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Abstract

Semiconductor compounds composed of elements from groups 13 and 15
(main groups III and V) of the periodic table, commonly referred to as III-V
semiconductors, are integral to modern (opto-)electronics. They play a crit-
ical role in applications such as solar cells, light-emitting diodes, optical
telecommunication, laser technology, photodetectors, and high-speed elec-
tronics. The performance and characteristics of these devices heavily rely
on the bandgap value and its direct or indirect character. Consequently,
tailoring bandgaps to specific applications is a major goal in semiconductor
research field. This holds immense importance in advancing the capabilities
and efficiency of semiconductor-based technologies.

This thesis focuses on two primary approaches for tuning bandgaps in
III-V semiconductors: varying composition and applying strain to the ma-
terials. To identify tailored materials for specific applications, it is crucial
to assess the dependence of bandgaps on composition and strain across a
broad range of materials. However, experimental methods face limitations
in exploring the vast chemical space of combinations of III- and V-elements
with variations in composition and strain due to challenges in synthesizing
new materials.

In this thesis, a density functional theory (DFT)-based first-principles
approach is established to accurately predict bandgaps in strained III-V
compound semiconductor materials. A robust scheme is developed within
the DFT framework to accurately model the application of various types of
strain on a material. The study reveals that not only do the bandgap val-
ues change under strain but also the nature of the bandgap can transition
from direct to indirect or vice versa. The established DFT protocol enables a
comprehensive mapping of bandgap properties with composition and strain
in multinary III-V semiconductors, facilitating efficient screening of promis-
ing materials for device designs. The investigated materials span binary III-V
systems such as GaAs, GaP, GaSb, InP, InAs, InSb, and Si, as well as various
ternary materials including GaAsP, GaAsN, GaPSb, GaAsSb, GaPBi, and
GaAsBi.
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Furthermore, as the composition-strain space expands, standalone DFT
approaches become computationally demanding for higher-order systems,
such as quaternary and pentanary III-V semiconductor materials. The num-
ber of DFT calculations required increases significantly in those systems
(∼millions). To address this, a hybrid approach is developed by integrating a
support vector machine-based supervised machine learning (ML) model with
DFT. This hybrid DFT-ML approach reduces the number of DFT calcula-
tions required by a factor of 1000 while maintaining high prediction accuracy.
The effectiveness of this approach is demonstrated through the mapping of
bandgaps in the III-V quaternary compound GaAsPSb across its entire com-
position range and a wide range of strain values, which would otherwise
be impractical with standalone DFT method. This hybrid approach enables
computationally efficient bandgap predictions across a diverse range of mate-
rials and strains, offering a rapid virtual screening capability for the discovery
of novel semiconductor materials in (opto-)electronic applications.
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Chapter 1

Introduction

1.1 Semiconductors in Technologies

Semiconductor compounds have emerged as pivotal materials in modern tech-
nologies. They serve as the backbone for a wide range of devices that have
become integral to our everyday life. These versatile materials form the foun-
dation for electronic circuits, photovoltaic cells, light-emitting diodes (LEDs),
and lasers, powering essential technologies such as computers, electric vehi-
cles, smartphones, and modern communication networks [1, 2].

One key characteristic that makes semiconductors unique is their ability
to transition between electrically insulating and conducting states through
suitable manipulation. This property plays a crucial role in the functioning of
transistors, which are the fundamental building blocks of integrated circuits
[3]. Transistors enable complex computational operations by rapidly switch-
ing their electrical resistance in response to an applied voltage, facilitating
the processing and storage of vast amounts of information.

Another significant application of semiconductors lies in the field of pho-
tovoltaics. Photovoltaic devices harness the power of sunlight by converting
solar energy into electricity through the photoelectric effect [4]. This effect
involves the excitation of electrons within the semiconductor, leading to the
generation of mobile charge carriers that can be extracted for electrical use.
Photovoltaic systems have gained tremendous attention due to their poten-
tial to provide clean, renewable energy, thereby reducing dependence on fossil
fuels and mitigating the environmental impact of energy production.

Semiconductors also play a crucial role in optoelectronics, where they ex-
hibit the ability to convert electrical energy into light. This property finds
practical applications in various devices such as LEDs, which have become
the most prevalent light source worldwide, illuminating our homes, offices,
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CHAPTER 1. INTRODUCTION

and public spaces [5]. Lasers, another significant application of semiconduc-
tors, have revolutionized modern optical telecommunication and information
technology. They enable high-speed data transmission over long distances,
facilitating the global connectivity that drives our modern world [6, 7].

To comprehend the underlying principles behind the exceptional perfor-
mance of semiconductors, it is essential to understand their bandstructure.
The bandstructure of semiconductors provides insight into the energy levels
available to electrons and the allowed transitions within the material, thereby
governing their electronic properties and behavior. This understanding is
crucial for optimizing the design and performance of semiconductor devices,
enabling the development of more efficient and advanced technologies.

1.2 Semiconductor Bandstructure and

Electronic Properties

Semiconductors exhibit fascinating electronic properties that stem from their
distinctive bandstructure. Similar to how atoms have infinitely many energy
levels, solids possess an infinite number of allowed bands. However, for prac-
tical purposes, most bands with high energies are disregarded. Likewise,
low-energy bands associated with core orbitals (e.g., 1s electrons) are usually
inert and ignored as they remain filled with electrons at all times.

The electronic bands of utmost importance for electronics and optoelec-
tronics are those near the Fermi level. In semiconductors, the Fermi level
is surrounded by a “bandgap”, an energy range where no electronic states
exist. The closest band above the bandgap is called the conduction band
(CB), and the closest band beneath the bandgap is called the valence band
(VB). Figure 1.1 depicts a schematic of the semiconductor bandstructure.

Based on the wavevectors (k) of the states surrounding the bandgap, it
is classified as either a “direct bandgap” or an “indirect bandgap”. The
bandgap is called a direct bandgap if the lowest-energy state in the CB,
known as the conduction band minimum (CBM), has the same k as the
highest-energy state of the VB, referred to as the valence band maximum
(VBM). If they are different, it is called an indirect bandgap.

The bandgap value in a semiconductor plays a crucial role in determining
its properties, such as conductivity and optical characteristics. It signifies the
energy required to excite an electron from the VB to the CB. When the VB
is completely filled with electrons and the CB is entirely empty, no available
states exist for electron movement, resulting in a lack of net charge carrier
mobility. Consequently, there is no flow of electric current.

2



1.2. SEMICONDUCTOR ELECTRONIC PROPERTIES

(a) (b)

Figure 1.1: Schematic representation of semiconductor bandstructure. The
red arrows indicate the electronic excitation in a) direct bandgap and b)
indirect bandgap semiconductors. The corresponding bandgap values are
represented by blue arrows.

However, when some electrons are excited from the VB to the CB, such as
through light absorption or the application of an external electric field, the
semiconductor becomes conductive. The excited CB electron (along with
the hole in the VB) can freely move within the crystal lattice, serving as
charge carriers for conducting electric current. Thus, by manipulating this
excitation process, the generation and flow of current can be controlled.

Alternatively, the excited electron in the CB can undergo radiative re-
combination with a hole in the VB, resulting in the emission of light. This
process forms the foundation of optoelectronics.

For materials with a direct bandgap, valence electrons can be directly
excited into the CB by photons with energies exceeding the bandgap. This
direct transition allows efficient radiative recombination, leading to strong
light emission. Consequently, direct bandgap materials find extensive use in
optoelectronic applications such as LEDs and semiconductor lasers.

On the other hand, indirect bandgap materials require momentum trans-
fer, often through interactions with phonons, to satisfy conservation laws
during electronic transitions. These indirect “forbidden” transitions have
lower probabilities and weaker intensities, making indirect bandgap mate-
rials less suitable for optoelectronic applications. However, they are still
crucial for electronic applications, such as in solar cells, where the advantage
of reduced radiative recombination probabilities can be effectively utilized.

3



CHAPTER 1. INTRODUCTION

Clearly, the behavior and capabilities of semiconductor devices are sig-
nificantly influenced by both the value and nature of the bandgap, whether
it is direct or indirect. Hence, the bandgap plays a critical role in shap-
ing the performance and properties of these devices. By manipulating the
bandgap, it is possible to design materials with desired electrical and optical
properties, thereby creating devices with diverse capabilities. Consequently,
tailoring the bandgap of materials to specific applications is a major goal in
the field of (opto-)electronics.

1.3 Material Selection

(a) (b)

Figure 1.2: Bandstructure of a) direct bandgap GaAs and b) indirect
bandgap Si. The red arrows indicate the electronic excitations. The bandgap
values are shown by blue arrows.

While silicon is widely known and utilized in electronics and photo-
voltaics, its indirect bandgap (Figure 1.2b) limits its suitability for opto-
electronic applications. One particular material class, the III-V compound
semiconductors, composed of elements from groups 13 and 15 of the periodic
table (commonly referred to as main groups III and V), offer great potential
in the field of optoelectronics [7, 8]. Isoelectronic with Si, these materials can
exhibit direct bandgap (Figure 1.2a), making them ideal for optoelectronics.

In this thesis, the focus is specifically on III-V materials of the type
AIIIBV with A = Ga, In and B = N, P, As, Sb, Bi. Among the binary III-V
materials, the investigation consists of GaAs, GaP, GaSb, InP, InAs, and
InSb. Additionally, Si is included for the purpose of specific comparisons.
These materials are not only of great interest for fundamental research but
also find applications in various fields such as microelectronics, solar cells,
laser technology, and LEDs [1, 2, 9].

4



1.4. BANDGAP ENGINEERING

In the category of ternary materials, GaAsP is explored, an experimen-
tally well-studied and promising candidate for LEDs, detectors, and Si-based
multi-junction solar cells [10–17]. Additionally, GaAsN, a promising laser-
active material [18–21]; GaPSb, a candidate for vertical cavity emitting sur-
face lasers [22–26]; GaAsSb, which has potential as a material for tandem
solar cells [27, 28]; GaPBi, a promising material for near-infrared photonic
device application on Si [29, 30]; and GaAsBi, another material being ex-
plored for near- and mid-infrared photonic devices [31–33] are investigated.

In the quaternary material class, the analysis on GaAsPSb is presented.
Although this specific quaternary compound has not been extensively stud-
ied, its binary and ternary subsystems (GaAs, GaP, GaSb, GaAsP, GaAsSb,
and GaPSb), as mentioned earlier, have been successfully synthesized and ap-
plied in various research fields. Moreover, the theoretical analysis provided
in this thesis offer valuable insights for future experimental exploration of
this material system.

1.4 Bandgap Engineering

This thesis explores two key strategies that have emerged to enhance the
performance and versatility of III-V semiconductor materials: compositional
bandgap engineering and strain engineering.

Compositional bandgap engineering involves modifying the chemical com-
position of semiconductors to tailor their bandgap values. By combining el-
ementary (binary) III-V materials, compound III-V semiconductors can be
designed with desired bandgap properties [34–41]. The extensive chemical
space of III-V semiconductors enables fine-tuning of the bandgap, offering di-
verse opportunities for various device applications within this material class.
Figure 1.3 illustrates the concept of modifying bandgap properties through
compositional engineering. The lines connecting the binary compounds in
this figure depict the changes in bandgap (value and nature) when they are
combined to create compound semiconductors.

On the other hand, strain engineering involves the deliberate application
of strain to semiconductors to modulate their bandgap properties. This can
be achieved through mechanical strain [42–48] or substrate-induced strain [5,
40, 49–51]. Mechanical strain refers to the application of external pressure
or stress on the semiconductor material, leading to a change in its bandgap.
An example of mechanical strain-induced alteration of photoresponse in Si-
nanomembrane (NM) photodetector is shown in Figure 1.4. Here, the pho-
tocurrent increases with an increase in the applied external pressure, indi-
cating a change in the optical bandgap value of Si under strain [45].

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Illustration demonstrating the variation of bandgap with com-
position in compound semiconductors, depicted in terms of lattice constant.
Solid and empty circles represent direct and indirect bandgaps, respectively.
Likewise, solid and dotted lines indicate direct and indirect bandgaps, repec-
tively. Bandgaps are calculated from Vegard’s law with bandgap bowing.
Figure adapted with permission from Reference [34].

Figure 1.4: The effect of strain on the bandgap nature of a Si-nanomembrane
photodetector. The first row presents a schematic of the experimental setup.
The second row displays photocurrent mapping images of a representative
letter ‘Y’ under increasing applied external pressure. With applied pressure,
strain induces a left-to-right increase in photocurrent in Si-NM pixels due to
changing Si optical bandgap under strain. Beyond a threshold strain, the Si
optical bandgap aligns with the incident 1310 nm light. Figure adapted from
Reference [45].
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1.4. BANDGAP ENGINEERING

(a) Before epitaxy (b) After epitaxy

Figure 1.5: Schematic representation of lattice parameter relaxation in epi-
taxy. The substrate and layer are shown in blue and red, respectively. The
layer lattice parameter (a) relaxes after epitaxy. The in-plane lattice pa-
rameters of the layer (a∥) adapt to the substrate lattice parameters (as). In
response, the out-of-plane lattice parameter (a⊥) relaxes to a smaller value.
Only the case where a < as is shown. In the case when a > as, a⊥ would
relax to a larger value, i.e., a⊥ > a. Figure adapted from Reference [57].

Substrate-induced strain occurs when a semiconductor material is grown
on a substrate with a different lattice parameter. Epitaxial growth [51–56],
commonly used for fabricating III-V semiconductor materials, is an example
of substrate-induced strain. In epitaxy, when two layers of crystals with
slightly different lattice parameters are deposited as a heterostructure, they
can exhibit a common in-plane lattice parameter parallel to the interface.
Notably, in epitaxial deposition, the substrate thickness is significantly larger
than the deposited layer, resulting in lattice relaxation of the epitaxial layer.

Figure 1.5 illustrates a schematic of epitaxial lattice relaxation. Here, the
lattice parameter of the layer is adjusted to match that of the substrate, lead-
ing to built-up strain in the layer. Achieving perfect lattice matching between
the substrate and epitaxial layer in processes like epitaxy is rarely feasible
due to limited substrate options. Additionally, direct epitaxy of III-V layers
on Si substrate is particularly desirable, as it can leverage the already existing
and mature complementary metal-oxide semiconductor (CMOS) technology
for cost-effective production [5, 40, 49–51]. In such cases, the presence of the
substrate-induced strain becomes inevitable.
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In these scenarios, the bandgap of the optically active layer is significantly
influenced not only by the composition but also by the strain induced by
the substrate [58, 59]. Epitaxial growth of the same material on different
substrates or on the same substrate with varying degrees of lattice relaxation,
such as in multiple quantum well (MQW) structures, can alter the bandgap
properties significantly [26, 60, 61].

Another close analog of substrate-induced strain is the core-shell lattice
mismatch strain in coated nanowires [62–66] and nanoparticles [67–73]. In
these systems, the bandgaps of the core nanowires or quantum dots are tuned
by inducing strain through the shell layer with different lattice parameters
than the core material [62–73].

Therefore, the combined approaches of compositional and strain engi-
neering in III-V semiconductors provide pathways for optimizing the mate-
rial properties for various technological applications. Thus, a comprehensive
understanding of the material-specific dependence of the bandgap on compo-
sition and strain is crucial for selecting suitable materials for specific appli-
cations. Experimentally, growing new materials is often challenging because
of thermodynamic or kinetic limitations, such as phase separation or inter-
surface instabilities, in addition to the need for optimizing growth conditions
and precursors [36, 39–41, 50, 53]. Hence, the experimental exploration of
the extensive composition-strain space in these materials is currently lim-
ited to only a few combinations of materials and strain values. This results
in the undersampling of regions in the composition-strain space. Therefore,
standalone experimental approaches potentially can miss optimal materials.
Thus, theoretical methods that are accurate and computationally efficient
are crucial for effectively screening and guiding the materials’ design.

1.5 Theoretical Approaches

There are two primary categories of theoretical methods that are commonly
used to analyze electronic properties in semiconductor materials: empirical/
semi-empirical methods and first-principles methods.

Empirical/semi-empirical methods, such as the tight-binding method [74–
76] and k·p method [9, 76] are computationally efficient and relatively easy
to apply. However, they rely on empirical fitting parameters, which limit
their predictive capability for new materials, a key objective in computa-
tional materials design. In contrast, first-principles methods, such as density
functional theory (DFT) [77–80] and quasiparticle methods (e.g., GW) [81–
84], do not require empirical fitting parameters and are thus considered pre-
dictive. Therefore, in this thesis, first-principles method is employed.
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1.5.1 First-Principles Approach

One of the most widely used first-principles approaches in material science
is DFT. For analyzing electronic properties, such as the bandgap of semi-
conductor materials, DFT with hybrid functionals, like HSE06 [85, 86], has
shown excellent accuracy [87]. However, this thesis utilizes the modified
Becke-Johnson (m-BJ) functional, also known as the TB09 functional [88],
to predict the bandgap of III-V materials. Specifically designed for predict-
ing bandgap properties in semiconductors, the m-BJ functional offers the
advantage of being relatively computationally cheap while maintaining ac-
curacy comparable to computationally expensive GW methods or DFT with
hybrid functionals [88, 89]. It can be reliably applied to very large systems
in an efficient way, enabling studies involving numerous (∼thousands) large
systems, as targeted in this thesis.

The m-BJ functional has previously been successfully applied to calculate
bandgap properties across a diverse set of semiconductor compounds. From
small bandgap (∼1 eV) binary semicondutors to large bandgap (∼22 eV)
rare-gas solids, this functional has been applied to group IV semiconductors
(e.g., Si, Ge), III-V semiconductors (e.g., GaAs, GaN, AlP), II-VI semicon-
ductors (e.g., ZnS, CdS), transition metal oxides (e.g., MnO, FeO, NiO), and
rare-gas solids from Ne to Xe [88, 90–94]. Subsequently, it has been demon-
strated in accurately predicting the bandgap in compound semicondutors,
including III-V (e.g., GaAsBi, GaAsP, GaAsN) and II-VI (e.g., HgCdTe)
materials [18, 95, 96]. Notably, Rosenow et al. successfully calculated the
bandgaps of a large number of GaAsN compositions (up to 12% N) with this
functional, in systems containing up to 432 atoms [18].

While, previous studies utilizing the m-BJ functional have focused on
unstrained systems [18, 88, 90–94, 97], this work extends the application of
the functional to accurately predict bandgaps in III-V semiconductors under
a wide range of strains. This expands the scope of applicability and potential
of the m-BJ functional in the semiconductor field.

Importantly, DFT has also proven to be successful in predicting struc-
tural properties. Crystal structures, lattice parameters, elastic constants,
and phase stabilities in various alloy materials, such as Cd-, Mg-, Cu-, Al-,
Zn-, Zr-, Ti-, and Ni-alloys, have been extensively studied using DFT meth-
ods [93, 98–104]. In the III-V semiconductor field, for instance, in multinary
III-V materials like GaSb, InSb, AlGaAs, GaAsP, GaAsSb, InGaP, and In-
GaAs, such structural properties have been analyzed by DFT methods [18,
50, 95, 96, 105–110]. With its ability to predict both the structural and elec-
tronic properties entirely from first-principles, DFT represents a powerful
tool for predictive material screening.
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1.5.2 Machine Learning Approach

While the DFT approach has been successful in predicting bandgaps for
multinary III-V materials, its application to higher-order systems beyond
ternary poses limitations. The composition-strain space becomes exponen-
tially large when moving to quaternary and pentanary systems. This leads to
computational bottleneck, as a comprehensive mapping of bandgaps in those
systems requires a substantial number of DFT calculations1 (∼millions) per
element combination.

In order to address this computational limitation, a machine learning
(ML) approach is adopted in this thesis. ML techniques leverage data-driven
models to predict materials’ properties. These models can learn complex
relationships between the material properties and enable the predictions of
properties with significantly reduced computational cost [111–113].

In the field of bandgap prediction for semiconductor materials, several
ML methods have been developed over the decades. For instance, ML meth-
ods based on kernel ridge regression (KRR), alternating conditional expec-
tations (ACE), decision trees, and support vector machines (SVM) models
have been successfully employed to predict bandgaps in perovskites [114,
115]. Setyawan et al. estimated the bandgap of inorganic scintillator mate-
rials using ordinary least squares regression (OLSR) ML models [116]. The
bandgap of a large number of chalcopyrite solar materials has been predicted
by ML methods based on OLSR and least absolute shrinkage and selection
operator (LASSO) models [117]. Similar ML models, including Gaussian
process regression (GPR), were used to predict bandgaps of functionalized
MXene compounds [118]. Weston and Stampfl combined DFT with various
ML models to predict the bandgap of quaternary kesterite semiconductors
[119]. ML methods based on neural networks and SVMmodels also have been
successfully applied to predict bandgaps of different binary II-VI, III-V, and
IV-IV semiconductors, as well as ternary I-III-VI2, II-IV-V2, III-VI-VII, and
IV-V-VII compounds [120–123].

In this thesis, a SVM-based ML model is developed that is capable of
predicting bandgap properties for multinary III-V semiconductors. Previous
studies on ML-based semiconductor bandgap prediction have consistently
demonstrated the superior performance of the SVM-based models [119–125].
However, while previous ML-based approaches have mainly focused on un-
strained compounds, the newly devised model accurately predicts bandgaps
in strained systems.

1Within 0− 100% composition and −5 to +5% strain range, for a resolution of 0.1%
in both composition and strain, the number of DFT calculations require for a quaternary
compound of type ABxCyD100−x−y = 50,651,601.
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1.6 Scope and Organization of the Thesis

The research presented in this thesis establishes the methodology and ad-
dresses the challenges for predictive computational modeling of bandgap
properties in strain-engineered III-V semiconductors. The integrated first-
principles calculations and ML techniques provide a comprehensive and pow-
erful approach to exploring bandgap properties across the vast range of
strained semiconductor materials. It sets the stage for future computational
materials design approaches in strain engineering, both for established ma-
terials and for the discovery of new ones. The ultimate goal of this work
is to provide comprehensive guidelines for studying bandgap properties in
strained materials, facilitating the development of novel semiconductor ma-
terials with tailored bandgap characteristics.

The thesis is organized as follows:

� Chapter 2 provides a comprehensive theoretical background on the
DFT and ML methods, which form the foundation of this thesis. It cov-
ers the principles, mathematical formalism, and key concepts of DFT,
as well as the fundamentals of the ML methods employed.

� Chapter 3 presents a detailed overview of the computational methods
used in this study, emphasizing the steps taken to ensure accurate and
reliable results. It discusses the computational procedures, software
tools, and techniques employed to obtain robust predictions.

� Chapter 4 outlines the main findings of the study. The chapter begins
with an examination of binary III-V semiconductor systems in Section
4.1. Section 4.2 then expands the scope to ternary systems. Finally,
Section 4.3 showcases the integration of ML approach in quaternary
III-V systems.

� Chapter 5 summarizes the objectives and major achievements of the
thesis. It provides a comprehensive conclusion that highlights the sig-
nificance of the developed theoretical approach in bandgap engineering
for strained III-V semiconductors. The implications and potential fu-
ture directions of the research are discussed.

� Additional details of the individual projects, a data availability state-
ment, and the reprints of the scientific contributions that are part of
this thesis are attached at the end.
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Chapter 2

Theoretical Background

This chapter provides a comprehensive overview of the theoretical foundation
underlying the methods employed in this thesis. While detailed derivations
of the methods will be omitted, the main objective here is to provide a
clear understanding of their principles. For more in-depth information on
the methods beyond what is covered here, refer to these quantum chemistry
[126–129], solid-state physics [9, 75, 130], and machine learning [111–113]
textbooks.

2.1 Schrödinger Equation

Central to the field of quantum mechanics is the understanding that the
behavior of physical systems at the microscopic scale fundamentally differs
from that at the macroscopic level, which can be suitably described by clas-
sical physics. The fundamental equation governing quantum mechanics is
the Schrödinger equation. It represents an eigenvalue problem in which a
system’s Hamiltonian operator, Ĥ, acts upon a wavefunction representing
the system. In the most general bra-ket notation, the time-independent,
non-relativistic Schrödinger equation for N electrons and K nuclei reads

Ĥ|Ψn⟩ = En|Ψn⟩ (2.1)

where |Ψn⟩ represents the n-th eigenstate with its corresponding energy En.
The wavefunction, |Ψn⟩, provides a complete description of a quantum system
in the state n. It depends on the spatial and spin coordinates of all the
particles within the system and allows the calculation of observables such as
energy, momentum, and position. In most general form, the wavefunction
can be defined as:

Ψn(r, σ,R, S) = ⟨r, σ,R, S|Ψn⟩ (2.2)
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2.1. SCHRÖDINGER EQUATION

with
ri = (xi, yi, zi) Coordinate vector of electron i
r = (r1, r2, . . . , rN) Set of all electron coordinates
RA = (xA, yA, zA) Coordinate vector of atomic nuclei A
R = (R1,R2, . . . ,RK) Set of all atomic nuclei coordinates
σi Spin coordinate of electron i
σ = (σ1, σ2, . . . , σN) Set of spin coordinates of all electrons
SA Spin coordinate of spin of atomic nucleus A
S = (S1, S2, . . . , SK) Set of spin coordinates of all atomic nuclei

The non-relativistic Hamilton operator, Ĥ(r,R), is composed of one- and
two-particle terms that describe the kinetic energy and interaction between
all constituents of the system.

Ĥ(r,R) = T̂N(R) + T̂ e(r) + V̂ ee(r) + V̂ Ne(r,R) + V̂ NN(R) (2.3)

Hamiltonian (2.3) does not include the relativistic effects, e.g., relativistic
kinetic energy correction and interactions of magnetic moments such as spin-
orbit coupling. In atomic units1, different energy operators can be expressed
as follows:

Kinetic energy of nuclei T̂N(R) = −1

2

∑︂

A

1

MA

∇2
RA

(2.4)

Kinetic energy of electrons T̂ e(r) = −1

2

∑︂

i

∇2
ri

(2.5)

Electron-electron interaction V̂ ee(r) = +
∑︂

i

∑︂

j>i

1

|ri − rj|
(2.6)

Nucleus-electron interaction V̂ Ne(r,R) = −
∑︂

A

∑︂

i

ZA
|ri −RA|

(2.7)

Nucleus-nucleus interaction V̂ NN(R) = +
∑︂

A

∑︂

B>A

ZAZB
|RA −RB|

(2.8)

ZA and MA are the atomic number and mass of nucleus A.

Solving the Schrödinger equation 2.1 allows us to determine the allow-
able energy states and associated wavefunctions of a quantum system. This
equation serves as the foundation for understanding the electronic structure
and properties of atoms, molecules, and solids.

1In atomic unit, fundamental constants such as the electron mass (me), electron charge
(e), and reduced Planck’s constant (ℏ) are set to unity.

13



CHAPTER 2. THEORETICAL BACKGROUND

For simplicity, in the following, the spin contributions are disregarded
and will be addressed in a separate section. Moreover, in this thesis, the
focus is only on the lowest energy state of Equation 2.1. At the ground state
(assuming non-degenerate), the Schrödinger equation 2.1 simplifies to:

Ĥ(r,R)Ψ(r,R) = EΨ(r,R) (2.9)

where Ψ denotes the ground-state wavefunction with ground-state energy E,

E = min
n
En (2.10)

2.2 Born-Oppenheimer Approximation

In comparison to nuclei, electrons possess significantly lighter masses. Thus
the electrons can rapidly respond and adjust to changes in the system’s ge-
ometry. This characteristic permits the simplification of electronic-nuclear
interactions. This is known as Born-Oppenheimer approximation (BOA)
[126]. According to the BOA, nuclear motion is considered slow and adia-
batic, while electronic motion is regarded as rapid and highly responsive to
changes in nuclear positions. This significant difference in kinetic response
between electrons and nuclei allows the separation of their respective wave-
functions. By decoupling the total wavefunction Ψ(r,R) into nuclear, ΨN,
and electronic contributions, Ψe, we obtain:

Ψ(r,R) = ΨN(R)Ψe,R(r) (2.11)

where the electronic wavefunction Ψe,R(r) depends parametrically on the
atomic positions R. Within the BOA, Equation 2.9 simplifies to:

[︂
Ĥe,R(r) + VNN,R

]︂
Ψe,R(r) = Ue,RΨe,R(r) (2.12)

where Ĥe,R represents the electronic Hamiltonian operator:

Ĥe,R(r) = T̂ e(r) + V̂ ee(r) + V̂ Ne,R(r) (2.13)

The different terms in Equation 2.13 follow from Equations 2.4−2.8. How-
ever, the term V̂ Ne,R(r) depends on the nuclear positions R parametrically.
The term VNN,R in Equation 2.12 is a constant and dependent solely on
nuclear positions R. Omitting VNN,R from Equation 2.12, we obtain:

Ĥe,R(r)Ψe,R(r) = Ee,RΨe,R(r) (2.14)

with Ee,R represents the ‘pure’ electronic energy.
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2.3. DENSITY FUNCTIONAL THEORY

Given the particular configuration of nuclei (R), Equation 2.14 is solved
to search for the electronic ground-state wavefunction Ψe,R(r) and ground-
state energy Ee,R. The total electronic energy, including nuclear repulsion
(Ue,R), is then obtained by adding the constant nuclear repulsion term VNN,R:

Ue,R = Ee,R + VNN,R (2.15)

In this thesis, we work within BOA. For convenience, in the following,
the indices from Equation 2.14 are dropped:

Ĥ(r)Ψ(r) = EΨ(r) (2.16)

2.3 Density Functional Theory

Obtaining analytical solutions for Equation 2.16 in systems with more than
one electron is not feasible. The standard numerical approach of discretiz-
ing space into grids to solve the problem described by Equation 2.16 leads
to exponential growth in computational resources (time and storage) [131].
Consequently, employing such brute-force methods to solve many-electron
problems is impractical in (modern) classical computers. In this context,
DFT has emerged as one of the most widely used methods for addressing
many-electron problems by reformulating Equation 2.16 into a numerically
tractable form [127, 128].

Central to DFT is the electron density, which represents the probability
distribution of electrons within a system. The corresponding electron density
operator ρ̂ is defined as:

ρ̂(r) =
N∑︂

i=1

δ(r− ri) (2.17)

where ri is the coordinate of electron i. The electron density ρ(r) of the
system in a state with an electronic wavefunction Ψ can then be obtained by
taking the expectation value of the electron density operator,

ρ(r) = ⟨Ψ|ρ̂(r)|Ψ⟩

=

∫︂
d3r1 d

3r2 . . . d
3rN Ψ∗(r1, r2, . . . , rN) ρ̂(r)Ψ(r1, r2, . . . , rN)

= N

∫︂
d3r2 d

3r3 . . . d
3rN |Ψ(r, r2, r3, . . . , rN)|2 (2.18)

This definition of electron density follows the space integral over the electron
density gives the total number of electrons, and is non-negative everywhere,
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CHAPTER 2. THEORETICAL BACKGROUND

i.e., ∫︂
d3r ρ(r) = N with ρ(r) ≥ 0 (2.19)

When the wavefunction corresponds to the ground state (Ψ0), the resulting
electron density (ρ0(r)) is referred to as the ground-state electron density.

According to DFT, we can find the ground-state energy E by optimizing
the electron density ρ(r) to minimize the total energy. The electron density
thus offers a plausible alternative to the wavefunction.

The key advantage of DFT lies in the fact that the electron density ρ(r)
depends only on a single variable r, unlike the N variables (N is the num-
ber of particles/electrons in the system) in the wavefunction. This simplic-
ity enables to construct relatively simple numerical schemes to obtain the
ground-state energy E.

2.3.1 Hohenberg-Kohn Theorem

In 1964, Pierre Hohenberg and Walter Kohn developed two theorems that
lay the foundation for modern DFT [77, 132]. Both theorems can be proved
through a proof by contradiction (reductio ad absurdum) [77].

The theorems assume that the many-electron Hamiltonian has the form
(see Equation 2.13)

Ĥ(r) = T̂ (r) + V̂ ee(r) + V̂ ext(r) (2.20)

with the external potential operator V̂ ext(r)

V̂ ext(r) =

∫︂
d3r ρ̂(r) vext(r) (2.21)

In addition to the Coulomb potential of ion cores (−∑︁A
ZA

|r−RA|), the external

potential vext(r) can also include other influences, such as external fields.

2.3.1.1 First Hohenberg-Kohn Theorem

The first Hohenberg-Kohn theorem states that the ground-state electron
density ρ0(r) uniquely determines the external potential vext(r) (to within
a constant). Since vext(r) fixes the Hamiltonian Ĥ (Equation 2.20) and
the Hamiltonian determines the many-particle states, the ground state of
a many-particle system is a unique functional of the ground-state electron
density ρ0(r).

ρ0 ⇒ vext ⇒ Ĥ ⇒ Ψ0, E0 (2.22)
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2.3. DENSITY FUNCTIONAL THEORY

The reverse statement of the above is also true: the external potential, to-
gether with the number of electrons N , uniquely determines the ground-state
electron density ρ0(r), assuming a non-degenerate ground state.

vext ⇒ unique Ĥ ⇒ unique Ψ0 ⇒ unique ρ0 (2.23)

Therefore, the first Hohenberg-Kohn theorem, together with the reverse
statement in Equation 2.23, establishes a one-to-one correspondence between
the ground-state electron density ρ0(r) and the external potential vext(r) (as
long as the ground state is non-degenerate).

Since the complete ground-state energy is a functional of the ground-
state electron density, its individual components must also be functionals of
ρ0. We can express the ground-state energy E0[ρ0] as:

E0[ρ0] = T [ρ0] + Eee[ρ0]⏞ ⏟⏟ ⏞
system independent/

universal term

+

∫︂
d3r ρ0(r) vext(r)

⏞ ⏟⏟ ⏞
system dependent

(2.24)

In Equation 2.24, the last term represents interactions within the external
potential, such as the nuclear-electron interaction, which depends on the spe-
cific system. However, the first two terms, the kinetic energy of the electrons
T [ρ0] and their interactions with each other Eee[ρ0], are completely inde-
pendent of the system. These terms combine to define a universally valid
functional known as the Hohenberg-Kohn functional (FHK[ρ0]):

E0[ρ0] = FHK[ρ0] +

∫︂
d3r ρ0(r) vext(r) (2.25)

with
FHK[ρ0] = T [ρ0] + Eee[ρ0] (2.26)

Since FHK[ρ0] is a universal functional, it applies equally well to the hy-
drogen atom as to large molecules such as proteins or to solids. Therefore, if
the exact form of FHK[ρ0] is known, the Schrödinger equation can be solved
exactly. However, the explicit form of this functional is currently unknown.
In practical applications, approximate forms of FHK[ρ0] are often employed.

2.3.1.2 Second Hohenberg-Kohn Theorem

The second Hohenberg-Kohn theorem transfers the variational principle to
DFT. This theorem states that the Hohenberg-Kohn functional FHK[ρ0] de-
livers the lowest energy (ground-state energy) of the system, if and only if
the input electron density corresponds to the true ground-state density ρ0.
Any other trial densities ρ̃ inevitably lead to higher energy (states).

17



CHAPTER 2. THEORETICAL BACKGROUND

Therefore, through the variational principle, one can find the ground-
state energy E0 and ground-state density ρ0 of a many-electron system (with
an external potential vext) by minimizing the total energy functional E[ρ̃] by
varying the trial densities ρ̃,

E0 = min
ρ̃
E[ρ̃],

E[ρ̃] = FHK[ρ̃] +

∫︂
d3r ρ̃(r) vext(r) (2.27)

2.3.1.3 Summary of Hohenberg-Kohn Theorems

In summary, all properties of a system defined by an external potential vext

are determined by the ground-state density (first Hohenberg-Kohn theorem),
which in turn can be obtained by minimizing the total energy functional,
FHK[ρ̃] +

∫︁
d3r ρ̃(r) vext(r) (second Hohenberg-Kohn theorem).

2.3.2 Kohn-Sham Theory

Despite being the foundation of DFT, the Hohenberg-Kohn theorems offer no
practical realization. Equation 2.26 introduces the functional F[ρ], containing
the kinetic energy functional T [ρ] and the electron-electron interaction Eee[ρ],
but their explicit forms are unknown. However, at least the classical Coulomb
interaction energy of the charge density with itself, denoted by J [ρ], can be
extracted from the latter term, as it is precisely known:

Eee[ρ] = J [ρ] + EXC[ρ] (2.28)

with

J [ρ] =
1

2

∫︂ ∫︂
d3r d3r′

ρ(r) ρ(r′)

|r− r′| (2.29)

The functional EXC[ρ], known as the exchange-correlation functional, repre-
sents the non-classical contribution to the electron-electron interaction, en-
compassing self-interaction correction, exchange, and Coulomb correlations.
Substituting Equation 2.29 into Equation 2.26 reformulates F[ρ] as:

F [ρ] = T [ρ] + J [ρ] + EXC[ρ] (2.30)

This, in turn, represents a significant reformulation of the previous ‘unknown’
problem: in Equation 2.30, only J [ρ] is known exactly, while the explicit
forms of the other two contributions are completely unknown and must be
approximated for practical purposes.
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2.3. DENSITY FUNCTIONAL THEORY

The significant breakthrough in approximating the kinetic energy func-
tional (T [ρ]) was accomplished by Walter Kohn and Lu Jeu Sham in their
pioneering work on the Kohn-Sham theory [78]. The fundamental idea un-
derlying this theory is to map the interacting multi-electron system onto a
system of non-interacting electrons that yields the same electron density as
the actual system.

For this purpose, a set of auxiliary orbitals {ψi}, known as the Kohn-
Sham orbitals, is constructed; such that:

ρ(r) =
N∑︂

i=1

|ψi(r)|2 = ρ0(r) with ⟨ψi|ψj⟩ = δi,j (2.31)

The kinetic energy of such non-interacting electrons (TKS) with the same
density as the real interacting one can be calculated exactly from the Kohn-
Sham orbitals:

TKS = −1

2

N∑︂

i=1

⟨ψi|∇2|ψi⟩ (2.32)

Of course, the non-interacting kinetic energy does not equal the true kinetic
energy of the interacting system, despite both systems sharing the same
density. The correction to the kinetic energy is further accounted for by
introducing a separation to the functional F [ρ] (see Equation 2.30):

F [ρ] = TKS[ρ] + J [ρ] + (EXC[ρ] + T [ρ]− TKS[ρ]) (2.33)

= TKS[ρ] + J [ρ] + EKS
XC[ρ] (2.34)

with redefining the exchange-correlation functional within Kohn-Sham DFT
(EKS

XC[ρ]) as:
EKS

XC[ρ] := EXC + T [ρ]− TKS[ρ] (2.35)

Notice, in Equation 2.35, in spite of its name, EKS
XC contains not only the

non-classical effects of self-interaction correction, exchange, and correlation,
which are contributions to the potential energy of the system but also ac-
counts for the kinetic energy correction.

By substituting the energy terms from Equations 2.34, the total energy
E in Kohn-Sham DFT (see Equation 2.25) can be expressed as:

E = TKS[ψ1, ψ2, . . . , ψN ] + J [ρ] + EKS
XC[ρ] +

∫︂
d3r ρ(r) vext(r) (2.36)

Applying the minimization principle then leads to the following ground-state
energy (E0) expression:

E0 = min
orthonormal
ψ1,ψ2,...,ψN

[︃
TKS[ψ1, ψ2, . . . , ψN ] + J [ρ] + EKS

XC[ρ] +

∫︂
d3r ρ(r) vext(r)

]︃

(2.37)
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The constrained minimization problem in Equation 2.37 can be solved using
the Lagrangian multiplier formalism with the following Lagrange function L:

L = TKS[ψ1, ψ2, . . . , ψN ] + J [ρ] + EKS
XC[ρ] +

∫︂
d3r ρ(r) vext(r)

−
N∑︂

i=1

N∑︂

j=1

λi,j (⟨ψi|ψj⟩ − δij) (2.38)

Minimizing L with respect ψ1, ψ2, . . . , ψN and employing the definitions of
TKS and J [ρ] from Equations 2.32 and 2.29 lead to the Kohn-Sham equation:

[︃
−1

2
∇2 + v

H
(r) + v

XC
(r) + vext(r)

]︃
ψi(r) = ϵi ψi(r) (2.39)

with

� the electron density ρ(r) generated from the Kohn-Sham orbitals:

ρ(r) =
N∑︂

i=1

|ψi(r)|2 (2.40)

� the correlation-free interelectronic interaction potential, also called the
Hartree potential v

H
(r):

v
H
(r) =

∫︂
d3r′

ρ(r′)

|r− r′| (2.41)

� the exchange-correlation potential v
XC
(r) as such is generally not known

and thus is determined from the corresponding exchange-correlation
energy functional EXC[ρ]:

v
XC
(r) =

δEXC[ρ]

δρ(r)
(2.42)

� the external potential vext consists of the Coulomb potential of the ion
cores:

vext = −
∑︂

A

ZA
|r−RA|

(2.43)

Additionally, it can also include other influences, such as external fields.

� ϵi = λii are the Kohn-Sham eigenvalues and are re-definitions of the
Lagrange multipliers in Equation 2.38.

20
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The potential expressions in Equation 2.39 can be conveniently combined
to define an effective potential v

eff
(r). Consequently, the Kohn-Sham equa-

tion takes the form of one-particle equations for a non-interacting reference
system with an effective potential:

[︃
−1

2
∇2 + v

eff
(r)

]︃
ψi(r) = ϵi ψi(r) (2.44)

where
v
eff
(r) ≡ v

H
(r) + v

XC
(r) + vext(r) (2.45)

The Kohn-Sham equations in Equation 2.44 need to be solved self-consistently
since the Hartree potential and the exchange-correlation potential depend on
the Kohn-Sham orbitals ψi(r) through the density ρ(r). It is important to
note that the Kohn-Sham theory is, in principle, exact. The approximation
only enters when an explicit form of the unknown exchange-correlation en-
ergy functional EXC and the corresponding potential v

Xc
is used. The central

goal of modern DFT is to find increasingly accurate approximations for these
quantities.

2.4 Quantum Mechanics for Solid

2.4.1 Periodicity and Reciprocal Space

In the context of solids, solving the many-electron Schrödinger equation
(Equation 2.16) becomes computationally prohibitive due to the large sys-
tem size. However, crystalline substances, which are the focus of this work,
possess translational symmetry. This allows us to simplify the problem by
approximating large systems as an infinite repetition of a small volume known
as a unit cell connected by the Born-von Karman periodic boundary condi-
tion (PBC).

Mathematically, a crystal is described by a three-dimensional point lat-
tice, where lattice points are decorated with atoms forming the basis. The
lattice is spanned by three linearly independent basis vectors, denoted as a1,
a2, and a3. The periodic structure is then obtained by all possible transla-
tions t within the crystal structure:

t = m1a1 +m2a2 +m3a3 m1,m2,m3 ∈ Z (2.46)

There are 14 Bravais lattices that belong to 7 crystal classes, each rep-
resenting a unique arrangement of lattice points in three-dimensional space.
These lattices define the fundamental repeating pattern in a crystal.
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Figure 2.1: Schematic of zincblende structure unit cell. The primitive cell is
shown in gray shading. The primitive basis vectors a1, a2, and a3 are shown
by arrows. Figure adapted from Reference [133].

While the unit cell is not uniquely defined, commonly used definitions
include the crystallographic or conventional unit cell, which maintains full
lattice symmetry but may contain multiple lattice points. Another choice
is the primitive unit cell (or primitive cell), which contains only one lattice
point but exhibits full lattice symmetry only for primitive Bravais lattices.
A notable concept related to the unit cell is the Wigner-Seitz cell. This cell
encloses the region of space that is closer to a chosen lattice point than to
any other lattice point. It provides a unique representation of the crystal
structure around a specific lattice point.

Depending on the choice of basis vectors, different crystal structures can
be formed and named after prototype structures. Figure 2.1 illustrates the
conventional and primitive unit cells of a zincblende structure. It consists of
two interpenetrating face-centered cubic lattices. All the materials studied
in this thesis possess zincblende structure.

Similar to the unit cell in real space, the reciprocal space is constructed
using three reciprocal basis vectors denoted as b1, b2 and b3:

b1 = 2π
a2 × a3

Vcell
, b2 = 2π

a3 × a1

Vcell
, b3 = 2π

a1 × a2

Vcell
(2.47)

where Vcell = |a1 · (a2 × a3)| represents the volume of the unit cell.
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Figure 2.2: Schematic representation of the first Brillouin zone of a face-
centered cubic lattice. High symmetry paths are indicated in red. The sym-
metry points are marked in blue. Figure adapted from Reference [134].

The translation vectors g in reciprocal space can be expressed as:

g = m1b1 +m2b2 +m3b3 m1,m2,m3 ∈ Z (2.48)

The basis vectors of the real and reciprocal space are orthogonal to each
other, i.e.

ai · bj = 2πδij (2.49)

From Equation 2.46–2.49, clearly, an important property of the reciprocal
lattice is that the scalar product of translation vectors of the lattice and the
reciprocal lattice are multiples of 2π:

t · g = 2πm (m ∈ Z) ⇒ eig·t = 1 (2.50)

Analogous to the elementary cell in real space, similar constructs can be
defined in reciprocal space. One such construct that is of particular impor-
tance for describing the electronic properties of our interest is the Brillouin
zone. It is the Wigner-Seitz cell in reciprocal space. Figure 2.2 depicts the
Brillouin zone of a face-centered cubic lattice. Although the Brillouin zone
shown is three-dimensional, our analysis in this thesis focuses solely on the
high symmetry paths within the Brillouin zone (highlighted in red), which
suffice for studying electronic properties such as the bandgap. This will be
elaborated further in Section 2.6.
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By leveraging translational symmetry, the entire crystal structure can
be described solely by considering the (primitive) unit cell and its repeated
patterns. The following section aims to clarify how the electronic structure
of a crystal can be described.

2.4.2 Bloch’s Theorem

Consider the Schrödinger equation
[︃
−1

2
∇2 + v(r)

]︃
Ψ(r) = EΨ(r) (2.51)

with some periodic potential v(r) that satisfies:

v (r+ L) = v(r) (2.52)

where L is the periodicity.

Bloch’s theorem states that solutions to the Schrödinger equation 2.51 in
such a periodic potential take the form of a plane wave modulated by a pe-
riodic function. In other words, the eigenfunction Ψ(r) of equation 2.51 can
be expressed in the form:

Ψk(r) = uk(r) e
ik·r (2.53)

where r represents position, the wavevector k is the crystal momentum vec-
tor, and uk is a periodic function with the same periodicity as L, i.e.

uk(r+ L) = uk(r) (2.54)

The function Ψ of the form (2.53) is known as the “Bloch function” or “Bloch
state”. It is important to note that while the functions u are periodic with
periodicity L, the Bloch functions Ψ do not possess the same periodicity in
general, i.e., Ψ(r+L) ̸= Ψ(r) (except for the case when k = 0). Nevertheless,
the eigenstates of Hamiltonian with a periodic potential fulfill the constraint
described by Equation 2.53.

2.5 Density Functional Theory for Solid

2.5.1 Periodic Electron Density

As discussed in Section 2.4.1, solids can be represented by the periodic rep-
etition of a unit cell with lattice periodicity t (Equation 2.46). This follows
that the electron density ρ(r), also exhibits lattice periodicity, i.e.:

ρ(r+ t) = ρ(r) (2.55)
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2.5.2 Kohn-Sham Equation for Solid

Since the electron density ρ(r) is lattice-periodic, following Equations 2.41
and 2.42, so also the Hartree potential (v

H
) and exchange-correlation po-

tential (v
XC
). The external potential (vext) is also lattice-periodic as the

atoms are lattice-periodic. Therefore, the sum of these potentials, v
eff
(r) =

v
H
(r) + v

XC
(r) + vext(r), in Equation 2.45, is lattice-periodic. Hence, we can

apply the Bloch theorem 2.53 to the Kohn-Sham orbitals (ψj(r)
1) in Equation

2.44:
ψnk(r) = unk(r) e

ik·r (2.56)

Here, n represents integer indices (j ↦→ (n,k)), also called the “band indices”,
and ψnk are referred to as the Kohn-Sham Bloch functions. The functions
unk(r) are now lattice-periodic and they satisfy:

unk(r+ t) = unk(r) (2.57)

The normalized Kohn-Sham Bloch functions satisfy
∫︂

unit cell

d3r |ψnk(r)|2 = 1 (2.58)

The electron density can then be calculated from the occupied Kohn-Sham
Bloch states as follows:

ρ(r) =
1

ΩBZ

occp∑︂

n=1

∫︂

BZ

d3k |ψnk(r)|2 (2.59)

where ΩBZ = |b1 · (b2 × b3)| is the volume of the Brillouin zone (BZ), and∫︁
BZ

refers to the volume integral over the Brillouin zone.
By substituting the Kohn-Sham Bloch functions (Equation 2.56) into

Equation 2.44, we arrive at the Kohn-Sham equation for solid:

[︃
−1

2
∇2 + v

eff
(r)

]︃
ψnk(r) = ϵnk ψnk(r)

with v
eff
(r) = v

H
(r) + v

XC
(r) + vext(r) (2.60)

Equation 2.60 establishes the foundation of the Kohn-Sham DFT for solid,
also referred to as “periodic Kohn-Sham DFT”. This formulation allows us
to investigate the electronic structure of solids, as detailed in the subsequent
discussion.

1We now denote the indices by j to avoid confusion with imaginary number i in the
Bloch functions.
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2.5.3 Plane-Wave Basis Expansion

As pointed out in Section 2.3.2, the Kohn-Sham equations are solved self-
consistently. This requires initializing the Kohn-Sham Bloch functions in
Equation 2.60, which in turn requires appropriately selecting the form of the
periodic function u(r) (Equation 2.57).

In periodic Kohn-Sham DFT calculations, there are primarily three differ-
ent types of basis functions that satisfy the Bloch theorem: real-space basis
functions (e.g., wavelets), atom-centered basis functions (e.g., Gaussian-type
orbitals), and plane waves. In this thesis, the plane-wave basis expansion is
utilized.

In the plane-wave basis, the lattice-periodic function u(r) is constructed
using plane waves as follows:

u(r) =
1√
Vcell

∞∑︂

g=0

Cg e
ig·r (2.61)

Here, eig·r are the plane waves with the translation vectors in reciprocal space
g (Equation 2.48) and Cg are the corresponding coefficients. Subsequently,
the Bloch functions (Equation 2.56) under the plane-wave expansion can be
expressed as:

ψnk(r) =
1√
Vcell

∞∑︂

g=0

Cnk,g e
i(g+k)·r (2.62)

It is important to note that since the plane waves are inherently lattice-
periodic, the resulting Bloch functions ψnk(r) automatically fulfill the Bloch
theorem.

2.5.3.1 Plane-Wave Cutoff

The exact description of Bloch functions in Equation 2.62 needs an infinite
number of plane waves. However, for practical purposes, only those plane
waves are included whose g-vector has a length smaller than a cutoff value
gcut, |g| < gcut. Furthermore, it has been observed that if the volume of the
cell is changed (e.g., volume optimization), this criterion (i.e., same basis set
for each k-point) leads to a very rough energy-volume curve and, generally,
slower energy convergence. To address this, a modified criterion, |g + k| <
gcut, is often employed. With this modified criterion, the number of plane
waves included in the basis set varies for each k-point, resulting in improved
behavior for energy-volume calculations. As the volume changes, the total
number of plane waves changes smoothly [135].
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Moreover, in practice, instead of the gcut value, the cutoff criteria are
determined based on the plane wave kinetic energy, Ecut =

1
2
g2cut. All plane

waves with kinetic energy lower than Ecut are included in the basis set. This
can be expressed as:

1

2
|g + k|2 < Ecut (2.63)

With this cutoff criterion, the basis expansion of Bloch functions in Equa-
tion 2.62 becomes:

ψnk(r) =
1√
Vcell

Nb∑︂

g=0

Cnk,g e
i(g+k)·r (2.64)

Here, the summation includes only those g-vectors that satisfy |g+k| < gcut,
and Nb represents the total number of g-vectors that satisfy this condition.
By increasing the value of gcut (or equivalently, Ecut), we can improve the
accuracy of the basis representation of ψnk(r). Therefore, Ecut serves as a
convergence parameter, and one gradually increases its value until conver-
gence is achieved in the property being investigated (e.g., total energy).

2.5.3.2 Brillouin Zone Sampling

Typically, a Brillouin zone contains a large number of k-points. However, in
practical calculations, only a subset of k-points are used. In that case, we
approximate the Brillouin zone integral in Equation 2.59 by:

ρ(r) =
1

Nk

occp∑︂

n=1

∑︂

k∈k-mesh

|ψnk(r)|2 (2.65)

where Nk represents the number of k-points in the k-mesh and n denotes
the band index. In the discretized k-mesh as in Equation 2.65, the electron
density is nevertheless lattice-periodic, ρ(r+ t) = ρ(r).

One of the most commonly used approaches for Brillouin zone sampling
is the Monkhorst-Pack regular grid [136]. For instance, the k-mesh resulted
from a 10 × 10 × 10 Monkhorst-Pack regular grid samples the Brillouin zone
of a simple-cubic lattice into 103 uniformly spaced k-points. The k-points
are arranged on a cubic grid with spacing (b1/10, b2/10, b3/10).

How well the set of chosen k-points samples the Brillouin zone is again
another convergence parameter. One gradually increases the density of k-
points in the Brillouin zone until convergence is achieved in the investigated
property (e.g., total energy).
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2.5.4 Periodic Kohn-Sham in Plane-Wave Basis

We now insert the basis expansion from Equation 2.64 into the periodic
Kohn-Sham equation (Equation 2.60). This yields the following expression
[137, 138]:

Nb∑︂

g′=0

[︃
1

2
|g′ + kν |2δgg′ + v

ν,eff
(g − g′)

]︃
Cnkν ,g′ = ϵnkν Cnkν ,g (2.66)

with v
eff
(g − g′) = v

H
(g − g′) + v

XC
(g − g′) + vext(g − g′) (2.67)

where, the index ν enumerates the k-points in the k-mesh (ν = 1, . . . , Nk),
n represents the band index, and the summation includes the Nb number
of g′-vectors that satisfy |g′ + kν | < gcut. This formulation corresponds to
the momentum representation of the periodic Kohn-Sham equation. This
representation offers several advantages, in particular when implementing in
software, including fast Fourier transformation (FFT) and efficient energy
calculations.

Furthermore, in Equation 2.66, the external and Hartree potentials are
combined to compute the electrostatic potential (v

Hext
):

v
Hext

(g) := v
H
(g) + vext(g) = −4πρtot(g)

|g|2 (g ̸= 0) (2.68)

with ρtot(g) = −ρ(g) +
unit cell∑︂

A

ZA e
ig·RA (2.69)

Note that at g = 0, the term v
Hext

(g = 0) in Equation 2.68 diverges. Thus,
in plane-wave Kohn-Sham DFT, the g = 0 component of v

Hext
is neglected.

However, this does not affect the wavefunctions ψnk and only results in a
constant shift of all the eigenvalues ϵnk.
Additionally, for computational efficiency, the exchange-correlation potential
v
XC
(g) is typically computed using real-space integration due to its lower cost

compared to the Fourier transforms in momentum space.

v
XC
(g) =

1

Vcell

∫︂

unit cell

d3r eig·rv
XC
(r) (2.70)

Reformulating Equation 2.66 in matrix form gives:

HKS(k)Cn(k) = ϵn(k)Cn(k) (2.71)

This equation represents an eigenvalue equation. Diagonalizing the Kohn-
Sham matrix HKS yields the eigenvalues (band energies ϵn) and the vector
of plane-wave expansion coefficients Cn.
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The coefficients, Cns, are then used to calculate the Bloch wave functions
using Equation 2.64, which can subsequently be employed to calculate the
electron densities using Equation 2.65.

Cn(k) → ψnk(r) → ρ(r) → ρ(g) =
1

Vcell

∫︂

unit cell

d3r ρ(r) eig·r (2.72)

Finally, in the plane-wave formalism, the total energy (Etot) can be easily
computed as [138]:

E0 =
1

Nk

Nk∑︂

ν=1

N∑︂

n=1

Nb∑︂

g=0

1

2
|kν + g|2 |Cng(kν)|2

+
1

2
4π

Nb∑︂

g=1

|ρtot(g)|2
|g|2 +

Nb∑︂

g=0

v
XC
(g) ρ(g) (2.73)

It is important to note that the g = 0 term in the second term of Equa-
tion 2.73 corresponds to the electrostatic interaction of the total charge den-
sity ρtot(r) with itself. Therefore, excluding the g = 0 term here yields the
correct expression for energy [138].

2.5.5 Projector Augmented-Wave Method

The Bloch functions ψnk(r) exhibit rapid oscillations near highly-charged
nuclei (Figure 2.3). Therefore, one needs a very large plane-wave cutoff gcut
to reach a converged result. However, including a large number of plane
waves in the basis expansion increases computational cost due to the large
matrix sizes, such as the Kohn-Shammatrix (Equation 2.71). To avoid a large
number of plane waves, one approach is to use the projector augmented-wave
(PAW) method [139–141]. In PAW, the Bloch states are expanded using the
following representation:

ψnk(r) = ψ̃nk(r) + ϕ(r)− ϕ̃(r) (2.74)

where ψ̃nk(r) is a “smooth Bloch state” that is expanded in plane waves,
as described in Equation 2.64. ϕ(r) and ϕ̃(r) are auxiliary functions, where
ϕ(r) exhibits rapid oscillations near the nucleus, while ϕ̃(r) is smooth (refer
to Figure 2.3 for an illustration).

A cutoff radius rc is defined, ensuring that the auxiliary functions match
when the distance from the nucleus exceeds rc:

ϕ(r)− ϕ̃(r) = 0 for |r| > rc (2.75)
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Figure 2.3: Schematic representation of the projector augmented-wave
(PAW) scheme. The Bloch state is represented by ψnk(r). The decompo-
sition to the smooth Bloch state (ψ̃nk(r)), hard auxiliary function (ϕ(r)),
and the soft auxilary function (ϕ̃(r)) are shown. Figure adapted from Refer-
ence [142].

The cutoff radii are chosen for each atom type so that the spheres around the
atoms, defined by the respective cutoff radius, do not overlap. This “locality”
makes the algorithm efficient.

The auxiliary functions ϕ and ϕ̃ are obtained using predefined projector
functions pj and two predefined local basis sets φj and φ̃j on each atom:

ϕ(r) =
∑︂

j

φj(r) ⟨pj|ψ̃nk⟩

ϕ̃(r) =
∑︂

j

φ̃j(r) ⟨pj|ψ̃nk⟩ (2.76)

where the projection ⟨pj|ψ̃n,K⟩ of smooth Bloch states onto the atom-centered
projector function is computed through a real-space integral:

⟨pj|ψ̃nk⟩ =
∫︂

whole
crystal

d3r pj(r−RA) ψ̃nk (2.77)

In a PAW calculation, one optimizes ψ̃nk(r) to obtain the lowest energy.
Since ψ̃nk(r) is smooth, a low cutoff gcut can be chosen in the plane-wave
expansion (Equation 2.64). Once ψ̃n,k(r) is obtained, the auxiliary functions

ϕ(r) and ϕ̃(r) can be directly computed following Equation 2.76. The re-
quirement in Equation 2.75 can be easily met by selecting appropriate basis
functions φj and φ̃j. However, it should be emphasized that using highly
optimized basis sets {φj}, {φ̃j} and projector functions {pj} is crucial to
achieving accurate total energy.

The PAW method offers a significant advantage as it provides a formal
equivalence to all-electron methods (with a frozen core) while maintaining
computational efficiency comparable to pseudopotential calculations [141].
However, unlike pseudopotential approaches where the core region projection
is performed using a static projection kernel, PAW dynamically updates this
projection kernel during the SCF cycle.
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2.6 Electronic Properties

2.6.1 Bandstructure

The description of electrons in terms of Bloch functions underlies the concept
of electronic bandstructures. In solid-state physics, bandstructure refers to
the arrangement of allowed energy levels for electrons in a solid. It deter-
mines the electrical and optical properties of materials and plays a crucial
role in understanding phenomena such as conductivity, magnetism, and semi-
conductors.

The eigenstates of the periodic Kohn-Sham DFT (Equation 2.60) are
represented by Bloch states:

ψnk(r) = unk(r) e
ik·r (2.78)

where k denotes the crystal momentum vector or wavevector. For each k
value, there are multiple solutions to the single-electron Kohn-Sham equa-
tions labeled by n, the band index representing different energy bands. Within
a band (for fixed n), the energy levels continuously vary with k, forming a
smooth band of states. This variation is known as the dispersion relation,
ϵn(k), for electrons in that band.

Furthermore, ψnk in Equation 2.78 is unique only up to a constant trans-
lation vector in reciprocal space (g), meaning ψnk = ψn(k+g). Therefore,
without loss of generality, the wavevector k can be restricted to the first
Brillouin zone of the reciprocal lattice. Wavevectors that differ by g are
equivalent (outside the first Brillouin zone) since they represent the same set
of Bloch states.

Visualizing the shape of a band as a function of wavevector in four-
dimensional space (ϵ vs. kx, ky, kz) is challenging. Instead, it is customary
to plot band dispersions, which show the values of ϵn(k) along special high-
symmetry points or lines in the first Brillouin zone. These points or lines
are assigned labels such as Γ, X, L, U, W, K, etc., and are connected by
straight lines often denoted as ∆,Λ,Σ, or [100], [111], and [110] respectively.
This graphical representation is commonly known as the “bandstructure”.
Figure 2.4 illustrates the bandstructure of the solid material GaAs.

The bandstructure of materials exhibits differences depending on their
dimensionality, whether they are one-, two-, or three-dimensional. However,
in this thesis, the focus is solely on analyzing the bandstructure of three-
dimensional solids.
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Figure 2.4: The calculated bandstructure of GaAs using DFT. The bandgap
value (Eg) and spin-orbit split-off energy (∆SO) are shown. The heavy hole
band, light hole band, and spin-orbit split-off bands are highlighted.

2.6.2 Bandgap

In semiconductors, there are two important bands: the valence band (VB)
and the conduction band (CB). The VB is the highest occupied band at 0 K,
while the CB is the lowest unoccupied band. These bands play a critical
role in electronic and optoelectronic applications. The smallest energy gap
between the highest occupied states in the VB, the valence band maximum
(VBM), and the lowest unoccupied states in the CB, the conduction band
minimum (CBM), is referred to as the “bandgap”. Within this region, no
electronic states exist.

In semimetals, the bands are typically referred to as the “conduction
band” or “valence band” depending on whether the charge transport is more
electron-like or hole-like, similar to semiconductors. In metals, however, the
bands are neither electron-like nor hole-like and are commonly referred to as
the “valence band” as they are composed of valence orbitals.

The classification of bandgaps in semiconductors is based on the wavevec-
tors of the states surrounding the bandgap. If the CBM has the same
wavevector (k) as VBM, the bandgap is categorized as a “direct bandgap”.
On the other hand, if the wavevectors are different, it is referred to as an
“indirect bandgap”. For example, GaAs has the VBM and CBM located
at the same position in the k-vector, at the Γ-point, making it a direct
bandgap semiconductor (Figure 2.4). The calculated bandgap energy of
GaAs is 1.47 eV at 0 K. In contrast, Si is an example of an indirect bandgap
semicondutor with a bandgap energy of 1.19 eV at 0 K.
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2.6.3 Electron Spin and Spin-Orbit Coupling

Up until now, another intrinsic property of electrons, their spin, has been
neglected. However, in the relativistic formulation of quantum mechanics,
the spin and orbital angular momentum couple to form a total angular mo-
mentum known as spin-orbit coupling (SOC). This coupling becomes more
pronounced for heavier elements due to relativistic effects. In the context of
this study, spin-orbit coupling is particularly relevant as it leads to a splitting
of p-states into p3/2- and p1/2-states, resulting in a splitting of the valence
bands in the investigated semiconductors.

For instance, in GaAs, the inclusion of SOC leads to the splitting of the
VB degeneracy at the Γ-point (Figure 2.4). This splitting gives rise to the
heavy hole and light hole bands, denoted as such based on the curvature of the
bands, which are inversely proportional to the carrier effective masses [143].
These bands are separated from the spin-orbit split-off band by an amount
denoted as ∆SO. This splitting is formed due to the spin-orbit interaction
between the (p- and s-) orbitals that constitute the VB.

It is important to note that the influence of SOC on the bandgap of III-V
semiconductors can depend on various factors, including the elements in the
material and the specific composition.

2.6.4 Bandgap Determination Problem

In the Kohn-Sham DFT, the bandgap refers to the energy difference between
the highest occupied and lowest unoccupied Kohn-Sham orbitals. However,
it is important to note that the Kohn-Sham bandgap does not necessarily
correspond to the exact fundamental gap of the system.

This discrepancy arises because the Kohn-Sham DFT describes a ficti-
tious non-interacting system. The Kohn-Sham energies do not represent the
true quasiparticle electronic structure of the system. The fundamental gap,
on the other hand, represents the true energy difference between the high-
est occupied and lowest unoccupied electronic states in the real interacting-
electron system.

Even with the exact exchange-correlation functional, the Kohn-Sham
bandstructure does not provide the true fundamental bandgap as it does
not include the finite and positive derivative discontinuity [144, 145]. More-
over, there is currently no known exact exchange-correlation functional, and
approximations must be employed. These approximations additionally con-
tribute to the discrepancy between the Kohn-Sham bandgap and the funda-
mental gap. Factors such as the accuracy of the self-consistency cycle used
in solving the Kohn-Sham equations also contribute to this difference.
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Despite these limitations, Kohn-Sham DFT calculations often exhibit
good agreement with experimental measurements of bandgaps [146]. How-
ever, in order to obtain a more accurate description of bandgaps, alternative
approaches can be employed. One such approach is the use of time-dependent
DFT, which can be employed to calculate the true bandstructure. Another
approach is the use of hybrid functionals, which incorporate a portion of
Hartree-Fock exact exchange. Hybrid functionals have shown improvements
in predicting bandgaps, particularly in semiconductors. Alternatively, the
GW approximations or many-body perturbation theory-based methods can
provide improved descriptions of the bandgap in a variety of materials [88].
It is worth noting that these methods are often challenging in practice due
to high computational costs, particularly when applied to large systems such
as those used in this thesis.

2.6.5 Bandstructures in Non-Crystalline Solid

While electronic bandstructures are commonly associated with crystalline
materials, it is important to note that quasi-crystalline and amorphous solids
also exhibit bandgaps. However, investigating the bandstructures of these
materials theoretically presents additional challenges due to their lack of crys-
tal symmetry, making it difficult to establish precise dispersion relations. In
the upcoming section (Section 2.8.4), we will explore an alternative approach
for constructing the “effective bandstructure” of non-crystalline solids. This
method provides a means to understand and analyze the electronic properties
of these materials, despite their complex structural characteristics.

2.7 Density Functional Approximations

While the Kohn-Sham theory (Section 2.3.2) is exact in principle, one cru-
cial component of this theory, namely the exchange-correlation functional,
remains unknown. Therefore, practical applications of density functional
theory rely on approximations for this functional.

2.7.1 Approximate Exchange-Correlation Functional

The first approximation introduced for the exchange-correlation functional
was by Walter Kohn and Lu Jeu Sham in 1965, known as the local density
approximation (LDA) [78]. In LDA, the energy of a small-volume element
corresponds to that of a free electron gas with the same density, making
the exchange-correlation energy (EXC) dependent solely on the local electron
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density. The exchange part of LDA is based on Slater’s formalism, and
various implementations exist for the correlation part, which generally yields
similar results.

Moving beyond LDA, the generalized gradient approximation (GGA) rep-
resents the next level of approximation. GGA incorporates an additional
dependence on the local gradient of the electron density. There are many
different GGA functionals available. In general, GGA functionals provide
improved accuracy compared to LDA functionals for various material prop-
erties, particularly in relation to the structural properties [101, 103, 104].
Nevertheless, LDA and GGA functionals tend to exhibit significant errors
when predicting the bandgaps of materials [18, 147, 148]. This limitation
restricts their effectiveness in accurately determining bandgaps.

The next class of “pure” density functionals is the meta-GGA. These
functionals include a term that depends on the second derivative of the elec-
tron density, also referred to as the kinetic energy density. In this thesis,
the m-BJ functional (also known as TB09) [88] is utilized, which is a specific
meta-GGA functional optimized for calculating electronic properties, espe-
cially semiconductor bandgaps. This functional is of particular importance
for this work, and therefore, a more detailed description of this functional is
provided in the following.

The exchange potential in the m-BJ functional is based on the work of
Becke and Johnson (BJ). In short, the BJ potential (vBJX,σ(r)) approximates
the optimized effective potential (OEP), which, in turn, approximates the
electronic exchange term. This is a multiplicative potential and can be ex-
pressed as [149]:

vBJX,σ(r) = vBRX,σ(r) +
1

π

√︃
5

6

√︄
tσ(r)

ρσ(r)
(2.79)

where

ρσ =
Nσ∑︂

j=1

|ψj,σ|2 is the electron density,

tσ = (1/2)
Nσ∑︂

j=1

∇ψ∗
j,σ · ∇ψj,σ is the kinetic energy density

and

vBRX,σ(r) = − 1

bσ(r)

[︃
1− e−xσ(r) − 1

2
xσ(r) e

−xσ(r)
]︃

(2.80)

is the Becke-Roussel (BR) potential [150], which models the Coulomb poten-
tial created by the exchange hole.
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xσ in equation 2.80 is determined from a nonlinear equation involving ρσ,
∇ρσ, ∇2ρσ, and tσ. bσ is then calculated as follows:

bσ =

[︃
x3σ e

−xσ

8π ρσ

]︃1/3

The term
√︁
t/ρ in equation 2.79 reproduces the step-like structure of the

OEP in atoms and can be regarded as a screening term.
The BJ potential has been shown to improve the description of bandgaps

compared to LDA and PBE, although the improvement is modest. Fabien
Tran and Peter Blaha further improved this approach with the modified
Becke-Johnson (m-BJ) approximation, introducing a parameter c to adjust
the relative weights of the two terms in the BJ potential:

vmBJX,σ (r) = cvBRX,σ(r) + (3c− 2)
1

π

√︃
5

6

√︄
tσ(r)

ρσ(r)
(2.81)

The c value in Equation 2.81 is calculated for every studied system and is
chosen to depend linearly on the square root of the average of |∇ρ|/ρ:

c = α + β

(︃
1

Vcell

∫︂

cell

|∇ρ(r′)|
ρ(r′)

d3r′
)︃1/2

(2.82)

where Vcell is volume of the unit cell, and α and β are two free parameters.
The linear combination in Equation 2.81 ensures that the LDA exchange
potential is recovered for any value of c when considering a constant electron
density. For c = 1, the original BJ potential is recovered.

In certain cases, the c parameter itself is varied instead of the free pa-
rameters α and β. It has been observed that, in general, the bandgap values
exhibit a monotonic increase with c. By optimizing the c values, a better
agreement with experimental results can be achieved [148].

It is important to note that m-BJ is an orbital-independent exchange-
correlation potential that solely depends on semilocal quantities. It repre-
sents the first semilocal potential that achieves accuracy comparable to more
computationally expensive hybrid and GW methods while maintaining the
computational efficiency of LDA or GGA [88]. Consequently, this functional
can be efficiently applied to very large systems, as in the case of this thesis,
where the use of hybrid or GW methods would be impractical.

It should be noted that the m-BJ functional is a potential-only functional,
meaning it lacks a corresponding m-BJ exchange-correlation energy term. It
combines a meta-GGA exchange term with LDA correlation. Therefore,
m-BJ calculations can not be self-consistent with respect to the total energy,
and thus certain calculations, such as Hellmann-Feynman forces and ionic
relaxations, can not be performed within the scope of m-BJ calculations.
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2.7.2 Dispersion Correction

One major limitation of approximate DFT is its inadequate description of dis-
persion interactions, which are long-range electron correlation effects. Due to
the absence of mechanisms addressing electron density fluctuations or molec-
ular orbital fluctuations, these forces are not accounted for or are only insuf-
ficiently considered within approximate DFT. Dispersion forces are crucial in
various molecular and condensed-phase systems, particularly in absorption
studies and systems characterized by dispersion-bound interactions.

Several correction schemes exist to incorporate dispersion interactions
into the DFT framework. The existing schemes can be categorized into two
main types [151]. The highly parametrized meta-hybrid M0XX family of
functionals is excluded from the discussion of this thesis.

The first type involves augmenting the semi-local or hybrid functional
(E

SL/hybrid
xc ) with a correlation dispersion term (Ec,disp), resulting in what is

known as van der Waals functionals:

Exc = ESL/hybrid
xc + Ec,disp (2.83)

In this approach, the dispersion is included self-consistently in density func-
tionals, e.g., via response functions and/or non-local dispersion kernels. Promi-
nent methods under this category include the vdW-DF methods [152, 153]
and the rVV10 method [154, 155]. These types of corrections are, in general,
of the following type:

Ec,disp =
1

2

∫︂ ∫︂
ρ(r) Φ(r, r′) ρ(r′) d3r d3r′ (2.84)

The kernel Φ depends on the electron density ρ, its derivative ∇ρ, and the
distance |r− r′| between points. These schemes require a double spatial
integration and are generally computationally expensive.

The other class of correction schemes is the post-SCF-type corrections
which model dispersion based on atomic polarizabilities. This category can
be further divided into two subcategories: corrections that explicitly consider
the electron density and semi-classical approaches that are electron-density
independent.

Notable methods in the first subcategory include the exchange-hole dipole
moment approach of Becke and Johnson (XDM) [156, 157], the Tkatchenko-
Scheffler (TS) model [158], and its many-body dispersion (MBD) successor
[159]. These methods employ a Hirshfeld-type atomic partitioning of the
electron density. In the second subcategory, one of the most cost-effective dis-
persion correction schemes is the semi-classical DFT-D methods by Grimme
et al. [160].
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In this thesis, the third-generation DFT-D scheme with Becke-Johnson
type damping (DFT-D3(BJ)) [160, 161] is utilized. This scheme simply adds
a dispersion energy (Edisp) to the Kohn-Sham DFT energy (EKS-DFT):

E
D3(BJ)
DFT = EKS-DFT + Edisp (2.85)

The dispersion energy is obtained as the sum of atom-pairwise contributions:

Edisp = −
∑︂

A<B

∑︂

j=6,8

fdamp
j (RAB)

CAB
j

Rj
AB

(2.86)

where CAB
j s are the dispersion coefficients and RAB is the distance between

atoms pairs A-B. The Becke-Johnson damping function fdamp
j is calculated

as follows:

fj(RAB) =
sj R

j
AB

Rj
AB + (a1R0,AB + a2)j

(2.87)

The sixth-order coefficients in Equation 2.86 are derived from averaged dipole
polarizabilities α using the Casimir-Polder equation. Notably, instead of de-
riving the dipole polarizabilities from isolated atoms, they are determined
from simple hydrides associated with each element. This approach allows
for the incorporation of coordination number dependence into the disper-
sion coefficients. The expression for CAB

6 considering coordination number
dependence is given as follows:

CAB
6 =

3

π

∫︂ ∞

0

1

m

[︂
αAmHn(iω)− n

2
αH2(iω)

]︂
× 1

k

[︂
αBkHl(iω)− n

2
αH2(iω)

]︂
dω

(2.88)
where αH2(iω) represents the corresponding dipole polarizability for the di-
hydrogen molecule, while m,n, k, l are stoichiometric factors. The terms
αAmHn(iω) and αBkHl(iω) correspond to the averaged dipole polarizabilities
of the reference molecules AmHn and BkHl, respectively.
The eighth-order coefficients then follow the recursion relation:

CAB
8 = 3CAB

6

√︁
QAQB with QA = s42

√
ZA

⟨r4⟩A
⟨r2⟩A (2.89)

where the ⟨r2⟩ and ⟨r4⟩ are the multipole-type expected values derived from
atomic densities.
The parameters s6, s8, a1, and a2 in equation 2.87 are fit parameters that
depend on the functionals used, with s6 = 1 apply to GGA and hybrid
functionals. The cut-off distance in the damping term is calculated using the
C-coefficients:
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R0,AB =

√︄
CAB

8

CAB
6

(2.90)

It is important to note that, in this thesis, the dispersion correction is em-
ployed during the structure optimization only. When conducting bandgap
calculations with m-BJ functional, only single-point calculations are per-
formed. In this step, the inclusion of dispersion correction has no impact
since the post-SCF DFT-D3(BJ) method only improves the total energy of
the system.

2.8 Modeling III-V Compounds

2.8.1 Special Quasi-Random Structure

While the supercell approach with random distribution of constituents can
be used to model mixed compounds, such as crystals with defects or alloys, it
still provides only an approximate description of the system within periodic
cells. Despite using large supercells and random occupation, the structures
generated within a finite supercell can deviate from the “perfect” random-
ness. In particular, there is a significant likelihood that the local correlations
between the chemical species occupying nearby lattice sites will not perfectly
match the desired randomness.

To improve the description of such configurationally disordered alloys,
Zunger et al. developed the special quasi-random structures (SQS) approach
[162]. An SQS represents the best periodic supercell approximation to the
true disordered state for a given number of atoms per supercell. The qual-
ity of an SQS is measured in terms of the number of correlations of the
fully disordered state it is able to match exactly. Typically, one attempts
to preferably match shorter-range correlations while gradually enlarging the
supercell to extend the range of matching correlations until convergence of
the properties of interest. Initially, the focus was on matching pair correla-
tions, although for better performance, multibody correlations should also
be considered.

The original approach involved exhaustively checking all possible site oc-
cupations in cells of a given size until the correlation function of the perfectly
disordered state was reproduced to the best extent possible. However, this
exhaustive enumeration algorithm becomes computationally infeasible for rel-
atively large supercells exceeding 1000 atoms. To overcome this challenge, a
more efficient stochastic approach for SQS generation was developed by van
de Walle et al. [163], allowing the use of large cell sizes.
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In this thesis, the stochastic SQS approach, as implemented in the al-
loy theoretical automated toolkit (ATAT) [163], is utilized. This approach
follows a cluster design method capable of handling multicomponent and
multisublattices. The algorithm aims to find SQS that precisely matches the
maximum number of correlation functions, unlike the previous implementa-
tion that focused on minimizing the distance between SQS correlations and
disordered state correlations. To achieve this, the objective function tradi-
tionally used for stochastic SQS searches was generalized to include a term
that ‘rewards’ a perfect correlation match within a specified distance range.
The objective function is then minimized to obtain the best SQS with the
minimum value of the objective function.

The algorithm proceeds as follows: A cluster α is defined as a list of
sites that are considered in the calculation of a particular correlation with
σj specifying the occupation of lattice site j. The correlation ρα associated
to a cluster α in an SQS σ is defined as the average of the cluster functions
over all symmetrically equivalent clusters α′:

ρα(σ) = ⟨Γα′(σ)⟩α (2.91)

where σ represents the vector of all the σj variables. The cluster-function Γα
is calculated using the following expression:

Γα =
∏︂

j

γαj ,Mj
(σj) (2.92)

Mj in Equation 2.92 indicates distinct chemical species that can occupy site
j. γαj ,Mj

(σj) satisfies γ0,Mj
(σj) = 1 (αj = 0 when site j does not belong to

cluster α) and follows the orthogonality condition:

1

M

Mj−1∑︂

σj=0

γαj ,Mj
(σj) γβj ,Mj

(σj) =

{︄
1 if αj = βj

0 otherwise
(2.93)

The objective function (to be minimized) is then defined as:

O = −ωL+
∑︂

α∈A
|∆ρα(σ)| (2.94)

where ∆ρα(σ) denote the deviation of correlations of a SQS σ from its ideal
disordered state. It is calculated as ∆ρα(σ) = ρα(σ) − ρα(σ

rnd), where
ρα(σ

rnd) denotes the correlations of the fully disordered state at some given
composition.
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To calculate ρα(σ
rnd), one can exploit the fact that in the ideal disordered

state, the site occupations are independent. Therefore, this quantity can be
easily calculated as:

ρα(σ
rnd) =

⟨︄∏︂

j

γα′
j ,Mj

(σj)

⟩︄

α

=
∏︂

j

⟨γα′
j ,Mj

(σj)⟩α (2.95)

The set A in Equation 2.94 specifies a user-specified collection of clusters.
The parameter L represents the largest distance between pairs within a clus-
ter such that for all clusters of this type ∆ρα(σ) = 0. The weighting factor ω
is a user-specified parameter that assigns importance to the range of perfect
correlation matching in the objective function (with a default value of 1).

In order to minimize equation 2.94, all supercells are first enumerated
with the user-specified number N of atoms per cell. The lattice sites of
each cell are randomly occupied according to the specified composition on
each sublattice. The best supercell with the minimum objective function is
determined from the generated cells.

A simulated annealing is then performed by attempting jumps into other
supercells and permutations of atoms within the same sublattice. These
jumps and permutations are accepted or rejected based on a Metropolis al-
gorithm. A newly visited supercell and configuration are accepted if they
yield a lower objective function value than the best SQS obtained so far.

The implementation in the ATAT requires input parameters such as the
supercell size N , the primitive cell serving as the basis for possible supercells,
the composition, and the size of the clusters to be formed. The cluster sizes
are specified by the maximum distance for pairs, triplets, and larger clusters.

While the algorithm allows for optimization of the shape and size of the
supercell, this thesis focuses on systems that solely exhibit the zincblende
crystal structure. Hence, the cell shape is not optimized. Furthermore, to
avoid spurious image cell interactions, also known as periodicity errors, large
supercell are required [18]. Therefore, smaller SQS supercells that may be
allowed for the given composition are not searched.

2.8.2 Bandstructure folding

In the supercell bandstructure, the bands undergo folding [164, 165]. As
the unit cell dimension increases with respect to the primitive cell, the Bril-
louin zone shrinks proportionally, resulting in the folding of primitive bands
within the supercell. This is illustrated schematically in Figure 2.5, where the
bandstructure of a one-dimensional polymer folds as the unit cell dimension
is increased [165].
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Figure 2.5: Band folding in a one-dimensional polymer. a) Bandstructure
of a polymer with one atom per unit cell. b) Bandstructure of a polymer
with two atoms per unit cell. The Brillouin zone is halved as the unit cell is
doubled. c) Folding of the bandstructure from (a) to (b). d) – e) Multiple
foldings of bands occur when the unit cell is tripled or quadrupled. Figure
adapted from Reference [165].

Despite the folding, the value of the bandgap can still be determined as
the energy difference between the highest occupied and the lowest unoccupied
band in the folded band structure. However, in folded bands, the primitive
Bloch character of the bands becomes mixed up. Consequently, straightfor-
ward determination of the Bloch character of the CBM and VBM in those
bands is not possible, and thus the nature of the bandgaps.

2.8.3 Bloch Spectral Weights

The most successful approach that connects the supercell bandstructure with
the primitive basis representation is based on Bloch spectral weight (BSW)
[166, 167]. This is obtained by mapping the Brillouin zone of a supercell onto
the underlying reference primitive cell, a process known as band unfolding.

The BSWs (ωm,K(kν)) are obtained by projecting the supercell Bloch
states (|Km⟩) onto the reference primitive cell Bloch states (|kn⟩):

ωm,K(k) =
∑︂

n

|⟨Km|kn⟩|2 (2.96)
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The BSW ωm,K(k) amounts to Bloch character k that is present in |Km⟩
at the m-th energy eigenstates ϵm and satisfies the normalization condition∑︁
ωm,K(k) = 1. A supercell wavevector K can unfold into a primitive

wavevector k if:
k = K+G (2.97)

where G corresponds to the translation vector of the supercell reciprocal
space (Equation 2.48).

In general, the folding of states of different wavevectors in the supercell
depends on both the geometry and symmetry of the supercell and the un-
derlying primitive cell. However, in the case of plane-wave basis sets, like
those used in this thesis, the BSWs can be easily constructed solely from the
plane-wave coefficients Cm,K, that form the supercell eigenstates [166–169].
In the plane-wave formalism, Equation 2.96 simplifies to:

ωm,K(k) =
∑︂

g

|Cm,K(g + k−K)|2 (2.98)

where g represents the translation vector in the reciprocal space of primitive
cell. The advantage of this expression is that the states of the primitive cell
do not have to be known in order to do the unfolding.

2.8.4 Effective Bandstructure

As pointed out earlier in Section 2.6.1, a wavevector and the electronic band-
structure in a solid are only defined if translational symmetry is present. Dis-
ordered systems such as supercell SQS, described above, lack translational
symmetry both on the atomic and mesoscopic scales. Therefore, in such sys-
tems, the concepts of bandstructure are lost. Nevertheless, in many cases,
the identity of the translationally invariant states of pure crystal turns out
to be preserved in the alloys. Hence, it is useful to retain the formalism of
a bandstructure for these as well. This is known as effective bandstructure
(EBS) [168–170]. The EBSs are useful for a phenomenological description of
trends in properties under investigation with alloy composition.

The EBS is constructed using the BSWs described in the previous section.
This process involves first calculation of the spectral function A(k; ϵ). The
spectral functions can be calculated using the BSWs as follows:

A(k; ϵ) ≡
∑︂

m

ωm,K(k) δ (ϵ− ϵm(K)) (2.99)

The EBS is then constructed from the spectral functions. To achieve this,
the (k; ϵ)-space is mapped onto (kν ; ϵµ) grid with energy intervals of size δϵ.
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Each point on the grid is assigned a weight δN(kν ; ϵµ), which represents
the number of primitive cell bands crossing the point (kν ; ϵµ) and can be
understood as the Bloch character. The quantity δN(kν ; ϵµ) is calculated as
follows:

δN(kν ; ϵµ) ≡
∫︂ ϵµ+δϵ/2

ϵµ−δϵ/2
A(kν ; ϵ) dϵ

=
∑︂

m

ωm,K(kν)

∫︂ ϵµ+δϵ/2

ϵµ−δϵ/2
δ (ϵ− ϵm(K)) dϵ (2.100)

Finally, δN is averaged over the wavevectors kν that are related by symmetry
operations of the primitive cell Brillouin zone.

For spinor wave functions, such as those considering spin-orbit coupling,
the two spin components can be treated independently.

2.8.5 Bandgap Nature Determination Protocol from
Supercell Calculations

Analysis of the EBSs in strained III-V systems shows that the VBM remains
located at the Γ-point, regardless of the applied strain. Only the CBM
changes position in reciprocal space when subject to strain. Moreover, the
CBM occurs exclusively at the Γ-, L-, and (near) X-points under strain. This
is shown in the (selected) EBSs of strained GaAsP and GaAsN in Figures 2.6
and 2.7. The EBSs for other strained systems can be found in Supplementary
Information in References [146] and [171]. These observations suggest that
tracing the CBM only at these specific k-points is sufficient to determine the
bandgap nature. It is important to note that due to the effective nature of
the bandstructures, distinguishing between the near X-point and the X-point
itself is challenging. Therefore, in the following, only the BSWs at the Γ-,
L-, and X-point are considered.

Furthermore, for zincblende structures and the chosen supercell size of
6× 6× 6 in this thesis (see Section 3.1.3), the Γ-, L-, and X-points of the
primitive bandstructure fold to the Γ-point in the supercell. Thus, by exclu-
sively considering the BSWs of the CB at the Γ-point within the supercell
effectively allow to determine the nature of the bandgap.

These two findings combined have significantly simplified the determina-
tion of the bandgap nature from supercell calculations. By performing super-
cell DFT calculations that solely sample the reciprocal space at the Γ-point1,
and unfolding only the CB, allows to efficiently determine the bandgap nature
while reducing the computational expense associated with DFT calculations.

1This enables the use of the computationally efficient Γ-only version of VASP.
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(a) Strain = 0.0% (b) Strain = -2.0%

Figure 2.6: Snapshots of the GaAs96.3P3.7 bandstructure under biaxial strain,
with positive and negative strain values representing tensile and compressive
strains, respectively. The bandgaps are indicated by arrows. The VBM and
CBM are highlighted in red and magenta circles, respectively. Figure adapted
with permission from Reference [171].

(a) Strain = 0.0%

(b) Strain = -4.5% (c) Strain = 4.5%

Figure 2.7: Snapshots of the GaAs99.5N0.5 bandstructure under biaxial strain,
with positive and negative strain values representing tensile and compressive
strains, respectively. The bandgaps are indicated by arrows. The VBM and
CBM are highlighted in red and magenta circles, respectively. Figure adapted
with permission from Reference [171].
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(a) (b)

Figure 2.8: Variation of the bandgap value (Eg) for Ga100As96.3P3.7 under
isotropic strain. The negative signs in the strain values indicate compressive
strain. The Γ-, L-, and X-BSW values of the folded supercell CB are provided
in parentheses as (Γ:L:X). The values are given in %. Vertical lines in (a)
demarcate the regions where the character of the CBM changes. In (b), strain
resolution is increased to determine the direct-indirect transition point more
accurately. Figure adapted with permission from Reference [171].

Figure 2.8 illustrates the steps involved in determining the nature of the
bandgap through supercell calculations. The figures show the bandgap vari-
ation for Ga100As96.3P3.7 SQS supercell under isotropic compressive strain.
The Γ-, L-, and X-BSWs of the folded CB are provided in parentheses1.

In Figure 2.8a, it can be seen that the unstrained structure exhibits 100%
Γ-BSW, indicating the position of CBM at the Γ-point and, thus, a direct
bandgap. As the strain increases, the Γ-BSW decreases (first number in
brackets) while the L-BSW increases (second number in brackets). Eventu-
ally, when the strain reaches a certain level (here, between −1 and −1.5%
strain), the L-BSW becomes dominant, indicating the shift of the CBM to
the L-point and the transition of the bandgap from direct to indirect.2

To further accurately determine the transition point from a direct to an
indirect bandgap, calculations with higher strain resolution are performed,
as shown in Figure 2.8b. In this specific example, the transition occurs at a
strain value of −1.4%. It is important to note that the last strained structure
with a direct bandgap before the transition is defined as the transition point
(indicated by the red circle in Figure 2.8b).

1Only the three BSWs are shown in the figures, while the BSWs for other unfolded
k-points are not presented. Therefore, the total BSWs shown in the figure may not add
up to 100%.

2Further compression leads to a transition from L-character to X-character.

46



2.9. MACHINE LEARNING

2.9 Machine learning

In the field of machine learning, supervised learning models are utilized for
classification and regression analysis tasks [173]. In supervised learning, a set
of training examples x1 . . .xN

is provided (also called features), along with
their corresponding labels y1 . . . yN

. The objective is to predict the label y
N+1

for a new input x
N+1

. Figure 2.9 schematically presents the working principle
of supervised learning. In this example, the features represent shapes, while
the labels correspond to their respective shape names. Once the model is
trained, it can be used to predict the labels for new test shapes.

There are two main categories in supervised learning: classification and
regression [111, 112]. Figure 2.10 illustrates the distinction between these
two learning categories. Classification involves creating an appropriate sep-
aration boundary and assigning the data to specific categories. Regression,
on the contrary, predicts continuous variables and analyzes the relationship
between dependent and independent variables. Common classification algo-
rithms include linear classifiers, decision trees, k-nearest neighbors, random
forest, and support vector machines (SVM). Popular regression algorithms
include linear regression, polynomial regression, and logistical regression.

In this thesis, the SVM model is utilized. In the following section, an
overview of this model and its key characteristics are provided.

2.9.1 Support Vector Machine

The fundamental feature of SVM is that it constructs a (set of) hyperplane(s)
in a high-dimensional space, which can be used for classification and regres-
sion tasks.

For the SVM classification, also known as support vector classification
(SVC) model, a training dataset of N points, each consisting of a feature xi
and a class label yi is given. For binary class data, yi can be, for example,
either 1 or −1. The goal is to find the hyperplane that separates the points
with yi = 1 from those with yi = −1 while maximizing the distance between
the hyperplane and the nearest points.

By maximizing the margin, the model aims to reduce its generalization
error, which measures the performance of the trained models on unseen or
new data. A low generalization error suggests that the model has successfully
learned the relevant patterns and can make accurate predictions on new data.
On the other hand, a high generalization error indicates that the model is
overfitting the training data, meaning it has memorized the training examples
too well and fails to generalize to new data.
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Figure 2.9: Schematic of supervised learning working principle. The model is
trained using a labeled data set and subsequently employed to predict labels
for unknown data. Figure adapted from Reference [172].

(a) Classification (b) Regression

Figure 2.10: Comparison of classification and regression machine learning
techniques. The scatter plot represents the original data with dots and cross
symbols. The machine-learned decisions are illustrated by lines, indicating
the decision boundary for classification and the fitting curve for regression.
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Figure 2.11: Illustration of SVM training with dataset using a two-class
dataset. Two hyperplanes, A and B, are depicted, with A exhibiting a larger
margin. The data points situated on the margin (filled squares and circles)
are the support vectors.

Figure 2.11 visually illustrates the concept of the maximum-margin hy-
perplane using a linearly separable dataset. In this case, two parallel hy-
perplanes can be selected to effectively separate the two classes, ensuring
the maximum distance between them. The bounded region between these
hyperplanes is called the “margin”, with the decision hyperplane positioned
equidistant from them. The objective is to optimize the positioning of the
decision hyperplane to achieve the maximum margin and, consequently, the
“maximum-margin hyperplane”. In the figure, ‘A’ represents the maximum-
margin hyperplane, which is clearly superior to ‘B’ in terms of generalization
error. Notably, the maximum-margin hyperplane is completely determined
by those xi that lies nearest to it. These xis are called support vectors (SVs).

Mathematically, SVM is formulated as follows. Any hyperplane can be
written as the set of points x satisfying

wTx− b = 0 (2.101)

where w is the normal vector to the hyperplane and b
∥w∥ determines the offset

of the hyperplane from the origin along the normal vector w.
In the case of linearly separable data, two parallel hyperplanes can be chosen
to bind the margin, satisfying the constraints

wTxi − b ≥ 1, if yi = 1

wTxi − b ≤ 1, if yi = −1 (2.102)
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These constraints state that each data point must lie on the correct side of
the margin. This can be rewritten as:

yi(w
Txi − b) ≥ 1, for all 1 ≤ i ≤ N (2.103)

The optimization problem for SVM is then formulated as follows:

minimize
w, b

1

2
w⊤w (2.104)

subject to yi(w
⊤xi − b) ≥ 1, i = 1, . . . , N (2.105)

The w and b that solve this problem determine our classifier, x ↦→ sgn(wTx−
b) where sgn() is the sign function.

However, perfect linear separation (“hard margin”) is not always possible
in real-world datasets. To handle cases where data points are not perfectly
separable, regularization is introduced, leading to the “soft margin” concept.
The optimization problem becomes minimizing a regularized risk function
(f̂(λ)):

f̂(λ) = λw⊤w +

[︄
1

N

N∑︂

i=1

max
(︁
0, 1− yi(w

Txi − b)
)︁
]︄

(2.106)

where the first term in equation 2.106, w⊤w controls the margins. The
minimization of 1

2
w⊤w maximizes the margin. The second term, inside the

square bracket, is the misclassification error. In this case we use the hinge
loss function, ℓ(y, f(x)) := max (0, 1− yf(x)). Its value is 0 for correctly
classified data points. Otherwise, the data points on the wrong side get a
penalty. The parameter λ > 0 thus determines the trade-off between margin
maximization and penalty for misclassifications.

The optimization problem in Equation 2.106 can be rewritten as a con-
strained optimization problem with a differentiable objective function:

minimize
w, b, ζ

1

2
w⊤w + C

N∑︂

i=1

ζi

subject to yi(w
⊤xi − b) ≥ 1− ζi, ζi ≥ 0, i = 1, . . . , N (2.107)

where we introduce a slack variable ζi for each sample, and C is now the
regularization parameter (λ is inversely related to C). The C parameter
controls the trades of the misclassification vs the margin maximization. The
misclassification and, thus, the accuracy of the model strongly depends on
C and are tuned to optimize predictions.
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2.9.2 Kernel Method

The kernel method is a powerful technique used within SVM models to create
nonlinear classifiers. It achieves this by employing the kernel trick, which
simplifies the learning task by mapping the original feature space of the data
into a new space using a kernel function [174]. This mapping allows for linear
separation or fitting of the data, even when dealing with complex, nonlinear
relationships while reducing the computational cost associated with large
datasets.

The SVM algorithm with the kernel method is similar in structure to
the standard SVM algorithm, with the key difference being the replacement
of every dot product with a nonlinear kernel function. This modification
enables the algorithm to find the maximum-margin hyperplane in the trans-
formed feature space. Although the resulting classifier is a hyperplane in this
transformed space, it may be nonlinear in the original input space.

In this thesis, the radial basis function (RBF) kernel emthod is used. The
RBF kernel (k) can be defined as:

k(xi,xj) = e−γ∥xi−xj∥2 (2.108)

The parameter γ(> 0) determines the inverse of the area of influence of a
sample xi and decays with the distance to another sample xj. A low value
of γ means the influence reaches ‘far’, and a high value implies a ‘closer’
influence. The choice of γ has a significant impact on the behavior of the
model and can be tuned to optimize the predictive performance.

The kernel function in Equation 2.108 satisfies the following relationship:

k(xi,xj) = φ(xi)
Tφ(xj) (2.109)

This equation ensures that the kernel function captures the inner product of
the transformed feature vectors, allowing for efficient computation and avoid-
ing the need to explicitly calculate the transformed feature vectors φ(xi).
Within the kernel method, the goal is to learn a nonlinear classification rule
that corresponds to a linear classification rule for the transformed data points
φ(xi).

Including the kernel trick, the primal problem corresponding to the soft-
margin formulation of SVM (Equation 2.107) becomes:

minimize
w, b, ξ

1

2
w⊤w + C

N∑︂

i=1

ξi

subject to yi(w
⊤φ(xi)− b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N (2.110)
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2.9.3 SVM Classifier Algorithms

Two notable recent algorithms for finding the SVM classifier are sub-gradient
descent and coordinate descent. Both techniques offer significant advantages
when dealing with large datasets.

Sub-gradient descent algorithms directly work with the expression 2.106
that defines the SVM classifier. On the other hand, coordinate descent al-
gorithms operate based on the dual problem. By solving for the Lagrangian
dual of the primal problem, Equation 2.110, we obtain the simplified dual
problem:

minimize
α

1

2
αTQα− 1Tα

subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , N (2.111)

where 1 is a vector of all ones, and Q is an N × N positive semidefinite
matrix defined as:

Qij ≡ yi yj k(xi,xj) (2.112)

The terms αi are the Lagrange multipliers also called the dual coefficients.
They are upper-bounded by C. Since the dual optimization problem is a
quadratic function of the αi subject to linear constraints, it can be efficiently
solved using quadratic programming algorithms. The algorithm solves for
the dual coefficients αi.

In the transformed feature space, the weight vector w satisfies:

w =
N∑︂

i=1

yi αi φ(xi) (2.113)

Once the optimization problem is solved, the offset b can be calculated as
follows (using Equation 2.113 for w and Eqution 2.109 for kernel function
k):

b = wTφ(xi)− yi =

[︄
N∑︂

j=1

yj αj φ(xj)
Tφ(xi)

]︄
− yi (2.114)

=

[︄
N∑︂

j=1

yj αj k(xj,xi)

]︄
− yi (2.115)

Finally, the decision function output for a new sample x becomes:

w⊤φ(x)− b =

[︄∑︂

i∈SV
yi αi k(xi,x)

]︄
− b (2.116)
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The predicted class ŷ corresponds to the sign of this decision function output:

ŷ = sgn(wTφ(x)− b) = sgn

(︄[︄∑︂

i∈SV
yi αi k(xi,x)

]︄
− b

)︄
(2.117)

Notably, in Equation 2.116, we only need to sum over the support vectors
(SV s), which are the samples lying within the margin. This is because the
dual coefficients αi are zero for the other samples. This allows for more
efficient computation of the decision function and classification process.

2.9.4 Support Vector Regression

A version of SVM for regression, the support vector regression (SVR), was
proposed in 1996 [175]. SVR offers a robust approach to regression problems
with the ability to handle nonlinear relationships between input variables
and the target variable. There are three different implementations of SVR:
linear SVR, ε-SVR, and ν-SVR. In this thesis, the ε-SVR model is used to
train and predict the bandgap values. Therefore, in the follwoing, I present
only the formulation of this model.

Given training vectors xi ∈ Rp, i = 1, . . . , N , and an output vector y ∈
RN , ε-SVR solves the following primal problem:

minimize
w, b, ξ, ξ∗

1

2
w⊤w + C

N∑︂

i=1

(ξi + ξ∗i )

subject to yi − (w⊤φ(xi)− b) ≤ ε+ ξi,

(w⊤φ(xi)− b)− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , N (2.118)

Here, an additional parameter ε is introduced to define the margin size
around the predicted regression function. It determines the tolerance for
errors in the regression model. Data points for which predictions are within
the ε-tube are considered to have acceptable errors and do not contribute to
the training loss function penalty. Otherwise, a penalty is added, determined
by the variables ξi or ξ

∗
i , depending on whether their predictions lie above or

below the ε-tube.
The corresponding dual problem of Equation 2.118 is:

minimize
α, α∗

1

2
(α− α∗)TQ(α− α∗) + ε1T (α + α∗)− yT (α− α∗)

subject to 1T (α− α∗) = 0, 0 ≤ α, α∗ ≤ C, i = 1, . . . , N (2.119)
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Where 1 represents the vector of all ones, and Q is a positive semidefinite
matrix defined as Qij ≡ k(xi,xj). The prediction (ŷ) for a new sample x is
then given by:

ŷ =

[︄∑︂

i∈SV
(α− α∗

i ) k(xi,x)

]︄
− b (2.120)

In the prediction equation (Equation 2.120), SV represents the set of
support vectors. α and α∗

i are the dual coefficients. b is the offset. The α
and b values are determined through the optimization process.

2.9.5 Model Performance Evaluation

The SVM model training involves learning from a labeled dataset compris-
ing inputs (features) and corresponding correct outputs (labels). The models
adjust their parameters through a loss function to minimize errors and im-
prove accuracy. To ensure the proper training of the ML models and the
comprehensiveness of the training dataset, learning curves are constructed
[176, 177].

A learning curve is a representation of the relationship between a model’s
performance and the amount of training data it has been exposed to. It
shows how the model’s performance improves or stabilizes as the training
dataset size increases.

A typical learning curve is constructed by plotting the performance met-
ric, such as error rate or loss, on the y-axis against the size of the training
dataset on the x-axis. The curve is generated by repeatedly training the
model on different subsets of the available training data and evaluating its
performance on a separate validation or test set. The training set size is in-
crementally increased, and the model’s performance is recorded at each step.
One characteristic unique to ML algorithms is that the out-of-sample error
(ε) of predicted properties follows an inverse power law (decay) with training
set size N [173, 176]:

ε ∝ 1

N b
(2.121)

The exponent b here determines the rate at which the error decreases.
To facilitate the analysis of learning curves, it is convenient to plot them

on log-log plots. The relationship between the training set size and the
model’s performance becomes a straight line on the log-log scale. By exam-
ining the learning curve on a log-log plot, we can easily determine the model’s
performance characteristics. The linear nature of the log-log plot provides a
clearer understanding of the behavior of the model as the amount of training
data increases.
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Figure 2.12: Machine learning prediction error (ε) vs training set size (N)
on log–log scale. Horizontal and vertical thin lines indicate exemplary target
accuracy and available training set size, respectively. The lines illustrate
the performance of ML models. The solid line corresponds to a model with
incomplete information, the dotted line represents a model with less physical
representation, and the dashed line indicates a model with good physical
representation. Figure adapted with permission from Reference [176].

Figure 2.12 illustrates a schematic of learning curves with varying model
performance [176]. The dashed line represents a model that has achieved
the required accuracy with the given training set size, indicating it is a good
model. However, the dotted line shows a model that can still improve its
performance with more data to reach the required accuracy.

The model’s performance may also saturate at a large training set size,
as shown by the solid line in the figure. This decline in performance suggests
that the model has already learned most of the relevant information from the
data, and additional data may not significantly improve its performance.

Learning curves enable the comparison of multiple models trained on
different amounts of data and help in identifying the model that performs
better. They also assist us in determining the data requirements for achieving
desired performance levels and optimizing resource usage.

Therefore, examining the shape and trend of the learning curves allows
us to assess the models’ effectiveness, determine data requirements, make
informed comparisons between different models, and provide insights into
potential overfitting or underfitting issues.
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Chapter 3

Methods

3.1 Density Functional Theory Setup

3.1.1 Materials Modeling

In this thesis, the binary III-V materials are modeled using primitive cells,
while for ternary and quaternary materials, supercell approach is employed.
Specifically, SQS supercells of size 6 × 6 × 6 are used. This specific super-
cell size choice is based on the findings reported by Rosenow et al. [18].
Smaller SQS supercells introduce artificial interactions of the local strain
fields between periodic image cells, leading to a significant underestimation
of bandgap values.

Alternative methods, such as the virtual-crystal approximation (VCA)
[178] and coherent-potential approximation (CPA) [178], consider only aver-
age site occupations, neglecting atomic distribution. However, studies have
shown that microscopic atomic arrangements significantly affect bandgap
values in such disordered alloys [18, 162, 179].

The SQS methodology, on the other hand, appropriately captures the
inherent randomness in disordered materials. Moreover, the relaxation of
atomic positions within the supercell effectively incorporates the influence
of the local environment on the electronic properties, thereby providing a
realistic representation of these materials. This approach has successfully
been applied to obtain electronic and thermodynamic properties of disordered
materials [18, 162, 180–184].

The SQS cells are generated using ATAT software [102, 163, 185]. For all
materials, except GaAsN systems, one SQS cell is employed per composition.
In the case of GaAsN, the bandgap strongly depends on specific arrangements
of nitrogen atoms within the supercell, even within the SQS approach [18].
Thus, in this case, 10 SQS cells are used for each composition.
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(a) (b) (c)

Figure 3.1: Strain models for a) isotropic strain, b) biaxial strain, and c)
uniaxial strain. The blue and red arrows represent tensile and compressive
strain, respectively. In the case of biaxial strain, as corresponds to the lattice
parameter of the (epitaxial) substrate. The z-direction is defined as the
epitaxial growth direction. Figures adapted from Reference [146].

3.1.2 Strain Modeling

In this thesis, uniaxial, biaxial, and isotropic strains are modeled as schemat-
ically depicted in Figure 3.1. This figure illustrates the corresponding lattice
parameters that remain fixed or are allowed to relax in the modeling of dif-
ferent strains.

The isotropic strain is modeled by uniformly increasing or decreasing all
lattice parameters (Figure 3.1a). In this case, the atomic positions of the
strained structure are optimized while keeping the volume fixed. For biaxial
strain, the in-plane lattice parameters are fixed to the lattice parameter of
an (imaginary) substrate as while allowing relaxation in the growth direc-
tion (Figure 3.1b). Finally, uniaxial strain is modeled by varying the lattice
parameter in the z-direction while allowing relaxation in the in-plane lattice
parameters (Figure 3.1c).

These modeling approaches align well with experimental methods used
to apply strain to III-V semiconductor materials. For isotropic strain, the
diamond anvil cell is commonly used to simulate isotropic pressure [186–
188], which corresponds to the above isotropic strain model. Biaxial strain
is typically achieved through epitaxial growth [26, 35, 189, 190]. In epitaxy,
the lattice parameter of the deposited layer is adjusted to match that of the
substrate, resulting in a common in-plane lattice parameter parallel to the in-
terface (Figure 1.5). The described biaxial strain model accurately captures
this behavior. Notably, only the biaxial strain along [100] crystal directions
is modeled here. For all the materials investigated in this thesis, this is the
most common substrate orientation and growth direction in epitaxy process.
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Importantly, this modeling approach considers the structural strain imposed
by the substrate while disregarding the electronic influence, thus eliminating
the need for explicit substrate modeling and significantly reducing computa-
tional costs. Finally, uniaxial strain, which is often achieved experimentally
by applying pressure along a specific crystalline direction [191, 192], effec-
tively aligns with the above uniaxial strain model.

It is important to note that in the above modeling approaches, no struc-
tural phase transition is assumed during the application of strain. Moreover,
the analyses are specifically constrained within a strain range of 5% tensile
and compressive strain for ternary and quaternary systems. This is typi-
cally the strain range achievable in epitaxial growth. Strain values beyond
this range can lead to the formation of defects; however, this work does not
consider the modeling of such defects.

3.1.3 Computational Setup

The DFT calculations are performed using the Vienna ab initio simulation
package (VASP 5.4.4) [193–196]. The calculations employ a plane-wave basis
set in conjunction with the projector-augmented wave (PAW) approach [139,
140]. To determine the appropriate k-point density in the Brillouin zone
and basis set energy cutoff, comprehensive and systematic convergence tests
are conducted, as depicted in Figure S1 of Mondal et al. [146]. Based on
the findings from these tests, a 10 × 10 × 10 Γ-centered Monkhorst-Pack
k-point mesh [197] is utilized for calculations involving the primitive cell,
and the basis set energy cutoff is chosen within the range of 450−550 eV.
The convergence criteria used for electronic energy and force are 10−6–10−7

eV and 10−2 eVÅ−1, respectively. The specific values of these convergence
criteria can be found in the associated publications listed in the appendix
of this thesis. In the case of supercells, given their large size, the reciprocal
space is sampled only at the Γ-point.

The geometry optimization of the supercells is performed using the PBE
functional [80], including the dispersion-correction method DFT-D3 with
Becke-Johnson damping function (DFT-D3(BJ)) [160, 161]. Other approaches,
such as Tkatchenko-Scheffler (TS) model [158], TS method with iterative
Hirshfeld partitioning (TS/HI) [198, 199], TS with self-consistent screening
(TS+SCS) [159], many-body dispersion energy method (MBD) [159, 200],
improved vdw-DF method (vdw-DF2) [201] and optB88-vdw method [202],
are also tested to describe dispersion interactions. However, PBE-D3(BJ)
approach yielded the best agreement between the optimized and experimen-
tal lattice parameters. For comprehensive results of these tests, refer to Table
S1 and Figure S2 in Mondal et al. [146].
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The structure optimization process involves consecutive volume and posi-
tion optimizations until convergence is achieved. Additional constrained opti-
mizations are performed on the structures obtained from the above geometry
optimization to model the different strains, as discussed in Section 3.1.2.

To calculate electronic properties such as bandgaps and bandstructures,
the m-BJ functional [88] is utilized, taking into account the effect of spin-
orbit coupling. For binary materials, the bandgap values and natures are
calculated from the primitive bandstructures. For the ternary and quater-
nary materials, the bandgap values are calculated by determining the energy
difference between the highest occupied VB and the lowest unoccupied CB
obtained from folded bands in supercell calculations. The nature of these
bandgaps is determined using the BSW-based protocol described in Sec-
tion 2.8.5. The fold2Bloch program [95] is used to calculate the BSWs. The
EBSs are constructed using the BandUP program [169, 170].

3.2 Machine Learning Setup

3.2.1 Model Description

In this thesis, SVM models are employed for ML predictions of bandgaps.
In particular, for training and predicting bandgap values, the ε-SVR [175]
model is used. To determine the nature of the bandgaps, the SVC model [173,
203] is utilized. Moreover, RBF kernel [204, 205] is applied to introduce a
nonlinear transformation to the feature space. All ML algorithms are used
as implemented in scikit-learn Python library [206].

3.2.2 Feature Representation

Various feature representations have been proposed for periodic solid-state
systems, such as element-specific features [114, 115, 122–124, 207, 208], ra-
dial distribution functions [209], Voronoi tessellations [210], representation
learning from stoichiometry [211], and property-labeled materials fragments
[212]. Considering the analysis involves strained and unstrained structures,
a simple descriptor consisting of composition and strain values as input fea-
tures for ML training is chosen in this thesis. This choice enables faster
prediction and training times compared to extensive descriptors while still
providing excellent accuracy for this study.

For constructing the composition features, all III- and V-elements in the
investigated material system are considered. The strain feature, on the other
hand, only consists of the measurement of the considered strain.
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Table 3.1: Example of machine learning dataset features for biaxially strained
InGaAsPSb. The negative and positive signs in the strain values represent
compressive and tensile strains, respectively.

Sample Features
index In (%) Ga (%) As (%) P (%) Sb (%) Strain (%)
1 60 40 50 20 30 −2
2 10 90 1 80 19 5

Sample 1: In60Ga40As50P20Sb30, 2.0% biaxial compressive strain
Sample 2: In10Ga90As1P80Sb19, 5.0% biaxial tensile strain

Table 3.2: Machine learning dataset features and labels of biaxially strained
GaAsPSb. The negative and positive signs in the strain values indicate
the compressive and tensile strains, respectively. Table adapted from Refer-
ence [213].

Sample Features Labels
index As (%) P (%) Sb (%) Strain (%) Bandgap (eV) Nature
1 25 25 50 3.0 0.629 direct
2 50 50 0 −5.0 1.243 indirect

Sample 1: Ga100As25P25Sb50, 3.0% biaxial tensile strain
Sample 2: Ga100As50P50Sb0, 5.0% biaxial compressively strain

Table 3.1 provides an example of the feature space for biaxially strained
InGaAsPSb compounds. However, it is important to note that the com-
position features can be reduced when dealing with specific systems. For
instance, Table 3.2 illustrates the case of GaAsPSb. In this case, the number
of compositional degrees of freedom is three (x, y, and z in Ga100AsxPySbz).
Since the group III site in the lattice is occupied by only one type of element
(Ga), it is excluded from the feature vector. Although only x and y are
independent compositional degrees of freedom and z can be deduced from x
and y (z = 100− x− y), including z in the feature vector ensures the model
learns this constraint. With the strain feature, the final feature space is thus
four-dimensional in this case. The labels of the ML data in this study consist
of the bandgap values and natures obtained from DFT calculations.

Notably, the composition and strain exhibit varying orders of magnitude
in variance. Therefore, prior to training the models, the input data are stan-
dardized using the StandardScaler class from scikit-learn. Additionally, the
bandgap natures, classified as direct and indirect in Table 3.2, are trans-
formed to binary labels, 1 and 0.
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3.2.3 Performance Evaluation Metrics

The prediction accuracies of the SVR models are evaluated using several per-
formance metrics, including root-mean-squared error (RMSE), mean absolute
error (MAE), maximum error (Max error), and the coefficient of determina-
tion (R2). In the case of SVC models, accuracy-score and balanced-accuracy-
score metrics are used. During the hyperparameter optimization of SVR and
SVC models, the RMSE and accuracy-score scoring functions are employed,
respectively.

It is worth noting that some SVR models predict small negative direct
bandgap values (up to −5 meV). However, the studies in this thesis do not
consider possible physical effects that could lead to negative direct bandgaps,
such as topological band inversion. Consequently, any ML-predicted negative
bandgap values are shifted to 0 eV.

3.2.4 Hyperparameter Optimization

Choosing appropriate hyperparameters is crucial for achieving optimal per-
formance and accuracy in the SVM model. To achieve the best hyperpa-
rameter settings, a random search over a large number of combinations of
hyperparameters, C and γ are conducted. The ML models are trained at each
combination of the C and γ values with 5-fold cross-validation. The model
with the highest cross-validation score is selected as the final model with the
best set of hyperparameters. For SVR models, the ε hyperparameter values
are additionally optimized. Throughout, the ranges of the hyperparameter
optimization space are carefully fine-tuned to ensure that the selected ranges
are comprehensive and capable of capturing the best possible settings for the
hyperparameters. To streamline the hyperparameter optimization process,
the RandomizedSearchCV module from the scikit-learn library is utilized.

3.2.5 Model Training

To ensure the proper training of the ML models and the comprehensiveness
of the training set, learning curves are constructed. For this purpose, a
test set comprising random 25% of the total input dataset is created. The
remaining 75% of the data is used to create the training set, with the set
size consecutively increasing from 1% up to 75%. This process is repeated
multiple times to improve the robustness of the predictions [214]. The train-
test splittings are performed using 5-fold ShuffleSplit from the scikit-learn
library. For each ML model training, hyperparameters are re-optimized to
ensure optimal performance.
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Chapter 4

Results

This chapter presents an overview of the key findings of the thesis. For further
reference and detailed discussions, the reprints of the referenced publications
are included at the end of the thesis.

4.1 Binary III-V systems

For all the binary III-V compounds, GaP, GaAs, GaSb, InP, InAs, InSb,
and Si, the primitive cells are optimized and the bandgaps are calculated fol-
lowing the DFT methodology described in Section 3.1. Notably, this thesis
focuses exclusively on materials with zincblende crystal structures. There-
fore, compounds such as GaN and InN, which possess wurtzite structures,
are excluded from the analysis. Additionally, GaBi and InBi compounds are
not included in this study due to their metallic nature.

The optimized lattice parameters of the unstrained compounds from the
PBE-D3(BJ) functional agree well with the experiments, with a maximum
deviation of only 0.09 Å or 1.3% across the materials. The deviation in the
m-BJ calculated bandgap values for these unstrained systems ranges between
20 meV to 50 meV, except for the antimonide systems GaSb and InSb, where
the deviation is about 200 meV. The excellent agreement between the exper-
imental and calculated values for both the lattice parameters and bandgaps
validates the accuracy of the employed DFT scheme, including the chosen
functionals and well-converged computational setups.

Subsequently, constrained optimizations are performed to simulate strain
in the systems using the strain models and methodology outlined in Sec-
tion 3.1.2. The applied strain in the calculations ranges from 10% tensile
to 10% compressive. This is in the order of magnitude of pressures (10 to
several 100 GPa) achievable in modern experiments [215–222].
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Figure 4.1: Variation of bandgap in isotropically strained GaAs. The positive
and negative signs in strain values indicate tensile and compressive strains,
respectively. The ∆EΓ (magenta), Eg (blue), and the direct-indirect transi-
tion (DIT) are shown. The solid orange line indicates Eg for the unstrained
structure (1.47 eV). The strain range where bandgaps are direct and indirect
is indicated. The inset shows the region of the DIT with a finer grid of strain
calculations. Figure adapted from Reference [146].

Figure 4.1 shows the variation of the energy difference between the CB
and the VB at the Γ point (∆EΓ), as well as the bandgap value (Eg), as a
function of isotropic strain in GaAs. For a direct bandgap, both ∆EΓ and Eg

have the same value. On the contrary, if the Eg value is smaller than ∆EΓ,
that indicates an indirect bandgap.

From the figure, it is clear that when subjected to tensile strain, the
bandgap remains direct throughout, as the Eg curve coincides with the ∆EΓ

curve. However, under compressive strain, the Eg curve initially overlaps
with the ∆EΓ curve until −1.56% strain, where the two curves separate.
After this strain, the Eg values are smaller than ∆EΓ values, indicating a
transition to indirect bandgap in this region. The strain value where the
two curves start deviating marks a direct-indirect transition (DIT) in the
bandgap nature. Therefore, a DIT is found in GaAs at −1.56% isotropic
strain. The calculated DIT value agrees closely with the experimental value
of −2.75% [223], deviating by only 1.19% strain.

Furthermore, the bandstructures for GaAs are calculated at each strain
value. Figure 4.2 shows the bandstructures at three different strain values.
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(a) Strain = -5.0% (b) Strain = 0.0% (c) Strain = 5.0%

Figure 4.2: Three snapshots of GaAs bandstructure under isotropic strain.
The positive and negative signs in strain values indicate tensile and compres-
sive strains, respectively. The bandgaps are indicated by arrows. The VBM
positions are shown in red circles. The blue circles indicate the positions of
CBM. Figure adapted from Reference [146].

Figure 4.3: Difference between CB energies at the Γ point and other k-points
P (∆ECB = ECB-P − ECB-Γ; with P = Γ , L, ∆m, and X) for isotropically
strained GaAs. The negative strains indicate compressive strains. Colored
areas indicate at which k-point we find the CBM for the given value of
compressive strain. Figure reprinted from Reference [146].
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The bandstructures reveal that the VBM is consistently located at the Γ-
point across the investigated strain regimes. However, the position of the
CBM changes in k-space when compressive strain is applied, leading to the
direct-indirect transition. In the case of tensile strain, the CBM remains at
the Γ-point throughout, and only the VBM-CBM gap closes.

Additionally, by analyzing the variation of band energies at different k-
points, it is observed that under compressive strain, the CBM occurs at
four high-symmetry k-points in reciprocal space: Γ, L, near X (referred to
as ∆m), and X points. Comparing the energy differences at these points
provides further insights. As shown in Figure 4.3, without strain (0% strain),
the CBM is located at the Γ-point. As the strain reaches −1.56% strain,
the CBM shifts from Γ to L, marking the DIT point. Subsequently, with
increasing strain beyond −2.28%, the CBM shifts to ∆m, and ultimately to
the X-point at −4.47% strain.

The analyses presented above are also applied successfully to other types
of strain, including biaxial and uniaxial, as well as to the other mentioned
materials. Notably, under isotropic strain application, a transition from an
indirect to a direct bandgap is observed for GaP and Si. The calculated
transition points, such as the DIT, exhibit good agreement with experimental
results. For more comprehensive findings and detailed discussions, refer to
the attached first scientific contribution at the end of this thesis [146].

4.2 Ternary III-V systems

Unlike binary III-V compounds, ternary materials exhibit compositional vari-
ations. For example, in GaAsP, the group III sites contain only Ga, while
the group V sites are occupied by either As or P. This can be represented as
Ga100As100−xPx, where the composition x ranges from 0 to 100%. To model
these compositions, SQS supercells are utilized. The strain modeling and
DFT setups follow the same as described in the previous section. Addition-
ally, the bandgap properties from supercell calculations are determined using
the Bloch spectral-based protocol outlined in Section 2.8.5.

The ternary compounds analyzed in this thesis include GaAsP, GaAsN,
GaPSb, GaAsSb, GaPBi, and GaAsBi. In the case of GaAsN, the investiga-
tion is limited to nitrogen concentrations up to 12%. Higher concentrations of
nitrogen, especially under large compressive strain, require larger supercells
than the chosen size of 6× 6× 6 to avoid unphysical electronic interactions
between nitrogen atoms and their periodic images [18]. Similarly, for the
bismides GaPBi and GaAsBi, up to 15% bismuth fraction is investigated.
These compounds become metallic at higher bismuth fractions.
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Figure 4.4: Variation of bandgap in GaAsP as a function of composition
and biaxial strain. The dashed black horizontal line indicates unstrained
GaAsP. The black circles are the calculated DIT points. The DIT points are
fitted with a 5th-order polynomial. The labels ‘direct’ and ‘indirect’ indicate
the enclosed regions, with the nature of bandgap being direct and indirect,
respectively. The hatched pattern region is the ‘partially direct’ bandgap
region. Solid black lines indicate the substrate lines under biaxial strain
model. Figure reprinted with permission from Reference [171].

Figure 4.4 shows the variation of bandgaps (values and natures) in bi-
axially strained GaAsP as a function of composition and strain. The strain
values range from 5% tensile to 5% compressive strain. The bandgap values
are represented by the color scale. The bandgap natures are indicated by en-
closed areas labeled as ‘direct’ and ‘indirect’. The black curve represents the
DIT line, which separates the bandgap into different regions or phases based
on their nature. This representation of composition, strain, and bandgap re-
lationship resembles the phase diagrams commonly used in material science.
In this thesis, it is referred to as the “bandgap phase diagram”.

Additionally, the influence of substrates in the epitaxy process is inves-
tigated within the biaxial strain model. Each solid line in the figure corre-
sponds to a specific substrate: GaAs, GaP, InP, or Si. These lines repre-
sent the amount of biaxial strain that would be induced in the GaAsP layer
when it is epitaxially grown on the respective substrates. For example, when
growing GaAsP with 100% phosphorus on a GaP substrate, the strain is
zero. However, growing GaAs (0% phosphorus) on GaP would result in 3.8%
in-plane compressive strain.

66



4.2. TERNARY III-V SYSTEMS

Several design strategies are proposed utilizing the bandgap phase di-
agram as a tool to optimize material selection for specific applications, as
illustrated in Figure 4.5.

Figure 4.5a showcases an example of a quantum-well heterostructure
(QWH) construction for optoelectronic applications using biaxially strained
GaAsP on a GaAs substrate. In this case, as the quantum-well layers are
made out of a single material with varied composition only, the epitaxial
growth could be performed efficiently. The bandgap phase diagram high-
lights the compositional phase space where GaAsP achieves a direct bandgap
(phosphorus content less than 34%), making it suitable for this application.
Higher phosphorus content results in indirect bandgaps, making them un-
suitable for this target application.

Figure 4.5b presents an efficient approach for the monolithic integration
of multiple QWHs to construct multijunction photovoltaics. In this case, the
QWHs are separated by thin indirect bandgap layers of the same material
as the QWH but only with a different composition. This would make the
integration approach efficient, as no sample transfer is required during the
growth process.

In Figure 4.5c, a device with a gradual change in bandgap properties is
proposed. The concept leverages the continuous transition in the nature of
the bandgap with alloy concentration in the vicinity of the DIT region. By se-
lecting an appropriate range of phosphorus concentration, a GaAsP epitaxial
layer can be grown on GaP, with the phosphorus concentration continuously
changing from the direct to the indirect bandgap region or vice versa. This
enables changes in both the values and nature of the bandgap. Notably,
the concentration gradient can be implemented in both the horizontal and
vertical directions.

Figure 4.5d demonstrates another application where the choice of the
substrate allows tuning the epitaxial layer’s bandgap to exhibit either a direct
or indirect nature. Depending on the substrate used, GaAs or Si, a specific
GaAsP composition indicated by the vertical line will display a direct or
indirect bandgap, respectively.

These illustrations highlight how the appropriate selection of substrate,
combined with specific compositions, can be used to tune the bandgap values
and nature over a wide range. The bandgap phase diagram, in this regard,
serves as a valuable tool for efficiently and accurately making these choices.

Finally, note that in this section, only the results for the biaxially strained
GaAsP compound are presented. The analysis of other compounds and strain
types can be found in the second scientific contribution at the end of this
thesis [171].
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(a)

(b)

(c)

(d)

Figure 4.5: Illustration of the application of biaxially strained GaAsP
bandgap phase diagram. a) Determining the composition range for creat-
ing an optically active QWH of GaAsP on a GaAs substrate. b) Designing a
multijunction photovoltaic with successive direct and indirect bandgap cells.
c) Modulating the bandgap properties by adjusting the composition near the
transition point. d) Tuning the bandgap nature by altering the substrate.
Figure reprinted with permission from Reference [171].
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4.3 Quaternary III-V systems

This section demonstrates the integration of the ML approach into the DFT
approach. The DFT methodologies follow the same as described in the earlier
sections. The ML models consist of SVC and SVR models to predict the
bandgap nature and bandgap values, respectively. The results presented
in this section specifically focus on the biaxially strained GaAsPSb system.
The ML models are trained and tested on a comprehensive DFT dataset
comprising 4280 data points covering the entire composition range of the
GaAsPSb system (As, P, Sb = 0–100%) and biaxial strain values ranging
from 5% compressive to 5% tensile strain.

Figure 4.6: Learning curve of SVR model for GaAsPSb, in log–log scale.
The plot depicts the RMSE of bandgap value prediction for the test set as
a function of the training set size. The error bars represent the standard
deviations over five trials. Figure reprinted from Reference [213].

Figure 4.6 shows the learning curve, depicting the dependence of SVR
model performance on the size of the training set. The log-log plot exhibits
a high degree of linearity, indicating the successful learning of the model.
Similar learning curves for the SVC model performance for bandgap nature
predictions can be found in Figure 1 of Reference [213]. Notably, the per-
formance of the ML models only marginally improves for training set sizes
larger than 1000 (see Figure 4.6). Detail analysis (refer to Figure S4 in Ref-
erence [213]) reveals that this performance saturation occurs as the models
reach their optimal performance limit.
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Figure 4.7: Variation of bandgap values (Eg) for unstrained GaAsPSb (0.0%
strain). The labels ‘direct’ and ‘indirect’ indicate the enclosed regions,
with the nature of bandgap being direct and indirect, respectively. Figure
reprinted from Reference [213].

With the largest training set (the last point in Figure 4.6), the SVR
models achieve an RMSE of 31(±1) meV for bandgap value predictions on
the test set. For the bandgap nature predictions with the SVC models, the
accuracy is 94(±1)%. These errors in bandgap predictions are well within
the uncertainty range of the most accurate DFT methods. Consequently,
these ML models are employed for predictions in the following analysis.

Figure 4.7 presents the bandgap phase diagram of unstrained GaAsPSb,
constructed using the trained ML models mentioned above. The color scale
represents the predicted bandgap values. The black curve represents the DIT
line, distinguishing regions with direct and indirect bandgaps. The plotted
bandgap values are the averages over five predictions, and the bandgap na-
tures correspond to the most frequent outcome over five predictions. Notably,
the high antimony content region exhibits direct bandgaps with relatively
small bandgap values, while with the high phosphorus content, the bandgap
values are the largest and of indirect nature.

The study also investigates the effect of different substrates on the bandgap
of GaAsPSb layer in epitaxial growth. For more detailed bandgap phase di-
agrams with other strain values and an extensive analysis of the substrate
effects, refer to the third scientific contribution at the end of this thesis [213].

70



4.3. QUATERNARY III-V SYSTEMS

It should be emphasized that relying on a simple bowing model for
bandgap variation [224] in such multinary compounds would require an ex-
tensive number of bowing parameters for composition and strains. The spe-
cific GaAsPSb system investigated here also lacks extensive experimental
data and, thus, the available bowing parameters. Moreover, the variation
of bandgap values under strain for various III-V compositions often deviates
from the simple quadratic dependence expected from a bowing model [146],
and they lack information about the bandgap nature.

The training process for the ML models takes only a few minutes (6-core
CPU). Once the training is complete, the models can swiftly predict bandgap
properties across the entire composition and strain ranges, typically within
a few seconds. Therefore, the developed ML models, while being simple,
highly efficient, and accurate, are of significant importance for the accurate
determination of bandgap values and natures in these compounds.

It is also important to note that the specific ML models trained here are
limited to the selected elements and strain type only. However, as discussed
in Section 3.2.2, the descriptor can be extended to encompass all possible
chemical elements and strain types, allowing the universal application of the
developed ML approach.
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Summary

This thesis presents a comprehensive computational approach that combines
density functional theory (DFT) and machine learning (ML) to accurately
predict bandgaps in III-V compound semiconductor materials, with a partic-
ular focus on strained systems. Throughout the study, computational results
are rigorously validated against experimental findings, ensuring the reliability
and accuracy of the approach.

First, a DFT-based first-principles methodology is established that accu-
rately predicts bandgaps in strained binary III-V materials (Section 4.1). The
study covers a range of materials, including GaAs, GaP, GaSb, InP, InAs,
InSb, and Si. These materials not only have a broad range of applications
in the field of (opto-)electronics but are of great interest for fundamental
research as well. A reliable strain model is developed within the DFT frame-
work to simulate experimental strain application techniques. Subsequently, it
is demonstrated that the modified Becke-Johnson (m-BJ) functional, known
for its highly efficient and accurate bandgap predictions in unstrained III-V
materials, can also effectively predict bandgaps in strained systems. By uti-
lizing the m-BJ functional and developed strain modeling, the strain-induced
variations in bandgaps for the aforementioned binary III-V compounds are
successfully calculated across a wide range of compressive and tensile strains
(up to 10% strain). The investigation reveals that not only do the bandgap
values change under strain, but the nature of the bandgap itself can transi-
tion from direct to indirect or vice versa. The direct-indirect transitions for
all the materials studied are successfully determined.

Furthermore, the critical analysis of the bandstructures of these materials
under strain reveals that the valence band maximum (VBM) remains at the
Γ-point throughout the applied strain regimes while the conduction band
minimum (CBM) shifts positions. The analysis identifies four specific k-
points (namely, Γ, L, ∆m, and X) that play a crucial role in these transitions.
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This work lays the foundation for predictive DFT modeling of bandgap
properties in strained III-V systems, encompassing the selection of appropri-
ate DFT functionals, modeling strain applications, and other necessary com-
putational setups to produce reliable and accurate results. It is important to
note that the successful application of the m-BJ functional in the strained
system in this work is particularly significant. It provides an accurate means
to estimate bandgap values that are comparable to more computationally
expensive methods, such as hybrid functional or GW methods, but at a
moderate computational cost. As a result, it becomes feasible to utilize this
functional for large-scale systems where the mentioned higher-level methods
would be impractical. This opens up possibilities for exploring the bandgap
properties in multinary III-V compound semiconductors under strain.

Next, the approach is extended to the higher-order ternary systems (Sec-
tion 4.2). The specific systems investigated here include GaAsP, GaAsN,
GaPSb, GaAsSb, GaPBi, and GaAsBi, all of which have significant applica-
tions in semiconductor-based devices. Unlike binary systems, where primitive
cells are sufficient for DFT calculations, ternary systems are modeled using
special quasi-random structure (SQS) supercells, resulting in band folding.
This presents a challenge in determining bandgap properties within the su-
percell approach. Specifically, in the folded bands from supercell calculations,
the primitive Bloch characters are mixed up, which hinders the determination
of bandgap nature. One potential solution to this problem is to use effective
bandstructure (EBS). However, constructing EBS for numerous materials is
impractical. Nevertheless, the examination of EBSs for a few selected strain
values in different ternary compounds reveals similar findings as to the bi-
nary compounds, that the VBM remains at the Γ point consistently, while
only the CBM changes its position under strain. This shows that only a few
specific k-points in reciprocal space exclusively determine the bandgap na-
ture in ternary III-V semiconductors under various strains. Based on these
observations, an efficient approach is developed to determine the bandgap
natures from supercell calculation. This approach utilizes the Bloch spectral
weights of only the conduction band at a few specific k-points, enabling the
determination of bandgap nature efficiently for a large number of bandgap
calculations without the need to construct the complete EBS.

The combination of the m-BJ functional and the newly devised bandgap
nature determination protocol from supercell calculations enables efficient
determination of complete bandgap properties (value and nature) in ternary
III-V semiconductors. Following this approach, the bandgaps of the afore-
mentioned ternary materials are mapped throughout their entire composition
range (x = 0–100% for Ga100ExY100−x with E, Y = As, P, Sb, Bi) and across
a wide range of strain values (up to 5% strain).
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Moreover, the practical implications of this comprehensive composition-
strain-bandgap relationship mapping in III-V materials, referred to as the
“bandgap phase diagram”, are demonstrated in optimizing material com-
binations for various applications. These bandgap phase diagrams provide
valuable insights to select materials with desired bandgap properties, thereby
enhancing the performance and functionality of target devices.

Importantly, the bandgap nature determination protocol developed in
this work also applies to further higher-order III-V systems, such as quater-
nary and beyond. With this work, the ultimate groundwork for the predictive
DFT-based first-principles modeling of bandgap properties in strained multi-
nary III-V semiconductor systems is established.

However, applying the above DFT approach to higher-order systems, such
as quaternary compounds, poses limitations. Despite its efficiency, the sub-
stantial number of DFT calculations needed in those systems (∼millions)
enormously increases the computational cost. Consequently, the comprehen-
sive mapping of the bandgaps over the extensive composition-strain space in
higher-order systems becomes limited.

To overcome this limitation, a support vector machine (SVM) ML model
is developed to complement the standalone DFT approach (Section 4.3).
By integrating ML with DFT, the number of DFT calculations required
(∼thousands) is significantly reduced, by a factor of 1000, while maintaining
the high accuracy of the predictions. This DFT-ML hybrid computational
approach finally enables comprehensive mapping of bandgap values and na-
tures (direct or indirect) in multinary III-V semiconductor systems. It signif-
icantly enhances sampling efficiency across the extensive composition-strain
space in these systems, which would otherwise be impractical to cover solely
with standalone DFT approach.

In particular, by utilizing this DFT-ML hybrid approach, the bandgap
phase diagram for GaAsPSb compound is constructed over its entire com-
position range (As, P, Sb = 0–100%) and covering a wide range of strain
values (up to 5% strain). Although this specific quaternary III-V compound
has not been extensively studied, its binary and ternary subsystems (GaAs,
GaP, GaSb, GaAsP, GaAsSb, and GaPSb), as mentioned above, are impor-
tant. Moreover, this theoretical analysis will offer valuable insights for future
experimental exploration of this material system.

Notably, the presented DFT-ML hybrid computational approach can be
easily generalized to other III-V semiconductors and material classes, en-
abling the rapid estimation of bandgaps for a broad range of materials and
strain values. This virtual high-throughput screening capability thus holds
significant potential for facilitating the exploration and discovery of new semi-
conductor materials for (opto-)electronic applications.
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In conclusion, this thesis establishes a comprehensive and efficient compu-
tational approach for predicting bandgaps in strained III-V semiconductor
materials. By combining DFT and ML, a cost-effective protocol for accu-
rate bandgap predictions in those systems is achieved. Valuable insights into
bandgap tuning for several III-V materials under strain are provided through
the construction of bandgap phase diagrams, facilitating the optimization of
material combinations for various III-V semiconductor material-based device
applications. The DFT-ML hybrid computational protocol developed can be
extended to explore a wide range of multinary III-V materials and beyond.
This computational materials design approach thus paves the way for the de-
velopment of novel strain-engineered semiconductor materials with tailored
bandgap characteristics.
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Zusammenfassung

In dieser Dissertation wird ein umfassender computergestützter Ansatz vor-
gestellt, der Dichtefunktionaltheorie (DFT) und maschinelles Lernen (ML)
kombiniert, um Bandlücken in III-V-Halbleitermaterialien genau vorherzusa-
gen, wobei ein besonderer Schwerpunkt auf gespannten Systemen liegt. Wäh-
rend der gesamten Studie werden die berechneten Ergebnisse rigoros anhand
experimenteller Ergebnisse validiert, um die Zuverlässigkeit und Genauigkeit
des Ansatzes zu gewährleisten.

Zunächst wird eine DFT-basierte first-principles Methode entwickelt, die
Bandlücken in gespannten binären III-V-Materialien genau vorhersagt (Ab-
schnitt 4.1). Die Studie deckt eine Reihe von Materialien ab, darunter GaAs,
GaP, GaSb, InP, InAs, InSb und Si. Diese Materialien haben nicht nur
eine breite Palette von Anwendungen im Bereich der (Opto-)Elektronik,
sondern sind auch für die Grundlagenforschung von großem Interesse. Es
wird ein zuverlässiges Spannungsmodell im Rahmen der DFT-Rechnungen
entwickelt, um experimentelle Methoden, bei der es zu Spannungen im Ma-
terial kommt, zu simulieren. Anschließend wird gezeigt, dass das mod-
ifizierte Becke-Johnson (m-BJ) Funktional, welches für seine hocheffizien-
ten und genauen Bandlückenvorhersagen in ungespannten III-V-Materialien
bekannt ist, auch effektiv Bandlücken in gespannten Systemen vorhersagen
kann. Unter Verwendung des m-BJ Funktionals und des entwickelten Span-
nungsmodells werden die spannungsinduzierten Variationen der Bandlücken
für die oben genannten binären III-V-Verbindungen über einen breiten Be-
reich von Druck- und Zugspannung (bis zu 10% Spannung) erfolgreich berech-
net. Die Untersuchung zeigt, dass sich nicht nur die Werte der Bandlücken
unter Spannung ändern, sondern auch die Art der Bandlücke von direkt zu
indirekt oder umgekehrt übergehen kann. Die direkt-indirekt Übergänge
werden für alle untersuchten Materialien erfolgreich bestimmt.

Darüber hinaus zeigt die kritische Analyse der Bandstrukturen dieser ge-
spannten Materialien, dass die Valenzbandmaximum (VBM) im gesamten
verwendeten Spannungsbereich am Γ-Punkt verbleiben, während die Lei-
tungsbandminimum (CBM) ihre Position verschieben. Die Analyse identi-
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fiziert vier spezifische k-Punkte (nämlich Γ, L, ∆m und X), die bei diesen
Übergängen eine entscheidende Rolle spielen.

Diese Arbeit legt den Grundstein für die vorhersagende DFT-Modellie-
rung von Bandlückeneigenschaften in gespannten III-V-Systemen, einschlie-
ßlich der Auswahl geeigneter DFT-Funktionale, die Modellierung von Span-
nungsanwendungen sowie andere notwendige Berechnungseinstellungen, um
zuverlässige und genaue Ergebnisse zu erzielen. Es ist wichtig darauf hinzu-
weisen, dass die erfolgreiche Anwendung des m-BJ Funktionals in dem ge-
spannten System in dieser Arbeit besonders wichtig ist. Sie bietet ein genaues
Mittel zur Abschätzung von Bandlückenwerten, welche mit rechenaufwändi-
geren Methoden wie Hybridfunktionalen oder GW-Methoden vergleichbar
sind, jedoch zu moderaten Rechenkosten. Dadurch wird es möglich, dieses
Funktional für große Systeme zu verwenden, bei denen die genannten kom-
plexeren Methoden unpraktisch wären. Dies eröffnet Möglichkeiten zur Er-
forschung der Bandlückeneigen-schaften in multinären III-V-Halbleitern unter
Spannung.

Anschließend wird der Ansatz auf ternäre Systeme ausgedehnt (Abschnitt
4.2). Zu den hier untersuchten Systemen gehören GaAsP, GaAsN, GaPSb,
GaAsSb, GaPBi und GaAsBi, die alle wichtige Anwendungen in Halblei-
terbauelementen haben. Im Gegensatz zu den binären Systemen, bei de-
nen primitive Einheitszellen für DFT-Berechnungen ausreichen, werden die
ternären Systeme durch Superzellen mit einer besonderen quasi-zufälligen
Struktur (SQS) modelliert, was zu einer Bandfaltung führt. Dies stellt eine
Herausforderung bei der Bestimmung der Bandlückeneigenschaften im Rah-
men dieses Superzellenansatzes dar. Insbesondere werden in den gefalteten
Bändern aus Superzellenberechnungen die primitiven Bloch-Charakteristika
durcheinandergebracht, was die Bestimmung der Art der Bandlücke ver-
kompliziert. Eine mögliche Lösung für dieses Problem ist die Verwendung der
effektiven Bandstruktur (EBS). Die Konstruktion von EBS für zahlreiche Ma-
terialien ist jedoch unpraktisch. Dennoch zeigt die Untersuchung der EBS für
einige ausgewählte Spannungswerte in verschiedenen ternären Verbin-dungen
ähnliche Ergebnisse wie bei den binären Verbindungen, nämlich dass die
VBM durchweg am Γ-Punkt bleiben, während nur die CBM ihre Positionen
unter Spannung ändern. Dies zeigt, dass nur wenige spezifische k-Punkte im
reziproken Raum die Art der Bandlücke in ternären III-V-Halbleitern unter
verschiedenen Spannungen bestimmen. Auf Grundlage dieser Beobachtun-
gen wird ein effizienter Ansatz entwickelt, um die Art der Bandlücke anhand
von Superzellenberechnungen zu bestimmen. Dieser Ansatz nutzt die Bloch-
Spektralwichtungen des Leitungsbandes an einigen spezifischen k-Punkten
und ermöglicht die effiziente Bestimmung der Art der Bandlücke für eine
große Anzahl von Bandlückenberechnungen, ohne dass die vollständige EBS

77



CHAPTER 5. SUMMARY

konstruiert werden muss.
Die Kombination aus dem m-BJ Funktional und dem neu entwickelten

Protokoll zur Bestimmung der Art der Bandlücke aus Superzellenrechnungen
ermöglicht eine effiziente Bestimmung der vollständigen Bandlückeneigen-
schaften (Wert und Art) in ternären III-V-Halbleitern. Mit diesem Ansatz
werden die Bandlücken der oben genannten ternären Materialien über ihren
gesamten Zusammensetzungsbereich (x = 0–100% für Ga100ExY100−x mit E,
Y = As, P, Sb, Bi) und über einen breiten Bereich von Spannungswerten (bis
zu 5% Spannung) abgebildet.

Darüber hinaus werden die praktischen Auswirkungen dieser umfassenden
Abbildung der Zusammensetzung-Spannung-Bandlücken Beziehung in III-V-
Materialien, die als “Bandlücken-Phasendiagramm” bezeichnet wird, bei der
Optimierung von Materialkombinationen für verschiedene Anwendungen de-
monstriert. Diese Bandlücken-Phasendiagramme liefern wertvolle Erkennt-
nisse für die Auswahl von Materialien mit den gewünschten Bandlückeneigen-
schaften, wodurch die Leistung und Funktionalität der Zielgeräte verbessert
wird.

Wichtig ist, dass das in dieser Arbeit entwickelte Protokoll zur Bestim-
mung der Bandlücke auch für weitere III-V-Systeme höherer Ordnung, wie
beispielsweise quaternäre und darüber hinaus, gilt. Mit dieser Arbeit wird
die ultimative Grundlage für die vorhersagende DFT-basierte first-principles
Modellierung von Bandlückeneigenschaften in gespannten multinären III-V-
Halbleitersystemen geschaffen.

Die Anwendung des oben genannten DFT-Ansatzes auf Systeme höherer
Ordnung, wie z. B. quaternäre Verbindungen, bringt jedoch Einschränkung-
en mit sich. Trotz seiner Effizienz erhöht die beträchtliche Anzahl von
DFT-Berechnungen, die für diese Systeme erforderlich sind (∼Millionen),
die Rechenkosten enorm. Infolgedessen ist die umfassende Abbildung der
Bandlücken über den umfangreichen Raum von Zusammensetzung und Span-
nungen in Systemen höherer Ordnung begrenzt.

Um diese Einschränkung zu überwinden, wird ein Support-Vektor-Maschi-
ne (SVM)ML-Modell entwickelt, das den eigenständigen DFT-Ansatz ergänzt
(Abschnitt 4.3). Durch die Integration von ML und DFT wird die Anzahl
der erforderlichen DFT-Berechnungen (∼Tausende) um einen Faktor von
1000 reduziert, wobei die hohe Genauigkeit der Vorhersagen erhalten bleibt.
Dieser hybride DFT-ML-Berechnungsansatz ermöglicht schließlich eine um-
fassende Abbildung der Bandlückenwerte und art (direkt oder indirekt) in
multinären III-V-Halbleitersystemen. Er verbessert die Effizienz der Proben-
nahme im umfangreichen Raum der Zusammensetzungen und Spannungen in
diesen Systemen erheblich, der andernfalls mit einem alleinigen DFT-Ansatz
nicht abgedeckt werden könnte.
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Insbesondere wird mit Hilfe dieses DFT-ML-Hybridansatzes das Band-
lücken-Phasendiagramm für die GaAsPSb-Verbindung über den gesamten
Zusammensetzungsbereich (As, P, Sb = 0–100%) und über einen großen
Bereich von Spannungswerten (bis zu 5% Spannung) erstellt. Obwohl diese
spezielle quaternäre III-V-Verbindung noch nicht eingehend untersucht wurde,
sind ihre binären und ternären Teilsysteme (GaAs, GaP, GaSb, GaAsP,
GaAsSb und GaPSb), wie bereits erwähnt, von Bedeutung. Darüber hin-
aus wird diese theoretische Analyse wertvolle Erkenntnisse für die künftige
experimentelle Erforschung dieses Materialsystems liefern.

Der vorgestellte hybride DFT-ML-Berechnungsansatz lässt sich leicht auf
andere III-V-Halbleiter und Materialklassen verallgemeinern und ermöglicht
die schnelle Abschätzung der Bandlücken für eine breite Palette von Ma-
terialien und Spannungswerten. Dieses virtuelle Hochdurchsatz-Screening
bringt somit ein erhebliches Potenzial für die Erforschung und Entdeckung
neuer Halbleitermaterialien für (opto-)elektronische Anwendungen.

Zusammenfassend lässt sich sagen, dass diese Dissertation einen um-
fassenden und effizienten Berechnungsansatz für die Vorhersage von Band-
lücken in gespannten III-V-Halbleitermaterialien entwickelt hat. Durch die
Kombination von DFT und ML wird ein kosteneffektives Protokoll für genaue
Bandlückenvorhersagen in diesen Systemen erreicht. Durch die Konstruk-
tion von Bandlücken-Phasendiagrammen werden wertvolle Einblicke in die
Bandlückenoptimierung für verschiedene III-V-Materialien unter Spannung
gewonnen, was die Optimierung von Materialkombinationen für verschiedene
III-V-Halbleitermaterialanwendungen erleichtert. Das entwickelte hybride
DFT-ML-Rechenprotokoll kann erweitert werden, um eine breite Palette von
multinären III-V-Materialien und Systeme darüber hinaus zu untersuchen.
Dieser computergestützte Ansatz für das Materialdesign ebnet somit den
Weg für die Entwicklung neuartiger spannungsabhängiger Halbleitermateri-
alien mit maßgeschneiderten Bandlückeneigenschaften.
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Abstract
Themodification of the nature and size of bandgaps for III-V semiconductors is of strong interest for
optoelectronic applications. Strain can be used to systematically tune the bandgap over awide range of
values and induce indirect-to-direct transition (IDT), direct-to-indirect transition (DIT), and other
changes in bandgap nature. Here, we establish a predictive first-principles approach, based on density
functional theory, to analyze the effect of uniaxial, biaxial, and isotropic strain on the bandgap.We
show that systematic variation is possible. ForGaAs,DITs are observed at 1.56% isotropic compressive
strain and 3.52%biaxial tensile strain, while for GaP an IDT is found at 2.63% isotropic tensile strain.
We additionally propose a strategy for the realization of direct-to-indirect transition by combining
biaxial strainwith uniaxial strain. Further transition points are identified for strainedGaSb, InP, InAs,
and InSb and compared to the elemental semiconductor silicon. Our analyses thus provide a
systematic and predictive approach to strain-induced bandgap tuning in binary III-V
semiconductors.

1. Introduction

Semiconductor compounds attract a great amount of attention, both in science and technology, due to their
immense application range in areas such as optoelectronics and integrated circuits [1, 2]. One of themajor goals
in basic and applied research is to tailor the optical properties of semiconductormaterials to a target application.
Themost important fundamental property determining these properties is thematerial’s bandgap. For example,
materials for optical telecommunication applications require direct bandgaps in the range of 0.80–0.95 eV [3–5],
while a range of 0.5–2.0 eV is necessary formaterials used in efficient solar cells [6–9]. Onematerial class that is
especially versatile in this respect are compound semiconductors, specifically the III-V semiconductors
composed of elements from group 13 and 15 of the periodic table of elements [2, 5, 10–22]. In the last decades,
the optical properties of thismaterial class have been intensively investigated [2, 10–14, 22–36] and several
strategies have emerged tofine-tune the bandgap. Changing the nature of the chemical elements and their
relative composition is a powerful approach to vary the gap over awide range of energies [37–44]. However,
changing the chemical composition is not always possible. One reason for this lies in the constraints in the
growth characteristics of precursormolecules for the chemical vapor deposition techniques often used to grow
thesematerials. Another reason is the thermodynamic instabilities of some elemental compositions [3, 14, 37,
44–48].

An alternative and sometimes also complementary approach to vary the bandgap is strain engineering. This
can be achieved through external effects such as: applying pressure on the system [23, 24, 27–36], altering the
temperature of the system, or changing the substrate in epitaxial growth processes [13, 16, 19, 37–42, 45, 46,
49–62]. All of these approaches result in structural strain in the systembecause of the deviation of one or several
lattice parameters of thematerial from their equilibrium values. The effects on the electronic structure from
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straining thematerial are shifts in valence-bandmaximum (VBM) and conduction-bandminimum (CBM), and
thus, the variation in the bandgap.

Many attempts have beenmade to understand the effect of strain from theoretical perspectives. The
electronic properties of semiconductormaterials have been previously analyzed by: (a) empirical or semi-
empiricalmethods such as the local/nonlocal empirical pseudopotential method [63–71], the semi-empirical
tight-bindingmethod [72–84], the k•pmethod [85–90]; or by (b)first-principlesmethods [91–98] such as
density functional theory (DFT) [91, 99–104]. Although empirical and semi-empirical methods are
computationally efficient and often easy to apply, they rely onmany empirical fitting parameters. This strongly
lowers their ability to predict properties for newmaterials, which is a core goal in computationalmaterials design
[105]. In contrast, first-principlesmethods allow the calculation of the electronic structurewithout the need for
empirical fitting parameters.

One of themostwidely usedfirst-principles approaches inmaterial science isDFT. The crucial ingredient
here is the density functional. Functionals following the generalized gradient approximation (GGA) often lead to
an excellent agreement of computed lattice parameters with experimental data. However, they are known to
show very large errors for bandgaps [105–109]. Hybrid functionals such asHSE06 [110] andGW-basedmethods
[95–98] can solve this issue but are computationally expensive. Previously, we and others successfully used the
exchange-correlation functional, developed by Tran andBlaha, to predict the electronic properties of unstrained
III-V compound semiconductors without empirical adjustments or application of scissor operators [105,
111–117]. Although this functional contains one global system-dependent parameter, this parameter is derived
from the density and twofitted parameters only without adjustment to experimental values. Here, wewill show
that this approach can also successfully be used for predicting properties when applying awide range of strains to
thesematerials.

Although strain engineering is an establishedfield for III-V semiconductors [2, 45, 87, 118, 119], the
investigation of strain effects has recently found renewed interest in the field of nanowires [120–128].
Furthermore, no systematic theoretical study is yet available that predicts optical properties of strainedmaterials
of this kindwithout empirical adjustments.We now set out to reliably predict the optical properties of strained
materials over awide range of strains. This will ultimately enable computationalmaterials design approaches in
strain engineering of established and upcomingmaterials.

This workwill establish themethodology and highlight the challenges of predictivemodelling. Thus, we
focus our analysis of strain effects on the electronic structure of themostwidely investigated binary III-V
semiconductors: GaAs andGaP. Thesematerials are not only interesting for basic research but also support a
wide range of applications (either as binarymaterials or as a hostmaterial formultinary compounds) in
microelectronics, solar cells, laser technology, and LEDs [2–9, 14–21]. To show the general applicability of our
approach, selected data on thematerials Si, GaSb, InP, InAs, and InSb are included.

In this work, we present and validate a computational approach predicting the size and nature of the
bandgap of III-V semiconductormaterials over awide range of strain values. The ultimate goal is to provide
guidelines for future experimental work on strainedmaterials.

2.Model

In this studywemodel uniaxial, biaxial, and isotropic strain. Figure 1 schematically showswhich lattice
parameters are kept fixed andwhich are relaxed in themodelling of these three types of strain. Thematerials
investigated are all feature zincblende structures. The growth direction in the ‘theoretical epitaxy’ approach
applied (see below) is taken to be [001] in this study and is defined as the z-direction in ourmodelling approach.
We limit our analysis of uniaxial strain to the application of strain along the growth direction only. This uniaxial
(compressive) strain is experimentally realizedmost often by applying pressure. Here, wemodel this by varying
the lattice parameter in the z-directionwhile relaxing the in-plane lattice parameters (figure 1(a)). In the spirit of
a systematic study, we also study uniaxial tensile strain over the same range of values. However, the experimental
realization of expanding lattice parameters is typically limited to small strain values (e.g. by increasing the
temperature or applying shear stress). Themajor approach to produce biaxially strainedmaterials is epitaxial
growth on a substrate with a different lattice parameter (as).We thusfix the in-plane lattice parameters (ax, ay) to
the lattice parameter of an (imaginary) substrate (as)while varying the parameter in the growth direction
(figure 1(b)). In this case, we consider the structural strain imposed by a substrate but neglect the electronic
influence for themodelling (theoretical epitaxy) [45, 119]. Isotropic strain is then consequentlymodelled by not
constraining any lattice parameter and increasing (decreasing) all lattice parameters by the same amount
(figure 1(c)).
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3. Computational details

Computationswere carried outwithDFT-based approaches as implemented in theViennaAb initio Simulation
Package (VASP 5.4.4) [101, 130–133], using plane-wave basis sets in conjunctionwith the projector augmented
wave (PAW)method [134, 135]. The primitive zincblende cell was used throughout. The basis set energy cutoff
of 450 eV, the electronic energy convergence criteria of 10−6 eV, and the force convergence of 10−2 eV/Åwere
used. Reciprocal spacewas sampledwith a 10× 10× 10Γ-centeredMonkhorst-Pack k-pointmesh [136].We
used these settings for all the solids studied in this work. The convergence test for k-mesh and planewave cutoff
are presented infigure S1.Optimizations of the primitive cells were performed using the Perdew–Burke–
Ernzerhof (PBE) exchange-correlation functional [106]with the semi-empirical dispersion correction scheme
DFT-D3with a Becke-Johnson type damping function [137, 138].We also tested other approaches to describe
dispersion interactions (table S1,figure S2). The best aggreement between the optimized and experimental
lattice parameters were found using PBE-D3(BJ) approach.Othermethods to treat dispersion interaction
delivered less good agreement. The geometry optimizations were carried out by the consecutive volume and
position optimization until convergence was reached. For every set of lattice parameter values investigated, all
atomic positions were optimized.

For the bandgap and band structure calculations, the TB09 functional was used [111] including spin–orbit
coupling. This had previously been used to give an excellent agreementwith the experimental bandgaps for this
compound class [105, 111–116]. The band energies for all the different configurationswere re-normalized to the
respective VBM.We limited our calculations to a range of± 10% strain by applying constrained optimizations
as outlined in the previous section. This is in the order ofmagnitude of pressures (10 to several 100 GPa)
achievable inmodern experiments [33, 139–150].We indicate tensile strainwith a ‘+’ sign to emphasize the
positive strain value and tomake it easier for the reader to distinguish it from compressive strain values, which
are denotedwith a ‘–’ sign.

The contribution of the atomic orbitals at the different k-points on the bandswas calculated by projecting
the planewaves on theminimal basis set using LOBSTER [151, 152].

4. Results

4.1. Unstrained structures
Beforewe discuss the influence of strain, the unstrainedmaterials investigated here shall briefly be presented.
Regarding the sign convention, we define positive strain to correspond to expansion (tensile strain) and negative
strain as compression (compressive strain). The strain values were calculated according to equation (1).

/( ) ( ) ( )a a astrain % 100 1f eqm eqm= - ´

Here, af is the lattice parameter in the strained structurewhile aeqm is the equilibrium lattice parameter. The
equilibrium lattice parameters for allmaterials investigatedwere computedwith the PBE-D3(BJ) approach and
are given in table 1. The good agreement with the experimental lattice parameters (maximumdeviation of
0.09Å or 1.3%) lends confidence to the accuracy of the theoretical approach.

Figure 1.The strainmodels used in this study: (a) uniaxial strain, (b) biaxial strain, and (c) isotropic strain. The blue and red arrows
correspond to tensile and compressive strain, respectively. The z-direction is defined as the strain (a) or growth (b) direction. For the
biaxial case, as corresponds to the (epitaxial) substrate lattice parameter.
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4.2. Galliumarsenide
4.2.1. Isotropic strain
First, we present the bandgap variation ofGaAs under the application of isotropic strain in a range of± 10%
around the unstrained lattice parameter. Figure 2 shows the variation of the energy difference between the
conduction band (CB) and the valence band (VB) at theΓ point (ΔEΓ), as well as the bandgap (Eg), as a function
of strain.Here, and throughout themanuscript, we distinguish between these two energy differences. For a
direct bandgapmaterial, both values are the same. If Eg is smaller thanΔEΓ this indicates an indirect bandgap. A
strain valuewhere the two curves start deviating thus indicates a direct-to-indirect (DIT) bandgap transition
point.

Under tensile strain, Eg decreases until, at+ 6.78% strain, the bandgap vanishes, corresponding to a
semiconductor-to-metal transition (SMT). In this case, the Eg curve coincides with theΔEΓ curve throughout,
indicating a direct bandgap. Under compressive strain, however, the Eg curve initially follows theΔEΓ curve
until−1.56% strain, where the Eg curve then separates from theΔEΓ curve. AlthoughΔEΓ still increases under
further strain, the bandgap starts to decrease. Thus, we have aDIT point here.

To understand the origin of this deviation, we look at the band structures computed at each strain value. The
band structures can be found in the supporting information (figures S3(a), (b)).Wefind that theVBM remains
at theΓ point not only here but for allmaterials and strain regimes investigated. Only theCBMchanges its
position in k-spacewhen strain is applied. Thus, the change inCBMunder compressive strain determines the
change in the nature of bandgap. Figure 3 shows the change inCB energies for strainedGaAs relative to their
values for the unstrained structure at four high-symmetry points in reciprocal space:Γ, L,Δm, andXpoints.
This shows that theCB energies at theΓ and L points decrease under tensile strainwith a slight increase forΔm

andXpoints. The largest change is found at theΓ point, followed by L,Δm, andX. As unstrainedGaAs is a direct
bandgap semiconductor, this signifies that the bandgap remains direct under tensile strain, to beginwith.
Subsequently, at+ 6.78% strain, theCBMandVBMbecome degenerate, which results in the SMT.

For compressive strain, however, theCB energies at theΓ and L point increase while a slight decrease is
found at theΔm andXpoints (figure 3). This results in an increase in the direct bandgap for small strain values.
Since CB at theΓ point changes themost with strain, beyond−1.56% strain it supersedes the energy at the L
point. This results in theCBMshifting from theΓ to the L point and aDIT. CB energy at theΓ point increases

Figure 2. Isotropic strain effects on the bandgap ofGaAs. The energy difference betweenCB andVB at theΓ-point (ΔEΓ, blue), the
bandgap (Eg,magenta), the direct-to-indirect transition (DIT), and the semiconductor-to-metal transition (SMT) are shown. The
solid orange line indicates Eg for the unstrained structure (1.47 eV). The inset shows the region of theDITwith afiner grid of strain
calculations.

Table 1.Computed (PBE-D3(BJ)) optimized unstrained lattice parameters (Å) for thematerials
investigated in comparison to experimental reference values at 0 K.

System Si GaP GaAs GaSb InP InAs InSb

Calculation 5.421 5.474 5.689 6.134 5.939 6.138 6.556

Experiment [38, 129] 5.430 5.442 5.642 6.082 5.861 6.050 6.469
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further resulting in a steep increase ofΔEΓ for high strain values (figure 2). CB at the L point increasesmuch
slower in energy, flattening the Eg curve and even producing bandgap decrease at high compressive strain
(figure 2).

Further, by comparing the difference inCB energies at theΓ, L,Δm, andXpoints, different ‘transition
points’ are estimated (figure 4). Thefirst transition is fromΓ to L at−1.56% strain (DIT), the second fromL to
Δm at−2.28% strain, and the third fromΔm toX at−4.47% strain. Increasing the resolution in the k points
further reveal that, unlike the sharpfirst and second transitions, the third ismuch smoother (figure S3(c)).
During the third transition, the CBM start toflatten outwith strain, until at−6.78%when theX point also
become part of the CBM-plateau. After that, the plateau start to shrink towards theX point.

4.2.2. Biaxial strain
The effect of the biaxial strain on the bandgap is shown infigure 5 (band structures are shown infigures S3(d),
(e)). The bandgap decreases under both compressive and tensile strain. During compression, the Eg curve
coincides withΔEΓ throughout. TheCBMalways remains at theΓ point, and hence, the bandgap remains
direct. Only for very high compressive strain values (beyond−7.86%), theCBMandVBMbecome degenerate,

Figure 3.Variation of CB energies for isotropically strainedGaAs at the k-pointsΓ (red), L (blue),Δm (purple), andX (olive) relative
to their values in the unstrained structure. The band energies at differently strained configurations are re-scaledwith respect to their
corresponding VBM.

Figure 4.The difference betweenCB energies at theΓ point and other k-points P (ΔECB=ECB-P—ECB-Γ; with P=Γ , L,Δm, andX)
for isotropically strainedGaAs. Colored areas indicate at which k-point wefind theCBM for the given value of compressive strain. The
color scheme:Γ (red), L (blue),Δm (purple), andX (olive).
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leading to an SMT. For tensile strain, aDIT is found at+ 3.52% strain, exemplified by the Eg curve splitting from
ΔEΓ in figure 5.

Under further tensile strain, the bandgap continues to decrease until GaAs become a semimetal at+ 8.00%
strain. Thus, we observ a semiconductor to semimetal transition (SsMT). By comparing the difference inCB
energies at theΓ, L,Δm, andXpoints (figure S4)wefind theDIT to correspond to aΓ toΔm transition.No
further transition points are found here.

4.2.3. Uniaxial strain
The uniaxial strainmodel in our case is equivalent to the biaxial strainmodel. This is true becausewe consider
the [001] crystal orientation in the zincblende crystal grown on the [001] surface of another zincblende substrate,
and the uniaxial strain is then applied in the 〈100〉 direction (figure 1(a)). In this configuration, relaxing the
lattice parameter in the z-direction atfixed in-plane (x and y) lattice parameters (as) is equivalent tofixing it in
the z-direction at the value a, and relaxing the in-plane parameters. For the uniaxial strain in other crystal
orientations or directions, this equivalence is not true, because offinite off-diagonal stress tensor elements
[118, 153, 154].

Therefore, we use the data from the previous subsection and nowpresent them as a function of the out-of-
plane lattice parameter (figure 6). This is essentially amirrored version offigure 5with a changed scaling of the x-
axis. Now,we find theDIT at−7.30% strain, the SsMT at−15.43% strain, and the SMT at+ 17.73% strain,
respectively.

4.2.4. Combining biaxial and uniaxial strain
Uniaxial and biaxial strain are shown in the previous sections to be useful strategies to tune themagnitude of the
bandgap.However, onemajor goal in tuning the electronic structure is changing the nature of the bandgap. As
shown in the previous subsection, this however, can not be achieved via biaxial compressive strain, which is one
of themost common experimental realizations of strain via epitaxial growth.Wewill now show that in a new
strategy by combining this biaxial compressive strainwith uniaxial strain changes in the nature of the bandgap
can in fact be achieved.

In a thought experiment (figures 7, S5), the desiredmaterial (GaAs) isfirst ‘grown’ epitaxially on a substrate
with a smaller lattice constant (e.g., GaP), resulting in compressive biaxial strain (here:−3.78%). Such epitaxial
growthwould lead to expansion of the z-lattice parameter. Subsequently, uniaxial compressive strain (e.g.,
pressure) could be applied along the z-direction to compress the z-lattice parameter.We assume that the in-
plane lattice parameters would not relax upon compression of the z-lattice parameter.We thusmodel a case here
where strain is accumulated inside the epitaxial layer without creating defects. In this case, wefind aDIT point at
−3.2%uniaxial strain (figure 8).

Next, we further generalize this strategy. Figure 9 shows the required uniaxial compressive strain for theDIT
in biaxial compressively strainedGaAs.No transition can be achieved for biaxial compressive strain below
1.56%, as both the biaxial and isotropic strainwould have the same direct nature of the bandgap (figures 7, S6).

Figure 5.Biaxial strain effects on the bandgap ofGaAs. The energy difference betweenCB andVB at theΓ-point (ΔEΓ, blue), the
bandgap (Eg,magenta), the direct-to-indirect (DIT), the semiconductor-to-metal (SMT), and the semiconductor-to-semimetal
(SsMT) transitions are shown. The solid orange line indicates Eg for the unstrained structure (1.47 eV).
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A similar strategy can be applied for the indirect to direct transition (IDT) in biaxial tensile strainedGaAs
(figure S6). In this case, onewould need to expand the z-lattice parameter for the transition. Experimentally, this
can be achieved e.g., by thermal expansion. As shown infigure S7, this however, is only reasonable for biaxial
strain smaller than 4.5%. For higher biaxial strain the large required amount of uniaxial tensile strain can not be
achieved by thermal expansion only.

4.3. Galliumphosphide
Galliumphosphide is an indirect bandgap semiconductor. Next, we demonstrate the application of strain on the
bandgap engineering. Figure 10 shows the variation inCB energy forGaP under isotropic strain at theΓ, L,Δm,
andXpoints relative to their unstrained values (band structures are shown infigures S3(f), (g)).

For compressive strain, the CB atΓ and L point increases in energy, while it decreases at theΔm andXpoints.
AsGaP is an indirect bandgap semiconductor at equilibrium, the nature of the bandgap thus does not change.
For tensile strain, theCB energy at theΓ and L points decreases strongly while we find a small increase at theΔm

andXpoints. This lead to a shift of the indirect bandgap fromΔm to L at+ 1.43% tensile strain (figure 11). As

Figure 6.Uniaxial strain effects on the bandgap ofGaAs. The energy difference betweenCB andVB at theΓ-point (ΔEΓ, blue), the
bandgap (Eg,magenta), the direct-to-ndirect (DIT), the semiconductor-to-metal (SMT), and the semiconductor-to-semimetal
(SsMT) transitions are shown. The solid orange line indicates Eg for the unstrained structure (1.47 eV).

Figure 7.Computational bandgap engineering for GaAs grown onGaP substrate. The energy difference betweenCB andVB at theΓ-
point (ΔEΓ, blue for iso and green for bi) and the bandgap (Eg,magenta for iso and red for bi) are shown as a function of biaxial (bi)
and isotropic (iso) strain.
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the slope for the energy at theΓ point is largest (figure 10), we find an indirect to direct transition (IDT) at+
2.63% strain (figures 11, S8).

The result for biaxial strain is shown infigure 12 (band structures are shown infigures S3(h), (i)). Here, we
find no change in the nature of the bandgap throughout the entire range of compressive and tensile strain. The
bandgap remains indirect throughout. For very high strain values, wefind SsMTs at+ 8.45% and−9.83%
strain.

The uniaxial conversion of the data infigure 12, as is explained forGaAs case, would not have any further
special interest (figure S9). Similar toGaAs, by combining biaxial and uniaxial strain inGaP one can in principle
achieve IDT.However, this would require large uniaxial tensile strain (> 8%), which can not be realized by
thermal expansion (figure S10).

4.4. Silicon, GaSb, InP, InAs, and InSb
Wealso applied the approach outlined in detail forGaAs andGaP to other interesting semiconductormaterials.
Tables 2 and 3 summarizes themain results for Si, GaSb, InP, InAs, and InSb. In all cases, theVBM stays at theΓ
point throughout the strain regimes applied. Thus, the position of theCBM in reciprocal space determines the
nature of the bandgap.

Figure 8.Change in bandgap as a function of uniaxial compressive strain along z-lattice parameter for GaAs grown onGaP [001]
substrate. The energy difference betweenCB andVB at theΓ-point (ΔEΓ, blue), the bandgap (Eg,magenta), and the direct-to-indirect
(DIT) transition are shown.

Figure 9.Variation of required uniaxial compressive strain for the direct to indirect transition (DIT) in biaxial compressively strained
GaAs. 3rd order Birch-Murnaghan equation [155] is used for the strain to pressure conversion.We use reference [156, 157] for the
bulkmodulus and itsfirst derivative data for the conversion.
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Si andGaP are indirect bandgap semiconductors in their equilibrium structure while the othermaterials
discussed showdirect bandgaps. Accordingly, Si andGaP showe IDTswhile the othermaterials showDITs. The
strain values where these transitions are found, for isotropic and biaxial strain, are shown in columns 3 and 4 of
table 2. For the isotropic strain case, the IDTs are found for tensile strain as already discussed forGaP in the
previous section. The value for Si is so high (+ 10.31%) that it will certainly be out of range for any experiment.
TheDITs are found for isotropic compressive strain throughout, with strain values ranging from−1.00%
(GaSb) to−7.41% (InAs).

For biaxial strain, DITs are found only forGaAs, GaSb, and InP. In all cases, a significant tensile strainwould
be necessary. Formanymaterials, transitions are found to other k-points in reciprocal spacewhere the nature of
the bandgap stays indirect. This is shown in the right-hand part of the table. [more details are shown infigures
S11, S12, and S13.]

Notably, In-based compound semiconductors show theDIT points atmuch higher strain values compared
toGa-basedmaterials. Figure 13 shows the contribution of the atomic orbitals to theCB for unstrainedGaAs
and InAs. At the decisive points in k-space (Γ, L, andXpoints) the group III elements show themajor orbital
contributions toCB. Furthermore, while the s-orbital contributions (Ga(4s), In(5s)) dominate at theΓ point, the
L point and theX point showhigh p-orbital contributions (Ga(4p), In(5p)). Since the energy gap between 5s and

Figure 10.Variation of CB energies for isotropically strainedGaP at the k-pointsΓ (red), L (blue),Δm (purple), andX (olive) relative
to their values in the unstrained structure. The band energies at differently strained configurations are re-scaledwith respect to their
corresponding VBM.

Figure 11.The difference betweenCB energies at theΓ point and other k-points P (ΔECB=ECB-P—ECB-Γ; with P=Γ, L,Δm, andX)
for isotropically strainedGaP. Colored areas indicate at which k-point we find theCBM for the given value of tensile strain. The color
scheme:Γ (red), L (blue),Δm (purple), andX (olive).

9

Phys. Scr. 98 (2023) 065924 BMondal andRTonner-Zech



5p orbital in In ismuch higher than 4s and 4p inGa, changing group III fromGa to In increases the energy
difference betweenΓ&XandΓ&L, respectively (see figure 14). Under strain, the decrease of these energy
differences ultimately results in the shift of CBM from theΓ to the L and/orX point (figures S3, S14). Therefore,
the higher this relative energy difference, the higher the requirement of the amount of strain needed to reach the

Figure 12.Biaxial strain effects on the bandgap ofGaP. The energy difference betweenCB andVB at theΓ-point (ΔEΓ, blue), the
bandgap (Eg,magenta), and the semiconductor to semimetal (SsMT) transitions are shown. The solid orange line indicates Eg for the
unstrained structure (2.36 eV).

Table 2.Change in the nature of bandgap for different III-V semiconductormaterials for isotropic
and biaxial strain.

Transition CBM transition path

System Typea Isotropic (%) Biaxial (%) Isotropic Biaxial

Si IDT +10.31b × Δm→L→Γ Δm→K→L

GaP IDT +2.63 × Δm→L→Γ Δm→L

GaAs DIT −1.56 +3.52 Γ→L→Δm→X Γ→Δm

GaSb DIT −1.00 +3.71 Γ→L→Δm Γ→Δm

InP DIT −4.40 +7.66 Γ→X Γ→Δm

InAs DIT −7.41 × Γ→X ×
InSb DIT −5.18 × Γ→L→Δm ×

a Direct to indirect transition (DIT) and indirect to direct transition (IDT).
b Estimated using linear extrapolation.

×No transitions within±10% strain.

Table 3. Semiconductor tometal transition (SMT) and semiconductor to semimetal transition (SsMT)
points for different III-V semiconductormaterials under isotropic and biaxial strain.ΔEΓ corresponds
to the energy difference betweenCB andVB at theΓ point.

SMT SsMT

System ΔEΓ (eV) Isotropic (%) Biaxial (%) Isotropic (%) Biaxial (%)

Si 3.14 +15.00a × × +3.70,−6.50

GaP 2.99 +13.00a × × +8.45,−9.83

GaAs 1.81 +6.67 −7.86 × +8.00

GaSb 0.64 +2.85 −5.00 × +5.07

InP 1.43 +8.20 −9.90 × +10.38

InAs 0.36 +2.10 +4.74,−4.36 × ×
InSb 0.03 +0.34 +0.34,−0.34 × ×

a Estimated using linear extrapolation.

×No transitionswithin±10% strain.
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DITpoint (figures S12, S13). This results inDIT points at larger strain values for In-based compounds in
comparison to theGa-based compounds. Note that, as the above reasoning is qualitative, for simplicity, we do
not consider theΔmpoint here.

Table 3 summarizes the SMTs and SsMTs for the compound semiconductors investigated. These transitions
depend on the closing of theCBMandVBMgaps. As theVBMalways remains at theΓ point, these transition
points therefore depend onΔEΓ. Figure 15 shows the SMTs under isotropic strain for different systems in
relation to their correspondingΔEΓ. As theΔEΓ increases, so does the S(s)MTvalues.

In table 4, we compare our calculated results with the available experimental findings. The resultsmatch
quite well. In experiments, theDIT points weremeasured in terms of applied hydrostatic pressure. Using the
third-order Birch-Murnaghan equation [155]we converted themeasurement in terms of strains.We used
reference [156, 157] for the bulkmodulus and and itsfirst derivative data for the conversion. ForGaAs, the strain
regionwhenCBM is visible at the L point is very small (only 0.72% strainwindow),figure 4. Therefore, we
conclude that in the experiment this regionwasmost likelymissed (table 4, 3rd row last column). For InSb a
deviation of 0.21 eVwas found for the equilibriumbandgap. This, in turn, would result in the overestimation of
theDIT point in our calculation (table 4, 7th row last column).

Figure 13.Atom resolved orbital contributions for unstrainedGaAs and InAsCB. Solid sky blue: Ga(4s), dotted sky blue: In(5s), solid
orange: Ga(4p), dotted orange: In(5p), solid green: As(4s) inGaAs, dotted green: As(4s) in InAs, solid red: As(4p) inGaAs, dotted red:
As(4p) in InAs.

Figure 14.The relative energy differences betweenΓ&X (olive) andΓ&L (blue) at theCB for unstrainedGa and In series binaries
(figure S15).
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5. Conclusions

Wecalculated the strain-induced bandgap variation for various III-V binary compounds focusing onGaAs and
GaP for a detailed analysis.We investigated compressive and tensile strain in the range of±10%around the
unstrained structure, which enabled the tuning of the bandgap over awide range. Furthermore, we showed the
presence of direct-to-indirect and indirect-to-direct transitions in the nature of bandgap of thesematerials based
on the analyses of differences between valence and conduction band energies at theΓ-point (ΔEΓ) and the
bandgap (Eg). Only 4 special k-points were found to be responsible for the direct-indirect transitions:Γ, L,Δm,

andX. The valence bandmaximum stayed at theΓ point throughout the strain regimes applied. Thus, the
position of the conduction bandminimumalone in reciprocal space determined the nature of the band gap. By
combining the biaxial and uniaxial strain, we proposed a strategy for the realization of direct-indirect transitions
in the regionswhere otherwise no transition could be achieved by single type of strain.With this work, we laid
the foundation for further efforts withmultinary compound semiconductors under strain.
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Figure 15.Correlation between SMT (isotropic strain) and the energy difference betweenCB andVB at theΓ-point (ΔEΓ) forGa and
In series binaries.

Table 4.The calculated equilibrium (unstrained) bandgaps, DIT points, and theDIT transitions comparedwith the
experiments.

Equilibriumbandgap (eV) Isotropic strainDIT (%) Transitions

System Calculated Experimenta Calculated Experiment Calculated Experiment

Si 1.19 1.17 — — — —

GaP 2.36 2.34 — — — —

GaAs 1.47 1.52 −1.56 −2.75b Γ→L Γ→Xb

GaSb 0.64 0.81 −1.00 −1.54b Γ→L Γ→Lb

InP 1.43 1.42 −4.40 −5.16c Γ→X Γ→Xc

InAs 0.36 0.41 −7.41 −8.17c Γ→X Γ→Xc

InSb 0.03 0.24 −5.18 −4.23c Γ→L Γ→Xc

a Experimental bandgaps are at 0 K [38, 129].
b Reference [28].
c Reference [28, 157, 158].
— For Si andGaP IDTs are in the tensile strain region.

No experimental data are available.
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S I Plane wave cut-off energy and k-mesh convergence for Si and GaP 
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Figure S1: Results of the convergence test for (a, b) the plane wave cut-off  and (c, d) the k-mesh. 

The data points are given with respect to the most accurate setting (750 eV, 21×21×21). The range 

of energy scales within the commonly accepted target accuracy of ±1 meV/atom are shown by gray 

areas. (a) and (b) are the plane wave cut-off convergence test for unstrained Si and GaP, respectively. 

(c) and (d) are the k-mesh convergence test for Si and GaP, respectively (black: strain=0%, red: 

strain= −10%).  

 

For the plane wave cut-off energy convergence test we present the results for Si and GaP. We chose 

GaP because among the family of III-V compounds we addressed in the paper, Ga & P has the highest 

default plane wave cut-off in the PAW potentials we used in VASP calculations. Figure S1a and S1b 

show the plane wave cut-off energy convergence results for unstrained Si and GaP. The energies per 

atom were calculated from the optimized geometry at each plane wave cut-off energy. For all the 

calculations here, we used 10×10×10 k-mesh. From the results clearly, the 450 eV plane wave cut-off 

energy can be used as the converged value for the optimal choice.  

Figure S1c and S1d show the k-mesh convergence results for Si and GaP. As strain changes the lattice 

parameters, we also checked the k-mesh convergence for the isotropically compressively strained 

system. The largest strain we considered in this paper is 10% strain. As GaP has the lowest lattice 

constant among the family of III-V compounds we addressed in the paper, the converged parameters 

for GaP should be valid for other III-V as well. The energies per atom were calculated from the 

optimized geometry at each k-mesh value. For all the calculations here, we used 450 eV plane wave 

cut-off energy. From the results clearly, 10×10×10 k-mesh can be used as the converged value for the 

optimal choice. 

After the analyses of the above convergence results, we ultimately chose to use 10×10×10 k-mesh and 

450 eV plane wave cut-off energy value as the optimal setup for all the solids studied in the main 

manuscript.  
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S II Effect of dispersion interactions on the equilibrium lattice parameters 

 

Table S1: Effect of the type of dispersion interaction treatment on the computed equilibrium lattice 

parameters (Å) for the materials investigated in this article. Mean absolute error (MAE) indicates the 

relative absolute deviation in the calculated lattice parameters with respect to their experimental 

values, averaged over the materials investigated.  The experimental reference values are at 0 K. 

 

 Si GaP GaAs GaSb InP InAs InSb MAE(%) 

Experiment 5.430 5.442 5.642 6.082 5.861 6.050 6.469  

PBE-D3(BJ) 5.421 5.474 5.689 6.134 5.939 6.138 6.556 0.94 

PBE-TS 5.446 5.508 5.726 6.138 5.954 6.138 6.527 1.12 

PBE-TS/HI 5.446 5.474 5.689 6.155 5.935 6.138 6.591 1.07 

PBE-TS+SCS 5.437 5.504 5.716 6.150 5.959 6.152 6.574 1.24 

PBE-MBD 5.432 5.481 5.702 6.154 5.945 6.146 6.579 1.10 

optB88-vdW 5.469 5.535 5.763 6.219 6.000 6.207 6.635 2.05 

vdW-DF2 5.539 5.650 5.930 6.421 6.140 6.391 6.850 4.68 

 

 

 

The data shown in Table S1 are the optimized lattice parameters calculated using the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional combined with the dispersion interaction energy 

correction of Grimme’s D3 scheme with Becke-Johnson damping (DFT-D3(BJ)) [1], Tkatchenko-

Scheffler (TS) model [2], Tkatchenko-Scheffler method with iterative Hirshfeld partitioning (TS/HI) 

[3,4],  Tkatchenko-Scheffler with self-consistent screening (TS+SCS) [5], and the many-body 

dispersion energy method [5,6]. The results using the nonlocal van der Waals density functional are 

shown for the improved vdw-DF method (vdw-DF2) [7] and optB88-vdw method [8]. Mean absolute 

errors (MAE) indicate the relative absolute deviation in the calculated lattice parameters (acalc) from the 

experimental values (aexp) [9,10], averaged over the materials investigated:  

MAE = [ ∑materials abs(acalc – aexp) / aexp × 100 ] / nmaterials  
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Figure S2: Effect of the type of dispersion interaction treatment on the computed equilibrium lattice 

parameters (Å) for the materials investigated in this article.  Mean absolute error (MAE) indicates 

the relative absolute deviation in the calculated lattice parameters with respect to their experimental 

values, averaged over the materials investigated. The experimental reference values are at 0 K. 

 
 

Table S1 shows the effect of dispersion interaction correction on the optimized lattice parameters for 

the compounds addressed in this article. Different approaches to describe the dispersion interaction 

within the density functional theory framework are shown. Minimum mean absolute error (MAE) is 

found for DFT-D3(BJ) approach, figure S2. This is therefore, we used for the rest of the calculations. 

Note, that DFT-D3(DJ) adds a correction to total energy only and hence, will not have any effect on 

electronic properties calculation with TB09 functional. 
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S III Movies 

The movies referenced here show the evolution of band structure in GaAs and GaP under different 

strain regimes. The band structures were calculated along the high symmetry path of zincblende 

structures. In all cases, the band energies were rescaled with respect to their corresponding VBM. 

 

Figure S3a: GaAs under isotropic tensile strain 

Figure S3b: GaAs under isotropic compressive strain  

Figure S3c: GaAs under isotropic compressive strain zoomed in CB region 

Figure S3d: GaAs under biaxial tensile strain 

Figure S3e: GaAs under biaxial compressive strain  

Figure S3f: GaP under isotropic tensile strain  

Figure S3g: GaP under isotropic compressive strain  

Figure S3h: GaP under biaxial tensile strain  

Figure S3i : GaP under biaxial compressive strain  
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S IV Direct-to-indirect (DIT) transition in GaAs under biaxial strain  

 

 
 

Figure S4: The difference between CB energies at the  point and other k-points P (ECB = ECB-P – 

ECB-; with P =  L, m, and X) for biaxially strained GaAs. Colored areas indicate at which k-

point we found the CBM for the given value of tensile strain. The color scheme: Γ (red), L (blue), 

Δm (purple), and X (olive). 
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S V The schematic of combining uniaxial and biaxial strain  

 

 
   
   

 

  
 

(a) No contact between the 

systems. Individual systems 

are in their unstrained 

configuration. In this 

condition, GaAs is a direct 

bandgap semiconductor. 

 

(b) GaAs is epitaxially grown on 

GaP substrate. Therefore, GaAs 

layer is in-plane compressively 

strained. This is the source of 

biaxial compressive strain. In this 

condition, strained GaAs is a 

direct bandgap semiconductor. 

 

(c) Uniaxial compressive strain is 

applied along the z-direction of 

biaxially strained GaAs grown on 

GaP-substrate. In this case, after 

3.2% uniaxial strain the strained 

GaAs shows an indirect bandgap. 

 

Figure S5: The schematic of thought experiment as described in section 4.2.4 of the manuscript. Here, 

(b) GaAs is grown epitaxially on a substrate with smaller lattice constant, GaP. This results in an in-

plane compressive biaxial strain (3.78%) and an expansion of z-lattice parameter in the GaAs epi-

layer. (c) Then, the application of subsequent uniaxial compressive strain (e.g. pressure) compresses 

the z-lattice parameter. We assume that the in-plane lattice parameters do not relax upon compression 

of z-lattice parameter due to the strain exerted by the substrate. 
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S VI Generalization of the bandgap transition in GaAs by combining uniaxial 

and biaxial strain  

 

 
 

Figure S6: Bandgap variation with strain for GaAs. The energy difference between conduction and 

valence band at the Γ point (ΔEΓ, magenta for isotropic and green for biaxial strain) and the bandgap 

(Eg, blue for isotropic and red for biaxial strain) are shown as a function of biaxial (bi) and isotropic 

(iso) strain. The solid orange line indicate Eg for the unstrained GaAs.  The shaded regions indicate 

the strain regime, only where one can achieve the direct-indirect transition in the bandgap nature by 

applying uniaxial strain on the biaxially strained GaAs. 
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S VII Indirect-to-direct (IDT) transition by applying uniaxial tensile strain in 

biaxially strained GaAs  

 

Figure S7: Variation of required uniaxial tensile strain for the indirect to direct transition (IDT) in 

biaxial tensile strained GaAs. The temperature increase (ΔT) required for the thermal expansion was 

calculated using the linear thermal expansion coefficient of GaAs (5.73×10-6 ˚C-1 [10]). 
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S VIII   Indirect-to-direct (IDT) transition in GaP  

 

 
 

Figure S8: Isotropic strain effects on the bandgap of GaP. The energy difference between CB and 

VB at the Γ-point (ΔEΓ, blue), the bandgap (Eg, magenta), and the indirect to direct transition (IDT) 

are shown. The solid orange line indicates Eg for the equilibrium structure (2.36 eV). The inset 

shows the region of the IDT with a finer grid of strain calculations resulting in higher resolution. 
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S IX Uniaxial strain effect on bandgap of GaP  

 

 
 

Figure S9: Uniaxial strain effects on the bandgap of GaP. The energy difference between CB and 

VB at the Γ-point (ΔEΓ, blue) and the bandgap (Eg, magenta) are shown. The solid orange line 

indicates Eg for the equilibrium structure (2.36 eV).  
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S X Indirect-to-direct (IDT) transition in GaP by combining biaxial and 

uniaxial strain 

 

 
 

Figure S10: Variation of required uniaxial tensile strain for the indirect to direct transition (IDT) to 

take place in biaxial tensile strained GaP. 
 

 

 

S XI Bandgap variation with strain for III–V semiconductors 

 

 

(a) Si 
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(b) GaP (e) InP 

  

(c) GaAs (f) InAs 

  

(d) GaSb (g) InSb 

 

Figure S11: Bandgap variation with strain for different III-V binary semiconductors. The energy 

difference between conduction and valence band at the Γ point (ΔEΓ, magenta for iso and green for bi) 

and the bandgap (Eg, blue for iso and red for bi) are shown as a function of biaxial (bi) and isotropic (iso) 

strain. The solid orange lines indicate Eg for the equilibrium structures.  

 

 

  



14 

S XII CBM transition path for different III–V semiconductors 

 

 

(a) Si  

  

(b) GaP (e) InP 

  

(c) GaAs (f) InAs 
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(d) GaSb (g) InSb 

 

Figure S12: The difference between conduction energies at the Γ point and other k points P  

(ΔECB = ECB-P − ECB-Γ ; with P = L, Δm, and X) for isotropically strained III-V binary semiconductors. 

The enclosed areas between the lines and the x-axis indicate at which k-point we find the conduction 

band minima for the given values of strains.  

 

 

  

(a) GaAs  (c) InP 

 

 

(b) GaSb  

 

Figure S13: The difference between conduction energies at the Γ point and other k points P  

(ΔECB = ECB-P − ECB-Γ ; with P = Γ, L, Δm, and X) for biaxially strained III-V binary semiconductors. The 

enclosed areas between the lines and the x-axis indicate at which k-point we find the conduction band 

minima for the given values of strains.  
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S XIII   Evolution of GaAs bandstructure under isotropic compressive strain 

 

   
 

(a) Strain = 0 % 

 

(b) Strain = -1.8% 

 

(c) Strain = -5.0 % 

 
Figure S14: The 3 snapshots around the direct-indirect transition points of the evolution of GaAs 

bandstructure under isotropic compressive strain. The energy difference between CB and VB at the 

Γ-point (ΔEΓ, blue) and the bandgap (Eg, magenta) are shown. Only 4 special k-points were found to 

be responsible for the direct-indirect transitions: Γ, L, Δm,, and X. For more details see section SIII. 
 

 

S XIV   Schematic of energy difference between Γ & X and  Γ & L 
 

 
 

Figure S15: The schematic of the difference between conduction band energies at the Γ point and 

other k-points P (ΔE(Γ & P) = ECB-P − ECB-Γ ; with P = L and X).  For simplicity, ΔE(Γ & Δm) is not shown. 
 

 
  



17 

References 

 
[1]  Grimme S, Ehrlich S and Goerigk L 2011 Effect of the damping function in dispersion 

corrected density functional theory J. Comput. Chem. 32 1456–65 

[2]  Tkatchenko A and Scheffler M 2009 Accurate Molecular Van Der Waals Interactions from 

Ground-State Electron Density and Free-Atom Reference Data Phys. Rev. Lett. 102 073005 

[3]  Bučko T, Lebègue S, Hafner J and Ángyán J G 2013 Improved density dependent correction 

for the description of London dispersion forces J. Chem. Theory Comput. 9 4293–9 

[4]  Bultinck P, Van Alsenoy C, Ayers P W and Carbó-Dorca R 2007 Critical analysis and 

extension of the Hirshfeld atoms in molecules J. Chem. Phys. 126 144111 

[5]  Tkatchenko A, DiStasio R A, Car R and Scheffler M 2012 Accurate and Efficient Method for 

Many-Body van der Waals Interactions Phys. Rev. Lett. 108 236402 

[6]  Ambrosetti A, Reilly A M, Distasio R A and Tkatchenko A 2014 Long-range correlation 

energy calculated from coupled atomic response functions J. Chem. Phys. 140 18A508 

[7]  Lee K, Murray É D, Kong L, Lundqvist B I and Langreth D C 2010 Higher-accuracy van der 

Waals density functional Phys. Rev. B 82 081101 

[8]  Klimeš J, Bowler D R and Michaelides A 2009 Chemical accuracy for the van der Waals 

density functional J. Phys. Condens. Matter 22 022201 

[9]  Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 Band parameters for III–V compound 

semiconductors and their alloys J. Appl. Phys. 89 5815–75 

[10]  New Semiconductor Materials. Biology systems. Characteristics and Properties, 

www.matprop.ru, last accessed 22.08.2022 

 



PHYSICAL REVIEW B 108, 035202 (2023)

Accurate first principles band gap predictions in strain engineered ternary III-V semiconductors

Badal Mondal
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany

and Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany

Marcel Kröner, Thilo Hepp , and Kerstin Volz
Material Science Center and Department of Physics, Philipps-Universität Marburg, D-35043 Marburg, Germany

Ralf Tonner-Zech *

Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany

(Received 7 March 2023; revised 10 May 2023; accepted 14 June 2023; published 7 July 2023)

Tuning the band gap in ternary III-V semiconductors via modification of the composition or the strain in
the material is a major approach for the design of optoelectronic materials. Experimental approaches screening a
large range of possible target structures are hampered by the tremendous effort to optimize the material synthesis
for every target structure. We present an approach based on density functional theory efficiently capable of
providing the band gap as a function of composition and strain. Using a specific density functional designed
for accurate band gap computation (TB09) together with a band unfolding procedure and special quasirandom
structures, we develop a computational protocol to predict band gaps. The approach’s accuracy is validated by
comparison to selected experimental data. We thus map the band gap over the phase space of composition and
strain (we call this the “band gap phase diagram”) for several important III-V compound semiconductors: GaAsP,
GaAsN, GaPSb, GaAsSb, GaPBi, and GaAsBi. We show the application of these diagrams for identifying the
most promising materials for device design. Furthermore, our computational protocol can easily be generalized
to explore the vast chemical space of III-V materials with all other possible combinations of III and V elements.

DOI: 10.1103/PhysRevB.108.035202

I. INTRODUCTION

Materials based on III-V semiconductor compounds are at-
tracting much attention in science and engineering due to their
diverse applications in fields such as optoelectronics [1,2].
One of the main goals of basic and applied research is to tailor
materials’ optical properties to a specific application [3–8].
One of the most critical fundamental properties in this respect
is the band gap, both in terms of size and type (direct or in-
direct). For example, optical telecommunication applications
require materials with direct band gaps in the range of 0.80–
0.95 eV [3–5], while solar cell applications require a range
of 0.5–2.0 eV [6–8]. Composition engineering, i.e., chang-
ing the relative composition of group 13 and 15 elements
in ternary III-V compounds, is one of the most important
approaches to adjusting the band gap [9–22]. Systematic ap-
plication of strain such as mechanical strain (e.g., external
pressure [23–26], mechanical bending of nanowires [27–29])
or strain due to lattice mismatch (e.g., core-shell mismatch
in nanowires [30–34]) on a system are alternative strategies
to tailor the band gap. Combining composition and strain
engineering, the band gap can be tuned over a wide range of
values, and direct or indirect semiconductors can be designed.
In thin-layer heteroepitaxy, choosing the substrate-layer

*ralf.tonner@uni-leipzig.de

combination with minimum lattice mismatch is often desir-
able to minimize the strain effect from the substrate. However,
in practice, perfect lattice matching is rarely possible. In such
cases, not only the composition but the effect of inherent strain
from the substrate also substantially affects the active layer’s
band gap [9–22,35–39]. Therefore, one requires a complete
knowledge of the material-specific dependence of the band
gap on composition and strain to guide the optimal choice of
materials. However, exploring the vast chemical space of all
possible combinations of III and V elements with variation in
composition and strain is experimentally not feasible. Addi-
tionally, growing a new material is often challenging because
of thermodynamic or kinetic limitations, such as phase separa-
tion or surface roughening, in addition to the demanding task
of optimizing the growth conditions [9,13,16,19,21,22]. This
makes an experimental screening approach of vast compound
and strain spaces unrealistic. We thus aim in this study to
develop a reliable and predictive theoretical approach.

Two major theoretical approaches that have been used to
analyze strain effects on the band gap of III-V materials
are (semi-)empirical methods and ab initio approaches. Al-
though (semi-)empirical methods such as k · p theory [36,40]
and tight-binding methods [36,41–43] are computationally
efficient, they rely on empirical parameters which require
system-specific experimental input data. This strongly lim-
its the predictive ability of these methods for new or
yet unknown materials. Additionally, in case of a large

2469-9950/2023/108(3)/035202(11) 035202-1 ©2023 American Physical Society
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mismatch in atomic sizes of the constituting elements, the
ternary material shows local strain effects, severely affecting
the band gap [44]. These local strain effects, however, can not
be included in empirical approaches and, hence, are neglected.
Then again, ab initio approaches such as density functional
theory (DFT) [40,45–50] allow for the calculation of elec-
tronic properties from first principles and are thus predictive
if accurate density functional are used. The relaxation of the
atomic positions also allows to properly include and investi-
gate the effect of the local strain on the electronic properties
in these approaches. Additionally, recent advancements in
the modeling strategies of alloy systems using quasirandom
supercells [51–55] allow for electronic properties calculations
in the ab initio approaches, even for diluted and disordered
materials. An accurate alternative to DFT approaches is the
use of GW-based methods, which are nevertheless too com-
putationally demanding for screening approaches as intended
here [44–46,56].

In a previous study, we established a computational pro-
tocol for predictive modeling based on DFT for binary III-V
compounds over a wide range of strain values [45]. In this
study, we are now extending this approach to ternary III-V
compounds, which then allow the combination of strain and
composition to fully explore a band gap design approach.
For ternary systems, only the effects of composition vari-
ations on the band gap in unstrained materials have been
studied [40,41,44,51–55]. For strained materials, a suitable
theoretical framework is still lacking. We present here a pre-
dictive first-principles protocol for a complete mapping of the
mutual correlation of composition, strain, and band gap in
ternary III-V semiconductor systems. The goal is to provide
guidelines for assessing and identifying the most promising
target materials for experimental investigations in the future.

We start by describing the computational methods in
Sec. II. Next, we describe the protocol for determining the na-
ture of the band gap from supercell calculations using GaAsP
as an example in Sec. III. We further present the composition-
strain-band gap correlation results for different ternary III-V
semiconductors in Sec. IV. We start with GaAsP, an exper-
imentally well-studied and promising candidate for LEDs,
detectors, and Si-based multijunction solar cells [57–64]. The
results for the GaAsN compound, a promising laser-active
material [44,65–67], are presented next. To show the general
applicability of our approach, we then show selected results
for (i) GaPSb, a candidate for vertical cavity emitting sur-
face laser [68–72]; (ii) GaAsSb, a material for tandem solar
cell application [73,74]; (iii) GaPBi, a promising material for
nearinfrared photonic device application on Si [75,76]; and
(iv) GaAsBi, another material discussed for near and midin-
frared photonic device application [77–79]. We then discuss
the comparison of our computations with experimental data
in Sec. V, underlining the accuracy and predictive capability
of our computational approach.

II. COMPUTATIONAL DETAILS

The calculations were performed with DFT-based ap-
proaches as implemented in the Vienna ab initio simulation
package (VASP 5.4.4) [80–83], using plane wave basis sets
in conjunction with the projector-augmented wave (PAW)

approach [84,85]. The ternary materials were generated using
the special quasirandom structures (SQS) approach [86] with
a supercell of size 6 × 6 × 6. The SQS cells were generated
using the alloy theoretic automated toolkit (ATAT) [87–89].
For all the materials except GaAsN, one SQS cell was used per
composition. In GaAsN, in agreement with the previous ob-
servation [44], we found that the size of the band gap strongly
depends on the distribution of N atoms in the supercell, even
in the SQS approach. We thus used 10 SQS cells for each
composition in this case.

Geometry optimization of the supercells was performed
using the PBE functional [90], including the dispersion-
correction method DFT-D3 with an improved damping
function [91,92]. The basis set energy cutoff was set to 450 eV.
The electronic energy convergence criteria of 10−6 eV and the
force convergence of 10−2 eVÅ−1 were used. The reciprocal
space was sampled at the � point only, given the large su-
percells used [93]. The meta-GGA functional TB09 [47] was
used to calculate the electronic properties (band gaps and band
structures). The effects of spin-orbit coupling were considered
in the TB09 calculations. For the meta-GGA calculations, the
energy cutoff of the basis set and the convergence criterion for
the electronic energy were lowered to 350 eV and 10−4 eV,
respectively, to reduce the computational costs. Structure
optimizations were carried out by consecutive volume and
position optimization until convergence was reached. This
setup was previously used to generate band gaps in excellent
agreement with experimental data [44].

All the materials within the composition range investigated
here feature the zincblende-type structure only. Moreover,
[100] crystal direction is the most common choice of substrate
orientation and growth direction in epitaxy. Therefore, we
modeled the strain application along [100] directions only.
The isotropic strain was modeled by increasing (decreasing)
all the lattice parameters of the unstrained structure by the
same amount. In this case, only the atomic positions of the
strained structure were optimized, keeping the volume fixed.
For biaxial strain, the in-plane lattice parameters were kept
fixed, and the lattice parameter in the out-of-plane direction
was optimized. No structural phase transition is assumed un-
der strain application. More details on the strain modeling can
be found in Ref. [45]. In the following, we indicate tensile
strain with a positive sign and compressive strain with a neg-
ative sign.

DFT calculations were performed at discrete points in
composition-strain space (Fig. S6 [94]). The calculated band
gap values were then interpolated to create the final images
in Figs. 2–6. Noticeably, for the systems we addressed in this
article, the variations of band gap values with concentration
and strain are mostly nonmonotonic (Fig. S6 [94]). This re-
sulted in nonsmooth interpolation in Figs. 2–6. It is to be
stressed that the origin of the nonsmooth patterns is neither
an interpolation artifact nor a deficiency of our DFT protocol.
This solely originated because of the nonmonotonic variation
of the band gap values (in the composition-strain space) of
the SQS cells that we used to calculate band gaps. A choice
of positive smoothening during interpolation (e.g., bivariate
B-spline, gaussian filtering) could mitigate the problem but
significantly increased the deviation of the interpolated band
gap values from the calculated DFT values and was thus not
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chosen. Further detail of the interpolation procedures can be
found in Sec. SVI [94]. Moreover, the nature of band gaps can
solely be deduced from the direct-indirect transition lines and
thus requires no interpolation.

III. PROTOCOL FOR DETERMINING BAND GAP NATURE

Supercell calculations, as required for modeling
ternary semiconductors, lead to the folding of band
structures [104,105]. The size of the band gap can be well
extracted from the folded band structure, which represents
the energy difference between the highest occupied VB
and the lowest unoccupied CB obtained from supercell
calculations (folded bands). However, determining the band
gap’s nature requires the primitive Bloch character of the
bands to be known, which gets mixed up in the supercell
eigenstates. With the band unfolding method, one projects
these supercell eigenstates on the eigenstates of a suitable
reference primitive cell. This requires the calculation of Bloch
spectral weights (BSW), which measure the fraction of the
primitive Bloch character in a supercell eigenstate. The result
is an effective band structure (EBS) [51–55]. The spectral
weights, wn,K(k), can be calculated from the plane wave
coefficients as described in Ref. [55]:

wn,K(k j ) =
∑

g

|Cn,K(g + G j )|2, (1)

where n represents the band index, and the reciprocal lattice
vectors of the primitive and supercell are denoted by g and G j ,
respectively. The index j accounts for the series of primitive
vectors, k j = K + G j . The code “fold2Bloch” from Ref. [54]
was used to calculate the BSW values.

In our previous study on binary III-V systems [45], we
have shown that the valence band maxima (VBM) always
remain at the � point, and only the conduction band minima
(CBM) change their position in reciprocal space under strain.
We have also shown that the CBM occurs only at the �,
L, and (near) X point in the band structure under strain.
Therefore, it is sufficient to trace the conduction band (CB) at
these points to determine the nature of the band gap. As in our
previous study on binary systems, we focus here on analyzing
ternary III-V compounds with zincblende structures. For these
structures in the 6 × 6 × 6 supercell dimensions chosen here,
the �, L, and X point of the primitive band structure fold to
the � point in the supercell [53–55]. Therefore, it is sufficient
to calculate the BSWs of solely the CB at the � point in the
supercell calculation to determine the nature of the band gap.
Consequently, we performed the supercell calculations by
sampling the reciprocal space only at the � point and unfolded
the CB.

Figure 1 shows the steps for determining the band gap
nature from supercell calculations more clearly. Figure 1(a)
shows the band gap variation for GaAsP with 3.7% P concen-
tration under isotropic compressive strain. The �, L, and X
BSWs of the folded supercell CB are given in parentheses.
This shows 100% � BSW for the unstrained structure in
line with the direct band gap. With increasing strain, the �

BSW decreases (first number in brackets), and the L BSW
increases (second number in brackets). After a certain amount
of strain, the L character of the CB dominates. The band gap

FIG. 1. Variation of the band gap under isotropic compressive
strain for GaAs0.963P0.037. The �, L, and X BSW of the folded super-
cell conduction band are given in parentheses in the format (�:L:X).
The vertical lines in (a) separate regions where the CBM changes
character. In (b), the strain resolution is increased to determine the
point of direct-indirect transition more accurately, indicated by the
red circle (where the highest BSW changes from � to L).

becomes indirect in nature. Notably, once the strain values
reach the point of direct-indirect transition (DIT) in the band
gap nature (around −1.5% strain), the band gap values begin
to decrease further with additional strain. This trend is like
what we previously observed in binary III-V semiconductor
systems, where a strong dependence of the band energies (E )
on the wavevectors (k) under strain was found, leading to a
nonmonotonic variation of band gap values with strain [45].
Moreover, we found that such nonmonotonic behavior in
band gap values under strain points to a DIT [45]. In ternary
III-V semiconductor systems, we have now found that similar
nonmonotonic behavior in band gap values under strain also
indicates a DIT. Further compressing the system then leads to
a transition of the CB character from L to X.

In Fig. 1(b), we show calculations with increased reso-
lution in strain to accurately determine the transition to L
corresponding to the sought point of DIT at −1.4% strain. We
define the last strained structure with band gap of direct nature
before the transition to the indirect band gap as the transition
point [the red circle in Fig. 1(b)]. In the Supplemental Material
(Fig. S1 [94]), we have given the EBSs of GaAs0.963P0.037 for
different strain values. These confirm our analyses.
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If the difference in BSW between different points in k-
space is large, the nature of the band gap can be unanimously
determined. However, close to the transition points, in some
cases, the differences are more subtle (Fig. S2 [94]). We,
therefore, set a cutoff criterion of 20% BSW. If the � BSW
is larger than the cutoff criterion, then the direct transition has
a finite probability even if the L or X BSW is larger than the �

BSW. In such cases, the band gap is called “partially direct.”
This defines a “region of uncertainty” in the band gap nature.
We chose the 20% cutoff criterion because this produces re-
sults that agree best when compared to the experiments for
several systems. For the GaPBi system, however, the 10%
BSW cutoff criterion produces the best agreement.

In some systems such as GaAsN, the band originat-
ing from the added nitrogen atoms, the so-called “defect
N state” [54,106–109], is strongly dispersed under strain
(Figs. S3b and S4b [94]). Therefore, we set another cutoff
criterion of 20% BSW as a minimum limit for a (defect) eigen-
state to be considered an eigenstate (Fig. S5 [94]). Starting
from the lowest unoccupied CB, we search for eigenstates
until the cutoff BSW criterion is met, at which point we
consider it to be the redefined CB. If none of the CBs satisfy
the cutoff criterion, we use the lowest CB for determining the
band gap nature. Accordingly, in these cases, we calculate the
band gap values as the energy difference between the highest
VB and the redefined CB. When redefining, unoccupied CB
states that do not satisfy the cutoff criteria are disregarded.
This led to an increase in the band gap values, as is observed
in Fig. S5 [94].

IV. RESULTS

In this section, we present the band gaps calculated for
different materials and determine their nature according to the
above protocol. We mapped the band gaps in terms of their
size and nature for various strained ternary III-V compounds.
We start with two important ternary III-V semiconductor ma-
terials, GaAsP and GaAsN. Then we show selected data for
the material systems GaPSb, GaAsSb, GaPBi, and GaAsBi.

A. GaAsP

For the case of isotropic strain, Fig. 2 shows the band gap
as a function of composition (x = 0–100% in GaAs1−xPx)
from 5% tensile to 5% compressive strain. The band gap
value varies between 0.32 and 2.42 eV in the strain regime
investigated. For the same amount of P concentration, the
band gap primarily increases in moving from tensile to com-
pressive. Furthermore, the figure shows that in going from
compressive to tensile strain, the DIT occurs at a higher con-
centration of P atoms. The dashed horizontal line marks the
data corresponding to the unstrained structures for different
fractions of P. The intersection of this line with the DIT line
shows at which percentage of phosphorous contribution the
unstrained structure shows a DIT. This transition occurs at
x = 37%. Here, the band gap shows a value of 1.96 eV. The
terms direct and indirect in the figure correspond to the area
where the band gap is direct and indirect, respectively. Due to
the similarity with commonly used phase diagrams, we call
this representation a “band gap phase diagram.” This and the

FIG. 2. Isotropic strain for GaAsP. The variation of band gap
magnitudes (Eg) and type as a function of composition and strain.
The dashed black horizontal line indicates unstrained GaAsP. The
black circles are the calculated DIT points. The direct and indirect
enclosed regions describe the nature of band gap being direct and
indirect, respectively. The hatched pattern region is the “uncertainty
region” (see Sec. III).

following figures thus provide a 2D representation of the band
gap phase diagram for the ternary materials.

For the biaxial strain regime, Fig. 3 shows the band gap
phase diagram for GaAsP as a function of composition from
5% tensile to 5% compressive strain. The value of the band
gap varies in a range of 0.82–2.42 eV. For the same amount
of P atoms, the band gap reaches a maximum around the
unstrained structure and gets smaller for tensile as well as
compressive strain. This is different from the isotropic strain
case. For unstrained GaP, the band gap value is 2.36 eV. The
nature of the band gap also shows a different trend compared
to Fig. 2. The range of strain around the unstrained structure
where a direct band gap is found gets smaller for higher

FIG. 3. Biaxial strain for GaAsP. The variation of band gap mag-
nitudes (Eg) and type as a function of composition and strain. The
dashed black horizontal line indicates unstrained GaAsP. The black
circles are the calculated DIT points. The DIT points are fitted with a
fifth-order polynomial. The direct and indirect enclosed regions de-
scribe the nature of band gap being direct and indirect, respectively.
The hatched pattern region is the “uncertainty region” (see Sec. III).
Solid black lines indicate the substrate lines under “epitaxial growth”
model.
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amounts of P. This is in line with GaAs (0% P) being a
direct and GaP (100% P) being an indirect semiconductor.
The largest amount of P concentration where a direct semi-
conductor is found is 39–40% P in the unstrained structure.
This is similar to the previous experimental result (45% P)
[10,110].

One of the most common approaches to experimentally
realize biaxial strain in III-V semiconductors is epitaxial
growth. As pointed out in Ref. [45], biaxial strain can be used
to model epitaxial growth. We thus investigate the effect of
different substrates in our band gap phase diagram (Fig. 3),
where each solid line corresponds to one substrate: GaAs,
GaP, InP, or Si. These solid lines indicate how much biaxial
strain would develop in the GaAsP system as the respective
value of % P when grown on the respective substrates under
idealized conditions. The (substrate) strains are calculated
according to Eq. (2):

Substrate strain(%) = asub − a

a
× 100, (2)

where asub is the equilibrium lattice parameters of the sub-
strates, and a is the lattice parameters of unstrained GaAsP
systems at their respective P concentrations, e.g., for 100% P,
the strain on the GaP substrate is zero, while growing GaAs
(0% P) on GaP would result in 3.8% in-plane compressive
strain. This, of course, neglects defect formation and strain
relaxations and assumes perfect epitaxial growth. Clearly, by
choosing different substrates, the nature can be changed, and
the size of the band gap can be tuned over a wide range. We
refer to the next section for a comparison of our calculations
to experimental data.

B. GaAsN

As the next material, we investigate GaAsN. First, we show
results for isotropic strain, which results in the band gap phase
diagram shown in Fig. 4. The results are markedly different
from GaAsP, and the data set is much more limited. In this
case, we found a strong dependency of the band gap on the N
atoms distribution in the supercell [44]. We thus used 10 SQS
cells for each data point in the figure and averaged the result-
ing band gaps. This results in an error bar for the DIT points,
which is rather large for medium amounts of nitrogen atoms
due to the formation of small clusters and chains. Calculations
were only possible for up to 12% N. For higher concentration
and/or high compressive strain, our chosen supercell is not
large enough to avoid the unphysical electronic interaction of
N atoms with their images in the periodic boundary condition
approach. This effect has already been discussed in Ref. [44].
For the strain and composition regions where computation
was possible, an indirect gap is only found for low values of
% N and rather large compressive strain values. The EBSs
for selected % N and strain values are shown in Figs. S3 and
S4 [94].

For biaxial strain in GaAsN, the data are shown in Fig. 5.
In contrast to GaAsP, the band gap gets smaller with the
increasing amount of nitrogen in the system, from 1.47 eV for
the unstrained case of GaAs to 0.10 eV for the highly strained
systems with a large number of N atoms. All band gaps
computed are direct. Epitaxial growth on GaAs is reasonably

FIG. 4. Isotropic strain for GaAsN (up to 12% N). The variation
of band gap magnitudes (Eg) and type as a function of composition
and strain. The dashed black horizontal line indicates unstrained
GaAsN. The black circles are the calculated DIT points. Beyond
7% N, the DIT is outside the investigated strain regime. 10 SQS
cells are used for each configuration and strain point. The band
gaps plotted are the average band gaps. The error bars indicate the
standard deviation in DIT points estimation. The direct and indirect
enclosed regions describe the nature of band gap being direct and
indirect, respectively.

possible for moderate strain values and results in a variation of
band gap from 1.47 eV to 0.45 eV. For GaP and Si substrates, a
large strain would be exerted on the system, and mostly lower
band gap values are found.

C. GaPSb, GaAsSb, GaPBi, GaAsBi

The approach outlined here can be extended to other
combinations of elements in III-V semiconductor materials.
Exemplarily, we present the band gap phase diagrams for
four other important ternary compounds in Fig. 6. Since epi-
taxial growth is the most interesting experimental realization
method for these compounds, we only present the data for
biaxial strain.

FIG. 5. Biaxial strain for GaAsN (up to 12% N). The variation of
band gap magnitudes (Eg) and type as a function of composition and
strain. The dashed black horizontal line indicates unstrained GaAsN.
10 SQS cells are used for each configuration and strain point. The
band gaps plotted are the average band gaps. All the band gaps are
direct in nature. Solid black lines indicate the substrate lines under
the “epitaxial growth” model.
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FIG. 6. Band gap phase diagram for ternary III-V semiconductors GaEY (E = P, As; Y = Sb, Bi) under biaxial strain. The band gap
magnitudes (Eg) are shown in the color bar. The dashed black horizontal line indicates unstrained structures. The black circles are the calculated
DIT points. The direct and indirect enclosed regions describe the nature of band gap being direct and indirect, respectively. The hatched pattern
region is the “uncertainty region” (see Sec. III). Solid black lines indicate the substrate lines under the “epitaxial growth” model.

For all compounds investigated, we find a band gap range
of 0.00–2.36 eV, with the largest values found for the host
materials GaP and GaAs in the unstrained case. The alloys
with Sb could be investigated over the full range of 0–100%
Sb in GaPSb and GaAsSb [Figs. 6(a) and 6(b)]. We find a DIT
for unstrained GaPSb at 30% Sb concentration [Fig. 6(a)].
For this compound, the DIT is shown as a region, including
the uncertainty in determining the nature of the band gap, as
outlined in Sec. III. With the increase in the Sb fraction, the
strain at which the DITs take place increases. For GaAsSb
and GaAsBi, the band gap is direct throughout the range
investigated [Figs. 6(b) and 6(d)], while it is indirect for
GaPBi [Fig. 6(c)]. Notably, we only investigate the bismides
up to a fraction of 15% Bi. The reason is that, similar to
GaAsN (Fig. S4 [94]), for structures with large Bi content,
the strongly dispersed bands decrease the reliability in the
determination of band gap nature. Additionally, GaPBi and
GaAsBi become metallic for higher Bi fractions. Although we
find no transition within 15% Bi, it can not be excluded that
the DIT appears at higher percentages of bismuth.

Again, we indicate the strain values associated with differ-
ent typical substrates for epitaxial growth by solid black lines
in the figures. The data show that deviating from the substrate-
layer lattice-matching condition quickly leads to high strain,

and defects are highly likely to occur during growth. Also,
Si can be used as a substrate for GaPSb and GaPBi epitaxial
growth if the Sb or Bi content is not too large. The epitax-
ial growth of the respective GaAs-based materials (GaAsP,
GaAsN, GaAsSb, GaAsBi) will give rise to high strain on Si
substrate throughout the whole composition region. A notice-
able change in the slope in substrate lines is found close to
10% Bi and 40% Sb concentration in GaAsBi and GaAsSb,
respectively. Although we did not find any structural phase
transition in those regions, the origin of the change in the slope
is not clear to us yet.

From the above discussions, it becomes clear that band
gap phase diagrams can be a valuable aid in deciding which
substrates are good choices for targeting a specific band gap
size and nature for a given ternary material. And vice versa,
which material to grow for a specific application and a given
substrate? We will discuss this further in the next section.

V. DISCUSSION

All data were derived from DFT computations to this
point. In Table I, we now compare our calculated band gaps
with experimental data from measurements on heteroepitax-
ial layer structures. The GaAsP/GaAs samples were grown
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TABLE I. Comparison of the calculated band gaps for investigated ternary III-V semiconductors under biaxial strain with experiments. The
experimental data are for the heteroepitaxial layer structures, and the band gaps are determined from photoluminescence (PL) measurements.
The “I” in the brackets indicate the indirect nature of the band gap. The remaining band gaps are direct. (RT-PL: room temperature PL)

Band gap (eV)Layer Deviation Percentage RMSDa

System Substrate x(%) Thickness (nm) Calculated Experiment (eV) Deviation (%) (eV)

GaAs1−xPx GaAs 18.0 9000 1.65 1.66 0.01 0.6 0.01
[111] 25.0 12250 1.72 1.72 0.00 0.0

28.0 13000 1.75 1.76 0.01 0.6

GaP1−xSbx
b GaP 14.0 – 1.66(I) 1.61(I) −0.05 −3.1 0.10

[72]
GaAs 29.0 – 1.33(I) 1.39(I) 0.06 4.3

32.0 – 1.30 1.31 0.01 0.8
37.0 – 1.24 1.33 0.09 6.8

GaSb 93.0 – 0.56 0.74 0.18 24.3

GaAs1−xSbx GaAs 5.5 46.3 1.22 1.34 0.12 9.0 0.13
7.0 51.2 1.17 1.31 0.14 10.7

GaAs1−xBix GaAs 0.9 75.0 1.28 1.33 0.05 3.8 0.10
[112,113,115] 1.9 67.0 1.19 1.26 0.07 5.6
[116–118] 2.9 60.0 1.10 1.20 0.10 8.3

3.2 59.0 1.08 1.18 0.10 8.5
3.8 54.0 1.04 1.14 0.10 8.8
4.8 25.0 0.98 1.11 0.13 11.7
5.3 50.0 0.95 1.07 0.12 11.2
6.0 25.0 0.91 1.04 0.13 12.5

GaAs1−xNx GaAs 1.2 6.3 1.20 1.25 0.05 4.0 0.12
[10,44,114] 2.0 17.0 1.10 1.16 0.06 5.2

2.3 7.0 1.06 1.17 0.11 9.4
2.9 7.0 1.00 1.11 0.11 9.9
5.0 4.0 0.82 1.01 0.19 18.8

GaAs1−xSbx GaAs 27.8 3.7 0.67 1.10 0.43 39.1 0.42
28.0 4.1 0.66 1.07 0.41 38.3

GaAs1−xNx GaP 4.9 6.0 0.66 1.18 0.52 44.1 0.66
[10,44,114]

Si 6.9 5.5 0.47 1.21 0.74 61.2
8.9 5.5 0.46 1.17 0.71 60.7
9.5 6.0 0.45 1.11 0.66 59.5

10.9 5.4 0.45 1.11 0.66 59.5

GaP1−xSbx Si �17.5 7–9 1.91–1.36(I) No RT-PL observed

GaP1−xBix GaP �12.0 17–73 2.03–1.18(I) No RT-PL observed
[112]

aCalculated from all samples per system.
bFor GaPSb samples, no specific thicknesses were reported in the reference.

by low-pressure hydride vapor phase epitaxy (LP-HVPE).
Further details can be found in Ref. [111]. The remaining
samples were grown by metalorganic vapor phase epitaxy
(MOVPE). The details of the growth characteristics of the
MOVPE samples can be found in Refs. [22,72,112–117].
Experimentally, the layer thickness and band gaps of the
MOVPE samples were determined using x-ray diffraction and
room-temperature photoluminescence (RT-PL), respectively.
Except for GaPSb samples from Ref. [72], in which cases, the
PL were measured at 10 K.

The comparison of the experimental band gaps with our
computed results shows good agreement. The deviation is

determined with respect to the root-mean-square deviation
(RMSD) from all available experimental samples. For most
structures, the RMSD is around 0.1 eV. Most computed val-
ues deviate by less than 10% from the experimental values
(exceptions are discussed separately); in the case of GaAsP,
the deviation is even more accurate (< 1%). This confirms our
previous findings on unstrained structures that the DFT proto-
col we developed gives excellent agreement to experimental
band gaps [11,40,44,45]. In this study, we show that it is
also applicable to compound semiconductors under strain. For
samples with very small layer thickness, the matching of ex-
periment and computation is less good. This can be observed
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for GaAsSb/GaAs thin samples with RMSD of ca. 0.4 eV. We
attribute this to the 2D quantum confinement effect, which is
found for thin samples. This confinement effect leads to an
increase in the band gap with respect to thicker samples [119].
This effect is not captured in our computational model as
the calculations were performed for 3D periodic strained
structures. The large deviation observed for GaAsN/GaP
and GaAsN/Si samples can not be explained by this effect
alone, though. An additional effect here is the strong de-
pendency of the band gap on the distribution of N atoms
which has been found for unstrained GaAsN before [44]. The
dependency is further amplified under large strain (around
3%, see Fig. 5) in those samples. In the case of GaAsN/GaAs
samples, where the N concentration investigated was around
1–5%, the strain is relatively small (< 1%), resulting in
better agreement with the experiment as compared to the
GaAsN/GaP and GaAsN/Si samples. No RT-PL was ob-
served for GaPSb/Si and GaPBi/GaP samples. This is
consistent with our findings that those materials show indirect
band gaps [Figs. 6(a) and 6(c)]. Experimental measurements
of the magnitude of the indirect band gaps are not available
yet.

The consistent agreement between the experiment and cal-
culated band gaps (both in magnitude and in nature) suggests
that we are able to quantitatively predict the band gap over a
wide range of compounds, compositions, and strain regions.
However, as discussed above, the effect of 2D confinement is
also crucial for relatively thin quantum well heterostructures
and, hence, needs further investigation.

Finally, based on the band gap phase diagram, we propose
several design strategies to optimize the selection of material
combinations for achieving specific optical applications and
new design principles for devices (Fig. 7).

In Fig. 7(a), we propose a quantum-well heterostructure
(QWH) composed of biaxially strained GaAsP on GaAs sub-
strate. As the QW layers are made out of a single material
with varied composition only, the epitaxial growth could be
performed efficiently. The band gap phase diagram shows the
areas in compositional phase space where a direct band gap
in GaAs1−xPx can be achieved (x < 34%). For x > 35%, the
band gaps are indirect and hence, are inappropriate for the
heterostructure.

Figure 7(b) shows an efficient approach for the mono-
lithic integration of multiple QWH to construct multijunction
photovoltaics. In this case, the QWHs are separated by thin
indirect band gap layers of the same material as QWH but only
with a different composition. This would make the integration
approach efficient, as no sample transfer is required during
growth.

In Fig. 7(c), we propose a device with a gradual change in
the band gap properties. The concept utilizes the continuous
transition in the nature of band gap with alloy concentration
in the vicinity of the DIT region. At the amount of P chosen
here (x = 15–35%), we propose to grow the GaAsP epitaxial
layer on GaP with P concentration continuously changing
from the direct to indirect band gap region or vice versa. This
way, changes in the band gap magnitude, as well as the nature
of the band gap, are possible. Note that the concentration
gradient can be implemented both in the horizontal and
vertical directions.

FIG. 7. Proposals on how the band gap phase diagram of biaxi-
ally strained GaAsP can be used in designing optoelectronic devices.
(a) Defines the bound of composition region for creating a QWH
with direct band gap GaAsP on GaAs substrate. (b) Choosing the
different composition regions appropriately to make a multijunction
photovoltaic with successive direct and indirect cells on the GaAs
substrate. (c) In the vicinity of the transition point, the band gap prop-
erties of the GaAsP epilayer on the GaP substrate can be changed by
appropriately varying the composition. (d) Depending on the choice
of substrate, GaAs or Si, the particular composition indicated by the
vertical line can be made direct or indirect band gap, respectively.

Figure 7(d) shows another application of this concept. By
appropriately choosing the substrate, we can tune the epitaxial
layer (here: GaAsP) to show either a direct or indirect band
gap. Depending on the substrate, GaAs or Si, the particular
composition indicated by the vertical line will show direct or
indirect band gap, respectively.

VI. SUMMARY

Using density functional theory and the concept of band
unfolding, we developed a first-principles computational pro-
tocol for the comprehensive mapping of the band gap magni-
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tude and type over a wide range of composition and strain val-
ues for several ternary III-V semiconductors. We constructed
the composition-strain-band gap relationship, the band gap
phase diagram, for several ternary III-V semiconductors:
GaAsP, GaAsN, GaPSb, GaAsSb, GaPBi, and GaAsBi. We
showed that this way of mapping the effect of strain could
be used to choose application-specific best-suited material
systems and hence, is highly beneficial to device design. In
addition, we developed an efficient approach based on Bloch
spectral density for determining the nature of band gap from
supercell calculation. Notably, our computational protocol can
be generalized to explore the vast chemical space of III-V
materials with all other possible combinations of III and V el-
ements. The comparison to experimental band gap data under-
lines the accuracy of the computational approach chosen. This
approach will be extended to more complex materials in the
future.

The density functional theory calculations data are openly
available in the NOMAD repository [120]. The interactive
band gap phase diagrams (in HTML format) are available
in the Supplemental Material [94]. To view the diagrams,
open the HTML files in a web browser. Alternatively, the dia-
grams can be viewed directly on GitHub [121], last accessed
10.05.2023).
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Marcel Kröner, Thilo Hepp, and Kerstin Volz
Material Science Center and Department of Physics,

Philipps-Universität Marburg, D-35043 Marburg, Germany

Ralf Tonner-Zech∗

Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany

(Dated: June 15, 2023)

∗ ralf.tonner@uni-leipzig.de



2

S I. EFFECTIVE BANDSTRUCTURES OF GaAs0.963P0.037 UNDER ISOTROPIC STRAIN

(a) Strain = 0.0% (b) Strain = –1.3%

(c) Strain = –1.5% (d) Strain = –2.0%

FIG. S1. Effective bandstructures of GaAs0.963P0.037 under isotropic strain. The bandstructures were plotted using ‘BandUP’
[1, 2]. In (a) and (b), the bandgaps are direct. (c) The conduction band minima are degenerate at the Γ- and L-point. This
is the direct-indirect transition point. (d) The bandgap becomes an indirect bandgap. The positive and negative strains
correspond to the tensile and compressive strains, respectively. For simplicity, only the L→ Γ → X high symmetry path is
shown.
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S II. DETERMINING THE NATURE OF BANDGAP USING BLOCH SPECTRAL WEIGHTS

FIG. S2. Variation of the bandgap (Eg) under biaxial tensile strain for GaAs0.63P0.37. The Bloch spectral weights (BSW) are
given for the conduction band at the Γ and L or X point [Γ : (L or X)]. The vertical lines separate regions where the CBM
changes character. As we are only interested in the direct and indirect character of the bandgap, here, we do not explicitly
show the L and X BSWs.
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S III. EFFECTIVE BANDSTRUCTURES OF GaAs0.995N0.005 UNDER ISOTROPIC STRAIN

(a) Strain = 0.0%

(b) Strain = –4.5% (c) Strain = +4.5%

FIG. S3. Effective bandstructures of GaAs0.995N0.005 under isotropic strain. The bandstructures were plotted using ‘BandUP’
[1, 2]. In (a) and (c), the bandgaps are direct. In (b), the Bloch spectral weight of the ‘N-defect state’ at the conduction
band Γ-point is very small, indicated by red circle. Therefore, the bandgap is categorized as an indirect bandgap. The positive
and negative strains correspond to the tensile and compressive strains, respectively. For simplicity, only the L→ Γ → X high
symmetry path is shown.
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(a) Strain = 0.0% (b) Strain = –5.0%

FIG. S4. Effective bandstructures of GaAs0.889N0.111 under isotropic strain. The bandstructures were plotted using ‘BandUP’
[1, 2]. The bands are strongly dispersed for high N concentrations. The positive and negative strains correspond to the tensile
and compressive strains, respectively. For simplicity, only the L→ Γ → X high symmetry path is shown.
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S IV. CONDUCTION BAND REDEFINITION BASED ON MINIMUM CUT-OFF BLOCH SPECTRAL
WEIGHTS CRITERION

FIG. S5. Variation of the bandgap (Eg) under biaxial compressive strain for GaAs0.995N0.005. The folded supercell conduction
bands’ Γ-, L-, and X-BSWs are given at each point. The blue and orange lines are the Eg with and without redefinition of the
CBM. 20% BSW is the cut-off criterion for redefining an eigenstate.
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S V. THE DENSITY FUNCTIONAL THEORY BANDGAP VALUES (WITHOUT INTERPOLATION)

(a) Isotropic strain for GaAsP

(b) Biaxial strain for GaAsP
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(c) Isotropic strain for GaAsN

(d) Biaxial strain for GaAsN

(e) Biaxial strain for GaAsSb
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(f) Biaxial strain for GaAsBi

(g) Biaxial strain for GaPSb

(h) Biaxial strain for GaPBi

FIG. S6. Effect of strain on the bandgap of GaE1−xYx (E=As, P; Y=P, N, Sb, Bi). The left column shows the variation
of bandgap magnitudes (Eg) as a function of strain at different compositions for the systems. The composition (x%) legends
are shown at the top. In the right column, we project the Eg on the composition-strain space. The Eg from these figures is
interpolated to create Figs. 2–6 of the manuscript. We chose the same color bar scale limit for all the systems for consistency.
The black crosses in (e) and (f) indicate the bandgap calculations that did not converge.
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In Fig. S6, for the binary compounds (GaAs, GaP, and GaSb), we used the bandgap values from the ‘III-V binary
semiconductors strain study’ dataset of Ref. [3]. The strain axes were sampled primarily on the regular interval
of 0.5%. For GaAsP and GaPSb systems, sampling resolutions were increased close to the direct-indirect transition
regions, as explained in Sec. III of the manuscript. For binaries, the intervals were not regular in the reference dataset.
The composition axes were sampled in non-regular intervals. Because of the finite supercell size, the compositions
could not be sampled in regular intervals. Note, however, the choice of compositions was arbitrary. Also, some of
the DFT calculations at high strain could not be converged to the required accuracy and hence, are excluded. For
GaAsN, under isotropic strain because of the effective conduction band redefinition (Fig. S5), as explained in Sec. III
of the manuscript, the sudden rapid increase in bandgap values under compressive strain are noticeable (Fig. S6c).
The sudden increase in band energies due to band redefinition is also visible for compressively strained GaPSb at 25%
Sb concentration (Fig. S6g).

S VI. INTERPOLATION DETAILS

The Eg from the right column figures of Fig. S6 were interpolated over a fine grid to create Figs. 2–6 of the
manuscript. We chose 0.1 grid resolution in both composition and strain for all the systems. We used Clough-Tocher
piecewise cubic, C1 smooth, curvature-minimizing 2D interpolator from python scipy.interpolate class [4]. The
interpolation scheme follows:

Step 1: The input data are first triangulated with Qhull [5] (Fig. S7b).

Step 2: The interpolant then constructs a piecewise cubic interpolating Bézier polynomial on each triangle using the
Clough-Tocher scheme [6, 7] (Fig. S7c). The interpolant is guaranteed to be continuously differentiable. The
interpolant gradients are determined such that the interpolating surface curvature is approximately minimized
[8, 9].

Step 3: In the end, nearest-neighbor extrapolation is performed on the remaining points that can not be covered via
Qhull (Fig. S7d). Note that mostly the boundary points beyond the x and y limits of input points can not
be triangulated under Qhull. As long as those points are not far away from the available input points, the
nearest-neighbor extrapolations to those points are acceptable.

Step 4: Finally, bicubic interpolation, as implemented in python matplotlib.pyplot.imshow class [10, 11] is applied
to smoothen the grid image (Fig. S7e).

Note both the input data and interpolation grid are rescaled to unit square during interpolation to eliminate the effect
of incommensurable units and/or large differences between the x & y scales.
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(a) (b)

(c) (d)

(e)

FIG. S7. The Clough-Tocher piecewise cubic, C1 smooth, curvature-minimizing 2D interpolation scheme. The color dots are
the input points. The black dots indicate the interpolation grid. (a) Input data. (b) Delaunay triangulation, indicated by black
triangles. (c) Nearest-neighbor interpolation points, indicated by the black stars. These points could not be triangulated. (d)
Nearest-neighbor interpolation. (e) Bicubic interpolation over (d).
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ABSTRACT

Quaternary III–V semiconductors are one of the most promising material classes in optoelectronics. The bandgap and its character, direct or
indirect, are the most important fundamental properties determining the performance and characteristics of optoelectronic devices. Exper-
imental approaches screening a large range of possible combinations of III- and V-elements with variations in composition and strain are
impractical for every target application. We present a combination of accurate first-principles calculations and machine learning based
approaches to predict the properties of the bandgap for quaternary III–V semiconductors. By learning bandgap magnitudes and their nature
at density functional theory accuracy based solely on the composition and strain features of the materials as an input, we develop a computa-
tionally efficient yet highly accurate machine learning approach that can be applied to a large number of compositions and strain values. This
allows for a computationally efficient prediction of a vast range of materials under different strains, offering the possibility of virtual screening
of multinary III–V materials for optoelectronic applications.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159604

I. INTRODUCTION

Semiconductor compounds are central to modern opto-
electronics and find applications in various fields, such as
solar cells, light-emitting diodes, optical telecommunication, and
photovoltaics.1–11 One of the fundamental properties determining
the performance of such optoelectronic devices is the bandgap.
The tuning of the size and type of bandgaps is one of the major
goals in the field of optoelectronics. Varying the relative composi-
tion of compound semiconductors is one of the major approaches
here.12–25 Alternatively, straining the system can be used to modify
the bandgaps.26–37 By combining these two approaches, bandgaps
can be tailored over a wide range of values, enabling enormous diver-
sity in device applications.12–25,38–42 Due to their vast composition
space, quaternary III–V semiconductors offer a unique opportu-
nity in material design.43 However, identifying tailored materials
for each target application requires assessing the dependence of

the bandgap on composition and strain for a large set of materi-
als. Because of the tremendous effort necessary for the synthesis of
unknown materials, experimental approaches to screening the vast
chemical space of all possible combinations of III-(or group 13)
and V-(or group 15) elements with variation in composition and
strain are not practical.12,16,19,22,24,25 Therefore, theoretical models
that are both accurate and computationally efficient are often the
only viable choice for high-throughput virtual screening for material
design.44,45

In recent years, density functional theory (DFT) methods based
on computationally efficient density functionals such as those based
on the local density approximation (LDA)46 or generalized gradient
approximation (GGA)47 have proven to be powerful and successful
tools for such high-throughput material screening. However, large
errors in semiconductor bandgaps, which can be in the range of
50% of the bandgap value,48–50 are common. Better accuracy can
be achieved with methods such as hybrid functionals,51,52 many-
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body perturbation theory (GW),53–55 or meta-GGA functionals such
as the modified Becke–Johnson functional (TB09).56 Our previous
study on mapping bandgaps for binary and ternary III–V semicon-
ductors using the TB09 functional over a large range of composition
and strain values showed excellent agreement with the experiment at
moderate computational costs.57,58 However, due to the large com-
position space of quaternary III–V semiconductor materials, which
leads to an estimated 10 000 00059 calculations per combination ele-
ment, the computational costs of these methods are still too large to
enable high-throughput studies.

To speed up the exploration of chemical space, machine
learning (ML) techniques have been applied in various fields
of material science, such as the prediction and classification
of crystal structures,60–66 thermal properties,63,65,67,68 electronic
properties,65,66,68–83 and the stability of materials.65,68,74,84,85 Among
the most widely used ML models in the field of bandgap predic-
tions of semiconductor materials are support vector machine (SVM)
models.65,76,77,80,86,87 However, for III–V semiconductors, the pre-
vious reports using ML methods predicted the bandgap values of
unstrained compounds only.65,74,76,77,86,87 No ML study on strained
systems is available so far. Moreover, due to the large composi-
tional space, the bandgap values of only a few selected III–V ternary
and quaternary compositions have been predicted so far with ML
methods.74,76,86

In this work, we go beyond previous approaches and develop an
ML model for bandgap predictions in biaxially strained quaternary
III–V materials (ABxCyD100−x−y; with A = III elements; B, C, and
D =V elements) over the complete composition range (x, y = 0–100)
and a compressive and tensile strain range of 5% around the
unstrained structures. The excellent performance of the approach
is demonstrated. Subsequently, we construct the composition-
strain-bandgap relationship, the “bandgap phase diagram,”58,88 for
GaAsPSb using our ML model. Although many of the binary and
ternary subsystems of GaAsPSb, namely GaAs, GaP, GaSb, GaAsP,
GaAsSb, and GaPSb, have been successfully synthesized and found
special applications in different research fields,4,7,49,89–104 this partic-
ular quaternary compound has not been studied yet. Therefore, our
theoretical predictions can provide insights for future experimental
exploration of this material system.

We emphasize that the predictive capability of the ML models
relies on the quality of the reference method used in the generation
of ML training data. Given the lack of sufficient experimental data,
we opted to use DFT-based methods to create the training dataset
for our ML model in this instance. Since our DFT computational
setup, as used here, has consistently demonstrated high accuracy in
generating bandgaps that align well with experimental data,49,50,56–58

our ML model serves as a valuable tool for the initial screening of the
vast composition-strain space to guide the next computational and
experimental steps. Additionally, our approach allows for straight-
forward extension to other III–V quaternary systems and, thus,
provides a general theoretical basis for targeted exploration of this
compound class. The integrated first-principles calculations and ML
techniques provide a powerful approach for future computational
material design. The ultimate goal of this work is to provide com-
prehensive guidelines for studying bandgap properties in strained
materials.

The article is organized as follows: In Sec. II, we discuss
the methodology: details of DFT calculations (Sec. II A) and an

overview of ML methods (Sec. II B). Next, we present the results
in Sec. III and establish the best ML models and hyperparame-
ters for predicting the bandgaps of strained GaAsSbP. Using these
methods, a complete bandgap phase diagram is constructed for
GaAsSbP in Sec. III A. Finally, we summarize our key findings in
Sec. IV.

II. METHODS
A. First-principle computational details

First, we created a dataset of 4280 data points obtained
from DFT encompassing the whole composition and strain range
of GaAsPSb investigated. The dataset comprises 88 calculations
of the corresponding strained binary subsystems of GaAsSbP,
namely, GaAs, GaP, and GaSb in total (taken from Ref. 57); 2272
composition-strain data points corresponding to the ternary subsys-
tems of GaAsPSb, namely, GaAsP, GaPSb, and GaAsSb (taken from
Ref. 58); and 1920 randomly chosen points in the composition-strain
space of GaAsPSb, containing a non-zero percentage of all elements
As, P, and Sb. Notably, only the data for biaxially strained struc-
tures is collected from Refs. 57 and 58. More details on the data
features are discussed in Sec. II B 4. The complete dataset can be
found in the supplementary material attachment. For convenience,
in the following, we label the above three datasets as binary, ternary,
and quaternary datasets, respectively.

The DFT computational setup for the quaternary calculations
follows the approach used in the binary and ternary dataset calcula-
tions in our previous studies.57,58 The computations are performed
using the projector-augmented wave (PAW) method105,106 as imple-
mented in the Vienna ab initio simulation package (VASP).107–110

The generalized gradient approximation (GGA) based exchange-
correlation functional by Perdew, Burke, and Ernzerhof (PBE)47

with a cut-off energy of 550 eV for the plane-wave basis set is chosen
in all calculations. Corrections for missing dispersion interactions
are calculated using the semiempirical DFT-D3 approach with an
improved damping function.111,112 The electronic energy conver-
gence criteria of 10−7 eV and the force convergence of 10−2 eV
Å−1 are used, respectively. The quaternary materials are modeled
using special quasirandom structures (SQS)113 with a supercell of
size 6 × 6 × 6. The SQS cells are generated using the alloy-theoretic
automatic toolkit (ATAT).114–116 The reciprocal space is sampled
at the Γ-point only, which is sufficient due to the large real-space
cell size. Geometry optimizations are carried out by consecutive vol-
ume and position optimizations until convergence is reached. For
the bandgap calculations, the meta-GGA functional TB0956 is used,
including spin–orbit coupling. The bandgap natures are determined
using the Bloch-spectral-weight-based protocol as described in
Ref. 58. The “fold2Bloch”117 code is used to determine the Bloch
spectral weights.

The materials investigated here all feature zincblende-type
structures. Moreover, since these compounds can only be experi-
mentally realized through epitaxy, we only consider the effect of
biaxial strain. As [100] crystal direction is the most common choice
of substrate orientation and crystal growth direction in epitaxy, we
model the strain application along [100] directions. The in-plane
lattice parameters ([100] and [010] directions) are kept fixed at
the chosen strain values while the out-of-plane direction [001] is
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relaxed. The strained in-plane lattice parameters (a f ) are calculated
using the following formula [Eq. (1)]:

a f = aeqm × (1 + biaxial strain (%)
100

), (1)

where aeqm is the equilibrium lattice parameter of the specific
structure that will be strained.57,58 Following the convention from
Refs. 57 and 58, in the following, we indicate tensile strain with a pos-
itive sign and compressive strain with a negative sign. No structural
phase transition is assumed under strain application. Notably, we
limit our analyses within the compressive and tensile strain ranges of
5%. This is typically the strain range achievable via epitaxial growth.
Moreover, our analysis assumes perfect epitaxial growth and does
not account for defects.

B. Machine learning details
1. ML model choice

We use the support vector regression (SVR)118 model to train
and predict bandgap values. For learning and predicting the bandgap
nature, we use the support vector classification (SVC) model.119,120

Below, we present the key features of each of these SVM models. All
the ML algorithms are used as implemented in scikit-learn.121

The fundamental feature of SVM is that it constructs a
(set of) hyper-plane(s) in a high dimensional space. The main
objective here is to optimize the positions of these hyper-planes to
effectively separate the training data points based on their classes.
A good separation is defined when the hyper-plane has the largest
distance to the nearest training data points of any class, the so-called
functional margin, since maximizing the margin lowers the model’s
generalization error. However, achieving a perfect separation is not
always feasible in real-world datasets. Therefore, an additional regu-
larization parameter, C, is introduced to construct the so-called “soft
margin.”

Moreover, a nonlinear transformation is applied to the fea-
ture space by the so-called “kernel trick.”122–124 The kernel trick
simplified the learning task by efficiently mapping the original fea-
ture space of the considered data into the new space using a kernel
function, thus significantly reducing the cost of learning with large
datasets. Here, we use the radial basis function (RBF) kernel,122,124

which is defined as follows:

k(xi, x j) = e−γ∥xi−x j∥2

. (2)

The parameter γ determines the inverse of the area of influence of
the ith data and decays with the distance to another jth data. A low
value of γ means the influence reached “far,” and a high value means
“close.” The behavior of the model is very sensitive to the γ values
and can be tuned to optimize predictions.

This defines a constrained optimization problem for SVM
classification (SVC),

minimize
ω, b, ξ

1
2
∥ω∥2 + C

N∑
i=1

ξi, (3)

subject to yi(⟨ω, ϕ(xi)⟩ + b) ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , N, (4)

where xi is the feature vector (see Sec. II B 4) and yi refers to the
original value of the ith data point from a dataset {(xi; yi)}N

i=1. In
our context, yi takes on the values of either +1 or −1, indicating
whether the bandgaps obtained from quantum chemistry calcu-
lations are direct or indirect. The nonlinear mapping function ϕ
maps the features xi to the higher-dimensional space, which can be
efficiently performed using the kernel trick. The misclassification
error for the ith data point during optimization is measured by ξi.
Its value is zero if the data point is correctly classified. Otherwise,
the data points on the wrong side get a penalty. The ω and b define
the weight vector and offset values, respectively, which are opti-
mized as indicated in Eq. (3). The minimization of 1

2∥ω∥2 maximizes
the margin. The C parameter, thus, trades off the misclassification
penalty of training samples against the maximization of the margin.

Similarly, in the case of regression (SVR), the optimization
problem is formulated as follows:

minimize
ω, b, ξ, ξ∗

1
2
∥ω∥2 + C

N∑
i=1
(ξi + ξ∗i ), (5)

subject to yi − (⟨ω, ϕ(xi)⟩ + b) ≤ ε + ξi

(⟨ω, ϕ(xi)⟩ + b) − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0. (6)

Here, an additional parameter, ε, is introduced to define the mar-
gin size around the predicted regression function. It determines the
tolerance for errors in the regression model. Data points for which
predictions (⟨ω, ϕ(xi)⟩ + b) are within the ε-tube are considered to
have acceptable errors and do not contribute to the penalty term in
the objective function. Otherwise, a penalty is added, determined by
ξ or ξ∗, depending on whether their predictions lie above or below
the ε-tube.

Once the optimization problem is solved, the prediction (ŷ) for
a (new) sample z can be performed using the optimized ω and b,

ŷ = ⟨ω, ϕ(z)⟩ + b. (7)

For classification, the predicted class corresponds to the sign of
prediction [sign (ŷ)].
2. Hyperparameter optimization

A proper choice of hyperparameters is critical to the SVM
model’s performance and accuracy. We thus train multiple ML mod-
els with five-fold cross-validation at several random combinations
of the hyperparameters (C and γ for SVC-RBF; C, γ, and ε for SVR-
RBF) values. The model exhibiting the highest cross-validation score
is then picked as the final model holding the best set of hyperparam-
eters. We utilize the RandomizedSearchCV from scikit-learn to
automate this hyperparameter optimization routine.

It is important to note that the specific combination of opti-
mized hyperparameter values (C, γ, and ε combinations) may vary
upon rerunning the hyperparameter optimization routine due to
the stochastic nature of the random search and the random split-
ting of training and validation datasets within the cross-validation
routine. We thus start with a hyperparameter optimization space
expanding large C, γ, and ε intervals and carefully tune the ranges
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until the optimal ranges are found, covering the regimes with the
best hyperparameters set. This ensures consistent performance of
the final best models (i.e., cross-validation scores do not change
significantly) despite changes in the exact combination of opti-
mized hyperparameter values upon rerunning the optimization
routine.

Figure S1 in the supplementary material shows an example of
the tuning of hyperparameter space for the SVR-RBF model. We
perform a random search over uniformly distributed (in log-scale)
1000 random combinations of the C, γ, and ε values. In this case,
the optimal ranges found are 0.01–1000, 0.01–10, and 0.01–1 for
the C, γ, and ε ranges, respectively [the supplementary material,
Fig. S1(d)].

3. Performance metric
The prediction accuracies of the SVR-RBF learning models

are evaluated by means of root-mean-squared error (RMSE), mean
absolute error (MAE), maximum error (Max error), and the coef-
ficient of determination (R2) metric. The SVC-RBF models are
tested using accuracy-score and balanced-accuracy-score perfor-
mance metrics. The hyperparameters are optimized using the RMSE
and accuracy-score scoring functions for the SVR-RBF and SVC-
RBF models, respectively. We find some of the SVR-RBF models
predict small negative direct bandgap values, up to −5 meV (see the
left-bottom corner in the supplementary material, Fig. S2). In this
manuscript, we do not consider possible physical effects leading to
negative bandgaps, such as topological band inversion, in our DFT
dataset. We thus shift all the ML predicted negative bandgap values
to 0 eV (the supplementary material, Fig. S2).

4. Feature space and data preprocessing
Alongside the choice of an appropriate model, another cru-

cial part of ML is the choice of descriptors to represent the
system under investigation. A number of different feature represen-
tations have been proposed for periodic solid-state systems, such
as element-specific features,65,68,73,75,76,85,87 radial distribution func-
tions,69 Voronoi tessellations,125 representation learning from sto-
ichiometry,126 and property-labeled material fragments.127 As our
analysis consists of the prediction of strained and unstrained struc-
tures, we resort to keeping the descriptor as simple as possible and
have chosen the composition and strain values as input features for
the ML training. This allows for fast prediction and training times
compared to the use of extensive descriptors and is found to be accu-
rate enough for this study. The composition features can generally be
constructed considering all the III- and V-elements. However, in the
present article, we only present the results for GaAsPSb. In this case,
the number of compositional degrees of freedom is reduced to only
3 (x, y, and z in GaAsxPySbz). Although only x and y are indepen-
dent compositional degrees of freedom here and z can be deduced
from x and y (z = 100 − x − y), adding z to the feature vector ensures
the model learns this constraint. Together with the measure of biax-
ial strain, the final feature space is thus only four-dimensional (see
the supplementary material, Sec. S3). As shown in Sec. III, this four-
dimensional feature space performs exceptionally well. We note that,
as a drawback, the above ML model is limited to the elements and
type of strain (biaxial strain) chosen. Still, in principle, the descrip-
tor could simply be extended to cover all possible chemical elements
and strain types, allowing for universal application of the model.

Moreover, the features in our dataset, namely composition and
strain, have different orders of magnitude of variance. Therefore,
before training the models, the input data are standardized using the
StandardScaler class from scikit-learn.

5. Dataset size convergence
We construct the learning curve to ensure the proper training

of models and the comprehensiveness of the training set. There-
fore, we create a test set consisting of random 25% of the total input
dataset, comprising 4280 data points. We create the training set from
the rest (75% of the data), consecutively increasing the set size from
1% up to 75%. The series is repeated five times. We use five-fold
ShuffleSplit from scikit-learn to perform the above train-
test splittings. For each ML model training, hyperparameters are
re-optimized.

III. RESULTS AND DISCUSSION

Figure 1 shows the dependence of SVM-RBF model out-of-
sample performances on the training set size. As the training set size
increases, the RMSE of the SVR-RBF model decreases by ∼45 meV
[Fig. 1(a)]. Eventually, it reaches ∼30 meV with the largest training
set. The log–log plot demonstrates a high degree of linearity, indicat-
ing that the model learns properly.128,129 The corresponding MAE
and Max error values of predictions are shown in the supplementary
material, Fig. S3. The values decrease by about 35 and 160 meV,
respectively. The R2 score reaches a maximum of about 1.00 as the
training set size increases [the supplementary material, Fig. S3(b)].
Notably, with about 1000 data points, the RMSE is already ∼35 meV.
Further increases in the training set size (>1000) result in only
marginal improvements in model performance.

To eliminate the possibility of deteriorating model performance
due to noise in the data, we further investigate SVR-RBF mod-
els trained on separate direct and indirect bandgap datasets via
learning curves [the supplementary material, Figs. S4(a) and S4(b)].
As we find that most of the incorrect predictions in the bandgap
nature occur in the vicinity of direct–indirect transition (DIT)
regions, we additionally remove all data points predicted incorrectly
by the classification model and retrain SVR-RBF models with the
reduced dataset [the supplementary material, Fig. S4(c)]. The figures
(the supplementary material, Fig. S4) demonstrate that the learning
behavior does not change significantly, leading to the conclusion
that performance saturation is not due to the severe noise in the
data but rather due to models reaching their maximum capacity
to capture the patterns and relationships in the data given.128,129

The errors in the bandgap value predictions are spread over the
entire composition-strain space. These results indicate that learning
both direct and indirect bandgaps simultaneously does not lead to
confusion in the SVR-RBF model training.

The prediction accuracy-score of the nature of bandgaps from
SVC-RBF models increases by about 12% as the training set size
reaches the largest size [Fig. 1(b)]. The highest accuracy-score that
could be reached is ∼0.94 [the last point in Fig. 1(b)]. The corre-
sponding balanced-accuracy-score values follow the same pattern
(the supplementary material, Fig. S5). The model’s performance
again saturates at about 1000 data points. These results indicate that
the training set is adequate, and around 1000 data points should be
sufficient for screening the system being studied.
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FIG. 1. Dependence of SVM-RBF models out-of-sample performances on the training set size. (a) Bandgap magnitude prediction RMSE from the SVR-RBF model in
log–log scale. The hyperparameters are optimized with the RMSE metric. (b) Bandgap nature prediction accuracy from the SVC-RBF model. The hyperparameters are
optimized with the accuracy-score metric. The error bars show standard deviations over five trials.

TABLE I. Out-of-sample bandgap prediction accuracy for the SVM-RBF models from
the trial set of the last point in Fig. 1.

Model Metrica

SVR-RBF

RMSE 31 (±1)
MAE 22 (±0)

Max error 155 (±16)
R2 1.00 (±0.00)

SVC-RBF Accuracy score 0.94 (±0.01)
Balanced accuracy score 0.94 (±0.01)

aValues in brackets state the standard deviation. Error measures (RMSE, MAE, and
Max error) are given in meV. For MAE and R2 , the standard deviations are below 0.5
and 0.005, respectively.

Moreover, the ML models exhibit excellent efficiency. The pro-
cess of model training, including hyperparameter optimization, with
the largest dataset (3210 training data points) takes only a few
minutes on a six-core central processing unit (CPU).

Table I summarizes the out-of-sample prediction accuracy of
the final SVM-RBF models (the last point in Fig. 1). The RMSE of
the bandgap magnitude predictions of the corresponding SVR-RBF
models is 31 (±1) meV. For the classification task, the accuracy-
score is 0.94 (±0.01). The comparison of all the DFT calculated
and the ML-predicted bandgap values and types is presented in
the supplementary material, Figs. S6 and S7. The final trained
models and the list of optimized hyperparameter values for the
corresponding models are attached in the supplementary material.

Overall, the errors in bandgap predictions are well within the
uncertainty of the most accurate DFT results. We thus use the
models from the last point in Fig. 1 to construct the bandgap
phase diagram for GaAsPSb over the complete composition range
(As, P, Sb = 0%–100%) and up to 5% strain.

We emphasize that relying on a simple bowing model for
bandgap variation13 in such multinary compounds would require
an extensive number of bowing parameters for composition and
strains. As stated in the introduction, there is a lack of extensive
experimental data or bowing parameters available specifically for
GaAsPSb. Furthermore, the variation of bandgap values under strain

for different III–V compositions often deviates from the simple
quadratic dependence expected from a bowing model,57 and they
lack information about the bandgap nature. Therefore, the com-
bined accurate DFT-ML hybrid approach developed in the article
is necessary for an accurate determination of bandgap values and
natures.

A. GaAsPSb bandgap phase diagram
Figure 2 shows the bandgap phase diagram for unstrained

GaAsPSb. The bandgap values shown are the average values
obtained from the predictions of five models. The small standard
deviations (<35 meV) of the five model predictions (as shown in the
supplementary material, Fig. S8) indicate that the training set cov-
ers the whole phase space sufficiently and that the predictions made

FIG. 2. Variation of bandgap values (Eg) for unstrained GaAsPSb (0.0% strain).
The labels “direct” and “indirect” describe the enclosed regions, with the nature of
the bandgap being direct and indirect, respectively. The bandgap values are the
average values over the five model predictions from the trial set of the last point in
Fig. 1(a). The nature of the bandgaps is the most frequent outcome over the five
predictions (mode value) from the trial set of the last point in Fig. 1(b).
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FIG. 3. DIT lines for strained GaAsPSb (up to 5% strain). The labels “direct” and
“indirect” describe the enclosed regions, with the nature of the bandgap being
direct and indirect, respectively. The DITs occur under both tensile and compres-
sive strain in the area enclosed by the bold black solid line. In the region enclosed
by the magenta curve, DITs are possible only under tensile strain. No DIT occurs
in the other regions.

across the entire phase space sampled are accurate. In addition, the
use of multiple models for prediction increases the robustness of
the predictions of regression models by a factor of the square root
of the number of models,130 making predictions, in general, more
precise and less noisy. For the nature of bandgaps, we use the most
frequent outcomes over the five predictions (mode value). The labels
“direct” and “indirect” in the figure indicate the areas where the

nature of bandgaps is direct and indirect, respectively. These areas
are separated by the DIT line (black curve). We smooth the cal-
culated DIT points with the B-spline function131 (for details, see
the supplementary material, Sec. S7). The complete movie of the
corresponding diagrams for other strain values is available in the
supplementary material. Figure 2 shows that the largest bandgaps,
which are indirect in nature, are found at high %P. The bandgaps
become smaller as more %As and %Sb are added. The bandgap val-
ues also decrease with an increase in tensile as well as compressive
strain (the supplementary material, Fig. S10).

Further, we group the composition space DIT curves for all the
strain values investigated, as shown in Fig. 3. We find that within the
strain regime investigated here, in the area indicated by the magenta
box in Fig. 3, DITs are only possible under tensile strain. In the area
indicated by the bold black box, the DITs can be achieved using both
tensile and compressive strain. No DITs are found in other regions.

B. Modeling GaAsPSb epitaxy
One of the most common approaches to experimentally realiz-

ing quaternary III–V semiconductors is epitaxial growth. As pointed
out in Ref. 58, biaxial strain can be used to model epitaxial growth
(“theoretical epitaxy”). Thus, we also investigate the effects of differ-
ent substrates. We first calculate the equilibrium lattice parameters
of the unstrained quaternary compositions using Vegard’s law,132,133

Eq. (8),

aGaAsxPySb100−x−y = 1
100
[x × aGaAs + y × aGaP + (100 − x − y) × aGaSb]

(8)

with aGaP = 5.475 Å, aGaAs = 5.689 Å, aGaSb = 6.134 Å.57

FIG. 4. Effect of GaAs-substrate on GaAsPSb epi-layer under the “theoretical epitaxy” model57,58 (up to 5% strain). (a) The calculated biaxial strain values from Eqs. (8) and
(9). The black dotted line indicates the perfect lattice matching (no strain) compositions. (b) The predicted bandgap values in color (Eg). The labels “direct” and “indirect”
describe the enclosed regions, with the nature of the bandgap being direct and indirect, respectively. The bandgap values are the average values over the five model
predictions from the trial set of the last point in Fig. 1(a). The nature of the bandgaps is the most frequent outcome over the five predictions (mode value) from the trial set of
the last point in Fig. 1(b).
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The biaxial strain values are then computed using Eq. (9),

Strain (%) = asubstrate − aGaAsPSb

aGaAsPSb
× 100, (9)

Fig. 4(a) shows the strain map when the respective GaAsPSb
compositions are to be grown on a GaAs substrate.

We then predict the bandgaps using the SVM-RBF models
described earlier [see Fig. 4(b)]. In regions with high Sb content, we
find large compressive strains. The bandgap values in those regions
are very small. On the contrary, in the high %P region, we find a
large tensile strain. The bandgaps there are indirect in nature and,
thus, are not appropriate for optoelectronic applications. The per-
fect lattice matching condition can be found in between, as shown
by the dotted line in Fig. 4(a).

From the above discussions, it becomes clear that one can opti-
mize the best material combinations for achieving specific optical
applications using these diagrams. Similar diagrams for other sub-
strates (GaP, GaSb, InP, and Si) can be found in the supplementary
material, Fig. S11. We also provide interactive figures of the
above GaAsPSb bandgap phase diagrams in the supplementary
material.

Further, for the largest training dataset (the last point in Fig. 1),
we predict the bandgap nature using the SVC-RBF model with the
optimized hyperparameters from the SVR-RBF models. We obtain
an accuracy score of 0.94 (±0.01) in the out-of-sample performance.
This is comparable to the performance of the hyperparameter-
optimized SVC-RBF model (Table I). Similarly, we employ the
SVR-RBF model with optimized hyperparameters from the SVC-
RBF models to predict the bandgap magnitudes. For all the five
SVR-RBF models here, we set the ε value to 0.02, which was the
average value of previously hyperparameter-optimized SVR-RBF
models. This results in an out-of-sample RMSE of 32 (±1) meV for
the predictions, again demonstrating accuracy similar to that of the
optimized SVR-RBF models (Table I). This suggests that separate
hyperparameter optimizations are not required for the SVR-RBF
and SVC-RBF models independently. The optimized hyperparam-
eters from the SVR-RBF model can be used for the prediction of
SVC-RBF, and vice versa.

IV. SUMMARY

In this work, using machine learning models trained on first-
principles calculations, we developed an efficient DFT-ML hybrid
computational approach for mapping the bandgap magnitude and
type (direct or indirect) over a wide range of composition and strain
values in quaternary III–V semiconductors. The devised SVR-RBF
and SVC-RBF-based ML models showed remarkable accuracy in
predicting the bandgap properties of these materials despite using a
very simple descriptor, i.e., composition and strain values. This strat-
egy significantly accelerates the sampling efficiency over the large
strain-composition space in multinary systems, which otherwise
would be impossible to cover with first-principle calculations alone.
Using the protocol, we constructed the composition-strain-bandgap
mapping, or bandgap phase diagram, for GaAsPSb. This diagram
can be used as a valuable tool for making judicious choices about
the best materials for target applications. The study revealed that

within 5% strain, GaAsPSb compositions with high P concentrations
are characterized by indirect bandgaps and are thus not suitable
for optoelectronic devices. Notably, our computational protocol can
be generalized to other multinary III–V semiconductors. Thus, the
rapid estimation of bandgaps for a large number of composition and
strain values using this approach will be extremely useful for screen-
ing multinary III–V materials. This provides a powerful approach
for future material design, facilitating the development of novel
strain-engineered semiconductor materials with tailored bandgap
properties.

SUPPLEMENTARY MATERIAL

The supplementary material includes

● Supporting_Information.pdf: collection of supplementary
supporting figures and tables.● GaAsPSb_ML_database.zip: complete dataset for ML
training and testing, contains “GaAsPSb_ML_database.
xlsx.”● GaAsPSb_bandgap_phase_diagram.mp4: bandgap phase
diagram movie for GaAsPSb up to 5% tensile and
compressive strain.● Interactive_bandgap_phase_diagram.zip: interactive dia-
grams in HTML format. To view the diagrams, open the
HTML files in a web browser.

● Substrate_effect_strain_map.html: biaxial strain
map of GaAsPSb when grown on different substrates
[calculated using Eqs. (8) and (9)].● Substrate_effect_bandgap_phase_diagram.html:
ML predicted the bandgap map of GaAsPSb when
grown on different substrates.● Direct_indirect_transition_lines.html: ML pre-
dicted direct-indirect transition lines (without
B-spline fitting) for GaAsPSb up to 5% tensile and
compressive strain.● Bandgap_phase_diagram_GaAsPSb.html: bandgap
phase diagram for GaAsPSb (within 5% tensile and
compressive strain). The direct-indirect transition
lines are without B-spline fitting.

● GaAsPSb_MachineLearning_scripts.zip: Python scripts for
the ML codes used to generate the data in this manuscript.
Additionally, a user guide titled “Helpers.txt” is included
within the zip file to assist with executing the ML scripts.● FinalBest5TrainedModels.zip: the final best five ML trained
models used to create the bandgap phase diagram in this
manuscript. The zip file includes a Python script that can
be used to predict the bandgaps of the GaAsPSb system and
a user guide titled “Helpers.txt” to assist with executing the
script.● FinalBest5TrainedModels_hyperparameters.zip: list
of optimized hyperparameter values of the final
best five SVR-RBF and SVC-RBF models, contains
“FinalBest5TrainedModels_hyperparameters.xlsx.”
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S1. Hyperparameter optimization

(a) ε = 10−3 − 102 (b) ε = 10−2 − 102

(c) ε = 10−2 − 10 (d) ε = 10−2 − 1

FIG. S1. Hyperparameter optimization with the largest dataset (3210 training data points) using random search cross-validation
of the SVR-RBF model. The hyperparameter optimization scoring function is the negative RMSE, meaning that a small error
or a high test-score (red) is beneficial. The random search is performed for each subfigure over 1000 random C, γ, and ε
combinations from a logarithmic uniform distribution space. The sizes of the circles, depicted in log-scale, represent the ε
values. Specifically, we plot log(103ε) values to ensure non-negative marker size. The ranges for C, γ, and ε are made tighter
from (a) to (d).

In Fig. S1, we show the hyperparameter optimization with random search cross-validation of the SVR-RBF model.
We tune the C, γ, and ε ranges and find Fig. S1d as the optimal choice, covering the regimes with the best hy-
perparameters set. The larger C value (> 103) would result in a hard margin in the SVR model and, thus, poor
generalization on unknown data. Therefore, for C, no larger values are sampled here.

Note the mean test score values in Fig. S1 are displayed on a negative scale. As mentioned in the manuscript,
we used the package sklearn for implementing the ML models in this article. The hyperparameter optimizations
in this package are performed by evaluating the scoring function values over the cross-validation set. In sklearn,
by convention, the convention is to maximize all scorer objects during optimization. However, in ML problems, the
objective is to minimize the error for error functions. Thus metrics such as ‘mean squared error’ are available as
‘negative mean squared error’ in hyperparameter optimization scoring functions, which return the negated value of
the metric.



3

S2. Negative direct bandgap

FIG. S2. The SVR-RBF model bandgap value predictions over all the samples. The true values are the DFT calculated
bandgaps. The hyperparameters are optimized with RMSE metric.

In Fig. S2, the bandgap values were predicted using SVR-RBF model. The hyperparameters of the model were
optimized using RMSE metric, Eq. S1. However, the corresponding SVR-RBF model predicted a few small negative
direct bandgap values of up to –5 meV (see left-bottom corner in Fig. S2). In the manuscript, we thus converted all
the predicted negative bandgap values (ŷi) to 0 (ŷi=0). The RMSE of the model predictions was calculated after the
conversion. Accordingly, all the performance metrics evaluated did include this conversion.

RMSE =

√√√√ 1

n
samples

n
samples∑

i=1

(yi − ŷi)
2

(S1)

Where ŷi is the ML model predicted value of i-th sample and yi is the corresponding true value. n
samples

is the total
number of samples.

S3. Machine learning dataset features and labels for GaAsPSb

The full data dataset can be found in the Supplementary Information attachment. In the table below, the ML features
for 3 example data are given.
Sample 1: Ga100P0As100Sb0 (≡ GaAs), unstrained
Sample 2: Ga100P25As25Sb50, 3.0% biaxial tensile strained
Sample 3: Ga100P50As50Sb0, 5.0% biaxial compressively strained

Sample index
Features Labels

Phosphorus (%) Arsenic (%) Antimony (%) Strain (%) Bandgap value (eV) Bandgap naturea

1 0 100 0 0.0 1.466 direct
2 25 25 50 3.0 0.629 direct
3 50 50 0 -5.0 1.243 indirect

a The direct and indirect bandgap natures are feature transformed to 1 and 0s before ML training.
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S4. Dataset convergence

(a) (b)

(c) (d)

FIG. S3. Dependence of bandgap magnitude prediction (a) RMSE, (b) R2, (c) MAE, and (d) Max error from SVR-RBF model
on the number of training data. Error bars show standard deviations for 5 trials. The hyperparameters are optimized with
RMSE metric.
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(a) (b)

(c) (d)

FIG. S4. Learning curve in log–log scale showing the performance of the SVR-RBF model for bandgap value predictions, with
different dataset settings: (a) using the dataset that contains only direct bandgaps, (b) using the dataset that contains only
indirect bandgaps, (c) using the dataset that contains both direct and indirect bandgaps while excluding the data points for
which SVC-RBF model predicted an incorrect bandgap nature, and (d) using the original dataset. Figure (d) corresponds to
Fig. 1a in the main manuscript. Error bars show standard deviations over 5 trials. The hyperparameters are optimized with
RMSE metric.

FIG. S5. Dependence of bandgap nature prediction balanced-accuracy-score from SVC-RBF model on the number of training
data. Error bars show standard deviations for 5 trials. Hyperparameters are optimized with accuracy-score metric.
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S5. Bandgap prediction validations

(a) (b)

FIG. S6. The bandgap values prediction from the SVR-RBF models for all input data in the dataset. True values are the DFT
calculated bandgap values. The predictions are the average bandgap values over the 5 model predictions from the trial set of
the last point from Fig. 1a. (a) shows the comparison between true and predicted values, (b) is the prediction error (true value
minus predicted value) distribution.

FIG. S7. The confusion matrix of the bandgap nature predictions, showing the number of correct and wrong predictions for
each class (direct and indirect). True labels are the bandgap nature determined from DFT calculations for all input data in
the dataset. The prediction labels are the most frequent outcomes over the 5 SVC-RBF model predictions (mode value) from
the trial set of the last point from Fig. 1b.



7

S6. Standard deviation distribution of bandgap prediction

FIG. S8. The standard deviation (STD) distribution of bandgap value predictions using the 5 SVR-RBF models from the last
point of Fig. 1a. The figure is plotted in semi-log scale.

S7. Smoothening direct-indirect transition line

FIG. S9. The mapping of bandgap nature for unstrained GaAsPSb (0.0% strain). The labels ‘direct’ and ‘indirect’ describe
the enclosed regions, with the nature of bandgap being direct and indirect, respectively. These areas are separated by the
direct-indirect transition (DIT) points (red dots). The bandgap natures calculated are the most frequent outcomes over the
5 predictions (mode value) from the trial set of the last point from Fig. 1b. The calculated DIT points (red dots) are fitted
(black line) with B-spline function with the smoothing factor, s=5.

We smoothen the calculated discrete direct-indirect transition (DIT) points with B-spline function [1] (smoothing
factor, s=5) as is implemented in scipy.interpolated [2] routine.
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from scipy.interpolate import splprep, splev
x = DIT_x #x-coordinate of the calculated DITs
y = DIT_y #y-coordinate of the calculated DITs
tck, u = splprep([x, y], s=5)
smoothen_DIT_x, smoothen_DIT_y = splev(u, tck)

S8. Bandgap values variation under strain for specific GaAsPSb

FIG. S10. The variation of bandgap values (Eg) under biaxial strain in GaAs0.333P0.333Sb0.334. The positive and negative
strain values indicate the tensile and compressive strains, respectively. The bandgap values are the average values over the 5
model predictions from the trial set of the last point from Fig. 1a and error bars show standard deviations.
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S9. Substrate effect in GaAsPSb bandgap phase diagram

(a) GaP substrate

(b) GaSb substrate

FIG. S11. The effect of substrate on GaAsPSb epi-layer under the ‘theoretical epitaxy’ model [3, 4] (up to 5% compressive
and tensile strain). The left column shows the calculated biaxial strain values using Eqs. 8 and 9. The right column presents
predicted bandgap values in color (Eg). The labels ‘direct’ and ‘indirect’ describe the enclosed regions, with the nature of
bandgap being direct and indirect, respectively. The bandgap values are the average values over the 5 model predictions from
the trial set of the last point from Fig. 1a. The nature of the bandgaps are the most frequent outcomes over the 5 predictions
(mode value) from the trial set of the last point from Fig. 1b.
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(c) InP substrate

(d) Si substrate

FIG. S11. (continue) The effect of substrate on GaAsPSb epi-layer under the ‘theoretical epitaxy’ model [3, 4] (up to 5%
compressive and tensile strain). The left column shows the calculated biaxial strain values using Eqs. 8 and 9. The black
dotted line in (c) indicates the perfect lattice matching (no strain) compositions. The right column presents predicted bandgap
values in color (Eg). The labels ‘direct’ and ‘indirect’ describe the enclosed regions, with the nature of bandgap being direct
and indirect, respectively. The bandgap values are the average values over the 5 model predictions from the trial set of the last
point from Fig. 1a. The nature of the bandgaps are the most frequent outcomes over the 5 predictions (mode value) from the
trial set of the last point from Fig. 1b.
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Abbreviations and Acronyms

ATAT Alloy Theoretical Automated Toolkit

BOA Born-Oppenheimer Approximation
BSW Bloch Spectral Weight
BZ Brillouin Zone

CB Conduction Band
CBM Conduction Band Minimum
CMOS Complementary Metal-Oxide Semiconductor
CPA Coherent-Potential Approximation

DFT Density Functional Theory
DIT Direct-Indirect Transition

EBS Effective Band Structure

LED Light-Emitting Diodes

m-BJ Modified Becke-Johnson
MAE Mean Absolute Error
Max error Maximum error
MBD Many-Body Dispersion
ML Machine Learning
MQW Multiple Quantum Well

NM Nanomembrane

PAW Projector Augmented-Wave
PBC Periodic Boundary Condition

QWH Quantum-Well Heterostructure
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ABBREVIATIONS AND ACRONYMS

R2 Coefficient of determination
RBF Radial Basis Function
RMSE Root Mean Squared Error

SQS Special Quasi-Random Structure
SV Support Vector
SVC Support Vector Classification
SVM Support Vector Machines
SVR Support Vector Regression

TS Tkatchenko-Scheffler

VASP Vienna Ab Initio Simulation Package
VB Valence Band
VBM Valence Band Maximum
VCA Virtual-Crystal Approximation
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