈ Zn}.

If we assume further that W0 is the orthogonal complement of S0 in S1, we obtain a
pre-wavelet basis. This is due to property (M1) which yields that all spaces {Wj}j∈Z
are mutually orthogonal. In case (2.1) is fulfilled, we have an orthonormal wavelet
basis.
Another possibility to construct a pre-wavelet basis is to define the space W0 by

projections. Let PS0 be the orthogonal projector of L2(Rn) onto S0. Since S1 is a
closed subspace of L2(Rn) with S1 = S0 ⊕W0, we may define the space W0 by

W0 := {s− PS0 s : s ∈ S1}. (2.4)

Furthermore, by the nestedness of the spaces Sj, we have

PSj
◦ PSj′

= PSj
for all j ≤ j′,

where the projectors PSj
are obtained from P0 by dilation. Thus, PSj

− PSj−1
is

an orthogonal projector of L2(Rn) onto Wj−1. By properties (M2) and (M3), an
arbitrary function f ∈ L2(Rn) can be written as the telescopic sum

f =
∑
j∈Z

(PSj
f − PSj−1

f).

Hence,

L2(Rn) =
∞⊕

j=−∞

Wj.

It is also possible to increase the number of generators in (M5). Then the presented
methods yield so-called multiwavelet and pre-multiwavelet bases.
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Chapter 3

The General Setting

In this work we focus on the construction of pre-wavelet and pre-multiwavelet bases.
Motivated by the questions

• How can we minimize the number of mother wavelets?

• What are minimal requirements such that a construction of pre-wavelet and
pre-multiwavelet bases is still possible?

we generalize the concepts presented in Chapter 2. We note that if there is no risk of
confusion, we will often not distinguish between mother wavelets, pre-(multi)wavelets
and (multi)wavelets in the following.
The number of required mother wavelets depends on the so-called dilation matrix

or scaling matrix denoted by M . In Chapter 2 the dilation matrix was given by
M = 2I where I denotes the identity matrix. We assume throughout that M is an
integer n×n matrix which is expanding, that is, all its eigenvalues are greater than
one in modulus. It follows directly that M is invertible. Moreover, the matrix M
satisfies

lim
j→∞

∥M−j∥ = 0 (3.1)

which is equivalent to

lim
j→∞

M−j = 0 or lim
j→∞

M−jx = 0 for all x ∈ Rn, (3.2)

see [15, Theorem 7.17], [47, Theorem 4]. Moreover, (3.1) yields

lim
j→∞

|M jx| = ∞ for any x ∈ Rn \ {0}, (3.3)

see [72, Chapter 2.1].
Such an arbitrary dilation matrix can be incorporated into Definition 2.1 by chang-

ing condition (M4) to

(M4∗) f ∈ Sj ⇔ f(M ·) ∈ Sj+1.
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Then the multiresolution analysis approach presented in the previous chapter leads
to

(m− 1)N, m := | detM |, (3.4)

mother wavelets where N is the number of basis generators of S0, see [61, 16, 82].
Hence, we can minimize the number of required mother wavelets by choosing a
dilation matrix with determinant ±2.
Formula (3.4) does not remain valid for the tensor product approach with multiple

generators.

Example 3.1.
Let {Sj}j∈Z be a multiresolution analysis for the space L2(R) with the scaling func-
tion φ and the scaling matrix M = 2. Assume further that the mother wavelet ψ
provides an orthonormal basis for L2(R). Then an n-dimensional multiresolution
analysis can be obtained by considering the tensor product

V n
j := Vj ⊗ Vj ⊗ . . .⊗ Vj︸ ︷︷ ︸

n-times

.

For simplicity, we choose n = 2. Then the space V 2
1 has the decomposition

V 2
1 = V1 ⊗ V1

= (V0 ⊕W0)⊗ (V0 ⊕W0)

= (V0 ⊗ V0)⊕ (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0).

Hence, the wavelet space W 2
0 can be written as

W 2
0 = (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0) (3.5)

and the mother wavelets are given by

ψ1(x, y) = φ(x)ψ(y), ψ2(x, y) = ψ(x)φ(y), ψ3(x, y) = ψ(x)ψ(y).

In [58, Chapter VII] it was proven that the setß
ψij,k,k′(x, y) :=

1

2j
ψi

Å
x− 2jk

2j
,
y − 2jk′

2j

ã
, i = 1, 2, 3, (k, k′) ∈ Z2

™
provides an orthonormal basis for the space L2(R2). We observe that formula (3.4)
remains valid. This is not true for N > 1. In this case the presented approach leads
to (2n − 1)N2 mother wavelets instead of (2n − 1)N . This can easily be seen by
generalizing the above example for N = 2. Let φ1, φ2 be the scaling functions and
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assume that ψ1, ψ2 provide an orthonormal basis for L2(R). Then the decomposition
(3.5) yields the following twelve mother wavelets:

ψ1(x, y) = φ1(x)ψ1(y), ψ2(x, y) = φ2(x)ψ1(y), ψ3(x, y) = φ1(x)ψ2(y),

ψ4(x, y) = φ2(x)ψ2(y), ψ5(x, y) = ψ1(x)φ1(y), ψ6(x, y) = ψ1(x)φ2(y),

ψ7(x, y) = ψ2(x)φ1(y), ψ8(x, y) = ψ2(x)φ2(y), ψ9(x, y) = ψ1(x)ψ1(y),

ψ10(x, y) = ψ1(x)ψ2(y), ψ11(x, y) = ψ2(x)ψ1(y), ψ12(x, y) = ψ2(x)ψ2(y).

As this example illustrates, one should always weigh the simplicity of the tensor
product approach against the number of required mother wavelets.

Another possibility to incorporate the dilation matrix into the definition of the
multiresolution analysis is to specify the spaces Sj as h-shift-invariant with h :=
M−j.

Definition 3.2.
Let Φ := {φ1, . . . , φN} with φi ∈ L2(Rn) for i = 1, . . . , N . Then

S(Φ) : = span {φ1(· − hk), . . . , φN(· − hk), k ∈ Zn}

is called h-shift-invariant space. For N = 1 we call S(φ) a principal shift-invariant
space and for some finite N we call S(Φ) a finitely generated shift-invariant space.

In Chapter 2, we illustrated that the assumptions made in the definition of a
multiresolution analysis ensure that the construction of wavelet bases is possible.
Since we are interested in identifying minimal requirements, we are going to omit
conditions (M4), (M5) and analyse how this affects the construction procedure.
Consequently, we are going to work with the following generalized multiresolution
analysis which can be classified as non-stationary.

Definition 3.3.
A sequence of closed, M−j-shift-invariant subspaces {Sj}j∈Z, Sj ⊂ L2(Rn), is called
generalized multiresolution analysis (GMRA) if the following conditions are fulfilled:

(M1) . . . ⊂ Sj−1 ⊂ Sj ⊂ Sj+1 ⊂ . . . ,

(M2)
∞⋃

j=−∞

Sj = L2(Rn),

(M3)
∞⋂

j=−∞

Sj = {0}.
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Chapter 4

Shift-Invariant Spaces

Shift-invariant spaces are used not only in wavelet theory but also in approximation,
frame and sampling theory. Their general definition can be found in Chapter 3, see
Definition 3.2. In this chapter we will analyse their properties in detail.
The spaces {Sj}j∈Z in the definition of the generalized multiresolution analysis

are specified as M−j-shift-invariant. Depending on the number of generators, we
distinguish between principal and finitely generated shift-invariant spaces. In both
cases we can describe Sj by considering its Fourier transforms “Sj := {f̂ : f ∈ Sj}
as Corollary 4.1.2 and Corollary 4.2.2 show. Many important results arise from this
characterization which enable our construction procedures later on. We summarize
these results in the Sections 4.1.1 and 4.2.1.
In view of the generalized multiresolution analysis, we also include an analysis of

the union and the intersection of M−j-shift-invariant spaces, see Sections 4.1.2 and
4.2.2.

4.1 Principal Shift-Invariant Spaces

4.1.1 Characterization

Principal shift-invariant spaces are generated by a single function. The subsequent
characterization of S0(φ), φ ∈ L2(Rn), can be found in [31, Theorem 2.14] and [12].

Theorem 4.1.1.
Let φ ∈ L2(Rn). A function f is an element of the space S0(φ) if and only if f̂ = τφ̂
for some 2π-periodic τ .

We generalize this result for the spaces Sj, j ∈ Z. The method of proof we present
will be used several times throughout this thesis.

Corollary 4.1.2.
Let φ ∈ L2(Rn). A function f is an element of the space Sj(φ), j ∈ Z, if and only if

f̂ = τφ̂ for some 2π(MT )jZn-periodic τ .
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Proof.
Assume that f ∈ Sj(φ), j ∈ Z. Then there exists a sequence (fℓ)ℓ∈N ∈ Sj(φ) such
that fℓ → f in the L2-sense. The definition of the space Sj(φ) yields for all elements
of the sequence the representation

fℓ =
∑
k∈Zn

aℓ,k φ(· −M−jk)

=
∑
k∈Zn

aℓ,k φ(M
−j(M j · −k))

=
∑
k∈Zn

aℓ,k φM−j(M j · −k) (4.1)

with φM−j := φ(M−j·). Next, we define the bijective, linear and continuous operator

J : L2(Rn) → L2(Rn),

f 7→ f(M−j·), (4.2)

and apply it to (4.1) which yields

Jfℓ =
∑
k∈Zn

aℓ,k φM−j(· − k).

Hence, Jfℓ ∈ S0(φM−j). With the continuity of the operator J , we obtain

∥Jfℓ − Jf∥L2(Rn) → 0 for ℓ→ ∞.

It follows from the L2-closure of the space S0(φM−j) that Jf ∈ S0(φM−j). By
Theorem 4.1.1, there exists some 2π-periodic function τφ such that the Fourier
transform of Jf can be written as

(”Jf)(ξ) = τφ(ξ)’φM−j(ξ) almost everywhere.

Due to (1.4), this is equivalent to

mj f̂((MT )jξ) = mjτφ(ξ)φ̂((M
T )jξ).

We set ξ̃ = (MT )jξ and deduce

f̂(ξ̃) = τφ((M
T )−j ξ̃)φ̂(ξ̃), (4.3)

where τφ((M
T )−j ξ̃) is 2π(MT )jZn-periodic. Since the Fourier transform and the

operator J−1 are continuous, we obtain

∥f̂ℓ − f̂∥L2(Rn) → 0 for ℓ→ ∞,
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where f̂ is given by (4.3).
Conversely, assume that f̂(ξ) = τ(ξ)φ̂(ξ) holds almost everywhere for a function

f ∈ L2(Rn) and some 2π(MT )jZn-periodic τ . Set ξ̃ = (MT )−jξ to obtain

f̂((MT )j ξ̃) = τ((MT )j ξ̃) φ̂((MT )j ξ̃) almost everywhere,

where τ((MT )j ξ̃) is 2π-periodic. This is equivalent to‘(Jf)(ξ̃) = τ(MT )j(ξ̃)’φM−j(ξ̃) almost everywhere,

with τ(MT )j := τ((MT )j·). By Theorem 4.1.1, it follows that Jf ∈ S0(φM−j). By
definition of this space, there exists a sequence of functions (fℓ)ℓ∈N ∈ S0(φM−j)
which converges to Jf in the L2-sense, i.e.,

∥fℓ − Jf∥L2(Rn) → 0 for ℓ→ ∞.

Every fℓ can be represented as

fℓ =
∑
k∈Zn

aℓ,k φM−j(· − k).

Applying the operator J−1 leads to

J−1fℓ =
∑
k∈Zn

aℓ,k φM−j(M j · −k) =
∑
k∈Zn

aℓ,k φ(· −M−jk).

Consequently, J−1fℓ ∈ Sj(φ) for all ℓ ∈ N. By the continuity of J , we have

∥J−1fℓ − f∥L2(Rn) → 0 for ℓ→ ∞.

Due to the L2-closure of Sj(φ), we conclude f ∈ Sj(φ).

Corollary 4.1.2 yields the characterization’Sj(φ) = {τφ̂ ∈ L2(Rn) : τ is 2π(MT )jZn-periodic}. (4.4)

Remark 4.1.3.
The function τ in (4.4) is measurable. This can be seen as follows: We have

f̂ = τφ̂, f ∈ L2(Rn), (4.5)

where f̂ and φ̂ are Lebesgue measurable functions. Formula (4.5) implies

supp f̂ ⊂ supp φ̂.
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Hence, division by zero causes no problems when considering

τ =
f̂

φ̂
.

If φ̂ = 0, then f̂ = 0 and 0/0 := 0. Consequently, the measuarbility of τ follows
from the well-known result that the set of Lebesgue measurable functions is closed
under nonzero division, see [37, p. 518 in §20] or [10, Chapter 6.4].

A consequence of the characterization (4.4) is the following proposition which
implies that if two functions generate the same principal shift-invariant space Sj,
then the support of their Fourier transforms are equal.

Proposition 4.1.4.
Let φ ∈ L2(Rn) and f ∈ Sj(φ), j ∈ Z. Then the function f generates Sj(φ) if and

only if supp φ̂ ⊂ supp f̂ .

Proof.
We follow the proof of [32, Corollary 2.4] where the result above was derived for
j = 0.

Assume that f generates the space Sj(φ). Then the generator φ is an element

of the space Sj(f) and Corollary 4.1.2 yields φ̂ = τ f̂ for some 2π(MT )jZn-periodic
function τ . Then the support of φ̂ is given by

supp φ̂ = {x ∈ Rn : (τ f̂)(x) ̸= 0} = {x ∈ Rn : τ(x) ̸= 0und f̂(x) ̸= 0}.

As a consequence, supp φ̂ ⊂ supp f̂ .

Conversely, assume that it holds supp φ̂ ⊂ supp f̂ . We have to prove that f and φ
generate the same space, i.e., Sj(f) = Sj(φ). Since f ∈ Sj(φ), we can use Corollary

4.1.2 again to obtain f̂ = τφ̂ for some 2π(MT )jZn-periodic function τ . Next, we
define

τ ′ :=

®
1
τ
, on supp τ,

0, otherwise.
(4.6)

Hence, we have φ̂ = τ ′f̂ almost everywhere on supp τ . Since we know that

supp τ ⊃ supp f̂ ⊃ supp φ̂,

the equality holds everywhere. Then the claim follows with the help of Corollary
4.1.2 which tells us that φ ∈ Sj(f).
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4.1.2 Density and Intersection

In the definition of the generalized multiresolution analysis the spaces {Sj}j∈Z are
required to satisfy

(M2)
∞⋃

j=−∞

Sj(φj) = L2(Rn) and (M3)
∞⋂

j=−∞

Sj(φj) = {0}.

Here, we introduce the notation φj for the generator of the space Sj because we
work with a non-stationary multiresolution analysis. Hence, every space Sj might
be generated by a different function.

In this section we investigate under which assumptions (M2) and (M3) are fulfilled.
In [30] this was done for principal 2−j-shift-invariant spaces. We generalize these
results for principal M−j-shift-invariant spaces.

First, we have a closer look at condition (M2). To this end we need some prepa-
rations. The following lemma was proven within the proof of Theorem 2.3.5 in
[72].

Lemma 4.1.5.
Any t ∈ Rn can be approximated by vectors of the form M−jk, k ∈ Zn, j ∈ N, for
arbitrarily large j and an n× n expanding integer matrix M .

In addition, we will use the so-called Wiener’s Theorem, see [72, Theorem 2.3.4].

Theorem 4.1.6.
A closed subspace X of the space L2(Rn) is shift-invariant if and only if “X = L2(Ω)
for some measurable set Ω ⊂ Rn. Here, Ω is uniquely determined up to a set of
measure zero.

Theorem 4.1.7.
Let (Sj := Sj(φj))j∈Z be a nested sequence of subspaces of the space L2(Rn). Then⋃
j∈Z Sj(φj) = L2(Rn) if and only if

Ω0 :=
⋃
j∈Z

supp φ̂j = Rn (modulo a null-set). (4.7)

Proof.
LetX :=

⋃
j∈Z Sj. To begin with we verify thatX is a closed shift-invariant subspace

of L2(Rn). Let f ∈ X. By assumption, the spaces (Sj)j∈Z are nested and therefore,
the function f is an element of Sj for all j ≥ j′. Since Sj is a M−j-shift-invariant
space, f(· + t) is in X for t = M−jk, k ∈ Zn, j ∈ N. Lemma 1.1.5 states that the
translation of functions in L2 is continuous, that is, lim|r|→0 ∥f(· + r)− f∥L2(Rn) = 0
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for r ∈ Rn. Due to Lemma 4.1.5, it follows that f(· + t) ∈ X for all t ∈ Rn. Now,
let g ∈ X. Since the L2-norm is invariant under shifts, we have

∥g(·+ t)− f(·+ t)∥L2(Rn) = ∥g − f∥L2(Rn).

Approximating g by functions f ∈ X yields that g(·+ t) ∈ X.

With this result at hand, Theorem 4.1.6 tells us that “X = L2(Ω), where Ω is
a measurable subset of Rn. Hence, X = L2(Rn) if and only if Ω = Rn modulo a
null-set. It remains to show that Ω = Ω0.
Every function φj is an element in X for j ∈ Z. Consequently, supp φ̂j ⊂ Ω

modulo a null-set. Therefore, Ω0 ⊂ Ω modulo a null-set. Now, suppose that there
exists a set Ω1 which is contained in Ω \ Ω0 with positive measure. The Fourier
transform of an element in Sj, j ∈ Z, has the representation (4.4). We notice that the
Fourier transform of such an element vanishes on Ω1 and thus, the Fourier transform
of each element in

⋃
j∈Z Sj vanishes on Ω1. Taking the closure, we observe that each

element in X has a Fourier transform which vanishes on Ω1. This is a contradiction

to the fact that “X contains the space L2(Ω1).

The subsequent corollary is a direct consequence of the preceding theorem.

Corollary 4.1.8.
Let (Sj := Sj(φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and⋃
j∈Z supp φ̂j = Rn. Then the orthogonal projectors PSj

from L2(Rn) onto Sj satisfy

lim
j→∞

PSj
f = f for all f ∈ L2(Rn).

Proof.
Due to the nestedness of the closed spaces Sj, we can apply Theorem 4.1.7 which
yields that

∥f − PSj
f∥L2(Rn) = dist(f, Sj) → 0 for j → ∞.

In case of a stationary multiresolution analysis, that is, condition (M4∗) is sat-
isfied, it is sufficient to assume that the generators of S0 do not vanish in some
neighborhood of the origin in order to obtain (4.7).

Theorem 4.1.9.
Let (Sj := Sj(φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and let
φj be the M j-dilate of φ0. If φ̂0 ̸= 0 almost everywhere in some neighborhood of

the origin, then
⋃∞
j=−∞ Sj = L2(Rn).
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Proof.
Due to (1.4), we have φ̂j = cj φ̂0((M

T )−j·) where cj is a constant. We know that
limj→∞(MT )−jx = 0 for all x ∈ Rn, see (3.2). This means that for sufficiently
large j we are again in some neighborhood of the origin where φ̂0 ̸= 0 holds almost
everywhere. Consequently,

⋃
j∈Z supp φ̂j = Rn. Since (Sj)j∈Z is a nested sequence

our claim follows by Theorem 4.1.7.

A possible candidate for φj, j ∈ Z, in Theorem 4.1.7 and Theorem 4.1.9 would be
a compactly supported L2(Rn)-function because such a function satisfies supp φ̂j =
Rn, see Theorem 1.2.10.
We proceed with investigations concerning condition (M3). M. Bownik established

the following relation between the number of generators and the dimension of the
intersection of the spaces (Sj)j∈Z, see [13, Theorem 3.5].

Theorem 4.1.10.
Let (Φj)j∈Z be a sequence of finite subsets of L2(Rn) of cardinality ≤ L, where
Z ⊂ Z with infj∈Z j = −∞. Let (Sj := Sj(Φj))j∈Z be a (not necessarily nested)
sequence given by

Sj = span{φ(· −M−jk) : φ ∈ Φj, k ∈ Zn}.

Then Y :=
⋂
j∈Z Sj is a linear subspace of L2(Rn) of dimension ≤ L.

Setting Z = Z and L = 1 yields that Y =
⋂
j∈Z Sj(φj) is a linear subspace of

L2(Rn) of dimension ≤ 1. In case the dimension equals 1, we have one function f
which belongs to every spaces Sj. Hence, with Proposition 4.1.4 at hand, we can
immediately deduce the next proposition.

Proposition 4.1.11.
Let (Sj(φj))j∈Z be a sequence of subspaces of L2(Rn) and let f ∈

⋂
j∈Z Sj(φj). Then

f is a generator for every space Sj(φj) if and only if supp f̂ = supp φ̂j for all j ∈ Z.
Moreover, the spaces (Sj(φj))j∈Z are generated all by a single function if and only
if supp φ̂j = supp φ̂j′ for all j, j

′ ∈ Z.

In Corollary 4.1.8 we analysed limj→∞PSj
f . Next, we analyse its counterpart,

that is, limj→−∞ PSj
f .

Theorem 4.1.12.
Let (Sj := Sj(φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and let
Y =

⋂
j∈Z Sj. Then limj→−∞ PSj

f = PY f for all f ∈ L2(Rn).

Proof.
We follow the proof of Theorem 4.12 in [30]. First, we define Xj := Sj and thus,
Y =

⋂
j∈ZXj. Moreover, we set Pj := PXj

. The idea of the proof is to show
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that Pjf
w→ g implies g = PY f and g = limj→−∞ Pjf . This again implies that the

sequence (Pjf)j has limit points and that PY f is the only limit point. The existence
of weak limit points follows from the boundedness of the sequence. Therefore, we
initially derive the proof for a convergent subsequence (Pjkf)jk . With the help of this
proof we deduce that every weak convergent subsequence converges to our desired
limit and by Proposition 1.1.7, the whole sequence converges to our desired limit.
Let g be the weak limit of the subsequence (Pjkf)jk . Every linear subspace Xℓ

with ℓ ∈ Z is closed and convex and therefore, by Theorem 1.1.9, weakly closed.
Since every Xℓ contains every Pjkf for jk ≤ ℓ, it follows that the weak limit g is an
element of every Xℓ. Thus, g ∈ Y . In addition, (1.1) yields that xjk := f − Pjkf is
perpendicular to Xjk and as a consequence, perpendicular to Y . Hence, the weak
limit x := f − g is perpendicular to Y and g = PY f . Since Y is the intersection of
the nested sequence (Xj)j, we obtain with the help of Theorem 1.1.10

lim
jk→−∞

∥xjk∥L2(Rn) = sup
jk

dist(f,Xjk) ≤ dist(f, Y ) = ∥x∥L2(Rn). (4.8)

From the definition of weak convergence it follows that ⟨xjk , x⟩L2(Rn) → ⟨x, x⟩L2(Rn).
Moreover, we have

∥Pjkf − g∥2L2(Rn) = ∥x− xjk∥2L2(Rn)

= ∥x∥2L2(Rn) − 2Re ⟨x, xjk⟩L2(Rn) + ∥xjk∥2L2(Rn). (4.9)

Hence, it holds

∥Pjkf − g∥2L2(Rn) → −∥x∥2L2(Rn) + lim
jk

∥xjk∥2L2(Rn) for jk → −∞. (4.10)

While (4.9) is non-negative, (4.8) yields that (4.10) is non-positive. We conclude
that limjk Pjkf = g = PY f .

Corollary 4.1.8 and Theorem 4.1.12 ensure that even if Y is nontrivial, we obtain
an orthogonal decomposition of the space L2(Rn). Consequently, a construction of
wavelet bases via multiresolution analysis is possible regardless of the dimension of
Y.

Corollary 4.1.13.
Let (Sj := Sj(φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and let

Ω0 =
⋃
j∈Z

supp φ̂j = Rn (modulo a null-set).

Moreover, let Y denote the intersection of the spaces Sj, j ∈ Z. Then we obtain the
orthogonal decomposition

L2(Rn) = Y ⊕
⊕
j∈Z

Wj.
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Proof.
Since Y ⊂ Sj, j ∈ Z, it is orthogonal to each of the wavelet spaces Wj := Sj+1 ⊖ Sj.
Our claim then follows by applying Corollary 4.1.8 and Theorem 4.1.12.

In case (M4∗) is satisfied, the intersection of the spaces Sj, j ∈ Z, is always trivial.

Corollary 4.1.14.
Let φ ∈ L2(Rn). We define Sj := Sj(φ(M

j·)), j ∈ Z. Then
⋂
j∈Z Sj = {0}.

Proof.
Suppose that f is a nontrivial function in

⋂
j∈Z Sj. We are in the stationary case

and therefore, we know that the space Sℓ is the M
ℓ-dilation of the space S0. Thus,

the intersection of the spaces Sj is invariant under M
ℓ-dilation. Moreover, Theorem

4.1.10 tells us that the intersection of the spaces is at most one-dimensional. With
these considerations, we conclude that there exists a λ such that

f(M ℓ·) = λf almost everywhere on Rn. (4.11)

However, for a nontrivial function f ∈ L2(Rn) equation (4.11) cannot be fulfilled.
To this end consider the set

Fj := {x |x ∈ Dj \Dj−1 and |f(x)| > C|λ|j, C > 0}, j ∈ Z, (4.12)

with Dj := {M jx |x ∈ B1(0)} and B1(0) := {x ∈ Rn | |x| ≤ 1}. Due to (3.3),
Rn can be written as the disjoint union of the sets Fj. Furthermore, we use the
transformation formula to obtain

Fj =MFj−1 and meas(Fj) = | detM | meas(Fj−1), j ∈ Z. (4.13)

The function f is nontrivial and as a consequence the set

F0 := {x |x ∈ D0 \D−1 and |f(x)| > C,C > 0}

has not measure 0. This can be proven as follows: Suppose F0 has measure 0.
Since the matrix M is invertible, it holds detM ̸= 0. Then, by (4.13), every set
Fj has measure 0. By virtue of (4.12), we observe that Fj, j ∈ Z, is of measure
0 for arbitrary C > 0. Consequently, C can be chosen arbitrarily small such that
the factor |λ|j gets compensated. It follows that f vanishes almost everywhere on
every Fj. This is a contradiction to our assumption f ̸= 0. Hence, F0 cannot have
measure 0.
Furthermore, M jF0 = Fj and therefore, for x ∈M jF0 we have the estimate

|f(x)| ≥ C|λ|j, (4.14)
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see (4.13) and (4.11). In a last step we verify that f cannot be in L2(Rn). By (4.14)
and (4.13), we obtain

∥f∥2L2(Rn) =

∫
Rn

|f(x)|2dx

≥
∫

⋃
j Fj

|C|λ|j|2dx

= C2

∫
⋃

j Fj

(|λ|2)jdx

= C2meas(F0)
∑
j∈Z

(| detM ||λ|2)j. (4.15)

The series in (4.15) is divergent. As a consequence the norm of the function f is not
finite and thus, f /∈ L2(Rn). This is a contradiction.

In summary, it is sufficient to assume in the stationary setting that φ is compactly
supported and that the spaces Sj(φ(M

j·)), j ∈ Z, are nested in order to ensure that
(M2) and (M3) are satisfied.

4.2 Finitely Generated Shift-Invariant Spaces

4.2.1 Characterization

Finitely generated shift-invariant spaces are generated by multiple functions. An
analogon of Theorem 4.1.1 for these spaces can be found in [32, Theorem 1.7].

Theorem 4.2.1.
Let Φ := {φ1, . . . , φN} be a subset of the space L2(Rn). Then f ∈ S0(Φ) if and only
if

f̂ =
∑
φ∈Φ

τφφ̂

for some 2πZn-periodic functions τφ.

By adapting the periodicity of the functions τφ, we obtain an analogue result for
the spaces Sj(Φ), j ∈ Z.
Corollary 4.2.2.
Let Φ = {φ1, . . . , φN} be a subset of the space L2(Rn). Then f ∈ Sj(Φ) if and only
if

f̂ =
∑
φ∈Φ

τφφ̂ (4.16)
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4.2 Finitely Generated Shift-Invariant Spaces

for some 2π(MT )jZn-periodic functions τφ.

Proof.
Assume f ∈ Sj(Φ). Then there exists a sequence (fℓ)ℓ∈N ∈ Sj(Φ) such that fℓ → f
in the L2-sense. The definition of the space Sj(Φ) yields for all elements of the
sequence the representation

fℓ =
∑
φ∈Φ

∑
k∈Zn

aℓ,φ,k φ(· −M−jk) =
∑
φ∈Φ

∑
k∈Zn

aℓ,φ,k φM−j(M j · −k) (4.17)

with φM−j = φ(M−j·). Next, we apply the operator J defined in (4.2) to (4.17) and
we obtain

(Jfℓ) =
∑
φ∈Φ

∑
k∈Zn

aℓ,φ,k φM−j(· − k).

Hence, it holds Jfℓ ∈ S0(ΦM−j) with ΦM−j := {φM−j , φ ∈ Φ}. By the continuity of
the operator J , we have

∥Jfℓ − Jf∥L2(Rn) → 0 for ℓ→ ∞.

It follows from the L2-closure of the space S0(ΦM−j) that Jf ∈ S0(ΦM−j). By
Theorem 4.2.1, there exist 2π-periodic functions τφ such that the Fourier transform
of Jf can be written as

(”Jf)(ξ) =∑
φ∈Φ

τφ(ξ)’φM−j(ξ) almost everywhere.

Since the Fourier transform and the operator J−1 are continuous, we obtain

∥f̂ℓ − f̂∥L2(Rn) → 0 for ℓ→ ∞.

Moreover, the function f̂ is given by

f̂ =
∑
φ∈Φ

τφ((M
T )−j·)φ̂ almost everywhere.

Here, the functions τφ((M
T )−j·) are 2π(MT )jZn-periodic.

Conversely, assume that f̂(ξ) =
∑

φ∈Φ τφ(ξ) φ̂(ξ) holds almost everywhere for

f ∈ L2(Rn) and some 2π(MT )jZn-periodic functions τφ. Set ξ̃ = (MT )−jξ. Then
the functions τφ((M

T )j ξ̃) are 2π-periodic and we obtain

f̂((MT )j ξ̃) =
∑
φ∈Φ

τφ((M
T )j ξ̃) φ̂((MT )j ξ̃) almost everywhere.
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With τφ,(MT )j := τφ((M
T )j·) this is equivalent to‘(Jf)(ξ̃) =∑
φ∈Φ

τφ,(MT )j(ξ̃)’φM−j(ξ̃) almost everywhere.

It follows that Jf is an element of the space S0(ΦM−j). Hence, there exists a sequence
(fℓ)ℓ∈N ∈ S0(ΦM−j) with fℓ → Jf in the L2-sense. For each element of the sequence
we have

fℓ =
∑
φ∈Φ

∑
k∈Zn

aℓ,φ,k φM−j(· − k).

Applying the operator J−1 leads to

J−1fℓ =
∑
φ∈Φ

∑
k∈Zn

aℓ,φ,k φM−j(M j · −k) =
∑
φ∈Φ

∑
k∈Zn

aℓ,φ,k φ(· −M−jk).

Consequently, J−1fℓ ∈ Sj(Φ). By the continuity of J−1, we deduce further that

∥J−1fℓ − f∥L2(Rn) → 0 for ℓ→ ∞.

Due to the L2-closure of the space Sj(Φ), f is an element of the space Sj(Φ) as
well.

The characterization above yields’Sj(Φ) = {∑
φ∈Φ

τφφ̂ ∈ L2(Rn) : τφ is 2π(M
T )jZn-periodic, φ ∈ Φ

}
. (4.18)

Next, we deduce under which assumptions a finite set F ⊂ Sj(Φ) generates the
space Sj(Φ). In the proof of Proposition 4.1.4 it was crucial that we could rearrange

f̂ = τφ̂ to 1
τ
f̂ = φ̂ on supp τ , see (4.6) for details. The following proposition

generalizes this idea.
Hereinafter, we use the notation Φ for the set of functions {φ1, . . . , φN} and for

the vector consisting of the functions φ1, . . . , φN . It will always be clear from the
context which interpretation is required.

Proposition 4.2.3.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) and let Sj(Φ), j ∈ Z, be a finitely generated shift-
invariant space. Moreover, let F := {f1, . . . , fN} ⊂ Sj(Φ). Then the following
equivalence holds: F generates Sj(Φ) if and only if there exists a square matrix
Γ := (τf,φ)f∈F,φ∈Φ which is non-singular almost everywhere and has 2π(MT )jZn-
periodic functions as entries such that Φ̂ = Γ F̂ .
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4.2 Finitely Generated Shift-Invariant Spaces

Proof.
The proof follows from Corollary 4.2.2. Every function fℓ, 1 ≤ ℓ ≤ N, in the set
F ⊂ Sj(Φ) can be represented as

f̂ℓ =
N∑
k=1

τ̃ℓ,k φ̂k, (4.19)

where the functions τ̃ℓ,k are 2π(MT )jZn-periodic functions. This is equivalent to

F̂ = Γ̃Φ̂ with Γ̃ := (τ̃ℓ,k)ℓ,k=1,...,N . Now, F generates Sj(Φ) if and only if the Fourier
transform of every generator φi, 1 ≤ i ≤ N, can be represented as

φ̂i =
N∑
ℓ=1

τi,ℓ f̂ℓ, (4.20)

where the functions τi,ℓ are 2π(MT )jZn-periodic. Condition (4.20) is equivalent to

Φ̂ = ΓF̂ with Γ := (τi,ℓ)i,ℓ=1,...,N . By combining (4.19) and (4.20), we obtain

φ̂i =
N∑
ℓ=1

τi,ℓ f̂ℓ =
N∑
ℓ=1

N∑
k=1

τi,ℓ τ̃ℓ,k φ̂k.

Hence, F generates Sj(Φ) if and only if

N∑
ℓ=1

τi,ℓ τ̃ℓ,k = δi,k.

In other words, the matrix Γ̃ is the inverse of Γ.

Following [32] and [30], we call Φ a basis for the space Sj(Φ) if the functions τφ
in (4.16) are uniquely determined by f or equivalently, if the determinant of the
Gramian matrix is non-zero almost everywhere. We remark that in this case the
functions τφ are proven to be measurable, see Corollary 3.11 in [32].

Definition 4.2.4.
Let Φ = {φ1, . . . , φN} ⊂ Sj with j ∈ Z. The Gramian matrix associated with Φ is
defined by

G(Φ) :=

á
[φ̂1, φ̂1]j [φ̂1, φ̂2]j . . . [φ̂1, φ̂N ]j
[φ̂2, φ̂1]j [φ̂2, φ̂2]j . . . [φ̂2, φ̂N ]j

...
...

. . .
...

[φ̂N , φ̂1]j [φ̂N , φ̂2]j . . . [φ̂N , φ̂N ]j

ë
.

43



Shift-Invariant Spaces

The Gramian matrix is positive semidefinite and thus, all its eigenvalues are non-
negative. Hence, it holds detG(Φ) ≥ 0. Consequently, Φ is a basis if and only if the
determinant of the Gramian matrix is non-zero almost everywhere.
For application purposes, one is interested in numerically stable algorithms. There-

fore, it is desirable to work with L2-stable bases.

Definition 4.2.5.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn). We call Φ an L2-stable basis of Sj(Φ) if every
element f ∈ Sj(Φ) has a unique representation of the form

f =
∑
φ∈Φ

∑
k∈Zn

cφ,k(f)φ(· −M−jk) (4.21)

and the coefficients satisfy

C1

∑
φ∈Φ

∑
k∈Zn

|cφ,k(f)|2 ≤ ∥f∥2L2(Rn) ≤ C2

∑
φ∈Φ

∑
k∈Zn

|cφ,k(f)|2

with 0 < C1 ≤ C2 <∞.

Hence, L2-stability ensures that a small perturbation of the coefficient sequence
has a controllable effect on the linear combination in (4.21).
Now, that we have established the terms basis and L2-stability, we consider a

space with an (L2-stable) basis and analyse under which conditions a finite set of
functions from the space provides an (L2-stable) basis as well, see [30, Theorem
2.26].

Theorem 4.2.6.
Let the finite set of functions Φ = {φ1, . . . , φN} ⊂ L2(Rn) provide a basis for S0(Φ).
In addition, let Ψ be any set of functions from S0(Φ) and let Γ := (τψ,φ)ψ∈Ψ,φ∈Φ
denote a square matrix with 2πZn-periodic measurable functions as entries. Then
it holds:

i) Ψ provides a basis for S0(Φ) if and only if Ψ̂ = ΓΦ̂ for some Γwhich is non-
singular almost everywhere.

ii) Ψ provides a basis for S0(Φ) if and only if Ψ generates the space S0(Φ) and
#Ψ = #Φ.

iii) Ψ provides a basis for S0(Φ) if and only if #Ψ = #Φ and detG(Ψ) ̸= 0 almost
everywhere.

iv) Ψ provides an L2-stable basis for S0(Φ) if Φ does and Ψ̂ = ΓΦ̂ with ∥Γ∥, ∥Γ−1∥ ∈
L∞(C̃0), C̃0 = [−π, π)n.
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4.2 Finitely Generated Shift-Invariant Spaces

In order to generalize the theorem above for spaces Sj, we will need the following
lemma.

Lemma 4.2.7.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) generate the space Sj(Φ) and let Ψ be any set from
the space Sj(Φ), j ∈ Z. Then Sj(Φ) = Sj(Ψ) if and only if S0(ΦM−j) = S0(ΨM−j)
with ΦM−j = {φ(M−j·), φ ∈ Φ} and ΨM−j := {ψ(M−j·), ψ ∈ Ψ}.

Proof.
Assume that Sj(Φ) = Sj(Ψ). Then for every generator φ ∈ Φ there exists a sequence
(fℓ)ℓ∈N ∈ Sj(Φ) with

fℓ =
∑
ψ∈Ψ

∑
k∈Zn

aℓ,ψ,kψM−j(M j · −k), ψM−j := ψ(M−j·),

such that fℓ → φ in the L2-sense. Consequently, Jfℓ is given by

Jfℓ =
∑
ψ∈Ψ

∑
k∈Zn

aℓ,ψ,kψM−j(· − k)

and therefore, Jfℓ ∈ S0(ΨM−j). Due to the continuity of the operator J , we have

∥Jfℓ − Jφ∥L2(Rn) = ∥Jfℓ − φ(M−j·)∥L2(Rn) → 0 for ℓ→ ∞.

Then it follows from the L2-closure of the space S0 that φ(M−j·) ∈ S0(ΨM−j) and
thus, S0(ΦM−j) ⊆ S0(ΨM−j). It can be proven analogously that it holds S0(ΦM−j) ⊇
S0(ΨM−j) and thus, S0(ΦM−j) = S0(ΨM−j).
Conversely, assume that S0(ΦM−j) = S0(ΨM−j). Since J is a bijection, we can use

the same arguments as above to deduce that Sj(Φ) = Sj(Ψ).

Corollary 4.2.8.
Let the finite set of functions Φ = {φ1, . . . , φN} ⊂ L2(Rn) provide a basis for Sj(Φ).
In addition, let Ψ be any set of functions from Sj(Φ) and let Γ = (τψ,φ)ψ∈Ψ,φ∈Φ
denote a square matrix with 2π(MT )jZn-periodic measurable functions as entries.
Then it holds:

i) Ψ provides a basis for Sj(Φ) if and only if Ψ̂ = ΓΦ̂ for some Γwhich is non-
singular almost everywhere.

ii) Ψ provides a basis for Sj(Φ) if and only if Ψ generates the space Sj(Φ) and
#Ψ = #Φ.

iii) Ψ provides a basis for Sj(Φ) if and only if #Ψ = #Φ and detG(Ψ) ̸= 0 almost
everywhere.
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iv) Ψ provides an L2-stable basis for Sj(Φ) if Φ does and Ψ̂ = ΓΦ̂ with ∥Γ∥, ∥Γ−1∥ ∈
L∞(C̃j), C̃j = (MT )j[−π, π)n.

Proof.
Let us start with the proof of part i). We assume that Φ and Ψ provide a basis for
Sj(Φ). This implies Sj(Φ) = Sj(Ψ) and by Lemma 4.2.7, S0(ΦM−j) = S0(ΨM−j).
Next, we verify that ΦM−j and ΨM−j provide a basis for S0(ΦM−j). For every function
f ∈ Sj(Φ) there exist sequences (f iℓ)ℓ∈N ∈ Sj(Φ), i = 1, 2, with unique representa-
tions

f 1
ℓ =

∑
ψ∈Ψ

∑
k∈Zn

aℓ,ψ,kψ(· −M−jk), f 2
ℓ =

∑
φ∈Φ

∑
k∈Zn

bℓ,φ,kφ(· −M−jk),

such that f iℓ → f in the L2-sense. An application of J yields

Jf 1
ℓ =

∑
ψ∈Ψ

∑
k∈Zn

aℓ,ψ,kψM−j(· − k), ψM−j = ψ(M−j·),

and

Jf 2
ℓ =

∑
φ∈Φ

∑
k∈Zn

aℓ,φ,kφM−j(· − k), φM−j = φ(M−j·).

We observe that Jf iℓ ∈ S0(ΦM−j), i = 1, 2. Since J is a bijection, the representations
above are unique and since J is continuous, we deduce

∥Jf iℓ − Jf∥L2(Rn) → 0 for ℓ→ ∞.

Due to the L2-closure of the space S0, it follows that Jf ∈ S0(ΦM−j). Now, part i)
of Theorem 4.2.6 yields that ’ΨM−j(ξ) = Γ(ξ)’ΦM−j(ξ) (4.22)

for some non-singular Γ with 2πZn-periodic entries. We set ξ̃ = (MT )jξ and replace
ξ by (MT )−j ξ̃ in (4.22) to obtain the desired result.
Conversely, we assume that Ψ̂ = ΓΦ̂ holds with Γ being non-singular almost

everywhere. Moreover, we assume that Γ has 2π(MT )jZn-periodic entries. By
analogue arguments as above, the equality Ψ̂ = ΓΦ̂ can be transformed to (4.22).
Then part i) of Theorem 4.2.6 yields that ΨM−j provides a basis for S0(ΦM−j) and
consequently, Ψ provides a basis for Sj(Φ).
Next, we prove part ii). Assume that Ψ provides a basis for the space Sj(Φ). It

follows directly that Ψ generates this space. Moreover, ΨM−j provides a basis for
S0(ΦM−j), see proof of part i). By part ii) of Theorem 4.2.6, ΨM−j and ΦM−j are of
the same cardinality. Applying the bijective operator J−1 yields #Ψ = #Φ.
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Conversely, we assume that Ψ generates the space Sj(Φ) and #Ψ = #Φ. Since J
is a bijection, it follows directly that #ΦM−j = #ΨM−j . Moreover, Sj(Φ) = Sj(Ψ)
and therefore, S0(ΦM−j) = S0(ΨM−j), see Lemma 4.2.7. Besides that we know that
if Φ provides a basis for Sj(Φ), then ΦM−j provides a basis for S0(ΦM−j) as well, see
proof of part i). By part ii) of Theorem 4.2.6, ΨM−j provides a basis for S0(ΦM−j)
and hence, Ψ provides a basis for Sj(Φ).
Now, we prove part iii). In the proof of part ii) we already deduced that every

possible basis Ψ of Sj(Φ) has the same number of elements as Φ. Moreover, Ψ
provides a basis for Sj(Φ) if and only if every element in the space Sj(Φ) can be
represented by a unique linear combination of the basis elements. This is the case
if and only if detG(Ψ) ̸= 0 almost everywhere.
It remains to prove part iv). Let Φ provide an L2-stable basis for Sj(Φ). Then

every function f ∈ Sj(Φ) has a unique representation of the form

f =
∑
φ∈Φ

∑
k∈Zn

aφ,kφ(· −M−jk) (4.23)

with (aφ,k)φ∈Φ,k∈Zn ∈ ℓ2(Zn). Moreover, the coefficients satisfy

C1

∑
φ∈Φ

∑
k∈Zn

|aφ,k|2 ≤ ∥f∥2L2(Rn) ≤ C2

∑
φ∈Φ

∑
k∈Zn

|aφ,k|2 (4.24)

with 0 < C1 ≤ C2 <∞. Formula (4.23) is equivalent to

f =
∑
φ∈Φ

∑
k∈Zn

aφ,k φM−j(M j · −k).

Next, we apply the operator J in order to obtain

Jf =
∑
φ∈Φ

∑
k∈Zn

aφ,k φM−j(· − k).

The inequality (4.24) is still satisfied for the functions Jf . This follows from
the transformation formula. Consequently, ΦM−j provides an L2-stable basis for
S0(ΦM−j). Moreover, let

Ψ̂ = ΓΦ̂

with ∥Γ∥, ∥Γ−1∥ ∈ L∞(C̃j). Then it follows that’ΨM−j = Γ((MT )j·)’ΦM−j

with ∥Γ((MT )j·)∥, ∥Γ−1((MT )j·)∥ ∈ L∞(C̃0). An application of part iv) of Theorem
4.2.6 yields that ΨM−j provides an L2-stable basis for S0(ΦM−j) and thus, Ψ provides
an L2-stable basis for Sj(Φ).
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The subsequent corollary states that a basis of a shift-invariant space Sj can be
orthonormalized. This result can be found in [30, Theorem 2.28] for j = 0. We
obtain an extension of this result for spaces Sj, j ∈ Z, by using the same arguments
that we have already used several times in the preceding proofs.

Corollary 4.2.9.
Let the finite set of functions Φ = {φ1, . . . , φN} ⊂ L2(Rn) provide a basis for the
space Sj(Φ), j ∈ Z.

i) Then there exists a set Φ∗ of generators for Sj(Φ) that provides an orthonormal
basis for Sj(Φ).

ii) If the functions in Φ have compact support, then there is another set Φ∗ =
{φ∗

1, . . . , φ
∗
N} of compactly supported functions which give the orthogonal de-

composition of the space Sj(Φ):

Sj(Φ) = Sj(φ
∗
1)⊕ . . .⊕ Sj(φ

∗
N).

For the proof of Lemma 6.2.1 we generalize the following theorem which can be
found in [49, Theorem 5.2].

Theorem 4.2.10.
Let the finite set of functions Φ = {φ1, . . . , φN} ⊂ L2(Rn) generate the space S0(Φ).
Moreover, let the functions φi, i = 1, . . . , N, have compact support and linearly
independent integer translates. Furthermore, let a1, . . . , aN be sequences on Zn. If∑N

i=1

∑
k∈Zn aφi,kφi(· − k) is compactly supported, then all the sequences a1, . . . , aN

are finitely supported.

Corollary 4.2.11.
Let the finite set of functions Φ = {φ1, . . . , φN} ⊂ L2(Rn) generate the space
Sj(Φ), j ∈ Z. Moreover, let the functions φi, i = 1, . . . , N, have compact sup-
port and linearly independent M−jZn translates. Furthermore, let a1, . . . , aN be
sequences on Zn. If

∑N
i=1

∑
k∈Zn aφi,kφi(· −M−jk) is compactly supported, then all

the sequences a1, . . . , aN are finitely supported.

Proof.
We set φM−j(y) = φ(M−jy) and x =M jy for x, y ∈ Rn. Then we have the equality
φM−j(x − k) = φ(y −M−jk), k ∈ Zn. The function φM−j has linearly independent
Zn-shifts whenever the function φ has linearly independent M−jZn-shifts. Since∑

φ∈Φ

∑
k∈Zn

aφ,k φM−j(x− k) =
∑
φ∈Φ

∑
k∈Zn

aφ,k φ(y −M−jk),

we deduce further that the left-hand side is compactly supported whenever the right-
hand side is compactly supported. By Theorem 4.2.10 our proof is complete.

48



4.2 Finitely Generated Shift-Invariant Spaces

4.2.2 Density and Intersection

Conditions (M2) and (M3) in the definition of the generalized multiresolution anal-
ysis turn into

(M2)
∞⋃

j=−∞

Sj(Φj) = L2(Rn) and (M3)
∞⋂

j=−∞

Sj(Φj) = {0}

if we work with finitely generated shift-invariant spaces. Here, Φj := {φj1, . . . , φ
j
N}

denotes the generator set of the space Sj and φji , 1 ≤ i ≤ N, denotes a generator
which belongs to the generator set Φj. Hereinafter, we generalize the results from
Section 4.1.2.

Theorem 4.2.12.
Let (Sj := Sj(Φj))j∈Z be a nested sequence of subspaces of the space L2(Rn). Then⋃
j∈Z Sj = L2(Rn) if and only if

Ω0 :=
⋃
j∈Z

⋃
i∈{1,...,N}

supp φ̂ji = Rn (modulo a null-set). (4.25)

Proof.
The proof of Theorem 4.1.7 yields that X =

⋃
j∈Z Sj is a closed shift-invariant

subspace of L2(Rn). The number of generators of the spaces Sj does not change the
proof. With this result at hand, Theorem 4.1.6 tells us that“X = L2(Ω),

where Ω is a measurable subset of Rn. Hence, X = L2(Rn) if and only if Ω = Rn

modulo a null-set. It remains to show that Ω = Ω0.
Every function φji is an element in X for j ∈ Z and i = 1, . . . , N . Consequently,

supp φ̂ji ⊂ Ω modulo a null-set. Therefore, Ω0 ⊂ Ω modulo a null-set. Now, suppose
that there exists a set Ω1 which is contained in Ω \ Ω0 with positive measure. The
Fourier transform of elements in Sj has the representation (4.18). We notice that the
Fourier transform of these elements vanishes on Ω1 and thus, the Fourier transform
of each element in

⋃
j∈Z Sj vanishes on Ω1. Taking the closure, we observe that each

element in X has a Fourier transform which vanishes on Ω1. This is a contradiction

to the fact that “X contains the space L2(Ω1).

The subsequent corollary is a direct consequence of the preceding theorem.

Corollary 4.2.13.
Let (Sj = Sj(Φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and⋃
j∈Z
⋃
i∈{1,...,N} supp φ̂

j
i = Rn. Then the orthogonal projectors PSj

from L2(Rn)
onto Sj satisfy

lim
j→∞

PSj
f = f for all f ∈ L2(Rn).
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Proof.
Due to the nestedness of the closed spaces Sj, we can apply Theorem 4.2.12 which
yields that

∥f − PSj
f∥L2(Rn) = dist(f, Sj) → 0 for j → ∞.

In case of a stationary multiresolution analysis it is sufficient to assume that the
generators of S0 do not vanish in some neighborhood of the origin in order to obtain
(4.25).

Theorem 4.2.14.
Let (Sj = Sj(Φj))j∈Z be a nested sequence of subspaces of L2(Rn). Moreover, assume
that Sj(Φj) is the M

j-dilation of S0(Φ0), that is, Φj = {φ0
i (M

j·), i = 1, . . . , N}. If
φ̂0
i ̸= 0 almost everywhere in some neighborhood of the origin for i = 1, . . . , N, then

it holds

∞⋃
j=−∞

Sj = L2(Rn).

Proof.
Due to (1.4), we have φ̂ji = cj φ̂

0
i ((M

T )−j·) where cj is a constant. We know that
limj→∞(MT )−jx = 0 for all x ∈ Rn, see (3.2). This means that for sufficiently
large j we are again in some neighborhood of the origin where φ̂0

i ̸= 0 holds almost
everywhere. Consequently,

⋃
j∈Z
⋃
i∈{1,...,N} supp φ̂

j
i = Rn. Since (Sj)j∈Z is a nested

sequence our claim follows by Theorem 4.2.12. which yields
⋃∞
j=−∞ Sj = L2(Rn).

Possible candidates for the generators of the finitely generated shift-invariant
space in Theorem 4.2.12 and Theorem 4.2.14 are compactly supported functions
in L2(Rn) because the support of the Fourier transform of such functions equals Rn,
see Theorem 1.2.10.
Now, let us have a closer look at condition (M3). Theorem 4.1.10 in Section 4.1.2

yields that

Y =
⋂
j∈Z

Sj(Φj)

is a linear subspace of L2(Rn) of dimension ≤ N .
The following theorem states that the orthogonal projection of a function f onto

Y is given by limj→−∞ PSj
f .

Theorem 4.2.15.
Let (Sj = Sj(Φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and let
Y =

⋂
j∈Z Sj(Φj). Then limj→−∞ PSj

f = PY f for all f ∈ L2(Rn).
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4.2 Finitely Generated Shift-Invariant Spaces

Proof.
The claim follows from the proof of Theorem 4.1.12 where the number of generators
does not affect the proof.

Taking Corollary 4.2.13 and Theorem 4.2.15 into consideration, we see that L2(Rn)
has an orthogonal decomposition. Therefore, we can construct wavelet bases via
multiresolution analysis in case of finitely generated shift-invariant spaces as well.

Corollary 4.2.16.
Let (Sj = Sj(Φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and let

Ω0 =
⋃
j∈Z

⋃
i∈{1,...,N}

supp φ̂ji = Rn (modulo a null-set).

Moreover, let Y denote the intersection of the spaces Sj, j ∈ Z. Then we obtain the
orthogonal decomposition

L2(Rn) = Y ⊕
⊕
j∈Z

Wj.

Proof.
Since Y ⊂ Sj, j ∈ Z, it is orthogonal to each of the wavelet spaces Wj := Sj+1 ⊖ Sj.
Our claim then follows by applying Corollary 4.2.13. and Theorem 4.2.15.

Next, we want to prove that Y is trivial in the stationary case. In [50], this was
proven explicitly for M = 2I. In addition, the authors state in Remark 2.6 that the
proof is analgoue for an arbitrary dilation matrix. In the following, we are going to
adapt their method of proof to an arbitrary dilation matrix. The subsequent lemma
is needed in this process, see [50, Lemma 2.3].

Lemma 4.2.17.
Let S0 be generated by Φ0 = {φ0

1, . . . , φ
0
N} ⊂ L2(Rn). Then there exists a set of

functions Ψ0 = {ψ0
1, . . . , ψ

0
N} ⊂ L2(Rn) such that S0(Φ0) ⊆ S0(Ψ0) and the shifts of

ψ0
1, . . . , ψ

0
N are orthonormal.

Theorem 4.2.18.
Let (Sj = Sj(Φj))j∈Z be a nested sequence of subspaces of the space L2(Rn) and let
Sj be the M j-dilation of the space S0, that is, Φj = {φ0

i (M
j·), i = 1, . . . , N}. Then

it holds ⋂
j∈Z

Sj = {0}.
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Proof.
Lemma 4.2.17 and the nestedness assumption Sj ⊂ Sj+1 imply that it is sufficient
to prove the theorem for the case that the shifts of the generators of S0(Φ0) are
orthonormal. In case the generators of S0(Φ0) are not orthonormal, we consider the
space S0(Ψ0) defined as in Lemma 4.2.17. Next, we set Sj as the M

j-dilation of the
space S0(Ψ0). If the intersection of the spaces Sj(Ψ0(M

j·)) is trivial then it follows
directly that the intersection of the spaces Sj(Φ0(M

j·) is trivial as well.
In the following we denote by PSj

the orthogonal projector from the space L2(Rn)
onto Sj. Our claim follows if we are able to prove

PSj
f → 0 as j → −∞ for every f ∈ L2(Rn). (4.26)

We note that

∥PSj
∥ =

®
1, if Sj ̸= {0},
0, if Sj = {0},

and that the set of continuous functions with compact support is dense in L2(Rn).
Hence, for each f ∈ L2(Rn) there exists a continuous function with compact support
f̃ with ∥f̃−f∥L2(Rn) < ε for all ε > 0. Now, assume we have PSj

f̃ → 0 for j → −∞.
Then, the estimate

|∥PSj
f̃∥L2(Rn) − ∥PSj

f∥L2(Rn)| ≤ ∥PSj
f̃ − PSj

f∥L2(Rn)

= ∥PSj
(f̃ − f)∥L2(Rn)

≤ ∥f̃ − f∥L2(Rn)

< ε

implies that PSj
f → 0 for j → −∞. Hence, it suffices to prove (4.26) for any

continuous function f ∈ L2(Rn) with compact support. If f is such a function the
orthogonal projection of f onto the space Sj is given by

PSj
f =

N∑
k=1

∑
α∈Zn

cj,k(α)m
j/2φk(M

j · −α), φk := φ0
k, (4.27)

where cj,k are sequences in ℓ2(Zn) for k = 1, . . . , N . The orthonormality of the shifts
of φ1, . . . , φN and (4.27) yield

∥PSj
f∥2L2(Rn) =

N∑
k=1

∑
α∈Zn

|cj,k(α)|2 =
N∑
k=1

∥cj,k∥2ℓ2(Zn). (4.28)

Moreover, with Proposition 1.1.4 we obtain

PSj
f =

N∑
k=1

∑
α∈Zn

¨
f,mj/2φk(M

j · −α)
∂
L2(Rn)

mj/2φk(M
j · −α). (4.29)
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4.2 Finitely Generated Shift-Invariant Spaces

Therefore, we set cj,k(α) :=
〈
f,mj/2φk(M

j · −α)
〉
L2(Rn)

. By (4.28) and (4.29), we

further deduce that

N∑
k=1

∑
α∈Zn

|cj,k(α)|2 =
N∑
k=1

∑
α∈Zn

∣∣∣∣¨f,mj/2φk(M
j · −α)

∂
L2(Rn)

∣∣∣∣2

=
N∑
k=1

∑
α∈Zn

∣∣∣∣∣∣
∫
Rn

f(x)mj/2 φk(M jx− α) dx

∣∣∣∣∣∣
2

.

If we assume that f is supported in the cube [−R,R]n for some R > 0, it follows
that

N∑
k=1

∑
α∈Zn

∣∣∣∣∣∣
∫
Rn

f(x)mj/2 φk(M jx− α) dx

∣∣∣∣∣∣
2

=
N∑
k=1

∑
α∈Zn

∣∣∣∣∣∣∣
∫

Mj [−R,R]n−α

f(M−jx+ α)mj/2 φk(x) dx

∣∣∣∣∣∣∣
2

.

Next, we apply the Cauchy-Schwarz inequality to obtain

N∑
k=1

∑
α∈Zn

∣∣∣∣∣∣∣
∫

Mj [−R,R]n−α

f(M−jx+ α)mj/2 φk(x) dx

∣∣∣∣∣∣∣
2

≤
N∑
k=1

∑
α∈Zn

Ö ∫
Mj [−R,R]n−α

|mj/2f(M−jx+ α)|2 dx

èÖ ∫
Mj [−R,R]n−α

|φk(x)|2 dx

è
.

For j < 0, |j| sufficiently large, the intersection

{M j[−R,R]n − α} ∩ {M j[−R,R]n − α′}

is trivial for α ̸= α′, see (3.2), and the estimate

∥PSj
f∥2L2(Rn) ≤ ∥f∥2L2(Rn)

N∑
k=1

Ö∫
Ej

|φk(x)|2 dx

è2

= ∥f∥2L2(Rn)

N∑
k=1

Ñ∫
Rn

χEj
(x) |φk(x)|2 dx

é2
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holds, where Ej :=
⋃
α∈Zn

M j[−R,R]n − α. Notice that χEj
|φk|2 converges point-

wise almost everywhere on Rn to 0 for j → −∞ and |χEj
φk|2 ≤ |φk|2. Then the

dominated convergence theorem yields

lim
j→−∞

∥Pjf∥2L2(Rn) ≤ lim
j→−∞

∥f∥2L2(Rn)

N∑
k=1

Ñ∫
Rn

χEj
(x) |φk(x)|2 dx

é2

= ∥f∥2L2(Rn)

N∑
k=1

Ñ∫
Rn

lim
j→−∞

χEj
(x) |φk(x)|2 dx

é2

→ 0.

Our proof is complete.

We remark that in contrast to Corollary 4.1.14 we assume in the theorem above
that the spaces Sj are nested.
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Chapter 5

Orthogonal Projection onto
Shift-Invariant Spaces

In Chapter 3 and Chapter 4 we defined and analysed the setting of our construction
procedures. Now, let us explain one basic construction idea. Since we are interested
in a pre-(multi)wavelet basis, we define the space Wj as the orthogonal complement
of Sj in Sj+1. Our aim is to determine a basis for every spaceWj, j ∈ Z. Considering
the union of these bases then results in a pre-(multi)wavelet basis of the space
L2(Rn). But how do we obtain these bases? As stated in (2.4), the wavelet space
W0 can be defined by

W0 := {s− PS0s : s ∈ S1}.

In the following chapters we will construct mother wavelets of the form s − PS0s
such that they provide a basis for W0. The analysis we are going to develop will be
applicable to all wavelet spaces Wj after a suitable dilation and hence, we are going
to construct a basis for every wavelet space.
Before we start with this construction process, we dedicate this chapter to the

derivation of an explicit representation of the Fourier transform of an orthogonal
projection onto S0. Later on this will be useful to derive an explicit representation
of these mother wavelets.
For principal shift-invariant spaces Theorem 2.9 in [31] provides us with a repre-

sentation of the Fourier transform of PS0(φ).

Theorem 5.1.
For every f ∈ L2(Rn) the orthogonal projector PS0(φ) is given by ◊�PS0(φ)f = τf φ̂
where τf denotes a 2π-periodic function which is defined by

τf :=

®
[f̂ , φ̂]/[φ̂, φ̂], on supp[φ̂, φ̂],

0, otherwise.
(5.1)

For finitely generated shift-invariant spaces S0(Φ) there exist different represen-
tations depending on the assumptions on the generator set Φ. If for example Φ
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Orthogonal Projection onto Shift-Invariant Spaces

provides a basis or a Riesz basis for the space S0(Φ), see [32, Theorem 3.9] and [48,
Theorem 4.2.5] for details. We are interested in a generalization of the representa-
tion given in Theorem 5.1 which can be found in [51]. Here, the generator set Φ is
assumed to be minimal which means that for 1 ≤ i ≤ N it holds

φi /∈ S0(Φ
(i)), Φ(i) := Φ \ {φi}.

Minimality is weaker in comparison to L2-stability and a minimal generator set of
S0 is not automatically a basis.

Lemma 5.2.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) be a generator set for the space S0(Φ). If Φ is
L2-stable, then Φ is minimal but not vice versa.

Proof.
We assume that Φ is L2-stable. Now, suppose Φ is not minimal. Then there exists
at least one generator φi, 1 ≤ i ≤ N, such that φi ∈ S0(Φ

(i)). Consequently, φi has
the following representation

φi =
∑
φ∈Φ(i)

∑
k∈Zn

aφ,k φ(· − k)

and therefore,

∥φi −
∑
φ∈Φ(i)

∑
k∈Zn

aφ,k φ(· − k)∥L2(Rn) = 0.

By the definition of L2-stability this is a contradiction to

∥φi −
∑
φ∈Φ(i)

∑
k∈Zn

aφ,k φ(· − k)∥L2(Rn) ≳ 1 +

Ñ ∑
φ∈Φ(i)

∑
k∈Zn

|aφ,k|2
é1/2

.

Hence, Φ has to be minimal.
Next, we want to prove that L2-stability does not follow from minimality. This

can easily be seen with the help of an example for N = 2. As generators for S0 we
choose the Box Splines

φ1(x) : = B[2](x) =
1

2
χ[0,2) =

®
1
2
, x ∈ [0, 2),

0, elsewhere,

φ2(x) : = B[1 1](x) =


x, x ∈ [0, 1),

2− x, x ∈ [1, 2),

0, elsewhere.
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To ensure that these two generators are minimal, it is sufficient to prove that

B[2] ̸=
∑
k∈Z

ak B[1 1](· − k)

or equivalently

χ[0,2) ̸=
∑
k∈Z

ãk B[1 1](· − k) (5.2)

with ãk := 2ak on a set with positive measure. Then it follows directly that there
exists no sequence (fn)n∈N with

fn =
∑
k∈Z

an,k B[1 1](· − k)

such that fn → B[2] in the L2-sense. The only possibility to obtain the value one on
the interval [0, 2) on the right-hand side in (5.2) is to set ãk := 1 for k ∈ {−1, 0, 1}.
Now, we consider the interval [−1, 0) and the shifts of the Box Spline B[1 1] which
are supported on this interval, that is, B[1 1](·+ 1) and B[1 1](·+ 2). We obtain

ã−1(x+ 1) + ã−2(2− (x+ 2)) = x+ 1− ã−2x on [−1, 0).

We observe that for all ã−2 ∈ R there exists a set of positive measure such that the
right-hand side in (5.2) does not vanish on [−1, 0). Hence, Φ is minimal. Next, we
check if Φ is L2-stable or not. Box Splines have L2-stable shifts if and only if the
matrix consisting of the direction vectors is unimodular, see [26]. Hence, the integer
shifts of φ2 are L2-stable in contrast to the integer shifts of φ1 and consequently,
the generator set Φ = {φ1, φ2} cannot be L2-stable.

Lemma 5.3.
There exist minimal generator sets Φ = {φ1, . . . , φN} ⊂ L2(Rn) of S0(Φ) which do
not provide a basis for S0(Φ).

Proof.
Let n = 1. Moreover, let the Fourier transform of the generator φ1 be compactly
supported such that

supp φ̂1 ⊂ [δ, 2π − δ) for δ ∈ [0, π). (5.3)

Condition (5.3) ensures that supp φ̂1 ⊂ [0, 2π). Let us now consider two non-trivial
functions

f1 =
∑
k∈Z

a1,kφ1(· − k), f2 =
∑
k∈Z

a2,kφ1(· − k)
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in S0(Φ) with Fourier transform f̂1 = τ1 φ̂1and f̂2 = τ2 φ̂1. Here, τ1 and τ2 are
assumed to be 2πZ-periodic functions in the space L2([0, 2π)) with

τ1 = τ2 on supp φ̂1,

τ1 ̸= τ2 on E ⊂ [0, 2π) \ supp φ̂1, |E| > 0.

It follows that

f̂1 − f̂2 = (τ1 − τ2)φ̂1 = 0.

Hence, we have a non-trivial representation of zero of the form∑
k∈Z

(a1,k − a2,k)φ1(· − k) = 0.

Consequently, the generator φ1 does not provide a basis for its span. Now, it is
possible to add finitely many compactly supported generators φ̂i to the generator
set with

supp φ̂i ⊂ [0, 2π), i = 2, . . . , N,

and

supp φ̂j ∩ supp φ̂k = ∅, j ̸= k, j, k ∈ {1, . . . , N}.

These conditions ensure that no function in the span of φ̂i can be represented by

the generators in Φ̂(i). This means that we have a minimal generator set which does
not provide a basis for S0(Φ).

In comparison to [51], we work with a different definition of the bracket product
and of the Fourier transform. Therefore, we have to adapt the results in [51] which

are needed for the derivation of the representation of ÷PS0(Φ). By combining [51] and
[78], we are also going to include detailed proofs of the presented results.
In preparation for these results, we introduce the weighted L2-space. Let v ≥ 0 be

a measurable function on a measurable set Ω ⊆ Rn. Then a function φ is in L2(Ω, v)
if φ : Ω → C is measurable on the set Ω and the norm is given by

∥φ∥L2(Ω,v) :=

Ñ∫
Ω

|φ(x)|2v(x) dx

é1/2

<∞.

Now, that we have established the term weighted L2-space, we can derive the fol-
lowing variation of Corollary 4.1.2.
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Lemma 5.4.
Let φ ∈ L2(Rn). Then f ∈ S0(φ) if and only if there exists a measurable, 2πZn-
periodic function τ in the space L2(C̃0, [φ̂, φ̂]) such that

f̂ = τφ̂ almost everywhere on Rn,

and

∥f∥L2(Rn) =
1

(2π)n
∥τ∥L2(‹C0,[φ̂,φ̂])

. (5.4)

Proof.
First, we prove formula (5.4). We observe that

∥f∥2L2(Rn) =
1

(2π)n
∥f̂∥2L2(Rn) =

1

(2π)n

∫
Rn

|f̂(x)|2 dx =
1

(2π)n

∫
Rn

|τ(x)|2|φ̂(x)|2 dx.

Furthermore, the 2πZn-periodicity of τ yields

1

(2π)n

∫
Rn

|τ(x)|2|φ̂(x)|2 dx =
1

(2π)n

∑
β∈2πZn

∫
‹C0

|τ(x)|2|φ̂(x+ β)|2 dx

=
1

(2π)n

∫
‹C0

|τ(x)|2[φ̂, φ̂](x) dx

=
1

(2π)n
∥τ∥2

L2(‹C0,[φ̂,φ̂])
.

We observe that τ ∈ L2(C̃0, [φ̂, φ̂]) if and only if τφ̂ ∈ L2(Rn). Consequently, the
claim follows directly by Corollary 4.1.2.

Under the assumption that Φ is a set of orthogonal generators, we deduce a similar
result as Lemma 5.4. Beforehand, we have to state the subsequent lemma which
can be found in [48].

Lemma 5.5.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn). A function f ∈ L2(Rn) is orthogonal to S0(Φ) if

and only if [f̂ , φ̂i] = 0 almost everywhere on C̃0 for i = 1, . . . , N .

Hereinafter, we use the convention 0
0
:= 0. In particular, this will be used for

expressions of the form

[ · , φ̂]
[φ̂, φ̂]

.

In case the denominator vanishes, the function φ̂ has 2πZn-periodic zeros. As a
consequence, the nominator vanishes as well and we obtain 0

0
= 0.
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Proposition 5.6.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) be a finite set of orthogonal generators for S0(Φ).
For i = 1, . . . , N we define

mi(f) :=
[f̂ , φ̂i]

[φ̂i, φ̂i]
.

Then f is an element of the space S0(Φ) if and only if mi(f) ∈ L2(C̃0, [φ̂i, φ̂i]) and

f̂ =
N∑
i=1

mi(f) φ̂i. (5.5)

In addition, it holds

∥f∥2L2(Rn) =
1

(2π)n

N∑
i=1

∥mi(f)∥2L2(‹C0,[φ̂i,φ̂i])
.

Proof.
If N = 1, the claim follows from Lemma 5.4. The definition of m1 corresponds to

the representation of the Fourier transform of the orthogonal projection onto ÷S0(φ1),
see (5.1).

Now, let N > 1. Since our generators are orthogonal, the bracket product [φ̂k, φ̂k′ ]

vanishes almost everywhere on C̃0 for k ̸= k′, 1 ≤ k, k′ ≤ N. By Lemma 5.5, it
follows that S0(φk) ⊥ S0(φk′) for k ̸= k′. Next, we verify that an arbitrary function
f ∈ S0(Φ) can be written as

f =
N∑
i=1

fi, fi ∈ S0(φi). (5.6)

In order to prove (5.6), let Pℓ =
∑N

i=1 fi,ℓ with fi,ℓ ∈ S0(φi) for all ℓ ∈ N and
limℓ→∞ Pℓ = f in L2(Rn). With the completeness of the Hilbert space L2, the
sequence {Pℓ}∞ℓ=1 is a Cauchy sequence. Consequently, for all ε > 0 there exists an
L > 0 such that

∥Pℓ − Pℓ′∥L2(Rn) < ε for all ℓ, ℓ′ > L.
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By the orthogonality of the spaces S0(φi), we deduce

∥Pℓ − Pℓ′∥2L2(Rn) = ∥
N∑
i=1

fi,ℓ −
N∑
i′=1

fi′,ℓ′∥2L2(Rn)

=

〈
N∑
i=1

fi,ℓ −
N∑
i′=1

fi′,ℓ′ ,

N∑
i=1

fi,ℓ −
N∑
i′=1

fi′,ℓ′

〉
L2(Rn)

=
N∑
i=1

⟨fi,ℓ − fi,ℓ′ , fi,ℓ − fi,ℓ′⟩L2(Rn)

=
N∑
i=1

∥fi,ℓ − fi,ℓ′∥2L2(Rn).

Hence, {fi,ℓ}∞ℓ=1 is a Cauchy sequence in S0(φi) for 1 ≤ i ≤ N. By the completeness
of the spaces S0(φi), these Cauchy sequences converge in L2(Rn). Thus, we have

f =
N∑
i=1

fi with fi = lim
ℓ→∞

fi,ℓ ∈ S0(φi).

By Lemma 5.4, there exists a 2πZn-periodic function τ ∈ L2(C̃0, [φ̂i, φ̂i]) for every
fi ∈ S0(φi) such that

[f̂i, φ̂i] = [τφ̂i, φ̂i] = τ [φ̂i, φ̂i].

Hence, τ = mi(fi) and we conclude

∥f∥2L2(Rn) =
N∑
i=1

∥fi∥2L2(Rn) =
1

(2π)n

N∑
i=1

∥mi(fi)∥2L2(‹C0,[φ̂i,φ̂i])
.

Conversely, assume that (5.5) holds. Then mi(f)φ̂i ∈ ÷S0(φi) for all 1 ≤ i ≤ N and
by Lemma 5.4, we obtain f ∈ S0(Φ).

The next proposition describes an orthogonalization procedure for a finite minimal
set of generators. The minimality assumption is needed to avoid early termination
of the algorithm.

Proposition 5.7.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) be a finite minimal set of generators for the space
S0(Φ). In addition, let the functions {gi}Ni=1 be defined by g1 = φ1 and

ĝi = φ̂i −
i−1∑
k=1

b
(i)
k ĝk, 1 < i ≤ N, (5.7)

61



Orthogonal Projection onto Shift-Invariant Spaces

where

b
(i)
k := [φ̂i, ĝk][ĝk, ĝk]

−1 ∈ L2(C̃0, [ĝk, ĝk]), 1 ≤ k ≤ i− 1. (5.8)

Then gi ∈ S0(Φi) with Φi := {φk}ik=1 for all 1 ≤ i ≤ N . Furthermore, for j ̸= k
with 1 ≤ j, k ≤ N it holds

[ĝj, ĝk](x) = 0 for almost every x ∈ C̃0. (5.9)

Proof.
We proceed by induction.
LetN = 2. First, we verify that [ĝ1, ĝ2] = 0 almost everywhere on C̃0. If b

(2)
1 (x) ̸= 0

for x ∈ C̃0 we have

[ĝ1, ĝ2](x) = [φ̂1, φ̂2 − b
(2)
1 φ̂1](x)

= [φ̂1, φ̂2 − [φ̂2, φ̂1][φ̂1, φ̂1]
−1φ̂1](x)

= [φ̂1, φ̂2](x)− [φ̂1, φ̂2](x)[φ̂1, φ̂1]
−1(x)[φ̂1, φ̂1](x)

= 0.

If otherwise b
(2)
1 (x) = 0 for x ∈ C̃0, then either [φ̂2, φ̂1](x) or [φ̂1, φ̂1](x) vanishes. In

the first case the bracket product [φ̂2, φ̂1](x) vanishes as well. Hence,

[ĝ1, ĝ2](x) = [φ̂1, φ̂2](x) = [φ̂2, φ̂1](x) = 0.

In the second case the function φ̂1 has 2πZn-periodic zeros. Consequently,

[ĝ1, ĝ2](x) = [φ̂1, φ̂2](x) =
∑

β∈2πZn

φ̂1(x+ β)φ̂2(x+ β) = 0.

Furthermore, it holds

∥b(2)1 ∥L2(‹C0,[ĝ1,ĝ1])
=

∫
‹C0

|b(2)1 (x)|2[φ̂1, φ̂1](x) dx

=

∫
‹C0

∣∣∣∣ [φ̂2, φ̂1](x)

[φ̂1, φ̂1](x)

∣∣∣∣2 [φ̂1, φ̂1](x) dx

=

∫
‹C0

|[φ̂2, φ̂1](x)|2 [φ̂1, φ̂1]
−1(x) dx.

By (1.12), we obtain∫
‹C0

|[φ̂2, φ̂1](x)|2 [φ̂1, φ̂1]
−1(x) dx ≤

∫
‹C0

[φ̂2, φ̂2](x) dx =

∫
Rn

|φ̂2(x)|2 dx <∞.
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Hence, b
(2)
1 ∈ L2(C̃0, [ĝ1, ĝ1]). Moreover, the function g2 is an element of the space

S0(Φ2) because of Corollary 4.2.2.
For the induction step, assume that [ĝk, ĝj] = 0 for all distinct 1 ≤ k, j ≤ ℓ − 1

and some 2 ≤ ℓ ≤ N − 1. We observe that

[ĝℓ, ĝj] = [φ̂ℓ −
ℓ−1∑
k=1

b
(ℓ)
k ĝk, ĝj] = [φ̂ℓ, ĝj]−

ℓ−1∑
k=1

b
(ℓ)
k [ĝk, ĝj].

By induction hypothesis, [ĝk, ĝj] vanishes for k ̸= j with 1 ≤ k, j ≤ ℓ−1. Therefore,
we obtain

[φ̂ℓ, ĝj]−
ℓ−1∑
k=1

b
(ℓ)
k [ĝk, ĝj] = [φ̂ℓ, ĝj]− b

(ℓ)
j [ĝj, ĝj]

= [φ̂ℓ, ĝj]− [φ̂ℓ, ĝj]

= 0 almost everywhere on Rn.

Furthermore, we can prove b
(ℓ)
j ∈ L2(C̃0, [ĝj, ĝj]) for 1 ≤ j ≤ ℓ − 1 analogously to

b
(2)
1 ∈ L2(C̃0, [ĝ1, ĝ1]) and by Corollary 4.2.2, we obtain gℓ ∈ S0(Φℓ).

With this orthogonalization procedure we are able to represent a space generated
by a finite minimal set of generators as the orthogonal sum of principal shift-invariant
spaces.

Proposition 5.8.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) be a minimal set of generators for the space S0(Φ)
and let the functions {gi}Ni=1 be defined by (5.7). Then it holds

S0(Φ) =
N⊕
i=1

S0(gi).

Proof.
The orthogonality of the spaces S0(gi), i = 1, . . . , N, follows directly from Lemma
5.5. Next, we check that

⊕N
i=1 S0(gi) ⊆ S0(Φ). Let f ∈

⊕N
i=1 S0(gi). Then f can be

represented as

f =
N∑
i=1

fi, fi ∈ S0(gi).

By Lemma 5.4, we obtain f̂i = τi ĝi, τi ∈ L2(C̃0, [ĝi, ĝi]). We further deduce that
f̂ =

∑N
i=1 τi ĝi and consequently, f ∈ S0({gi}Ni=1). According to Proposition 5.7,

every function gi belongs to S0(Φi) and thus, f ∈ S0(Φ). It remains to prove that
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the embedding S0(Φ) ⊆
⊕N

i=1 S0(gi) holds. Let f ∈ S0(Φ). By (5.7), the generators

can be represented as φ̂i = ĝi+
∑i−1

k=1 b
(i)
k ĝk with b

(i)
k ∈ L2(C̃0, [ĝk, ĝk]) for 1 < i ≤ N .

By (5.9), we deduce that on supp[ĝi, ĝi] we have

b
(i)
i =

[φ̂i, ĝi]

[ĝi, ĝi]

=
[ĝi +

∑i−1
k=1 b

(i)
k ĝk, ĝi]

[ĝi, ĝi]

=
[ĝi, ĝi] +

∑i−1
k=1 b

(i)
k [ĝk, ĝi]

[ĝi, ĝi]

=
[ĝi, ĝi]

[ĝi, ĝi]

= 1,

where b
(N)
N := [φ̂N , ĝN ][ĝN , ĝN ]

−1. Therefore, the representation

φ̂i = ĝi +
i−1∑
k=1

b
(i)
k ĝk

is equivalent to

φ̂i = b
(i)
i ĝi +

i−1∑
k=1

b
(i)
k ĝk =

i∑
k=1

b
(i)
k ĝk for 1 ≤ i ≤ N.

Lemma 5.4 yields that φ̂i ∈ ¤�S0({gk}ik=1) for 1 ≤ i ≤ N . By the orthogonality of the

functions {gi}Ni=1, we obtain f ∈
⊕N

i=1 S0(gi).

Finally, we obtain an explicit representation of the orthogonal projector in terms

of ’PS0(Φ).

Theorem 5.9.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) be a minimal set of generators for the space S0(Φ).
Then for any function f ∈ L2(Rn) the orthogonal projection PS0(Φ)f of f onto the
space S0(Φ) is given by ◊�PS0(Φ)f =

N∑
i=1

[f̂ , ĝi]

[ĝi, ĝi]
ĝi, (5.10)

where the functions {gi}Ni=1 are defined by (5.7) and (5.8).
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Proof.
Let f be a function in L2(Rn) with

f = f1 ⊕ f2, f1 ∈ S0(Φ), f2 ∈ S0(Φ)
⊥.

By Proposition 5.8, we obtain

PS0(Φ)f = f1 =
N∑
i=1

hi, hi ∈ S0(gi). (5.11)

Moreover, Proposition 5.6 yields

ĥi = m(hi) ĝi =
[ĥi, ĝi]

[ĝi, ĝi]
ĝi, 1 ≤ i ≤ N.

Hence, it holds ◊�PS0(Φ)f =
N∑
i=1

ĥi =
N∑
i=1

[ĥi, ĝi]

[ĝi, ĝi]
ĝi.

It remains to prove [ĥi, ĝi] = [f̂ , ĝi]. Since gi ∈ S0(Φ) and f2 ∈ S0(Φ)
⊥, the bracket

product of these two functions vanishes, see Lemma 5.5. We further deduce that

[f̂ , ĝi] = [f̂1 + f̂2, ĝi] = [f̂1, ĝi] + [f̂2, ĝi] = [f̂1, ĝi]. (5.12)

Since the functions gi, 1 ≤ i ≤ N, are orthogonal, inserting (5.11) into (5.12) yields
the desired result:

[f̂1, ĝi] =
N∑
j=1

[ĥj, ĝi] = [hi, ĝi].

We remark that (5.10) coincides with (5.1) for N = 1.
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Chapter 6

Construction of Wavelets

With the help of the theory from the previous chapters, we now explicitly construct
wavelet bases based on M−j-principal shift-invariant spaces. In particular, we are
interested in bases with desirable properties. In Section 6.1 we construct a compactly
supported wavelet basis and in Section 6.2 we construct an L2-stable wavelet basis.
Both sections generalize construction procedures from [30] where the authors work
with 2−j-principal shift-invariant spaces.

6.1 Compactly Supported Wavelet Bases

For application purposes one is interested in working with well-localized functions,
that is, functions with compact support. Based on the construction idea presented
in the beginning of Chapter 5, we develop a construction process which yields a com-
pactly supported wavelet basis forW0, see Section 6.1.1. Afterwards, we demonstrate
in Section 6.1.2 how to adapt the presented analysis from Section 6.1.1 in order to
obtain a compactly supported wavelet basis for every space Wj, j ∈ Z. In Section
6.1.3 we give an example where we choose exponential box splines as our generators
to demonstrate our construction procedure.

6.1.1 Compactly Supported Wavelet Bases for W0

Let φ, η ∈ L2(Rn) and assume that

S0(φ) ⊂ S1(η),

where the space S0 is I-shift-invariant and the space S1 isM
−1-shift-invariant. Then

the wavelet space W0 is given by

W0 := S1(η)⊖ S0(φ).

We proceed as follows. In a first step we show that there exist m specific translates
of the generator φ which provide a basis for the space S1(η). Projecting m − 1 of
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these basis elements onto the orthogonal complement of S0(φ) in S1(η) yields a basis
for W0. Then we modify this basis such that it is compactly supported.
In this process we work with a set of representatives of the disjoint cosets in

Zn/MZn denoted by R and a set of representatives of the disjoint cosets in Zn/MTZn
denoted by RT . Let us collect some properties of R and RT first.

Lemma 6.1.1. - [42, Lemma 2]
The cardinality of R and RT is m = | detM | = | detMT |.

Lemma 6.1.2.
Let {ρ̃1, . . . , ρ̃m} be a full set of representatives of the disjoint cosets of Zn/MTZn.
If we add an arbitrary element d′ ∈ RT to each of the representatives, we obtain m
new representatives of the disjoint cosets of Zn/MTZn.

Proof.
Suppose ρ̃i + d′ and ρ̃j + d′ with i ̸= j, i, j ∈ {1, . . . ,m}, are representatives of the
same coset. It holds

Zn =
⋃
ρ̂∈RT

(ρ̂+MTZn), (6.1)

see [42]. Consequently, there exist ρ̂ ∈ RT and ℓ1, ℓ2 ∈ Zn such that

ρ̃i + d′ = ρ̂+MT ℓ1,

ρ̃j + d′ = ρ̂+MT ℓ2.

It follows that

ρ̃i − ρ̃j =MT (ℓ1 − ℓ2).

But since ρ̃i and ρ̃j are representatives of disjoint cosets, we know that

ρ̃i − ρ̃j /∈MTZn.

This is a contradiction.

Let {ρ1, . . . , ρm} be a full set of representatives of the disjoint cosets in Zn/MZn
and let d ∈ R. Then, by the same arguments as above, {ρ1 + d, . . . , ρm + d} is a set
of representatives of the disjoint cosets in Zn/MZn as well.

Lemma 6.1.3. - [19, Lemma 2.3]
Let ρj and ρ̂j, j = 0, . . . ,m−1, be the full representatives of Zn/MZn and Zn/MTZn,
respectively. Then it holds

1

m

m−1∑
k=0

eM−1ρk(2πρ̂ℓ) = δℓ,0, 0 ≤ ℓ ≤ m− 1,
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and

1

m

m−1∑
ℓ=0

eM−1ρk(−2πρ̂ℓ) = δk,0, 0 ≤ k ≤ m− 1.

Based on the set of representatives R, we can determine certain translates of the
function φ which generate the space S1(η).

Theorem 6.1.4.
Let S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂. Moreover, let 0 ∈ R. Then it holds

S1(η) = S1(φ) = S0(ϕ), ϕ := (φ(·+M−1d))d∈R.

Proof.
Let us start by showing that S1(φ) = S0(ϕ). The space S1(φ) is generated by the
M−1Zn-shifts of φ. Besides that Zn can be written as⋃

d∈R

(d+MZn). (6.2)

Therefore, we obtain

M−1Zn =
⋃
d∈R

(M−1d+ Zn).

This yields

S1(φ) = S0((φ(·+M−1d))d∈R) = S0(ϕ).

It remains to prove that S1(η) = S1(φ). Set g := η(M−1·) and f := φ(M−1·).
By assumption, φ ∈ S1(η) and as a consequence f ∈ S0(g). Furthermore, it holds
supp φ̂ = supp η̂ and thus, supp f̂ = supp ĝ. By Proposition 4.1.4, we deduce that
S0(f) = S0(g). Since S1(φ) is the M -dilation of S0(f) and S1(η) is the M -dilation
of S0(g), the claim follows.

Next, we will prove that ϕ provides a basis for S0(ϕ). We proceed by verifying
that the product of the eigenvalues of the Gramian matrix G(ϕ) is greater than
zero almost everywhere. In order to determine these eigenvalues, we introduce the
operator Q. For a 2πMTZn-periodic function f the operator Qd is defined by

Qd(f)(ξ) :=
∑
d̃∈RT

eM−1d(ξ + 2πd̃)f(ξ + 2πd̃), d ∈ R, ξ ∈ Rn. (6.3)

Lemma 6.1.5.
The operator Qd in (6.3) is 2πZn-periodic.
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Proof.
For ℓ ∈ Zn and ξ ∈ Rn, we have

Qd(f)(ξ + 2πℓ) =
∑
d̃∈RT

eM−1d(ξ + 2πℓ+ 2πd̃)f(ξ + 2πℓ+ 2πd̃), d ∈ R.

Since Zn =
⋃
d′∈RT (d′+MTZn), we set ℓ = d′+MTn with n ∈ Zn. Furthermore, we

use the 2π-periodicity of the exponential function as well as the 2πMTZn-periodicity
of the function f to deduce∑

d̃∈RT

eM−1d(ξ + 2πℓ+ 2πd̃)f(ξ + 2πℓ+ 2πd̃)

=
∑
d̃∈RT

eM−1d(ξ + 2πd′ + 2πMTn+ 2πd̃)f(ξ + 2πd′ + 2πMTn+ 2πd̃)

=
∑
d̃∈RT

eM−1d(ξ + 2π(d′ + d̃))f(ξ + 2π(d′ + d̃)).

By Lemma 6.1.2, we conclude∑
d̃∈RT

eM−1d(ξ + 2π(d′ + d̃))f(ξ + 2π(d′ + d̃)) =
∑
d̂∈RT

eM−1d(ξ + 2πd̂)f(ξ + 2πd̂)

= Qd(f)(ξ).

From now on, we always assume that 0 ∈ R and 0 ∈ RT .

Lemma 6.1.6.
A 2πMTZn-periodic function f can be decomposed in its 2πZn-periodic components
by

f =
1

m

∑
d∗∈R

e−M−1d∗ Qd∗(f). (6.4)

Proof.
First of all, we insert the definition of the operator Qd∗ into (6.4). We obtain

1

m

∑
d∗∈R

e−M−1d∗ Qd∗(f) =
1

m

∑
d∗∈R

e−M−1d∗

∑
d̃∈RT

eM−1d∗(·+ 2πd̃)f(·+ 2πd̃)

=
1

m

∑
d∗∈R

( ∑
d̃∈RT

eM−1d∗(2πd̃)

)
f(·+ 2πd̃).
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Then, we use Lemma 6.1.3 to deduce

1

m

∑
d∗∈R

( ∑
d̃∈RT

eM−1d∗(2πd̃)

)
f(·+ 2πd̃) =

1

m

∑
d̃∈RT

(∑
d∗∈R

eM−1d∗(2πd̃)

)
f(·+ 2πd̃)

=
1

m
mδd̃,0 f(·+ 2πd̃)

= f.

Lemma 6.1.7.
Let ϕ = (φ(·+M−1d))d∈R. For all d, d

∗ ∈ R the corresponding entry of the Gramian
matrix G(ϕ) is given by

[eM−1d φ̂, eM−1d∗ φ̂] = Qd−d∗([φ̂, φ̂]1). (6.5)

Proof.
By the definition of the bracket product and (6.1), we obtain

[eM−1d φ̂, eM−1d∗ φ̂] =
∑
α∈Zn

eM−1d(·+ 2πα)e−M−1d∗(·+ 2πα) |φ̂(·+ 2πα)|2

=
∑
α∈Zn

eM−1(d−d∗)(·+ 2πα) |φ̂(·+ 2πα)|2

=
∑
d̃∈RT

∑
α∈Zn

eM−1(d−d∗)(·+ 2π(d̃+MTα)) |φ̂(·+ 2π(d̃+MTα))|2.

Since the exponential function ist 2π-periodic, we deduce∑
d̃∈RT

∑
α∈Zn

eM−1(d−d∗)(·+ 2π(d̃+MTα)) |φ̂(·+ 2π(d̃+MTα))|2

=
∑
d̃∈RT

∑
α∈Zn

eM−1(d−d∗)(·+ 2πd̃) |φ̂(·+ 2πd̃+ 2πMTα)|2

=
∑
d̃∈RT

eM−1(d−d∗)(·+ 2πd̃)
∑
α∈Zn

|φ̂(·+ 2πd̃+ 2πMTα)|2

=
∑
d̃∈RT

eM−1(d−d∗)(·+ 2πd̃) [φ̂, φ̂]1(·+ 2πd̃)

= Qd−d∗([φ̂, φ̂]1).

Lemma 6.1.8.
For every d◦ ∈ R and x ∈ C̃0 the number m[φ̂, φ̂]1(x + 2πd◦) is an eigenvalue of
G(ϕ)(x) corresponding to the eigenvector ad◦ := (eM−1d(x+ 2πd◦))d∈R.
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Proof.
We have to prove that

G(ϕ) ad◦ = m [φ̂, φ̂]1(x+ 2πd◦) ad◦ .

Therefore, we calculate the d-th entry of G(ϕ) ad◦ . By (6.5) and the 2πZn-periodicity
of the operator Q, we obtain

G(ϕ) ad◦ =
∑
d∗∈R

Qd−d∗([φ̂, φ̂]1) eM−1d∗(·+ 2πd◦)

=
∑
d∗∈R

Qd−d∗([φ̂, φ̂]1)(·+ 2πd◦) eM−1d∗(·+ 2πd◦) eM−1d(·+ 2πd◦) e−M−1d(·+ 2πd◦)

= eM−1d(·+ 2πd◦)
∑
d∗∈R

Qd−d∗([φ̂, φ̂]1)(·+ 2πd◦) eM−1(d∗−d)(·+ 2πd◦).

Applying Lemma 6.1.2 and Lemma 6.1.6 yields

eM−1d(·+ 2πd◦)
∑
d∗∈R

Qd−d∗([φ̂, φ̂]1)(·+ 2πd◦) eM−1(d∗−d)(·+ 2πd◦)

= eM−1d(·+ 2πd◦)
∑
d̂∈R

Qd̂([φ̂, φ̂]1)(·+ 2πd◦) e−M−1d̂(·+ 2πd◦)

= eM−1d(·+ 2πd◦)m [φ̂, φ̂]1(·+ 2πd◦).

Corollary 6.1.9.
The set ϕ = (φ(·+M−1d))d∈R provides a basis for S0(ϕ) if supp φ̂ = Rn.

Proof.
Lemma 6.1.8 yields that the determinant of the Gramian matrix G(ϕ) is given by

detG(ϕ) = C
∏
d◦∈R

[φ̂, φ̂]1(·+ 2πd◦),

where C is a strictly positive constant. Since supp φ̂ = Rn, we have supp [φ̂, φ̂]1 =
Rn. Consequently, detG(ϕ) > 0 almost everywhere and thus, ϕ provides a basis for
the space S0(ϕ).

Combining Theorem 6.1.4 and Corollary 6.1.9 yields that under the assumption

supp φ̂ = supp η̂ = Rn (6.6)

we obtain S1(η) = S0(ϕ), where ϕ provides a basis for S0(ϕ). The Paley-Wiener
Theorem 1.2.10 tells us that the support of the Fourier transform of every compactly
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supported function equals Rn. Therefore, we notice that (6.6) is not a very restrictive
assumption.

With the basis ϕ at hand, we want to derive a basis for the orthogonal complement
W0 of S0(φ) in S0(ϕ). The set ϕ consists of m = | detM | elements denoted by φd :=
φ(·+M−1d), d ∈ R. In case d = 0, we obtain the generator of the space S0(φ). Hence,
the idea is to project the m − 1 functions (φ( · +M−1d))d∈R′ , R′ := R \ {0}, onto
the orthogonal complement of S0(φ). This can be done with the help of Theorem
1.1.3.

Theorem 6.1.10.
Let S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂. Moreover, let wd, d ∈ R′, be defined by

wd := φd − PS0(φ)φd.

Then the space W0 = S1 ⊖ S0 is a finitely generated shift-invariant space generated
by the set W := (wd)d∈R′ , that is,

W0 = S0(W ).

The set W provides a basis for W0 if supp φ̂ = Rn holds.

Proof.
First, we prove that S0(φ) ⊕ S0(W ) = S1(η) which means that {φ} ∪ W generates
S1(η) and therefore, W0 = S0(W ). For every function f ∈ S1(η) there exists a
sequence (fℓ)ℓ∈N in the space S1(η) such that fℓ → f in the L2-sense. Due to
Theorem 6.1.4, every element of this sequence has a representation of the form

fℓ =
∑
k∈Zn

∑
d∈R

aℓ,k,dφd(· − k)

=
∑
k∈Zn

aℓ,k,0φ(· − k) +
∑
k∈Zn

∑
d∈R′

aℓ,k,dφd(· − k) (6.7)

=
∑
k∈Zn

aℓ,k,0φ(· − k) +
∑
k∈Zn

∑
d∈R′

aℓ,k,dPS0(φ)φd(· − k) (6.8)

+
∑
k∈Zn

∑
d∈R′

aℓ,k,d
(
φd(· − k)− PS0(φ)φd(· − k)

)
. (6.9)

Since (6.8) lies in the space S0(ϕ) and (6.9) lies in the space S0(W ), we have shown
that S1(η) ⊂ S0(φ) ⊕ S0(W ). Conversely, for every function g ∈ S0(φ) ⊕ S0(W )
there exists a sequence (gℓ)ℓ∈N in the space S0(φ)⊕ S0(W ) such that gℓ → g in the
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L2-sense. Every element of this sequence can be represented as

gℓ =
∑
k∈Zn

bℓ,k,0φ(· − k) +
∑
k∈Zn

∑
d∈R′

bℓ,k,d
(
φd − PS0(φ)φd

)
(· − k)

=
∑
k∈Zn

bℓ,k,0φ(· − k)−
∑
k∈Zn

∑
d∈R′

bℓ,k,dPS0(φ)φd(· − k) (6.10)

+
∑
k∈Zn

∑
d∈R′

bℓ,k,dφd(· − k). (6.11)

Comparing (6.7) with (6.10) and (6.11) yields S0(φ)⊕ S0(W ) ⊂ S1(η).
Now, assume that supp φ̂ = Rn holds. It remains to prove that W provides a

basis for S0(W ). Corollary 6.1.9 yields that ϕ = (φ(·+M−1d))d∈R provides a basis
for S0(ϕ). Besides that Theorem 6.1.4 yields S1(η) = S0(ϕ). We have already shown
that the integer translates of ϕ∗ := {φ}∪W generate the space S1(η) and therefore,
also the space S0(ϕ).Moreover, the sets ϕ and ϕ∗ have the same number of elements.
In this case part ii) of Corollary 4.2.8 states that ϕ∗ provides a basis for S0(ϕ). As
a consequence, we have detG(ϕ∗) ̸= 0 almost everywhere. Due to the orthogonality
between W0 = S0(W ) and S0(φ), the Gramian matrix G(ϕ∗) has the form

G(ϕ∗) =

Å
G(W ) 0

0 [φ̂, φ̂]

ã
.

Therefore, an application of the Laplace formula results in

detG(ϕ∗) = [φ̂, φ̂] detG(W ).

Hence, detG(W ) ̸= 0 almost everywhere. Consequently, W provides a basis for
W0.

Theorem 5.1 provides us with an explicit representation of the Fourier transform
of the functions wd, d ∈ R′. It is given by

ŵd = φ̂d − ÿ�PS0(φ)φd = φ̂d − φ̂
[φ̂d, φ̂]

[φ̂, φ̂]
, (6.12)

where [φ̂d, φ̂][φ̂, φ̂]
−1 = 0 if [φ̂, φ̂] = 0.

The next theorem shows that if we modify the representation (6.12) by multipli-
cation with [φ̂, φ̂], we obtain a compactly supported basis of the space W0.

Theorem 6.1.11.
Let S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = Rn. Moreover, let [φ̂, φ̂] be bounded.
Then the functions

Wc := (([φ̂, φ̂]φ̂d − [φ̂d, φ̂]φ̂)
∨)d∈R′

provide a basis for the space W0. If in addition φ is compactly supported, then the
functions in Wc also have compact support.
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Proof.

We obtain Ŵc by multiplying Ŵ with the 2π-periodic diagonal matrix Γ := [φ̂, φ̂]I,

that is, Ŵc = ΓŴ . By assumption, the matrix Γ only consists of bounded entries

and thus, we deduce Ŵc ⊂ L2(Rn). Since supp φ̂ = Rn, we know that W provides
a basis for W0 = S0(W ), see Theorem 6.1.10. By taking part i) of Corollary 4.2.8
into consideration, we conclude that Wc provides a basis for the space W0.
To complete the proof we have to show that Wc is compactly supported whenever

φ is compactly supported. Part iii) of Lemma 1.3.7 tells us that if φ has compact
support, then [φ̂d, φ̂] is a trigonometric polynomial. As a consequence, the inverse
Fourier transform of [φ̂d, φ̂]φ̂ is a finite linear combination of the shifts of φ and
compactly supported because φ is. The same reasoning shows that the inverse
Fourier transform of [φ̂, φ̂]φ̂d is compactly supported. Therefore, the functions in
Wc are also compactly supported.

Moreover, we can prove the existence of an orthogonal basis of W0 consisting of
compactly supported functions.

Theorem 6.1.12.
Let S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = Rn.

i) There exists a set of mother wavelets which provides an orthonormal basis for
W0.

ii) If the function φ is compactly supported there exists a subset Ψ of compactly
supported functions from W0 which provides a basis for W0. Moreover, there
exists a set Ψ∗ := (ψ∗

d)d∈R′ consisting of compactly supported functions which
provides a basis for W0 and fulfills

S0(ψ
∗
d) ⊥ S0(ψ

∗
d̃
), d ̸= d̃.

Proof.
We start with the proof of part i). The conditions of Theorem 6.1.10 are satisfied
and therefore, W provides a basis for W0. Our claim then follows from part i) of
Corollary 4.2.9.
It remains to prove part ii). Here, we assume that φ is compactly supported.

Theorem 6.1.11 yields that the set of compactly supported functions Wc provides a
basis for W0. By part ii) of Corollary 4.2.9, the proof is complete.

The next result answers the question under which conditions a set of compactly
supported functions (w(·+M−1d))d∈R′ , w ∈ L2(Rn), provides a basis for W0.

Theorem 6.1.13.
Let S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = Rn. In addition, let φ be compactly
supported.
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i) If w is a compactly supported function contained in the space S1(η), then the
functions w(·+M−1d), d ∈ R′, are in W0 if and only if [ŵ, φ̂]1 is 2π-periodic.

ii) If w is a compactly supported generator for the space S1(η) and [ŵ, φ̂]1 is
2π-periodic, then the functions (w(·+M−1d))d∈R′ provide a basis for W0.

Proof.
We start with the proof of part i). The functions w(·+M−1d), d ∈ R′, are in W0 if
and only if ⟨w(·+M−1d), φ(· − k)⟩L2(Rn) = 0 for all d ∈ R′, k ∈ Zn. We proceed as
in the proof of part i) of Lemma 1.3.7 to obtain

0 =
〈
w(·+M−1d), φ(· − k)

〉
L2(Rn)

=
1

(2π)n

〈 ¤�w(·+M−1d),ÿ�φ(· − k)
〉
L2(Rn)

=
1

(2π)n

∫
Rn

eM−1d(ξ) ek(ξ) ŵ(ξ) φ̂(ξ) dξ

=
1

(2π)n

∫
‹C1

∑
ℓ∈2πMTZn

eM−1d(ξ + ℓ) ek(ξ + ℓ) ŵ(ξ + ℓ) φ̂(ξ + ℓ) dξ

=
1

(2π)n

∫
‹C1

eM−1d+k(ξ) [ŵ, φ̂]1(ξ) dξ.

It follows that

1

(2π)n
1

| detMT |

∫
‹C1

eM−1d+k(ξ) [ŵ, φ̂]1(ξ) dξ = 0. (6.13)

Since we know that {(2π)−n/2e−k(ξ)}k∈Zn is an orthonormal basis of L2([−π, π)n),
we can show that {(2π)−n/2| detMT |−1/2e−M−1k(ξ)}k∈Zn is an orthonormal system

in L2(C̃1). Let ℓ,m ∈ Zn, ℓ ̸= m. Then, we have

0 =
1

(2π)n

∫
[−π,π)n

e−ℓ(ξ) em(ξ) dξ

=
1

(2π)n

∫
[−π,π)n

em−ℓ(ξ) dξ

=
1

(2π)n
1

| detMT |

∫
[−π,π)n

em−ℓ(M
−TMT ξ) | detMT | dξ.
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We set u =MT ξ and use the transformation formula to deduce

1

(2π)n
1

| detMT |

∫
[−π,π)n

em−ℓ(M
−TMT ξ) | detMT | dξ

=
1

(2π)n
1

| detMT |

∫
MT [−π,π)n

em−ℓ(M
−Tu) du

=
1

(2π)n
1

| detMT |

∫
‹C1

e−M−1(ℓ−m)(u) du.

As a consequence,

{(2π)−n/2| detMT |−1/2e−M−1k(ξ)}k∈Zn

is an orthonormal system in L2(C̃1). Besides that, we recall

M−1Zn =
⋃
d∈R

(M−1d+ Zn).

With these considerations we conclude that only for d = 0 the Fourier coefficients
in (6.13) do not vanish. In this case, we have

1

| detMT |
⟨w,φ(· − k)⟩ = 1

(2π)n
1

| detMT |

∫
‹C1

ek(ξ) [ŵ, φ̂]1(ξ) dξ. (6.14)

Our aim is to show with the help of Lemma 1.2.5 that [ŵ, φ̂]1 can be represented
as a 2π-periodic Fourier series where the Fourier coefficients are given by (6.14). In
order to apply Lemma 1.2.5, we have to prove that the Fourier coefficients are in
ℓ1(Zn). To this end we define the function

g : C̃0 → C,
x 7→ [ŵ, φ̂](MTx).

Since [ŵ, φ̂]1 ∈ L1(C̃1), we obtain∫
‹C0

|g(x)| dx =

∫
‹C0

|[ŵ, φ̂]1(MTx)| dx =
1

| detMT |

∫
‹C1

|[ŵ, φ̂]1(u)| du <∞.
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Furthermore, the Fourier coefficients of the function g for k, ℓ ∈ Zn, d ∈ R, are

1

(2π)n

∫
‹C0

ek(ξ)g(ξ) dξ =
1

(2π)n

∫
‹C0

ek(ξ)[ŵ, φ̂]1(M
T ξ) dξ

=
1

(2π)n
1

| detMT |

∫
‹C1

eM−1k(u)[ŵ, φ̂]1(u) du

=
1

(2π)n
1

| detMT |

∫
‹C1

eM−1d+ℓ(u)[ŵ, φ̂]1(u) du

=
1

| detMT |
〈
w(·+M−1d), φ(· − ℓ)

〉
L2(Rn)

.

We already observed that these Fourier coefficients are nonzero for d = 0. By Lemma
1.3.6, the sequence {c(w,φ)ℓ}ℓ∈Zn with c(w,φ)ℓ := | detMT |−1 ⟨w,φ(· − ℓ)⟩L2(Rn) is
an element of the space ℓ1(Zn). Consequently, the conditions of Lemma 1.2.5 are
satisfied and with y = MTx, x ∈ Rn, and e−k(x) = e−k(M

−Ty) = e−M−1k(y) we
obtain

[ŵ, φ̂]1(y) = g(x)

=
∑
k∈Zn

ak e−k(x)

=
∑
k∈Zn

Ö
1

(2π)n
1

| detMT |

∫
‹C1

eM−1k(ξ)[ŵ, φ̂]1(ξ)dξ

è
e−M−1k(y).

We further deduce

∑
k∈Zn

Ö
1

(2π)n
1

| detMT |

∫
‹C1

eM−1k(ξ)[ŵ, φ̂]1(ξ)dξ

è
e−M−1k(y)

=
∑
d∈R

∑
ℓ∈Zn

Ö
1

(2π)n
1

| detMT |

∫
‹C1

eM−1d+ℓ(ξ)[ŵ, φ̂]1(ξ)dξ

è
e−(M−1d+ℓ)(y)

=
∑
ℓ∈Zn

Ö
1

(2π)n
1

| detMT |

∫
‹C1

eℓ(ξ)[ŵ, φ̂]1(ξ)dξ

è
e−ℓ(y).

In other words, [ŵ, φ̂]1 is 2π-periodic.
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Now, let us prove part ii). Since w is compactly supported, it follows directly
that supp ŵ = Rn. By Corollary 6.1.9, W∗ := (w(· +M−1d))d∈R provides a basis

for S1(η). This is equivalent to detG(W∗) ̸= 0 almost everywhere on C̃0. Thus, the
determinant of the Gramian matrix corresponding to W∗ \ {w} is nonzero almost
everywhere. Since we assume that [ŵ, φ̂]1 is 2π-periodic, we can apply part i) to
deduce that W∗ \ {w} is in W0. Hence, we obtain m − 1 functions whose Gramian
matrix is nonzero almost everywhere. Since Theorem 6.1.10 ensures thatW0 contains
a basis of cardinality m−1, we conclude by part iii) of Corollary 4.2.8 that W∗ \{w}
is a basis for W0.

Remark 6.1.14.
While verifying part i) of Theorem 6.1.13, we proved the following: Let f, g be
compactly supported functions in L2(Rn). Then we have

[f̂ , ĝ]1(y) =
∑
d∈R

∑
k∈Zn

ad,k e−(M−1d+k)(y) almost everywhere, (6.15)

where the coefficients ad,k are given by

ad,k =
1

(2π)n
1

| detMT |

∫
‹C1

eM−1d+k(ξ) [f̂ , ĝ]1(ξ) dξ

=
1

| detMT |
〈
f(·+M−1d), g(· − k)

〉
L2(Rn)

.

Theorem 6.1.13 raises the question how such a function w ∈ S1(η) might look
like. On the one hand, it is necessary that

[ŵ, φ̂]1 = [τ η̂, φ̂]1 = τ [η̂, φ̂]1, τ 2πMTZn-periodic,

takes the value 0 or 1 because we need orthogonality between the functions w and
φ, see (1.7). As a result, the bracket product [ŵ, φ̂]1 is 2π-periodic. On the other
hand, we demand supp ŵ = supp η̂ = Rn because this implies that w is a generator
for the space S1(η). Both requirements can be met with the choice τ = [η̂, φ̂]−1

1 , i.e.,
we obtain

ŵ0 :=
η̂

[η̂, φ̂]1
=

1
τ̃
φ̂

[ 1
τ̃
φ̂, φ̂]1

=
φ̂

[φ̂, φ̂]1
, (6.16)

where τ̃ is 2πMTZn-periodic. This representation has the disadvantage that the
division by [φ̂, φ̂]1 might cause that w0 is not an L2(Rn)-function. Moreover, we
need to ensure that w0 is compactly supported. Hence, we have to modify this
representation such that there is no denominator in (6.16).
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Corollary 6.1.15.
Let S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = Rn. Moreover, let φ be compactly
supported. Then the function w defined by

ŵ :=
φ̂

[φ̂, φ̂]1

∏
d∈R

[φ̂, φ̂]1(·+ 2πd) = φ̂
∏
d∈R′

[φ̂, φ̂]1(·+ 2πd) (6.17)

is an element of the space L2(Rn) and the set {w(· +M−1d) : d ∈ R′} provides a
basis for W0. Furthermore, the function w is compactly supported.

Proof.
First of all, [φ̂, φ̂]1 is bounded because it is a trigonometric polynomial, see part iii)
of Lemma 1.3.7. It follows that ŵ and thus, w are functions in L2(Rn). Moreover,
w ∈ S1(η) because we obtain (6.17) by multiplying (6.16) with a 2πMTZn-periodic
product.

Since supp φ̂ = Rn, it follows that [φ̂, φ̂]1 > 0 almost everywhere. Hence, we have
supp ŵ = Rn and Proposition 4.1.4 yields that w is another generator for the space
S1(η).

Finally, we want to apply part ii) of Theorem 6.1.13 to show that the set of
functions {w(· +M−1d) : d ∈ R′} provides a basis for W0. Beforehand, we have to
verify that [ŵ, φ̂]1 is 2π-periodic and that w is compactly supported. We constructed
ŵ0 such that [ŵ0, φ̂]1 is 2π-periodic. Hence, it suffices to show that the product∏

d∈R[φ̂, φ̂]1(·+ 2πd) is 2π-periodic in order to deduce the 2π-periodicity of [ŵ, φ̂]1.
For this purpose we consider∏

d∈R

[φ̂, φ̂]1(·+ 2πd+ 2π1) =
∏
d∈R

[φ̂, φ̂]1(·+ 2π(d+ 1)),

where 1 denotes the vector of ones. Due to (6.2), there exists a d̃ ∈ R and an
ℓ ∈ Zn such that 1 can be written as 1 = d̃ +Mℓ. As we can see in the proof of
Lemma 6.1.2, the summation d+ 1, d ∈ R, provides a new set of representatives of
the distinct cosets of Zn/MZn. Consequently, we obtain∏

d∈R

[φ̂, φ̂]1(·+ 2π(d+ 1)) =
∏
d∗∈R

[φ̂, φ̂]1(·+ 2πd∗).

It remains to show that the function w is compactly supported. Since φ is compactly
supported, we know due to the Paley-Wiener Theorem 1.2.10 that φ̂ is an entire
function of exponential type and supp φ̂ = Rn. Finite sums and finite products of
entire functions are entire functions. Therefore, ŵ is an entire function of exponential
type with supp ŵ = Rn. Our claim follows by using the Paley-Wiener Theorem
1.2.10. again. Now, part ii) of Theorem 6.1.13 yields the desired result.
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6.1.2 Compactly Supported Wavelet Basis for Wj

Our construction procedure for a basis of W0 can be applied to all spaces Wj after a
suitable dilation. We illustrate this for the case j = 1. This choice allows us to clearly
observe how the role of S1(η) is changing when compared with our investigations in
the previous section.
Let η, p ∈ L2(Rn) with

supp η̂ = supp p̂ = Rn. (6.18)

Further assume that

S1(η) ⊂ S2(p), (6.19)

where the space S1 is M−1-shift-invariant and the space S2 is M−2-shift-invariant.
The subsequent theorem tells us that the properties (6.18) and (6.19) of the gener-
ators η and p are preserved under dilation.

Theorem 6.1.16.
Let ηM−1 := η(M−1·) and pM−1 := p(M−1·). Under the assumptions (6.18) and
(6.19) we have

S0(ηM−1) ⊂ S1(pM−1), (6.20)

where supp ‘ηM−1 = supp’pM−1 = Rn.

Proof.
First, we prove (6.20). Let f be a function in S0(ηM−1). Then there exists a sequence
(fℓ)ℓ∈N ∈ S0(ηM−1) such that fℓ → f in the L2-sense. The definition of the space
S0(ηM−1) yields for all elements of the sequence the representation

fℓ =
∑
k∈Zn

aℓ,k ηM−1(· − k)

=
∑
k∈Zn

aℓ,k η(M
−1 · −M−1k). (6.21)

Analogue to Chapter 4, we define the following bijective, linear and continuous
operator

J̃ : L2(Rn) → L2(Rn)

f 7→ f(M−1·)

and apply J̃−1 to (6.21). We obtain

J̃−1fℓ =
∑
k∈Zn

aℓ,k η(· −M−1k).
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Consequently, J̃−1fℓ ∈ S1(η) and by (6.19), J̃−1fℓ ∈ S2(p). Hence, there exists a

sequence (gr)r∈N ∈ S2(p) such that gr → J̃−1fℓ in the L2-sense. The function gr can
be represented as

gr =
∑
k∈Zn

br,k p(· −M−2k) =
∑
k∈Zn

br,k pM−1(M · −M−1k).

Applying the operator J̃ yields

J̃gr =
∑
k∈Zn

br,k pM−1(· −M−1k).

Hence, we have a sequence (J̃gr)r∈N ∈ S1(pM−1) which converges to fℓ in the L2-
sense. The L2-closure of S1(pM−1) yields fℓ ∈ S1(pM−1). Therefore, it holds (fℓ)ℓ∈N ∈
S1(pM−1) and analogously f ∈ S1(pM−1). Besides that supp ‘ηM−1 = supp’pM−1 = Rn,
see (1.4).

The theorem above ensures that the conditions of Theorem 6.1.4 are fulfilled.
Hence, we obtain

S1(pM−1) = S1(ηM−1) = S0(HM−1),

whereHM−1 := {ηM−1,d := ηM−1(·+M−1d), d ∈ R}. Moreover, Corollary 6.1.9 yields
thatHM−1 provides a basis for S0(HM−1). Consequently, we know by Theorem 6.1.10
that the set of functions (

ηM−1,d − PS0(ηM−1 )ηM−1,d

)
d∈R′

provides a basis for

W̃0 := S1(pM−1)⊖ S0(ηM−1).

If we further assume that η is compactly supported, then ηM−1 is compactly
supported as well. This implies that [‘ηM−1 , ‘ηM−1 ] is a trigonometric polynomial
and thus, bounded. Consequently, Theorem 6.1.11 provides us with a compactly
supported basis for W̃0 where the basis elements are defined by

ŵd := [‘ηM−1 , ‘ηM−1 ]÷ηM−1,d − [÷ηM−1,d, ‘ηM−1 ]‘ηM−1 , d ∈ R′.

Analogue to the proof of part i) of Corollary 4.2.8 and the fact that dilation preserves
orthogonality, we obtain that the compactly supported functions

wM,d := wd(M ·), d ∈ R′,

provide a basis for W1 := S2(p) ⊖ S1(η). In case (wd)d∈R′ is an L2-stable basis for
W0, then (wM,d)d∈R′ is an L2-stable basis for W1, see proof of part iv) of Corollary
4.2.8.
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6.1.3 Example: Exponential Box Splines

In this section we apply our construction methods for general dilation matrices to
exponential box splines contained in R2. In the following we present two examples
where we reduce the number of required mother wavelets for W0 from three in the
case M = 2I, n = 2, to only one. Moreover, we prove within these examples that
there exist non-stationary refinement equations for exponential box splines with
dilation matrices other than M = cI with |c| ≥ 2, c ∈ Z. To the best of the author’s
knowledge, this is a completely new result.
Exponential box splines are a generalization of polynomial box splines. The fol-

lowing definition of polynomial box splines as well as the properties listed below this
definition can be found in [33, Chapter I].

Definition 6.1.17.
Let n, p ∈ N with n ≤ p. Moreover, let xj = (xj1, . . . , x

j
n)
T ∈ Rn \ {0} with

j = 1, . . . , p, be the columns of the matrix Xp = (x1, . . . , xp). Then the polynomial
box spline BXp associated with the matrix Xp is inductively defined by

BXp : Rn → R,

u 7→
1∫

0

BXp−1(u− txp) dt.

In case Xn is invertible it holds

BXn(u) =

®
1

|detXn| , for u ∈ ZXn
:=

¶∑n
j=1 tjx

j : 0 ≤ tj < 1
©
,

0, elsewhere.

The polynomial box spline BXp is non-negative and compactly supported on

ZXp
:=

{
p∑
j=1

tjx
j : 0 ≤ tj ≤ 1

}
.

In addition, it is a piecewise polynomial function of degree p − n. Moreover, the
Fourier transform of BXp is given by‘BXp(ξ) =

p∏
j=1

1− e−iξ·x
j

iξ · xj
=

p∏
j=1

e−iξ·x
j − 1

−iξ · xj
.

In [25] it was shown for certain polynomial box splines in R2 that M2 = 2I is a nec-
essary condition in order to obtain 2I-refinability. Such a matrix can be constructed
in the following way, see [25, Corollary 4.1]:
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Lemma 6.1.18.
Let M ∈ Z2×2 be a dilation matrix with detM < 0. Then M satisfies M2 = 2I if
and only if trace M = 0 and detM = −2.

Our aim is to choose appropriate exponential box splines as generators φ̂j for the
spaces Sj, j ∈ Z, such that

φ̂j = A φ̂j+1, A 2π(MT )j+1Z2-periodic, (6.22)

holds in the setting of the generalized multiresolution analysis. We refer to (6.22) as
a non-stationary refinement equation. Since the lemma above leads to refinability in
the special case of polynomial box splines and a stationary multiresolution analysis,
we take it as a starting point. Hence, we choose the dilation matrix as

M =

Å
1 1
1 −1

ã
. (6.23)

It can easily be checked that the trace ofM is 0. Besides that, the eigenvalues are
√
2

and −
√
2. Thus, we have an expanding matrix with integer entries. Furthermore,

it holds | detM | = 2. Consequently, we have to determine one mother wavelet in
order to obtain a basis for W0. In contrast, for M = 2I, n = 2, we would need
three mother wavelets. Hence, already in the two-dimensional case, working with
a different dilation matrix leads to a significant reduction of the number of mother
wavelets. The inverse of M is given by

M−1 =

Å
1/2 1/2
1/2 −1/2

ã
.

Moreover, we observe that M2 = 2I and therefore, we obtain for all ℓ ∈ N:

M2ℓ = 2ℓI, M2ℓ+1 = 2ℓM,

(M−1)2ℓ =
1

2ℓ
I, (M−1)2ℓ+1 =

1

2ℓ
M−1.

Besides choosing an appropriate matrix, we have to define the spaces Sj, j ∈ Z, to
obtain a generalized multiresolution analysis. We choose exponential box splines as
generators for the spaces Sj. The following definition and classification of exponen-
tial box splines can be found in [30].

Definition 6.1.19.
Let Γ be a finite index set consisting of pairs γ = (xγ, λγ) with x

γ ∈ Rn\{0}, λγ ∈ C.
Moreover, let λ := (λγ)γ∈Γ. Then the exponential box spline Cλ is defined by its
Fourier transform as

Ĉλ(ξ) :=
∏
γ∈Γ

eλγ−iξ·x
γ − 1

λγ − iξ · xγ
, ξ ∈ Rn. (6.24)
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We refer to (xγ)γ∈Γ as directions.

Lemma 6.1.20.
The exponential box spline Cλ has the following properties:

i) If span(xγ)γ∈Γ = Rn, the exponential box spline Cλ is a compactly supported
piecewise-exponential-polynomial function supported on

ZΓ =

{∑
γ∈Γ

tγx
γ : 0 ≤ tγ ≤ 1

}
.

ii) If λ = 0, then Cλ is a polynomial box spline.

iii) If n = 1 and xγ = 1 for all γ ∈ Γ, then Cλ is an exponential B-spline.

iv) If all the directions (xγ)γ∈Γ are standard unit vectors, then Cλ is a tensor
spline.

v) If λ ∈ R, we obtain Cλ ≥ 0 in the interior of ZΓ.

For more detailed information on exponential box splines we refer to [69], [70] and
[27].
Hereinafter, we assume that (xγ)γ∈Γ consists of 2p vectors, p ∈ N \ {0}, and that

these vectors split up into two vectors, each appearing p times. These two vectors
are chosen to be

xγ1 :=

Å
1
0

ã
, xγ2 :=M

Å
1
0

ã
=

Å
1
1

ã
. (6.25)

Hence, span(xγ)γ∈Γ = R2. Next, we state the following important observation.

Lemma 6.1.21.
Let M be defined as in (6.23) and let xγ1 and xγ2 be defined as in (6.25). Moreover,
let the directions be given by p-times the vector xγ1 and p-times the vector xγ2 with
p ∈ N \ {0}. Furthermore, for j ∈ Z we define

λj := (λj,γ1 , λj,γ2), λj−1 = (λj−1,γ1 , λj−1,γ2) := (λj,γ2/2, λj,γ1),

where λj,γi ∈ C for i = 1, 2. Then the exponential box spline Cλj given by

Ĉλj(ξ) =

Å
eλj,γ1−iξ·x

γ1 − 1

λj,γ1 − iξ · xγ1

ãp Å
eλj,γ2−iξ·x

γ2 − 1

λj,γ2 − iξ · xγ2

ãp
satisfies

Ĉλj(M
jξ) = Aλj ,λj−1

(M j−1ξ)Ĉλj−1
(M j−1ξ)

85



Construction of Wavelets

with

Aλj ,λj−1
(ξ) :=

Å
1

2

eλj,γ2−iMξ·xγ2 − 1

eλj−1,γ1
−iξ·xγ1 − 1

ãp
.

Furthermore, Aλj ,λj−1
is a 2π-periodic trigonometric polynomial.

Proof.
Let ξ = (ξ1, ξ2)

T ∈ R2 and let j ∈ Z, ℓ ∈ N. Furthermore, we set λγi := λj,γi and

λ̃γi := λj−1,γi for i = 1, 2. First, we insert the definition of Ĉλj into Ĉλj(M
jξ). We

obtain

Ĉλj(M
jξ) =



Ä
eλγ1−iξ1−1
λγ1−iξ1

äp Ä
eλγ2−i(ξ1+ξ2)−1
λγ2−i(ξ1+ξ2)

äp
, j = 0,(

eλγ1−i2ℓξ1−1
λγ1−i2ℓξ1

)p (
eλγ2−i2ℓ(ξ1+ξ2)−1
λγ2−i2ℓ(ξ1+ξ2)

)p
, j = 2ℓ > 0,(

eλγ1−i2−ℓξ1−1
λγ1−i2−ℓξ1

)p (
eλγ2−i2−ℓ(ξ1+ξ2)−1
λγ2−i2−ℓ(ξ1+ξ2)

)p
, j = −2ℓ < 0,(

eλγ1−i2ℓ(ξ1+ξ2)−1
λγ1−i2ℓ(ξ1+ξ2)

)p (
eλγ2−i2ℓ+1ξ1−1
λγ2−i2ℓ+1ξ1

)p
, j = 2ℓ+ 1,(

eλγ1−i2−ℓ−1(ξ1+ξ2)−1
λγ1−i2−ℓ−1(ξ1+ξ2)

)p (
eλγ2−i2−ℓξ1−1
λγ2−i2−ℓξ1

)p
, j = −2ℓ− 1.

For Ĉλj−1
(M j−1ξ) we have

Ĉλj−1
(M j−1ξ) =



(
eλ̃γ1−i/2(ξ1+ξ2)−1
λ̃γ1−i/2(ξ1+ξ2)

)p (
eλ̃γ2−iξ1−1
λ̃γ2−iξ1

)p
, j = 0,(

eλ̃γ1−i2ℓ−1(ξ1+ξ2)−1
λ̃γ1−i2ℓ−1(ξ1+ξ2)

)p (
eλ̃γ2−i2ℓξ1−1
λ̃γ2−i2ℓξ1

)p
, j = 2ℓ > 0,(

eλ̃γ1−i2−ℓ−1(ξ1+ξ2)−1
λ̃γ1−i2−ℓ−1(ξ1+ξ2)

)p (
eλ̃γ2−i2−ℓξ1−1
λ̃γ2−i2−ℓξ1

)p
, j = −2ℓ < 0,(

eλ̃γ1−i2ℓξ1−1
λ̃γ1−i2ℓξ1

)p (
eλ̃γ2−i2ℓ(ξ1+ξ2)−1
λ̃γ2−i2ℓ(ξ1+ξ2)

)p
, j = 2ℓ+ 1(

eλ̃γ1−i2−ℓ−1ξ1−1
λ̃γ1−i2−ℓ−1ξ1

)p (
eλ̃γ2−i2−ℓ−1(ξ1+ξ2)−1
λ̃γ2−i2−ℓ−1(ξ1+ξ2)

)p
, j = −2ℓ− 1.

Since λ̃γ1 = λγ2/2 and λ̃γ2 = λγ1 , the quotient of Ĉλj(M
jξ) and Ĉλj−1

(M j−1ξ) has
the form

Ĉλj(M
jξ)

Ĉλj−1
(M j−1ξ)

=



(
1
2
eλγ2−i(ξ1+ξ2)−1

eλ̃γ1−i/2(ξ1+ξ2)−1

)p
, j = 0,(

1
2

eλγ2−i2ℓ(ξ1+ξ2)−1

eλ̃γ1−i2ℓ−1(ξ1+ξ2)−1

)p
, j = 2ℓ > 0,(

1
2

eλγ2−i2−ℓ(ξ1+ξ2)−1

eλ̃γ1−i2−ℓ−1(ξ1+ξ2)−1

)p
, j = −2ℓ < 0,(

1
2
eλγ2−i2ℓ+1ξ1−1

eλ̃γ1−i2ℓξ1−1

)p
, j = 2ℓ+ 1,(

1
2

eλγ2−i2−ℓξ1−1

eλ̃γ1−i2−ℓ−1ξ1−1

)p
, j = −2ℓ− 1.
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Then A is given by

Aλj ,λj−1
(ξ) =

Å
1

2

eλγ2−iMξ·xγ2 − 1

eλ̃γ1−iξ·x
γ1 − 1

ãp
=

Å
1

2

eλγ2−i2ξ1 − 1

eλ̃γ1−iξ1 − 1

ãp
=

1

2p

Ç
e2(λγ2/2−iξ1) − 1

eλγ2/2−iξ1 − 1

åpÇ
eλγ2/2−iξ1 + 1

eλγ2/2−iξ1 + 1

åp

=
1

2p

Ä
eλγ2/2−iξ1 + 1

äp
.

Since

Aλj ,λj−1
(ξ + 2π1) =

1

2p

Ä
eλγ2/2−i(ξ1+2π) + 1

äp
=

1

2p

Ä
eλγ2/2−iξ1 + 1

äp
= Aλj ,λj−1

(ξ),

the function Aλj ,λj−1
is a 2π-periodic trigonometric polynomial.

Based on the lemma above, we define the generators of the spaces Sj, j ∈ Z, by

φj := Cλ−j
(M j·) (6.26)

to obtain a non-stationary refinement equation. This can be seen as follows: Formula
(1.4) and the symmetry of the matrix M yield

φ̂j =
1

mj
Ĉλ−j

(M−j·).

Therefore, it holds

φ̂j =
1

mj
Aλ−j ,λ−j−1

(M−j−1·)Ĉλ−j−1
(M−j−1·) = mAλ−j ,λ−j−1

(M−j−1·)φ̂j+1.

Furthermore, we fix values for λ0 for our construction, i.e.,

λ∗1 := λ0,γ1 , λ∗2 := λ0,γ2 .

According to Lemma 6.1.21, we obtain

...

λ2 = (2λ∗1, 2λ
∗
2),

λ1 = (λ∗2, 2λ
∗
1),

λ0 = (λ∗1, λ
∗
2),

λ−1 = (λ∗2/2, λ
∗
1),

λ−2 = (λ∗1/2, λ
∗
2/2),

...

87



Construction of Wavelets

or more general

λj =

®
(2j/2λ∗1, 2

j/2λ∗2), j ∈ 2Z,
(2(j−1)/2λ∗2, 2

(j+1)/2λ∗1), j ∈ 2Z+ 1.

Next, we investigate if the conditions (M1)-(M3) of a generalized multiresolution
analysis are fulfilled for the spaces defined above. Due to our non-stationary re-
finement equation the corresponding spaces are nested. Furthermore, the compact
support of the generators yields

⋃
j Sj = L2(R2), see Theorem 4.1.7. Moreover, we

know by Theorem 4.1.10 that the intersection of the spaces Sj in the non-stationary
case is of dimension 0 or 1. Besides that, we obtain a stationary multiresolution
analysis if and only if λ0 = (0, 0).
In summary, we have shown so far that the spaces defined above fit into the

setting of our construction procedure developed in Section 6.1. For this construction
procedure we have to choose a set of representatives of Z2/MZ2. Since m = 2,
such a set consists of two elements. Furthermore, (0, 0)T has to be one of the
representatives. We set

R :=

ß
d0 :=

Å
0
0

ã
, d1 :=

Å
1
0

ã™
, R′ :=

ßÅ
1
0

ã™
.

Moreover, let φ := φ0 and η := φ1. Then Theorem 6.1.4 states that S1(η) = S0(ϕ)
with

ϕ := {φdi := φ(·+M−1di), i = 0, 1}.

Since the function φ is compactly supported, we have supp φ̂ = R2. Therefore, ϕ
provides a basis for S0(ϕ), see Corollary 6.1.9. Since m − 1 = 1, we define a single
mother wavelet for the space W0 by

ŵd1 :=

®”φd1 − ’Pφφd1 = ”φd1 − φ̂[”φd1 , φ̂]/[φ̂, φ̂], [φ̂, φ̂] ̸= 0,

φ̂d1 , [φ̂, φ̂] = 0.

By Theorem 6.1.10, the function wd1 and its integer translates provide a basis for
W0 = S0(wd1). If we want the basis of W0 to be compactly supported, we can
modify ŵd1 by multiplying it with [φ̂, φ̂]. This bracket product is a trigonometric
polynomial because of the compact support of φ. Consequently, [φ̂, φ̂] is bounded.
Theorem 6.1.11 yields that

wc := ([φ̂, φ̂]”φd1 − [”φd1 , φ̂]φ̂)∨ (6.27)

provides a compactly supported basis for W0 = S0(wc).
Next, we want to address stability. L2-stability of the integer translates of φ :=

Cλ0 can be deduced from their linear independence, see [49]. In [23] we find the
following important result:
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6.1 Compactly Supported Wavelet Bases

Lemma 6.1.22.
Let Cλ be an exponential box spline defined as in (6.24). Moreover, let the directions
(xγ)γ∈Γ be the columns of the matrix X. Then the integer translates of Cλ are
linearly independent if and only if X is unimodular and one has λγ−λγ′ /∈ 2πiZ\{0}
for all λγ, λγ′ ∈ λ.

In our case the matix X in Lemma 6.1.22 has the formÅ
1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1

ã
∈ Z2×2p.

This is an unimodular matrix since every 2× 2 submatrix has determinant −1, 0 or
1. Hence, by assuming that

λ∗1 − λ∗2 /∈ 2πiZ \ {0}, (6.28)

we ensure that φ = Cλ0 , λ0 = (λ∗1, λ
∗
2), has L2-stable integer translates. We remark,

that if λ∗1 and λ∗2 are real-valued, (6.28) is always satisfied. Next, we check if (6.27)
preserves the L2-stability. Therefore, we need the following result which is a special
case of Theorem 3.3 in [49].

Lemma 6.1.23.
Let φ ∈ L2(Rn) be compactly supported. Then the integer translates of φ are
L2-stable if and only if∑

α∈Zn

|φ̂(ξ + 2πα)|2 > 0 for all ξ ∈ Rn.

Hence, in order to deduce L2-stability of the integer translates of wc we have to
prove that ∑

α∈Z2

|ŵc(ξ + 2πα)|2 > 0 for all ξ ∈ R2.

By inserting the definiton of ŵc, we obtain∑
α∈Z2

|ŵc(ξ + 2πα)|2

=
∑
α∈Z2

|[φ̂, φ̂](ξ + 2πα)”φd1(ξ + 2πα)− [”φd1 , φ̂](ξ + 2πα)φ̂(ξ + 2πα)|2.

Due to the 2πZ2-periodicity of the bracket product and (1.3), we obtain∑
α∈Z2

|ŵc(ξ + 2πα)|2

=
∑
α∈Z2

|[φ̂, φ̂](ξ)eM−1d1(ξ + 2πα)φ̂(ξ + 2πα)− [”φd1 , φ̂](ξ)φ̂(ξ + 2πα)|2

=
∑
α∈Z2

|φ̂(ξ + 2πα)|2|[φ̂, φ̂](ξ)eM−1d1(ξ + 2πα)− [”φd1 , φ̂](ξ)|2.
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Since

|[φ̂, φ̂](ξ)eM−1d1(ξ + 2πα)− [”φd1 , φ̂](ξ)|2
= |

∑
β∈Z2

|φ̂(ξ + 2πβ)|2eM−1d1(ξ + 2πα)− |φ̂(ξ + 2πβ)|2eM−1d1(ξ + 2πβ)|2

we further deduce∑
α∈Z2

|ŵc(ξ + 2πα)|2 =
∑
α∈Z2

|φ̂(ξ + 2πα)eM−1d1(ξ)|2

· |
∑
β∈Z2

|φ̂(ξ + 2πβ)|2eM−1d1(2πα)− |φ̂(ξ + 2πβ)|2eM−1d1(2πβ)|2.

Every summand is non-negative. Hence, this sum is greater than zero for every
ξ ∈ R2, if we can find at least one summand greater than zero for every ξ ∈ R2.
Moreover, the integer translates of the generator φ are L2-stable and therefore,
φ̂ cannot have 2πZ2-periodic zeros. It follows that it is sufficient to consider a
summand where φ̂(ξ + 2πα̃) ̸= 0, α̃ ∈ Z2, holds. Let

|φ̂(ξ + 2πα̃)eM−1d1(ξ)|2|
∑
β∈Z2

|φ̂(ξ + 2πβ)|2eM−1d1(2πα̃)− |φ̂(ξ + 2πβ)|2eM−1d1(2πβ)|2

be such a summand. Since |φ̂(ξ + 2πα̃)eM−1d1(ξ)|2 is strictly positive, we have to
verify that the second factor is strictly positive as well. Since M−1d1 = (1/2, 1/2)T ,
it follows that

eM−1d1(2πα̃) = eiπ(α̃1+α̃2) =

®
1, α̃1 + α̃2 ∈ 2Z,

−1, α̃1 + α̃2 ∈ 2Z+ 1,
(6.29)

for α̃ = (α̃1, α̃2)
T ∈ Z2.

Case A: If α̃1 + α̃2 ∈ 2Z, the second factor has the form

|
∑
β∈Z2

|φ̂(ξ + 2πβ)|2 − |φ̂(ξ + 2πβ)|2eiπ(β1+β2)|2 (6.30)

for β = (β1, β2)
T . Since eiπ(β1+β2) = ±1 every summand is nonnegative. Again, we

only have to determine one strictly positive summand. Therefore, we have a closer
look at

φ̂(ξ) =

Å
eλ

∗
1−iξ1 − 1

λ∗1 − iξ1

ãpÇ
eλ

∗
2−i(ξ1+ξ2) − 1

λ∗2 − i(ξ1 + ξ2)

åp

. (6.31)
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In case λ0 is real-valued, the first factor vanishes if λ
∗
1 = 0 and ξ1 = 2πk, k ∈ Z\{0}.

For λ∗1 = 0 and ξ1 → 0, we have

lim
ξ1→0

Å
e−iξ1 − 1

−iξ1

ãp
=

Å
lim
ξ1→0

cos(ξ1)− i sin(ξ1)− 1

−iξ1

ãp
=

Å
lim
ξ1→0

cos(ξ1)− 1

−iξ1
+

sin(ξ1)

ξ1

ãp
= 1.

The second factor in (6.31) vanishes if λ∗2 = 0 and ξ1 + ξ2 = 2πℓ, ℓ ∈ Z \ {0}. For
λ∗2 = 0 and ξ1 + ξ2 → 0, we have

lim
ξ1+ξ2→0

Ç
e−i(ξ1+ξ2) − 1

−i(ξ1 + ξ2)

åp

= 1.

Hence, there are three different cases which lead to φ̂(ξ) = 0:

(1) λ∗1 = 0, λ∗2 = 0, ξ1 = 2πk, ξ2 = 2π(ℓ− k), ℓ, k ∈ Z \ {0},

(2) λ∗1 ̸= 0, λ∗2 = 0, ξ1 + ξ2 = 2πℓ, ℓ ∈ Z \ {0},

(3) λ∗1 = 0, λ∗2 ̸= 0, ξ1 = 2πk, k ∈ Z \ {0}.

In (6.30) we consider φ̂(ξ + 2πβ). Hence, we investigate for the cases above which
choice of β = (β1, β2)

T ∈ Z2 yields φ̂(ξ + 2πβ) ̸= 0. In the first case the choice
β1 = −k, β2 = −(ℓ − k), in the second case the choice β1 + β2 = −ℓ and in the
third case the choice β1 = −k, β2 = k +m,m ∈ 2Z + 1, leads to φ̂(ξ + 2πβ) ̸= 0.
We observe that the sum of β1 and β2 in the first and second case is not always in
2Z + 1. Hence, there exist ξ ∈ R2 such that eiπ(β1+β2) = 1 in (6.30). Consequently,
we obtain L2-stability only in case (3) and in case λ∗1, λ

∗
2 ∈ R \ {0}.

In case λ0 is complex-valued, we consider the following two cases:

(1) λ0 = (λ∗1, λ
∗
2) = (iy, iz), y, z ∈ R \ {0},

(2) λ0 = (λ∗1, λ
∗
2) = (a+ iy, b+ iz), a, b, y, z ∈ R \ {0}.

First, let us have a closer look at the case (1). We observe that

lim
ξ1→y

Å
eiy−iξ1 − 1

iy − iξ1

ãp
=

Å
lim
ξ1→y

eiy−iξ1
ãp

= 1

and that

lim
ξ1+ξ2→z

Ç
eiz−i(ξ1+ξ2) − 1

iz − i(ξ1 + ξ2)

åp

= 1.
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Hence, the numerator of the first factor in (6.31) vanishes if ξ1 = y + 2πk, k ∈ Z,
and the numerator of the second factor in (6.31) vanishes if ξ1+ ξ2 = z+2πℓ, ℓ ∈ Z.
Hence, φ̂(ξ + 2πβ) with ξ1 = y + 2πk and ξ2 = z − y + 2π(ℓ− k) is nonzero if and
only if β1 = −k and β2 = −(ℓ − k). Again, the sum of β1 and β2 is not always in
2Z+1 and therefore, we do not obtain L2-stability. This changes if we consider the
second case where

φ̂(ξ + 2πβ)

=

Å
ea+iy−iξ1 − 1

a+ iy − i(ξ1 + 2πβ1)

ãpÇ
eb+iz−i(ξ1+ξ2) − 1

b+ iz − i(ξ1 + 2πβ1 + ξ2 + 2πβ2)

åp

. (6.32)

Since a and b are nonzero, the denominators cannot vanish. Next, we check if

ea+iy−iξ1 = ea(cos(y − ξ1) + i sin(y − ξ1)) (6.33)

can take the value 1. Suppose (6.33) takes the value 1. Then sin(y − ξ1) has to
vanish. This is the case if and only if y − ξ1 = πk, k ∈ Z. Consequently, (6.33)
reduces to ea or −ea. Since a ∈ R \ {0}, we obtain a contradiction in both cases.
By the same arguments, we can deduce that the numerator of the second factor in
(6.32) cannot take the value 0. Hence, φ̂(ξ + 2πβ) is nonzero for every ξ ∈ R2 and
thus, L2-stability is preserved.
Case B: If α̃1 + α̃2 ∈ 2Z+ 1 in (6.29), we obtain

|(−1)
∑
β∈Z2

|φ̂(ξ + 2πβ)|2 + |φ̂(ξ + 2πβ)|2eiπ(β1+β2)|2.

Therefore, it is possible to obtain a strictly positive summand only if β1 + β2 ∈ 2Z.
Due to analogue arguments as above, we obtain L2-stability in the same cases as
before.
In summary, the integer translates of wc are L2-stable if

• λ∗1 − λ∗2 /∈ 2πiZ \ {0},

and if one of the following conditions is satisfied:

• λ∗1, λ
∗
2 ∈ R \ {0},

• λ∗1 = 0, λ∗2 ∈ R \ {0},

• λ∗1 = a+ iy, λ∗2 = b+ iz, a, b, y, z ∈ R \ {0}.

This list can be further extended by considering combinations of all our cases con-
sidered so far:

• λ∗1 = a+ iy, λ∗2 = b, a, b, y ∈ R \ {0},
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• λ∗1 = a, λ∗2 = b+ iz, a, b, z ∈ R \ {0},

• λ∗1 = iy, λ∗2 = b+ iz, b, y, z ∈ R \ {0},

• λ∗1 = 0, λ∗2 = b+ iz, b, z ∈ R \ {0},

• λ∗1 = iy, λ∗2 = b, b, y ∈ R \ {0}.

This whole construction procedure to obtain a wavelet basis with certain prop-
erties can be done for every Wj, j ∈ Z. In order to obtain a wavelet basis for the
whole space L2(R2), we have to consider the intersection of all spaces Sj, denoted
by Y, as well because

L2(R2) = Y ⊕
⊕
j∈Z

Wj.

In the stationary case Y is trivial. However, in the non-stationary case it can be
zero- or one-dimensional. The first case has the advantage that we obtain a wavelet
basis for L2(R2), if we have constructed a wavelet basis for all spacesWj. Therefore,
in Theorem 6.1.25 we are going to deduce another condition for Y to be trivial. For
the proof of this theorem we will need the following lemma, see [30, Lemma 4.6]:

Lemma 6.1.24.
If Ω is a measurable subset of Rn and α ̸= 0 is a fixed real constant such that for each
dyadic t ∈ Rn, we have Ω+α t = Ω modulo a null-set, then Ω = Rn or Ω = ∅ modulo
a null-set. Furthermore, if f is a measurable function on Rn with f(· + α t) = f
almost everywhere for each dyadic t, then f is constant almost everywhere.

Following the method of proof of [30, Theorem 8.4] we obtain a trivial intersection
if Reλ∗1 = 0 or Reλ∗2 = 0.

Theorem 6.1.25.
Let {Sj}j∈Z be defined as in (6.26) with

M =

Å
1 1
1 −1

ã
and let (xγ)γ∈Γ consist of the vectors

xγ1 =

Å
1
0

ã
, xγ2 =

Å
1
1

ã
,

each appearing p times, p ∈ N \ {0}. In addition, set

λj =

®
(2j/2λ∗1, 2

j/2λ∗2), j ∈ 2Z,
(2(j−1)/2λ∗2, 2

(j+1)/2λ∗1), j ∈ 2Z+ 1.

Then Y =
⋂
j∈Z Sj is trivial if Reλ

∗
1 = 0 or Reλ∗2 = 0.
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Construction of Wavelets

Proof.
Let f ∈ Y, f ̸= 0. It is sufficient to prove⋂

j∈2Z

Sj = {0}.

Therefore, we assume throughout this proof that j ∈ 2Z. Next, we define the
function G by

Ĝ(ξ) :=

Å
1

λ∗1 − iξ · xγ1

ãp Å 1

λ∗2 − iξ · xγ2

ãp
, ξ ∈ R2.

Since f ∈ S−j, it can be written as a linear combination of the M jZ2-translates of

the generator φ−j = Cλj(M
−j·). Next, we verify that the quotient 2j(p−1)φ̂−j/Ĝ is

2πM−jZ2-periodic. For k = (k1, k2)
T ∈ Z2 the nominator 2j(p−1)φ̂−j(· + 2πM−jk)

has the form

2j(p−1)φ̂−j(ξ + 2πM−jk)

= 2j(p−1)| − 2|jĈλj(M j(ξ + 2πM−jk))

= 2pj/22pj/2
Ç

e2
j/2λ∗1−i(2j/2ξ1+2πk1) − 1

2j/2λ∗1 − i(2j/2ξ1 + 2πk1)

åpÇ
e2

j/2λ∗2−i(2j/2(ξ1+ξ2)+2π(k1+k2)) − 1

2j/2λ∗2 − i(2j/2(ξ1 + ξ2) + 2π(k1 + k2))

åp

and the denominator Ĝ(·+ 2πM−jk) has the form

Ĝ(ξ + 2πM−jk)

=
Ä
λ∗1 − i(ξ1 + 2π2−j/2k1)

ä−p Ä
λ∗2 − i(ξ1 + ξ2 + 2π2−j/2(k1 + k2))

ä−p
.

Consequently, we obtain

2j(p−1)φ̂−j(ξ + 2πM−jk)

Ĝ(ξ + 2πM−jk)
=

Ä
e2

j/2λ∗1−i2j/2ξ1 − 1
äp Ä

e2
j/2λ∗2−i(2j/2(ξ1+ξ2)) − 1

äp
=

2j(p−1)| − 2|jĈλj(M jξ)

Ĝ(ξ)

=
2j(p−1)φ̂−j(ξ)

Ĝ(ξ)
.

We observe that 2j(p−1)φ̂−j/Ĝ is a trigonometric polynomial. Since the spaces S−j
are linear subspaces we also know that g ∈ S−j if and only if g̃ := 2j(p−1)g ∈ S−j.
Then Corollary 4.1.2 yields for every function g̃ ∈ S−j, j ∈ 2Z, the representation

ˆ̃g = 2j(p−1)ĝ = 2j(p−1)τ−jφ̂−j = 2j(p−1)τ−j
φ̂−j

Ĝ
Ĝ = τ̃−jĜ,
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6.1 Compactly Supported Wavelet Bases

where τ−j and τ̃−j := (2j(p−1)τ−jφ̂−j)/Ĝ are 2π2−j/2Z2-periodic. Due to the nested-
ness assumption, we can also write

ˆ̃g = τ̃−jĜ = τ̃−j+2Ĝ.

This is equivalent to

(τ̃−j+2 − τ̃−j) Ĝ = 0.

Since Ĝ(ξ) ̸= 0 for every ξ ∈ R2, it follows that all τ̃−j agree almost everywhere with
one measurable function τ and this function is invariant under all 2π2−j/2Z2-shifts
for j ∈ 2Z. We observe that 2−j/2Z2 contains the dyadic points which are dense
in R2. By Lemma 6.1.24 and the choice α = 2π, the function τ is constant almost
everywhere. Hence, the Fourier transform of every function in Y can be represented
by a scalar multiple of Ĝ. Therefore, Y is trivial if and only if G /∈ Y . Due to
the 2π2−j/2Z2-periodicity of τ̃−j, Corollary 4.1.2 yields that G ∈ S−j if and only if
G ∈ L2(R2). Hence, in the following we are going to prove that if Reλ∗1 = 0 or
Reλ∗2 = 0, G cannot be a function in L2(R2). To this end we calculate the L2-norm

of Ĝ. We obtain

∥Ĝ∥2L2(R2)

=

∫
R2

∣∣∣Å 1

λ∗1 − iξ · xγ1

ãp Å 1

λ∗2 − iξ · xγ2

ãp ∣∣∣2 dξ
=

∫
R2

Å∣∣∣ 1

λ∗1 − iξ · xγ1
∣∣∣2ãp Å∣∣∣ 1

λ∗2 − iξ · xγ2
∣∣∣2ãp dξ

=

∫
R2

Å
1

(Re(λ∗1))
2 + (Im(λ∗1)− ξ · xγ1)2

ãpÅ 1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ · xγ2)2

ãp
dξ.

In the following we denote the matrix with the columns xγ
1
and xγ

2
by

YΓ =

Å
1 1
0 1

ã
and we denote the unit vectors by e(1) := (1, 0)T , e(2) := (0, 1)T . Then we further
deduceÅ

1

(Re(λ∗1))
2 + (Im(λ∗1)− ξ · xγ1)2

ãp
=

Å
1

(Re(λ∗1))
2 + (Im(λ∗1)− ξ · (YΓe(1)))2

ãp
=

Å
1

(Re(λ∗1))
2 + (Im(λ∗1)− (Y T

Γ ξ) · e(1))2

ãp
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Construction of Wavelets

andÅ
1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ · xγ2)2

ãp
=

Å
1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ · (YΓe(2)))2

ãp
=

Å
1

(Re(λ∗2))
2 + (Im(λ∗2)− (Y T

Γ ξ) · e(2))2

ãp
.

Since det(Y T
Γ )−1 = 1, the transformation formula yields

∥Ĝ∥2L2(R2)

=

∫
R2

Å
1

(Re(λ∗1))
2 + (Im(λ∗1)− ξ · e(1))2

ãp Å 1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ · e(2))2

ãp
dξ

=

∫
R

∫
R

Å
1

(Re(λ∗1))
2 + (Im(λ∗1)− ξ1)2

ãp Å 1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ2)2

ãp
dξ1 dξ2

=

∫
R

Å
1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ2)2

ãp ∫
R

Å
1

(Re(λ∗1))
2 + (Im(λ∗1)− ξ1)2

ãp
dξ1 dξ2.

If Re(λ∗1) = 0, we obtain∫
R

Å
1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ2)2

ãp ∫
R

Å
1

(Re(λ∗1))
2 + (Im(λ∗1)− ξ1)2

ãp
dξ1 dξ2

=

∫
R

Å
1

(Re(λ∗2))
2 + (Im(λ∗2)− ξ2)2

ãp ∫
R

1

(Im(λ∗1)− ξ1)2p
dξ1dξ2.

To determine the integral ∫
R

1

(Im(λ∗1)− ξ1)2p
dξ1

we calculate

lim
b→−∞

lim
a→Im(λ∗1)

+

a∫
b

1

(Im(λ∗1)− ξ1)2p
dξ1 + lim

b→∞
lim

a→Im(λ∗1)
−

b∫
a

1

(Im(λ∗1)− ξ1)2p
dξ1.

Since p ≥ 1, we see that

lim
a→Im(λ∗1)

+

(Im(λ∗1)− a)1−2p

2p− 1
→ −∞, lim

b→−∞

(Im(λ∗1)− b)1−2p

2p− 1
→ 0,

lim
a→Im(λ∗1)

−

(Im(λ∗1)− a)1−2p

2p− 1
→ ∞, lim

b→∞

(Im(λ∗1)− b)1−2p

2p− 1
→ 0.
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6.1 Compactly Supported Wavelet Bases

Hence, the second integral does not converge and therefore, Ĝ /∈ L2(R2). The case
Re(λ∗2) = 0 can be treated analogue.

Now, let us summarize the most important results concerning our first example. We
have constructed a compactly supported wavelet basis for W0 in the non-stationary
setting. As stated in the previous section, our analysis can be applied to all spaces
Wj, j ∈ Z, after a suitable dilation and hence, we obtain a compactly supported
basis for all spaces Wj. Under the assumption

(I) The real part of at least one entry of λ0 is zero.

the intersection of the spaces Sj is trivial. Therefore, the union of our compactly
supported wavelet bases is a compactly supported wavelet basis for the whole space
L2(R2).

Remark 6.1.26.
But one question still remains open: How can we construct a compactly supported
and L2-stable wavelet basis of L2(R2)? If we assume

(II) The entries of λ0 satisfy one of the following conditions:

• λ∗1, λ
∗
2 ∈ R \ {0},

• λ∗1 = 0, λ∗2 ∈ R \ {0},
• λ∗1 = a+ iy, λ∗2 = b+ iz, a, b, y, z ∈ R \ {0},
• λ∗1 = a+ iy, λ∗2 = b, a, b, y ∈ R \ {0},
• λ∗1 = a, λ∗2 = b+ iz, a, b, z ∈ R \ {0},
• λ∗1 = iy, λ∗2 = b+ iz, b, y, z ∈ R \ {0},
• λ∗1 = 0, λ∗2 = b+ iz, b, z ∈ R \ {0},
• λ∗1 = iy, λ∗2 = b, b, y ∈ R \ {0}.

and

(III) The difference of λ∗1 and λ∗2 satisfies λ∗1 − λ∗2 /∈ 2πiZ \ {0}.

we obtain compactly supported and L2-stable wavelet bases forWj, j ∈ Z. The space
L2(R2) has the orthogonal decomposition

L2(R2) = Y ⊕
⊕
j∈Z

Wj.

Even if choose the entries of λ0 such that Y is trivial, this decomposition does not
imply that the union of L2-stable wavelet bases is L2-stable as well. For L2-stability
we need to ensure that the stability constants can be chosen independently of j. In
the stationary case this is always possible since dilation doesn’t change the stability
constants. In the non-stationary case the answer to this question is far from being
trivial. Therefore, this problem will be the subject of future research.
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Construction of Wavelets

As a second example we consider the matrix

M =

Å
0 1
2 0

ã
. (6.34)

The absolute value of the determinant is 2 and M2 = 2I. Moreover, the inverse of
M is given by

M−1 =

Å
0 1

2

1 0

ã
.

With the matrix (6.34) at hand, we want to prove an analogon of Lemma 6.1.21.
Let (xγ)γ∈Γ consist of the vectors

xγ1 :=

Å
0
1

ã
and xγ2 :=

Å
1
0

ã
, (6.35)

each appearing p times, p ∈ N \ {0}. According to part iv) of Lemma 6.1.20, the
corresponding exponential box spline can be classified as a tensor spline. Besides
that, span(xγ)γ∈Γ = R2 and the matrixÅ

0 . . . 0 1 . . . 1
1 . . . 1 0 . . . 0

ã
∈ Z2×2p

is unimodular. Furthermore, there is a slight change in the Fourier transform of our
generators φj because M is not symmetric anymore. We have

φ̂j =
1

mj
Cλ−j

((MT )−j·).

The matrix MT still satisfies (MT )2 = 2I.

Lemma 6.1.27.
Let M be defined as in (6.34) and let xγ1 and xγ2 be defined as in (6.35). Moreover,
let the directions be given by p-times the vector xγ1 and p-times the vector xγ2 with
p ∈ N \ {0}. Furthermore, for j ∈ Z we define

λj := (λj,γ1 , λj,γ2), λj−1 = (λj−1,γ1 , λj−1,γ2) := (λj,γ2/2, λj,γ1),

where λj,γi ∈ C for i = 1, 2. Then the exponential box spline Cλj given by

Ĉλj(ξ) =

Å
eλj,γ1−iξ·x

γ1 − 1

λj,γ1 − iξ · xγ1

ãp Å
eλj,γ2−iξ·x

γ2 − 1

λj,γ2 − iξ · xγ2

ãp
satisfies

Ĉλj((M
T )jξ) = Aλj ,λj−1

((MT )j−1ξ)Ĉλj−1
((MT )j−1ξ)
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6.1 Compactly Supported Wavelet Bases

with

Aλj ,λj−1
(ξ) :=

Ç
1

2

eλj,γ2−iM
T ξ·xγ2 − 1

eλj−1,γ1
−iξ·xγ1 − 1

åp

.

Furthermore, Aλj ,λj−1
is a 2π-periodic trigonometric polynomial.

Proof.
Let ξ = (ξ1, ξ2) ∈ R2 and let j ∈ Z and ℓ ∈ N. Furthermore we set λγi := λj,γi and

λ̃γi := λj−1,γi for i = 1, 2. First, we insert the definition of Ĉλj into Ĉλj((M
T )jξ).

We obtain

Ĉλj((M
T )jξ) =



Ä
eλγ1−iξ2−1
λγ1−iξ2

äp Ä
eλγ2−iξ1−1
λγ2−iξ1

äp
, j = 0,(

eλγ1−i2ℓξ2−1
λγ1−i2ℓξ2

)p (
eλγ2−i2ℓξ1−1
λγ2−i2ℓξ1

)p
, j = 2ℓ > 0,(

eλγ1−i2−ℓξ2−1
λγ1−i2−ℓξ2

)p (
eλγ2−i2−ℓξ1−1
λγ2−i2−ℓξ1

)p
, j = −2ℓ < 0,(

eλγ1−i2ℓξ1−1
λγ1−i2ℓξ1

)p (
eλγ2−i2ℓ+1ξ2−1
λγ2−i2ℓ+1ξ2

)p
, j = 2ℓ+ 1,(

eλγ1−i2−ℓ−1ξ1−1
λγ1−i2−ℓ−1ξ1

)p (
eλγ2−i2−ℓξ2−1
λγ2−i2−ℓξ2

)p
, j = −2ℓ− 1.

For Ĉλj−1
((MT )j−1ξ) we have

Ĉλj−1
((MT )j−1ξ) =



(
eλ̃γ1−i/2ξ1−1
λ̃γ1−i/2ξ1

)p (
eλ̃γ2−iξ2−1
λ̃γ2−iξ2

)p
, j = 0,(

eλ̃γ1−i2ℓ−1ξ1−1
λ̃γ1−i2ℓ−1ξ1

)p (
eλ̃γ2−i2ℓξ2−1
λ̃γ2−i2ℓξ2

)p
, j = 2ℓ > 0,(

eλ̃γ1−i2−ℓ−1ξ1−1
λ̃γ1−i2−ℓ−1ξ1

)p (
eλ̃γ2−i2−ℓξ2−1
λ̃γ2−i2−ℓξ2

)p
, j = −2ℓ < 0,(

eλ̃γ1−i2ℓξ2−1
λ̃γ1−i2ℓξ2

)p (
eλ̃γ2−i2ℓξ1−1
λ̃γ2−i2ℓξ1

)p
, j = 2ℓ+ 1(

eλ̃γ1−i2−ℓ−1ξ2−1
λ̃γ1−i2−ℓ−1ξ2

)p (
eλ̃γ2−i2−ℓ−1ξ1−1
λ̃γ2−i2−ℓ−1ξ1

)p
, j = −2ℓ− 1.

Since λ̃γ1 = λγ2/2 and λ̃γ2 = λγ1 , the quotient of Ĉλj(M
jξ) and Ĉλj−1

(M j−1ξ) has
the form

Ĉλj((M
T )jξ)

Ĉλj−1
((MT )j−1ξ)

=



(
1
2
eλγ2−iξ1−1

eλ̃γ1−i/2ξ1−1

)p
, j = 0,(

1
2

eλγ2−i2ℓξ1−1

eλ̃γ1−i2ℓ−1ξ1−1

)p
, j = 2ℓ > 0,(

1
2

eλγ2−i2−ℓξ1−1

eλ̃γ1−i2−ℓ−1ξ1−1

)p
, j = −2ℓ < 0,(

1
2
eλγ2−i2ℓ+1ξ2−1

eλ̃γ1−i2ℓξ2−1

)p
, j = 2ℓ+ 1,(

1
2

eλγ2−i2−ℓξ2−1

eλ̃γ1−i2−ℓ−1ξ2−1

)p
, j = −2ℓ− 1.
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Then A is given by

Aλj ,λj−1
(ξ) =

Ç
1

2

eλγ2−i(M
T )ξ·xγ2 − 1

eλ̃γ1−iξ·x
γ1 − 1

åp

=

Å
1

2

eλγ2−i2ξ2 − 1

eλ̃γ1−iξ2 − 1

ãp
=

1

2p

Ç
e2(λγ2/2−iξ2) − 1

eλγ2/2−iξ2 − 1

åpÇ
eλγ2/2−iξ2 + 1

eλγ2/2−iξ2 + 1

åp

=
1

2p
(eλγ2/2−iξ2 + 1)p.

Since

Aλj ,λj−1
(ξ + 2π1) =

1

2p
(eλγ2/2−i(ξ2+2π) + 1)p =

1

2p
(eλγ2/2−iξ2 + 1)p = Aλj ,λj−1

(ξ),

the function Aλj ,λj−1
is a 2π-periodic trigonometric polynomial.

Hence, the theory developed for the first example remains valid. In the following,
we point out the differences which occur when working with this new matrix. First,
the vector d1 = (1, 0)T in R is substituted by d̃1 := (0, 1)T . As a result, (6.29) has
the form

eM−1d̃1
(2πα̃) = eiπα̃1 =

®
1, α̃1 ∈ 2Z,

−1, α̃1 ∈ 2Z+ 1.

Therefore, if α̃1 ∈ 2Z we consider

|
∑
β∈Z2

|φ̂(ξ + 2πβ)|2 − |φ̂(ξ + 2πβ)|2eiπβ1 |2

and if α̃1 ∈ 2Z+ 1 we consider

|(−1)
∑
β∈Z2

|φ̂(ξ + 2πβ)|2 + |φ̂(ξ + 2πβ)|2eiπβ1|2.

Since the Fourier transform of φ̂ is given by

φ̂(ξ) =

Å
eλ

∗
1−iξ2 − 1

λ∗1 − iξ2

ãp Å
eλ

∗
2−iξ1 − 1

λ∗2 − iξ1

ãp
,

we can use similar arguments as in the first example to deduce L2-stability under
the assumptions

(II’) The entries of λ0 satisfy one of the following conditions:
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6.2 Stable Wavelet Bases

• λ∗1, λ
∗
2 ∈ R \ {0},

• λ∗1 ∈ R \ {0}, λ∗2 = 0,

• λ∗1 = 0, λ∗2 ∈ R \ {0},
• λ∗1 = a+ iy, λ∗2 = b+ iz, a, b, y, z ∈ R \ {0},
• λ∗1 = a+ iy, λ∗2 = b, a, b, y ∈ R \ {0},
• λ∗1 = a+ iy, λ∗2 = iz, a, y, z ∈ R \ {0},
• λ∗1 = a+ iy, λ∗2 = 0, a, y ∈ R \ {0},
• λ∗1 = a, λ∗2 = iz, a, z ∈ R \ {0},
• λ∗1 = a, λ∗2 = b+ iz, a, b, z ∈ R \ {0},
• λ∗1 = iy, λ∗2 = b+ iz, b, y, z ∈ R \ {0},
• λ∗1 = 0, λ∗2 = b+ iz, b, z ∈ R \ {0},
• λ∗1 = iy, λ∗2 = b, b, y ∈ R \ {0}.

and (III). Hence, our construction procedure yields a compactly supported and L2-

stable wavelet basis for Wj, j ∈ Z. Moreover, the quotient 2j(p−1)φ̂−j/Ĝ in Theorem
6.1.25 changes to

2j(p−1)| − 2|jĈλj((MT )j(ξ + 2π(MT )−jk))

Ĝ(ξ + 2π(MT )−jk)

because M is not symmetric anymore. Since (MT )j = 2j/2I = M j for j ∈ 2Z, the
proof remains valid and Theorem 6.1.25 holds for our new matrix.

6.2 Stable Wavelet Bases

In this section we present a second construction procedure which yields an L2-stable
basis for every space Wj, j ∈ Z. As before we consider two L2(Rn)-functions φ and
η such that

S0(φ) ⊂ S1(η).

In contrast to Section 6.1, this construction process will not be based on an orthog-
onal projection. Indeed, a main component will be the bracket product

B := [η̂, φ̂]1 = A[η̂, η̂]1, (6.36)

where φ̂ = Aη̂ and A is 2πMTZn-periodic.
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Lemma 6.2.1.
Let S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = Rn. Moreover, let the operator Q0 be
defined as in (6.3). A necessary and sufficient condition for a function w ∈ L2(Rn)
to be an element of the space W0 is that there exists a 2πMTZn-periodic function
τ such that

ŵ = τ η̂ (6.37)

and

Q0(τB) =
∑
d̃∈RT

(τB)(·+ 2πd̃) = 0. (6.38)

If η is compactly supported, then a sufficient condition for the the function w to
have compact support is that τ is a 2πMTZn-periodic trigonometric polynomial.
Whenever the function η has linearly independent M−1Zn-shifts, the last property
characterizes all compactly supported functions of the space W0.

Proof.
First of all, we prove (6.38). Since τB is 2πMTZn-periodic, we can insert it into the
definition (6.3) of the operator Q0 and obtain

Q0(τB) =
∑
d̃∈RT

e0(·+ 2πd̃)(τB)(·+ 2πd̃) =
∑
d̃∈RT

(τB)(·+ 2πd̃).

Moreover, W0 ⊂ S1(η) and by Corollary 4.1.2, every Fourier transform of a function
in W0 has a representation of the form (6.37). Besides that, we can use (6.1) to
deduce for two arbitrary functions f, g ∈ L2(Rn)

Q0([f, g]1) =
∑
d̃∈RT

( ∑
γ∗∈2πMTZn

f(·+ 2πd̃+ γ∗)g(·+ 2πd̃+ γ∗)

)
=

∑
β∈2πZn

f(·+ β)g(·+ β)

= [f, g].

Together with (6.37) and (6.36) this yields

[ŵ, φ̂] = Q0([τ η̂, φ̂]1) = Q0(τ [η̂, φ̂]1) = Q0(τB).

By Lemma 5.5, the function w ∈ S1(η) belongs to W0 if and only if the bracket

product [ŵ, φ̂] vanishes almost everywhere on C̃0. Thus, (6.38) holds.
In case τ is a trigonometric polynomial and η is a compactly supported func-

tion, then ŵ = τ η̂ is the Fourier transform of a compactly supported function w.
Furthermore, if f ∈ S1(η) is compactly supported and in addition, η has linearly
independent M−1Zn-shifts, Corollary 4.2.11 implies that f̂ = τ η̂ holds with τ being
a trigonometric polynomial.
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In view of Lemma 6.2.1, we want to find m − 1 functions which provide an L2-
stable basis for W0. Let R0 be a subset of R with cardinality m − 1. Then it is
our aim to define functions τd, d ∈ R0 such that (6.37), (6.38) are satisfied and we
obtain an L2-stable basis.
In preparation for this process, we recall Lemma 6.1.6 and apply it to the function

B = [η̂, φ̂]1. We obtain

B =
∑
d∈R

e−M−1dBd, Bd :=
Qd(B)

m
. (6.39)

In case the functions φ and η are compactly supported, we have already seen in (6.15)
that B = [η̂, φ̂]1 is a 2πMTZn-periodic trigonometric polynomial. Consequently,
by the definition of Qd, d ∈ R, the functions Bd are 2πZn-periodic trigonometric
polynomials.

Theorem 6.2.2.
Let the functions φ and η fulfill S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = Rn. Further-
more, let Bd be defined as in (6.39) and let d0 ∈ R,R0 := R\{d0}. Then the m− 1
functions

τd := eM−1d0Bd − eM−1dBd0 , d ∈ R0,

satisfy

Q0(τdB) = 0.

Moreover, if ŵd ∈ L2(Rn), then the functions wd, d ∈ R0, with the Fourier transforms
ŵd := τdη̂, are elements of the space W0. If φ and η are compactly supported, then
the functions wd, d ∈ R0, are compactly supported. If the function η has L2-stable
M−1Zn-shifts and if B and 1/Bd0 are in L∞(C̃0), then (wd)d∈R0 provides an L2-stable
basis for W0.

Proof.
Let d, d∗ ∈ R. By the 2πZn-periodicity of Q0 and Bd, (6.3) and (6.39), we obtain

Q0(eM−1d∗BdB) = BdQ0(eM−1d∗B) = BdQd∗(B) = BdBd∗m. (6.40)

In view of (6.40), we consider two different cases. For d = d, d∗ = d0, we have

Q0(eM−1d0BdB) = BdBd0m

and for d = d0, d
∗ = d, we obtain

Q0(eM−1dBd0B) = Bd0Bdm.
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It follows that

0 = BdBd0 −Bd0Bd

= m−1(Q0(eM−1d0BdB)−Q0(eM−1dBd0B))

= m−1Q0(eM−1d0BdB − eM−1dBd0B)

= m−1Q0((eM−1d0Bd − eM−1dBd0)B)

= m−1Q0(τdB).

Therefore, (6.38) is satisfied and wd ∈ W0 for all d ∈ R0 if ŵd ∈ L2(Rn) holds.
We already mentioned that if the functions η and φ are compactly supported,

then B = [η̂, φ̂]1 is a trigonometric polynomial. Hence, Bd and every function τd,
d ∈ R0, are trigonometric polynomials. This implies that the m − 1 functions wd
are compactly supported.
It remains to show the L2-stability of (wd)d∈R0 . Let us consider the matrix

Γ = (τd,d∗)d,d∗∈R :=



−Bd0 0 . . . . . . . . . 0
Bd1 −Bd0 0 . . . . . . 0
Bd2 0 −Bd0 0 . . . 0
...

... 0
. . . . . .

...
...

...
...

. . . . . . 0
Bdm−1 0 0 . . . 0 −Bd0

 .

The product Γ(eM−1dη̂)d∈R can be written as

−Bd0eM−1d0 η̂
(Bd1eM−1d0 −Bd0eM−1d1)η̂
(Bd2eM−1d0 −Bd0eM−1d2)η̂

...

...
(Bdm−1eM−1d0 −Bd0eM−1dm−1

)η̂

=



−Bd0eM−1d0 η̂
τd1 η̂
τd2 η̂
...
...

τdm−1 η̂

=



−Bd0eM−1d0 η̂
ŵd1
ŵd2
...
...

ŵdm−1

 . (6.41)

We observe that Γ(eM−1dη̂)d∈R coincides with (ŵd)d∈R0 in the R0-entries. As a result,
it is sufficient to prove that the shifts of the inverse transforms of Γ(eM−1dη̂)d∈R
are L2-stable. Since we assume supp η̂ = Rn and the L2-stability of the M−1Zn-
shifts of the function η, or equivalently of the Zn shifts of (η(· + M−1d))d∈R, we
know that (η(· + M−1d))d∈R provides an L2-stable basis for S1(η), see Theorem
6.1.4 and Corollary 6.1.9. According to part iv) of Corollary 4.2.8, proving that

∥Γ∥ and ∥Γ−1∥ are essentially bounded on C̃0 yields our claim. Because of the
boundedness of B, every component of Bd is bounded and therefore, also all the
entries of the matrix Γ. Applying the Laplace formula yields | det Γ| = |Bd0|m which
is by assumption bounded away from 0. We deduce that ∥Γ∥ and ∥Γ−1∥ are bounded
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6.2 Stable Wavelet Bases

almost everywhere. Hence, (6.41) provides an L2-stable basis for S1(η). Since we
know that the functions wd, d ∈ R0, are m− 1 linearly independent elements in W0,
we finally obtain that (wd)d∈R0 provides an L2-stable basis for W0.

We remark that if [φ̂, φ̂]1 and [η̂, η̂]1 are bounded, then

|B|2 = [η̂, φ̂]1[φ̂, η̂]1 = A[η̂, η̂]1A[η̂, η̂]1 = [φ̂, φ̂]1[η̂, η̂]1

yields the boundedness of B.

Example 6.2.3.
Let us have a closer look at Theorem 6.2.2 with φ being the cardinal B-spline of
order 1, i.e., φ := χ[0,1) and we define η as the 2-dilate of φ, that is, η := φ(2·). It
follows directly that S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = R. Moreover, let M = 2,
R = {0, 1} and d0 = 1. Due to (6.15), we have

B(y) = [η̂, φ̂]1(y)

=
∑
d∈R

∑
k∈Z

1

2
⟨φ(2 ·+ d), φ(· − k)⟩L2(R) e−(d/2+k)(y)

=
1

2
⟨φ(2·), φ⟩L2(R) +

1

2
⟨φ(2 ·+1), φ(·+ 1)⟩L2(Rn) e1/2(y)

=
1

4
+

1

4
e1/2(y).

By (6.39), we further deduce that

B0 =
Q0(B)

2

=
1

2
B +

1

2
B(·+ 2π)

=
1

2

Å
1

4
+

1

4
e1/2

ã
+

1

2

Å
1

4
+

1

4
e1/2(·+ 2π)

ã
=

1

4
.

Similarly we can show that

B1 =
Q1(B)

2

=
1

2
e1/2B +

1

2
e1/2(·+ 2π)B(·+ 2π)

=
1

2
e1/2

Å
1

4
+

1

4
e1/2

ã
+

1

2
e1/2(·+ 2π)

Å
1

4
+

1

4
e1/2(·+ 2π)

ã
=

1

4
e1.
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Then the function

τ0 : = e1/2B0 −B1 = e1/2
1

4
− 1

4
e1

satisfies

Q0(τ0B) =
∑
d̃∈RT

τ0(·+ 2πd̃)B(·+ 2πd̃)

=

Å
1

4
e1/2 −

1

4
e1

ãÅ
1

4
+

1

4
e1/2

ã
+

Å
−1

4
e1/2 −

1

4
e1

ãÅ
1

4
− 1

4
e1/2

ã
= 0.

Next, we define ŵ0 := τ0η̂. We calculate

∥ŵ0∥2L2(R) =

∫
R

|τ0(x)η̂(x)|2 dx

=

∫
R

∣∣∣∣Å1

4
e1/2(x)−

1

4
e1(x)

ã
ie−1/2(x)− i

x

∣∣∣∣2 dx

=

∫
R

sin4
(
x
4

)
x2

dx

=
π

8
<∞.

Therefore, w0 ∈ L2(R) and thus, w0 ∈ W0. Moreover, Theorem 6.2.2 yields that
w0 is compactly supported. Finally, we verify that w0 provides an L2-stable basis
for W0. The generator φ has L2-stable integer shifts, see [26]. Since the stability
constants do not change under dilation, η has L2-stable half-shifts. Furthermore, it
holds

∥B∥L∞(‹C0)
= ess sup

x∈‹C0

∣∣∣∣14 +
1

4
e1/2(x)

∣∣∣∣ ≤ 1

2
<∞.

For the inverse of B1 we obtain∥∥∥ 1

B1

∥∥∥
L∞(‹C0)

= ess sup
x∈‹C0

|4e−1(x)| = 4 <∞.

Consequently, Theorem 6.2.2 yields the desired result.

Next, we want to present an application of Theorem 6.2.2. For this application,
we need the subsequent theorem which can be found in [64, Theorem 3.4.12]. For a
more general version see also [49, Theorem 3.3].
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6.2 Stable Wavelet Bases

Theorem 6.2.4.
Let the function f be compactly supported. Then the following statements are
equivalent:

i) The function f is L2-stable.

ii) The Fourier transform f̂ of the function f has no real periodic zeros.

Corollary 6.2.5.
Assume that the functions φ and η are compactly supported and that they fulfill
S0(φ) ⊂ S1(η) and supp φ̂ = supp η̂ = Rn. In addition, let the function φ have
L2-stable shifts and the function η have L2-stable M

−1Zn-shifts. Moreover, let A in
(6.36) be a trigonometric polynomial. In addition, we define

φ1 := (φ ∗ φ−), φ− := φ(−·),

and

η1 := (η ∗ η−), η− := η(−·).

Then the sequence (wd)d∈R′ of compactly supported functions defined in Theorem
6.2.2 with respect to φ1 and η1 provides an L2-stable basis for the space W0 if
ŵd ∈ L2(Rn) for all d ∈ R′.

Proof.
To prove this corollary, we have to verify that the conditions of Theorem 6.2.2 are
fulfilled for d0 = 0.
We start by noticing that the functions φ and η are elements of the space L1(Rn)

because it holds

∥φχsuppφ∥L1(Rn) ≤ ∥φ∥L2(Rn)∥χsuppφ∥L2(Rn) <∞,

and

∥η χsupp η∥L1(Rn) ≤ ∥η∥L2(Rn)∥χsupp η∥L2(Rn) <∞.

Therefore, we can apply Theorem 1.2.3 and we obtain

η̂1(ξ) = (η ∗ η−)
∧

(ξ) = η̂(ξ)η̂−(ξ) = η̂(ξ)η̂(ξ) = |η̂(ξ)|2.

Similarly we observe that φ̂1 = |φ̂|2. It follows φ̂1 = |A|2 η̂1 and thus, it holds
S0(φ1) ⊂ S1(η1). Moreover, the compact support transfers from φ and η to φ1 and
η1, respectively. This implies supp φ̂1 = supp η̂1 = Rn. Next, we use (6.15) and the
fact that A is a trigonometric polynomial to deduce that the non-negative function

B = [η̂1, φ̂1]1 = |A|2 [η̂1, η̂1]1
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is a trigonometric polynomial as well. The boundedness of B follows directly. Fur-
thermore, the M−1Zn-shifts of η are L2-stable and as a consequence, Theorem 6.2.4
tells us that neither η̂ nor η̂1 = |η̂|2 have 2πMTZn- periodic zeros. Hence, [η̂1, η̂1]1
is strictly positive. With the same arguments (with respect to the function φ), the

function Ã := |A|2 = φ̂1/η̂1 = |φ̂|2/|η̂|2 cannot have 2πZn-periodic zeros. Conse-
quently, B is a non-negative 2πMTZn-periodic function which has no 2πZn-periodic
zeros. It follows that B0 = m−1

∑
d̃∈RT B(·+2πd̃) is a strictly positive 2πZn-periodic

trigonometric polynomial. In summary, B and 1/B0 are essentially bounded on C̃0

and by Theorem 6.2.2, our claim follows.

Next, we derive a general construction procedure for functions τ which fulfill
(6.38). To this end we have a closer look at the choice of representatives of Zn/MTZn
and Zn/M−TZn. We follow the notation and definitions of [55]. First of all, we state
that our matrix MT defines the pattern

P (MT ) := {y ∈ Rn :MTy ∈ Zn} =M−TZn.

The congruence classes [d′] ∈ Zn/MTZn can be identified by their representatives
d′ ∈ Zn. Thus, we obtain

M−T [d′] = {y ∈ Rn : y ≡M−Td′ mod I}.

The congruence relation x ≡ y mod I for x, y ∈ Rn holds if and only if there exists
a vector z ∈ Zn with

x = y + Iz = y + z.

Hence, every unit cube of Rn contains exactly one element of M−T [d′]. With

PI(M
T ) := P (MT ) ∩ [0, 1)n

it follows that an appropriate choice of representatives d′ ∈ Zn/MTZn is given by

y =M−Td′ ∈ PI(M
T ).

Lemma 6.2.6.
PI(M

T ) equipped with the addition modulo the unit matrix I is a group.

Proof.
The addition modulo the unit matrix I is defined for all x, y ∈ PI(M

T ) by

xi +I yi :=

®
xi + yi, 0 ≤ xi + yi < 1,

xi + yi − 1, xi + yi ≥ 1,
for all i ∈ {1, . . . , n}.

Since MTx +MTy ∈ Zn and x +I y ∈ [0, 1)n, PI(M
T ) is closed under the addition

modulo I. Furthermore, we can deduce associativity from the associativity of the
componentwise addition. Finally, the identity element is 0 and the inverse element
of x ∈ PI(M

T ) is 1− x ∈ PI(M
T ).
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Lemma 6.2.7.
The quotient group Zn/MTZn is isomorphic to GI := (PI(M

T ),+I).

Proof.
We have to prove that there exists a bijective group homomorphism between the
quotient group Zn/MTZn and GI . Therefore, we define the function

h : Zn/MTZn → GI

[d′] 7→M−T [d′] ∩ [0, 1)n.
(6.42)

As mentioned before, the setM−T [d′] is equivalent to {h ∈ Rn : h ≡M−Td′ mod I}.
As a result it holds

|M−T [d′] ∩ [0, 1)n| = 1. (6.43)

Consequently, for arbitrary elements [d′1], [d
′
2] ∈ Zn/MTZn and yi ∈ GI , i ∈ {1, 2, 3},

we have

h([d′1]) +I h([d
′
2]) =M−T [d′1] ∩ [0, 1)n +I M

−T [d′2] ∩ [0, 1)n = y1 +I y2

and

h([d′1] + [d′2]) = h([d′1 + d′2]) =M−T [d′1 + d′2] ∩ [0, 1)n = y3.

Since y1 + y2 ∈ M−T [d′1 + d′2], we deduce that y1 +I y2 ∈ M−T [d′1 + d′2] ∩ [0, 1)n.
Hence, it holds y1 +I y2 = y3.
Since |GI | = |Zn/MTZn| = m, it is sufficient to show the injectivity of h in order

to show the bijectivity of h. For this purpose, let [d′1], [d
′
2] ∈ Zn/MTZn such that

h([d′1]) = h([d′2]). By (6.43), this implies M−T [d′1] ∩ [0, 1)n = M−T [d′2] ∩ [0, 1)n = y
with y ∈ GI . Since equivalence classes are either equal or disjoint, we conclude that
[d′1] = [d′2] and our claim follows.

Moreover, we introduce the notion of a character of a group, see [56, Definition
3.1.1.].

Definition 6.2.8.
A character of a group (G, ∗) is a homomorphism from G into the multiplicative
group of nonzero complex numbers. That is, a character of G is a function χ : G→
C∗ that satisfies χ(a ∗ b) = χ(a)χ(b) for all a, b ∈ G. The group of characters of G

is denoted by Ĝ.

We will also need the following theorem which can be found in [56], see Theorem
3.2.1.
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Theorem 6.2.9.
Let G be a finite abelian group and let Ũ be a subgroup of G. Moreover, let χ ∈ Ĝ
and let Ĝ‹U be the subgroup of Ĝ formed by characters of G which are identically 1

on Ũ . Then it holds ∑
ũ∈‹U χ(ũ) =

®
|Ũ |, χ ∈ Ĝ‹U ,
0, otherwise.

An application of Theorem 6.2.9 yields the subsequent lemma.

Lemma 6.2.10.
Let U be a subgroup of GI and let ed, d ∈ R, be an exponential which is not constant
on 2πU . Then it holds ∑

u∈U

ed(2πu) = 0.

Proof.
Let us start by proving that

χd : GI → C∗

g 7→ ed(2πg)

defines a character. Therefore, we have to verify that χd(g1 +I g2) = χd(g1)χd(g2)
holds for arbitrary elements g1, g2 ∈ GI . Since d ∈ Zn and ⌊g1+g2⌋ ∈ Zn, we obtain

χd(g1 +I g2) = ed(2π(g1 + g2 − ⌊g1 + g2⌋))
= ed(2πg1) ed(2πg2) ed(−2π⌊g1 + g2⌋)
= ed(2πg1) ed(2πg2).

By Theorem 6.2.9 our claim follows.

As a last step of preparation we generalize Corollary 1 in Chapter II, §19, of [9].

Corollary 6.2.11.
Let (X,E ), (Y,F ) be two measurable spaces and let µ be a measure on (X,E ).
Moreover, let F : X → Y be a (E ,F )-measurable mapping and let φ : Y → C be
a F -measurable function. In addition, set F#µ(I) := µ(F−1(I)), I ∈ F . Then the
F#µ-integrability of φ entails the µ-integrability of φ ◦ F . In case of integrability,
we have ∫

X

φ(F (x)) dµ(x) =

∫
Y

φ(y) dF#µ(y).
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Proof.
In case φ : Y → R the claim follows by [9], see Corollary 1 in Chapter II, §19.
Hence, we split φ into real and imaginary parts to obtain∫

X

Re(φ(F (x))) dµ(x) =

∫
X

Re(φ)(F (x)) dµ(x) =

∫
Y

Re(φ)(y) dF#µ(y),

and

i

∫
X

Im(φ(F (x))) dµ(x) = i

∫
X

Im(φ)(F (x)) dµ(x) = i

∫
Y

Im(φ)(y) dF#µ(y).

Our proof is complete.

Based on the previous considerations, we are going to present a general method
to construct functions τ which fulfill (6.38).

Remark 6.2.12.
Let U be a subgroup ofGI . Then the disjoint cosets g+IU, g ∈ GI , form a partition of
GI . We let J ⊂ GI be a set of representatives of these distinct cosets. By partitioning
J into disjoint sets J = J0 ∪ J1 , we obtain the sets Ki :=

⋃
g∈Ji(g +I U), i = 0, 1,

which form a partition of GI .

Theorem 6.2.13.
Let S0(φ) ⊂ S1(η) and let φ and η be compactly supported. In addition, let B =
[φ̂, η̂]1. Furthermore, let U be a subgroup of GI and let d be an arbitrary element
of R for which ed is not constant on 2πU . Moreover, let K be any union of cosets in
GI of U which contains 0. Then the function wd,K defined by the Fourier transform

ŵd,K := eM−1dη̂
∏

[α]∈K\{0}

B(·+ 2πMTα)

is a compactly supported function of the space W0, if wd,K ∈ L2(Rn).

Proof.
Since the functions φ and η are compactly supported, we know that B = [η̂, φ̂]1
is a trigonometric polynomial. By [71, Lemma 12.7.], the product of two trigono-
metric polynomials is a trigonometric polynomial and consequently, the product∏

[α]∈K\{0}B(· + 2πMTα) is one as well. Therefore, wd,K is a well-defined L2(Rn)-
function. Moreover, supp ŵd,K = Rn and by applying the Paley-Wiener Theorem
1.2.10, we obtain that wd,K is compactly supported.
Now, Lemma 6.2.1 states that our claim follows if

τ̃ :=
∏

[α]∈K

B(·+ 2πMTα)

111



Construction of Wavelets

satisfies

∑
d̃∈RT

eM−1d(·+ 2πd̃)τ̃(·+ 2πd̃) = 0. (6.44)

To verify (6.44), we will use Corollary 6.2.11. To apply this corollary, we set (X,E ) =
(GI ,P(GI)), (Y,F ) = (Zn/MTZn,P(Zn/MTZn)) and F = h−1, see (6.42). In
addition, let µ be the counting measure. It follows that F#µ(I) = µ(F−1(I)), I ∈ F ,
is the counting measure as well. Finally, we define the function φ by

φ : Zn/MTZn → C
[d̃] 7→ eM−1d(·+ 2πd̃) τ̃(·+ 2πd̃).

Since τ̃ is a trigonometric polynomial, the composition φ ◦ F is µ-integrable. Now,
we apply Corollary 6.2.11 and use that eM−1d and τ̃ are 2πMTZn-periodic. We
obtain

∫
Y

φ(y) dF#µ(y) =
∑
d̃∈‹RT

eM−1d(·+ 2πd̃)τ̃(·+ 2πd̃)

=

∫
X

φ(F (x)) dµ(x)

=
∑
g∈GI

eM−1d(·+ 2πh−1(g)) τ̃(·+ 2πh−1(g)), (6.45)

where h−1g is a representative of the equivalence class [h−1g]. Next, we split up the
sum in (6.45) with the help of Remark 6.2.12. We get

∑
g∈GI

eM−1d(·+ 2πh−1(g)) τ̃(·+ 2πh−1(g))

=
∑
j∈J

∑
u∈U

eM−1d(·+ 2πh−1(j +I u)) τ̃(·+ 2πh−1(j +I u))

=
∑
j∈J

∑
u∈U

eM−1d(·+ 2πh−1(j) + 2πh−1(u)) τ̃(·+ 2πh−1(j) + 2πh−1(u))

=
∑
j∈J

∑
u∈U

eM−1d(·+ 2πMT j + 2πMTu) τ̃(·+ 2πMT j + 2πMTu).
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Moreover, for an arbitrary element MTu ∈ RT with u ∈ U we deduce

τ̃(·+ 2πMTu) =
∏
α∈K

B(·+ 2π(MTα +MTu))

=
∏
α∈K

B(·+ 2π(h−1(α +I u))

=
∏
α∈K

B(·+ 2π(h−1(α))

=
∏
α∈K

B(·+ 2πMTα).

We conclude∑
j∈J

∑
u∈U

eM−1d(·+ 2πMT j + 2πMTu) τ̃(·+ 2πMT j + 2πMTu)

=
∑
j∈J

eM−1d(·+ 2πMT j)τ̃(·+ 2πMT j)
∑
u∈U

eM−1d(2πM
Tu)

=
∑
j∈J

eM−1d(·+ 2πMT j)τ̃(·+ 2πMT j)
∑
u∈U

ed(2πu).

By assumption, ed is not constant on 2πU and the assertion follows from Lemma
6.2.10.

Theorem 6.2.13 yields the following corollary.

Corollary 6.2.14.
Let S0(φ) ⊂ S1(η). Moreover, let φ and η be compactly supported. In addition, let
B = [φ̂, η̂]1 and G′

I := GI \ {0} . If | detM | ∈ 2N and if ed(2πα) = −1 for a d ∈
R′ and α ∈ G′

I , then the function w with Fourier transform

ŵ = eM−1dB(·+ 2πMTα)η̂

is a compactly supported function of the space W0 in case w ∈ L2(Rn).

Proof.
This corollary describes a special case of Theorem 6.2.13. Let U be a group of
order 2, i.e., U = {0, α}. Since e0(2πu) = ed(2π0) = 1 and ed(2πu) = −1 for
d ∈ R′, u ∈ U ′ = {α}, the function ed is not constant on 2πU . By Lagrange’s
Theorem, for gi ∈ GI with i = 1, . . . ,m/2− 1,m = | detM |, we obtain

GI = U ∪ g1 +I U ∪ . . . ∪ gm/2−1 +I U.

We observe that the subgroup U itself is a coset. Hence, we can set K = U = {0, α}.
Consequently, we obtain

ŵ = eM−1dB(·+ 2πMTα)η̂.

Finally, Theorem 6.2.13 yields our claim.
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Example 6.2.15.
With the help of Corollary 6.2.14, we extend Example 6.2.3. Let GI =

{
0, 1

2

}
. Since

detM = 2 and ed(2πα) = −1 for d = 1 and α = 1
2
, we obtain

ŵ = e1/2B(·+ 2π)η̂ =

Å
1

4
e1/2 −

1

4
e1

ã
η̂.

We observe that
(
1
4
e1/2 − 1

4
e1
)
= τ0. Hence, w is a function in L2(Rn) and provides

an L2-stable basis for W0.

The construction method we presented can also be applied to find L2-stable bases
for the spaces Wj, j ∈ Z. This can be done analogously to Section 6.1.2 where we

considered the case S1(η) ⊂ S2(p). Let ‹B := [p̂, η̂]2 and B∗ := [’pM−1 , ‘ηM−1 ]1. We

remark that 1/‹Bd0 ∈ L∞(C̃1) implies 1/B∗
d0

∈ L∞(C̃0).
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Chapter 7

Construction of Multiwavelets

In this chapter we generalize the construction procedure from Section 6.1 in order
to obtain compactly supported multiwavelets. More precisely, we construct multi-
wavelet bases in case the spaces Sj have finitely many generators and we construct
compactly supported multiwavelet bases in case each space Sj has two or three
generators.

7.1 Compactly Supported Multiwavelet Bases

Throughout this chapter we assume that every space Sj, j ∈ Z, has finitely many
generators and that the generator sets may vary from space to space. In particular,
we assume that

S0(Φ) ⊂ S1(H),

where Φ = {φ1, . . . , φN} and H = {η1, . . . , ηN} are generator sets consisting of
L2(Rn)-functions. Then the wavelet space W0 is defined as the orthogonal comple-
ment of S0(Φ) in S1(H). In Section 7.1.1 we derive a basis for W0 in case N < ∞
and we derive a compactly supported basis for W0 in case N ≤ 3. In contrast to
Section 6.1.1, it is no longer sufficient for the generators to satisfy

supp φ̂i = supp η̂i = Rn for i = 1, . . . N,

in order to obtain a basis. Indeed, we have to assume two conditions. The first
condition is that the integer translates of

Φ̃ := {φi(·+M−1d), i = 1, . . . , N, d ∈ R}
provide a basis for S1(H). Secondly, we assume that“H = ΓΦ̂

holds, where Γ is a quadratic matrix which is non-singular almost everywhere and
has 2πMTZn-periodic entries. In Section 7.1.2 we demonstrate that all results con-
cerning the space W0 can be applied to the wavelet spaces Wj = Sj+1 ⊖ Sj, j ∈ Z,
after a suitable dilation. Afterwards, we illustrate this construction procedure in
Section 7.1.3 by extending the example in Section 6.1.3 from N = 1 to N = 2.
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Construction of Multiwavelets

7.1.1 Compactly Supported Multiwavelet Bases for W0

We follow the same construction idea as in Section 6.1.1. We show that under certain
assumptions the integer translates of Φ̃ = {φi(· + M−1d), i = 1, . . . , N, d ∈ R}
provide a basis for S1(H). Projecting the (m − 1)N functions φi(· +M−1d) with
i = 1, . . . , N, d ∈ R

′
, onto the orthogonal complement of S0(Φ) in S1(H) yields a

basis for W0. This basis then can be modified such that it is compactly supported
provided that N ≤ 3.

First, we verify the equality of the spaces S1(H) and S0(Φ̃). We recall that we
assume 0 ∈ R.

Theorem 7.1.1.
Let S0(Φ) ⊂ S1(H) and let Φ̃ = {φi(· +M−1d), i = 1, . . . , N, d ∈ R}. Moreover,

assume that “H = ΓΦ̂ where Γ is a matrix with 2πMTZn-periodic entries which is
non-singular almost everywhere. Then it holds

S1(H) = S1(Φ) = S0(Φ̃).

Proof.
Let us start with the proof of S1(Φ) = S0(Φ̃). The space S1(Φ) is generated by the
M−1Zn-shifts of φi, i = 1, . . . , N . Besides that, we have

M−1Zn =
⋃
d∈R

(M−1d+ Zn).

This yields

S1(Φ) = S0

Å
(φi(·+M−1d))i=1,...,N,

d∈R

ã
= S0(Φ̃).

With Proposition 4.2.3 we obtain S1(H) = S1(Φ) and the proof is complete.

Next, we are going to show that the determinant of the Gramian matrix G(Φ̃)

is strictly positive almost everywhere in order to deduce that Φ̃ provides a basis
for S0(Φ̃). In preparation for this, we derive a representation of the entries of the

Gramian matrix G(Φ̃).

Lemma 7.1.2.
Let Φ̃ = {φi(· +M−1d), i = 1, . . . , N, d ∈ R}. For all d, d∗ ∈ R the corresponding

entry of the Gramian matrix G(Φ̃) is given by

[eM−1d φ̂i, eM−1d∗ φ̂k] = Qd−d∗([φ̂i, φ̂k]1).
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7.1 Compactly Supported Multiwavelet Bases

Proof.
By inserting the definition of the bracket product and (6.1), we obtain

[eM−1d φ̂i, eM−1d∗ φ̂k]

=
∑
α∈Zn

eM−1d(·+ 2πα)e−M−1d∗(·+ 2πα) φ̂i(·+ 2πα)φ̂k(·+ 2πα)

=
∑
α∈Zn

eM−1(d−d∗)(·+ 2πα) φ̂i(·+ 2πα)φ̂k(·+ 2πα)

=
∑
d̃∈RT

∑
α∈Zn

eM−1(d−d∗)(·+ 2π(d̃+MTα))φ̂i(·+ 2π(d̃+MTα))φ̂k(·+ 2π(d̃+MTα)).

Since the exponential function is 2π-periodic, we deduce∑
d̃∈RT

∑
α∈Zn

eM−1(d−d∗)(·+ 2π(d̃+MTα)) φ̂i(·+ 2π(d̃+MTα))φ̂k(·+ 2π(d̃+MTα))

=
∑
d̃∈RT

∑
α∈Zn

eM−1(d−d∗)(·+ 2πd̃) φ̂i(·+ 2πd̃+ 2πMTα)φ̂k(·+ 2πd̃+ 2πMTα)

=
∑
d̃∈RT

eM−1(d−d∗)(·+ 2πd̃)
∑
α∈Zn

φ̂i(·+ 2πd̃+ 2πMTα)φ̂k(·+ 2πd̃+ 2πMTα)

=
∑
d̃∈RT

eM−1(d−d∗)(·+ 2πd̃) [φ̂i, φ̂k]1(·+ 2πd̃)

= Qd−d∗([φ̂i, φ̂k]1).

Since the determinant is the product of the eigenvalues, it is our aim to ensure
that each eigenvalue of the Gramian matrix G(Φ̃) is strictly positive. Although we
do not know the eigenvalues of the Gramian matrix for N > 1, we can derive a lower
bound for each of them by applying the following lemma, see [11, Theorem 3.2.8].

Lemma 7.1.3.
Let A,B ∈ Cn×n be Hermitian matrices with eigenvalues

α1 ≥ . . . ≥ αr and β1 ≥ . . . ≥ βr.

Then the eigenvalues γi of C = A+B satisfy

αi + βr ≤ γi ≤ αi + β1, i = 1, .., r.

Theorem 7.1.4.
The set Φ̃ = {φi(· +M−1d), i = 1, . . . , N, d ∈ R} provides a basis for S0(Φ̃), if for

almost every x ∈ C̃0 it holds

0 < min
i=1,...,N

min
d∈R

[φ̂i, φ̂i]1(x+ 2πd)−
N−1∑
r=1

N∑
s=r+1

max
d◦∈R

|[φ̂r, φ̂s]1(x+ 2πd◦)|. (7.1)
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Proof.
First, we partition the Gramian matrix into N2 blocks of size m ×m and then we
split it up into a sum of 1 + (N2 −N)/2 matrices. We obtain

G(Φ̃) =


A1 B1 B2 . . . BN−1

B∗
1 A2 BN . . . BN+N−3

B∗
2 B∗

N

. . . . . .
...

...
...

. . . . . . B(N2−N)/2

B∗
N−1 B∗

N+N−3 . . . B∗
(N2−N)/2 AN

 = Ã+

(N2−N)/2∑
i=1

‹Bi,

where

Ã :=


A1 0 0 0 0
0 A2 0 0 0

0 0
. . . 0 0

0 0 0
. . . 0

0 0 0 0 AN


and

‹B1 :=


0 B1 0 . . . 0
B∗

1 0 0 . . . 0

0 0
. . . . . . 0

...
...

. . . . . .
...

0 0 . . . 0 0

 ,
...

...

‹B(N2−N)/2 :=



0 0 0 . . . 0

0 0
. . . . . .

...

0
. . . . . . 0 0

...
. . . 0 0 B(N2−N)/2

0 . . . 0 B∗
(N2−N)/2 0

 .

The matrices Ã and ‹Bi, i = 1, . . . , (N2 +N)/2, are Hermitian matrices. Therefore,
we can apply Lemma 7.1.3 to derive a lower bound for the eigenvalues of the Gramian
matrix. Beforehand, we have to determine the eigenvalues of the matrices Ã and‹Bi. Due to Lemma 7.1.2, we can show analogue to the proof of Lemma 6.1.8 that
the eigenvalues of Ã are given by¶

m[φ̂i, φ̂i]1(x+ 2πd◦), i = 1, . . . , N, x ∈ C̃0, d
◦ ∈ R

©
.
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7.1 Compactly Supported Multiwavelet Bases

The eigenvalues of ‹Bi can be determined by computing the singular values σi of Bi

and B∗
i . Let v be a right singular vector and u a left singular vector of ‹B1. Then it

holds

‹B1

â
v
u
0
...
0

ì
=


0 B1 0 . . . 0
B∗

1 0 0 . . . 0

0 0
. . . . . . 0

...
...

. . . . . .
...

0 0 . . . 0 0



â
v
u
0
...
0

ì
= σ1

â
v
u
0
...
0

ì
and

‹B1

â
−v
u
0
...
0

ì
=


0 B1 0 . . . 0
B∗

1 0 0 . . . 0

0 0
. . . . . . 0

...
...

. . . . . .
...

0 0 . . . 0 0



â
−v
u
0
...
0

ì
= −σ1

â
−v
u
0
...
0

ì
.

Since B1 and B∗
1 are square matrices with the same eigenvectors ad◦ defined in

Lemma 6.1.8, we obtain

B∗
1B1ad◦ = m2|[φ̂1, φ̂2]1(·+ 2πd◦)|2ad◦ , d◦ ∈ R.

Consequently, the eigenvalues are

{0,m|[φ̂1, φ̂2]1(·+ 2πd◦)|,−m|[φ̂1, φ̂2]1(·+ 2πd◦)|, d◦ ∈ R}. (7.2)

With the same procedure we obtain the eigenvalues of ‹Bi, i = 2, . . . , (N2 − N)/2.
The only difference to (7.2) is that the generators in the bracket product vary from
matrix to matrix. In a next step we sort the eigenvalues of every matrix, i.e., we let
the eigenvalues of the matrix Ã denoted by {αℓ}ℓ=1,...,Nm and the eigenvalues of the

matrices ‹Bi denoted by {βi,ℓ}ℓ=1,...,Nm satisfy

α1 ≥ · · · ≥ αNm and βi,1 ≥ · · · ≥ βi,Nm.

Next, we successively apply Lemma 7.1.3. Let {γ1,ℓ}ℓ=1,...,Nm be the eigenvalues of

Ã+ ‹B1. Then we have

αℓ + β1,Nm ≤ γ1,ℓ, ℓ = 1, . . . , Nm.

Next, let {γ2,ℓ}ℓ=1,...,Nm be the eigenvalues of Ã+ ‹B1 + ‹B2. Then we obtain

γ1,ℓ + β2,Nm ≤ γ2,ℓ, ℓ = 1, . . . , Nm,
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Construction of Multiwavelets

and thus,

αℓ + β1,Nm + β2,Nm ≤ γ2,ℓ, ℓ = 1, . . . , Nm.

We repeat this procedure until we have a lower bound for the eigenvalues of G(Φ̃) =

Ã+
∑(N2−N)/2

i=1
‹Bi:

αℓ +

(N2−N)/2∑
i=1

βi,Nm ≤ γ(N2−N)/2,ℓ, ℓ = 1, . . . , Nm.

Inserting the calculated eigenvalues yields (7.1).

Generator sets which satisfy (7.1) necessarily fulfill

supp[φ̂i, φ̂i]1 = Rn for i = 1, . . . , N. (7.3)

Condition (7.3) is not a completely new assumption. For a single generator supp φ̂ =
Rn was a sufficient condition to obtain a basis for S0(ϕ) and (7.3) is a direct conse-
quence of this assumption. Moreover, having a closer look at the proof of Corollary
6.1.9, one can observe that the weaker assumption (7.3) would have led to the same
result.
For N = 2 and N = 3, we can also derive an alternative to (7.1).

Theorem 7.1.5.

i) Let N = 2 and let supp[φ̂i, φ̂i]1 = Rn for i = 1, 2. If for all d◦ ∈ R it holds

0 < [φ̂2, φ̂2]1(·+ 2πd◦)− |[φ̂1, φ̂2]1(·+ 2πd◦)|2

[φ̂1, φ̂1]1(·+ 2πd◦)
(7.4)

almost everywhere, then the generator set Φ̃ = {φi(·+M−1d), i = 1, 2, d ∈ R}
provides a basis for S0(Φ̃).

ii) Let N = 3 and suppose that supp[φ̂i, φ̂i]1 = Rn for i = 1, 2, 3. Moreover, for
d◦ ∈ R let

A1,d◦ := m[φ̂3, φ̂3]1(·+ 2πd◦)−m
|[φ̂1, φ̂3]1(·+ 2πd◦)|2

[φ̂1, φ̂1]1(·+ 2πd◦)
,

A2,d◦ :=

∣∣∣∣m[φ̂3, φ̂2]1(·+ 2πd◦)−m
[φ̂3, φ̂1]1(·+ 2πd◦)[φ̂1, φ̂2]1(·+ 2πd◦)

[φ̂1, φ̂1]1(·+ 2πd◦)

∣∣∣∣2 ,
and

A3,d◦ :=

Å
m[φ̂2, φ̂2]1(·+ 2πd◦)−m

|[φ̂1, φ̂2]1(·+ 2πd◦)|2

[φ̂1, φ̂1]1(·+ 2πd◦)

ã−1

.
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If (7.4) is satisfied and if

0 < A1,d◦ − A2,d◦ A3,d◦ (7.5)

almost everywhere for all d◦ ∈ R, then Φ̃ = {φi(· +M−1d), i = 1, 2, 3, d ∈ R}
provides a basis for S0(Φ̃).

Proof.
Let us start with part i). As in the proof of Theorem 7.1.4 we split up the Gramian
matrix into four blocks of size m×m, i.e.,

G(Φ̃) =

ï
A1 B
B∗ A2

ò
.

The determinant of A1 is given by

det(A1) = C
∏
d◦∈R

[φ̂1, φ̂1]1(·+ 2πd◦)

and it is greater than zero almost everywhere, see Corollary 6.1.9. Consequently, A1

is invertible and the determinant of the Gramian matrix can be calculated as

det(G(Φ̃)) = det(A1) det(A2 −B∗A−1
1 B).

Our aim is to prove that detG(Φ̃) > 0 almost everywhere. We observe that this is
the case if and only if det(A2−B∗A−1

1 B) > 0 almost everywhere or equivalently if the
product of the eigenvalues of A2 −B∗A−1

1 B is greater than zero almost everywhere.
Since the matrices A2, B

∗, A−1
1 and B have the same eigenvectors, the eigenvalues

of A2 −B∗A−1
1 B are given by

m[φ̂2, φ̂2]1(·+ 2πd◦)−m
|[φ̂1, φ̂2]1(·+ 2πd◦)|2

[φ̂1, φ̂1]1(·+ 2πd◦)
, d◦ ∈ R.

By (7.4), our claim follows.
Part ii) can be proven analogously. Here, we work with a Gramian matrix of size

3m× 3m which is partitioned into four blocks, i.e.,

G(Φ̃) =

 A1 B1 B2

B∗
1 A2 B3

B∗
2 B∗

3 A3

 .
We already know, that A1 is invertible. Therefore, we can calculate the determinant
of the Gramian matrix as

detG(Φ̃) = det(A1) det

ÅÅ
A2 B3

B∗
3 A3

ã
−

Å
B∗

1

B∗
2

ã
A−1

1

(
B1 B2

)ã
= det(A1) det

ÅÅ
A2 B3

B∗
3 A3

ã
−

Å
B∗

1A
−1
1 B1 B∗

1A
−1
1 B2

B∗
2A

−1
1 B1 B∗

2A
−1
1 B2

ãã
= det(A1) det

Å
A2 −B∗

1A
−1
1 B1 B3 −B∗

1A
−1
1 B2

B∗
3 −B∗

2A
−1
1 B1 A3 −B∗

2A
−1
1 B2

ã
.
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Since we assume that (7.4) is satisfied, A2 − B∗
1A

−1
1 B1 is invertible. Hence, we can

apply the formula for the determinant of block matrices again and we obtain

det(A1) det

Å
A2 −B∗

1A
−1
1 B1 B3 −B∗

1A
−1
1 B2

B∗
3 −B∗

2A
−1
1 B1 A3 −B∗

2A
−1
1 B2

ã
= det(A1) det(A2 −B∗

1A
−1
1 B1)

· det((A3 −B∗
2A

−1
1 B2)− (B∗

3 −B∗
2A

−1
1 B1)(A2 −B∗

1A
−1
1 B1)

−1(B3 −B∗
1A

−1
1 B2))

= det(A1) det(A2 −B∗
1A

−1
1 B1)

· det((A3 −B∗
2A

−1
1 B2)− (B∗

3 −B∗
2A

−1
1 B1)(A2 −B∗

1A
−1
1 B1)

−1(B∗
3 −B∗

2A
−1
1 B1)

∗).

By our assumptions, each factor is greater than zero almost everywhere and the
proof is complete.

In case of finitely many generators, the method of proof above is also applicable.
However, an increase of N results in significantly more computations. Moreover, we
observe that this method does not involve any kind of estimate. Hence, (7.4) and
(7.5) are sharp estimates that the generators have to satisfy in order to guarantee
the strict positivity almost everywhere of the determinant of the Gramian matrix.
In contrast, Theorem 7.1.4 gives us a general estimate for finitely many generators
which is not sharp. Depending on the choice of generators, this inaccuracy can cause
that (7.4) and (7.5) are satisfied while (7.1) is not. Let us give an example.

Example 7.1.6.
Let N = 2 and let M = 2. Moreover, let S0(Φ2),Φ2 = {φ1, φ2}, with

φ1(x) := xχ[0,0.5)(x), φ2(x) := x2χ[0,0.5)(x).

In view of Theorem 7.1.4 and Theorem 7.1.5, we want to check if the set

Φ̃2 = {φ1(·+
1

2
d), φ2(·+

1

2
d), d = 0, 1}

provides a basis for the space S0(Φ̃2). Formula (6.15) yields

[φ̂1, φ̂1]1(ξ) =
∑
d∈R

∑
k∈Z

1

| detMT |
〈
φ1(·+M−1d), φ1(· − k)

〉
L2(R)

e−(M−1d+k)(ξ)

=
1

2

1∑
d=0

∑
k∈Z

⟨φ1(·+ d/2), φ1(· − k)⟩L2(R) e−(d/2+k)(ξ)

=
1

2
⟨φ1, φ1⟩L2(R) .

Hence, we obtain

1

2
⟨φ1, φ1⟩L2(R) =

1

2

∫
[0,0.5)

x2 dx =
1

48
.
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Moreover, we calculate

[φ̂2, φ̂2]1(ξ) =
1

2
⟨φ2, φ2⟩L2(R) =

1

2

∫
[0,0.5)

x4 dx =
1

320
,

[φ̂1, φ̂2]1(ξ) =
1

2
⟨φ1, φ2⟩L2(R) =

1

2

∫
[0,0.5)

x3 dx =
1

128
.

Inserting these values into (7.1) and (7.4) yields

1

320
− 1

128
= − 3

640
= −0.0046875 ̸> 0

and

1

320
− 48

Å
1

128

ã2

=
1

5120
= 0.0001953125 > 0.

Since one of the estimates is fulfilled, Φ̃2 provides a basis for S0(Φ̃2).

In a next step, we add the generator φ3(x) := x3χ[0,0.5)(x) to the generator set Φ̃2

and we want to verify that

Φ̃3 = {φi(·+
1

2
d), i = 1, 2, 3, d = 0, 1}

provides a basis for the space S0(Φ̃3). In order to calculate (7.1) and (7.5), we have
to determine the values of the following bracket products first:

[φ̂3, φ̂3]1(ξ) =
1

2
⟨φ3, φ3⟩ =

1

2

∫
[0,0.5)

x6 dx =
1

1792
,

[φ̂1, φ̂3]1(ξ) =
1

2
⟨φ1, φ3⟩ =

1

2

∫
[0,0.5)

x4 dx =
1

320
,

[φ̂2, φ̂3]1(ξ) =
1

2
⟨φ1, φ3⟩ =

1

2

∫
[0,0.5)

x5 dx =
1

768
.

Hence, formula (7.1) yields

1

1792
− 1

128
− 1

320
− 1

768
= − 157

13440
≈ −0.01168155 ̸> 0.

123



Construction of Multiwavelets

In preparation for (7.5), we calculate

A1,d◦ =
2

1792
− 96

Å
1

320

ã2

=
1

5600
,

A2,d◦ =

Å
2

768
− 96

320 · 128

ã2

=
1

14 745 600
,

A3,d◦ =

Å
2

320
− 96

16384

ã−1

= 2560.

Hence, we obtain

A1,d◦ − A2,d◦A3,d◦ =
1

5600
− 2560

14 745 600
=

1

201 600
≈ 4.96 · 10−6 > 0.

Moreover, we have already verified that (7.4) is satisfied. Hence, part ii) of Theorem

7.1.5 yields that Φ̃3 provides a basis.

For finitely many generators condition (7.1) is a sufficient but not necessary con-

dition for Φ̃ to provide a basis for S0(Φ̃). Therefore, we are going to assume in the

following that Φ̃ possesses the basis property.
Next, we want to combine Theorem 1.1.3 and Theorem 7.1.1. Since W0 is the

orthogonal complement of S0 in S1 and since S1 can be generated by the functions
(φi,d := φi(·+M−1d))i=1,...,N

d∈R′
, the set

W := (wi,d := φi,d − PS0(Φ)φi,d)i=1,...,N
d∈R′

, R′ = R \ {0},

is a subset of W0. Moreover, we will show that this set provides a basis for W0.
Besides that Theorem 5.9 gives us an explicit representation of the functions ŵi,d if
Φ is a minimal generator set for S0(Φ). We obtain

ŵi,d = φ̂i,d − Ÿ�PS0(Φ)φi,d = φ̂i,d −
N∑
j=1

[φ̂i,d, ĝj]/[ĝj, ĝj]ĝj, (7.6)

with [φ̂i,d, ĝj][ĝj, ĝj]
−1 = 0 if [ĝj, ĝj] = 0. For a definition of the functions ĝj see

(5.7).

Theorem 7.1.7.
Let S0(Φ) ⊂ S1(H) with Φ = {φ1, . . . , φN} and H = {η1, . . . , ηN}. Moreover,

assume that “H = ΓΦ̂ where Γ is a matrix with 2πMTZn-periodic entries which is
non-singular almost everywhere. In addition, let Φ̃ possess the basis property and
let

W = (wi,d)i=1,...,N,
d∈R′
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7.1 Compactly Supported Multiwavelet Bases

be defined as in (7.6). Then the space W0 = S1 ⊖ S0 is a finitely generated shift-
invariant space and W is a generating set for W0, that is, W0 = S0(W ). Moreover,
the set W provides a basis for W0.

Proof.
First, we prove that S0(Φ)⊕ S0(W ) = S1(H) which means that {Φ} ∪W generates
S1(H) and therefore, W0 = S0(W ). For every function f ∈ S1(H) there exists a
sequence (fℓ)ℓ∈N with fℓ → f in the L2-sense. Due to Theorem 7.1.1, every element
of this sequence has a representation of the form

fℓ =
∑
k∈Zn

N∑
i=1

∑
d∈R

aℓ,k,i,dφi,d(· − k)

=
∑
k∈Zn

N∑
i=1

aℓ,k,i,0φi(· − k) +
∑
k∈Zn

N∑
i=1

∑
d∈R′

aℓ,k,i,dφi,d(· − k) (7.7)

=
∑
k∈Zn

N∑
i=1

aℓ,k,i,0φi(· − k) +
∑
k∈Zn

N∑
i=1

∑
d∈R′

aℓ,k,i,dPS0(Φ)φi,d(· − k) (7.8)

+
∑
k∈Zn

N∑
i=1

∑
d∈R′

aℓ,k,i,d
(
φi,d(· − k)− PS0(Φ)φi,d(· − k)

)
. (7.9)

Since (7.8) lies in the space S0(Φ) and (7.9) lies in the space S0(W ), we have shown
that S1(H) ⊂ S0(Φ) ⊕ S0(W ). Conversely, for every function g ∈ S0(Φ) ⊕ S0(W )
there exists a sequence (gℓ)ℓ∈N in the space S0(Φ) ⊕ S0(W ) with gℓ → g in the
L2-sense. Every element of this sequence can be represented by

gℓ =
∑
k∈Zn

N∑
i=1

bℓ,k,i,0φi(· − k) +
∑
k∈Zn

N∑
i=1

∑
d∈R′

bℓ,k,i,d
(
φi,d − PS0(Φ)φi,d

)
(· − k)

=
∑
k∈Zn

N∑
i=1

bℓ,k,i,0φi(· − k)−
∑
k∈Zn

N∑
i=1

∑
d∈R′

bℓ,k,i,dPS0(Φ)φi,d(· − k) (7.10)

+
∑
k∈Zn

N∑
i=1

∑
d∈R′

bℓ,k,i,dφi,d(· − k). (7.11)

Comparing (7.7) with (7.10) and (7.11) yields S0(Φ)⊕ S0(W ) ⊂ S1(H).
It remains to prove that W provides a basis for S0(W ). We assume that the set

Φ̃ := (φi(·+M−1d))i=1,...,N,d∈R provides a basis for S0(Φ̃). In addition, we know by

Theorem 7.1.1 that in the case at hand it holds S1(H) = S0(Φ̃). We have already
shown that Φ∗ := {Φ} ∪ W generates the space S1(H) and because of the equality

of the spaces S0(Φ̃) as well. Moreover, the sets Φ̃ and Φ∗ have the same number of
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Construction of Multiwavelets

elements. In this case part ii) of Corollary 4.2.8 states that Φ∗ provides a basis for

S0(Φ̃). As a consequence, we have detG(Φ∗) ̸= 0 almost everywhere. Due to the
orthogonality between W0 = S0(W ) and S0(Φ), the Gramian matrix has the form

G(Φ∗) =

Å
G(W ) 0

0 G(Φ)

ã
.

Since G(Φ∗) is a block diagonal matrix, we obtain

detG(Φ∗) = detG(W ) detG(Φ).

Hence, detG(W ) ̸= 0 almost everywhere and consequently, W provides a basis for
W0.

Remark 7.1.8.
Within the proof of the theorem above, we have shown that if Φ̃ possesses the basis
property, then the generator set Φ is minimal.

In the following we are going to modify the mother wavelets obtained from Theo-
rem 7.1.7 such that they provide a compactly supported basis for W0. Beforehand,
we derive an alternative representation for the bracket product [ĝℓ, ĝℓ], 1 < ℓ ≤ N .

Lemma 7.1.9.
Let Φ = {φ1, . . . , φN} ⊂ L2(Rn) be a finite minimal set of generators for the space
S0(Φ). Moreover, let the functions gi, i = 1, . . . N be defined as in (5.7). Then for
1 < ℓ ≤ N it holds

[ĝℓ, ĝℓ] = [φ̂ℓ, φ̂ℓ]−
ℓ−1∑
k=1

|[φ̂ℓ, ĝk]|2

[ĝk, ĝk]
. (7.12)

Proof.
Due to (5.9), we can deduce

[ĝℓ, ĝℓ]

= [φ̂ℓ, φ̂ℓ]− [φ̂ℓ,
ℓ−1∑
r=1

[φ̂ℓ, ĝr]

[ĝr, ĝr]
ĝr]− [

ℓ−1∑
k=1

[φ̂ℓ, ĝk]

[ĝk, ĝk]
ĝk, φ̂ℓ] + [

ℓ−1∑
k=1

[φ̂ℓ, ĝk]

[ĝk, ĝk]
ĝk,

ℓ−1∑
r=1

[φ̂ℓ, ĝr]

[ĝr, ĝr]
ĝr]

= [φ̂ℓ, φ̂ℓ]−
ℓ−1∑
r=1

|[φ̂ℓ, ĝr]|2

[ĝr, ĝr]
−

ℓ−1∑
k=1

|[φ̂ℓ, ĝk]|2

[ĝk, ĝk]
+

ℓ−1∑
k=1

|[φ̂ℓ, ĝk]|2

[ĝk, ĝk]

= [φ̂ℓ, φ̂ℓ]−
ℓ−1∑
r=1

|[φ̂ℓ, ĝr]|2

[ĝr, ĝr]
.
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7.1 Compactly Supported Multiwavelet Bases

Theorem 7.1.10.
Let S0(Φ) ⊂ S1(H) with Φ = {φ1, . . . φN}, H = {η1, . . . , ηN} and 1 ≤ N ≤ 3.
Moreover, let Φ be a generator set consisting of compactly supported functions and
let Φ̃ possess the basis property. In addition, assume that “H = ΓΦ̂ where Γ is
a matrix with 2πMTZn-periodic entries which is non-singular almost everywhere.
Then the (m− 1)N functions

Wc :=

(((
φ̂i,d −

N∑
k=1

[φ̂i,d, ĝk]

[ĝk, ĝk]
ĝk

)
N∏
r=1

[ĝr, ĝr]
2N−r

)∨)
i=1,..,N,
d∈R′

(7.13)

provide a compactly supported basis for the space W0.

Proof.
If N = 1 the claim follows from Theorem 6.1.11.
Let N = 2. With the help of (7.6), we obtain Ŵc by multiplying Ŵ with the

2π-periodic diagonal matrix Γ∗ :=
∏2

r=1[ĝr, ĝr]
22−r

I = [ĝ1, ĝ1]
2[ĝ2, ĝ2]I, that is, Ŵc =

Γ∗Ŵ . From (5.7) and (7.12) we know that the diagonal entries of Γ∗ are

[ĝ1, ĝ1]
2[ĝ2, ĝ2] = [φ̂1, φ̂1]

2

Å
[φ̂2, φ̂2]−

|[φ̂2, φ̂1]|2

[φ̂1, φ̂1]

ã
= [φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2. (7.14)

Since our generators φ1 and φ2 are compactly supported, (7.14) is a trigonometric
polynomial as a finite linear combination of trigonometric polynomials, see part iii)
of Lemma 1.3.7. Hence, the matrix Γ∗ consists only of bounded entries and thus, we

deduce Ŵc ⊂ L2(Rn). By Theorem 7.1.7, W provides a basis for W0 = S0(W ). By
taking part i) of Corollary 4.2.8 into consideration, it remains to prove that Γ∗ is non-
singular almost everywhere in order to deduce that Wc provides a basis forW0 as well.
We have already shown that (7.14) is a trigonometric polynomial. Trigonometric
polynomials are analytic functions and the zeros of analytic functions are isolated.
Consequently, the entries of the diagonal matrix Γ∗ are non-zero almost everywhere
which yields that the matrix is non-singular almost everywhere. To complete the
proof for N = 2 we have to show that the functions in Wc are compactly supported.
Therefore, we have to evaluateÅ

φ̂i,d −
[φ̂i,d, ĝ1]

[ĝ1, ĝ1]
ĝ1 −

[φ̂i,d, ĝ2]

[ĝ2, ĝ2]
ĝ2

ã
[ĝ1, ĝ1]

2[ĝ2, ĝ2]. (7.15)

For the first component of the functions in Wc we obtain

[ĝ1, ĝ1]
2[ĝ2, ĝ2]φ̂i,d = ([φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2)φ̂i,d.
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For the second component we calculate

−[φ̂i,d, ĝ1][ĝ1, ĝ1][ĝ2, ĝ2]ĝ1 = −([φ̂1, φ̂1][φ̂2, φ̂2]− |[φ̂2, φ̂1]|2)[φ̂i,d, φ̂1]φ̂1.

Finally, for the third component we observe

−[φ̂i,d, ĝ2][ĝ1, ĝ1]
2ĝ2 = −[φ̂i,d, φ̂2 −

[φ̂2, φ̂1]

[φ̂1, φ̂1]
φ̂1][φ̂1, φ̂1]

2

Å
φ̂2 −

[φ̂2, φ̂1]

[φ̂1, φ̂1]
φ̂1

ã
= −

Å
[φ̂i,d, φ̂2]−

[φ̂1, φ̂2]

[φ̂1, φ̂1]
[φ̂i,d, φ̂1]

ã
[φ̂1, φ̂1]

2

Å
φ̂2 −

[φ̂2, φ̂1]

[φ̂1, φ̂1]
φ̂1

ã
= −([φ̂i,d, φ̂2][φ̂1, φ̂1]− [φ̂1, φ̂2][φ̂i,d, φ̂1])(φ̂2[φ̂1, φ̂1]− [φ̂2, φ̂1]φ̂1).

Since we assume that φ1 and φ2 are compactly supported, the functions φi,d, i = 1, 2,
d ∈ R′, are compactly supported as well. Now, we consider the first component
[φ̂1, φ̂1]

2[φ̂2, φ̂2]φ̂i,d. The bracket products [φ̂1, φ̂1] and [φ̂2, φ̂2] are trigonometric
polynomials. As a consequence, the inverse Fourier transform of [φ̂1, φ̂1]

2[φ̂2, φ̂2]φ̂i,d
is a finite linear combination of the shifts of φi,d and compactly supported because
φi,d is. The same reasoning shows that the inverse Fourier transform of all other
components of the functions in Wc is compactly supported. Consequently, the func-
tions in Wc are compactly supported.
For N = 3 the proof is analogue. First, we calculate

3∏
r=1

[ĝr, ĝr]
23−r

= [ĝ1, ĝ1]
4[ĝ2, ĝ2]

2[ĝ3, ĝ3]

=
(
[ĝ1, ĝ1]

2[ĝ2, ĝ2]
) (

[ĝ1, ĝ1]
2[ĝ2, ĝ2][ĝ3, ĝ3]

)
=
(
[φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2
) (

[ĝ1, ĝ1]
2[ĝ2, ĝ2][ĝ3, ĝ3]

)
.

Moreover, we have

[ĝ3, ĝ3] = [φ̂3, φ̂3]−
|[φ̂3, φ̂1]|2

[φ̂1, φ̂1]
− |[φ̂3, ĝ2]|2

[ĝ2, ĝ2]
,

where

|[φ̂3, ĝ2]|2

=

Å
|[φ̂2, φ̂3]|2−

[φ̂3, φ̂2][φ̂2, φ̂1][φ̂1, φ̂3]

[φ̂1, φ̂1]
− [φ̂1, φ̂2][φ̂3, φ̂1][φ̂2, φ̂3]

[φ̂1, φ̂1]
+
|[φ̂1, φ̂2]|2|[φ̂1, φ̂3]|2

[φ̂1, φ̂1]2

ã
.

Consequently, we obtain

[ĝ1, ĝ1]
2[ĝ2, ĝ2][ĝ3, ĝ3] =

(
[φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2
)
[φ̂3, φ̂3]

−
(
[φ̂1, φ̂1][φ̂2, φ̂2]− |[φ̂2, φ̂1]|2

)
|[φ̂3, φ̂1]|2

− [φ̂1, φ̂1]
2|[φ̂2, φ̂3]|2 + [φ̂3, φ̂2][φ̂2, φ̂1][φ̂1, φ̂3][φ̂1, φ̂1]

+ [φ̂1, φ̂2][φ̂3, φ̂1][φ̂2, φ̂3][φ̂1, φ̂1]− |[φ̂1, φ̂2]|2|[φ̂1, φ̂3]|2.
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7.1 Compactly Supported Multiwavelet Bases

Hence, we verified that
∏3

r=1[ĝr, ĝr]
23−r

is a finite linear combination of trigonometric
polynomials. Following the proof above for N = 2, we have to prove thatÅ

φ̂i,d −
[φ̂i,d, ĝ1]

[ĝ1, ĝ1]
ĝ1 −

[φ̂i,d, ĝ2]

[ĝ2, ĝ2]
ĝ2 −

[φ̂i,d, ĝ3]

[ĝ3, ĝ3]
ĝ3

ã
[ĝ1, ĝ1]

4[ĝ2, ĝ2]
2[ĝ3, ĝ3]

has the same structure as (7.15). Based on our previous investigations, we observe
that this is true forÅ

φ̂i,d −
[φ̂i,d, ĝ1]

[ĝ1, ĝ1]
ĝ1 −

[φ̂i,d, ĝ2]

[ĝ2, ĝ2]
ĝ2

ã
[ĝ1, ĝ1]

4[ĝ2, ĝ2]
2[ĝ3, ĝ3]

=

ÅÅ
φ̂i,d −

[φ̂i,d, ĝ1]

[ĝ1, ĝ1]
ĝ1 −

[φ̂i,d, ĝ2]

[ĝ2, ĝ2]
ĝ2

ã
[ĝ1, ĝ1]

2[ĝ2, ĝ2]

ã (
[ĝ1, ĝ1]

2[ĝ2, ĝ2][ĝ3, ĝ3]
)
.

It remains to prove that

[φ̂i,d, ĝ3]

[ĝ3, ĝ3]
ĝ3[ĝ1, ĝ1]

4[ĝ2, ĝ2]
2[ĝ3, ĝ3]

has the required structure. We calculate

[φ̂i,d, ĝ3]

[ĝ3, ĝ3]
ĝ3[ĝ1, ĝ1]

4[ĝ2, ĝ2]
2[ĝ3, ĝ3]

= [φ̂i,d, ĝ3]ĝ3[ĝ1, ĝ1]
4[ĝ2, ĝ2]

2

=

ï
φ̂i,d, φ̂3 −

[φ̂3, φ̂1]

[φ̂1, φ̂1]
φ̂1 −

[φ̂3, ĝ2]

[ĝ2, ĝ2]
ĝ2

òÅ
φ̂3 −

[φ̂3, φ̂1]

[φ̂1, φ̂1]
φ̂1 −

[φ̂3, ĝ2]

[ĝ2, ĝ2]
ĝ2

ã
[ĝ1, ĝ1]

4[ĝ2, ĝ2]
2.

Let us investigate the expression

B1 :=

ï
φ̂i,d, φ̂3 −

[φ̂3, φ̂1]

[φ̂1, φ̂1]
φ̂1 −

[φ̂3, ĝ2]

[ĝ2, ĝ2]
ĝ2

ò
[ĝ1, ĝ1]

2[ĝ2, ĝ2].

We observe

B1 = [φ̂i,d, φ̂3]
(
[φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2
)

− [φ̂i,d, φ̂1][φ̂1, φ̂3]
(
[φ̂1, φ̂1][φ̂2, φ̂2]− |[φ̂2, φ̂1]|2

)
− [φ̂i,d, ĝ2][ĝ2, φ̂3][φ̂1, φ̂1]

2.

This can be rewritten as

B1 = [φ̂i,d, φ̂3]
(
[φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2
)

− [φ̂i,d, φ̂1][φ̂1, φ̂3]
(
[φ̂1, φ̂1][φ̂2, φ̂2]− |[φ̂2, φ̂1]|2

)
− [φ̂i,d, φ̂2 −

[φ̂2, φ̂1]

[φ̂1, φ̂1]
φ̂1][φ̂2 −

[φ̂2, φ̂1]

[φ̂1, φ̂1]
φ̂1, φ̂3][φ̂1, φ̂1]

2.
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Therefore, we obtain

B1 = [φ̂i,d, φ̂3]
(
[φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2
)

− [φ̂i,d, φ̂1][φ̂1, φ̂3]
(
[φ̂1, φ̂1][φ̂2, φ̂2]− |[φ̂2, φ̂1]|2

)
− ([φ̂i,d, φ̂2][φ̂1, φ̂1]− [φ̂i,d, φ̂1][φ̂1, φ̂2]) ([φ̂2, φ̂3][φ̂1, φ̂1]− [φ̂2, φ̂1][φ̂1, φ̂3]) .

Furthermore, let us have a closer look at

B2 :=

Å
φ̂3 −

[φ̂3, φ̂1]

[φ̂1, φ̂1]
φ̂1 −

[φ̂3, ĝ2]

[ĝ2, ĝ2]
ĝ2

ã
[ĝ1, ĝ1]

2[ĝ2, ĝ2].

This can be written as

B2 = φ̂3

(
[φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2
)

− [φ̂3, φ̂1]
(
[φ̂1, φ̂1][φ̂2, φ̂2]− |[φ̂2, φ̂1]|2

)
φ̂1

− [φ̂3, ĝ2]ĝ2[φ̂1, φ̂1]
2.

Finally, we can write B2 as

B2 =
(
[φ̂1, φ̂1]

2[φ̂2, φ̂2]− [φ̂1, φ̂1]|[φ̂2, φ̂1]|2
)
φ̂3

− [φ̂3, φ̂1]
(
[φ̂1, φ̂1][φ̂2, φ̂2]− |[φ̂2, φ̂1]|2

)
φ̂1

− [φ̂3, φ̂2][φ̂1, φ̂1]
2φ̂2 + [φ̂3, φ̂2][φ̂2, φ̂1][φ̂1, φ̂1]φ̂1

+ [φ̂1, φ̂2][φ̂3, φ̂1][φ̂1, φ̂1]φ̂2 − [φ̂1, φ̂2][φ̂3, φ̂1][φ̂2, φ̂1]φ̂1.

Then the claim follows with the same arguments as above.

Furthermore, we can ensure the existence of a compactly supported and orthog-
onal basis for W0 in our setting.

Theorem 7.1.11.
Let S0(Φ) ⊂ S1(H) with Φ = {φ1, . . . , φN}, H = {η1, . . . , ηN}, and let Φ̃ possess

the basis property. In addition, assume that “H = ΓΦ̂ where Γ is a matrix with
2πMTZn-periodic entries which is non-singular almost everywhere.

i) There exists a set of mother wavelets Ψ forW0 which provides an orthonormal
basis for W0.

ii) If N ≤ 3 and if the functions φi, i = 1, . . . , N, are compactly supported, then
there exists a subset Ψ = (ψi)i=1,...,(m−1)N of compactly supported functions
from W0 which provides a basis for W0. Moreover, there exists a set Ψ∗ :=
(ψ∗

r)r=1,...,(m−1)N consisting of compactly supported functions which provides a
basis for W0 and fulfills

S0(ψ
∗
r) ⊥ S0(ψ

∗
r′), r ̸= r′.
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Proof.
Let us prove part i). The conditions of Theorem 7.1.7 are satisfied and therefore,
W is a basis for W0. Our claim then follows from part i) of Corollary 4.2.9.
For the proof of part ii) we need Theorem 7.1.10 which tells us that we can choose

the set of compactly supported functions Wc for Ψ in order to obain a compactly
supported basis for W0. By part ii) of Corollary 4.2.9 the proof is complete.

Finally, we deduce under which assumptions the set

{wi(·+M−1d), i = 1, . . . , N, d ∈ R′} ⊂ S1(H)

is in W0 and provides a basis for W0.

Theorem 7.1.12.
Let S0(Φ) ⊂ S1(H) with Φ = {φ1, . . . , φN} and H = {η1, . . . , ηN}. Moreover, let

Φ be a generator set consisting of compactly supported functions and let Φ̃ possess
the basis property. In addition, assume that “H = ΓΦ̂ where Γ is a matrix with
2πMTZn-periodic entries which is non-singular almost everywhere.

i) If the functions wi, i = 1, . . . , N, are in S1(H) and compactly supported, then
the functions wi(·+M−1d) with i = 1, . . . , N, d ∈ R′, are in W0 if and only if
the bracket products [ŵi, φ̂j]1 are 2π-periodic for all i, j = 1, . . . , N.

ii) Assume that the integer translates of {wi(· + M−1d), i = 1, . . . , N, d ∈ R}
provide a compactly supported basis for S1(H) and let [ŵi, φ̂j]1 be 2π-periodic
for i, j = 1, . . . , N . Then the integer translates of

{wi(· +M−1d), i = 1, . . . , N, d ∈ R′}

provide a basis for W0.

Proof.
We begin with the proof of part i). The functions wi(· +M−1d) are in W0 if and
only if〈

wi(·+M−1d), φj(· − k)
〉
L2(Rn)

= 0, for all i, j = 1, . . . , N, d ∈ R′, k ∈ Zn.

By the proof of the analogue result for one generator, see Theorem 6.1.13, we can di-
rectly deduce that this is equivalent to the 2π-periodicity of [ŵi, φ̂j]1, i, j = 1, . . . , N.
In part ii) we assume that the integer translates of

W∗ := (wi(·+M−1d))i=1,...,N,
d∈R

provide a basis for S1(H). This is equivalent to detG(W∗) ̸= 0 almost every-

where on C̃0. Thus, the determinant of the Gramian matrix corresponding to
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W∗ \ {w1, . . . , wN} is non-zero almost everywhere. Since we assume that [ŵi, φ̂j]1 is
2π-periodic, we can apply i) and consequently, W∗ \ {w1, . . . , wN} is in W0. Hence,
we obtain (m−1)N functions whose Gramian matrix is nonzero almost everywhere.
Since Theorem 7.1.7 ensures that W0 contains a basis of cardinality (m − 1)N , we
conclude by part iii) of Corollary 4.2.8 that W∗ \ {w1, . . . , wN} is a basis for W0.

7.1.2 Compactly Supported Multiwavelet Basis for Wj

Our procedure for constructing a basis of W0 can be applied to all spaces Wj after a
suitable dilation. We illustrate this for the case j = 1. This choice allows us to clearly
observe how the role of S1(H) is changing when compared with our investigations
in the previous chapters.
Let H = {η1, . . . , ηN} and P := {p1, . . . , pN} such that

S1(H) ⊂ S2(P ). (7.16)

We assume further that

P̂ = Γ̃ “H, (7.17)

where Γ̃ is a matrix with 2π(MT )2Zn-periodic entries which is non-singular almost
everywhere. Moreover, let‹H := {ηi(·+M−2d), i = 1, . . . , N, d ∈ R} (7.18)

provide a basis for the space S1(‹H). It is crucial that all the properties (7.16), (7.17)
and (7.18) of the generator sets P and H are preserved under dilation.

Theorem 7.1.13.
Let HM−1 := {η1,M−1 , . . . , ηN,M−1} and PM−1 := {p1,M−1 , . . . , pN,M−1} with

ηi,M−1 := ηi(M
−1·), pi,M−1 := pi(M

−1·), i = 1, . . . , N.

Under the assumptions (7.16), (7.17) and (7.18) we have

S0(HM−1) ⊂ S1(PM−1) (7.19)

and ’PM−1 = Γ ’HM−1 .

Here, Γ is a matrix with 2πMTZn-periodic entries which is non-singular almost
everywhere. Moreover,‹HM−1 := {ηi,M−1(·+M−1d), i = 1, . . . , N, d ∈ R}

provides a basis for the space S0(‹HM−1).
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Proof.
First, we prove (7.19). Let f be a function in S0(HM−1). Then there exists a sequence
(fℓ)ℓ∈N ∈ S0(HM−1) such that fℓ → f in the L2-sense. The definition of the space
S0(HM−1) yields for all elements of the sequence the representation

fℓ =
N∑
i=1

∑
k∈Zn

aℓ,i,k ηi,M−1(· − k) =
N∑
i=1

∑
k∈Zn

aℓ,i,k ηi(M
−1 · −M−1k). (7.20)

Recall that the bijective, linear and continuous operator J̃ from Section 6.1.2 is
given by

J̃ : L2(Rn) → L2(Rn)

f 7→ f(M−1·).

We apply J̃−1 to (7.20) and obtain

J̃−1fℓ =
N∑
i=1

∑
k∈Zn

aℓ,i,k ηi(· −M−1k).

Consequently, J̃−1fℓ ∈ S1(H) and by (7.16), we have J̃−1fℓ ∈ S2(P ). Hence, for

every function J̃−1fℓ, ℓ ∈ N, there exists a sequence of functions (gr)r∈N ∈ S2(P )

such that gr → J̃−1fℓ in the L2-sense. The function gr can be represented as

gr =
N∑
i=1

∑
k∈Zn

br,i,k pi(· −M−2k) =
N∑
i=1

∑
k∈Zn

br,i,k pi,M−1(M · −M−1k).

Applying the operator J̃ yields

J̃gr =
N∑
i=1

∑
k∈Zn

br,i,k pi,M−1(· −M−1k).

Hence, it holds (J̃gr)r∈N ∈ S1(PM−1). From the L2-closure of the space S1(PM−1) it
follows that fℓ ∈ S1(PM−1). Consequently, (fℓ)ℓ∈N ∈ S1(PM−1) and due to the same
argument, we obtain f ∈ S1(PM−1).
Besides that it holds

P̂ (MT ·) = Γ̃(MT ·) “H(MT ·).

By (1.4), this is equivalent to’PM−1 = Γ̃(MT ·) ’HM−1 = Γ ’HM−1 ,
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where Γ := Γ̃(MT ·) has 2πMTZn-periodic entries. By assumption, the matrix Γ̃
is non-singular almost everywhere. Hence, the matrix Γ is non-singular almost
everywhere as well.
Finally, we have to prove that ‹HM−1 provides a basis for S0(‹HM−1). Let f ∈ S1(‹H).

Then there exits a sequence (fℓ)ℓ∈N ∈ S1(‹H) such that fℓ → f in the L2-sense. By

assumption, ‹H provides a basis for S1(‹H). Hence, every function fℓ has a unique
representation

fℓ =
N∑
i=1

∑
d∈R

∑
k∈Zn

aℓ,i,d,kηi(·+M−2d−M−1k).

Applying the operator J̃ yields

J̃fℓ =
N∑
i=1

∑
d∈R

∑
k∈Zn

aℓ,i,d,kηi(M
−1 ·+M−2d−M−1k)

=
N∑
i=1

∑
d∈R

∑
k∈Zn

aℓ,i,d,kηi,M−1(·+M−1d− k). (7.21)

Since J̃ is bijective, the representation (7.21) is unique as well and the proof is
complete.

Now, we can apply our construction procedure from Section 7.1.1 to find a wavelet
basis for

W̃0 := S1(PM−1)⊖ S0(HM−1).

By (7.6), the set of functions

W̃ := (w̃i,d := ηi,M−1,d − PS0(HM−1 )ηi,M−1,d)i=1,...,N,
d∈R′

, R′ = R \ {0},

with ηi,M−1,d := ηi,M−1(· +M−1d) is a possible candidate for a wavelet basis. Ac-
cording to Remark 7.1.8, HM−1 is minimal and thus, Theorem 5.9 provides us with

an explicit representation of the functions “‹wi,d. We obtain“‹wi,d = ◊�ηi,M−1,d − ¤�PS0(HM−1 )ηi,M−1,d = ◊�ηi,M−1,d −
N∑
j=1

[◊�ηi,M−1,d, ĝj]

[ĝj, ĝj]
ĝj

with g1 = η1,M−1 and [◊�ηi,M−1,d, ĝj][ĝj, ĝj]
−1 = 0 if [ĝj, ĝj] = 0.

Let w̃i,d,M := w̃i,d(M ·). With the same arguments as in the proofs of Theorem
7.1.13 and Corollary 4.2.8 and the fact that dilation preserves orthogonality, we
obtain that

W̃M := (w̃i,d,M)i=1,...,N,
d∈R′
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provides a wavelet basis for the space

W1 = S1(W̃M) = S2(P )⊖ S1(H).

In case W̃ is an L2-stable basis for W̃0 = S0(W̃ ), the same holds true for W̃M con-

cerning the space W1 = S1(W̃M), see proof of part iv) of Corollary 4.2.8. Moreover,
compact support is preserved under dilation, see (1.4). Thus, Theorem 7.1.10 can
be applied whenever the functions in H are compactly supported.

7.1.3 Example: Exponential Box Splines

In the past sections we presented a way to construct a compactly supported mul-
tiwavelet basis for the space L2(Rn). In this section we want to illustrate this
construction process. In particular, we present an application for Theorem 7.1.10
by extending the example presented in Section 6.1.3 from N = 1 generator to N = 2
generators.
As in Section 6.1.3 we choose the symmetric dilation matrix

M :=

Å
1 1
1 −1

ã
and the directions

xγ1 :=

Å
1
0

ã
, xγ2 :=M

Å
1
0

ã
=

Å
1
1

ã
with cardinality p ∈ N \ {0} each. Furthermore, we set

λj = (λj,γ1 , λj,γ2), λj−1 = (λj−1,γ1 , λj−1,γ2) = (λj,γ2/2, λj,γ1).

Then the exponential box spline corresponding to these directions is defined by

Ĉλj ,p(ξ) :=

Å
eλj,γ1−iξ·x

γ1 − 1

λj,γ1 − iξ · xγ1

ãp Å
eλj,γ2−iξ·x

γ2 − 1

λj,γ2 − iξ · xγ2

ãp
, j ∈ Z, p ∈ N \ {0},

and satisfies the equation

Ĉλj,p(M
jξ) = Aλj ,λj−1,p(M

j−1ξ)Ĉλj−1,p(M
j−1ξ),

where Aλj ,λj−1,p is a 2π-periodic trigonometric polynomial given by

Aλj ,λj−1,p(ξ) :=

Å
1

2

eλj,γ2−iMξ·xγ2 − 1

eλj−1,γ1
−iξ·xγ1 − 1

ãp
.
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Again, we fix the values for λ0 by setting

λ∗1 = λ0,γ1 , λ∗2 = λ0,γ2 .

Hence, the values for λj are defined as

λj = (λj,γ1 , λj,γ2) =

®
(2j/2λ∗1, 2

j/2λ∗2), j ∈ 2Z,
(2(j−1)/2λ∗2, 2

(j+1)/2λ∗1), j ∈ 2Z+ 1.

Based on this knowledge, we define the generators Φj := {φj1, φ
j
2} for the spaces

Sj, j ∈ Z, as

φ̂j1 :=
1

mj
Ĉλ−j ,p(M

−j·), φ̂j2 :=
1

mj
Ĉλ−j ,p+1(M

−j·). (7.22)

Then we obtain Ç
φ̂j1
φ̂j2

å
= Γ

Ç
φ̂j+1
1

φ̂j+1
2

å
, (7.23)

where Γ is the 2π(MT )j+1Z2-periodic matrix given by

Γ :=

Å
mAλ−j ,λ−j−1,p(M

−j−1·) 0
0 mAλ−j ,λ−j−1,p+1(M

−j−1·)

ã
.

It is important for our construction procedure with two generators that the matrix Γ
is non-singular almost everywhere and that Γ−1 has 2π(MT )j+1Z2-periodic entries.
This is the case if and only if

Aλ−j ,λ−j−1,p(ξ) =
1

2p

Ä
eλ−j,γ2

/2−iξ1 + 1
äp

̸= 0 almost everywhere.

An equivalent condition is given by

eλ−j,γ2
/2−iξ1 ̸= −1 almost everywhere. (7.24)

To ensure (7.24), we set λ∗1 = 0 and λ∗2 ∈ R \ {0}. In addition, our non-stationary
refinement equation (7.23) ensures that the corresponding spaces are nested and due
the compact support of the generators, we have

⋃
j Sj = L2(R2), see Theorem 4.2.12.

Finally, we verify that our generator sets possess the basis property which implies
that the generator sets Φj of the spaces Sj are minimal for j ∈ Z, see Remark 7.1.8.

Lemma 7.1.14.
Let φj1 and φj2 be defined as in (7.22). Then the set

Φ̃j := {φ̂ji (·+M−(j+1)d), i = 1, 2, d ∈ R}

provides a basis for Sj(Φ̃j).
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Proof.
Suppose that Φ̃j does not provide a basis for Sj(Φ̃j). Then there exists a nontrivial
representation of 0 given by∑
d∈R

∑
k∈Z2

ck φ
j
1(x+M−(j+1)d−M−jk)−

∑
d∈R

∑
ℓ∈Z2

dℓ φ
j
2(x+M−(j+1)d−M−jℓ) = 0.

Applying the Fourier transform yields

cs(z)φ̂
j
1(ξ) = ds(z)φ̂

j
2(ξ), (7.25)

where cs(z) and ds(z) are the corresponding symbols, see Chapter 2. Next, we insert
the definition of φ̂ji , i = 1, 2, into (7.25). We obtain

cs(z) = ds(z)

Ç
eλ−j,γ1

−iM−jξ·xγ1 − 1

λ−j,γ1 − iM−jξ · xγ1

åÇ
eλ−j,γ2

−iM−jξ·xγ2 − 1

λ−j,γ2 − iM−jξ · xγ2

å
.

In case j ∈ 2Z, we have M−j = 2−j/2I. Consequently, we deduce

cs(z) = ds(z)

Ç
eλ−j,γ1

−i2−j/2ξ1 − 1

λ−j,γ1 − i2−j/2ξ1

åÇ
eλ−j,γ2

−i2−j/2(ξ1+ξ2) − 1

λ−j,γ2 − i2−j/2(ξ1 + ξ2)

å
. (7.26)

In case j ∈ 2N+ 1, the matrix M−j equals 2(−j+1)/2M−1 and thus, we have

cs(z) = ds(z)

Ç
eλ−j,γ1

−i2(−j−1)/2(ξ1+ξ2) − 1

λ−j,γ1 − i2(−j−1)/2(ξ1 + ξ2)

åÇ
eλ−j,γ2

−i2(−j+1)/2ξ1 − 1

λ−j,γ2 − i2(−j+1)/2ξ1

å
. (7.27)

In case j ∈ −2N− 1, the matrix M−j equals 2(j−1)/2M and hence, we obtain

cs(z) = ds(z)

Ç
eλ−j,γ1

−i2(j−1)/2(ξ1+ξ2) − 1

λ−j,γ1 − i2(j−1)/2(ξ1 + ξ2)

åÇ
eλ−j,γ2

−i2(j+1)/2ξ1 − 1

λ−j,γ2 − i2(j+1)/2ξ1

å
. (7.28)

Since it holds F(φji (x +M−j−1d −M−jk))(ξ) = eM−j−1d−M−jk(ξ)φ̂
j
i (ξ), each sym-

bol cs(z), ds(z) is 2π(MT )j+1Z2-periodic. We conclude that the left-hand sides in
(7.26), (7.27) and (7.28) are periodic in contrast to the right-hand sides. This is a
contradiction.

In summary, we have shown that every space Sj(Φj), j ∈ Z, has the required
properties such that we can apply our construction procedure. Hence, it causes no
problems if we focus on the spaces S0(Φ0) and S1(Φ1). Theorem 7.1.10 yields that

Wc := (([ĝ1, ĝ1]
2[ĝ2, ĝ2]φ̂

0
i,d − [φ̂0

i,d, ĝ1][ĝ1, ĝ1][ĝ2, ĝ2]ĝ1 − [φ̂0
i,d, ĝ2][ĝ1, ĝ1]

2ĝ2)
∨)i=1,2

d∈R′

provides a compactly supported basis for W0. Finally, we have to check whether the
intersection of the spaces Sj is trivial for λ

∗
1 = 0 and λ∗2 ∈ R \ {0}.
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Theorem 7.1.15.
Let {Sj}j∈Z be defined as in (7.22) with

M =

Å
1 1
1 −1

ã
and let (xγ)γ∈Γ consist of the vectors

xγ1 =

Å
1
0

ã
, xγ2 =

Å
1
1

ã
,

each appearing p times, p ∈ N \ {0}. In addition, set

λj =

®
(2j/2λ∗1, 2

j/2λ∗2), j ∈ 2Z,
(2(j−1)/2λ∗2, 2

(j+1)/2λ∗1), j ∈ 2Z+ 1.

Then Y =
⋂
j∈Z Sj is trivial if Reλ

∗
1 = 0 or Reλ∗2 = 0.

Proof.
Let f ∈ Y, f ̸= 0. It is sufficient to prove⋂

j∈2Z

Sj = {0}.

Therefore, we assume throughout this proof that j ∈ 2Z. Furthermore, we define
the function Gp by

Ĝp(ξ) :=

Å
1

λ∗1 − iξ · xγ1

ãp Å 1

λ∗2 − iξ · xγ2

ãp
, p ∈ N \ {0}, ξ ∈ R2.

Since f ∈ S−j, it can be written as a linear combination of the M jZ2-translates of
the generators φ−j

1 = Cλj ,p(M
−j·) and φ−j

2 = Cλj ,p+1(M
−j·). Next, we verify that

the quotient 2j(p−1)φ̂−j
1 /Ĝp is 2πM−jZ2-periodic. For (k1, k2)

T ∈ Z2 the nominator
has the form

2j(p−1)φ̂−j
1 (ξ + 2πM−jk)

= 2j(p−1)| − 2|j ‘Cλj ,p(M j(ξ + 2πM−jk))

=2pj/22pj/2
Ç

e2
j/2λ∗1−i(2j/2ξ1+2πk1) − 1

2j/2λ∗1 − i(2j/2ξ1 + 2πk1)

åpÇ
e2

j/2λ∗2−i(2j/2(ξ1+ξ2)+2π(k1+k2)) − 1

2j/2λ∗2 − i(2j/2(ξ1 + ξ2) + 2π(k1 + k2))

åp

and the denominator has the form

Ĝp(ξ + 2πM−jk)

=
Ä
λ∗1 − i(ξ1 + 2π2−j/2k1)

ä−p Ä
λ∗2 − i(ξ1 + ξ2 + 2π2−j/2(k1 + k2))

ä−p
.
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Consequently, we obtain

2j(p−1)φ̂−j
1 (ξ + 2πM−jk)

Ĝp(ξ + 2πM−jk)
=

Ä
e2

j/2λ∗1−i2j/2ξ1 − 1
äp Ä

e2
j/2λ∗2−i(2j/2(ξ1+ξ2)) − 1

äp
=

2j(p−1)| − 2|j ‘Cλj ,p(M jξ)

Ĝp(ξ)

=
2j(p−1)φ̂−j

1 (ξ)

Ĝp(ξ)
.

The same holds true for the quotient 2jpφ̂−j
2 /Ĝp+1. We observe that 2j(p−1)φ̂−j

1 /Ĝp

and 2jpφ̂−j
2 /Ĝp+1 are trigonometric polynomials. Since the spaces S−j are linear

subspaces we also know that g ∈ S−j if and only if g̃ := 2j(p−1)2jpg is in S−j. Then
(4.18) yields for every function g̃ ∈ S−j with j ∈ 2Z the representation

ˆ̃g = 2j(p−1)2jpĝ

= 2j(p−1)2jp
2∑
i=1

τ−ji φ̂−j
i

= 2j(p−1)2jpτ−j1

φ̂−j
1

Ĝp

Ĝp + 2j(p−1)2jpτ−j2

φ̂−j
2

Ĝp+1

Ĝp+1

= τ̃−j1 Ĝp + τ̃−j2 Ĝp+1,

where τ−j1 , τ−j2 and hence,

τ̃−j1 := (2j(p−1)2jpτ−j1 φ̂−j
1 )/Ĝp, τ̃−j2 := (2j(p−1)2jpτ−j2 φ̂−j

2 )/Ĝp+1

are 2π2−j/2Z2-periodic. Due to the nestedness of the spaces Sj, we further deduce
that

ˆ̃g = τ̃−j1 Ĝp + τ̃−j2 Ĝp+1 = Ĝp

Ä
τ̃−j1 + τ̃−j2 Ĝ1

ä
= Ĝp

Ä
τ̃−j+2
1 + τ−j+2

2 Ĝ1

ä
,

where Ĝp ̸= 0 almost everywhere. Hence, we obtainÄ
τ̃−j+2
1 − τ̃−j1

ä
+

Ä
τ̃−j+2
2 − τ̃−j2

ä
Ĝ1 = 0.

This is equivalent to Ä
τ̃−j+2
1 − τ̃−j1

ä
= −

Ä
τ̃−j+2
2 − τ̃−j2

ä
Ĝ1. (7.29)

The difference τ̃−j+2
i − τ̃−ji is 4π2−j/2Zn-periodic for i = 1, 2 and Ĝ1 is not periodic.

Consequently, the left hand side in (7.29) is periodic in contrast to the right hand
side. It follows that

τ̃−j+2
1 − τ̃−j1 = 0
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and

τ̃−j+2
2 − τ̃−j2 = 0.

This implies that all τ̃−j1 agree almost everywhere with one measurable function τ1
and that all τ̃−j2 agree almost everywhere with one measurable function τ2. Moreover,
we deduce that these two functions τ1, τ2 are invariant under all 2π2

−j/2Z2-shifts for
j = 2Z. We observe that 2−j/2Z2 contains the dyadic points which are dense in
R2. By Lemma 6.1.24 and the choice α = 2π, the functions τ1 and τ2 are constant
almost everywhere. Hence, the Fourier transform of every function in Y can be
represented by a linear combination of Ĝp and Ĝp+1. Therefore, Y is trivial if and
only if Gp /∈ Y and Gp+1 /∈ Y for p ∈ N \ {0}. With the 2π2−j/2Z2-periodicity of
τ̃−j1 and τ̃−j2 , Corollary 4.2.2 yields that Gp and Gp+1 are elements of S−j if and only
if Gp and Gp+1 are elements of L2(R2). Due to the proof of Theorem 6.1.25, we
already know that if Reλ∗1 = 0 or Reλ∗2 = 0, the function Gp, p ∈ N \ {0}, cannot
be a function in L2(R2). Hence, the proof is complete.

Theorem 7.1.15 yields that we have found a compactly supported basis for

L2(R2) =
∞⊕

j=−∞

Wj. (7.30)

If we consider the matrix

M :=

Å
0 1
2 0

ã
and the directions

xγ1 :=

Å
0
1

ã
, xγ2 :=

Å
1
0

ã
with cardinality p ∈ N\{0} each, we can use similar arguments to obtain a compactly
supported basis for (7.30). For more details we refer the reader to Section 6.1.3.
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Conclusion and Outlook

In this thesis we studied the construction of multivariate pre-wavelets and pre-
multiwavelets with focus on compact support and stability. Our investigations were
motivated by the questions:

(Q1) What are minimal requirements such that a construction of multivariate pre-
wavelet and pre-multiwavelet bases is still possible?

(Q2) How can we minimize the number of mother wavelets?

In this final chapter we discuss the results presented in this thesis as well as ideas
for future research.
Our main results concerning the construction of compactly supported pre-wavelets

and pre-multiwavelets can be found in Chapter 6 and Chapter 7. In Section 6.1 we
constructed a compactly supported basis for the space L2(Rn) under the assumption
that every space Sj, j ∈ Z, is generated by a single function, see Theorem 6.1.11.
This process consisted of four steps:

(S1) Proving that it holds S0(ϕ) = S1(η) with ϕ = {φ(·+M−1d), d ∈ R}.

(S2) Proving that the Gramian matrix G(ϕ) is regular in order to show that ϕ
provides a basis for S0(ϕ).

(S3) Finding an explicit representation of PS0(φ) in order to obtain an explicit rep-
resentation of the pre-wavelets.

(S4) Modifying the representation found in step (S3) such that we obtain compactly
supported pre-wavelets.

We faced the biggest challenge in step (S2) where we had to find an appropriate
generalization of the operator Qv from [30]. In Section 7.1 we generalized the pro-
cess above for finitely many generators. Again, we encountered one of the main
difficulties in step (S2). In case of a single generator, we computed the determinant
of the Gramian matrix by calculating the eigenvalues. It is not clear how we can
calculate the eigenvalues of the Gramian matrix G(Φ̃) with

Φ̃ = {φi(·+M−1d), d ∈ R, i = 1, . . . , N}
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of size mN ×mN,N > 1. Therefore, we derived in Theorem 7.1.4 a lower bound
for each eigenvalue which led to condition (7.1). This condition ensures that G(Φ̃)
is regular. An alternative approach is presented in Theorem 7.1.5 for N = 2 and
N = 3 generators. Here, we managed to calculate detG(Φ̃) and thus, we derived

two estimates which have to be fulfilled in order to ensure detG(Φ̃) > 0 almost ev-
erywhere. Depending on the choice of generators both approaches yield conditions
which may be difficult to check. Moreover, condition (7.1) is a sufficient but not nec-

essary condition. Thus, we added the assumption that Φ̃ provides a basis for S0(Φ̃).
Consequently, there is space for improvement. More sophisticated approaches to
calculate the exact eigenvalues of G(Φ̃) might lead to less restrictive assumptions.
Besides that step (S4) was far from being trivial. In Theorem 7.1.10 we obtained a
compactly supported basis in case each space Sj has one, two or three generators.
We reckon that formula (7.13) remains valid in case each space Sj has finitely many
generators. However, it is an open problem to verify this conjecture.

Our main results concerning the construction of stable pre-wavelets can be found
in Section 6.2. In particular, we were concerned with the construction of an L2-
stable basis for every space Wj, j ∈ Z, see Theorem 6.2.2. If the intersection of the
spaces {Sj}j∈Z is trivial, then the union of these bases yields a wavelet basis for the
space L2(Rn). This union is L2-stable as well if the stability constants can be chosen
independently of j. This is always possible if we consider a stationary multiresolution
analysis because dilation doesn’t change the stability constants. In contrast, this is
a non-trivial problem when working with a non-stationary multiresolution analysis.
Therefore, we suggest to make this a subject for future research. The work of C.
de Boor, R. A. DeVore and A. Ron could serve as a starting point. In [30] they
discussed stability with respect to exponential box splines with M = 2 and N = 1.
Their investigations are based on a wavelet ψ in W0 whose stability constants, i.e.,
the positive constants C1, C2 in C1(ψ) ≤ [ψ̂, ψ̂] ≤ C2(ψ) almost everywhere, are
related to the stability constants of the generators. Hence, the first step to adapt
their results to our setting would be to prove that [ŵd, ŵd] can be represented with
the help of the bracket products [η̂, η̂]1 and [φ̂, φ̂].

Taking the discussion above into consideration, we draw the following conclusions:

(Q1) It seems not possible to reduce the initial assumptions made in the definition
of a generalized multiresolution analysis any further.

(Q2) We managed to incorporate a general dilation matrix into our construction
procedures. Hence, we can minimize the number of required mother wavelets
by choosing a dilation matrix with determinant ±2.

Finally, let us discuss two more suggestions for future research. In the introduction
of this thesis we have stated that a function f ∈ L2(Rn) has a representation of the
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form

f(x) =
∑
i∈I

∑
j∈Z

∑
k∈Zn

ci,j,kψi,j,k(x).

One of the most important applications of such wavelet expansions is that they can
be used to characterize function spaces. Besov spaces which can be classified as
smoothness spaces are of special interest. It has been shown that weighted sequence
norms of the wavelet expansion coefficients {ci,j,k}i∈I,j∈Z,k∈Zn are equivalent to Besov
norms. Hence, these coefficients can be used to verify if a function f belongs to a
certain Besov space or not. For more information see, e.g., Section 2 in [24]. In
literature, we find characterizations of Besov spaces if N = 1 and ifM is a diagonal,
anisotropic dilation matrix or an arbitrary dilation matrix with real entries, see
[39, 38, 14]. An open problem is how Besov spaces can be characterized in case of
multigenerators and an arbitrary dilation matrix.
Another promising field of research are frames, see, e.g., [17]. If a sequence of

functions {fj}∞j=1 is a frame for a Hilbert spaceH, then span{fj}∞j=1 = H. In contrast
to wavelets, frames do not provide a basis for H. Hence, there is redundancy which
leads to more flexibility in the construction process. A special class of frames are
wavelet frames which can be constructed via frame multiresolution analysis. This
kind of multiresolution analysis is a natural generalization of the multiresolution
analysis defined in Definition 0.3. Indeed, the only difference to Definition 0.3 is
that the integer translates of the scaling function in condition (M5) are assumed
to provide a frame for S0. If there is more than one scaling function, we obtain
multiwavelet frames. Consequently, the following generalization of question (Q1)
arises naturally: What are minimal requirements such that a construction of wavelet
frames and multiwavelet frames is still possible? Up to the author’s knowledge, this
question has not been answered yet.
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[18] C. K. Chui, An Introduction to Wavelets, Academic Press, 1992.

[19] C. K. Chui and C. Li, A General Framework of Multivariate Wavelets with
Duals, Appl. Comput. Harmon. Anal. 1 (1994), no. 4, 368–390.

[20] C. K. Chui and J.-Z. Wang, A general framework of compactly supported splines
and wavelets, J. Approx. Theory 71 (1992), no. 3, 263–304.

[21] A. Cohen and I. Daubechies, Non-separable bidimensional wavelet bases, Rev.
Mat. Iberoam. 9 (1993), no. 1, 51–137.

[22] J. B. Conway, A Course in Functional Analysis, 2nd ed., Graduate Texts in
Mathematics, vol. 96, Springer, New York, 2007.

[23] S. Dahlke, W. Dahmen, I. Weinreich, and E. Schmitt, Multiresolution and
Wavelets on S2 and S3, Numer. Funct. Anal. Optim. 16 (1995), no. 1-2, 19–41.

[24] S. Dahlke and R. A. DeVore, Besov Regularity for Elliptic Boundary Value
Problems, Comm. Partial Differential Equations 22 (1997), no. 1-2, 1–16.

[25] S. Dahlke, V. Latour, and M. Neeb, Generalized Cardinal B-Splines: Stability,
Linear Independence, and Appropriate Scaling Matrices, Constr. Approx. 13
(1997), 29–56.

[26] W. Dahmen and C. A. Micchelli, Translates of Multivariate Splines, Linear
Algebra Appl. 52/53 (1983), 217–234.

[27] , On multivariate E-Splines, Adv. Math. 76 (1989), no. 1, 33–93.

[28] I. Daubechies, Orthonormal bases of wavelets with compact support, Comm.
Pure Appl. Math. 41 (1987), 909–996.

[29] , Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in
Applied Math., vol. 61, SIAM, Philadelphia, 1992.

146



Bibliography

[30] C. de Boor, R. A. DeVore, and A. Ron, On the Construction of Multivariate
(Pre)Wavelets, Constr. Approx. 9 (1993), 123–166.

[31] , Approximation from shift-invariant subspaces of L2(Rd), Trans. Amer.
Math. Soc. 341 (1994), no. 2, 787–806.

[32] , The Structure of Finitely Generated Shift-Invariant Spaces in L2(Rd),
J. Funct. Anal. 119 (1994), no. 1, 37–78.
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