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Notations

R The set of real numbers.

N The set of natural numbers.

C The set of complex numbers.

Z,Z+ The set of integers, positive integers.

B Banach spaces.

B′ The dual space of a Banach space B.

H Hilbert spaces.

S(Rd) The Schwartz space or space of rapidly decreasing functions

on Rd.

S ′(Rd) The space of tempered distributions or space of slowly growing

functions on Rd.

Lp(Rd) The Lebesgue space of measurable functions on Rd that are

p-integrable, i.e.,
{
f : Rd → C

}
for which ∥f∥p <∞.

Lp
m(Rd) The Lebesgue space of measurable functions on Rd such that

fm ∈ Lp(Rd).

C∞(Rd) The space of infinitely differentiable functions on Rd.

CL The space of periodic sequences of length L ∈ N.

C[0, T ] The space of continuous function on [0, T ].

⟨·, ·⟩ The inner product.

Dα The differential operator on Rd with Dα =
∂α1

∂α1
x1

. . .
∂αd

∂αd
xd

Xβ The multiplication operator on Rd with Xβ =
∏d

i=1X
βi

i

xi



Notations

Ff = f̂(ω) Fourier transform of a function f .

FB Image of a Banachspace B under the F with

∥f∥FB = ∥F−1f∥B .

∥ · ∥B Norm on a Banach Space B.

∥ · ∥p Lp-norm, ∥f∥p = (
∫
Rd |f(x)|p dx)

1
p for p <∞

∥ · ∥∞ Essential supremum, ∥f∥∞ = ess supx∈Rd |f(x)|

∥ · ∥2 The Euclidean norm.

Λ Set of index.

#Λ Cardinality of the set Λ.

ℓ2(Λ) The space of square summable sequence space on Λ.

supp(f) Support of a function f : {x ∈ Rd : f(x) ̸= 0}.

sgn(x) Sign of a real number a with sgn(a) = a/ |a|.

E Expected value.

Cov Covariance.

N (µ, σ2) Normal distribution with mean µ and variance σ2.

an = O(bn) Big O-Notation. The sequence an is smaller than the sequence

bn up to a multiplicative constant.

z The complex conjugated of z ∈ Cd.

ℜ(z) The real part of a complex number z.

ℑ(z) The imaginary part of a complex number z.

φa(x) The Gaussian function, φa(x) = exp(−π∥x∥22/a).
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1. Introduction

Time-frequency analysis is a commonly used tool for investigating the time-varying spec-

tral content of non-stationary signals. Unlike traditional frequency analysis methods such

as Fourier analysis, which effectively represent frequency components but fail to capture

the dynamic nature of non-stationary signals, time-frequency analysis provides a form

of local Fourier analysis that simultaneously describes the temporal and spectral behav-

ior of a signal. It relies on two important techniques, translation and modulation, to

localize signal components in the time-frequency domain and derive a time-frequency

representation. Gröchenig (2013) provides a comprehensive exploration of the mathe-

matical aspects of time-frequency analysis.

Signal denoising is a prominent application of time-frequency analysis. An effective ap-

proach to signal denoising is to use the spectral information provided by time-frequency

analysis. Noise and the underlying signal often have different spectral characteristics.

Signals typically have a more concentrated and localized time-frequency content, whereas

noise tends to spread randomly across the time-frequency domain or a particular part

of it. For example, low frequency noise such as motors or human voices will primarily

affect the low frequency portion of the observed signal. White noise affects all frequencies

equally. By exploiting this prior knowledge, denoising algorithms such as thresholding

can be designed to attenuate or eliminate the noise while preserving the essential spectral

components of the signal. In the field of audio denoising, using this approach leads to

a significant improvement in audio quality and is of great value in applications such as

speech recognition, audio restoration and audio communication systems, see Yu et al.

(2008) or Ashwin and Manoharan (2018).

A key aspect of this approach is the accurate localization of signal components in the

time-frequency domain. This leads to a sparse representation of the signal, which helps

to distinguish it from noise. The most popular time-frequency analysis method is the
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1. Introduction

short-time Fourier transform (STFT). It involves sliding a fixed window over the signal

to locate the Fourier transform. It provides a fixed time-frequency resolution controlled

by the length of the window. However, this approach often results in a trade-off between

good time resolution and good frequency resolution. For any square-integrable signal a

countable, redundant and energy preserving representation in the time-frequency domain

is obtained as a non-orthogonal expansion of the signal using Gabor frames, a collection

of time-frequency shifts sampled from the STFT. The STFT is well suited for signals

with stable frequency content over long time periods. In such cases, an appropriate win-

dow size can be selected for analysis.

Modulation spaces provide a natural framework for time-frequency analysis. They ex-

tend the Fourier smoothness-and-decay principle to the time-frequency domain, allowing

the smoothness of a signal to be measured from the decay characteristics of its STFT

in time-frequency space, cf. Galperin and Samarah (2004). In certain cases, modulation

spaces coincide with Sobolev spaces. In Dahlke et al. (2022), we provide nonparamet-

ric estimation of signals corrupted by stationary noise in the white noise model. The

observed signal is an element in an appropriate modulation space. We constructed an

adaptive and rate-optimal estimator on modulation spaces by thresholding the coeffi-

cients obtained from the Gabor expansion. The rate obtained using classical oracle

inequalities from Donoho and Johnstone (1994), exhibit new features reflecting the im-

plication of both the time and the frequency. The signals in Dahlke et al. (2022) were

observed across the entire Rd because, first, signals such as audio signals naturally lack

inherent restrictions to specific domains, cf. Goldenshluger et al. (2006). Second, unlike

the theories of other function spaces such as Besov or Sobolev, the theory of Gabor ex-

pansions and modulation spaces is not fully developed for bounded domains.

A well-studied alternative to time-frequency analysis is the (orthogonal) wavelet trans-

form (WT). As described in Daubechies (1990), the WT also provides time-frequency

localization with a time-frequency resolution that varies with frequency. It effectively

localizes high-frequency events in time and low-frequency events in frequency, making it

a suitable choice for analyzing many real-world signals. These signals often have slowly

oscillating content on longer scales, while high-frequency events tend to be abrupt or

transient in nature. However, it’s important to note that if the spectral content of the

underlying signal is limited to a specific frequency range, using the WT alone may re-

2



sult in either reduced frequency resolution or compromised time resolution. Donoho and

Johnstone (1994) show that wavelet denoising is close to optimal in the minimax sense

on Besov spaces, specifically for Gaussian white noise scenarios. Mallat (2009) also dis-

cusses denoising wavelet frame expansions by thresholding. These results highlight the

effectiveness of wavelet denoising techniques in dealing with noise in signals.

To address the resolution challenges posed by the Gabor and wavelet transforms, a hybrid

approach called the Flexible Gabor-Wavelet Transform (GWT) has been introduced, as

described in Nazaret and Holschneider (2003). The GWT uses a parameter α ∈ [0, 1]

that dynamically adjusts the window length based on frequency, resulting in improved

resolution compared to the STFT. It also addresses the loss of frequency resolution ob-

served in the WT when analyzing higher frequencies. The smoothness space associated

with this transform is called the α modulation space. It lies between modulation spaces

and Besov spaces and provides a versatile framework for analyzing signals with varying

degrees of smoothness in the time-frequency domain. The introduction of the α param-

eter allows for a flexible adjustment of the window length, striking a balance between

time and frequency resolution.

In this thesis, we reformulate and extend the results presented in Dahlke et al. (2022).

However, unlike the previous work, we derive all results from sequence space, thus pro-

viding a different perspective. In particular, the frame expansions used in this analysis

are energy preserving, which means that the quadratic risk incurred during the denoising

process of the time-frequency representation applies equally to the signal after synthesiz-

ing the coefficients. Furthermore, we extend the obtained results to obtain comparable

results in the bounded domain. This allows for a broader applicability of the results be-

yond the unbounded setting. In addition, we generalize the estimation results to include

the α modulation space in the one-dimensional setting. Through these extensions and

generalizations, we aim to improve the understanding and applicability of time-frequency

analysis techniques in various scenarios.

This thesis is organized as follows. Chapter 2 provides a comprehensive review of frames

and frame expansions in both Hilbert spaces and Banach spaces. We examine the STFT

and the use of Gabor frames for signal expansions. We review the concept of decay on

product measure spaces using weight functions. We also introduce modulation spaces

3



1. Introduction

and explore their characterization using Gabor expansions. Finally, we delve into the

theory of the flexible Gabor-Wavelet transform and α-modulation spaces. In Chapter 3,

we revisit the findings of Dahlke et al. (2022) concerning the nonparametric estimation

of signals in modulation spaces using Gabor frames. Notably, our analysis is conducted

entirely within the sequence space. We first constrain the signal representation by con-

sidering a finite subset of the representation and estimating the signal within this finite

subsequence. We derive the minimax convergence rate and compare it to known re-

sults, such as those in the Sobolev case. Chapter 4 replicates the results of Chapter

3 but focuses on the utilization of α-modulation frames. We make comparisons with

results obtained in Sobolev spaces as well as with those in Besov spaces. In Chapter

5, we present the outcomes of intensive computations that highlight the advantages of

Gabor frames in audio denoising. These experiments demonstrate the effectiveness of

the proposed approach, and we provide quantitative results to evaluate the denoising

performance. We compare the estimated signals with the ground truth signals, using

various performance metrics such as signal-to-noise ratio (SNR) and mean square error

(MSE).

4



2. Frame Theory and Time-Frequency

Representation

This chapter focuses on representing (audio) signals in the time-frequency domain using

non-orthogonal expansions, with frames serving as a valuable tool for this purpose. By

building upon time-frequency elements, frames provide a rich and redundant dictionary

of vectors that can effectively represent (audio) signals in a sparse manner when designed

appropriately. The use of frames allows the creation of a function space from which more

general results can be derived. The chapter is structured as follows. First, we introduce

frames in the context of signal representation in Hilbert spaces. Important concepts,

facts and results about frames are reviewed, drawing on references such as Christensen

(2016) and Mallat (2009). The notion of frames can be extended to Banach spaces, pro-

viding a non-orthogonal expansion for an even larger class of functions, as explored in

works like Gröchenig (1991) and Megginson (1998). Next, the short-time Fourier trans-

form is introduced, followed by Gabor’s idea of frames for the L2(Rd) space based on the

short-time Fourier transform, as presented in Gabor (1946). Modulation spaces, which

are smoothness classes that characterize their elements by the decay properties of their

time-frequency representations, are also discussed. Finally, a more general smoothness

class called α-modulation is introduced, which provides a generalization from modulation

spaces, such as L2(Rd), to Besov spaces. Throughout the chapter, relevant literature,

notions, and theories are reviewed to provide a comprehensive understanding of the topic.

5



2. Frame Theory and Time-Frequency Representation

2.1. Frames in Hilbert Spaces

Introduced by Duffin and Schaeffer (1952) in the context of nonharmonic Fourier series,

frames are families of vectors that provide a complete, stable, flexible, and potentially

non-unique representation of elements in the underlying space. Frames soften the concept

of a basis by providing the flexibility needed to represent a signal by unstructured families

of vectors. Unlike a basis, elements of a frame can be linearly dependent, non-orthogonal,

and overcomplete, i.e., have more elements than needed. This overcompleteness ensures

the existence of such a representation and is more stable against noise in the coefficients.

Throughout this thesis, let (H, ∥·∥) be a (separable) Hilbert space with the inner product

⟨·, ·⟩. For a countable index set Λ, ℓ2(Λ) represents the set of square summable sequences

on Λ. In the following, we consider a sequence {hλ}λ∈Λ in H.

Definition 1 (Frame and Riesz Basis, (Mallat, 2009, Definition 5.1)). A sequence

{hλ}λ∈Λ is a frame for H if there exist two constants 0 < A ≤ B such that for all

f ∈ H
A∥f∥2 ≤

∑
λ∈Λ

|⟨f, hλ⟩|2 ≤ B∥f∥2. (2.1)

The numbers A, B are called frame bounds. They are redundancy factors and not

unique. When A = B, the frame is said to be tight. If the {hλ}λ∈Λ are linearly inde-

pendent then the frame is called a Riesz basis. A frame which is not a Riesz basis is

called nonexact or redundant or overcomplete frame, i.e. there exists nonzero sequences

{cλ}λ∈Λ ∈ ℓ2(Λ) \ {0} for which
∑

λ∈Λ cλhλ = 0. A frame that ceases to be a frame

when an arbitrary element is removed, it is called an exact frame. Hence exact frames

are also Riesz basis.

We refer to the previous definition as the frame condition. It shows that frames define a

stable signal representation since any bounded input signal produces a bounded output.

Thus any perturbation of frame coefficients {⟨f, hλ⟩}λ∈Λ implies a modification of sim-

ilar magnitude on the signal. For a better understanding of frames and reconstruction

methods, we review some important associated operators on Hilbert spaces.

6



2.1. Frames in Hilbert Spaces

Definition 2 (Analysis and Synthesis Operator).

For a sequence {hλ}λ∈Λ ⊆ H satisfying the frame condition (2.1) or at least the right

hand side of the inequality (Bessel condition), the analysis operator T is given by

T : H → ℓ2(Λ), T f = {⟨f, hλ⟩}λ∈Λ (2.2)

Its adjoint operator, the synthesis operator T ∗, is given by

T ∗ : ℓ2(Λ) → H, T ∗({cλ}λ∈Λ) =
∑
λ∈Λ

cλhλ (2.3)

Obviously ∥T∥ ≤
√
B, despite the frame vectors not having to be orthogonal in general.

Hence both operators are bounded. Furthermore the existence of a well-defined, bounded

and surjective synthesis operator, mapping from ℓ2(Λ) onto H, provides a characteriza-

tion of frames for Hilbert spaces, see Christensen (2016, Section 5.5). This characteriza-

tion of frames does not require any knowledge of the frame bounds. The frame condition

(2.1) shows that the linear combination of coefficients obtained from the analysis oper-

ator is stable. The linear combination of frame vectors is also stable, see Mallat (2009,

Theorem 5.1).

By composing T and T ∗ we obtain the frame operator S on H

S : H → H, Sf = T ∗Tf =
∑
λ∈Λ

⟨f, hλ⟩hλ (2.4)

For any f ∈ H the series defining the frame operator S converges unconditionally, i.e.,

regardless of the order of summation, see Christensen (2016, Lemma 2.1.1). The next

lemma depicts important elementary properties of the frame operator in Hilbert spaces.

Lemma 1. Let {hλ}λ∈Λ be a frame with frame operator S and frame bounds A,B. Then

the following holds:

1. The frame operator S maps H onto H and is bounded, invertible, self-adjoint, and

positive

2. {S−1hλ}λ∈Λ is a frame with bounds B−1, A−1. The frame operator for {S−1hλ}λ∈Λ

is S−1, the inverse frame operator.

7



2. Frame Theory and Time-Frequency Representation

Proof. Christensen (2016, Lemma 5.1.5)

The frame {S−1hλ}λ∈Λ is referred to as the canonical dual frame. It plays an important

role in signal in the reconstruction of any signal f ∈ H. The most important frame

result is the frame decomposition. It shows that if {hλ}λ∈Λ is a frame for the Hilbert

space H, then every element in H has a representation as a linear combination of the

frame elements hλ. Thus frame can be viewed as a generalization of the concept of basis.

From the frame operators, S and S−1, we obtain the following representation formulas

for f ∈ H as linear combination of the frame elements.

Theorem 2. Let {hλ}λ∈Λ be a frame for H with frame operator S. Every f ∈ H has

non-orthogonal expansions

f =
∑
λ∈Λ

⟨f, S−1hλ⟩hλ (2.5)

and

f =
∑
λ∈Λ

⟨f, hλ⟩S−1hλ, (2.6)

where both series converge unconditionnally in H.

Proof. Gröchenig (2013, Theorem 5.1.3)

The sequence
{
⟨f, S−1hλ⟩

}
λ∈Λ

is called frame coefficients. The canonical dual frame

{S−1hλ}λ∈Λ plays the same role as the dual of a basis. Theorem 2 can be understood

in the following way: while the dual analysis (eq. (2.5)) provides a non-orthogonal ex-

pansion of f with respect to the frame vectors {hλ}λ∈Λ, the dual synthesis (eq. (2.6))

reconstructs f from the frame coefficients using the dual frame as an expanding function.

It also shows that all informations about the given f ∈ H is contained in the sequence

{⟨f, S−1hλ⟩}k∈Λ. For an overcomplete frame {hλ}λ∈Λ ⊆ H, there exist several choices

of frames {gλ}λ∈Λ ⊆ H with {gλ}λ∈Λ ̸= {S−1hλ}λ∈Λ for which

f =
∑
λ∈Λ

⟨f, gλ⟩hλ. (2.7)

8



2.1. Frames in Hilbert Spaces

Any frame {gλ}λ∈Λ satisfying (2.7) is called a dual frame of {hλ}λ∈Λ. It then becomes

obvious that in contrast to orthogonal expansion, the coefficients in the frame expansion

(2.5) and (2.6) are in general not unique. They are unique if and only if the correspond-

ing frame is a Riesz basis of H. This frame redundancy is useful in practical problems

requiring robustness and error tolerance, like noise reduction.

2.1.1. Frames in Banach Spaces

Under certain conditions, the concept of frames can also be extended to provide non-

orthogonal signal expansion in Banach spaces, see Gröchenig (1991) and Banach (1932),

Megginson (1998). This will be useful later in this work.

Definition 3 (Fornasier (2004, Definition 1)). Let (B, ∥ ∥B) be a separable Banach space

and (Bb, ∥ ∥Bb
) an associated sequence space. A sequence {gλ}λ∈Λ ⊆ B′ is Banach frame

for B if the following properties hold.

� The analysis operator Tf = {⟨f, gλ⟩}λ∈Λ, is bounded from B into Bb.

� Norm equivalence:

∥f∥B ≍ ∥{⟨f, gλ⟩}λ∈Λ∥Bb

� There exists a bounded synthesis operator T from Bb onto B such that

T ∗({⟨f, gλ⟩}λ∈Λ) = f

A Banach frame allows a representation of any f ∈ B in the associated sequence space.

The sequence {gλ}λ∈Λ ⊆ B is called frame atomic decomposition of the Banach space B

if there exists a Banach frame {g̃k}λ∈Λ ⊆ B such that for any f ∈ B the series expansion

f =
∑
λ∈Λ

⟨f, g̃λ⟩gλ (2.8)

converges unconditionally. We then refer to {g̃k}λ∈Λ as the dual Banach frame.
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2. Frame Theory and Time-Frequency Representation

We conclude this section with some important remarks on frames; proofs and further

details can be found in Gröchenig (2013, Chapter 5), Christensen (2016), and Mallat

(2009).

Remark 1.

1.) A sequence {hλ}λ∈Λ of elements in H is a frame for H if and only if span{hλ}λ∈Λ =

H. Therefore it is sufficient to check the frame condition on a dense set of H, then

it also holds on H, with the same frame bounds, Christensen (2016, Lemma 5.1.7).

2.) The canonical dual frame {S−1hλ}λ∈Λ minimizes the l2-norm of the frame co-

efficients among all dual frames, i.e. for any {cλ}λ∈Λ ∈ ℓ2(Λ) satisfying f =

T ∗{cλ}λ∈Λ it follows ∑
k∈Λ

|ck|2 ≥
∑
k∈Λ

|⟨f, S−1hλ⟩|2 (2.9)

See Gröchenig (2004, Proposition 5.1.4)

3.) The existence of multiple dual frames facilitates the reconstruction of the function f

in situations where finding the inverse frame operator appears to be a difficult task.

In the rest of the thesis, where no confusion can arise, we will refer to canonical

dual frame just as dual frame.

4.) From a computational point of view, a tight frame offers a great advantage. The

canonical dual of tight frame {hλ}λ∈Λ with frame bound A is given as

S−1hλ = { 1
A

· hλ}λ∈Λ (2.10)

Not only do tight frames help facilitate the computation of the dual frame, they

also help control the behavior of the dual frame, as the retain the linear properties

of the frame.

5.) The optimal upper and lower frame bound are respectively the infimum over all

upper frame bounds and the supremum over all lower frame bounds. By rewriting

the frame condition as:

A∥f∥2 ≤ ⟨Sf, f⟩ ≤ B∥f∥2, ∀f ∈ H.

10



2.2. Time-Frequency Analysis

it results that A and B are the infimum and supremum values of the spectrum of

the frame operator S, which correspond to the smallest and largest eigenvalues in

finite dimension. If A,B are the optimal bounds for {hλ}λ∈Λ, then the bounds

B−1, A−1 are optimal for {S−1hλ}.

2.2. Time-Frequency Analysis

In this section, we will explore various aspects of the time-frequency representation of

signals. The mathematical framework is built upon the Hilbert space L2(Rd). Time-

frequency analysis is best described as a localized version of the Fourier transform. The

goal of time-frequency analysis is to provide a simultaneous description of the temporal

and spectral behavior of a signal. This is essential when dealing with signals whose

spectral characteristics change with time.

Before diving into the specific techniques used in time-frequency analysis, it is helpful

to review some relevant results from Fourier analysis. For more results, details, and

explanations of Time-frequency analysis, please refer to the book ”Foundations of Time-

Frequency Analysis” by Hans Gochenig (2013).

2.2.1. The Schwartz Space and Fourier Transform

The Schwartz space, denoted by S(Rd), is an important building block in time-frequency

analysis. It is defined as the space of rapidly decaying smooth functions on the Euclidean

space Rd. The functions in the Schwartz space have the property that any derivative of

the function decays faster than any inverse power of |x|. Formally, the Schwartz class is

defined as the set of all functions f ∈ C∞(Rd) such that the following condition holds:

sup
x∈Rd

|DαXβf(x)| <∞ for all α, β ∈ Zd
+. (2.11)
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2. Frame Theory and Time-Frequency Representation

Furthermore, it is dense in Lp(Rd) for 1 ≤ p <∞, meaning that any function in Lp(Rd)

can be approximated arbitrarily closely by a function in the Schwartz space. This makes

it a convenient space for many mathematical operations, such as the Fourier transform,

in the time-frequency analysis. In addition, the space of test functions, compact smooth

functions, is also included in S(Rd).

The dual of the Schwartz space, S ′(Rd), is called the space of tempered distributions,

the space of continuous linear functionals on the Schwartz space. Tempered distribu-

tions can be characterized as the space of slowly growing functions. This means that any

derivative of the function grows at most as fast as a polynomial. In particular, elements

of the Lp(Rd) space for p ≥ 1 are tempered distributions. This space is a convenient

space for many mathematical operations, such as partial differential equations, Fourier

analysis, and distributions theory.

Definition 4 (Fourier transform, Gröchenig (2013)). For f ∈ S(Rd), the Fourier trans-

form of f , denoted by f̂(ω), is given by:

f̂(ω) =

∫
Rd

f(x)e−2πiωx dx

for a frequency ω ∈ Rd. The inverse Fourier transform is given by:

f(x) =

∫
Rd

f̂(ω)e2πix·k dk (2.12)

The Fourier transform is a bounded linear operator. To highlight this, we write Ff
instead of f̂(ω). It defines a continuous bijection on S(Rd). By duality, the Fourier

transform can be extended to S ′(Rd). The Fourier transform is a powerful tool for an-

alyzing the frequency content of a signal. While f(x) describes the temporal behavior,

f̂(ω) describes the frequency behavior of the function f . For all frequencies ω ∈ Rd, we

obtain the frequency domain representation. The inversion formula provides a synthesis

process that reconstructs the original function f from its frequency domain representa-

tion.

Note that the Fourier transform is a unitary operator on the Hilbert space L2(Rd). It

preserves the inner product and the norm, i.e. ⟨f, g⟩L2(Rd) = ⟨f̂(ω), ĝ(ω)⟩L2(Rd) as well
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2.2. Time-Frequency Analysis

as ∥f(x)∥2 = ∥f̂(ω)∥2 for all f, g ∈ L2(Rd), see Plancherel’s theorem and Parseval’s

formula.

Another later useful remark is the uncertainty principle. This states that a signal that is

well localized in time (i.e., has a short duration) cannot be well localized in frequency (i.e.,

has a narrow band of frequencies). Conversely, a signal that is well localized in frequency

cannot be well localized in time. The mathematical representation of this principle is

that a signal and its Fourier transform cannot both have finite support unless the signal

is identically zero. In other words, a band-limited signal cannot be time-limited. For

more details on the Fourier transform, see Gröchenig (2004, Chapter 1).

2.2.2. Short-Time Fourier Transform

The Fourier transform is indeed a powerful tool for analyzing signals by representing

them in terms of their frequency content. However, it has a limitation in that it pro-

vides little information about the localization of frequencies in the time domain. That

is, the Fourier transform does not provide information about the time localization of a

particular frequency component of a signal. To overcome this limitation, time-frequency

analysis methods such as the Short-Time Fourier Transform (STFT) have been devel-

oped to provide a more detailed representation of signals that includes both frequency

and time information. The STFT represents a signal in the time-frequency domain, al-

lowing analysis of the frequency content of the signal as it changes over time. To obtain

information about the localization of frequencies in a signal, the signal is first localized

to a neighborhood of a given time using a windowing function. This localized version of

the signal is then transformed using the Fourier transform to obtain a frequency repre-

sentation around that specific point in time. By using different window functions and

varying the position of the window, a time-frequency representation of the signal can

be obtained that provides information about the distribution of frequencies in the sig-

nal at different points in time. This time-frequency representation of a signal is useful

for analyzing signals whose spectral content changes with time because it provides a

simultaneous description of both the temporal and spectral behavior of the signal. The

STFT provides a local view of the frequency content of a signal, which can be useful

for identifying patterns or changes in the signal that may not be readily apparent in the

time or frequency domain alone.
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2. Frame Theory and Time-Frequency Representation

We begin by introducing two fundamental operators that play a central role in time-

frequency analysis.

Definition 5. For x ∈ Rd the translation operator Tx is defined as

Txf(t) = f(t− x)

For ω ∈ Rd the modulation operator Mω is defined as

Mωf(t) = e−2πiωtf(t)

The two operators are related by the Fourier transform

FMω = TωF and FTx =M−xF .

The translation operator Tx or time shift shifts a signal in the time domain by a fixed

amount x. This corresponds to a delay in the time domain. On the other hand, the

modulation operator Mω or frequency shift corresponds to a shift in the frequency do-

main by a fixed amount ω, since the Fourier transform of a modulated function is the

shifted version of its Fourier transform. Similarly, the Fourier transform of a time-shifted

signal is related to the original Fourier transform through the modulation operator. This

relationship between time-shifting and frequency-shifting is a key aspect of the theory of

time-frequency analysis.

Operators of the form TxMω are called time-frequency shifts. The order of the op-

erators is interchangeable due to the commutative relation TxMω = e−2πiωxMωTx.

Time-frequency shifts are unitary on L2(Rd) and define isometries on Lp(Rd) for each

0 < p ≤ ∞, i.e.,

∥TxMωf∥p = ∥f∥p. (2.13)

Definition 6 (STFT). Let B ⊆ S ′(Rd) be a Banach space. Fix a nonzero function

g ∈ B′. The short-time Fourier transform or voice transform of a function f ∈ B with
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2.2. Time-Frequency Analysis

respect to g is defined as

Vgf(x, ω) =

∫
Rd

f(t)g(t− x)e−2πiωtdt, for x, ω ∈ Rd. (2.14)

The STFT measures the content of the frequency band at ω in a neighborhood of time

x. It parameterizes the localization with the window function g. For a fixed window

function g, the STFT maps from R2d, the time-frequency plane, to a complex-valued

weight. While Vgf depends linearly on f , its properties depend on the window function

g. The smoothness of g plays a crucial role, since discontinuities in the window would lead

to singularities in the time-frequency plane. Using previously defined Fourier tools, we

obtain the fundamental identity of the time-frequency analysis by rewriting definition 6

as

Vgf(x, ω) = ⟨f,MωTxg⟩ = ⟨f̂(ω), TωM−xĝ(ω)⟩ (2.15)

This form is most convenient for formal manipulations and reveals some of the deeper

structures of the STFT. The STFT is well defined if the scalar product is well defined

by some form of duality, such as for g ∈ S(Rd) and f ∈ S ′(Rd). A nice window g al-

lows a not so nice function f . It combines both f and f̂(ω) into a joint time-frequency

representation. If the window function g is compact with its support centered at the

origin, then Vgf(x, ·) is the Fourier transform of a weighted segment of f centered in a

neighborhood of x. Similarly, Vgf(·, ω) is the local Fourier transform of f̂(ω), with ĝ(ω)

as the window function. The global time-frequency distribution of the function f is then

given by Vgf .

For f, g ∈ L2(R) it follows that Vgf ∈ L2(R2d). Furthermore, the STFT is uniformly

continuous on R2d and satisfies the following orthogonal relations

⟨Vg1f1, Vg2f2⟩ = ⟨f1, f2⟩⟨g1, g2⟩ (2.16)

for f1, f2, g1, g2 ∈ L2(R), see Gröchenig (2013, Theorem 3.2.1). This leads to the follow-

ing equality for all f, g ∈ L2(Rd):

∥Vgf∥L2(R2d) = ∥f∥L2(Rd)∥g∥L2(Rd).

For ∥g∥L2(Rd) = 1, the STFT defines an isometry from L2(R) to L2(R2d) and the func-

tion f is completely determined by Vgf . Furthermore, from the fundamental identity
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2. Frame Theory and Time-Frequency Representation

of the time-frequency analysis (2.15) it follows that the only function orthogonal to all

possible time-frequency shifts is the zero function. Therefore, for any fixed g ∈ L2(Rd),

the sequence of time-frequency shifts {MωTx g}x,ω∈Rd spans a dense subspace of L2(Rd).

This means that any function in L2(Rd) can be approximated arbitrarily closely by a

finite linear combination of time-frequency shifts. Any square integrable function can

be reconstructed from its time-frequency representation. An inversion formula for the

STFT is given below.

Corollary 3. (Weak Inversion Formula for the STFT). Suppose that g, γ ∈ L2(Rd) and

⟨g, γ⟩ ≠ 0. Then for all f ∈ L2(Rd)

f =
1

⟨g, γ⟩

∫ ∫
R2d

Vgf(x, ω)MωTxγdωdx. (2.17)

Proof. Gröchenig, 2013, corollary 3.2.3

The formula of weak inversion states that any square-integrable function can be expressed

as a combination of time-frequency shifts using the Short-Time Fourier Transform as the

weighting factor. The time-frequency shifts help to capture the variation of the function

in both the time and frequency domains. This formula provides a way to represent any

square-integrable function in terms of its time-frequency content, making it useful for

various signal processing applications.

2.2.3. The Gaussian Function and Time-frequency Resolution

The Gaussian function plays an important role in time-frequency analysis. For a > 0

the non-normalized Gaussian function on Rd is denoted by

φa(x) = exp(−π∥x∥22/a). (2.18)

This is a Schwartz function and therefore decays rapidly. When used as a window

function, the Gaussian function provides a great time localization because its essential
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2.2. Time-Frequency Analysis

support is concentrated around a single point. In addition, its Fourier transform is also

Gaussian,

φ̂a(ω) = ad/2φ1/a(x). (2.19)

Therefore, it also provides great localization in frequency. The following results show a

useful application of the Gaussian function in time-frequency analysis.

Lemma 4. For all a > 0 we have

1. For x, u, ω, η ∈ Rd we have

⟨TxMωφa, TuMηφa⟩ = (a/2)d/2eπi⟨u−x,η+ω⟩φ2a(u− x)φ 2
a
(η − ω) (2.20)

2. The set
{
TxMωφa : x, ω ∈ Rd

}
spans a dense subspace of L2(Rd)

3. φa is separable, i.e.φa(x1, . . . , xd) = φa(x1) · . . . · φa(xd) for x ∈ Rd

Proof. Gröchenig (2004, Lemma 1.5.2 & Lemma 1.5.3). iii) follows from (2.19).

Time-frequency Resolution

An important concept in time-frequency analysis is the notion of time-frequency res-

olution. It describes the ability to distinguish between two closely spaced events in

time-frequency space. This is not to be confused with the discrete resolution of a repre-

sentation (image), which simply indicates the number of elements (pixels).

Suppose the window function γ and its Fourier γ̂(ω) have essential support T and Ω ⊆ Rd

respectively. T and Ω represent the time resolution and the frequency resolution, re-

spectively. Therefore, the time-frequency resolution is given by |T | × |Ω|. The goal in

time-frequency analysis is to make this resolution as small as possible. The uncertainty

principle states that the time-frequency resolution cannot be arbitrarily small, Folland

(1989) and Folland and Sitaram (1997). Good time resolution comes at cost of bad fre-

quency resolution and vice versa.
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2. Frame Theory and Time-Frequency Representation

Theorem 5 (Lieb Uncertainty Theorem). If f, g ∈ L2(Rd) and 1 ≤ p ≤ 2, then∫ ∫
R2d

|Vgf(x, ω)| dxdω ≥
(
2

p

)d

(∥f∥2∥g∥2)p (2.21)

Proof. Lieb (1990)

In practical audio processing, a wide window is needed to achieve good time resolution,

but this comes at the cost of poor frequency resolution, which is a manifestation of the

Uncertainty Principle. A narrow window has the opposite trade-off. Gaussian window

functions provide the best time-frequency resolution because they minimize the time-

frequency resolution. They are therefore the most appropriate windowing function for

the STFT.

2.2.4. Gabor Frames

The inversion formula of the short-time Fourier transform states that any square-integrable

function f ∈ L2(Rd) has a continuous expansion with respect to the uncountable se-

quence {MωTx g}x,ω∈Rd , with g ∈ L2(Rd). In other words, f can be expressed as an

infinite series of these time-frequency shifts. However, the space L2(Rd) is a separable

Hilbert space, i.e. it has a countable dense subset. This means that a series expansion

with respect to a countable subset of the time-frequency shifts is sufficient to represent

any signal in L2(Rd).

Consider a nonzero window function g ∈ L2(Rd). For each pair x, ω ∈ Rd, the time-

frequency shift MωTx g captures the time-frequency information of a signal on a region

of the time-frequency space with surface area E. By choosing a sufficiently dense lattice

of time-frequency shifts, the entire time-frequency space R2d can be covered by a count-

able number of time-frequency shifts. These shifts can overlap, i.e. the same region in

the time-frequency space can be covered by several shifts. This lattice of time-frequency

shifts forms a frame in the Hilbert space L2(Rd), and by the properties of frames, any

signal f ∈ L2(Rd) can be represented as a series expansion with respect to this frame,

allowing a comprehensive analysis of the time-frequency content of the signal.
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2.2. Time-Frequency Analysis

We will now introduce Gabor frames. Introduced in the 1940s and named after Dennis

Gabor, Gabor frames are formed by time-frequency shifts of a fixed window function g

and are parametrized by lattice parameters α, β > 0.

Definition 7. Given a nonzero window function g ∈ L2(Rd) and lattice parameters

α, β > 0, a Gabor system is defined as the set of time-frequency shifts

G(g, α, β) =
{
TαkMβng : k, n ∈ Zd

}
. (2.22)

If G(g, α, β) is a frame for L2(Rd), then it is called Gabor frame.

In the literature, Gabor frames are also referred to as Weyl-Heisenberg frames, since

they provide a suitable representation of the Heisenberg group. Gabor systems are

parametrized by the window function g and the lattice density αβ. The author in

Gröchenig (2013) provides conditions on the window function and the lattice density

to ensure the existence of Gabor frames. The Wiener space, denoted W (Rd), is a Ba-

nach space consisting of almost periodic functions, i.e. locally bounded and globally

in l1. In particular, bounded functions with compact support are contained in the

Wiener space. Hence, W (Rd) is a dense subspace of Lp(Rd) for 1 ≤ p < ∞. For

g ∈W (Rd), the synthesis operator based on the Gabor system G(g, α, β) is well defined
and bounded, see (Gröchenig, 2013, Proposition 6.2.2). Thus, G(g, α, β) defines a frame

for T ∗(l2(Z2d)) ⊆ L2(Rd). Furthermore, if the density, αβ, is small enough, αβ ≤ 1,

then the frame elements entirely span L2(Rd), making G(g, α, β) a frame for L2(Rd).

Moreover if αβ = 1, then G(g, α, β) is a Riesz basis. For more details on these results,

see Gröchenig (2013, Chapters 5,6 & 7).

The frame operator associated to a Gabor frame G(g, α, β) is then given by

Sα,β
g,g f =

∑
k,n∈Zd

⟨f, TαkMβng⟩TαkMβng

=
∑

k,n∈Zd

⟨f,MβnTαkg⟩MβnTαkg

Note that the order of translation and modulation in the frame operator are interchange-

able since the phase factor e−2πiω cancels out. For ease of reading, the indices are omitted

in the Gabor frame operator whenever there is no possibility of confusion. The frame op-

erator S and its inverse S−1 both commute with time-frequency shifts. Thus, if G(g, α, β)
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is a frame for L2(Rd), then there exists a dual window γ = S−1g, such that the dual

frame of G(g, α, β) is given by G(γ, α, β), see Gröchenig (2013, Proposition 5.2.1). It is

the canonical dual frame. As a result, every f ∈ L2(Rd) has the following non-orthogonal

expansions

f =
∑

k,n∈Zd

⟨f, TαkMβn γ⟩TαkMβn g =
∑

k,n∈Zd

Vγf(αk, βn)MβnTαk g

and

f =
∑

k,n∈Zd

⟨f, TαkMβn g⟩TαkMβn γ =
∑

k,n∈Zd

Vgf(αk, βn)MβnTαk γ,

with unconditionally convergence in L2(Rd). This is a discrete version of the weak

inversion formula for the STFT. It provides an explicit reconstruction of the signal f

from samples of its short-time Fourier transform. We obtain a discrete time-frequency

representation of signals. In addition, there are frame bounds A,B > 0, such that the

following norm equivalences arise from the frame conditions:

A∥f∥22 ≤
∑

k,n∈Zd

|Vgf(αk, βn)|2 ≤ B∥f∥22 (2.23)

B−1∥f∥22 ≤
∑

k,n∈Zd

|Vγf(αk, βn)|2 ≤ A−1∥f∥22. (2.24)

This equivalence provides a characterization for square integrable functions. A function

f belongs to L2(Rd) if and only if the l2-norm of the STFT is finite. More results and

details can be found in Gröchenig (2013, Chapter 5).

2.3. Modulation Spaces and their Characterization

through Gabor Frames

In this section, we will consider function spaces characterized by time-frequency rep-

resentations. It’s well known that the smoothness and decay of a function are closely

related to the decay and smoothness of its Fourier transform, and this relationship can

20



2.3. Modulation Spaces and their Characterization through Gabor Frames

be extended to the short-time Fourier transform. The STFT is a critical component of

time-frequency analysis because it provides a simultaneous representation of the magni-

tude of the function and its Fourier transform near a given point in time and frequency,

respectively. This relationship means that the decay of the function is closely related to

the decay of the STFT with respect to time and that the smoothness of the function is

closely related to the decay of the STFT with respect to frequency. In this way, the STFT

acts as a bridge between the time and frequency aspects of a function and provides a

useful tool for relating these properties. Modulation spaces were invented by Feichtinger

(1983) and are spaces of tempered distributions defined by the decay properties of their

short-time Fourier transforms in the Lp(Rd) space. Just like Sobolev spaces, which can

be characterized by their Fourier representations, and Besov spaces, which can be de-

scribed by dyadic decompositions of the Fourier transform of their elements, modulation

spaces are unique in that they are defined by the properties of the short-time Fourier

transform. Modulation spaces are defined by imposing decay and integrability conditions

on the STFT. To fully understand the concept of modulation spaces, it is important to

first quantify decay in the time-frequency plane, R2d. This will provide a foundation for

the introduction and characterization of modulation spaces.

2.3.1. Weight Functions

Weight functions are used to quantify decay in the time-frequency plane R2d. They are

non-negative, locally bounded, and measurable, i.e. they can be integrated over any

compact subset of R2d. They play a crucial role in characterizing the decay properties

of functions in modulation spaces.

Definition 8. Let consider two weight functions v and m on R2d. We say that:

v is submultiplicative: v(z1 + z2) ≤ v(z1)v(z2)

m is v -moderate: m(z1 + z2) ≤ Cv(z1)m(z2)

m and v are equivalent, m ≍ v : C−1m(z) ≤ v(z) ≤ Cm(z)

for all z, z1, z2 ∈ R2d.
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Note that Definition 8 implies v(0) ≥ 1. The default class of weights on R2d are polyno-

mial type weights defined as

vs(z) = (1 + ∥z∥22)s/2 ≍ (1 + ∥x∥22 + ∥ω∥22)s/2 (2.25)

for s ≥ 0. The polynomial weight function vs is submultiplicative, and both vt and v
−1
t

are vs-moderate with 0 ≤ t ≤ s. We say that a function F (z) has a rapid decay on R2d if

the function decays faster than any polynomial weight function, i.e., for all n ≥ 0 there

exists a constant Cn > 0 such that

|F (z)| vn(z) ≤ Cn (2.26)

Faster decay in the time-frequency plane can also be described with exponential weight

functions defined as

v(z) = eα|z|
β

(2.27)

for α > 0 and 0 ≤ β < 1. Throughout this thesis a particular class of weight functions

plays an important role. For 0 ≤ u, v ≤ s we define the vs-moderate weight function

mu,v(x, ω) = (1 + ∥x∥22)u/2 + (1 + ∥ω∥22)v/2

If u = v the weight function is isotropic, i.e. it describes a similar decay in time and

frequency. An anisotropic weight function, u ̸= v, describes different decay properties in

time and frequency.

Lemma 6. Let u, v ≥ 0.

1. If u = v = s, then ms,s ≍ vs.

2. mu,v is submultiplicative.

We focus on polynomial weight functions in order to stay within the familiar setup of

Schwartz functions and tempered distributions. In doing so, we can use S(Rd) as a suit-

able class of test functions and windows, and thus the modulation spaces can be defined

as subspaces of S ′(Rd). In the remainder of this work we will use v to denote a submul-

tiplicative weight and m to denote a v-moderate weight. Furthermore, we will assume

without loss of generality that v is continuous and symmetric in each coordinate, i.e.
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v(x, ω) = v(−x, ω) = v(x,−ω) = v(−x,−ω). It is useful to think of a weight function m

as a pair (m, v), since one will prove that the results hold simultaneously for the class of

all v-moderate weights. Several results depend only on the submultiplicative weight v,

but not on individual v-moderate weights m. Next, we collect some results on the decay

property, which connects the decay of a function f with the decay of its time-frequency

representation.

Theorem 7. Let g ∈ S(Rd) \ {0}, then

1. If f ∈ S ′(Rd), then there are constants C > 0, N ≥ 0, such that

|Vgf(x, ω)| < C(1 + |x|+ |ω|)N for all x, ω ∈ Rd

2. If f ∈ S ′(Rd), then

f ∈ S(Rd) ⇐⇒ Vgf has rapid decay.

Proof. Gröchenig (2013, Section 11.2).

Theorem 7 establishes the equivalence between rapid decay of the short-time Fourier

transform and membership in the Schwartz space and gives a characterization of S(Rd)

via STFT. This leads to the following interpretations: The STFT of a slow growing

function f has polynomial growth, i.e. also slow growing, whereas the STFT of a fast

decaying function decays also fast.

2.3.2. Mixed-Norm Spaces

We will now examine mixed-norm spaces on R2d, which provide the necessary collection

of (quasi-)Banach spaces and norms to function effectively. It’s important to note that

the notion of mixed-norm is not limited to the time-frequency plane, but can be applied

to any product measure space.
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2. Frame Theory and Time-Frequency Representation

Definition 9. Let m be a weight function on R2d and let 0 < p, q < ∞. The weighted

mixed-norm space Lp,q
m (R2d) consists of all (Lebesgue) measurable functions on R2d, such

that the (quasi-)norm

∥F∥Lp,q
m

=

(∫
Rd

(∫
Rd

|F (x, ω)|pm(x, ω)pdx

)q/p

dω

)1/q

is finite. If p = ∞ or q = ∞, then the corresponding p-norm is replaced by the essential

supremum.

This function space is obtained by taking a weighted Lp-norm with respect to the time

and a Lq-norm with respect to the frequency. If p = q, then Lp,q
m (R2d) = Lp

m(R2d)

is the usual weighted Lp-space. The mixed-norm spaces enjoy the same properties as

Lp-spaces. They are quasi-Banach spaces (Banach spaces if 1 ≤ p, q ≤ ∞) and invari-

ant under translation Tz, z ∈ R2d. Furthermore, the Holder’s inequality holds with

(Lp,q
m (R2d))′ = Lp′,q′

1/m(R2d) and 1
p +

1
p′ =

1
q +

1
q′ = 1, see Gröchenig (2013, lemma 11.1.2).

Also the convolution relation, that is L1
v ∗ Lp

m ⊆ Lp
m, extends to mixed-norm space. For

more details on the theory of mixed-norm spaces, see Benedek and Panzone (1961).

Lemma 8. Let m be v-moderate and let 0 < p, q ≤ ∞, then

∥TzF∥Lp,q
m

≤ C v(z)∥F∥Lp,q
m

(2.28)

for z ∈ R2d.

Proof. See Gröchenig (2013, Lemma 11.1.2) for 1 ≤ p, q ≤ ∞. The proof for 0 < p, q < 1

is analogous.

In the discrete setting, the discrete mixed-norm space ℓp,qm (Z2d) is defined by all sequences

a = aknk,n∈Zd for which the (quasi-)norm

∥a∥ℓp,qm
=

∑
n∈Zd

∑
k∈Zd

|akn|pm(k, n)p

q/p


1/q

. (2.29)

is finite. This space induces in particular the amalgam spaceW (Lp,q
m ), space of functions

with local suprema in ℓp,qm (Z2d) with ∥f∥
W (Lp,q

m )
= ∥a∥

ℓp,qm (Z2d)
where the sequence a
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2.3. Modulation Spaces and their Characterization through Gabor Frames

represents the local suprema of f . Amalgam spaces establish an important connection

between the weighted mixed-norm space Lp,q
m (R2d) and the discrete mixed-norm space

ℓp,qm (Z2d).

2.3.3. Modulation Spaces

Now we come to the definition of modulation spaces. There is an extensive literature on

modulation spaces Mp,q
m for the case 1 ≤ p, q ≤ ∞, see Gröchenig (2013), or Feichtinger

(1983). Galperin and Samarah (2004) extended this to the general case 0 ≤ p, q ≤ ∞.

For simplicity, we will focus on the case p = q, but it is worth noting that the results can

also be applied to the case where p ̸= q. In the following we consider a polynomial weight

function v. Thus, we remain in the setting of Schwartz space. The following results are

valid for all v-moderate weight function m.

Modulation spaces are defined by imposing decay and integrability conditions on the

STFT as follows:

Definition 10. Fix a nonzero window g ∈ S(Rd), a v-moderate weight function m on

R2d, and 0 < p, q ≤ ∞. Then the modulation space Mp,q
m (Rd) consists of all tempered

distributions f ∈ S ′(Rd) such that Vgf ∈ Lp,q
m (R2d). The (quasi-)norm on Mp

m(Rd) is

defined as

∥f∥Mp,q
m

= ∥Vgf∥Lp,q
m

(2.30)

If p = q, then we write Mp
m(Rd) instead of Mp,q

m , and if m(z) ≡ 1 on R2d, we then write

Mp(Rd).

Elements of the modulation space Mp
m(Rd) have similar decay properties in the time-

frequency domain, R2d. M∞
m (Rd) consists of all (measurable) functions f with bounded

weighted short-time Fourier transform, i.e. |Vgf(z)| ·m(z) < C. Modulation spaces are

Banach spaces for 1 ≤ p ≤ ∞. They inherit many properties of mixed-norm spaces. They

are invariant under time-frequency shifts and (Mp
m)′ = M1−1/p

1/m for 1 ≤ p < ∞. These

properties, as well as further details on modulation spaces, can be found in Gröchenig

(2013, Section 11.3). This makes modulation spaces a powerful tool for signal processing
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2. Frame Theory and Time-Frequency Representation

and time-frequency analysis.

The Definition 10 of the modulation space is independent of the choice of the window

function g ∈ S(Rd), since different windows lead to equivalent norms. Galperin and

Samarah (2004) extends the space of admissible windows to the following.

Definition 11. Letm be a v-moderate, 0 < p, q ≤ ∞, r = min(1, p) and s = min(1, p, q).

For r1, s1 > 0, denote

wr1,s1(x, ω) = v(x, ω) · (1 + |x|)r1 · (1 + |ω|)s1 (2.31)

Define the space of admissible windows Mp,q
v for the modulation space Mp,q

m to be

Mp,q
v =

⋃
r1>d/r,s1>d/s,1≤p1<∞

Mp1
wr1,s1

. (2.32)

For g ∈ Mp,q
v , ∥Vgf∥Lp,q

m
yields an equivalent (quasi-)norm on Mp,q

m , i.e. different window

functions g ∈ Mp,q
v yield equivalent modulation space (quasi-)norm, see Galperin and

Samarah (2004, Theorem 3.1). For 1 ≤ p, q ≤ ∞ the class of admissible window func-

tions can be extended from S(Rd) to M1
v. This is in contrast to the short-time Fourier

transform (STFT), where the definition depends on the choice of the window function.

Another reason for the usefulness of modulation spaces is that many well-known function

spaces can be identified with modulation spaces for certain weights, in particular the

Sobolev space W s
p (Rd),

W s
p (Rd) =

{
f ∈ S ′(Rd) : Dαf ∈ Lp(Rd), |α| ≤ s

}
(2.33)

The following observations have been proven in Gröchenig (2013, Prop. 11.3.1 )

1) M2(Rd) = L2(Rd).

2) If m(x, ω) = m(x), then M2
m(Rd) = L2

m(Rd).

3) If m(x, ω) = m(ω), then M2
m(Rd) = FLp

m(Rd).

26



2.3. Modulation Spaces and their Characterization through Gabor Frames

4) For m = m0,v, the space M2
m(Rd) corresponds to the Sobolev space W v

2 (Rd), the

Bessel potential space.

The Schwartz space S(Rd), which consists of all smooth and fast decaying functions

on Rd, can be characterized using modulation spaces. Since smoothness implies rapid

decay in R2d, see Theorem 7, a Schwartz function is contained in all polynomial modu-

lation spaces. Conversely, any tempered distribution that decays at most polynomially

is contained in some polynomial modulation space. This is expressed by the following

relationships:

S(Rd) =
⋂
s≥0

M∞
vs and S ′(Rd) =

⋃
s≥0

M∞
1/vs

(2.34)

where vs are polynomial weight functions and M∞
vs

are modulation spaces. Gröchenig

(2013) has also proved that S(Rd) is a dense subspace of Mp
m(Rd) if there exists a

polynomial that grows faster that the weight function m, that is |m(z)| ≤ C(1 + |z|)N ,

and 0 < p < ∞. This means that the Schwartz class S is the largest natural class of

windows admissible for all modulation spaces Mp,q
m with 0 < p, q ≤ ∞.

These and other properties, such as the embedding property, Mp1
m1

(Rd) ⊆ Mp2
m2

(Rd) for

p1 ≤ p2 and m2 ≤ Cm1, can be found in Gröchenig (2013) or Galperin and Samarah

(2004). A generalization of modulation spaces for non-polynomial weights is given in

Gröchenig (2013).

Remark. Polynomial weight functions play a major role in this work. To further em-

phasize this, we denote polynomial modulation spaces by Mp,q
u,v := Mp,q

mu,v
, for u, v ≥ 0.

2.3.4. Gabor Expansion for Modulation Spaces

Modulation spaces arise naturally in the study of Gabor expansions. In this section we

show that Gabor frames can also be frames for the modulation space Mp
m(Rd). This

would give a non-orthogonal expansion of functions f ∈ Mp
m(Rd) in terms of time-

frequency elements. This proves once again why modulation spaces are the correct
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2. Frame Theory and Time-Frequency Representation

function spaces for quantitative time-frequency analysis.

We consider a Gabor system G(g, α, β) and define a restriction of the weight function to

the lattice m̃(k, n) = m(αk, βn). The next result gives a sufficient condition for frames

on Mp
m(Rd).

Theorem 9. If g ∈ Mp,q
v , then the analysis operator Tg and the synthesis operator T ∗

g

are respectively bounded from Mp,q
m into lp,qm̃ (Z2d) and from lp,qm̃ (Z2d) into Mp,q

m . Fur-

thermore, if p <∞, then the synthesis operator converges unconditionally in Mp
m(Rd).

Proof. Galperin and Samarah (2004, Theorem 3.5 & 3.6)

Theorem 9 leads to the boundedness of the Gabor operator Sα,β
g,γ on Mp

m(Rd), with

g, γ ∈ Mp,q
v . Let g ∈ Mp,q

v be an admissible window, and assume that there exists

γ ∈ Mp,q
v with Sα,β

g,γ = I. As a result, each f ∈ Mp
m(Rd) has the following non-orthogonal

expansions

f =
∑

k,n∈Zd

⟨f, TαkMβn γ⟩TαkMβn g

=
∑

k,n∈Zd

⟨f, TαkMβn g⟩TαkMβn γ,

with unconditional convergence inMp
m(Rd) if p <∞. Furthermore, there exist constants

A,B > 0 such that

A ∥f∥Mp
m(Rd) ≤

∑
k,n∈Zd

⟨f, TαkMβn g⟩m̃(k, n) ≤ B ∥f∥Mp
m(Rd) (2.35)

See Galperin and Samarah (2004, Theorem 3.7) for a proof. The (quasi-)norm equiv-

alence 2.35 implies that a function belongs to Mp
m(Rd) if its Gabor coefficients belong

to lp,qm̃ (Z2d). Several modulation spaces can thus be characterized by the decay of the

Gabor coefficients. For the norm equivalence, it is sufficient to check whether g ∈ Mp,q
v .

In this thesis, we will mainly work with Gaussian functions and B-splines as window

function. A Gaussian function belongs to the Schwartz space and is therefore admissible

for modulation spaces. We have shown in Dahlke et al. (2022) that for splines of order
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2.4. Flexible Gabor-Wavelet Transform

k the norm equivalence holds for p > 1
k .

For the expansions in terms of Gabor elements, it remains to check whether both the

window and the reconstruction window are admissible. Gröchenig (2013) has shown that

for 1 ≤ p, q ≤ ∞, it is sufficient to check invertibility of Sα,β
g,g on M1

v. For example, Sα,β
g,g

is invertible for tight frames. In this thesis we will mainly work with Gaussian functions

and splines as window functions. The dual of a Gaussian is a Gaussian, so the condition

is satisfied. Dahlke et al. (2022) has shown that for splines of order k, the Gabor operator

is invertible for p > 1
k .

2.4. Flexible Gabor-Wavelet Transform

The wavelet transform (WT) is another widely used transformation in (audio) signal

processing, introduced in the 1980s by Grossman and Morlet, see Grossmann et al.

(1985). It is based on the representation of the affine group over L2(Rd). Wavelet

theory in signal analysis is well represented in the literature, with the current state of

the art described in Mallat (2009). Unlike the STFT, which is parametrized by time

and frequency, the WT replaces frequencies with the notion of scale. The frequency

shifts in the definition of STFT are replaced by dilations. The dilation operator, also

known as the scaling operator, is a unitary operator on L2(Rd) that changes the scale of

a function by stretching or shrinking it along one or more axes. The shape is preserved.

The essential support is either increased or decreased. The continuous wavelet transform

of a function f ∈ L2(Rd) with respect to an analyzing function g, also called a wavelet,

is defined as follows

Wgf(x, a) = ⟨f, TxDa g⟩L2(Rd) = ⟨f̂ ,M−xDa−1 ĝ⟩L2(Rd) (2.36)

with the dilation operator defined as Daf(t) = a−d/2f(t/a) for a > 0. Although the

WT is not an explicit time-frequency representation, it still has some frequency localiza-

tion. Furthermore, if the wavelet g is admissible, i.e., satisfies additional orthogonality

relations, then there exists a reconstruction wavelet h with W ∗
hWg = I such that any

function f ∈ L2(Rd) can be reconstructed from its wavelet transform.
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2. Frame Theory and Time-Frequency Representation

The STFT and WT have distinct advantages and disadvantages and may not be equally

relevant in different applications. By scaling the analyzing function up and down, the

wavelet transform acts as a mathematical microscope. If the wavelet g is centered at

the origin with variance 1, then the support of TxDag is a neighborhood of x of size a.

As a result, Wgf(x, a) = ⟨f, TxDag⟩ encodes local information of f at x. This property

allows the wavelet transform to be used to analyze pointwise and microlocal regularity.

In contrast, the STFT lacks this microlocal property because the size of the window

function remains constant. The main disadvantage of the wavelet transform is its poor

angular resolution, i.e., its ability to distinguish small frequency details. With the scale a

going from 0 to ∞, ⟨f̂ ,M−xDa−1 ĝ⟩ gives information about a conical set of frequencies.

In contrast, the STFT isolates the central frequency.

Similar to the theory of the STFT, the continuous WT can be discretized. This leads

to the definition of wavelet frames, see Gröchenig (2013, Chapter 10). Wavelet frames

encode information about the smoothness and singularity properties of distributions and

provide a characterization for Besov spaces. Gabor frames encode time-frequency infor-

mation and characterize modulation spaces. The WT is particularly effective for studying

signals that are mostly smooth with isolated singularities, while the Gabor transform is

better suited for analyzing periodic structures.

In several relevant contributions, e.g. Nazaret and Holschneider (2003), Fornasier and

Feichtinger (2006), an ”intermediate” time-frequency transform between wavelet and

short-time Fourier transform is considered. This allows a flexible characterization of

function spaces between modulation spaces and Besov spaces.

Definition 12 (Gabor-Wavelet transform). Let α ∈ [0, 1] and c > 0. For any f ∈ L2(Rd)

and a nonzero analyzing function g ∈ L2(Rd), the flexible Gabor-Wavelet transform (or

α-transform or GWT) is defined by

V α
g f(x, ω) = ⟨f, TxMωDη−1

α (ω)g⟩ (2.37)

with ηα(ω) = c(1 + |ω|)α for x, ω ∈ Rd.
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2.4. Flexible Gabor-Wavelet Transform

The GWT analyzes the function f around x at the scale ηα(ω)
−1. The parameter

α ∈ [0, 1] controls the relationship between the frequency and the dilation factor. For

α = 0, the dilation operator becomes obsolete and the transform V α
g f coincides with the

STFT Vgf , while for α → 1 we obtain a slight modification of the wavelet transform.

Especially the intermediate case α = 1/2 appears in the literature as the Fourier-Bros-

Iagolnitzer transform Bros and Iagolnitzer (1975). Additionally, for an analyzing function

g ∈ S(Rd), V α
g f defines a continuous mapping from S(Rd) to L2(Rd) and can be ex-

tended to L2(Rd) by continuity, see Nazaret and Holschneider (2003, Theorem 2.1).

Several authors provide characterizations of function spaces based on the GWT. Nazaret

and Holschneider (2003) use the flexible Gabor-Wavelet Transform to characterize L2-

Sobolev spaces, which are both modulation and Besov spaces, and to construct anisotropic

Banach spaces of functions. For an admissible Banach space B in the time-frequency

plane R2d, a Banach space B(Rd) of distribution is defined as follows

B(Rd) :=
{
f ∈ S ′(Rd) : V α

g (f) ∈ B
}

(2.38)

A norm on B(Rd) is then given by ∥f∥B(Rd) = ∥V α
g (f)∥B . See Nazaret and Holschneider

(2003, Definition 4.7) for more details. Fornasier (2004) has shown that for the choice of

the Banach space B as a certain weighted Lebesgue mixed norm Lp,q
m (R2d) space, the cor-

responding Banach space B(Rd) is a so-called α-modulation space. A smoothness space

based on the behavior of the spectral decomposition of its constituents. Dahlke et al.

(2008) have shown that the GWT can be interpreted as the voice transform associated

with a square-integrable representation modulo quotients of the affine Weyl-Heisenberg

group, hence the Banach space B(Rd) represents the so-called coorbit space, cf. Fe-

ichtinger and Gröchenig (1989).

2.4.1. α-Modulation Spaces

We now consider the one dimensional setting d = 1. The smoothness spaces associated

with the flexible Gabor-Wavelet transform are the α-modulation spaces, which can be

characterized by the GWT transform coefficients. They were introduced by Gröbner

based on the Littlewood-Paley theory, which uses a decomposition of a function f into
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a sum of frequencies localized functions, see Feichtinger and Gröbner (1985) for more

details. This defines a Fourier analytical characterization of smoothness spaces between

modulation spaces and Besov spaces. A proper definition of these spaces involves no-

tions like spectral decomposition, Fourier multiplier, Littlewood-Paley theorem, admis-

sible covering, BAPUs (bounded admissible partitions of unity), decomposition spaces,

and Wiener amalgrams, notions for which we refer to the literature for further details,

cf. Feichtinger (1987), Feichtinger and Gröbner (1985) or Fornasier (2004).

We now review the construction of α-modulation spaces. An α-modulation space mea-

sures the smoothness of its elements by examining the behavior of their spectral decom-

position. They are constructed as follows: given a parameter α ∈ [0, 1], an admissible

α-covering of the frequency space, Iα, is constructed, see Definition 15. The parameter

α determines the size of the intervals. For α = 0, they are set to the same length as in

the Gabor case, whereas for α → 1 the length grows exponentially with the frequency

in a manner defined by α. A set of FL1-integrable Schwartz functions {ψα
I }I∈Iα

, called

bounded partition of the unity (BAPU), is then defined on this coverage of the frequency

space, see Definition 16. Their sum gives a characteristic function of the frequency space

R.

The previous setting gives rise to a spectral decomposition of any tempered distribution

in entire analytic functions. Then any f ∈ S ′(R) can be written as

f =
∑
I∈Iα

F−1(ψα
I Ff), (2.39)

where each summand is a tempered distribution whose Fourier transform is compactly

supported, and thus an entire analytic function. See the Paley-Wiener-Schwartz theorem

for more details. The convergence is defined in the space of tempered distribution S ′(R).
This band-limited approximation of function gives rise to a notion of smoothness for

f ∈ S ′(R) based on the behavior of its spectral elements.

Definition 13. Given 1 ≤ p, q ≤ ∞, s ∈ R, and 0 ≤ α ≤ 1, let Iα be an α-covering of R
and let {ψα

I }I∈Iα
be a corresponding BAPU. The α-modulation space Mp,q

0,s:α(R) is then
defined for q < ∞ and s ∈ R as the set of tempered distributions f ∈ S ′(R) satisfying
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∥f∥Mp,q
0,s:α

<∞ with

∥f∥Mp,q
0,s;α

: =

(∑
I∈Iα

∥F−1(ψα
I Ff)∥qp(1 + |ωI |)sq

)1/q

(2.40)

where ωI ∈ I is an arbitrary frequency.

We choose this notation to emphasize the fact that the polynomial weight function de-

pends only on the frequency. It also helps display the link to modulation spaces. For

p = q, we write Mp
0,s:α(R) instead of Mp,q

0,s:α(R). The α-modulation norm is a dis-

crete norm. The space Mp
0,s:α(R) corresponds to the decomposition space subordinate

to the covering Iα, with local component FLp(R), and global component lqm(Iα), where
m(I) = (1 + ωI)

s. From the properties of the covering Iα it follows that the definition

of Mp,q
s,α doesn’t depend on any particular choice of {ωI}I∈I either. In Feichtinger and

Gröbner (1985), the authors showed that this space does not depend on a particular

choice of the α-covering Iα nor on the corresponding BAPU {ψα
I }I∈Iα

.

For b > 0 and α ∈ [0, 1), an explicit example of α-covering was constructed in Fornasier

and Feichtinger (2006). The following position function pα : Z → R and size function

sα : Z → R+

pα(j) = sgn(j)
(
(1 + (1− α) · b · |j|)

1
1−α − 1

)
(2.41)

sα(j) = b · (1 + (1− α) · b · |j|)
α

1−α

help identify the constituent intervals for an α-covering by

Iαj =

pα(j) + sgn(j)[0, sα(j)] for pα(j) ̸= 0

[−sα(j), sα(j)] else

for j ∈ Z. For α→ 1 it holds

I1 = {sgn(j)
(
(eb|j| − 1) + [0, eb|j|+1]

)
}j∈Z\{0} ∪ {[−eb, eb]}

Without loss of generality, we can assume the previously defined position and size func-

tions pα(j) and sα(j), as well as ωIj = pα(j). For α = 0, the frequency intervals are

33



2. Frame Theory and Time-Frequency Representation

of equal length. Note that modulation spaces are independent of the window function.

Thus, Mp,q
0,s:0 coincides with the modulation spacesMp,q

0,s. Consider b = ln(2). For α→ 1,

we obtain a dyadic representation of the frequency domain with

I1j =

 [−2, 2] for j = 0

sgn(j) · [2j−1, 2j+1] else
(2.42)

which is an α-covering. With this covering, definition 13 is equivalent to the Fourier an-

alytical characterization of Besov spaces using a dyadic resolution of the unity in R, see
Triebel (1992, Theorem 1.3.4). Thus, the space Mp,q

s,1 corresponds to the inhomogeneous

Besov space Bs
p,q(R).

The following result by Fornasier (2004) is an application of Feichtinger (1987, Theo-

rem 4.3) showing that the discrete α-modulation norm and the continuous norm on the

anisotropic Banach space
{
f ∈ S ′(R) : V α

g (f) ∈ Lp,q
m (R2)

}
are equivalent.

Theorem 10. Assume s ∈ R, α ∈ [0, 1], and 1 ≤ p, q < ∞. For a suitable band-limited

g ∈ S(R) \ {0}

Mp,q
0,s+α(1/p−1/2):α(R) =

{
f ∈ S ′(R) : V α

g (f) ∈ Lp,q
ms

(R2)
}

(2.43)

with the following norm equivalence

∥f∥Mp,q
0,s+α(1/p−1/2):α

(R) ≍ ∥V α
g (f)∥Lp,q

ms
(2.44)

with ms(x, ω) = (1 + ω)s. For p · q = ∞ the usual modification apply.

Proof. Fornasier and Feichtinger (2006, Theorem 3.5)

In addition, Fornasier and Feichtinger (2006) provide a Banach frame and atomic decom-

position for α-modulation spaces. This frame expansion for modulation spaces is based

on the theory of localization of frames introduced by Gröchenig, see Gröchenig (2004). A

set of frames is said to be (polynomially or exponentially) localized if its Gramian matrix

has a (polynomial or exponentially) off-diagonal decay property, see Gröchenig (2004,

Definition 7). A localized frame not only has a localized dual with the same off-diagonal
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decay, but also defines a Banach frame for an associated Banach space Hp
m, an abstract

class of Banach spaces defined by

Hp
m =

{
f ∈ H : f =

∑
cngn for c ∈ ℓpm(N )

}
(2.45)

with {gn : n ∈ N} a Riesz basis of the Hilbert space H, ℓpm(N ) ⊆ ℓ2(N ) and norm

∥f∥Hp
m
= ∥c∥

lpm
, cf. Gröchenig (2004, Definition 4). In other words, a polynomial (expo-

nential) localized frame is also a Banach frame for an associated Banach space induced

by a polynomial (sub-exponential) weight function, see Gröchenig (2004, Theorem 13).

Remark 2. The smoothness space, as defined in Theorem 10, consists of all functions

whose voice transform has a certain decay. This highlights the dependence of the α-

modulation construction on the theory of coorbit spaces and establishes a connection

between coorbit spaces and α-modulation spaces, as described in Dahlke et al. (2008).

Let α ∈ [0, 1). For the pair of position and size functions (pα, sα) defined in (2.41) and

an admissible analyzing function h ∈ S(R), we consider the following family

Gα(h, pα, sα, a, b) =
{
Mpα(j)Ds−1

α (j)Tak h
}
(j,k)∈Z2

, a, b > 0. (2.46)

Fornasier and Feichtinger (2006) use the concept of intrinsic localization for frames on

Hilbert spaces to show that this family is a polynomial self-localized frame for L2(R).
The associated Banach space characterized by Gα(h, pα, sα, a, b) is a α-modulation space,

see Fornasier and Gröchenig (2005) and Fornasier and Feichtinger (2006, Theorem 2.1).

The next results illustrate under which conditions this family defines a frame for L2(Rd)

and gives a frame expansion for elements of the α-modulation spaces.

Theorem 11. Let α ∈ [0, 1) and s ∈ R. For h ∈ S(R) with Fh ̸= 0 and b > 0, there

exists 0 < a0 ≤ 1 small enough such that for all 0 < a ≤ a0 the family Gα(h, pα, sα, a, b)

is a frame for L2(R).

Proof. Fornasier and Feichtinger (2006, Theorem 1).

For f ∈ L2(R) we obtain the following frame expansion
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2. Frame Theory and Time-Frequency Representation

f =
∑
λ∈Z2

⟨f, h̃αλ⟩hαλ , hαλ ∈ Gα(h, pα, sα, a, b), (2.47)

with dual frames h̃αλ and unconditional convergence in L2(R). Fornasier (2004) extended
this results to characterize modulation spaces.

Theorem 12. Let α ∈ [0, 1) and s ∈ R. For h ∈ S with Fh ̸= 0 and b > 0, there exists

0 < a0 ≤ 1 small enough such that for all 0 < a ≤ a0 the family

Gα(h, pα, sα, a, b) =
{
Mpα(j)Ds−1

α (j)Tak h
}
(j,k)∈Z2

(2.48)

is a Banach frame and atomic decomposition for the α-modulation space Mp
0,s+α(1/p−1/2):α(R)

for all p ∈ [1,∞]. The frame expansion (2.47) converges unconditionally in the modula-

tion spaces Mp
0,s+α(1/p−1/2):α(R) for p ∈ [1,∞) with the following norm equivalence,

∥f∥Mp
0,s+α(1/p−1/2):α

(R) ≍ ∥⟨f, hαλ⟩∥ℓpm̄0,s:α

(2.49)

with

m̄u,v:α(j, k) = (1 + |a · k|)u + (1 + |pα(j)|)v.

Proof. Fornasier (2004, Theorem 3.4)

The previous results hold not only for Fornasier and Feichtinger’s example of position

and size functions in eq. (2.41), but for any other pair (pα, sα) that satisfies the con-

ditions given by the authors, see Fornasier and Feichtinger (2006, pp 10). This frame

characterizes α-modulation spaces for α ∈ [0, 1).

When α = 0, the dilation factor s−1
α (·) becomes a constant and the dilation operator

loses its effect. This results in a relatively separated lattice (b · j, a · k) with (j, k) ∈ Z2,

forming a Gabor frame hλ(λ∈Z2). However, this frame characterization does not hold

for the limiting case of α = 1. Besov spaces can only be characterized by exponentially

localized frames, and the frame obtained for the case α→ 1 does not satisfy this require-

ment. Therefore, the frame characterization does not hold for the limiting case α = 1.
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2.5. Proofs

In this section we provide proofs for the results in this chapter.

2.5.1. Proof of Lemma 6

Proof. 1. From the submultiplicative property of vs it follows:

ms(z) = (1 + ∥x∥22)s/2 + (1 + ∥ω∥22)s/2

≤ 2 (1 + ∥x∥22 + ∥ω∥22)s/2

≤ 2max(1,s/2) vs(z)

vs(z) = (1 + ∥x∥22 + ∥ω∥22)s/2

≤ (1 + 2∥x∥22)s/2 + (1 + 2∥ω∥22)s/2

≤ 2s/2
(
(1 + ∥x∥22)s/2 + (1 + ∥ω∥22)s/2

)
≤ 2max(1,s/2)ms(z)

2. Using the equivalent definition mu,v(x, ω) = (1 + ∥x∥2)u + (1 + ∥ω∥2)v, we obtain

mu,v(z1 + z2) = (1 + ∥x1 + x2∥2)u + (1 + ∥ω1 + ω2∥2)v

≤ (1 + ∥x1∥2 + ∥x2∥2)u + (1 + ∥ω1∥2 + ∥ω2∥2)v

≤ (1 + ∥x1∥2)u(1 + ∥x2∥2)u + (1 + ∥ω1∥2)v(1 + ∥ω2∥2)v

≤
(
(1 + ∥x1∥2)u + (1 + ∥ω1∥2)v

)(
(1 + ∥x2∥2)u + (1 + ∥ω2∥2)v

)
= mu,v(z1)mu,v(z2)
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In this chapter we revisit and extend the results presented in Dahlke et al. (2022). We

give nonparametric function estimation in the smoothness class Mp
m(Rd) under global

integrated squared error. Specifically, we consider a signal of interest observed in a

Gaussian white noise model, which we transform into an equivalent infinite Gaussian

sequence model using time-frequency analysis. The works of Brown and Low (1996)

and Nussbaum (1996) provide valuable insights in this regard. Our approach involves

optimal parameter estimation within a finite sequence submodel, which is at the heart

of nonparametric statistics. We show that there is no significant loss by ignoring the

remaining parameters. To reduce noise, we propose a spatially adaptive estimator based

on soft/hard thresholding of Gabor frame coefficients. The redundancy of the frames

plays a key role in minimizing the risk compared to orthogonal bases. Leveraging results

from Donoho and Johnstone (1994), we find that nonlinear thresholding of Gabor co-

efficients achieves near-optimal convergence rates, in the minimax framework, over the

modulation space Mp
s(Rd), for p ≤ 2. This outperforms linear methods. We derive

sparsity-driven lower bounds using oracles, and obtain a lower bound in the compact

setting through the geometric properties of the sequence space, as described in Donoho,

Liu, and MacGibbon (1990). For the lower bound on Rd, we use Tsybakov (2009) gen-

eral theorem for deriving minimax lower bounds. We use Gaussian test sequences that

minimize the overlap between two sequences. These results can be compared to results

in Sobolev spaces for certain settings of the modulation spaces.

The chapter is structured as follows: First, we introduce our Gaussian white noise model,

referred to as the analog model, and outline the minimax framework. Next, we demon-

strate the transformation of the analog model into an equivalent infinite-dimensional

Gaussian sequence model using frame expansion. In Section 3, we present the projection

error obtained by considering a finite submodel, which we call the digital model. Section

4 provides lower bounds, while in the final section we establish the near-optimality of the
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3. Estimation over Modulation Spaces

thresholding operators. Throughout this chapter, our primary focus is on Gabor frames,

although the procedure remains applicable to other frames.

3.1. Analog Model

Consider the following Gaussian white noise model

dY(x) = f(x) dx+ ε dW(x), x ∈ Rd, (3.1)

in which we observed a square-integrable analog signal f ∈ L2(Rd) contaminated by a

standard Wiener process W(x) with white noise intensity ε. Furthermore, we assume

that the signal of interest f is an element of the smoothness space

Θp
u,v =

{
f ∈ L2(Rd)| ∥f∥Mp

u,v(Rd) ≤ C̄
}
, (3.2)

with p ∈ (0, 2], u, v ≥ 0 and the weight function

mu,v(x, ω) = (1 + |x|)u + (1 + |ω|)v.

For u = v, we write Θp
u instead of Θp

u,u.

The parameter space Θp
u,v is a bounded subset of Mp

u,v(Rd). We denote the (quasi-)norm

on Θp
u,v by

∥f∥Θp
u,v

= ∥f∥Mp
u,v(Rd).

The goal is to find an estimator f̂ ∈ Θp
u,v that minimizes the risk assessed by a given

loss function. As discussed in Ma and Loizou (2011), various metrics are available in

the audio domain to accurately measure audio or visual degradation, such as spectral

loss, perceptual loss, or signal-to-noise ratio. For simplicity, we define the loss function

as the mean squared distance, which is both straightforward and suitable for theoretical

purposes. Given a parameter space Θ in (3.1), the risk of an estimator f̂ := f̂(y) ∈ Θ
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3.2. Infinite-dimensional Gaussian Sequence Model

based on the observations y =
∫
· dY(x), is given by the global mean integrated squared

error (MISE)

r(f̂ , f) = Ef [∥f − f̂∥2L2(Rd)], (3.3)

where Ef denotes the expected value if the underlying parameter is f . The performance

of an estimator f̂ over a parameter set Θ is measured by its maximum risk

r(f̂ ,Θ) = sup
f∈Θ

r(f̂ , f). (3.4)

An estimator is said to be optimal if its rate equals the lower bound or minimax risk,

the least risk of all possible estimators. We define the minimax risk with

rmin(Θ) = inf
f̂
r(f̂ ,Θ).

The minimax problem is separable. That is, the linear minimax risk rLmin is limited to

linear procedures and the nonlinear minimax risk rNmin for the others.

3.2. Infinite-dimensional Gaussian Sequence Model

We recall the conventional nonparametric regression model

Yi = f(Xi) + ξi, i = 1, ...n.

with E[ξi] = 0 and Xi ∈ Rd. Brown and Low (1996) and Nussbaum (1996) have shown

that the analog model (3.1) arises as a large sample limit of the conventional nonparamet-

ric regression model where only finite countable observations are made. In this section,

we establish a connection between the analog model (3.1) and the infinite-dimensional

Gaussian sequence model based on frame expansion. We show that estimates obtained

in the sequence model induce estimates in the analog model, with the same rate of con-

vergence, and vice versa. This means that we can analyze the behavior of an estimator

at the sequence level, and the results remain valid at the function level without loss of

accuracy. This is a powerful result that allows us to simplify the analysis, by reducing to

sequences that can be easily manipulated and analyzed. For more details, see Ibragimov
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3. Estimation over Modulation Spaces

and Has’minskĭı (1981).

In model (3.1), a continuous signal is observed. Therefore, we refer to it as the analog

model. To obtain a sampled version of this model, we integrate a countable number of

elements of a frame for the underlying function space with respect to the observed signal.

This results in a Gaussian sequence model.

We define the index set Λ =
{
(k, n) : k, n ∈ Zd

}
. For an admissible real-valued non-

zero window function h ∈ L2(Rd), we consider α, β > 0, so that the set of Gabor frame

elements {hλ}λ∈Λ = {TαkMβnh}λ∈Λ = G(h, α, β) defines frames for the Hilbert space

L2(Rd), with lower and upper frame bounds A and B respectively, and 0 < A ≤ B. The

dual frame is denoted by {h̃k}λ∈Λ := G(h̃, α, β).

Each function f ∈ L2(Rd) has a representation as a linear combination of the frame

elements {hλ}λ∈Λ,

f =
∑
λ∈Λ

⟨f, h̃λ⟩hλ,

with unconditional convergence. Furthermore, from Theorem 9 there exist constants

C̃1, C̃2 > 0 such that the following (quasi-)norm equivalence holds

C̃1∥f∥Θp
u,v

≤ ∥⟨f, h̃λ⟩λ∈Λ∥ℓpm̄u,v
≤ C̃2∥f∥Θp

u,v
, (3.5)

with m̄u,v(k, n) = mu,v(αk, βn). See eq. (2.35).

Due to the stability of the frame operator, the frame coefficients can be used to obtain

a stable signal approximation of f using the synthesis operator. This means that for

any estimator F̂ ∈ ℓ2{Λ} of the frame coefficients F = {⟨f, h̃λ⟩}λ∈Λ, there exists an

equivalent estimator f̂ = T ∗F̂ ∈ L2(Rd) of the function f that achieves the same rate,

and vice versa. In other words, we have f̂ = T ∗F̂ or equivalently F̂ = T f̂ . One can then

optimize an estimate of the frame coefficients obtained from noisy observations in the

following infinite dimensional Gaussian model

Y [λ] = F [λ] +W [λ], λ ∈ Λ (3.6)

with
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3.2. Infinite-dimensional Gaussian Sequence Model

F [λ] =

∫
f · h̃λ dx = ⟨f, h̃λ⟩

W [λ] =

∫
ε · h̃λ dW(x) ∼ N

(
0, ε2 ∥h̃∥2L2

)
,

Y [λ] =

∫
h̃λ dY ∼ N

(
F [λ], ε2 ∥h̃∥2L2

)
Cov(Y [λ1], Y [λ2]) = ϵ2⟨h̃λ1

, h̃λ2
⟩

using the isometry of the time-frequency shifts in (2.13), ∥h̃λ∥2L2 = ∥h̃∥2L2 . The corre-

sponding parameter set

Θ̄p
u,v := Θ̄p

u,v(Λ) =
{
F ∈ ℓ2(Λ) | ∥T ∗F∥Θp

u,v
< C̄

}
.

For u = v, we write Θ̄p
u instead of Θ̄p

u,u. The (quasi-)norm equivalence (3.5) can be

reformulated as follows

C̃1∥T ∗F∥Θp
u,v

≤ ∥F∥Θ̄p
u,v

≤ C̃2∥T ∗F∥Θp
u,v

(3.7)

with ∥F∥
Θ̄p

u,v
= ∥F∥

ℓpm̄u,v

.

Remark 3. Note that if the frame element hλ is a complex-valued square-integrable

function, as is often the case in time-frequency analysis, then Y [λ] is a complex-valued

normally distributed random variable with

ℜ(Y [λ]) ∼ N
(
ℜ(F [λ]), ε2 ∥ℜ(h̃λ)∥2L2

)
ℑ(Y [λ]) ∼ N

(
ℑ(F [λ]), ε2 ∥ℑ(h̃λ)∥2L2

)
.

We adapt the minimax framework as follows. The risk of a sequence estimator F̂ in the

infinite-dimensional Gaussian sequence model (3.6) is given by

r(F̂ , F ) = EF [∥F − F̂∥2ℓ2(Λ)], (3.8)

and its performance over a set of parameters Θ̄ is measured by

r(F̂ , Θ̄) = sup
F∈Θ̄

r(F̂ , F ). (3.9)
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3. Estimation over Modulation Spaces

The minimax risk is defined as

rmin(Θ̄) = min
F̂

r(F̂ , Θ̄).

Because of the isometry of the of the L2-risk and l2-risk, estimating the signal f with

respect to the L2-risk is then equivalent to estimating its frame coefficients F = Tf with

respect to the l2-risk.

Lemma 13. Consider the analog model (3.1) with f ∈ Θ, {hλ}λ∈Λ a frame for Θ with

lower and upper bounds 0 < A ≤ B, and the corresponding infinite-dimensional Gaus-

sian model (3.6) with F ∈ Θ̄.

If F̂ := F̂ (Y ) defines an estimator for F in (3.6) based on the observations Y =

{Y [λ]}λ∈Λ, then f̂ = T ∗F̂ also defines an estimator for f in (3.1) with

r(F̂ , Θ̄) ∼ r(f̂ ,Θ). (3.10)

Remark 4. Lemma 13 shows a fundamental advantage of frames over orthogonal bases.

The redundancy of frames often leads to a lower risk compared to orthogonal bases.

With the redundancy factor, 0 < A ≤ B, we obtain

1

B
· r(F̂ , Θ̄) ≤ r(f̂ ,Θ) ≤ 1

A
· r(F̂ , Θ̄).

Higher redundancy then reduces the risk. For a tight frame, each estimator reduces the

risk by averaging several estimators, each obtained in different orthogonal bases.

3.3. Projection Estimation and Digital Model

In this section, we reduce the previously presented infinite-dimensional model to a finite

multivariate normal mean model, which is the core of parametric statistical inference.
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We refer to this step as reducing the discrete resolution of the observed signal. We show

that if the resolution is high enough, restricting to finite observations leads to a similar

risk as in the entire sequence space. This means that we can accurately approximate a

signal using a finite subspace of the sequence space without losing too much information.

We also provide an upper bound on the linear approximation error on a time-frequency

ball. The results presented in this section are inspired by the work of Mallat (2009,

Chapter 11).

The observed sequence {F [λ]}λ∈Λ in the infinite-dimensional Gaussian sequence model

(3.6) is a discrete representation of the signal f . In practice, it is often necessary to work

with a finite representation of the signal, either because it is not possible to measure or

store an infinite number of observations or because it is not necessary to use such high

resolution. A finite representation is obtained by projecting the full representation into

a subspace of the sequence space. This reduces the resolution of the signal.

For a nonempty finite index set Λ0 ⊂ Λ, we consider the following finite sequence model,

which we call the digital model

Y [λ] = F [λ] +W [λ], λ ∈ Λ0 (3.11)

with the parameter set

Θ̄p
u,v(Λ0) =

{
F ∈ ℓ2(Λ0) | ∥T ∗F∥Θp

u,v
< C̄

}
,

where F [λ], W [λ] and Y [λ] are defined as before.

It is obvious that Θ̄p
u,v(Λ0) ⊆ Θ̄p

u,v. Thus, any estimator for this model is also a valid

estimator when considering the parameter set Θ̄p
u,v. The set Θ̄p

u,v(Λ0) contains the

orthogonal projection of the elements of Θ̄p
u,v from ℓ2(Λ) to ℓ2(Λ0). We denote the pro-

jection operator PΛ0
F , with PΛ0

F = {F [λ]}λ∈Λ0
.

Next, we show that if the subspace Λ0 is sufficiently large, the risk of an estimator in

the finite model does not significantly deteriorate when applied to the full model. An

optimal estimator for the reduced model would then remain optimal in the full model.

The risk of a finite dimensional projection estimator F̂0 ∈ Θ̄p
u,v(Λ0) in the infinite-

dimensional Gaussian model (3.6) is given by
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r(F̂0, F ) = EF [∥F̂0 − F∥2ℓ2(Λ)]

= EF [∥F̂0 − PΛ0
F∥22 + ∥PΛ0

F − F∥2ℓ2(Λ)]

= EF [∥F̂0 − PΛ0
F∥22] + ∥PΛ0

F − F∥2ℓ2(Λ)

= r(F̂0, PΛ0F ) + ∥PΛ0F − F∥2ℓ2(Λ)

Taking the maximum over the parameter set Θ̄p
u,v gives the following inequality

r(F̂0, Θ̄
p
u,v(Λ0)) ≤ r(F̂0, Θ̄

p
u,v) ≤ r(F̂0, Θ̄

p
u,v(Λ0)) + εΘ̄p

u,v
(Λ,Λ0),

where εΘ̄p
u,v

(Λ,Λ0) = supF∈Θ̄p
u,v

∥F − PΛ0
F∥2ℓ2(Λ) is the maximum linear approximation

error when orthogonal projecting elements of Θ̄p
u,v from ℓ2(Λ) onto ℓ2(Λ0).

If the linear approximation error is of the same order as the subspace estimation risk,

i.e. r(F̂0, Θ̄
p
u,v(Λ0)) ∼ εΘ̄p

u,v
(Λ,Λ0), then we can conclude that

r(F̂0, Θ̄
p
u,v(Λ0)) ∼ r(F̂0, Θ̄

p
u,v). (3.12)

Therefore, any optimal sequence estimator in Θ̄p
u,v(Λ0) induces an optimal function es-

timator in Θ̄p
u,v. In other words, appropriately reducing the resolution of the signal does

not affect the optimality of an estimator.

3.3.1. Linear Approximation Error on Time-Frequency Subset

Now we examine the difference between a sequence in the time-frequency plane and its

projection onto a particular subspace. For K1,K2 > 0 we consider the following index

set

Λ0,(K1,K2) = {λ ∈ Λ : ∥k∥2 ≤ K1, ∥n∥2 ≤ K2} , (3.13)

with Λ0,K = Λ0,(K,K). The parameters K1 and K2 can be interpreted as signal discrete

resolution in time and frequency. This corresponds to a uniform discretization of a subset

of the time-frequency space,{
(x, ω) ∈ R2d |

x = αk, ∥k∥2 ≤ K1,

ω = βn, ∥n∥2 ≤ K2

}
. (3.14)

46



3.3. Projection Estimation and Digital Model

Lemma 14. Let u, v ≥ 0. For F ∈ Θ̄p
u,v and p ∈ (0, 2] the following inequality holds∑

λ∈Λc
0,(K1,K2)

|F [λ]|2 ≤ min(αK1, βK2)
−2max(u,v)C̃2

2∥T ∗F∥2Θp
u,v
, (3.15)

as well as ∑
λ∈Λc

0,(K1,K2)

|F [λ]|2 ≤ max(αK1, βK2)
−2min(u,v)C̃2

2∥T ∗F∥2Θp
u,v
. (3.16)

It then follows

εΘ̄p
u,v

(Λ,Λ0,K) = O(C K−2max(u,v)) (3.17)

with C = C̃2
2 · C̄2 ·min(α, β)−2max(u,v).

The projection error is a function of resolution. A larger subspace is able to capture

more of the details of the original signal, resulting in a smaller projection error. Thus,

the projection error decreases as the resolution increases. Next, we give an interpretation

of these results for K1 = K2 = K.

We observe that the projection error does not depend on the sparsity of the signal it-

self but rather on the sparsity of its representation in the time-frequency space. If the

coefficients of a signal show a rapid decay in the time-frequency plane (i.e., its energy is

concentrated in a small region in the time-frequency plane), the signal has a sparse rep-

resentation and can therefore be compressed more efficiently, resulting in a smaller linear

approximation error. In the isotropic design, i.e., u = v = s, the error rate is reduced

to O(K−2s). The projection error decreases as the decay rate increases. This means

that a signal with a fast decay in the time-frequency plane has a sparse representation,

resulting in a smaller projection error. In particular, for u = 0, v = s, this is similar to

the approximation rate by piecewise polynomial functions observed on Sobolev spaces

Wα
2 (Rd) with α > 2s, see Birman and Solomyak (1966, Theorem 3.1) and Pinkus (1985).

In the anisotropic design, where the decay rate is different in the time and frequency

dimensions, a faster decay in either domain results in a smaller projection error. The

anisotropic design allows more flexibility in the time-frequency representation of the sig-

nal.
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Remark 5. The discrete resolution K plays the same role as the bandwidth h for kernel

estimators. By choosing an appropriate value for K, we can balance the trade-off be-

tween the accuracy of the estimation and the computational complexity of the estimation

process.

3.4. Oracles and Thresholding Estimation in the Digital

Model

In this section, we present an adaptive nonlinear projection estimator based on coordinate-

wise thresholding of the frame coefficients observed in the digital model. We extend the

results of Donoho and Johnstone (1994) to complex-valued random variables and provide

an upper bound on the risk of thresholding with a universal threshold.

Stein (1956) shows the fundamental role of shrinkage estimators in parametric and non-

parametric inference. Donoho and Johnstone (1994) use oracle information to develop a

spatially adaptive method based on shrinkage of the empirical coefficients. Furthermore

shrinkage estimators are asymptotically minimax for a wide range of parameter sets, see

Pinsker (1980) and Donoho, Liu, and MacGibbon (1990) provides. We begin this section

with a review of diagonal estimators.

3.4.1. Diagonal Estimators

Let Λ0 ⊂ Z2d be a nonempty finite index set. In the digital model (3.11) with F ∈ Θ̄(Λ0),

we consider shrinkage estimators of the form

F̂a = {aλ · Y [λ]}λ∈Λ0
, (3.18)

with |aλ| ≤ 1 and a = {aλ}λ∈Λ0
.
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These estimators are called diagonal estimators because they attenuate the noisy frame

coefficients independently. We say that an estimator is linear if each coefficient aλ is

a constant independent of Y [λ] otherwise it is nonlinear. For an observed sequence

F ∈ Θ̄(Λ0), the risk of an estimator of the form (3.18) is given by

r(F̂a, F ) = EF [∥F̂a − F∥22]

=
∑
λ∈Λ0

EF [|aλ · Y [λ]− F [λ]|2]

=
∑
λ∈Λ0

EF [|aλ · (F [λ] +W [λ])− F [λ]|2]

=
∑
λ∈Λ0

(1− aλ)
2 |F [λ]|2 + a2λ ϵ

2∥h̃∥2L2

(3.19)

The linear diagonal oracle estimator F̂inf =
{
ainfλ · Y [λ]

}
λ∈Λ0

with

ainfλ =
|F [λ]|2

|F [λ]|2 + ϵ2∥h̃∥2L2

.

minimizes the risk (3.19) coordinatewise. It achieves the lowest risk among all estimators

of the form (3.18). Its risk is given by

rinf(F ) = r(F̂inf, F ) =
∑
λ∈Λ0

|F [λ]|2 · ϵ2∥h̃∥2L2

|F [λ]|2 + ϵ2∥h̃∥2L2

.

We denote the risk of the linear diagonal oracle over the parameter space Θ̄ with

rinf(Θ̄) = sup
F∈Θ̄

rinf(F ).

The analysis of this class of estimators is simplified by restricting aλ ∈ {0, 1}. This

restriction leads to projection estimators. The risk (3.19) is minimized by the nonlinear

oracle projector F̂pr = {aprλ · Y [λ]}
λ∈Λ0

with

aprλ =

1 if |F [λ]| ≥ ϵ ∥h̃∥L2

0 else
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Its risk is defined by

rpr(F ) = r(F̂pr, F ) =
∑
λ∈Λ

min(|F [λ]|2 , ϵ2∥h̃∥2L2) (3.20)

We denote the oracle projector risk with

rpr(Θ̄) = sup
F∈Θ̄

rpr(F ).

Using the following inequality for (x, y) ∈ R2

min(x, y) ≥ xy

x+ y
≥ 1

2
min(x, y),

it can be shown that the linear diagonal oracle and the oracle projector are of the same

order

rpr(F ) ≥ rinf(F ) ≥
1

2
rpr(F ).

An oracle estimator may not be available in practice, but the next section shows that a

thresholding estimator comes close to an oracle in terms of risk.

3.4.2. Thresholding Estimation

We now turn to thresholding estimators. These are nonlinear diagonal estimators that

effectively remove small coefficients while preserving large ones. They have been widely

used in signal processing, image processing, and machine learning. The key insight is that

thresholding provides a way to trade off bias and variance, resulting in a well-calibrated

estimator that performs well in practice.

Definition 14. Let v ∈ R. The soft- and hard thresholding operators at level µ > 0 are

respectively defined as

tsµ(v) =
v

|v|
(|v| − µ)+ and thµ(v) = v 1(|v| ≥ µ) (3.21)

While soft thresholding shrinks the magnitude of all signal coefficients, hard threshold-

ing eliminates small magnitude values while preserving larger values. The choice of the
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appropriate threshold µ is a critical statistical decision that has a significant impact on

the overall performance of the estimation procedure. Choosing a large threshold can

cause the estimator to become significantly biased. On the other hand, choosing a small

threshold can lead to an increase in variance.

Remark 6. This definition of the thresholding operator is also valid for complex num-

bers, z ∈ C. However, we decide to apply this operator separately to the real and imagi-

nary parts of any complex number, since this simplifies the calculations while maintaining

the theoretical results. For z = u+ iv, we then have

tjµ(z) = tjµ(u) + i · tjµ(v) (3.22)

for j ∈ {s,h}. In practical experiments we will use Definition 14 as recommended by

several authors for reasons of better perceptual sound quality when denoising audio

signals.

Let Λ0 ⊆ Λ be a finite subset and Θ̄ ⊆ ℓ2(Λ). In the digital model (3.11) with parameter

set Θ̄(Λ0), we define the following estimator based on thresholding of the complex frame

coefficients at level µ ∈ R

F̂ j
µ =

{
tjµ(Y [λ])

}
λ∈Λ0

=
{
tjµ(ℜ(Y [λ])) + i tjµ(ℑ(Y [λ]))

}
λ∈Λ0

,

with j ∈ {h, s}.

The risk of this thresholding estimator is given by

r(F̂ j
µ, F ) = E[

∑
λ∈Λ0

∣∣tjµ(Y [λ])− F [λ])
∣∣2]

= E[
∑
λ∈Λ0

∣∣tjµ(ℜ(Y [λ]))−ℜ(F [λ]))
∣∣2 + ∣∣tjµ(ℑ(Y [λ]))−ℑ(F [λ]))

∣∣2]
= r(tjµ(ℜ(Y )),ℜ(F )) + r(tjµ(ℑ(Y )),ℑ(F ))

We then have the following oracle inequalities, which are extensions to complex-valued

random variables of classical results from Donoho and Johnstone (1994).
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Proposition 15. Let Λ0 ⊆ Λ be a nonempty finite subset with #Λ0 ≥ 2. In the digital

model (3.11) with F ∈ Θ̄(Λ0), we have for soft thresholding with the universal threshold

µuni that

1

2
· rpr(F ) ≤ r(F̂ s

µuni
, F ) ≤ 2 ·

(
2 log(#Λ0) + 1

)(
ε2 ∥h∥2L2 + rpr(F )

)
, (3.23)

where µuni = ε ∥h̃∥L2

√
2 log(#Λ0).

Similarly, for hard thresholding we have the same estimate with a different leading con-

stant.

Proposition 15 gives an upper bound for the thresholding estimator F̂ j
µuni

. The risk

remains within a 4 log(#Λ0) range of the risk of the nonlinear oracle projector. The

The left-hand side is obvious, since thresholding operators are diagonal estimators and

therefore have a greater risk than the linear oracle estimator. The factor 2 on the right-

hand side results from denoising the real and imaginary parts separately.

Remark 7. The logarithmic factor 4 log(#Λ0) is optimal among diagonal estimators,

Mallat (2009, Theorem 11.7). This factor can be eliminated by using a more sophisticated

thresholding scheme such as SureShrink from Donoho and Johnstone (1995).

3.4.3. Upper Bound on the Thresholding Risk

Next, we derive upper bounds for the thresholding estimator F̂ j
µ in the digital model

(3.11). Specifically, we consider the parameter set Θ̄p
u,v(Λ0,K), where K is a resolution

chosen to be sufficiently large. The next theorem gives an upper bound for the nonlinear

oracle projector. We obtain an upper bound for the threshold estimator using Proposi-

tion 15.

Theorem 16. Let p ∈ (0, 2], s > 0, and K > 0. In the digital model (3.11) with

F ∈ Θ̄p
s(Λ0,K) and K sufficiently large, the nonlinear oracle projector error has the

upper bound
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rpr(F ) ≤ const. · ∥F∥
2 d p

2 d+s p

Θ̄p
s

ε
2 d (2−p)+2sp

2 d+s p . (3.24)

In general, for F ∈ Θ̄p
u,v(Λ0,K), u, v > 0, and K > 0, the nonlinear oracle estimator

achieves minimax risk in the digital model (3.11) with

rpr(F ) ≤ const. · ∥F∥
p d(v+u)

d(v+u)+pvu

Θ̄p
u,v

ε
(2−p) d (v+u)+2pvu

d(v+u)+pvu . (3.25)

Remark 8. Note that the risk of the oracle projector is asymptotically bounded. For

K sufficiently large, we obtain rpr(F ) ∼ εΘ̄p
u,v

(Λ,Λ0,K). Hence, this rate of convergence

holds for Θ̄p
u,v. Using Proposition 15, we obtain the rate for the thresholding estimator

F̂ j
µuni

.

In the isotropic design, the rate approaches the parametric rate ε2 as the decay s in-

creases. This means that a sparse time-frequency representation (better compression)

reduces the error. The majority of the frame coefficients F [λ] contain only noise. This

observation holds in the sparse situation as p approaches 0. As d increases, the rate

converges to ε2−p. For p = 2, the rate converges to ε
4s

2d+2s .

Similar observations are made for the anisotropic design. The rate converges to ε2 for

min(u, v) → ∞. For u = 0 and p = 2, the Sobolev case (2.33), we obtain the rate ε
4v

2d+2v .

This doesn’t quite agree with the rate ε
4v

d+2v , which is observed over Sobolev ellipsoids

for f ∈ L2([0, 1])], see Pinsker (1980).

The term 2d, which appears in the isotropic upper bound or in the Sobolev case, reflects

the implication of the frequency and time domains, respectively of dimension d. The

risk of the oracle projector in (3.20) is estimated over the time-frequency sphere Λ0,K

whose size is of the order of 2d, i.e. #Λ0,K = O(2d). By restricting the support of the

representation of the signal, the factor 2d can be halved. Using the definition F [λ] =

⟨f, TαkMβnh⟩ =, we define the following two assumptions:

Assumption 1.

53



3. Estimation over Modulation Spaces

� Time: There exists a k0 ∈ Rd such that F [λ] = 0, for all λ = (k, n) with ∥k∥2 >
∥k0∥2. Then #Λ0,K = O(d). This means that the function f observed in the

analog model and the dual window function h̃ are time-limited.

� Frequency: There exists a n0 ∈ Rd such that F [λ] = 0, for all λ = (k, n) with

∥n∥2 > ∥n0∥2. Then #Λ0,K = O(d). This means that the function f observed in

the analog model and the dual window function h̃ are band-limited.

Note that the frequency assumption is a consequence of the fundamental identity of the

time-frequency analysis (2.15). The previous theorem can then be reformulated as fol-

lows.

Theorem 17. Let p ∈ (0, 2], s > 0, and K > 0. Under either the time or frequency

assumption 1, the upper bound of the nonlinear oracle projector risk in the finite digital

model (3.11) with F ∈ Θ̄p
s(Λ0,K) and K sufficiently large is given by

rpr(F ) ≤ const. · ∥F∥
d p

d+s p

Θ̄p
s

ε
d (2−p)+2sp

d+s p . (3.26)

In general, for F ∈ Θ̄p
u,v(Λ0,K), under the time assumption we obtain

rpr(F ) ≤ const. · ∥F∥
d p

d+vp

Θ̄p
u,v

ε
d (2−p)+2vp

d+pv . (3.27)

and under the frequency assumption

rpr(F ) ≤ const. · ∥F∥
d p

d+up

Θ̄p
u,v

ε
d (2−p)+2up

d+pu . (3.28)

For a function f ∈ L2[0, 1] and a compact dual window function h̃ the time assumption 1

is satisfied. Thus, for u = 0 and p = 2 we observe the Sobolev rate ε
4v

d+2v . Kerkyacharian

et al. (2001) and Kerkyacharian et al. (2008) studied the minimax rate in a similar design

focusing on functions with inhomogeneous smoothness properties and disparity of the

inhomogeneous aspect in different directions.
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3.5. Lower Bounds on the Minimax Risk

In this section, we derive lower bounds for the minimax risk in the infinite-dimensional

Gaussian model (3.6). The lower bound is derived using the general theorem for de-

riving minimax lower bounds from Tsybakov (2009). Under each of the assumptions in

(1), we use oracle information to obtain a lower bound. In the theory of nonparametric

function estimation, linear estimators play a special role. Over solid and orthosymmet-

ric parameter sets, the linear minimax risk is within a constant factor of the minimax

risk. Moreover the linear minimax is achieved by diagonal linear estimators, see Pinsker

(1980) and Donoho, Liu, and MacGibbon (1990).

Theorem 18. For p ∈ (0, 2] and s > 0, we consider the infinite-dimensional model (3.6)

with F ∈ Θ̄p
s. Then we have that

lim inf
ε↓0

(
ε−

2 d (2−p)+2sp
2 d+s p inf

F̂ε

r(F̂ε, Θ̄
p
s)
)
> 0,

where F̂ε is an estimator in (3.6) based on the observation Y .

In general, for F ∈ Θ̄p
u,v and u, v > 0, we obtain

lim inf
ε↓0

(
ε−

(2−p)d(u+v)+2 puv
d (u+v)+puv inf

F̂ε

r(F̂ε, Θ̄
p
u,v)
)
> 0.

The proof of the lower bound uses standard tools from decision theory such as Fano’s

lemma and the Varshamov-Gilbert bound, see Tsybakov (2009). We provide a construc-

tion of test sequences with sufficient distance between them. The main effort here is to

find an adequate family of distant test sequences to obtain the term 2 d that appears in

the upper bound. For two sequences F,G ∈ Θ̄u,v the distance between them is given

by ∥F − G∥22 = ∥F∥22 + ∥G∥22 − o(F,G), where o(F,G) represents the overlap between

the two sequences. We work with test sequences derived from a Gaussian window func-

tion φ ∈ Θu,v. Gaussian functions concentrate the energy around a single point in the

time-frequency space and minimize the overlap between sequences, see Theorem 5. We

estimate the overlap in the time and frequency domains to bound the ℓ2-distance.
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Theorem 19. Let p ∈ (0, 2] and s > 0. We consider the infinite-dimensional model

(3.6) with F ∈ Θ̄p
s. Under either the time or the frequency assumption 1 we have that

lim inf
ε↓0

(
ε−

d (2−p)+2sp
d+s p inf

F̂ε

r(F̂ε, Θ̄
p
s)
)
> 0, (3.29)

where F̂ε is an estimator in (3.6) based on the observation Y .

In general, for F ∈ Θ̄p
u,v(Λ0,K) and u, v > 0, we obtain under the time assumption

lim inf
ε↓0

(
ε−

(2−p)d+2 vp
d+vp inf

F̂ε

r(F̂ε, Θ̄
p
u,v)
)
> 0, (3.30)

and under the frequency assumption

lim inf
ε↓0

(
ε−

(2−p)d+2up
d+up inf

F̂ε

r(F̂ε, Θ̄
p
u,v)
)
> 0. (3.31)

Unlike the proof of Theorem 18 we cannot use Gaussian test sequences, since they do

not satisfy the requirements of the theorem. The proof of Theorem 19 relies on geomet-

ric properties of the parameter set. We use results from Donoho, Liu, and MacGibbon

(1990) to prove that the oracle linear estimator achieves the desired lower bound on a

solid and orthosymmetric subset of the parameter set.

3.6. Minimax Rate-Optimality and Adaptivity on

Modulation Spaces

Finally, we show near-optimality of the thresholding based estimator in the analog model

(3.1). For any finite index set Λ0,K , the threshold estimator F̂ s
µuni

has a risk close to the

risk of the nonlinear oracle projector in the digital model, and is thus nearly optimal on

the set Θ̄p
u,v(Λ0,K). For a sufficiently large K, the projection error on Θ̄p

u,v(Λ0,K) and

the estimation error are of the same order. The rate then translates to Θ̄p
u,v and to the
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analog model (3.1) by Lemma 13.

For µ > 0 and K > 0 we define the following estimator for the analog model (3.1)

f̂ jµ =
∑

λ∈Λ0,K

tjµ(Y [λ]) · h̃λ = T ∗ {tjµ(Y [λ])
}
λ∈Λ0,K

, (3.32)

with j ∈ {s,h}.

Corollary 20. For p ∈ (0, 2] and s > 0, consider the analog model (3.1) with f ∈ Θp
s.

By choosing the universal threshold µuni = ε ∥h̃∥L2

√
2 log(#Λ0,K) and taking K ≳

ε
− d (2−p)+sp

2 d s+s2 p , the oracle projector f̂pr = T ∗F̂pr is rate-optimal, and we obtain for the

threshold estimator f̂ jµuni
the bound

r(f̂ jµuni
, f) ≤ const. · max

(
∥f∥2Θp

s
, ∥f∥

2 d p
2 d+s p

Θp
s

)
· log(1/ε) · ε

2 d (2−p)+2sp
2 d+s p . (3.33)

In general, for f ∈ Θp
u,v and u, v > 0 we obtain by thresholding with the universal

threshold with K ≳ ε−
(2−p) d (v+u)+2pvu

max(u,v)(d(v+u)+pvu) the bound

r(f̂ jµuni
, f) ≤ const. · max

(
∥f∥2Θp

u,v
, ∥f∥

d p(u+v)
d (v+u)+pvu

Θp
u,v

)
· log(1/ε) · ε

(2−p) d (v+u)+2pvu
d(v+u)+pvu . (3.34)

The constant depends on the properties of the frame and the thresholding method.

Next, in the analog model, we assume that supp(f) ⊆ [0, 1]d and redefine the parameter

space as follows

Θp
u,v =

{
f ∈ L2(Rd) | supp(f) ⊆ [0, 1]d, ∥f∥Mp

u,v(Rd) ≤ C̄
}
. (3.35)

Furthermore, we consider a window function h ∈ L2(R) with a time-limited dual window

h̃. Under this condition, the time assumption 1 is satisfied. The reason is that if D

denotes the support of h̃λ, then h̃λ has support D+ x. This will be disjoint to [0, 1]d for

x sufficiently large. We can reformulate Corollary 20 as follows.
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Corollary 21. For p ∈ (0, 2] and s > 0, consider the digital model (3.1) with f ∈ Θp
s.

By choosing the universal threshold µuni = ε ∥h̃∥L2

√
2 log(#Λ0,K) as well as taking

K ≳ ε
−

d (1− p
2
)+sp

d s+s2 p , the oracle projector f̂pr = T ∗F̂pr is rate-optimal, and we obtain for

the threshold estimator f̂ jµuni
the bound

r(f̂ jµuni
, f) ≤ const. · max

(
∥f∥2Θp

s
, ∥f∥

d p
d+s p

Θp
s

)
· log(1/ε) · ε

d (2−p)+2sp
d+s p . (3.36)

In general, for f ∈ Θp
u,v and u, v > 0, we obtain by thresholding with the universal

threshold with K ≳ ε−
d (1− p

2
)+vp

max(u,v)(d+v p) the bound

r(f̂ jµuni
, f) ≤ const. · max

(
∥f∥2Θp

u,v
, ∥f∥

d p
d+v p

Θp
u,v

)
· log(1/ε) · ε

d (2−p)+2v p
d+v p . (3.37)

The constant depends on the properties of the frame and the thresholding method.

Remark 9. For a band-limited signal f and a dual window function h̃, results similar

to those presented in corollary 21 can be derived. It follows that

r(f̂ jµuni
, f) ≤ const. · max

(
∥f∥2Θp

u,v
, ∥f∥

d p
d+u p

Θp
u,v

)
· log(1/ε) · ε

d (2−p)+2u p
d+u p . (3.38)

with the universal threshold with K ≳ ε−
d (1− p

2
)+up

max(u,v)(d+u p) and similar lines of proof.

The universal threshold estimator is adaptive up to a logarithmic factor for the L2-loss

and the parameter space Θp
u,v. Combined with the Theorems 19 and 18, we derive, up to

the logarithmic factor, optimal rate for the thresholding estimator in both the isotropic

and the anisotropic cases.

3.7. Conclusion

We conclude this section with a few remarks. The thresholding estimators can be adapted

for colored noise W . In a situation where the noise is not white, the noise has a different
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intensity for each frame element. Thus, there is no longer a single threshold for the

entire signal, but the threshold is chosen individually for each frame element or each re-

gion of the time-frequency plane. The threshold becomes a function of the lattice index

λ. Donoho and Johnstone (1994) reformulate his result used in proposition 15. This

still leads to near-optimality of our thresholds. The redundancy of the frames helps to

reduce the risk of the estimator. This redundancy is the biggest advantage of frames

over orthogonal bases. However, one must keep in mind that artificially increasing the

redundancy also affects compression, since more elements must be stored to efficiently

retrieve a signal. This affects the projection error.

3.8. Proofs

This section provides the proofs for the results presented in this chapter.

3.8.1. Proof of Lemma 13

Proof. The synthesis operator maps into L2(Rd), thus f̂ ∈ L2(Rd).

For each F ∈ Θ̄ with f = T ∗F , we have

r(F̂ , F ) = E[∥F − F̂∥2ℓ2{Λ}]

≤ B · E[∥T ∗(F − F̂ )∥2L2(Rd)]

= B · r(f̂ , f)

as well as

r(F̂ , F ) ≥ A · r(f̂ , f)

Taking the supremum over Θ̄ leads to the claim.
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3.8.2. Proof of Lemma 14

Proof. To simplify the proof, we will assume without loss of generality that α = β = 1.

Let λ ∈ Λc
0,(K1,K2). From Lemma 6 we obtain

m̄u,v(λ) = (1 + ∥αk∥22)u/2 + (1 + ∥βn∥22)v/2

≥ (1 +K2
1 )

u/2 + (1 +K2
2 )

v/2

≥ Ku
1 +Kv

2

Since the p-norm is monotonously decreasing, we have∑
λ∈Λc

0,(K1,K2)

|F [λ]|2 ≤
( ∑

λ∈Λc
0,(K1,K2)

|F [λ]|p
)2/p

≤
(
(Ku

1 +Kv
2 )

−p
∑

λ∈Λc
0,(K1,K2)

m̄u,v(λ)
p |F [λ]|p

)2/p
≤ (Ku

1 +Kv
2 )

−2
( ∑

λ∈Λc
0,(K1,K2)

m̄u,v(λ)
p |F [λ]|p

)2/p
≤ min(K1,K2)

−2max(u,v)∥F∥2Θ̄p
u,v
,

using Ku
1 +K

v
2 ≥ min(K1,K2)

max(u,v) in the last step. The second inequality is obtained

by using Ku
1 +Kv

2 ≥ max(K1,K2)
min(u,v) in the last step.

In addition, we have

εΘp
u,v

(Λ,Λ0,K) = sup
F∈Θ̄p

u,v

∥F − PΛ0F∥2ℓ2(Λ)

≤ sup
F∈Θ̄p

u,v

∑
λ∈Λc

0,K

|F [λ]|2

≤ sup
F∈Θ̄p

u,v

K−2max(u,v)∥F∥2Θ̄p
u,v

≤ sup
F∈Θ̄p

u,v

C̃2
2 ·K−2max(u,v)∥T ∗F∥2Θ̄p

u,v

= O(C K−2max(u,v))

with C = C̃2
2 · C̄2 using (3.7).
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3.8.3. Proof of Proposition 15

Proof. We only give a proof of the right side. The left side is obvious, since thresholding

operators are diagonal estimators and therefore have a higher risk than the linear oracle

estimator. The proof is based on previous results by Donoho and Johnstone (1994),

Candes (2006, Proof of Theorem 5.1) and Johnstone and Paul (2013). These results are

applied separately to the real and imaginary parts of the complex frame coefficients. The

risk can be extended as follows:

r(F̂ j
µuni

, F ) = r(tjµuni
(ℜ(Y )),ℜ(F )) + r(tjµuni

(ℑ(Y )),ℑ(F ))

=
∑
λ∈Λ0

(
E[
∣∣tjµuni

(ℜ(Y [λ]))−ℜ(F [λ]))
∣∣2] + E[

∣∣tjµuni
(ℑ(Y [λ]))−ℑ(F [λ]))

∣∣2])
To bound the expected values in the last equation for soft thresholding, we use the

following result from Donoho and Johnstone (1994) or Candes (2006, Proof of Theorem

5.1). Let W ∼ N (a, σ2
0). It follows that

E
[
(tsµ(W )− a)2

]
≤ min(a2, σ2

0 + µ2) + 2
σ3
0

µ
φ

(
µ

σ0

)
, (3.39)

where φ is the density of the standard normal distribution.

From remark 3 we have that ℜ(Y [λ]) ∼ N
(
ℜ(F [λ]), ε2 ∥ℜ(h̃)∥2L2

)
. With this we obtain

for the real part

E[
∣∣tsµ(ℜ(Y [λ]))−ℜ(F [λ]))

∣∣2]
≤min

(
(ℜ(F [λ]))2, ε2∥ℜ(h̃λ)∥2L2 + µ2

)
+

√
2
ε3 ∥ℜ(h̃λ)∥3L2

µ
exp

(
− µ2

2 ε2 ∥ℜ(h̃λ)∥2L2

)
≤min

(
(F [λ])2, ε2∥h̃∥2L2 + µ2

)
+
√
2
ε3 ∥h̃∥3L2

µ
exp

(
− µ2

2 ε2 ∥h̃∥2L2

)

By inserting the universal threshold µuni = ε ∥h̃∥L2

√
2 log(#Λ0) we obtain

E[
∣∣tsµuni

(ℜ(Y [λ])−ℜ(F [λ]))
∣∣2]

≤(1 + 2 log(#Λ0)) ·min
(
(F [λ])2, ε2∥h̃∥2L2

)
+

ε2 ∥h̃∥2L2

#Λ0 ·
√
log(#Λ0)
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And this leads us to the following result,

∑
λ∈Λ0

E[
∣∣tsµuni

(ℜ(Y [λ]))−ℜ(F [λ]))
∣∣2]

≤
∑
λ∈Λ0

(
(1 + 2 log(#Λ0)) ·min

(
(F [λ])2, ε2∥h̃∥2L2

)
+

ε2 ∥h̃∥2L2

#Λ0 ·
√
log(#Λ0)

)

≤(1 + 2 log(#Λ0)) ·
∑
λ∈Λ0

(
min

(
(F [λ])2, ε2∥h̃∥2L2

)
+

ε2 ∥h̃∥2L2

#Λ0 ·
√

log(#Λ0)

)

=(1 + 2 log(#Λ0)) ·

(
ε2 ∥h̃∥2L2√
log(#Λ0)

+
∑
λ∈Λ0

min
(
(F [λ])2, ε2∥h̃∥2L2

))
≤(1 + 2 log(#Λ0)) ·

(
ε2 ∥h̃∥2L2 + rpr(F )

)
.

The same bound applies to the imaginary part

∑
λ∈Λ0

(
E[
∣∣tsµuni

(ℑ(Y [λ]))−ℑ(F [λ]))
∣∣2]) ≤ (1 + 2 log(#Λ0)) ·

(
ε2 ∥h̃∥2L2 + rpr(F )

)

Combining both bounds gives the desired result for soft thresholding.

The bound for hard thresholding is obtained in a similar way using the following result

from (Johnstone, 2013, Proposition 8.1). For W ∼ N (a, σ2
0) and µ/σ0 > 4, with a

suitable constant C > 0 we have that

E
[
(thµ(W )− a)2

]
≤ C min(a2, µ2) + C σ0 µφ(µ/σ0 − 1).

Using this we obtain

E[
∣∣thµ(ℜ(Y [λ]))−ℜ(F [λ]))

∣∣2]
≤Cmin

(
ℜ(F [λ])2, µ2

)
+ Cµε ∥ℜ(h̃λ)∥L2 φ

( µ

(ε ∥ℜ(h̃λ)∥L2)
− 1
)
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By inserting the universal threshold µuni = ε ∥h̃∥L2

√
2 log(#Λ0) we obtain

E[
∣∣thµuni

(ℜ(Y [λ]))−ℜ(F [λ]))
∣∣2]

≤C(1 + 2 log(#Λ0)) ·min
(
(F [λ])2, ε2 ∥h̃∥2L2

)
+ C(ε2 ∥h̃∥2L2

√
log(#Λ0)) exp

(
− (
√
log(#Λ0)− 1)2

)
≤C(1 + 2 log(#Λ0)) ·min

(
(F [λ])2, ε2 ∥h̃∥2L2

)
+ C(ε2 ∥h̃∥2L2

√
log(#Λ0)) exp

(
− log(#Λ0)

)
≤C

(
(1 + 2 log(#Λ0)) ·min

(
(F [λ])2, ε2 ∥h̃∥2L2

)
+ ε2 ∥h̃∥2L2

√
log(#Λ0)

#Λ0

)

≤C · (1 + 2 log(#Λ0)) ·

(
min

(
(F [λ])2, ε2 ∥h̃∥2L2

)
+
ε2 ∥h̃∥2L2

#Λ0

)
This is also true for the imaginary part. The bound for hard thresholding follows by

summing over the index sets.

3.8.4. Proof of Theorem 16

Proof. Let assume for convenience that ∥h̃∥2L2 = 1. Since p ∈ (0, 2], it follows

min(ϵ2, |F [λ]|2) ≤ ϵ2−p |F [λ]|p

Also note that for K > 0

#Λ0,K = CK2d,

with C = C(α, β, d).

Let 0 < Ks ≤ K. It follows

rpr(F ) =
∑

λ∈Λ0,K

min(ε2, |F [λ]|2)

=
∑

λ∈Λ0,Ks

min(ε2, |F [λ]|2) +
∑

λ∈Λ0,K\Λ0,Ks

min(ε2, |F [λ]|2)

≤ ε2 CK2d
s + ε2−p

∑
λ∈Λc

0,Ks

|F [λ]|p

≤ ε2 CK2d
s + ε2−pK−sp

s

∑
λ∈Λc

0,Ks

m̄s(λ)
p |F [λ]|p

≤ ε2 CK2d
s + ε2−pK−sp ∥F∥p

Θ̄p
s
,
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using m̄s(λ) ≥ Ks for λ ∈ Λc
0,K in the second last step, lemma 14. Balancing both terms

using

K = const. · ∥F∥
p

2d+sp

Θ̄p
s

ε−
p

2d+sp

leads to the results in the isotropic case.

The proof for the anisotropic case is analogous. Let Ku,Kv > 0 with Ku ≤ K and

Kv ≤ K.

rpr(F ) =
∑

λ∈Λ0,K

min(ε2, |F [λ]|2)

=
∑

λ∈Λ0,(Ku,Kv)

min(ε2, |F [λ]|2) +
∑

λ∈Λ0,(K,K)\Λ0,(Ku,Kv)

min(ε2, |F [λ]|2)

≤ ε2 CKd
uK

d
v + ϵ2−p

∑
λ∈Λc

0,(Ku,Kv)

|F [λ]|p

≤ ε2 CKd
uK

d
v + ϵ2−p(K−up

u +K−vp
v ) ∥F∥p

Θ̄p
u,v

using m̄s(λ) ≥ Ku
u +Kv

v for λ ∈ Λc
0,(Ku,Kv)

.

We obtain the result by balancing both terms with

Ku = const. · ∥F∥
pv

d(u+v)+puv

Θ̄p
u,v

ε−
pv

d(u+v)+puv

Kv = const. · ∥F∥
pu

d(u+v)+puv

Θ̄p
u,v

ε−
pu

d(u+v)+puv .

3.8.5. Proof of Theorem 17

Proof. The proof of this lemma is the same as that of Theorem 16. Some explanations

are therefore omitted. Under the time assumption, there exists a 0 < K0 ≤ K such that

F [λ] = 0 for λ ∈ Λc
0,(K0,Ks)

and for all Ks > 0.

Let assume for convenience that ∥h̃∥2L2 = 1. Note that

#Λ0,(K0,K) = CKd
0K

d
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with C = C(α, β, d). For Ks ≤ K, we obtain

rpr(F ) =
∑

λ∈Λ0,K

min(ε2, |F [λ]|2)

=
∑

λ∈Λ0,(K0,Ks)

min(ε2, |F [λ]|2) +
∑

λ∈Λc
0,(K0,Ks)

min(ε2, |F [λ]|2)

≤ ε2 CKd
0K

d +
∑

λ∈Λc
0,Ks

min(ε2, |F [λ]|2)

≤ ε2 CKd
0K

d + ε2−pK−sp ∥F∥p
Θ̄p

s

Balancing both terms using

K = const. · ∥F∥
p

d+sp

Θ̄p
s
ε−

p
d+sp

leads to the results in the isotropic case.

The proof under the time assumption is analogous. Let Ku,Kv > 0 with Ku ≤ K and

Kv ≤ K.

rpr(F ) =
∑

λ∈Λ0,K

min(ε2, |F [λ]|2)

=
∑

λ∈Λ0,(K0,Kv)

min(ε2, |F [λ]|2) +
∑

λ∈Λc
0,(K0,Kv)

min(ε2, |F [λ]|2)

≤ ε2 CKd
0K

d
v + ϵ2−p

∑
λ∈Λc

0,(Kv,Kv)

|F [λ]|p

≤ ε2 CKd
0K

d
v + ϵ2−p(K−up

0 +K−vp
v ) ∥F∥p

Θ̄p
u,v

and balancing both terms with

Kv = const. · ∥F∥
p

d+vp

Θ̄p
u,v

ε−
p

d+vp

gives us the result. The proof under the frequency assumption is analogous and therefore

omitted.
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3.8.6. Proof of Theorem 18

Proof. We give a proof for the general anisotropic case. For u = v = s one can derive

a proof for the isotropic case. The proof relies on the lower bound derived from Fano’s

lemma, see Tsybakov (2009, Theorem 2.5).

The task is to construct M ∈ N test sequences Fj ∈ Θ̄p
u,v, such that

1. Fj ∈ Θ̄p
u,v, j = 1, . . . ,M,

2. ∥Fj − Fk∥2ℓ2 ≥ 2 · ε
(2−p)d(u+v)+2 puv

d (u+v)+puv , j ̸= k.

3. KL(Yj , Yk) ≲ log(M),

where KL(Yj , Yk) represents the Kullback-Leibler divergence between two observations

Yj , Yk in the digital model with F = Fj and F = Fk respectively. Applying Tsybakov

(2009, Theorem 2.5) yields the desired lower bound.

i) Construction of the test sequences.

The test sequences are constructed as follows. We work with Gaussian window functions

to maximize the ℓ2-distance between sequences, see Theorem 5. We recall from Lemma

4 that the set
{
TuMηφ : u, η ∈ Rd

}
spans a dense subspace of L2(Rd). Hence, for f ∈

L2(Rd) we have f =
∑
cjTujMηjφ with u, η ∈ Rd. For F = Tf , we obtain

F [λ] = ⟨f, TαkMβnφ⟩

=
∑

cj⟨Tuj
Mηj

φ, TαkMβnφ⟩

=
∑

cj 2
−d/2eπi⟨αk−uj ,βn+η⟩φ2(αk − uj)φ2(βn− ηj)

with u, η ∈ Rd, λ = (k, n) and ck.

Let m1,m2 ∈ N. For a (large) fixed r > 0 and (small) c > 0, the test sequences are

chosen from the following set

Σ =

Fι[λ] = c · ε ·
∑
j∈Ωj

ιj ⟨Trj′Mrj′′φ, TαkMβnφ⟩, ι ∈ Ω, j ∈ Ωj , λ = (k, n)
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with

Ωj =
{
j = (j′, j′′)⊤ : j′ ∈ (1, . . . ,m1)

d, j′′ ∈ (1, . . . ,m2)
d
}

Ωι =
{
ι =

(
ιj
)
j∈Ωj

}
∈ {0, 1}(m

d
1m

d
2).

Each Fι ∈ Σ can be rewritten as follows

Fι[λ] = c ε
∑
j∈Ωj

ιj ⟨Trj′Mrj′′φ, TαkMβnφ⟩

= c ε 2−d/2
∑
j∈Ωj

ιj e
πi⟨αk−rj′,βn+rj′′⟩φ2(αk − rj′)φ2(βn− rj′′)

= c ε 2−d/2
∑
j∈Ωj

ιj e
πi⟨αk−rj′,βn+rj′′⟩φ2(λ− rj)

= c ε 2−d/2
∑
j∈Ωj

ιj e
πi⟨αk−rj′,βn+rj′′⟩Trjφ2(λ).

Now, we show that these sequences belong to the parameter space Θ̄p
u,v. For Fι ∈ Σ it

follows that

∥F∥p
Θ̄p

u,v
= ∥F∥p

ℓpmu,v

= cp εp 2−dp/2 ∥
∑
j∈Ωj

ιj |eπi⟨αk−rj′,βn+rj′′⟩ |Trjφ2(λ)∥pℓpmu,v

≤ cp εp 2−dp/2∥
∑
j∈Ωj

Trjφ2(λ)∥pℓpmu,v

(1)

≤ const. · cp εp 2−dp/2 ·
∑
j∈Ωj

∥Trjφ2(λ)∥pℓpmu,v

(2)

≤ const. · cp εp 2−dp/2 ·
∑
j∈Ωj

mp
u,v(rj)∥φ2(λ)∥pℓpmu,v

≤ const. · cp εp 2−dp/2 ·
∑
j∈Ωj

(1 + |rj′|)pu + (1 + |rj′′|)pv

= const. · cp εp 2−dp/2md
1m

d
2 (m

pu
1 +mpv

2 )

= const. · εp (md
1m

d
2) (m

pu
1 +mpv

2 )
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For m1 ≍ ε−
pv

d(v+u)+pvu and m2 ≍ ε−
pu

d(v+u)+pvu , we obtain Fι ∈ Θ̄p
u,v. Following observa-

tions have been used.

(1): The essential support of the Gaussian is concentrated around a point, λ = 0.

Therefore, for r > 0 sufficiently large, any two functions in the set of Gaussian functions

{Trjφ2(λ)}j∈Ωj
are almost disjunct. So the norm of the finite sum is equivalent to the

finite sum of the norm.

(2): The inequality arises from lemma 8 and lemma 6 ii).

ii) Bounding the ℓ2 distance

We prove that ∥Fι − Fι′∥2ℓ2 ≍ ε
(2−p)d(u+v)+2 puv

d (u+v)+puv for ι ̸= ι′. This gives us a lower bound

and an upper bound for the ℓ2 distance. The upper bound will be used later to bound

the Kullback-Leibler divergence.

The ℓ2-distance is given by

∥Fι − Fι′∥2ℓ2 =
∑
λ∈Λ

|Fι[λ]− Fι′ [λ]|2

= c2 ε2 2−d
∑
λ∈Λ

∣∣∣∣∣∣
∑
j∈Ωj

(ιj − ι′j)e
πi⟨αk−rj′,βn+rj′′⟩ Trjφ2(λ)

∣∣∣∣∣∣
2

Since the Gaussian function is square integrable, we obtain the following upper bound

∥Fι − Fι′∥2ℓ2 ≤ c2 ε2 2−d
∑
λ∈Λ

∑
j∈Ωj

Trjφ2(λ)

2

(1)

≤ const. · c2 ε2 2−d
∑
λ∈Λ

∑
j∈Ωj

Trjφ2(λ)
2

≤ const. · ε2md
1m

d
2

Introducing m1 and m2 according to contruction of the sequences lead to the desired
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upper bound. For the lower bound we obtain

|Fι − Fι′ |2 ≥ c2 ε2 2−d

∣∣∣∣∣∣∣
∑
λ∈Λ

∑
j∈Ωj

(ιj − ι′j)e
πi⟨αk−rj′,βn+rj′′⟩ Trjφ2(λ)

2
∣∣∣∣∣∣∣

≥ const. · c2 ε2 2−d

∣∣∣∣∣∣
∑
λ∈Λ

∑
j∈Ωj

(ιj − ι′j)
2e2πi⟨αk−rj′,βn+rj′′⟩ Trjφ2(λ)

2

∣∣∣∣∣∣
= const. · c2 ε2 2−d

∣∣∣∣∣∣
∑
j∈Ωj

(ιj − ι′j)
2
∑
λ∈Λ

e2πi⟨αk−rj′,βn+rj′′⟩ Trjφ2(λ)
2

∣∣∣∣∣∣
≥ const. · c2 ε2 2−d

∑
j∈Ωj

(ιj − ι′j)
2

The lower bound depends on the Hamming-distance between the indices, ∥ι−ι′∥22. Given

m1,m2 ≥ 8, using the Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9) we may

choose M = exp(c1m
d
1m

d
2), c1 = (log 2)/8 > 0 indices

{
ι ∈ {0, 1}(md

1 md
2)
}

of Hamming

- distance ∥ι− ι̃∥22 ≥ md
1m

d
2/8 for any two vectors ι, ι̃ ∈ {0, 1}(md

1 md
2). It follows that

|Fι − Fι′ |2 ≥ const. · ε2md
1m

d
2/8

Introducing m1 and m2 according to contruction of the sequences lead to the desired

lower bound.

iii)Kullback-Leibler divergence

For P ∼ N (µ, σ2) and P ∼ N (µ̃, σ̃2) the Kullback-Leibler divergence is given as

KL(P,Q) = log
σ̃

σ
+

(µ− µ̃)2 + σ2

2σ̃2
− 1

2
,

see Belov and Armstrong (2011).

From Yj ∼ N
(
Fj , ε

2
)
, the upper bound of the l2-distance and the choice of M =

exp(c1m
d
1m

d
2), we have that

KL(Yj , Yk) =
∥Fj − Fk∥2l2

ε2
≲ log(M).
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3.8.7. Proof of Theorem 19

Proof. The proof is based on results of Donoho, Liu, and MacGibbon (1990) showing

that on hyperrectangles, the linear minimax risk is within a factor of 1.25 of the minimax

risk. Moreover, the linear minimax risk is achieved by diagonal estimators, see Johnstone

(2002, Lemma 7.4).

The proof is as follows. First, we construct an orthosymmetric subspace ¯̄Θ ⊆ Θ̄p
s . A set

Θ is said to be solid and orthosymmetric if θ = (θ1, ..., θk, ...) ∈ Θ implies that ξ ∈ Θ with

|ξi| ≤ |θi| for all i. Orthosymmetric sets can be written as a union of hyperrectangles.

We then construct a sequence F ∗ ∈ ¯̄Θ, such that the linear diagonal oracle estimator on

F ∗ achieves a risk equal to the desired lower bound. It then follows that

rinf(F
∗) ≤ 1.25 · rmin(R(F ∗)) ≤ rmin(

¯̄Θ) ≤ rmin(Θ̄
p
s), (3.40)

and we obtain the desired lower bound.

First, the proof under the time assumption.

i) Construction of ¯̄Θp
s().

For Z > 0 we consider

¯̄Θp
s(Z) =

{
F ∈ ℓ2(Λ) | ∥F∥Θ̄p

s
≤ Z

}
, (3.41)

Let G = a · F with F ∈ Θ̄p
s , a = {aλ}λ∈Λ and |aλ| ≤ 1. It follows ∥G∥

Θ̄p
s
= ∥a · F∥

Θ̄p
s
≤

∥F∥
Θ̄p

s
. Therefore, parameter sets of this form are orthosymmetric.

From (3.7) we have

¯̄Θp
s

( C̄
C̃2

)
⊆ Θ̄p

s ⊆ ¯̄Θp
s

( C̄
C̃1

)
ii) Construction of F ∗ ∈ ¯̄Θp

s

(
C̄
C̃2

)
There exists a K0 > 0 such that F [λ] = 0 for λ = (k, n) and k ≥ K0. For ∆ > 0, consider

the following 2d-dimensional cube in the time-frequency space

D = Λ0,(K0,∆·K0) \ {0, 0}
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It follows

m(λ) ≍ (1 + ∥λ∥22)s/2

≤ (1 + dK2
0 + d(∆K0)

2)s/2

≤ d
s
2 (1 +K0 +∆K0)

s

≤ d
s
2 (∆ + 1)s(K0 + 1)s

as well as

#D =

(
2∆K0

β

)d(
2K0

α

)d

≤
(

4

αβ

)d

∆dK2d
0

and

#D ≥
(
2∆K0

β

)d

We construct a sequence F ∗ satisfying

|F ∗[λ]| =

ϵ · ∥h̃∥L2 for λ ∈ D

0 else

We have that

∑
λ∈Λ

F ∗[λ]pms(λ)
p ≤

(
4

αβ

)d

d
s
2

(
ϵ · ∥h̃∥L2

)p
(∆ + 1)d+sp (K0 + 1)2d+sp

For

(∆ + 1)d+sp =

((
4

αβ

)d

d
s
2

(
ϵ · ∥h̃∥L2

)p
(K0 + 1)2d+sp

)−1(
C̄

C̃2

)p

(3.42)

with ∥h̃∥L2 small enough, the sequence F ∗ belongs to the orthosymmetric set ¯̄Θp
s

(
C̄/C̃2

)
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iii) Linear diagonal oracle risk for F ∗

The linear diagonal oracle estimator for F ∗ has the following risk

rinf(F
∗) =

∑
λ∈Λ

|F ∗[λ]|2 (ε · ∥h̃∥2L2)2

|F ∗[λ]|2 + (ε · ∥h̃∥2L2)2

≥
(
2∆K0

β

)d

ε2

= const. · ε
d (2−p)+2sp

d+s p

With eq. (3.40) we obtain the lower bound.

Anisotropic case

The space

¯̄Θp
u,v(Z) =

{
F ∈ ℓ2(Λ) | ∥F∥Θ̄p

u,v
≤ Z

}
. (3.43)

is an orthosymmetric subspace of Θ̄p
u,v.

From (3.7) we have

¯̄Θp
u,v

( C̄
C̃2

)
⊆ Θ̄p

u,v ⊆ ¯̄Θp
u,v

( C̄
C̃1

)
.

For ∆ > 0, let us consider the following 2d-dimensional cube in the time-frequency space

D = Λ0,(K0,∆·K0) \ {0, 0}

For λ ∈ D we obtain

m(λ) = (1 + ∥αk∥22)u/2 + (1 + ∥βn∥22)v/2

≤ (1 + dK2
0 )

u/2 + (1 + d(∆K0)
2)v/2

≤ d
max(u,v)

2 ((1 +K0)
u + (1 +∆K0)

v)

≤ d
max(u,v)

2 ((1 +K0)
u + (1 +∆)v(1 +K0)

v)

≤ 2 · d
max(u,v)

2 (1 + ∆)v
(
(1 +K0)

max(u,v)
)
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as well as

#D =

(
2∆K0

β

)d(
2K0

α

)d

≤
(

4

αβ

)d

∆dK2d
0

and

#D ≥
(
2∆K0

β

)d

We construct a function F ∗ satisfying

|F ∗[λ]| =

ϵ · ∥h̃∥L2 for λ ∈ D

0 else

We have that∑
λ∈Λ

|F ∗[λ]|pmu,v(λ)
p ≤ 2 ·

(
4

αβ

)d

d
max(u,v)

2

(
ϵ · ∥h̃∥L2

)p
(∆ + 1)d+vp (K0 + 1)2d+max(u,v)p

For

(∆− 1)d+vp ≤

(
2 ·
(

4

αβ

)d

d
max(u,v)

2

(
ϵ · ∥h̃∥L2

)p
(K0 + 1)2d+max(u,v)p

)−1(
C̄

C̃2

)p

with ∥h̃∥L2 small enough, the sequence F ∗ belongs to the orthosymmetric set ¯̄Θp
s

(
C̄/C̃2

)
The linear oracle estimator for F ∗ has the following risk

rinf(F
∗) =

∑
λ∈Λ

|F ∗[λ]|2 (ε · ∥h̃∥2L2)2

|F ∗[λ]|2 + (ε · ∥h̃∥2L2)2

≥
(
2∆K0

β

)d

ε2

= const. · ε
d (2−p)+2v p

d+s p .

The proof for under the frequency assumption is analogous and therefore omitted.
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3.8.8. Proof of Corollary 20

Proof. We give a proof only for the general anisotropic case, since it is identical to the

result in the isotropic case for u = v. A proof of this theorem is obtained by showing

that the thresholding estimator achieves this rate on a finite subspace of the parame-

ter set. This finite subspace is chosen so that the orthogonal projection error onto it is

of the same order as the estimation risk. The rate then holds for the entire parameter set.

For K > 0, consider the nonempty finite index set Λ0,K ⊆ Λ0.

From Theorem 18 it follows

rpr(Θ̄
p
u,v(Λ0,K)) ∼ ε

(2−p)d(u+v)+2 puv
d (u+v)+puv .

We derive from Lemma 14

εΘ̄p
u,v

(Λ,Λ0,K) = O(C2 ε
(2−p)d(u+v)+2 puv

d (u+v)+puv )

by taking K ≳ ε−
(2−p) d (v+u)+2pvu

max(u,v)(d(v+u)+pvu) .

Furthermore, we obtain for this choice of K and using #Λ0,K ≤ const. ·K2d

log(#Λ0,K) ≤ const. · log(ε−1)

By Proposition 15 the thresholding estimator F̂ j
µuni

then achieves following rate on the

finite subspace

r(F̂ j
µuni

, Θ̄p
u,v(Λ0,K)) = O(log(ε−1) ε

(2−p)d(u+v)+2 puv
d (u+v)+puv ).

This is of the same order as the projection error, so the rate can be transferred to Θ̄p
u,v.

We obtain

r(F̂ j
µuni

, Θ̄p
u,v) = O(log(ε−1) ε

(2−p)d(u+v)+2 puv
d (u+v)+puv ).

In particular, we obtain for F ∈ Θ̄p
u,v

r(F̂ j
µuni

, F ) ≤ const. · max
(
∥F∥2Θ̄p

u,v
, ∥F∥

pd(u+v)
d(v+u)+pvu

Θ̄p
u,v

)
· log(1/ε) · ε

(2−p)d(u+v)+2 puv
d (u+v)+puv .

The factor max
(
∥F∥2

Θ̄p
u,v
, ∥F∥

pd(u+v)
d(v+u)+pvu

Θ̄p
u,v

)
follows from the proof of Theorem 16 and

Lemma 14.

The proof is completed with Lemma 13.
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3.8.9. Proof of Corollary 21

Proof. The proof of this corollary is analogous to the proof of Corollary 20. Again, we

only provide a proof for the general anisotropic case. A proof of this theorem is obtained

by showing that the thresholding estimator achieves this rate on a finite subspace of the

parameter set. This finite subspace is chosen such that the orthogonal projection error

onto it is of the same order as the estimation risk. The rate then holds for the entire

parameter set.

For K > 0, consider the nonempty finite index set Λ0,K ⊆ Λ0.

From Theorem 19 it follows under the time assumption

rpr(Θ
p
u,v(Λ0,K)) ∼ ε

d (2−p)+2vp
d+v p .

We derive from Lemma 14

εΘp
u,v

(Λ,Λ0,K) = O(C2 ε
d (2−p)+2vp

d+v p )

by taking K ≳ ε−
d (1− p

2
)+vp

max(u,v)(d+v p) .

Also, for this choice of K and using #Λ0,K ≤ const. ·Kd we obtain

log(#Λ0,K) ≤ const. · log(ε−1)

Using Proposition 15 we obtain for the thresholding estimator F̂ j
µuni

r(F̂ j
µuni

, Θ̄p
u,v(Λ0,K)) = O(log(ε−1) ε

d (2−p)+2vp
d+v p ).

This is of the same order as the projection error. Therefore we obtain

r(F̂ j
µuni

, Θ̄p
u,v) = O(log(ε−1) ε

d (2−p)+2vp
d+v p ).

In particular, we obtain for F ∈ Θ̄p
u,v

r(F̂ j
µuni

, F ) ≤ const. · max
(
∥F∥2Θ̄p

u,v
, ∥F∥

pd
d+pv

Θ̄p
u,v

)
· log(1/ε) · ε

(2−p)d+2 vp
d+pv .

The factor max
(
∥F∥2

Θ̄p
u,v
, ∥F∥

pd
d+pv

Θ̄p
u,v

)
arises from the proof of Theorem 17 and Lemma 14.

Lemma 13 completes the proof.
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Spaces

In this chapter, we extend the results of the previous chapter to a broader class of func-

tions. Specifically, we give nonparametric function estimation within the smoothness

class Mp
0,s+α(1/p−1/2):α(R) for α ∈ [0, 1). This class includes well-known spaces such

as modulation spaces and Besov spaces, which allows us to make comparisons between

the results obtained here and those previously obtained in Chapter 3. To accomplish

this, we construct an infinite-dimensional sequence model using the α modulation frame

expansion. This model serves as the basis for the development of an adaptive estima-

tor in a finite digital framework based on the principle of thresholding the coefficients.

We then derive the convergence rate for this estimator. The overall framework remains

unchanged, allowing us to reuse numerous tools and results from the previous chapter.

Consequently, some explanations and details may be omitted, assuming familiarity with

the concepts and techniques established earlier. The results presented here focus on the

one-dimensional case, while possible extensions to the multidimensional case are reserved

for future investigations. It should also be noted that we only present results for com-

pactly supported functions on the unit interval, since similar results can be derived for

the entire space R. This chapter follows an analogous structure to the previous one, thus

providing a consistent and coherent progression of the material.
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4. Estimation over α-Modulation Spaces

4.1. Analog Model

We recall the Gaussian white noise model (3.1)

dY(x) = f(x) dx+ εdW(x), x ∈ R,

where a square-integrable signal f ∈ L2(R) is observed. We assume that the function f

is part of the smoothness space

Θp
0,s:α =

{
f ∈ L2(R) | supp(f) ⊆ [0, 1], ∥f∥Mp

0,s+α(1/p−1/2):α
(R) ≤ C̄

}
. (4.1)

with p ∈ [1, 2], s ≥ 0, α ∈ [0, 1), and the weight function

mu,v(x, ω) = (1 + |x|)u + (1 + |ω|)v.

The parameter space Θp
0,s:α is a bounded subset of Mp

0,s+α(1/p−1/2):α(R). We denote the

norm on Θp
0,s:α by

∥f∥Θp
0,s:α

= ∥f∥Mp
0,s+α(1/p−1/2):α

(R).

For α = 0, in the one-dimensional setting we obtain the same parameter space as in

Chapter 3, Θp
0,s:0 = Θp

0,s. Again, the goal here is to find an estimator f̂ ∈ Θp
0,s:α that

minimizes the risk previously defined in (3.4). This is done using the framework and tools

defined in the previous chapter. First, we construct an infinite-dimensional Gaussian se-

quence model using α-modulation frames. A digital model is then derived by projecting

the representation of the signal into a finite subspace of ℓ2(Z2). We propose an upper

bound on the linear approximation error. Finally, we show that the oracle projector

achieves the minimax convergence rate. When the resolution is high enough, the pro-

jection estimator based on coordinate-wise universal thresholding of the α-modulation

frame coefficients is close to optimal in the minimax sense.

4.2. Gaussian Sequence Model

In this section, we construct an infinite-dimensional Gaussian sequence model based on

frame expansions. As shown in Lemma 13, an estimator in this sequence model induces
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4.2. Gaussian Sequence Model

an estimator in the analog model 4.1 that achieves the same risk, and vice versa.

Let Λ =
{
(j, k) : k, n ∈ Z2

}
. For α ∈ [0, 1), a, b > 0 and, an admissible real-valued

nonzero and compactly supported window function h ∈ S(R) with Fh ̸= 0, we consider

the family of functions defined in (2.46)

Gα(h, pα, sα, a, b) =
{
Mpα(j)Ds−1

α (j)Tak h
}
(j,k)∈Z2

, a, b > 0. (4.2)

It follows from Theorem 11 that for sufficiently small a > 0, this family defines a frame

for the Hilbert space L2(R), with lower and upper frame bounds A and B respectively,

and 0 < A ≤ B. Each function f ∈ L2(R) has a representation in terms of the frame

elements

f =
∑
λ∈Λ

⟨f, hαλ⟩h̃αλ . (4.3)

with hαλ ∈ Gα(h, pα, sα, a, b) and dual frames h̃αλ ∈ L2(R).

in addition, Theorem 12 shows that the family Gα(h, pα, sα, a, b) also defines a Banach

frame forMp
0,s+α(1/p−1/2):α(R). So we obtain the following norm equivalence ∥f∥

Θp
0,s:α

≍
∥⟨f, hαλ⟩λ∈Λ∥ℓpm̄0,s:α

, i.e. there exists constants 0 < C̃1 ≤ C̃2 so that

C̃1∥f∥Θp
0,s:α

≤ ∥⟨f, hαλ⟩λ∈Λ∥ℓpm̄0,s

≤ C̃2∥f∥Θp
0,s:α

(4.4)

with

m̄u,v:α(j, k) = (1 + |a · k|)u + (1 + |pα(j)|)v.

In particular, Theorem 12 also show the existence of a sequence {h̃αλ}λ∈Λ ∈ Gα(h, pα, sα, a, b)
′

such that the series expansion (4.3) unconditionally converges in Mp
0,s+α(1/p−1/2):α(R).

Due to the isometry of the L2- and l2-risk and the stability of the frame operator, for

any estimator F̂ ∈ ℓ2{Λ} of the frame coefficients F = {⟨f, hαλ⟩}λ∈Λ, there exists an

equivalent estimator f̂ = T ∗F̂ ∈ L2(Rd) of the function f that achieves the same rate,

and vice versa.

Using the commutation relation DaTx = TaxDa, and the isometry property of time-
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4. Estimation over α-Modulation Spaces

frequency shifts (2.13), we obtain

∥h̃αλ∥2L2 = ∥Mpα(j)Taks−1
α (j)Ds−1

α (j) h∥
2
L2

= ∥Ds−1
α (j) h∥

2
L2

= ∥h∥2L2 .

An equivalent infinite-dimensional Gaussian sequence model is then given by

Y [λ] = F [λ] +W [λ], λ ∈ Λ (4.5)

with

F [λ] =

∫
h̃αλ df = ⟨f, h̃αλ⟩

W [λ] =

∫
h̃αλ dW ∼ N

(
0, ε2 ∥h∥2L2

)
,

Y [λ] =

∫
h̃αλ dY ∼ N

(
F [λ], ε2 ∥h∥2L2

)
Cov(Y [λ1], Y [λ2]) = ϵ2⟨hαλ1

, hαλ2
⟩

and the corresponding parameter set

Θ̄p
0,s:α := Θ̄p

0,s:α(Λ) =
{
F ∈ ℓ2{Λ} | ∥T ∗F∥Θp

0,s:α
< C̄

}
.

The equivalence (4.4) can be reformulated as follows

C̃1∥T ∗F∥Θp
0,s:α

≤ ∥F∥Θ̄p
0,s:α

≤ C̃2∥T ∗F∥Θp
0,s:α

(4.6)

with ∥F∥
Θ̄p

0,s:α
= ∥F∥

ℓpm̄0,s:α

.

4.3. Projection Error on ℓ2-Subset

In this section, we define the digital model by reducing the infinite-dimensional Gaus-

sian sequence model to a finite-dimensional Gaussian sequence model. We also derive an
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4.3. Projection Error on ℓ2-Subset

upper bound on the projection error on a finite index subset.

For a nonempty finite index set Λ0 ⊆ Λ, we consider the following digital model

Y [λ] = F [λ] +W [λ], λ ∈ Λ0 (4.7)

with the parameter set

Θ̄p
0,s:α(Λ0) =

{
F ∈ ℓ2{Λ0} | ∥T ∗F∥Θp

0,s:α
< C̄

}
.

Now, we examine the linear projection error in the time-frequency plane. ForK1,K2 > 0,

we consider the set

Λ0,(K1,K2) = {λ ∈ Λ : |k| ≤ K1, |j| ≤ K2} , (4.8)

with Λ0,K = Λ0,(K,K).

This corresponds to the following subset of the time-frequency space

{
(x, ω) ∈ R2d |

x = x(ω) = s−1
α (j) a k, ∥k∥2 ≤ K1, ∥j∥2 ≤ K2,

ω = pα(j), ∥j∥2 ≤ K2

}
. (4.9)

Under the time assumption 1, there is a K0 > 0 such that we can restrict the time

domain to |k| ≤ K0 without losing information.

Remark 10. Note that the area of the time-frequency plane R2 covered by this discrete

set varies depending on the dilation parameter s−1
α (·). This parameter stretches or

compresses the discrete time support. Low-frequency regions have larger time steps,

resulting in lower time resolution, while high-frequency region have smaller time steps,

resulting in higher time resolution.

Lemma 22. Let s ≥ 0. For F ∈ Θ̄p
0,s:α and p ∈ [1, 2] we have:∑

λ∈Λc
0,(K1,K2)

|F [λ]|2 ≤
(
b (1− α)K2

)− 2s
1−α C̃2

2∥T ∗F∥2Θ̄p
0,s:α

. (4.10)
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It then follows

εΘ̄p
0,s:α

(Λ,Λ0,K) = O
(
C · (b (1− α) ·K)−

2s
(1−α)

)
(4.11)

with C = C̃2
2 · C̄2

For α = 0, we recall the results of Lemma 14 for the anisotropic case u = 0, and

v = s. The error decreases with increasing decay rate s or radius K. In addition to

the observations made in Lemma 14, we observe that the error diverges for α → 1.

This isn’t very surprising, given the construction of α-modulation spaces. For α → 1

the factor s−1
α (·) decreases, so the subset of the time-frequency plane covered by the

discrete representation simply shrinks, see (4.9). As noted in Remark 10 the frequency-

dependent time resolution increases with α → 1. Obviously, a fixed resolution will

eventually become insufficient and capture less information.

4.4. Thresholding Estimator

Here we propose an estimator in the digital model (4.7). This estimator attenuates the

noise by thresholding the frame coefficients. The extension of Donoho and Johnstone

(1994)’s results provided in Proposition 15 is not frame specific and remains valid in this

context. We give an upper bound on the risk of the nonlinear oracle projector. This in

fact induces an upper bound on the risk of the thresholding estimator.

In the digital model (4.7) with parameter set Θ̄p
0,s:α(Λ0), we define the following estimator

based on thresholding the complex frame coefficients at level µ ∈ R

F̂ j
µ =

{
tjµ(Y [λ])

}
λ∈Λ0

=
{
tjµ(ℜ(Y [λ])) + i tjµ(ℑ(Y [λ]))

}
λ∈Λ0

.

with j ∈ {h, s}. Proposition 15 shows that the risk of this estimator is within a constant

factor of the risk of the nonlinear oracle projector F̂pr. Next we derive an upper bound
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on the risk of the nonlinear oracle projector on Θ̄p
0,s:α(Λ0,K) for sufficiently large K > 0.

Theorem 23. Let p ∈ [1, 2], s ≥ 0 and K > 0. In the digital model (4.7) with F ∈
Θ̄p

0,s:α(Λ0,K), and K sufficiently large, the risk of the nonlinear oracle projector error

has the following upper bound,

rpr(F ) ≤ const. · ∥F∥
(1−α) p

(1−α)+s p

Θ̄p
0,s:α

(1− α)−
sp

(1−α)+sp ε
(1−α)(2−p)+2s p

(1−α)+s p . (4.12)

For α = 0 we get the same results as in the previous context for d = 1, u = 0 and v = s,

see Theorem 17. The bound diverges for α → 1. We do not observe the expected rate

of ε
2s

1+2s obtained by Donoho and Johnstone (1998) on Besov spaces. The reason is that

although Mp
0,s:α coincides with the inhomogeneous Besov space for α → 1, the frames

expansion in (2.47) is not valid for the limiting case of α = 1. Besov spaces can only be

characterized by exponentially localized frames.

4.5. Lower Bound

In this section, we derive a lower bound on the minimax risk in the infinite-dimensional

Gaussian model (4.5). The derivation is analogous to that of Theorem 19 and relies on

the geometric properties of the parameter set.

Theorem 24. For p ∈ [1, 2] consider the model (4.5) with F ∈ Θ̄p
0,s:α. Then we have

that

lim inf
ε↓0

(
(1− α)

sp
(1−α)+sp ε−

(1−α)(2−p)+2s p
(1−α)+s p inf

F̂ε

r(F̂ε, Θ̄
p
0,s:α)

)
> 0,

where F̂ε is an arbitrary estimator in (4.5) based on the observation Y .

For α = 0 the rate coincides with that obtained in Theorem 19. This bound diverges for

α→ 1. Given this lower bound, the universal threshold estimator is thus optimal in the
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digital model eq. (4.7).

4.6. Optimal Thresholding Estimation

Finally, we show the optimality of the thresholding estimator in the analog model (4.1).

This is done in a similar way to Section 3.6. For any finite index set Λ0,K , the thresh-

old estimator has a risk close to the risk of the nonlinear oracle projector, and thus is

nearly optimal on the set Θp
0,s:α(Λ0,K). For K large enough, the projection error on

Θp
0,s:α(Λ0,K) and the estimation error are of the same order. The rate is then translated

to Θp
0,s:α.

Corollary 25. For p ∈ [1, 2], and α ∈ [0, 1), consider model (4.1) with f ∈ Θp
0,s:α.

Choosing the universal threshold µuni = ε ∥h̃∥L2

√
2 log(#Λ0,K) and taking K ≳

(
(1 −

α)
s

1−α ε
)− (1−α)(1− p

2
)+s p

(1−α)+s p
· 1−α

s

, we obtain for the threshold estimator with j ∈ {s,h} the

bound

rjµuni
(f) ≤ const. ·C · log

(
(1− α)

s
1−α ε

)
(1− α)−

sp
(1−α)+sp ε

(1−α)(2−p)+2s p
(1−α)+s p

with C = max
(
∥f∥2Mp

0,s+α(1/p−1/2):α
(R), ∥f∥

(1−α) p
(1−α)+s p

Mp
0,s+α(1/p−1/2):α

(R)

)

The constant depends on the properties of the frame and the thresholding method.

Together with the lower bound obtained in Theorem 24 we obtain the optimality of the

thresholding estimators.

4.7. Proofs

We will now provide proofs for the results in this chapter.
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4.7.1. Proof of Lemma 22

Proof. The proof is similar to the proof of lemma 14. We recall the weight function

m̄u,v(j, k) = (1 + |a · k|2)u/2 + (1 + |pα(j)|2)v/2 with j, k ∈ Z and the position function

pα(j) = sgn(j)
(
(1 + (1− α) · b · |j|)

1
1−α − 1

)
.

For λ ∈ Λc
0,(K1,K2) we have

m̄0,s(λ) ≥ |pα(K2)|s

≥
(
(1 + b · (1− α)K2)

1
1−α − 1

)s
≥ (b · (1− α)K2)

s
1−α

Since the p-norm is monotonously decreasing, we have∑
λ∈Λc

0,(K1,K2)

|F [λ]|2 ≤
( ∑

λ∈Λc
0,(K1,K2)

|F [λ]|p
)2/p

≤ (b · (1− α)K2)
− 2s

1−α

( ∑
λ∈Λc

0,(K1,K2)

m̄u,v(λ)
p |F [λ]|p

)2/p
= (b · (1− α)K2)

− 2s
1−α ∥F∥2Θ̄p

u,v
.

We also have

εΘp
0,s:α

(Λ,Λ0,K) = sup
F∈Θ̄p

0,s:α

∥F − PΛ0F∥2

≤ sup
F∈Θ̄p

0,s:α

(
(b · (1− α)K)−

2s
1−α ∥F∥2Θ̄p

0,s:α

)
≤ sup

F∈Θ̄p
0,s:α

(
C̃2

2 · (b · (1− α)K)−
2s

1−α ∥F∥2Θ̄p
0,s:α

)
= O

(
C ((1− α)K)−

2s
(1−α)

)
with C = C̃2

2 · C̄2 · b−
2s

1−α using (4.6).
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4.7.2. Proof of Theorem 23

Proof. The proof of this lemma is similar to that of Theorem 17. Some explanations will

therefore be omitted. There exists a 0 < K0 ≤ K such that F [λ] = 0 for λ ∈ Λc
0,(K0,Ks)

and for all Ks > 0.

For convenience, let assume that ∥h̃∥2L2 = 1. Note that for K > 0

#Λ0,K ≤ CK0K

where the constant C depends on the parameters, a and b. Let 0 < Ks ≤ K. It follows

Let Ku,Kv > 0 with Ku ≤ K and Kv ≤ K.

rpr(F ) =
∑

λ∈Λ0,K

min(ε2, |F [λ]|2)

=
∑

λ∈Λ0,(K0,Ks)

min(ε2, |F [λ]|2) +
∑

λ∈Λc
0,(K0,Ks)

min(ε2, |F [λ]|2)

≤ ε2 CK0Ks + ϵ2−p
∑

λ∈Λc
0,(Ks,Ks)

|F [λ]|p

≤ ε2 CK0Ks + ϵ2−p (b · (1− α)Ks)
− sp

1−α ∥F∥p
Θ̄p

0,s:α

Balancing both terms with

K = const. · ∥F∥
(1−α)p
1−α+sp

Θ̄p
0,s:α

(1− α)−
sp

1−α+sp ε−
(1−α)p
1−α+sp

gives the results.

4.7.3. Proof of Theorem 24

Proof. The proof is similar to that of 19. Some explanations are therefore omitted.

i) Construction of ¯̄Θp
0,s:α

For Z > 0 we consider

¯̄Θp
0,s:α(Z) =

{
F ∈ L2(Rd) | ∥F∥Θ̄p

0,s:α
≤ Z

}
. (4.13)
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This parameter set is an orthosymmetric set.

From (4.6) we have

¯̄Θp
0,s:α

( C̄
C̃2

)
⊆ Θp

0,s:α ⊆ ¯̄Θp
0,s:α

( C̄
C̃1

)
.

i) Construction of F ∗ ∈ ¯̄Θp
0,s:α

From the time assumption, there exists a K0 > 0 such that F [λ] = 0 for λ = (j, k) and

k ≥ K0. For ∆ > 0, we consider the following subset of the time-frequency space

D = Λ0,(K0,∆·K0) \ {0, 0}

For λ ∈ D we have

m̄0,s(λ) ≤ 2 · (1 + |pα(j)|2)s/2

= 2 · (1 + ((1 + (1− α) · b · |j|)
1

1−α − 1)2)s/2

≤ 2 · (1 + (1 + b · (1− α) · |j|)
2

1−α )s/2

≤ 4 · (1 + b · (1− α) · |j|)
s

1−α

≤ 4 · (1 + b ·∆)
s

1−α (1 +K0)
s

1−α (2− α)
s

1−α

as well as

2(∆ + 1)K0 ≤ #D ≤ 4(∆ + 1)K2
0

We construct a sequence F ∗ satisfying

|F ∗[λ]| =

ϵ · ∥h̃∥L2 for λ ∈ D

0 else

For b small enough, we have that∑
λ∈Λ

|F ∗[λ]|pm̄0,s(λ)
p ≤ 4p+1

(
ϵ · ∥h̃∥L2

)p
· (1 + ∆)

sp+1−α
1−α (1 +K0)

sp+2(1−α)
1−α (2− α)

sp
1−α
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For any ∆ > 0 satisfying

(1 + ∆)
sp+1−α

1−α =
(
4p+1

(
ϵ · ∥h̃∥L2

)p
· (1 +K0)

sp+2(1−α)
1−α (2− α)

sp
1−α

)−1
(
C̄

C̃2

)p

(4.14)

with ϵ·∥h̃∥L2 small enough, the sequence F ∗ belongs to the orthosymmetric set ¯̄Θp
0,s:α

(
C̄/C̃2

)
.

The linear oracle estimator for F ∗ has the following risk

rinf(F
∗) =

∑
λ∈Λ

|F ∗[λ]|2 (ε · ∥h̃∥2L2)2

|F ∗[λ]|2 + (ε · ∥h̃∥2L2)2

≥ (∆ + 1)K0 ε
2

≥ const. ·(1− α)−
sp

(1−α)+sp ε
(1−α)(2−p)+2s p

(1−α)+s p

where the last equality is obtained by choosing ∆ according to eq. (4.14).

4.7.4. Proof of Corollary 25

Proof. A proof of this theorem is obtained by showing that the thresholding estimator

achieves this rate on a finite subspace of the parameter set. This finite subspace is chosen

so that the orthogonal projection error onto it is of the same order as the estimation

risk. The rate then holds for the entire parameter set.

For K > 0, let consider the nonempty finite index set Λ0,K ⊆ Λ0.

From Theorem 24 it follows

rpr(Θ
p
0,s:α ∩ I) = const. · (1− α)−

sp
(1−α)+sp ε

(1−α)(2−p)+2s p
(1−α)+s p .

By taking K ≳
(
(1− α)

s
1−α ε

)− (1−α)(1− p
2
)+s p

(1−α)+s p
· 1−α

s

, we derive from Lemma 22

εΘp
0,s:α

(Λ,Λ0,K) = O
(
C (1− α)−

sp
(1−α)+sp ε

(1−α)(2−p)+2s p
(1−α)+s p

)
.
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Furthermore for this choice of K and using #Λ0,K ≤ const. ·K we obtain

log(#Λ0,(K0,K)) ≤ const. · log
(
((1− α)

s
1−α ε)−1

)
By Proposition 15 the thresholding estimator then achieves following rate on the finite

subspace

rth(Θ
p
0,s:α(Λ0,K)) = O(log

(
((1− α)

s
1−α ε)−1

)
(1− α)−

sp
(1−α)+sp ε

(1−α)(2−p)+2s p
(1−α)+s p ).

This is of the same order as the projection error, so the rate can be transferred to Θp
0,s:α.

We obtain

rth(Θ
p
0,s:α) = O(log

(
((1− α)

s
1−α ε)−1

)
(1− α)−

sp
(1−α)+sp ε

(1−α)(2−p)+2s p
(1−α)+s p ).

More precisely for f ∈ Θp
0,s:α we have

r(f̂ jµuni
, f) ≤ const. · C log

(
((1− α)

s
1−α ε)−1

)
(1− α)−

sp
(1−α)+sp ε

(1−α)(2−p)+2s p
(1−α)+s p .

with C = max
(
∥f∥2Mp

0,s+α(1/p−1/2):α
(R), ∥f∥

(1−α) p
(1−α)+s p

Mp
0,s+α(1/p−1/2):α

(R)

)
.
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Application

This chapter aims to provide a comprehensive understanding of the practical appli-

cations and advantages of Gabor and α-modulation frames for audio denoising. We

explore the influence of key tuning parameters in Gabor analysis and compare Gabor

coefficient thresholding with other state-of-the-art denoising methods such as wavelet

thresholding or spatial median filtering. The computational aspects of Gabor analysis

have been extensively studied by various authors, in particular in the work of Feichtinger

(2019). However, one of the main challenges lies in the computation of dual frame ele-

ments. Our focus is primarily on fine-tuning the essential parameters to achieve optimal

denoising results, rather than delving into the numerical aspects. To perform our com-

putations, we rely on existing analysis tools such as the LTFAT Toolbox or the website

www.gaborator.com for computing Gabor frames and their dual frames. Unfortunately,

there are no tools available for α-modulation frames, and their computation is very

resource-intensive and time-consuming. Therefore, in this chapter we provide illustra-

tions of the potential of α-modulation frames, leaving extensive simulations for future

investigations. The chapter is structured as follows. First, we discuss the theoretical

aspects of discrete Gabor frames and show how any continuous Gabor system, as de-

fined in Section 2.2.4, can be transformed into a discrete Gabor system. We analyze the

effects of key tuning parameters in Gabor analysis, including the grid and the choice of

window function. We highlight the importance of achieving an optimal time-frequency

representation for sparse signal representation and improved denoising results. We also

compare the denoising results obtained using Gabor and wavelet coefficients, as well as

the performance of various thresholding algorithms, including Donoho and Johnstone’s

universal threshold and more advanced approaches. We provide denoising examples us-

ing both synthetic and real-world data, and address the problem of musical noise often

encountered when applying diagonal estimation methods to audio signals. Finally, we
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highlight the potential of α-modulation frames. All of the data presented in this chap-

ter, as well as the complete Python code used to generate the results, are available on

Github1 for replication.

5.1. Discrete Gabor System

For numerical purposes, we consider a continuous and bounded signal f ∈ C[0, T ]. This

space is a good model for continuous phenomena with finite duration T ∈ R. Only a

sampled version of the signal is observed. Therefore, we further restrict the space to

CL for signals of length L ∈ N. The previous theory of Gabor frames was only valid in

L2(Rd), with window function in S(Rd) and therefore needs to be adapted for discrete

observations in CL.

In the finite discrete case, we consider signals of length L ∈ N. The Hilbert space H
is taken to be the space of periodic sequences CL. The Gabor analysis for CL can be

defined in a very similar way to that of L2(R). Søndergaard (2007) has shown that

by sampling and periodization of the window function of a Gabor frame for L2(R),
one obtains a Gabor frame for CL with the same frame bounds. A Gabor frame for

L2([0, T ]) is obtained by periodizing the window function of a Gabor frame for L2(R).
Again, sampling the window function of a Gabor frame for L2([0, T ]) yields a Gabor

frame for CL. Further results by (Strohmer, 1998), (Orr, 1993) and (Janssen, 1997)

cover the transition from the continuous to the discrete setting.

A Gabor system in CL is a family of sequences defined by

GL(g, a, b) = {TnaMmbg}n=0,...,N−1,m=0,...,M−1 (5.1)

where a, b ∈ N,Mb = Na = L, g ∈ CL is a periodic sequence, and the discrete translation

1https://github.com/ptafo/Statistical-Analysis-of-Audio-Signals-using-Time-Frequency-Analysis
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5.1. Discrete Gabor System

and modulation operators are defined as

Tj(g) = {g[k + j]}k∈Z , Mj(g) =
{
e2πikj/Lg[k]

}
k∈Z

(5.2)

respectively.

Søndergaard (2007) shows that if the sequence g ∈ CL is obtained by periodizing and

sampling an admissible window function g̃ ∈ S(R) for a Gabor frame in L2(R) then the

Gabor system GL(g, a, b) defines a Gabor frame for CL. More precisely, we have that if

G(g̃, α, β) is a Gabor frame for L2(R) with canonical dual window γ, then GL(g, a, b) is

a Gabor frame for CL with αβ = a
M = b

N , Mb = Na = L, and a, b,M,N,L ∈ N. In

addition, both frames have the same frame bounds, and the canonical dual window is

obtained by periodization and sampling, see (Søndergaard, 2007, Theorem 22). This not

only proves the existence of Gabor frames in the discrete setting, but the frame bounds

remain the same as in the continuous setting.

5.1.1. Characterization of the Discrete Gabor Analysis

Let g ∈ CL be a window sequence. There are three main parameters that characterize a

discrete Gabor system GL(g, a, b) in CL:

� a : time step. It defines the number of time bands of equal length or time pixel

count, N = L
a .

� b : frequency step. It defines the number of frequency bands of equal length or

frequency pixel count, M = L
b .

� W : support length of the window sequence. The width of the window is given as

w =W/L.

where a, b,M,N,L,W ∈ N.

The density of the discrete Gabor system GL(g, a, b) is defined analogously to that of

the continuous Gabor system G(g̃, α, β) from which it was derived, with αβ = a
M . The

system GL(g, a, b) is a frame for CL only if the density satisfies

αβ =
a

M
=

L

N ·M
< 1. (5.3)
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This results in a discrete time-frequency representation, with a discrete resolution of

M ×N pixels. The redundancy of the frame is given by N ·M
L . The time-frequency reso-

lution is affected by the length of the window sequence.

The choice of window length plays an important role, see Theorem 5. A longer window

provides better spatial resolution in the frequency domain, but results in poor spatial

resolution in the time domain. On the other hand, a shorter window length is preferable

for finer time resolution, but performs poorly in the frequency domain. The overlap rate

of the window is given by OR = 1− L
N ·W . The overlap rate increases as the support of

the window sequence increases or as more time bands are considered. It intensifies the

redundancy among the coefficients. A low density in the frame system as well as a high

redundancy of the window both result in a longer computation time.

For our numerical experiments we use the LTFAT toolbox founded by Søndergaard,

see Søndergaard et al. (2012) and Pr̊uša et al. (2014). It provides an efficient and fast

implementation of Søndergaard (2007, Theorem 22) to generate Gabor frames for the

sequence space CL.

5.2. Parameter Tuning

In this section, we show how effective fine-tuning of the parameters of the discrete Gabor

system allows it to adapt to the properties of the underlying signal. This increases the

sparsity of the time-frequency representation of the signal and thus improves denoising.

We also compare a simple approach using universal thresholding with a similar method

in the wavelet case.

We consider the following family of signals

fA,B(t) = sin(2π ·B · t · e−A(t−0.5)2) t ∈ [0, 1], (5.4)

with fA,B ∈ Mp
vs(R) for p ∈ (0, 2] and s ≥ 0. This class of functions describes an
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5.2. Parameter Tuning

(a) f50,2

∥ · ∥2L2 = 0.2202

(b) f50000,4

∥ · ∥2L2 = 0.00825

(c) f40,200

∥ · ∥2L2 = 0.4269

Figure 5.1.: Signals (upper row) and spectrogram (lower row) of our test signals

apparent change of the frequency in the time and is similar to the Doppler functions used

by Donoho and Johnstone (1994) and in many practical applications such as astrophysics

or medical imaging, see e.g. Marple et al. (1998) and Matani et al. (1996). In particular,

we focus on the following three signals, which exhibit three different patterns of variation

in the time-frequency domain,

1. f50,2, a signal with small frequency variation,

2. f50000,4, a signal with small time variation,

3. f40,200, a signal that varies equally in both the time and frequency domains,

see Figure 5.1. The lower part of Figure 5.1 displays the spectrograms of the considered

signals, the absolute values of the time-frequency representation. It shows the energy of

the signal.

The simulations were conducted as follows:
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(a) f50,2

σ = 0.1484

(b) f50000,4

σ = 0.02873

(c) f40,200

σ = 0.2066

Figure 5.2.: Noisy signals and spectrograms with SNR = 10 dB.

� For σ > 0, we generate for each signal discrete L = 2000 noisy observations from

YA,B [i] = fA,B [i] +
σ√
L
εi, i = 1, ..., L,

with fA,B [i] = f(i/L) and εi ∼ N (0, 1). Each signal contains frequencies up to

1000 Hz. A noise level σ > 0 is chosen to obtain a signal-to-noise ratio of 10

decibels, SNR = 10 dB, i.e., the underlying signal has an energy level 10 times

higher than the noise.

SNR = 10 log10

∑
i f

2[i]

σ2
dB,

see Figure 5.2.

� We decompose each noisy signal YA,B using a Gabor transform with different pa-

rameters as well as using wavelet transform. We use a discrete B-spline of order 4

as window sequence in the Gabor system. B-splines of order k ≥ 1 are admissible

window functions for continuous Gabor expansions and provide norm equivalence

on Mp
m(Rd) for p > 1/k, see (Dahlke et al., 2022, Theorem 1). Additionally,

B-splines windows are compact and thus attractive from a numerical and com-

putational point of view. For an adequate comparison, we compute the wavelet
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transform using biorthogonal B-spline wavelet of order 4 (’bior4.4’). Simulations

have shown that the best results in wavelet denoising are obtained using the maxi-

mum decomposition level. In all scenarios, we use m = 2000 replicates to compute

the mean squared errors.

� We proceed to threshold the noisy frame coefficients using different thresholds

(universal or optimal) and thresholding methods (soft or hard). While all coeffi-

cients of the Gabor representation are thresholded to reduce noise, only the detail

coefficients of the wavelet transform are considered. The wavelet approximation

coefficients are preserved.

� We construct an estimate of the signal by synthesizing the thresholded noisy frame

coefficients.

� The signal-to-noise ratio in the resulting estimate f̂ is used to evaluate the perfor-

mance.

SNR = 10 log10

∑
i f

2[i]∑
i(f [i]− f̂ [i])2

= 10 log10

∑
i f

2[i]

L×MSE
dB,

� All results are based on 1000 repetitions.

Regular lattice grid

Here we report results for the case M = N .

N 2000 400 200 100 50

M 2000 400 200 100 50

density 0.0005 0.0125 0.05 0.2 0.8

redundancy 2000 80 20 5 1.25

Table 5.1.: Number of time and frequency bands ,the grid density and redundancy in a

quadratic time-frequency representation.

Figure 5.3 shows the effect of grid densities and different window lengths according to

Table 5.1 and Table 5.2 on the mean squared error (MSE). We use hard thresholding

with an MSE-optimal threshold which was computed over a fine grid of thresholds. The

following observations can be made:
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(a) f50,2 (b) f50000,4

(c) f40,200

Figure 5.3.: Effect of the window width w =W/L and the grid density with M = N on

the three signals for samples of size n = 2000, using hard thresholding with

the optimal threshold.

98



5.2. Parameter Tuning

W 50 100 200 500 1000

width 0.025 0.05 0.1 0.25 0.5

Table 5.2.: Window length and width.

density \ width 0.025 0.05 0.1 0.25 0.5

0.0005 98 99 99.5 99.8 99.9

0.0125 90 95 97.5 99 99.5

0.05 80 90 95 98 99

0.2 60 80 90 96 98

0.8 19.99 60 80 92 96

Table 5.3.: Window’s overlap rate in percentage.

� A lower density by itself leads to a lower error, regardless of the window used or its

width. This observation is consistent with the results of Lemma 4. Lower density

implies more redundancy in the signal representation. However, this increased

redundancy comes at the cost of longer computation times. For all three cases, a

density of 0.05 or 0.2 leads to errors comparable to the lowest density.

� The error as a function of window width is shown in Figure 5.3. The curve reflects

the time-frequency characteristics of each signal.

For f50,2, the signal is concentrated in a few frequency bands. Therefore, a

longer window provides better performance because it provides better frequency

localization.

For f50000.4, the signal is concentrated in a few time bands. Therefore, a

shorter window will give better performance by providing better time localization.

In contrast, the signal f40,200 is almost evenly distributed over the time-

frequency plane. Thus, the choice of w = 0.05, with equal support in time and

frequency, gives the best results in this case.

� The overlap rate increases the redundancy between the coefficients. Therefore,

thresholding is improved by a high overlap rate of the window sequence. This is

even more obvious for signals contained in multiple time bands, such as f50,2 and

f40,200. Table 5.3 lists the overlap rate for each combination of density and width.
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Non-quadratic time-frequency representation

We also analyze the error of an irregular grid, i.e., an unequal number of frequency and

time bands, M ̸= N . Given the characteristics of some functions with signals in a single

time or frequency fragment, it may be useful to consider a gain of the time-frequency

representation in either the time or frequency plane. Figure 5.4 shows the MSE for four

different scenarios according to Table 5.4.

Scenario S1 S2 S3 S4

N 400 400 100 100

M 400 100 400 100

density 0.0125 0.05 0.05 0.3125

Table 5.4.: Gabor irregular grid density

In all cases, we observe that S2 outperforms S3 for a longer window, while S3 outperforms

S2 for a shorter window. As the window size increases, the time domain must be more

finely discretized to compensate for the loss of time resolution, while the frequency

domain must be more finely discretized as the window size decreases to compensate for

the loss of frequency resolution.

For f50.2, S3 performs as well as S1, indicating that the loss of local time domain infor-

mation in S3 does not affect the denoising method because the signal is only present in

a small frequency domain. In addition, S2 and S4 have similar performances, indicating

that increasing the local information in the time domain does not improve the denoising

of f50,2.

For f50000,4 we observe the opposite results. S2 performs as well as S1 and better than

S3, which in turn performs almost as well as S4. This is not surprising since the signal

is in a small time fragment. Therefore, increasing the local information in the frequency

domain does not lead to better results.

To strike a balance between computation time and MSE performance, we chose M =

N = 100 with α ·β = 0.2 in the following simulations. We also chose the following values

for the window width.
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(a) f50,2 (b) f50000,4

(c) f40,200

Figure 5.4.: Effect of window width w and grid density. For the three signals for samples

of size n = 2000, using hard thresholding with the optimal threshold. —S1,

– –S2, –·–S3, · · · S4

101



5. Simulations and Real World Application

signal f50,2 f50000,4 f40,200

w 0.1 0.025 0.05

overlap rate 90% 60% 80%

Choice of threshold and thresholding method

Next, in a repeated simulation for various sample sizes, we examine the MSE of soft

and hard thresholds, both for the universal threshold of Donoho and Johnstone and

for an MSE-optimal threshold computed over a fine grid of thresholds. The results are

shown in Figure 5.5. Two important observations can be made from the results. First,

hard thresholding outperforms soft thresholding. This may not be surprising, since soft

thresholding aims to produce smoother (easier on the eye) images than hard thresholding.

Soft thresholding reduces the amplitude of the signal and distorts the discontinuities in

the signal, while hard thresholding is better at preserving discontinuities. However, we

evaluate the performance of our method based on the reconstructed signal and not on

the time-frequency representation. Second, the universal threshold seems to be a very

reasonable choice for hard thresholding.

Comparison of Gabor and wavelet methods

Next, we compare the performance of our Gabor thresholding estimators with that of

wavelet shrinkage methods that use biorthogonal B-splines of order 4 for signal recon-

struction.

To visually compare the denoising performance, we plot the reconstructions obtained

by hard thresholding with the universal threshold in Figure 5.6a. The reconstructed

signal of f40,200 appears to be of better quality with the Gabor frame-based method

compared to the wavelet shrinkage method. On the other hand, for the signal f50000.4,

which contains a single spike, we expect the wavelet shrinkage method to perform better,

although it is not yet apparent from the plots.
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(a) f50,2

(b) f50000,4

(c) f40,200

Figure 5.5.: Left figures: MSE for soft thresholding, optimal threshold versus universal

threshold; right figures: MSE for hard thresholding, optimal threshold ver-

sus universal threshold. The line style −− denotes the universal threshold.

Different sample sizes are examined.
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f50,2 f50000,4 f40,200

(a) First row: Gabor frame based method, and the second row has the spectrograms of the

Gabor-frame based estimates.

f40,200 f50,2 f50000,4

(b) First row: Wavelet denoising with db4 and maximum level of decomposition and the second

row has the spectrograms of the wavelet transform based estimates.

Figure 5.6.: Reconstructions for a given sample of size n = 2000 using hard thresholding

with universal threshold.
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Comparison MSE

We compare the MSE of both methods in a repeated simulation for different sample

sizes. The results are shown in Figure 1 and Figure 2. For the f40,200 signal, it is clear

that our Gabor frame-based method outperforms wavelet shrinkage. This is also true for

the f50,2 signal, but to a lesser extent, except for small sample sizes. On the other hand,

for the f50000,4 signal, wavelet shrinkage seems to outperform our method, especially for

small and moderate sample sizes.

5.3. Denoising on Real Data

In this section, we demonstrate the performance of our method in reducing additive sta-

tionary noise on five real-world examples: a recording of a common blackbird, a piano

melody, an ECG, a guitar recording, and a sample of human speech2. Each recording

is 5 seconds long. The ECG has a sampling rate of 2 kHz while the other signals have

a sampling rate of 44.1 kHz. Because these signals are non-stationary, their frequencies

change over time, and some signals show frequency jumps and changes in vibration am-

plitude. Spectrograms are shown in Figure 5.7, using a Gaussian window sequence and

an appropriate choice of relatively dense grid and window width, resulting in 75% over-

lap. These spectrograms illustrate the different spectral characteristics of these signals.

Each signal in the real data examples is contaminated with Gaussian white noise based

on a specified signal-to-noise ratio. Current methods for dealing with such signals in au-

dio processing are described in Yu et al. (2008). For comparison, we have also included a

wavelet based thresholding approach and a spatial denoising method called the nonlinear

median filter.

We applied the discrete wavelet transform using the Daubechies 4 wavelet family, db4, at

the highest decomposition level, where only the detail wavelet coefficients were thresh-

olded. Similar results were observed for other closely related wavelet families. For

2obtained from https://samplefocus.com/
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(a) Blackbird (b) Melody

(c) Guitar (d) Human speech

(e) ECG

Figure 5.7.: Spectrograms of a recording of a common blackbird, a melody played on a

piano, a guitar, a sample of human speech, and an electrocardiogram signal
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the Gabor analysis, we computed both the STFT with a rectangular window sequence

STFTrect and the STFT with a B-spline of order 4 window STFTBspline4. A rectan-

gular window sequence is simply a sequence of ones. It extracts a chunk of the signal

without weights. The remaining discrete Gabor parameters were chosen based on prior

knowledge of such signals, but they are not optimal. For all signals, we set a = b = 200

and W = 2000. Better results could be obtained with better parameter tuning. The

nonlinear median filter gives the best results with a 5× 5 grid.

We ran simulations to evaluate three different thresholding methods: VisuShrink, the uni-

versal threshold proposed by Donoho and Johnstone (1994) (which we analyzed theoreti-

cally in Section 3.4), and SureShrink, which is determined by minimizing Stein’s unbiased

risk estimate Donoho and Johnstone (1995). In addition, we tested BayesShrink, an ap-

proach based on empirical Bayes introduced by Johnstone and Silverman (2005). While

VisuShrink uses a simple global threshold, SureShrink and BayesShrink use coefficient-

specific thresholds.

When dealing with acoustic signals, the use of diagonal estimation methods with thresh-

olding can lead to the introduction of artificial musical noise, as pointed out by Yu et al.

(2008). To mitigate this problem, block thresholding methods can be used, as suggested

by Cai and Silverman (2001). Therefore, we have also included block thresholding ver-

sions of the above thresholding schemes.

Figure 5.8 shows the spectrograms of the noisy Blackbird signal for a specific instance

of noise, along with some of the reconstruction techniques discussed earlier. It can

be observed that all time-frequency based methods produce much clearer spectrograms

compared to the wavelet approach and median filtering. However, Visushrink seems to

produce an overly clear image.

For a formal comparison of the reconstruction quality of the denoised signal for each

method, we considered

SNR = 10 log10

∑
n f

2[n]∑
n(f [n]− f̂ [n])2

dB,

which we compared over 10000 iterations.
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(a) blackbird, noisy recording (b) Median filtering

(c) Wavelet thresholding (d) VisuShrink

(e) SureShrink (f) Block SureShrink

Figure 5.8.: Spectrograms of the noisy and denoised blackbird recordings
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The following observations can be made:

� The results shown in Table 1 indicate the superior performance of the time-frequency

based methods for VisuShrink. We still observe a better performance of the hard

thresholding compared to the soft thresholding. Overall, the B-spline of order 4

window sequence provides better time-frequency localization and thus performs

better than just taking a chunk of the signal. Gabor methods perform significantly

better than wavelet. For the ECG signal, the two approaches are comparable.

The ECG signal consists of singularities, so the wavelet transform performs well

as expected. The rectangular window is sufficient to adequately represent such a

signal.

� In Table 2, we compare global thresholding using Visushrink against frequency/scale

level thresholding using Sureshrink and Bayesshrink. First, Visushrink outperforms

the other two methods for the melody and the blackbird signal. The reason for

this seems to be the improved frequency sparsity of these two signals. Second, the

guitar and human speech signals have more content in each frequency band. Thus,

a better performance of the frequency/scale level threshold can be observed.

� Although there is no performance improvement in block thresholding, Table 3

shows that the observations made in Table 1 remain valid.

� Table 4 shows the results using a 5 × 5 and 1 × 5 blocks to reduce musical noise.

Bayesshrink shows the best results. Gabor outperforms wavelet. For the ECG,

both methods are comparable.

5.4. Simulations with α-Modulation Frames

The numerical implementation of α-modulation frames presents a significantly greater

challenge than that of Gabor frames. This challenge is primarily due to the irregular grid,

which eliminates the benefits of the fast Fourier transform commonly used in discrete

Gabor analysis implementations. In addition, there is no explicit method for construct-

ing dual α-modulation frames. However, Fornasier and Feichtinger introduces the Local
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Dual Algorithm (LDA), which constructs an explicit dual frame for a band-limited win-

dow function g. This is discussed in the work of Fornasier and Feichtinger, in particular

in Remark 3. Furthermore, for window functions that are not band-limited, the family

of duals can be approximated by the duals of band-limited window functions. To obtain

comparable results, we retain the use of the previously used B-spline window function of

order 4. To approximate the dual frames, we used the frame algorithm as described in

Gröchenig (2013, Algorithm 5.1.1). This is an iterative process to approximate the dual

frames. It is important to note that this approximation process is very time and resource

consuming, especially for high frequency signals where the grid becomes progressively

finer. Therefore, the approximated frames may not be close enough to the actual dual

frames.

5.4.1. Characterization of Discrete α-Modulation Frames

Let g ∈ CL be a window sequence, b > 0 and pα and sα as defined in (2.41).

Using the commutation relation DaTx = TaxDa, we obtain

Gα(h, pα, sα, a, b) =
{
Mpα(j)Taks−1

α (j)Ds−1
α (j) h

}
(j,k)∈Λ

Furthermore, using the previously defined discrete versions of the modulation and trans-

lation operators, we obtain the discrete α-modulation frames, defined as

Gα(h, pα, sα, a, b) =
{
Mpα(j)Taks−1

α (j)Ds−1
α (j) h

}
j=0,...,M−1,k=0,...,sα(j)·N

where a, b > 0, M = p−1
α (L), and N = L

a .

There are three main parameters that characterize a discrete α-modulation system:

� b : frequency factor. It defines the number of frequency bands M = p−1
α (L), which

is a decreasing function of α. The frequency bands have exponentially growing size

sα(j).

� a: time factor. It induces the equally spaced discrete time support of each frequency

band. Each of them has as time step s−1
α (j)/a, which is a decreasing function of

α.
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5.4. Simulations with α-Modulation Frames

� W : Support length of the window sequence.

with a, b,M,N,L,W ∈ N.

The length of the window sequence is particularly important, especially when α → 1.

The dilation factor adjusts the length of the window sequence according to the frequency

band, while maintaining a constant overlap rate of the sequence in each frequency band.

This results in higher frequency resolution at low frequencies and higher time resolution

at high frequencies, as shown in the following equation:

ORj = 1− L

sα(j) · L
a ·W · s−1

α (j)
= 1− a

W

Figure 5.9 shows the lattice depending on the parameter α. When α = 0, the lattice

is evenly spaced but has only a few points. As we increase α, the number of points in

the lattice grows exponentially until it peaks at about α = 0.5, after which it begins to

decrease even though fewer frequency bands are involved. Computing the dual frames

using the frame algorithm becomes very difficult, especially for cases where α ≈ 0.5.

Despite the difficulty, we are most interested in these cases. However, computing the

dual frames using the frame algorithm for such cases requires an enormous amount of

computing power. Increasing the time factor a would reduce the number of grid points,

but this may violate the conditions of the Theorem 11. In our experiment, we were able

to approximate and store dual frames for signals of length L = 2000 and few values of

α.

We run simulations similar to those in Section 5.2 to fine tune the parameters. The

results shown in Figures 5.10, 5.11, and 5.12 show different patterns for each signal. The

signal f50,2 has an almost constant frequency content, so it is better to analyze it using

Gabor frames. So a lower value of α ≈ 0 is best. f50000,4 presents a transient event at

time t = 0.5 and is therefore better analyzed using wavelets. Therefore, a high value of

α ≈ 1 is best. The signal f40,200 contains both time-varying frequencies and a transient

event. A value of α ≈ 0.5 is best.

The choice of the parameter α ∈ [0, 1] should depend on the singularities present in the

signal. A low value of α is appropriate for signals with few or no singularities, while a
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5. Simulations and Real World Application

(a) α = 0, 1300 grid points (b) α = 0.3, 1359 grid points

(c) α = 0.5, 2050 grid points (d) α = 0.7, 50 grid points

Figure 5.9.: Lattice grid for α-modulation analysis with a = 40, b = 40 and L = 2000.
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5.4. Simulations with α-Modulation Frames

Figure 5.10.: Effect of the parameter α ∈ [0, 1), of the window width w = W/L and the

grid with a = b = step on the signal f50,2 for samples of size n = 2000,

using hard thresholding with the universal threshold.

high value of α is preferable for signals with many singularities. The spectrograms shown

in Figure 5.13 support this view. Signal f50,2 has the most sparse representation with

Gabor frames, α ≈ 0, while f50000,4 is best represented with wavelet frames, α ≈ 1. On

the other hand, f40,200 is best represented with α ≈ 0.4.
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5. Simulations and Real World Application

Figure 5.11.: Effect of the parameter α ∈ [0, 1), of the window width w = W/L and the

grid with a = b = step on the signal f50000,4 for samples of size n = 2000,

using hard thresholding with the universal threshold.
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5.4. Simulations with α-Modulation Frames

Figure 5.12.: Effect of the parameter α ∈ [0, 1), of the window width w = W/L and the

grid with a = b = step on the signal f40,200 for samples of size n = 2000,

using hard thresholding with the universal threshold.
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5. Simulations and Real World Application

(a) α =0.0 (b) α =0.4 (c) α =0.8

Figure 5.13.: Spectrograms for different values of α. First row: f50,2, second row:

f50000,4, third row: f40,200.
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Pr̊uša, Z., P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs (2014). The

large time-frequency analysis toolbox 2.0. In M. Aramaki, O. Derrien, R. Kronland-

Martinet, and S. Ystad (Eds.), Sound, Music, and Motion, Lecture Notes in Computer

Science, pp. 419–442. Springer.

Søndergaard, P. L. (2007). Gabor frames by sampling and periodization. Advances in

Computational Mathematics 27 (4), 355–373.

Søndergaard, P. L., B. Torrésani, and P. Balazs (2012). The linear time-frequency anal-

ysis toolbox. International Journal of Wavelets, Multiresolution Analysis and Infor-

mation Processing 10 (4).

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate

normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical

Statistics and Probability, 1954–1955, vol. I, pp. 197–206. University of California

Press, Berkeley-Los Angeles, Calif.

Strohmer, T. (1998). Numerical algorithms for discrete gabor expansions. In Gabor

Analysis and Algorithms: Theory and Applications, pp. 267–294. Birkhäuser Boston.
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Appendix

A. Definitions

Definition 15 (α-covering, Feichtinger and Gröbner (1985, Definition 2.1)). A countable

set I of intervals I ⊂ R is called an admissible covering of R if

(a) R =
⋃

I∈I , and

(b) # {I ∈ I : x ∈ I} ≤ 2 for all x ∈ R.

Furthermore, if there exists a constant 0 ≤ α ≤ 1 such that |I| ≡ (1+ |ξ|)α for all I ∈ Iα
and all ξ ∈ I, then Iα is called an α-covering.

Definition 16 (BAPU, Feichtinger and Gröbner (1985, Definition 2.2)). Given any

Banach algebra (B, ∥ ∥B) of bounded, complex-valued functions on a space X, and an

admissible covering I ofX, a family Ψ = (ψI)I∈I is called a bounded admissible partition

of unity in B, if the following is satisfied:

1. supI∈I ∥ϕi∥B <∞;

2. suppψI ⊂ for all I ∈ I;

3.
∑

I∈I ψI(ξ) = 1 for all ξ ∈ X.
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B. Tables and Figures

audio SNR
soft thresholding hard thresholding

STFTrect STFTBspline4 waveletdb4 STFTrect STFTBspline4 waveletdb4

-10 1.769 3.663 0.072 3.864 8.695 0.272

blackbird 1 7.716 10.452 3.459 11.966 15.079 6.456

10 13.334 15.938 9.023 17.336 20.317 13.485

30 26.166 27.203 23.160 30.222 30.981 27.848

-10 2.337 3.967 0.271 5.363 7.662 0.801

melody 1 8.008 10.063 4.219 12.515 14.520 7.141

10 13.389 15.488 9.516 18.089 20.183 13.878

30 27.770 28.721 24.366 33.582 35.186 30.633

-10 0.090 0.340 0.598 0.691 1.798 1.583

ECG 1 3.659 4.080 5.013 8.107 7.474 7.878

10 9.228 9.363 10.250 16.116 15.984 14.445

30 23.421 23.318 23.395 28.572 27.365 26.932

-10 0.531 0.971 0.538 1.935 2.421 1.279

guitar 1 4.585 5.110 3.536 7.926 8.961 5.343

10 9.601 10.393 7.755 14.298 15.605 11.227

30 24.905 25.043 22.081 31.472 32.869 28.314

-10 1.772 1.998 0.248 3.617 4.926 0.656

human 1 6.498 8.102 4.150 10.421 13.033 7.500

speech 10 12.133 13.968 9.721 17.027 19.340 14.124

30 27.174 27.623 24.600 31.989 34.132 30.523

Table 1.: Comparison between thresholding of Gabor coefficients and wavelet coefficients

using the VisuShrink universal threshold. Rectangular and B-splines of order

4 window for Gabor and db4 wavelet with maximal level of decomposition for

wavelet. Soft- and hard thresholding. All values are rounded up to the third

decimal place and in decibel (10 log10 x, dB).
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Tables and Figures

audio SNR
Visushrink Sureshrink Bayesshrink

median filter
STFTbspline4 waveletdb4 STFTbspline4 waveletdb4 STFTbspline4 waveletdb4

-10 3.663 0.072 1.009 -0.031 0.000 -0.025 -2.772

blackbird 1 10.452 3.459 1.977 -0.001 2.283 -0.002 5.012

10 15.938 9.023 3.797 -0.000 10.960 -0.000 7.705

30 27.203 23.160 10.770 0.000 25.669 5.729 8.539

-10 3.967 0.271 0.541 -0.042 0.000 -0.021 -2.276

melody 1 10.063 4.219 1.089 -0.002 1.805 -0.002 7.868

10 15.488 9.516 1.652 -0.000 8.056 -0.000 13.88

30 28.721 24.366 3.383 0.000 27.220 15.151 17.936

-10 0.340 0.598 0.000 1.057 0.000 -0.114 -2.276

ECG 1 4.080 5.013 0.000 1.808 1.655 1.493 8.218

10 9.363 10.250 0.234 2.625 9.351 6.824 14.724

30 23.318 23.395 2.793 7.484 25.993 16.912 18.795

-10 0.971 0.538 0.021 -0.029 0.000 -0.047 -2.337

guitar 1 5.110 3.536 0.349 -0.025 2.798 -0.022 7.391

10 10.393 7.755 1.793 -0.010 8.252 1.147 12.434

30 25.043 22.081 5.240 0.076 27.645 11.568 15.082

-10 1.998 0.248 1.161 -0.008 0.000 -0.018 -2.285

human 1 8.102 4.150 3.173 -0.002 3.389 -0.002 7.994

speech 10 13.968 9.721 4.577 0.000 9.347 -0.000 14.19

30 27.623 24.600 10.682 0.003 28.916 9.123 18.215

Table 2.: Comparison between soft thresholding of B-spline of order 4 Gabor coefficients

and db4 wavelet coefficients using different methods: Visushrink, Sureshrink,

Bayesshrink and Median filter. All values are rounded up to the third decimal

place and in decibel (10 log10 x, dB).
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audio SNR
soft thresholding hard thresholding

STFTrect STFTbspline4 waveletdb4 STFTrect STFTbspline4 waveletdb4

-10 0.000 0.002 -0.031 0.000 0.062 -0.025

blackbird 1 1.279 2.320 0.202 2.747 4.781 0.378

10 4.129 6.735 1.056 6.220 10.355 1.876

30 14.349 17.749 6.613 18.056 22.492 8.441

-10 0.000 0.000 -0.035 0.000 0.000 -0.032

melody 1 0.994 2.614 0.164 3.180 5.935 0.275

10 5.074 6.897 0.403 8.427 10.085 0.533

30 15.820 18.491 2.762 18.836 23.250 4.182

-10 0.000 0.000 -0.122 0.013 0.000 -0.088

ECG 1 1.146 1.364 0.564 2.354 2.470 1.399

10 2.733 2.857 2.702 3.853 3.658 4.413

30 11.385 11.579 7.627 16.760 17.375 8.669

-10 0.000 0.000 -0.103 0.000 0.000 -0.127

guitar 1 0.045 0.549 0.209 0.279 1.514 0.672

10 2.032 3.142 1.717 4.137 5.587 2.776

30 12.160 13.888 8.009 16.891 18.840 10.228

-10 0.000 0.000 -0.023 0.000 0.000 -0.025

human 1 0.764 0.926 0.468 2.013 2.217 0.803

speech 10 3.597 4.510 1.708 6.375 8.371 2.737

30 14.426 16.686 8.313 19.161 21.054 10.842

Table 3.: Comparison between block thresholding of Gabor coefficients and wavelet coef-

ficients using the universal threshold VisuShrink. Rectangular and B-splines of

order 4 window for the STFT and db4 wavelet coefficients with maximal level

of decomposition. 5 × 5 Blocks for Gabor and 1 × 5 blocks for wavelet. Soft-

and hard thresholding. All values are rounded up to the third decimal place

and in decibel (10 log10 x, dB).
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audio SNR
Visushrink Sureshrink Bayesshrink Median filter

STFTbspline4 waveletdb4 STFTbspline4 waveletdb4 STFTbspline4 waveletdb4

-10 0.002 -0.031 -5.332 -7.810 4.656 0.438 -2.772

blackbird 1 2.320 0.202 9.163 3.452 13.110 4.509 5.012

10 6.735 1.056 18.194 9.267 18.732 10.083 7.705

30 17.749 6.613 24.936 13.784 32.113 24.883 8.539

-10 0.000 -0.035 -5.773 -7.980 5.849 0.412 -2.276

melody 1 2.614 0.164 8.550 2.554 14.037 3.226 7.868

10 6.897 0.403 18.694 6.495 19.932 8.541 13.88

30 18.491 2.762 27.083 11.348 36.439 25.051 17.936

-10 0.000 -0.122 1.010 -7.095 1.829 1.211 -2.276

ECG 1 1.364 0.564 4.438 4.505 8.923 6.767 8.218

10 2.857 2.702 6.329 9.475 17.410 10.978 14.724

30 11.579 7.627 12.246 12.978 28.310 26.259 18.795

-10 0.000 -0.103 -2.904 -6.863 2.580 1.687 -2.337

guitar 1 0.549 0.209 8.783 4.434 9.239 5.869 7.391

10 3.142 1.717 12.635 9.750 16.954 11.091 12.434

30 13.888 8.009 19.900 15.106 35.335 26.708 15.082

-10 0.000 -0.023 -7.126 -8.469 3.632 1.269 -2.285

human 1 0.926 0.468 6.121 3.065 11.158 6.495 7.994

speech 10 4.510 1.708 16.515 11.045 18.694 12.303 14.19

30 16.686 8.313 26.752 18.745 36.383 27.934 18.215

Table 4.: Comparison between block soft thresholding of B-splines of order 4 Gabor

coefficients and db4 wavelet coefficients using different methods: Visushrink,

Sureshrink, Bayesshrink and Median filter. 5 × 5 Blocks for Gabor and 1 × 5

blocks for wavelet. All values are rounded up to the third decimal place and in

decibel (10 log10 x, dB).
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(a) f50,2

(b) f50000,4

(c) f40,200

Figure 1.: Left figures: MSE of the competing methods using optimal soft thresholding;

right figures: MSE of the competing methods using optimal hard thresholding.

Line style −−: Gabor frame based method, wavelet shrinkage. Different

sample sizes are investigated.
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(a) f50,2

(b) f50000,4

(c) f40,200

Figure 2.: Left figures: MSE of the competing methods using universal soft thresholding;

right figures: MSE of the competing methods using universal hard threshold-

ing. Line style −−: Gabor frame based method, wavelet shrinkage. Dif-

ferent sample sizes are investigated.
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Zusammenfassung(deutsch)

Die Zeit-Frequenz-Analyse ist ein häufig verwendetes Instrument zur Untersuchung des

zeitlich veränderlichen spektralen Inhalts nicht-stationärer Signale. Im Gegensatz zu

herkömmlichen Frequenzanalysemethoden wie der Fourier-Analyse, die zwar Frequen-

zkomponenten effektiv darstellen, aber die dynamische Natur nichtstationärer Signale

nicht erfassen können, bietet die Zeit-Frequenz-Analyse eine Form der lokalen Fourier-

Analyse, die gleichzeitig das zeitliche und spektrale Verhalten eines Signals beschreibt.

Sie stützt sich auf zwei wichtige Techniken, Translation und Modulation, um Signalkom-

ponenten im Zeit-Frequenz-Bereich zu lokalisieren und eine Zeit-Frequenz-Darstellung

abzuleiten. Gröchenig (2013) bietet eine umfassende Erkundung der mathematischen

Aspekte der Zeit-Frequenz-Analyse.

Die Signalentrauschung ist eine wichtige Anwendung der Zeit-Frequenz-Analyse. Ein

effektiver Ansatz zur Signalentrauschung ist die Nutzung der spektralen Informationen,

die die Zeit-Frequenz-Analyse liefert. Rauschen und das zugrunde liegende Signal haben

oft unterschiedliche spektrale Eigenschaften. Signale haben in der Regel einen konzen-

trierteren und lokalisierten Zeit-Frequenz-Inhalt, während Rauschen dazu neigt, sich

zufällig über den Zeit-Frequenz-Bereich oder einen bestimmten Teil davon zu verteilen.

Niederfrequentes Rauschen, wie z. B. Motoren oder menschliche Stimmen, wirkt sich

beispielsweise hauptsächlich auf den niederfrequenten Teil des beobachteten Signals aus.

Weißes Rauschen wirkt sich auf alle Frequenzen gleichermaßen aus. Mit diesem Vor-

wissen können Entrauschungsalgorithmen wie das ”Thresholding” so konzipiert werden,

dass das Rauschen reduziert oder eliminiert wird, während die wesentlichen Spektralkom-

ponenten des Signals erhalten bleiben. Im Bereich der Audioverarbeitung führt dieser

Ansatz zu einer erheblichen Verbesserung der Audioqualität, siehe Yu et al. (2008) oder

Ashwin and Manoharan (2018).

Ein wichtiger Aspekt dieses Ansatzes ist die genaue Lokalisierung der Signalkomponen-
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ten im Zeit-Frequenz-Bereich. Dies führt zu einer dünnbesetzten Darstellung des Signals,

die hilft, es von Rauschen zu unterscheiden. Die beliebteste Methode der Zeit-Frequenz-

Analyse ist die short-time Fourier transform (STFT). Dabei wird ein festes Fenster über

das Signal geschoben, um die Fourier-Transformation zu ermitteln. Sie bietet eine feste

Zeit-Frequenz-Auflösung, die durch die Länge des Fensters bestimmt wird. Dieser Ansatz

führt jedoch häufig zu einem Kompromiss zwischen guter Zeitauflösung und guter Fre-

quenzauflösung. Für jedes quadrat-integrierbare Signal erhält man eine abzählbare, re-

dundante und energieerhaltende Darstellung des Signals unter Verwendung von Gabor-

Frames, einer Sammlung von Zeit-Frequenz-Verschiebungen. Die STFT eignet sich gut

für Signale mit stabilem Frequenzinhalt über lange Zeiträume. In solchen Fällen kann

eine geeignete Fenstergröße für die Analyse gewählt werden.

Modulationsräume bieten einen natürlichen Rahmen für die Zeit-Frequenz-Analyse. Sie

ermöglichen es, die Glätte eines Signals anhand der Abklingcharakteristik seiner STFT

im Zeit-Frequenz-Raum zu messen, vgl. Galperin and Samarah (2004). In bestimmten

Fällen stimmen die Modulationsräume mit Sobolev-Räumen überein. In Dahlke et al.

(2022) liefern wir eine nichtparametrische Schätzung von Signalen, die durch stationäres

Rauschen im Modell des weißen Rauschens verfälscht sind. Das beobachtete Signal

ist ein Element in einem geeigneten Modulationsraum. Wir haben einen adaptiven

und ratenoptimalen Schätzer für Modulationsräume konstruiert, indem wir die aus der

Gabor-Expansion erhaltenen Koeffizienten kürzen. Die mit Hilfe klassischer Orakelun-

gleichungen aus Donoho and Johnstone (1994) erhaltene Rate weist neue Merkmale

auf, die die Einbeziehung sowohl der Zeit als auch der Frequenz widerspiegeln. Die

Signale in Dahlke et al. (2022) wurden über den gesamten Rd beobachtet, weil er-

stens Signale wie Audiosignale natürlich keine inhärenten Beschränkungen auf bestimmte

Domänen aufweisen, vgl. Goldenshluger et al. (2006). Zweitens ist die Theorie der

Gabor-Expansionen und Modulationsräume im Gegensatz zu den Theorien anderer Funk-

tionsräume wie Besov oder Sobolev für begrenzte Bereiche nicht vollständig entwickelt.

Eine gut untersuchte Alternative zur Zeit-/Frequenzanalyse ist die (orthogonale) Wavelet

Transformation (WT). Wie in Daubechies (1990) beschrieben, bietet die WT auch eine

Zeit-Frequenz-Lokalisierung mit einer Auflösung, die sich mit der Frequenz ändert. Sie

lokalisiert effektiv hochfrequente Ereignisse in der Zeit und niederfrequente Ereignisse

in der Frequenz, was sie zu einer geeigneten Wahl für die Analyse vieler realer Sig-
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nale macht. Diese Signale haben oft langsam oszillierende Inhalte auf längeren Skalen,

während hochfrequente Ereignisse eher abrupt oder vorübergehend auftreten. Es ist

jedoch zu beachten, dass die WT zu einer reduzierten Frequenz- oder Zeitauflösung

führen kann, wenn der spektrale Inhalt des zugrunde liegenden Signals auf einen bes-

timmten Frequenzbereich beschränkt ist. Donoho and Johnstone (1994) zeigen, dass die

Wavelet-Entrauschung auf Besov-Räumen nahezu optimal ist, insbesondere für Szenar-

ien mit weißem Gaußschen Rauschen. Mallat (2009) erörtert auch die Entrauschung von

Wavelet Koeffizienten. Diese Ergebnisse unterstreichen die Wirksamkeit von Wavelet-

Entrauschungstechniken im Umgang mit Rauschen in Signalen.

Um den Auflösungsproblemen der Gabor- und Wavelet-Transformationen zu begegnen,

wurde ein hybrider Ansatz, die Flexible Gabor-Wavelet-Transformation (GWT), eingeführt,

wie in Nazaret and Holschneider (2003) beschrieben. Die GWT verwendet einen Param-

eter α ∈ [0, 1], der die Fensterlänge dynamisch auf der Grundlage der Frequenz anpasst,

was zu einer verbesserten Auflösung im Vergleich zur STFT führt. Außerdem wird der

bei der WT beobachtete Verlust an Frequenzauflösung bei der Analyse höherer Frequen-

zen ausgeglichen. Der mit dieser Transformation verbundene Glättungsraum wird als α-

Modulationsraum bezeichnet. Er liegt zwischen Modulationsräumen und Besov-Räumen

und bietet einen vielseitigen Rahmen für die Analyse von Signalen mit unterschiedlichen

Glättungsgraden im Zeit-Frequenz-Bereich. Die Einführung des α-Parameters ermöglicht

eine flexible Anpassung der Fensterlänge, wodurch ein Gleichgewicht zwischen Zeit- und

Frequenzauflösung erreicht wird.

In dieser Arbeit werden die in Dahlke et al. (2022) vorgestellten Ergebnisse neu for-

muliert und erweitert. Im Gegensatz zu der vorherigen Arbeit leiten wir jedoch alle

Ergebnisse aus dem Sequenzraum ab und bieten somit eine andere Perspektive. Ins-

besondere sind die in dieser Analyse verwendeten Koeffizienten energieerhaltend, was

bedeutet, dass das quadratische Risiko, das während des Entrauschungsprozesses der

Zeit-Frequenz-Darstellung entsteht, auch für das Signal nach der Synthese der Koef-

fizienten gilt. Darüber hinaus erweitern wir die erzielten Ergebnisse, um vergleichbare

Ergebnisse im beschränkten Bereich zu erhalten. Dies ermöglicht eine breitere Anwend-

barkeit der Ergebnisse über den unbeschränkten Bereich hinaus. Darüber hinaus verall-

gemeinern wir die Schätzergebnisse, um den α-Modulationsraum in der eindimensionalen

Umgebung einzubeziehen. Durch diese Erweiterungen und Verallgemeinerungen wollen
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wir das Verständnis und die Anwendbarkeit von Zeit-Frequenz-Analysetechniken in ver-

schiedenen Szenarien verbessern.

Diese Arbeit ist wie folgt gegliedert. Kapitel 2 gibt einen umfassenden Überblick über

Frames in Hilbert- und Banach-Räumen. Wir untersuchen die STFT und die Verwen-

dung von Gabor-Frames für Signalexpansionen. Wir besprechen das Konzept des Zerfalls

in Produktmaßräumen unter Verwendung von Gewichtsfunktionen. Wir führen auch

Modulationsräume ein und untersuchen ihre Charakterisierung mit Hilfe von Gabor-

Frames. Schließlich befassen wir uns mit der Theorie der flexiblen Gabor-Wavelet-

Transformation und α-Modulationsräumen. In Kapitel 3 greifen wir die Erkenntnisse

von Dahlke et al. (2022) über die nichtparametrische Schätzung von Signalen in Mod-

ulationsräumen unter Verwendung von Gabor-Frames wieder auf. Insbesondere wird

unsere Analyse vollständig im Sequenzraum durchgeführt. Wir schränken zunächst die

Signalauflösung ein, indem wir eine endliche Teilmenge der Darstellung betrachten und

das Signal innerhalb dieser endlichen Teilsequenz schätzen. Wir leiten die Minimax-

Konvergenzrate ab und vergleichen sie mit bekannten Ergebnissen, wie z.B. denen im

Sobolev-Fall. Kapitel 4 wiederholt die Ergebnisse aus Kapitel 3, konzentriert sich aber

auf die Verwendung von α-Modulationsframes. Wir vergleichen sie mit Ergebnissen, die

in Sobolev-Räumen und Besov-Räumen erzielt wurden. In Kapitel 5 präsentieren wir die

Ergebnisse intensiver Berechnungen, die die Vorteile von Gabor-Frames bei der Audio-

Entrauschung hervorheben. Diese Experimente zeigen die Effektivität des vorgeschlage-

nen Ansatzes, und wir liefern quantitative Ergebnisse. Wir vergleichen die geschätzten

Signale mit den zugrundeliegenden Signalen. Dabei werden verschiedene Leistungskenn-

zahlen wie das Signal-Rausch-Verhältnis (SNR) und den mittleren quadratischen Fehler

(MSE) verwendet.
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