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Abstract

This thesis revolves around two different, but not entirely unrelated topics. The first is the
realization problem in GKM theory, the second is the topic of multiplicity free manifolds.

Regarding the realization problem, we first show that a large class of GKM graphs is in
fact a restriction of a torus graph. This involves realizable GKM4-graphs, so in particular
realizable graphs in general position with valence at least 5. The corresponding GKM man-
ifolds were studied first by Ayzenberg and later also Masuda in [A18] and [AM19].
Then, we give a sufficient criterion for when a T 2-manifold of dimension 6 is equivariantly
formal, and use this, building on [GKZ22], to show that every orientable, 3-valent GKM
graph is realizable as an equivariantly formal T 2-manifold.

After that, we switch to the realization of certain GKM fiber bundles, as first studied
in [GKZ20]. More precisely, we characterize which GKM fiber bundles Γ → Γ′ → B are
realizable. Here B is the GKM graph of a quasitoric manifold of dimension 4, and Γ is the
GKM graph of a generalized flag manifold of the form G/T , where T ⊂ G is a maximal
torus.
At the end, we also construct many non-trivial examples of such GKM fiber bundles.

The last chapter is essentially the article [GSW22], where we study multiplicity free
U(2)-manifolds. Multiplicity free manifolds naturally generalize the class of toric manifolds
as studied in [Del88] to non-abelian Lie groups. Friedrich Knop [Kno11] was able to classify
those in terms of their principal isotropy type and their invariant momentum polytope,
building directly on work of Losev [Los09].
We restrict ourselves to the group U(2) and explicitly give the equivariant diffeomorphism
types as well as the symplectic form of certain multiplicity free U(2)-manifolds, including
those whose momentum image is a triangle.
We also give an easy-to-check characterization of when a multiplicity free U(2)-manifold
admits a compatible U(2)-invariant Kähler structure. This turns out to be the case if and
only if the corrsponding action of T 2 ⊂ U(2) admits an invariant Kähler structure.



Zusammenfassung

In dieser Dissertation geht es um zwei verschiedene, aber nicht gänzlich unzusammenhängende
Themengebiete. Ersteres ist das Realisierungsproblem in GKM-Theorie, zweiteres ist das der
(Hamilton’schen) multiplizitätsfreien Mannigfaltigkeiten.

Bezogen auf das Realisierungsproblem zeigen wir zunächst, dass eine große Klasse von
GKM-Graphen eine Einschränkung von Torus-Graphen ist. Diese Klasse beinhaltet real-
isierbare GKM4-Graphen, also insbesondere realisierbare Graphen in ’general position’ mit
einer Valenz von mindestens 5. Die dazugehörigen GKM-Mannigfaltigkeiten wurden zuerst
von Ayzenberg und dann später noch von Masuda in [A18] und [AM19] betrachtet.
Danach wird ein hinreichendes Kriterium für die äquivariante Formalität einer sechsdimen-
sionalen T 2-Mannigfaltigkeit bewiesen, das dann zusammen mit Ergebnissen aus [GKZ22]
dafür benutzt wird, um jeden orientierbaren 3-valenten GKM-Graphen zu realisieren.

Anschließend geht es um die Realisierung gewisser GKM-Faserbündel, was eine Verall-
gemeinerung von [GKZ20] darstellt. Genauer geben wir eine Charakterisierung dafür an,
welche GKM-Faserbündel Γ → Γ′ → B realisierbar sind. Mit B ist hierbei der GKM-Graph
einer vierdimensionalen quasitorischen Mannigfaltigkeit gemeint und Γ ist der GKM-Graph
einer verallgemeinerten Fahnenmannigfaltigkeit der Form G/T , wobei T ⊂ G ein maximaler
Torus ist.
Am Ende konstruieren wir auch viele nichttriviale Beispiele solcher GKM-Faserbündel.

Das letzte Kapitel ist essentiell identisch zum Artikel [GSW22], wo wir uns mit multi-
plizitätsfreien U(2)-Mannigfaltigkeiten beschäftigen. Solche stellen eine natürliche Verallge-
meinerung torischer Mannigfaltigkeiten, die in [Del88] klassifiziert wurden, auf nicht-abelsche
Liegruppen dar. Friedrich Knop [Kno11] nutzte die vorangegangene Arbeit von Losev [Los09]
und konnte diese anhand ihres Hauptisotropietyps und ihres invarianten Impulsbildes klas-
sifizieren.
Wir beschränken uns hier auf die Gruppe U(2) und geben explizit sowohl den äquivarianten
Diffeomorphismentyp als auch die symplektische Form gewisser multiplizitätsfreien U(2)-
Mannigfaltigkeiten an. Darunter befinden sich solche, deren Impulsbild ein Dreieck ist.
Darauf aufbauend formulieren und beweisen wir ein leicht zu überprüfendes Kriterium dafür,
wann eine multiplizitätsfreie U(2)-Mannigfaltigkeit eine kompatible Kählerstruktur, die in-
variant unter der U(2)-Wirkung ist, zulässt. Es stellt sich heraus, dass dies genau dann der
Fall ist, wenn die dazugehörige Wirkung von T 2 ⊂ U(2) eine solche zulässt.
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Introduction

It is a well-known theorem by Emmy Noether that every symmetry of a physical system
leads to a preserved quantity of this system. For example, the time-invariance of Newtonian
mechanics leads to the well-known invariance of energy, and the rotational symmetry of the
gravitational field of a point mass (or a homogeneous planet) leads to the preservation of
angular momentum. In both cases, this concept of symmetry allows us to gain valuable in-
formation about a physical system without solving the corresponding differential equations
in full generality, and thus proved itself to be of exaggerating importance in physics.

As per usual, mathematicians eventually started to study this real-world motivated con-
cept systematically, starting with Sophus Lie and Felix Klein in the 1870s. While for the
first decades, the developement of the theory of continouus transformation groups as well
as their actions on vector spaces were the focus of research, the study of smooth actions
of Lie groups on smooth manifolds, both from a geometric and a toplogical point of view,
eventually became more and more important.

In the topological aspect, the concept of equivariant cohomology plays a huge role in the
developement of equivariant differential topology, especially with respect to actions of tori.
For example, it was shown in [GKM98], using the Chang-Skjelbred lemma [CS74], that the
equivariant cohomology, and thus the ordinary cohomology, of a smooth manifold with van-
ishing odd-degree cohomology endowed with a torus action whose equivariant one-skeleton
is a finite union of 2-spheres is determined by the equivariant one-skeleton itself (which is
naturally encoded by a labeled graph). Conversely, one can ask whether to a given labeled
graph Γ there are torus actions on manifolds as above whose equivariant one-skeleton gives
rise to Γ. Partial results in dimension 6 were given in [GKZ22], and these results will be
extended in this thesis.

In the geometric aspect, especially the notion of a Hamiltonian action comes to mind,
that is, an action of a Lie group on a simply-connected manifold under which a symplectic
form is preserved. Although the theory becomes extraordinarily beautiful when restricting
to torus actions (see for example the convexity theorem by Atiyah, Guillemin and Sternberg
[Ati82], [GS82] or the classification of toric manifolds by Delzant [Del88]), there are also many
nice results for general compact, connected Lie groups. For instance, Knop [Kno11] was
able to build on previous work of Losev [Los09] and classified multiplicity free Hamiltonian

1



manifolds, thus generalizing the work of Delzant [Del88], [Del90] in this matter.
Here, we will study Hamiltonian actions of U(2) on sixdimensional manifolds more explicitly,
that is, we describe the U(2)-equivariant diffeomorphism type as well as the symplectic form
on these explicitly (Knop’s result just gives multiplicity free manifolds rather abstractly
based on their invariant momentum polytope). This enables us to also answer the question
when a given multiplicity free U(2)-manifold in dimension 6 admits a compatible invariant
Kähler metric.

Structure

In Chapter 1, we will outline basic properties of Hamiltonian group actions as well as basics
of equivariantly formal GKM-actions, assuming that the reader is familiar with basic alge-
braic topology and the notion of a Lie group action on a smooth manifold.

In Chapter 2 we will describe a criterion for when the label of a GKM graph can be ex-
tended to a ’full’ labeling, or equivalently, for when a GKM graph is the restriction of a torus
graph. After that, using parts of [GKZ22], we show that every 3-valent GKM graph with
(signed or unsigned) Z2-labeling is realizable as an equivariantly formal (over Z) T 2-manifold.

In Chapter 3, we will build upon [GKZ20] and give a characterization for realizable
GKM fiber bundles Γ → Γ′ → B, where Γ is the GKM graph of a generalized flag mani-
fold G/T and B is the GKM graph of a fourdimensional, equivariantly formal torus manifold.

In Chapter 4, we construct certain multiplicity free U(2)-manifolds with trivial principal
isotropy group explicitly, determine their diffeomorphism type based on their invariant mo-
mentum polytope, and give a description which of all multiplicity free U(2)-manifolds with
trivial principal isotropy group admit a compatible invariant Kähler metric.

While Chapter 2 was done by the author himself, Chapter 3 is joint work with Oliver
Goertsches, Panagiotis Konstantis and Leopold Zoller, whereas Chapter 4 together with the
part of Chapter 1 regarding multiplicity free manifolds and homogeneous fiber bundles is
joint work with Oliver Goertsches and Bart van Steirteghem.
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Chapter 1

Preliminaries

1.1 Serre spectral sequence

Here we fix some notation regarding the Serre spectral sequence for fiber bundles (over Z or
Q). We should note that we always talk about singular homology with coefficients either in
Q or Z whenever we talk about ’homology’. As long as not specified, coefficients are allowed
to be both Q or Z. See e.g. [Hat04] for details.
Let F → M → B be a fiber bundle over a connected CW-complex B, and assume that
the homology of B or F over Z respectively Q is finitely generated. The point of the Serre
spectral sequence is to compute the homology of the space M from the homology of B
and F via a first quadrant spectral sequence, only subject to the small condition that the
monodromy representation π1(B) → Aut(H∗(F )) is trivial. This is true, for example, when
the bundle restricted to the one-skeleton of B is trivial, so in particular for free group actions
of a connected Lie group. Usually, one starts from the second page, which has the form

E2
p,q = Hp(M

∗, Hq(F )) = Hp(M
∗)⊗Hq(F )

(where the last equation always holds over Q, and also over Z if the homology of F , for
example, is torsion free, which we assume from now on) and the differential d2p,q : E

2
p,q →

E2
p−2,q+1 (it will not matter for us how this differential looks like). Now, the third page is

the homology of the second page, that is,

E3
p,q :=

ker(d2p,q : E
2
p,q → E2

p−2,q+1)

im(d2p+2,q−1 : E
2
p+2,q−1 → E2

p,q)
.

The new differential now is of the form d3p,q : E
2
p,q → E2

p−3,q+2. Again, we do not have to know
how this looks like exactly.
In general, we define Er+1

p,q from Er
p,q by

Er+1
p,q :=

ker(drp,q : E
r
p,q → Er

p−r,q+r−1)

im(drp+r,q−r+1 : E
r
p+r,q−r+1 → Er

p,q)
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with differential dr+1
p,q : Er+1

p,q → Er+1
p−r,q+r−1. Note that, for r big enough, Er = Er+1 = Er+2 =

. . ., because we assumed the homologies of B or F to be finitely generated. We then define
E∞
p,q := Er

p,q and say that the spectral sequence (Er, dr) converges against E∞. The homology
of M is encoded in E∞. Denote by (B)p the p-skeleton of B, and by Mp its preimage under
π : M → B.

Theorem 1.1.1. We have

E∞
p,q = im(Hp+q(Mp) → Hp+q(M))/im(Hp+q(Mp−1) → Hp+q(M))

and therefore, over Q, the isomorphism

Hk(M) ∼=
⊕
p+q=k

E∞
p,q.

Remark 1.1.2. Over Z, there is no reason to assume that

Hk(M) ∼=
⊕
p+q=k

E∞
p,q

since short exact sequences of abelian groups do not necessarily split. Instead, in order to
calculate Hk(M) for a given k, we get a series of extension problems to solve. That is,
assuming we know the image K of Hk(Mp−1) → Hk(M) (which is E∞

0,k for p = 1), the image
H of Hk(Mp) → Hk(M) sits in the short exact sequence

0 → K → H → E∞
p,k−p → 0.

Lemma 1.1.3. Let F1 → X → B1 and F2 → M → B2 be bundles as above and consider
a bundle map f : X → M covering g : B1 → B2. We consider the spectral sequences Er(X)
and Er(M) belonging to X and M , respectively. Then the following statements hold:

1. There is a map f r∗ : E
r(X) → Er(M) which commutes with the differentials, where

f r+1
∗ is induced by f r∗ in the canonical way and f 2

∗ is the canonical map g∗ ⊗ i∗, where
i∗ : H∗(F1) → H∗(F2) is the well-defined homomorphism in homology induced by f and
generic fiber inclusions i1 and i2.

2. The map H∗(X) → H∗(M) induced by f is compatible with f∞
∗ in the sense that it

induces maps between the group extensions from above.

Now let a connected Lie group G act freely on a CW-complex M . We get a fiber bundle
G → M → M/G which is trivial over (M/G)1. So we can always use the Serre spectral
sequence in these situations, even with Z-coefficients.
It is a crucial fact that, if G = T n is abelian and acts almost freely (that is, only with
dicrete isotropies), then the Serre spectral sequence even works in this case (together with
all naturality properties), under the mild restriction that one takes Q-coefficients. We will
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outline the reason here, see [Z16, Lemma 2.8] for details. We consider the homotopy fiber

Fp of p in M →MTn
p→ BT n, and the following bundle

ΩBT n → Fp →MTn .

Together with the natural homotopy equivalence M → Fp, there can be constructed a
homotopy equivalence h : T n → ΩBT n such that the diagram

T n M MTn

ΩBT n Fp

commutes. That is, we can say that T n → M → MTn is a ’fibration up to homotopy
equivalence’. Now, H∗(M/T ;Q) → H∗

T (M ;Q) = H∗(MTn) is an isomorphism, and the
monodromy of ΩBT n → Fp → MTn is trivial, so its Serre spectral sequence computes the
(co)homology of M with rational coefficients. The naturality conditions now come from the
naturality of the constructed fibration ΩBT n → Fp →MTn .

1.2 GKM actions

1.2.1 Some notation

Let M be a compact, oriented smooth manifold of dimension 2n on which a torus T of
dimension m acts effectively. We use the standard notations Tx and Tx ⊂ T for the orbit of
T through x ∈M and the stabilizer of x in T , respectively. For H an arbitrary subgroup of
T , we define M (H) to be all elements x ∈M with Tx = H and MH to be all elements x ∈M
satisfying H ⊂ Tx. We denote by Mk the equivariant k-skeleton of M , that is,

Mk := {x ∈M | dim(Tx) ≤ k} = {x ∈M | dim(Tx) ≥ m− k}.

We get a filtration of M by

MT =M0 ⊂M1 ⊂ . . . ⊂Mm−1 =M

and an induced filtration of the orbit space M/T = M∗, where for any T -invariant set
X ⊂ M we set X∗ to be the image of the projection π : M → M/T . From now on, we
always assume that MT is finite and nonempty.

Definition 1.2.1. The closure F of a connected component of M∗
i \M∗

i−1 in M∗ is called a
face if it intersects M∗

0 non-trivially. We define its rank rk(F ) to be the number i and call
π−1(F ) a face submanifold.

We note that the latter definition is justified since π−1(F ) is indeed a submanifold of M .
Also, for any face F , we set

F−1 := {x ∈ F : dimTx < rk(F )}.
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1.2.2 GKM graphs and their orientations

For a graph Γ, we denote by E(Γ) the set of all edges and by V (Γ) the set of all vertices.
We can give each edge e two possible orientations, each determining an initial vertex i(e)
and a terminal vertex t(e), respectively. On an oriented edge e, we denote by ē the same

unoriented edge with the other orientation. Thus i(e) = t(ē) and t(e) = i(ē). We let Ẽ(Γ) be

the set of all oriented edges, and let Ev and Ẽv be the corresponding edges on any v ∈ V (Γ).
An abstract unsigned GKM graph (Γ, α) consists of an n-valent graph Γ (multiple edges
may appear between two vertices) and a labeling α : E(Γ) → Zk/± 1 such that for all v ∈ V
and any two e1, e2 at v, α(e1) and α(e2) are linearly independent, and such that there is a
compatible connection ∇, which we define now.

Definition 1.2.2. A compatible connection ∇ on (Γ, α) is a bijection ∇e : Ẽi(e) → Ẽt(e) (for
each oriented edge e) such that

1. ∇ee = ē.

2. ∇ē = (∇e)
−1.

3. for all f ∈ Ẽi(e) we have α(∇ef)± α(f) = cα(e) for some c ∈ Z.

Analogously, we call (Γ, α) an abstract signed GKM graph when α takes values in Zk,
α(e) = −α(ē), and there is a compatible connection such that the third condition above is
replaced with α(∇ef)− α(f) = cα(e).
There is a rather obvious notion of isomorphism of GKM graphs.

Definition 1.2.3. Two (signed) GKM graphs (Γ, α) and (Γ′, α′) are isomorphic if there exists
an isomorphism Ψ: Γ → Γ′ of unlabeled graphs, as well as an automorphism φ : t∗ → t∗ such
that φ(α(e)) = α′(Ψ(e)).

There is a relationship between T k-actions on Cn and the values of α on Ev. Namely,
for every edge e ∈ Ev, α(e) corresponds to a a homomorphism χe : T

k → S1, which is
well-defined up to complex conjugation on S1. In particular, the representation χv of T k

on C ∼= R2 defined by χe is well defined up to (real) isomorphism, and thus we get a
representation of T k on Cn (up to real isomorphism) by

t · (z1, . . . , zn) = (χe1(t)z1, . . . , χen(t)zn).

We denote this representation by Cn(v). Note that the equivariant one skeleton (Cn(v))1 of
Cn(v) is precisely the union of the single C-summands, because we assumed that any two
labels are linearly independent. Of course, every T k-representation on Cn such that Cn

1 is the
union of single C-summands is of the above form, so determines a ’labeling’. More generally,
we have the following lemma.

Lemma 1.2.4. Let M be a possibly open manifold acted on by T = T k smoothly with the
following properties:
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� The set MT is finite and not empty.

� The equivariant one skeleton M1 is given by a union of T -invariant 2-spheres.

Then the set Γ =M1/T has a natural graph structure (vertices correspond to fixpoints, edges
correspond to T -invariant 2-spheres), and there is a labeling α determined by the isotropy
representation at each vertex. Moreover, the tuple (Γ, α) is a GKM graph.

From now on, we will omit the labeling α and will only write about ’the GKM graph Γ’.

Remark 1.2.5. We will associate a T k-manifold M ′
1 (this can be seen as an ’equivariant

tubular neighborhood’ of the equivariant one-skeleton) with boundary X1(Γ) to a GKM
graph Γ. The construction will depend on certain choices, for example the connection on Γ.
We will deal with this later.
For a fixed element p in V (Γ), we denote by Cn

p a representation of T k on Cn according to
the labels of the edges emerging at p and by S(p), D(p) ⊂ Cn

p the unit sphere resp. the unit
disc (this corresponds to choosing signs for the labels). Let T ′ be some tree of the graph.
Whenever two vertices p1 and p2 are connected by an edge in T ′, then we consider the
equivariant connected sum of S(p1) and S(p2) along their shared invariant subcircle, which
means that we take out a neighborhood of this S1 in both S(p1) and S(p2) and glue the
spaces along the boundaries S1 × S2n−3 with a T k-equivariant diffeomorphism that restricts
to a linear isomorphism h(p1,p2) on {e} × S2n−3 which sends S1 ⊂ S2n−3 corresponding to an
edge e at p1 to S

1 ⊂ S2n−3 corresponding to the edge ∇(p1,p2)e (this is well-defined due to the
compatibility condition of connection and labeling of the graph). This will be the boundary
of the space

M ′ = ((D(p1) \ S1)⨿ (D(p2) \ S1))/ ∼,
where we identify those two in an open neighborhood of the S1’s we take out (this open
neighborhood minus S1 is equivariantly diffeomorphic to S1×D2n−2×(0, 1], so we can identify
those neighborhoods in the same way as for the S(pi) before). Also, there is a natural map
r1 from M ′ to the T -invariant sphere inside it, which is an equivariant deformation retract.
This comes from the natural deformation retracts from the D(pi) to 0. Indeed, we can
deform these on D(pi) \ S1 only in a neighborhood of S1 as indicated in fig. 1.1 and now it
is clear that this extends to the desired map r1 on M ′.

Doing this for all points in T ′ we obtain a simply-connected T k-manifold M ′
1(T

′) with
boundary X1(T

′) and the map r1(T
′) to its equivariant one-skeleton. Now we take an edge

e ∈ Γ \T ′ with vertices v1 and v2, and perform the equivariant connected sum, again. Doing
this for all edges in Γ\T gives us a (not necessary orientable!) T k-manifoldM ′

1 (with the map
r1 to its one-skeleton, and with boundary X1) whose fundamental group is isomorphic to that
of Γ. We also have H2(X1) ∼= H2(M1) realized by r1, which can be seen inductively, using the
iterative construction of M1 respectively X1 and the Mayer Vietoris sequence. Indeed, when
we denote by X1(k) the manifold constructed corresponding to a subtree Tk ⊂ T ′ with k
edges and we assume that both X1(k) andM1(k) have second homology Zk, then the second
homology group of X1(k + 1) (and similar for M1(k + 1)) sits in

. . .→ H2(X1(k) \ S1)⊕H2(S
2n−1 \ S1) → H2(X1(k + 1)) → H1(S

1 × S2n−3) → . . .
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Figure 1.1: The deformation for n = 3. The red lines represent the one-skeleton, and the
black lines the map.

The assertion follows because H2(X1(k) \ S1) = H2(X1(k)), H2(S
2n−1 \ S1) = 0 and

H1(S
1 × S2n−3) → H1(X1(k) \ S1)⊕H1(S

2n−1 \ S1)

is the 0-map. Similarly, we can argue for each step after X1(T
′) is already constructed (that

is, when we start gluing X1(T
′) to itself).

Note that the statement about the second homology groups does not depend on the choices
of the T k-representation on Cn made.

We made some choices in the construction. In order to argue that they are not restrictive,
we need an elementary lemma.

Lemma 1.2.6. Let A ∈ O(2n) act linearly on R2n = (R2)n = Cn such that it commutes with
an S1-representation that only fixes 0. Then A is contained in the standard U(n) ⊂ SO(2n).

Proof. Write A = BS for B ∈ SO(2n) and S for the reflection diag(−1, 1 . . . , 1). Then the
S1-action commutes with A if and only if the with B conjugated S1-action commutes with S.
An element C in SO(2n) commutes with S if and only if C≥2,1 = −C≥2,1 and C1,≥2 = −C1,≥2,
so if and only if C ∈ (O(1) × O(2n − 1)) ∩ SO(2n). Thus, the conjugated S1-action would
have to be trivial on the first two summands R⊕R ⊂ R2n, which contradicts the assumption
that the initial S1-action only fixes 0.
It follows that A ∈ SO(2n), and now it is a straightforward computation that A has to be
in the standard U(n) ⊂ SO(2n).

Now we can slowly go through the choices made in remark 1.2.5.

Remark 1.2.7. In the construction, we specified how the linear isomorphism h = h(p1,p2)
has to look like, but actually any choice of linear isomorphism g with respect to which the
gluing map S1 × S2n−3 → S1 × S2n−3 becomes T k-equivariant will be homotopic to linear
isomorphisms with the same property (which makes the resulting manifolds equivariantly
diffeomorphic). To see this, we view g as a map Cn−1 → Cn−1 and denote by T ′ the kernel
of α = α((p1, p2)). This is of the form T × Z, where T is a k − 1-dimensional torus and Z a
cyclic subgroup (non-trivial if and only if α is not primitive). Now T ′ acts on both copies of
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Cn−1 and g has to be equivariant with respect to these actions. In particular, g respects the
isotropy types of T . The corresponding isotropy submanifolds are necessarily subspaces of
Cn−1 on which the action of T , after dividing out the kernel, becomes a diagonal S1-action.
Z also acts on those via rotation, so that the isotropy submanifolds of the T ′-action also
are subspaces on which the action of T ′, after dividing out the kernel, becomes a diagonal
S1-action. Hence, both any g and h restricted to any such m-dimensional subspace S will be
equivariantly homotopic to eachother, because h−1 ◦ g is contained in U(m) by lemma 1.2.6
and centralizes a subcircle S1 ⊂ U(m), so that h−1 ◦ g is homotopic to the identity through
elements in U(m) centralizing this S1.

Definition 1.2.8. We call the GKM graph Γ orientable if there exists a choice of repre-
sentations Cn

p , p ∈ V (Γ), and a connection ∇ on Γ such that X1(Γ) as in remark 1.2.5 is
orientable.

Remark 1.2.9. This does not actually depend on the choice of connection. To see this,
choose a connection together with choices of representations Cn

p such that X1 becomes ori-
entable. This gives certain orientations of the S(pi), which we use from now on.
We need to analyze h on every S from above. Note that the choices of representations Cn

p

give rise to different signs of the free S1-action on S, depending on whether we view it as
contained in S(p1) or S(p2). Now, if k1 is the number of negative weights of S in S(p1) and
k2 is the number of negative weights of S in S(p2), then h preserves orientation if and only
if k1− k2 is even, and this is the same for a new connection chosen. We deduce that the new
induced map from S1 × S2n−3 in S(p1) to S

1 × S2n−3 in S(p2) preserves orientation if and
only if it did with the old connection, and this shows the claim.

Remark 1.2.10. Note that this was a construction based on an abstract GKM graph.
However, given a GKM manifold M whose graph Γ is orientable, it is straightforward to
see that, with the choices of signs coming from the orientability, M ′

1(Γ) can be embdedded
equivariantly intoM . Indeed, M ′

0 can clearly be embedded equivariantly (with those choices
of signs), and we may modify this embedding in such a way that, whenever (p1, p2) is an
edge, D(p1) and D(p2) touch precisely in neighborhoods N1(S

1) respectively N2(S
1) of the

shared subcircle in their boundaries and the induced map

S1 ×D2n−2 = N1(S
1) → N2(S

1) = S1 ×D2n−2

is an equivariant fiberwise linear isomorphism. The image of these D(pi) under this modi-
fication is not necessarily a smooth manifold, of course, but we can assure this by slightly
shrinking it around the intersections of the D(pi), and now it is equivariantly diffeomorphic
to M ′

1(Γ).

Remark 1.2.11. There is a natural singular foliation F1, whose leaves are tori of different
dimension, on M ′

1. This is given on M ′
0 by the orbits of the natural T n-action on D2n, and

this is clearly preserved under the gluing maps used in remark 1.2.5 (although the T n-action
might not be). We will denote by Y1 ⊂ X1 (not M ′

1!) the leaves of maximal dimension n.
This has the natural structure of a T n-bundle over a space B1 which is homotopy equivalent
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to Γ, because, via the construction in remark 1.2.5, B1 is obtained by gluing disks (namely
the orbit spaces of the free T n-orbits of the natural action on S2n−1) onto each other along
smaller disks.

Remark 1.2.12. There is also the definition of an oriented graph as in [BP15][Definition
7.9.16]. It is unknown to the author how these definitions are connected.

Definition 1.2.13. The GKM graph Γ is called j-independent, j ≥ 2, if for any vertex any
j labels are linearly independent over Q.
If j = k = n− 1, then we say that the graph is in general position.
If j = k = n, then we speak of a torus graph.

Remark 1.2.14. There are two basic properties of orientability of graphs that we want to
mention now.

1. A subgraph Γ′ of an orientable torus graph Γ is orientable. Indeed, the manifold X1(Γ
′)

is a connected component of X1(Γ)
H for a closed subgroup H ⊂ T n, and the normal

bundle of X1(Γ)
H is a sum of line bundles, hence orientable.

2. If the fundamental group of a 3-independent graph is generated by connection paths,
then it is orientable. The reason is that the equivariant two-skeleton (X1)2 of X1 gen-
erates π1(X1), that every connected component of (X1)2 is equivariantly diffeomorphic
to S1×T 2 with an action of T k on T 2 induced by an epimorphism and that the normal
bundle of such an S1 × T 2 is orientable. The last statement is true for 4-independent
graphs, because then the normal bundle splits into line bundles. But this is not neces-
sarily true anymore if the graph is 3-independent. In this case, however, there is a linear
T k−2-action on the fiber R2n−4 of the normal bundle that only fixes 0 and commutes
with the element A ∈ O(2n− 4) that defines the normal bundle of S1 = (S1 × T 2)/T 2

in X1/T
2. This implies that A is in U(n− 2) by lemma 1.2.6.

1.2.3 j-independence and the formality package

From now on, the coefficient ring R for all (co)homology is taken to be either Q or Z. Again,
we assume T acts smoothly on M =M2n with MT finite and not empty.

Definition 1.2.15. The action of T is called j-independent, j ≥ 2, if for any x ∈ MT any
j weights of the tangent representation of T on TxM are linearly independent over Q.
If j = n− 1 and T = (S1)j = T j, then we say that the action is in general position.
If j = n (that is, the torus has maximal dimension), then we speak of a torus manifold.

Now we define what an action of GKMj-type is. This is closely related, but not identical
to the action being j-independent.

Definition 1.2.16. A j-independent action is said to be of GKMj-type or GKMj if the odd
cohomology of M vanishes. For j = 2, we just omit the index and speak of a GKM action.
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Remark 1.2.17. At first glance, it seems weird to ask for topological properties of the
manifold acted on. However, there is a well-known result that, when the set of fixpoints
is isolated, this topological restriction is equivalent to the action being equivariantly formal
(with respect to the coefficient ring R chosen). That is, denoting by ET → BT the classifying
bundle of T , the equivariant cohomology

H∗
T (M) := H∗(M ×T ET )

is a free H∗(BT )-module, where the module structure comes from the homomorphism
H∗(BT ) → H∗(M ×T ET ) induced by the projection M ×T ET → BT . More precisely,
we have the isomorphism of H∗(BT )-modules

H∗
T (M) ∼= H∗(BT )⊗H∗(M),

since the Serre spectral sequence associated toM →M×TET → BT collapses at the second
page due to degree reasons (H∗(BT ) is the polynomial ring in dim(T ) generators of even
degree). In particular, the restriction map H∗

T (M) → H∗(M) is surjective and its kernel is
H≥1(BT )⊗H∗(M).

There is a natural way to associate a ring to a GKM graph Γ. In order to do this, we
set T to be a k-dimensional torus and note that, abstractly, the group of homomorphisms
from T to S1 is isomorphic to H2(BT ;Z), because both are isomorphic to Zk. However,
there is even a natural isomorphism, coming from a fact that every homomorphism T → S1

gives a map BT → BS1 and thus, after fixing some generator of H2(BS1) = Z, a unique
element in H2(BT ). So, if Γ is signed, we can uniquely identify any weight with an element
in H2(BT ;Z), and when Γ is not signed, this only works up to a sign in H2(BT ;Z).

Definition 1.2.18. Let R be either Q or Z. The equivariant cohomology H∗
T (Γ;R) of a

GKM graph Γ is defined by(ω(v))v ∈
⊕
v∈V (Γ)

H∗(BT ;R) : ω(u)− ω(w) ≡ 0 mod α(e) for all edges e between u and w

 ,

where ω(u)−ω(w) ≡ 0 mod α(e) means that ω(u)−ω(w) is contained in H∗(BT ;R) ·α(e).
The cohomology H∗(Γ;R) of a GKM graph Γ is defined by

H∗(Γ;R) = H∗
T (Γ;R)/(H

≥1(BT ;R) ·H∗
T (Γ;R)).

As one can already guess from the definition, the equivariant cohomology respectively the
cohomology of a GKM manifold is strongly linked to the equivariant cohomology respectively
the cohomology of the graph. The next theorem is [GKM98, Theorem 7.2], and is obtained
by using the equivariant Mayer Vietoris sequence as well as the Chang-Skjelbred Lemma
[CS74, Lemma 2.3].
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Theorem 1.2.19. Let M be a GKM T -manifold over Q. There is an isomorphism of
H∗(BT ;Q)-algebras H∗

T (M ;Q) → H∗
T (Γ;Q), induced by the restriction map H∗

T (M ;Q) →
H∗
T (M

T ;Q). This also induces an isomorphism

H∗
T (M ;Q)/(H≥1(BT ;Q) ·H∗

T (M ;Q)) = H∗(M ;Q) → H∗(Γ;Q).

This holds for any action of GKMj-type, j ≥ 2. There are more specific results for higher
j, some of which we will list now.

Lemma 1.2.20 ([MP03, Lemma 2.2]). If the action is equivariantly formal over R, then,
for any subtorus H ⊂ T , any connected component of MH ⊂ M contains a fixpoint and its
odd cohomology vanishes.

Theorem 1.2.21 ([AMS22, Proposition 3.11]). If the action is of GKMj-type and R = Q,
then

1. for any face F we have H i(F, F−1) = 0 for i < rk(F ). If, in addition, rk(F ) < j, then
H∗(F, F−1) = H∗(Drk(F ), ∂Drk(F )).

2. M∗ is j + 1-acyclic (that is, H i(M∗) = 0 for 1 ≤ i ≤ j + 1).

3. M∗
r is min(r − 1, j + 1)-acyclic.

If one assumes that all stabilizers are connected, then this also holds for R = Z.

There is a kind of inverse to the last theorem.

Theorem 1.2.22 ([AM19, Theorem 4, Chapter 6]). Assume that the action of T on M is in
general position and satisfies the following properties (here, rational coefficients are taken):

� every face submanifold contains a fixpoint;

� all stabilizers are connected;

� the orbit space is a homology (n+ 1)-sphere;

� each face of Qn−2 is a homology disc;

� Qn−2 is (n− 3)-acyclic.

Then the action is equivariantly formal.

The assumption on the orbit space being a homology-sphere is not as restrictive as it
seems. We call an action in general position appropriate, if, for any closed subgroupH ⊂ T ,
the closure of M (H) contains a point x′ whose stabilizer has a larger dimension than H.

Lemma 1.2.23. [A18, Theorem 2.10] The orbit space of an appropriate T -manifold in gen-
eral position is a topological manifold.
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We will treat actions in general position that are in some way locally standard, that is,
every slice looks just like a slice from some linear T = T n−1-action on Cn (these are clearly
appropriate). Let x ∈ Cn be a point, and consider Tx for such an action. This is a closed
subgroup of T , hence a product of a subtorus and finite cyclic groups. Since we assume
that the action is effective, Tx acts linearly and effectively on the fiber over x of the normal
bundle of the subspace fixed by Tx. This fiber is again some Ck, where k − 1 = dim(Tx). It
follows that Tx acts effectively on T k ⊂ Ck, which implies that there is only one finity cyclic
group in Tx.

1.2.4 Torus manifolds and equivariant formality

We say that a torus manifold M is locally standard if every point in M admits an invariant
neighborhood U such that U is weakly equivariantly diffeomorphic to an open subsetW ⊂ Cn

invariant under the standard action of T on Cn, that is, there is an automorphism ψ : T → T
and a diffeomorphism f : U → W such that f(ty) = ψ(t)f(y).
In particular, in a locally standard manifold, there is no invariant submanifold in M fixed
by a discrete subgroup in T , only. Indeed, this is not supposed to happen when M is
equivariantly formal over Z due to Masuda and Panov ([MP03]).

Theorem 1.2.24. The following are equivalent for a torus manifold M :

� The action is equivariantly formal.

� The action is locally standard and each face F of M∗ as well as M∗ itself is acyclic.

1.2.5 GKM fibrations, GKM fiber bundles and generalized flag
manifolds

This part is devoted to review the notion of a GKM fibration respectively a GKM fiber
bundle, as introduced in [GSZ12], and to establish facts about generalized flag manifolds
G/T , where G is a semisimple, compact and connected Lie group, and T is a maximal torus
(the authors in [GHZ06] even described homogeneous spaces of the form G/H, where H ⊃ T
is compact and connected, but we will not need this). We start with the generalized flag
manifolds.

Theorem 1.2.25. The natural T -action on G/T from the left is 2-independent and equiv-
ariantly formal, thus of GKM type. There is a one-to-one correspondence between the set of
T -fixpoints and W (G), the Weyl group of G. Moreover, G/T admits an invariant almost-
complex structure, which turns the GKM graph of G/T into a signed graph. Every signed
label is a root of G.

It is more or less standard theory that spaces of the form G/H, where H is the central-
izer of a subtorus in T , even admit an invariant Kähler structure. The statement about the
condition invariant almost-complex structures in [GHZ06], however, is for all homogeneous
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spaces of the form G/H, where H and G have equal rank.
There is quite an explicit description for the GKM graph Γ of G/T , too. As already men-
tioned, the vertices are in one-to-one correspondence to W (G), and two elements w and w′

are connected by an edge if and only if there is a root α such that w′ = wsα, where sα is the
reflection at the hyperplane defined by α. If so, then the label of this edge is precisely α, up
to sign. In particular, any two vertices of Γ are connected by at most one edge.
There is also a canonical connection on this GKM graph Γ. For edges e = (w,wsα) and
e′ = (w,wsα′), we define ∇ee

′ as the edge (wsα, wsαsα′).

Let us now turn to GKM fibrations and GKM fiber bundles. One should note that the
authors there had specific geometric examples in mind when they introduced these notions,
namely geometric fiber bundles K/H → G/H → G/K, where H ⊂ K ⊂ G are compact
connected Lie groups of the same rank. As described in [GHZ06], the natural T -action on
all of these spaces turns out to be GKM, and between any two vertices, there is at most
one edge. This is why the initial definitions of GKM fibrations and GKM fiber bundles only
contain graphs with exactly that property. Of course, it is quite straightforward to extend
this definition to general graphs, which was done in [GKZ20].
A morphism of graphs π : Γ′ → B consists of a map πV from V (Γ′) to V (B) together with
a map πE from E(Γ′) to E(B) which is compatible with πV in the sense that πE(e) is an
edge between πV (p) and πV (q) for all edges e between p and q (from now on, we just write
π for both πV and πE). It is allowed that e is sent to an ’edge’ (q, q); we call all edges with
this property vertical, and all other edges horizontal. For p ∈ V (Γ′), we denote by Hp all
horizontal edges in Γ′ adjacent to p.
We say that a morphism of graphs π is a graph fibration if π : Hp → E(B)π(p) is a bijection.
For an edge e at π(p), we call its unqiue preimage ẽ under this bijection a lift of e at p.
Moreover, for any vertex q of B, we denote by Γ′

q the maximal subgraph of Γ′ induced by the
vertex set π−1(q). Then there is a natural map Ψ(q1,q2) : V (Γ′

q1
) → V (Γ′

q2
) for any neighbored

q1, q2 in V (B), and this map is bijective with inverse Ψ(q2,q1). However, it does not have to
extend to a morphism of graphs.

Definition 1.2.26. We say that a graph fibration is a fiber bundle of graphs if all Ψ(q1,q2)

from above extend to isomorphisms of graphs. If so, then we just write Ψ(q1,q2) for these
isomorphisms of graphs.

Now we are ready to define the notion of interest. We consider Γ′ and B now as GKM
graphs with their labeling α and αB and their connections ∇ and ∇B.

Definition 1.2.27. A graph fibration π : Γ′ → B is a (signed) GKM fibration if the following
hold:

1. For all q ∈ V (B) and all edges e adjacent to q, αB(e) equals α(ẽ) for any lift ẽ of e at
an element in π−1(q).

2. ∇e sends horizontal to horizontal and vertical to vertical edges for any e ∈ E(Γ′).
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3. The connections ∇ and ∇B are compatible with lifts in the obvious sense.

Definition 1.2.28. We call a (signed) GKM fibration a (signed) GKM fiber bundle if π is
a fiber bundle of graphs and

1. every Ψ(q1,q2) is compatible with the connection of Γ in the sense that Ψ(q1,q2)(e
′) = ∇ee

′

for all vertical edges e′ of Γ′
q1

and lifts e of (q1, q2).

2. every Ψ(q1,q2) extends to an isomorphism of GKM graphs Γ′
q1
→ Γ′

q2
.

1.3 Multiplicity free manifolds

We begin with some basic notions and facts from the theory of compact Lie groups. Let T
be a maximal torus in the compact, connected Lie group K. We will use k and t for the Lie
algebras of K and T , respectively. Furthermore k∗ and t∗ are the dual vector spaces, and we
equip k∗ with the coadjoint action of K. We can and will view t∗ as a subspace of k∗ using
the identification

t∗ ∼= (k∗)T ⊂ k∗

with the subspace of T -fixed vectors in k∗. We denote the weight lattice of K by Λ, that is

Λ = HomZ(ker(exp |t),Z) ⊂ t∗,

where exp : k → K is the exponential map. Note that

Λ → Hom(T,U(1)), ν 7→ [exp(ξ) 7→ exp(2π
√
−1⟨ν, ξ⟩)]

is a bijection between Λ and the character group of T , with inverse map

Hom(T,U(1)) → Λ, λ 7→ 1

2π
√
−1

λ∗,

where λ∗ is the derivative of λ at the identity. We will use this bijection to identify Λ with
Hom(T,U(1)). In particular, if V is a complex representation of K and v ∈ V is a weight
vector of weight λ ∈ Λ, then we have (with abuse of notation)

ξ · v = 2π
√
−1λ(ξ)v for all ξ ∈ t, and

t · v = λ(t)v for all t ∈ T.

Next, we let G := KC be the complexification of K. Then G is a complex connected
reductive group of whichK is a maximal compact subgroup and of which the complexification
TC of T is a maximal torus. Recall that the weight lattice Hom(TC,C×) of G can be identified
with Λ using the restriction map

Homalg.gp.(T
C,C×) → HomLie gp.(T, U(1)), λ 7→ λ|T .
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Fix a maximal unipotent subgroup N of G which is normalized by TC and let t+ be the
(closed) Weyl chamber in t∗ which is positive with respect to N . It is a fundamental domain
for the coadjoint action of K on k∗ and for the natural action of the Weyl group

W := N(T )/T

of K on t∗. Then
Λ+ := Λ ∩ t+

is the monoid of dominant weights. Highest weight theory tells us that the assignment

V 7→ the weight of the T -action on V N

is a bijection between the set of isomorphism classes of irreducible finite-dimensional com-
plex representations of K and Λ+. When λ ∈ Λ+, we will write V (λ) for the (up to iso-
morphism) unique irreducible finite-dimensional complex representation of K with highest
weight λ. Furthermore, K and G have the same finite-dimensional complex representations:
if dimC V < ∞ and ρ : K → GL(V ) is a homomorphism of Lie groups then there exists a
unique homomorphism ρ : G→ GL(V ) of algebraic groups such that ρ|K = ρ.

Example 1.3.1. To illustrate the objects we just recalled and to fix notation that we will
use in what follows, we explicitly describe the objects in the case where K is the unitary
group U(2) of rank 2. We choose the maximal torus

T =

{(
t1 0
0 t2

)
: t1, t2 ∈ C, |t1| = |t2| = 1

}
⊂ U(2).

The complexification of U(2) is GL(2) := GL(2,C) and that of T is

TC =

{(
t1 0
0 t2

)
: t1, t2 ∈ C×

}
⊂ GL(2).

We will write ε1, ε2 for the basis of t∗ dual to the basis

ξ1 :=

(
2π

√
−1 0

0 0

)
, ξ2 :=

(
0 0
0 2π

√
−1

)
of t. Then the weight lattice is

Λ = ⟨ε1, ε2⟩Z
and viewed as elements of Hom(T,U(1)) or of Hom(TC,C×) the characters ε1, ε2 are defined
by

εi

(
t1 0
0 t2

)
= ti for i ∈ {1, 2}. (1.3.1)

For N we choose the subgroup {(
1 a
0 1

)
: a ∈ C

}
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of GL(2). The corresponding Weyl chamber is then

t+ = {λ ∈ t∗ : ⟨α∨, λ⟩ ≥ 0},

where
α∨ := ξ1 − ξ2 (1.3.2)

is the coroot of the simple root

α := ε1 − ε2 ∈ Λ ⊂ t∗ (1.3.3)

of U(2) (and of GL(2)).
The Weyl group W of U(2) (and of GL(2)) is isomorphic to the symmetric group S2 and

the nontrivial element sα ∈ W acts on t∗ by the reflection

sα(λ) = λ− ⟨α∨, λ⟩α, where λ ∈ t∗.

The monoid of dominant weights is

Λ+ = ⟨ω1, ω2,−ω2⟩N, where ω1 := ε1 and ω2 := ε1 + ε2.

Observe that ω1 is the highest weight of the standard representation of U(2) (or of GL(2)),
which we will usually simply denote by C2. We will also use the notation Cdetk for the
one-dimensional representation V (kω2), where k ∈ Z:

A · z = det(A)kz for all z ∈ Cdetk and all A in U(2) or in GL(2).

A Hamiltonian K-manifold is a triple (M,ω, µ), where (M,ω) is symplectic manifold
equipped with a smooth K-action K ×M → M and a momentum map µ, which means,
by definition, a smooth map µ :M → k∗ that is K-equivariant with respect to the coadjoint
action of K on k∗ and satisfies

dµξ = ι(ξM)ω for all ξ ∈ k.

Here ξM is the vector field on M defined by

ξM(x) =
d

dt

∣∣∣∣
t=0

exp(tξ) · x ∈ TxM , where x ∈M,

and µξ : M → R is the function with µξ(m) = µ(m)(ξ). Since we have identified the Weyl
chamber t+ with a subset of k∗ we can define

P(M) := µ(M) ∩ t+. (1.3.4)

In [Kir84, Theorem 2.1], F. Kirwan proved that P(M) is the convex hull of finitely many
points when M is compact and connected. In that case we call P(M) the momentum
polytope of M .

Example 1.3.2 describes an important source of Hamiltonian K-manifolds: projective
spaces P(V ) associated to unitary representations V of K.
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Example 1.3.2. Let V be a finite-dimensional unitary representation of K with K-invariant
Hermitian inner product ⟨·, ·⟩, where we adopt the convention that ⟨·, ·⟩ is complex-linear
in the first entry. Following [Sja98, Ex. 2.1 and 2.2], we describe well-known structures of
Hamiltonian K-manifolds on V and on the associated projective space P(V ), which is the
space of complex lines in V . The map

µV : V → k∗, µV (v)(ξ) =

√
−1

2
⟨ξv, v⟩, (1.3.5)

where ξ ∈ k, is a momentum map for the K-invariant symplectic form ωV (·, ·) = − Im⟨·, ·⟩
on V . The Fubini-Study symplectic form ωP(V ) on P(V ) corresponding to ⟨·, ·⟩ is invariant
under the natural K-action on P(V ) and we equip P(V ) with the momentum map

µP(V ) : P(V ) → k∗, µP(V )([v])(ξ) =

√
−1

2π

⟨ξv, v⟩
∥v∥2

, (1.3.6)

where ξ ∈ k and [v] is the complex line through v ∈ V \ {0}.
If K is a torus and v ∈ V is a weight vector with weight λ, then µV (v) = −π∥v∥2v and

µP(V )([v]) = −λ ∈ k∗. This implies that

µV (V ) = − cone{λ1, λ2, . . . , λr} (1.3.7)

and that the momentum polytope of (P(V ), µP(V )) is

P(P(V )) = µP(V )(P(V )) = − conv(λ1, λ2, . . . , λr), (1.3.8)

where λ1, λ2, . . . , λr are the weights of K in V .

The following Theorem, which is due to Sjamaar and which was extracted from [Sja98]
will be useful in section 4.2. In order to state it, we recall that the symplectic slice of a
Hamiltonian K-manifold M in m ∈M is the symplectic vector space

Nm := (Tm(K ·m))⊥/(Tm(K ·m) ∩ (Tm(K ·m)⊥), (1.3.9)

where (Tm(K ·m))⊥ is the symplectic annihilator of Tm(K ·m) in TmM . The isotropy action
of Km on TmM induces a natural symplectic representation of Km on Nm.

Theorem 1.3.3 ([Sja98]). Let (M,µ) be a compact connected Hamiltonian K-manifold.

(a) If m ∈M such that µ(m) is a vertex of P(M) lying in the interior of t+, then Km = T .

(b) Let m ∈M such that µ(m) lies in the interior of t+ and Km = T . Then

Nm = (Tm(K ·m))⊥ ∼= TmM/Tm(K ·m) (1.3.10)

as T -modules, where Nm is the symplectic slice of M in m. If Πm is the set of weights of
the symplectic T -representation Nm, then the cone with vertex µ(m) spanned by P(M)
is equal to µ(m)− coneΠm.
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Proof. Assertion (a) is contained in part 2. of [Sja98, Theorem 6.7]. Assertion (b) follows
from part 1. of loc.cit. and from (1.3.7) above; see also the paragraph in [Sja98] containing
Equation (6.9). To apply (1.3.7) to the symplectic T -representation Nm we recall that any
symplectic T -representation (V, ωV ) can be made into a unitary representation by choosing
a T -invariant complex structure on V that is compatible with the symplectic form ωV and
that the weights of the representation are independent of this choice.

Remark 1.3.4. In both parts of this remark, the point m ∈ M is as in part (b) of theo-
rem 1.3.3.

(a) The cone with vertex µ(m) spanned by P(M) is not pointed when µ(m) is not a vertex
of P(M) (we recall that a cone is called pointed when it does not contain any line).

(b) Later in this paper we will use that there exists a K-invariant diffeomorphism φ from the
homogeneous fiber bundle K×TNm onto a K-invariant neighborhood of K ·m inM such
that φ([e, 0]) = m (we recall the construction of K ×T Nm below in proposition 1.4.1).
This is an application of the slice theorem (see, e.g., [Kaw91, Theorem 4.10]). Actu-
ally, the proof of theorem 1.3.3(b) uses the symplectic slice theorem of Marle [Mar88]
and Guillemin-Sternberg [GS90] (see, e.g., [Sja98, Theorem 6.3] for a statement of this
theorem).

We will also make use of the following well-known fact. For a proof, see, e.g., [GS05,
Theorems 1.2.1 and 1.2.2].

Proposition 1.3.5. Let (M,ω, µ) be a compact connected Hamiltonian K-manifold with
momentum polytope P(M) and let r : k∗ → t∗ be the dual map to the inclusion t → k. Then
(M,ω, r ◦ µ) is a Hamiltonian T -manifold whose momentum polytope PT (M) := r(µ(M))
satisfies the equality

PT (M) = conv

( ⋃
w∈W

w · P(M)

)
. (1.3.11)

Definition 1.3.6. A multiplicity free K-manifold is a compact and connected Hamilto-
nian K-manifold M such that

µ−1(a)/Ka is a point for every a ∈ µ(M). (1.3.12)

Remark 1.3.7. (a) We have included connectedness and compactness in the definition of
a multiplicity free K-manifold to avoid having to frequently repeat the associated adjec-
tives in this paper. The (more general) notion of multiplicity free Hamiltonian manifold
was introduced in [MF78] and [GS84] as a Hamiltonian K-manifoldM of which the Pois-
son algebra of K-invariant smooth functions M → R is an abelian Lie algebra. Equiva-
lent conditions onM are given in [HW90, Theorem 3]. As shown in [Woo96, Proposition
A.1], for a compact, connected Hamiltonian K-manifold M this original definition is
equivalent to condition (1.3.12).
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(b) Let (M,ω, µ) be a compact connected Hamiltonian K-manifold. As observed in [Kno11],
just after Definition 2.1, M is multiplicity free if and only if

M/K → P(M) : K ·m 7→ µ(K ·m) ∩ t+

is a homeomorphism. Furthermore, if the principal isotropy group of the K-action on
M is discrete, then M is multiplicity free if and only if

dim(M) = dim(K) + rk(K), (1.3.13)

see [Woo96, Proposition A.1].

In order to state Knop’s classification theorem for multiplicity free manifolds we introduce
some additional notation and recall some more well-known facts. A smooth affine complex
G-variety X is called spherical if its ring of regular functions C[X] is multiplicity free as a
G-module, that is

dimHomG(V (λ),C[X]) ≤ 1 for all λ ∈ Λ+.

The weight monoid Γ(X) of X is the set of highest weights of C[X], that is

Γ(X) :=
{
λ ∈ Λ+ : HomG(V (λ),C[X]) ̸= {0}

}
.

As proved by Losev in [Los09, Theorem 1.3], a smooth affine sphericalG-varietyX is uniquely
determined by Γ(X), up to G-equivariant isomorphism. If a ∈ t+ ⊂ k∗ then the complexifi-
cation KC

a of the stabilizer Ka of a is a complex connected reductive subgroup of G. Since
Ka contains T its weight lattice is still Λ. The Weyl chamber of Ka and KC

a corresponding
to the maximal unipotent subgroup N ∩KC

a of KC
a is R≥0(t+ − a) ⊂ t∗.

Example 1.3.8. We take K = U(2) and use the notation of example 1.3.1. If a ∈ t+ then

KC
a =

{
GL(2) if ⟨α∨, a⟩ = 0;

TC if ⟨α∨, a⟩ > 0

and the corresponding positive Weyl chamber of KC
a is

R≥0(t+ − a) =

{
t+ if ⟨α∨, a⟩ = 0;

t∗ if ⟨α∨, a⟩ > 0

We can now specialize Knop’s Theorems 10.2 and 11.2 from [Kno11] to the case of
compact connected multiplicity free Hamiltonian manifolds with trivial principal isotropy
group.

Theorem 1.3.9 (Knop). (a) Suppose (M,ωM , ωN) and (N,ωN , µN) are multiplicity free K-
manifolds with trivial principal isotropy group. If P(M) = P(N), then there exists a
K-equivariant symplectomorphism φ :M → N such that µN ◦ φ = µM .
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(b) Let Q be a convex polytope in t+. There exists a multiplicity free K-manifold M with
trivial principal isotropy group such that P(M) = Q if and only if for every vertex a of
Q there exists a smooth affine spherical (Ka)

C-variety Xa such that

Γ(Xa) generates the weight lattice Λ as a group, and (1.3.14)

Q− a and Γ(Xa) generate the same convex cone in t∗. (1.3.15)

Remark 1.3.10. (a) The fact that the principal isotropy group of the K-action on M is
trivial is encoded in condition (1.3.14) of theorem 1.3.9. Knop’s classification result
[Kno11, Theorem 11.2] makes no restrictions on the principal isotropy group, which is
encoded as a sublattice of Λ.

(b) Part (a) of theorem 1.3.9 is a special case of a conjecture due to Th. Delzant. He proved
his conjecture when K is a torus in [Del88] and when rk(K) = 2 in [Del90]. Knop proved
it in general in [Kno11, Theorem 10.2].

(c) Thanks to [PVS19], the criterion in part (b) of theorem 1.3.9 can be checked combinato-
rially (or algorithmically), i.e. without having to actually produce the spherical varieties
Xa. On the other hand, in section 4.1 below we will distill from [PPVS18] all smooth
affine spherical GL(2)-varieties X such that Γ(X) generates Λ as a group and the convex
cone generated by Γ(X) is pointed.

(d) Referring to [Kno11, Section 2] for details, we briefly sketch how the (Ka)
C-variety Xa

yields a “local model” of the manifold M as in theorem 1.3.9(b). One can define a
structure of Hamiltonian K-manifold on the homogeneous fiber bundle K ×Ka Xa such
that a K-stable open subset of K ×Ka Xa is isomorphic (as a Hamiltonian K-manifold)
to a neighborhood of the K-orbit µ−1(K · a) in M .

1.4 Homogeneous fiber bundles

To explicitly describe multiplicity free U(2)-manifolds in section 4.2, we will make use of
homogeneous fiber bundles, which are also known as associated bundles or twisted products.
We recall their basic properties in the category of differentiable manifolds, then in that of
algebraic varieties, and finally state a comparison result that we will need later.

If G is group, H is a subgroup of G and F is a set on which H acts, then we denote by
G×H F the quotient set of G× F for the following action of H

h · (g, f) = (gh−1, h · f) for g ∈ G, h ∈ H, f ∈ F. (1.4.1)

As the left action of G on G × F , g · (g′, f) = (gg′, f) commutes with this action of H, we
obtain a G-action on G×H F . We will use π for the G-equivariant quotient map

π : G× F → G×H F, (g, f) 7→ [g, f ]
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and p for the (well-defined) G-equivariant map

p : G×H F → G/H, [g, f ] 7→ gH.

We begin with standard facts about the “differentiable” version of G×H F and sketch a
proof for the sake of completeness.

Proposition 1.4.1. Let G be a compact connected Lie group, H a closed subgroup and F a
manifold equipped with a smooth action of H. Then the following hold:

(a) G×H F admits a unique structure as a manifold such that

(i) π : G× F → G×H F is a smooth map; and

(ii) for an arbitrary manifold N a map h : G×H F → N is smooth if and only if h ◦ π
is smooth.

When G ×H F is equipped with this structure, the map p : G ×H F → G/H and the
action map G× (G×H F ) → G×H F are smooth;

(b) If f : M → G/H is a smooth G-equivariant map, where M is a manifold equipped with
a smooth action of G, and A = f−1(eH), then A is a smooth H-invariant submanifold
of M and the map

G×H A→M, [g, a] 7→ g · a
is a G-equivariant diffeomorphism, if G×H A carries the manifold structure of part (a).

Proof. The characterization of the manifold structure on G×HF in part (a) is a consequence
of the basic fact that the quotient of a manifold under a free action of a compact Lie group
is a manifold; see, for instance, [Kaw91, Theorem 4.11]. That p is smooth now follows,
because p ◦ π : G → G/H, g 7→ gH is a smooth map, see e.g. [Kaw91, Theorem 3.37].
Furthermore, the aforementioned Theorem 4.11 in [Kaw91] also tells us that π has smooth
local cross-sections, from which one can deduce that the action map is smooth. We turn to
part (b). One observes that eH is a regular value of f , that the two manifolds G×H A and
M have the same dimension and that the given map G ×H A → M is G-equivariant and
injective. With standard arguments, one then shows that the map’s differential is surjective
everywhere.

Before stating an algebraic version of proposition 1.4.1 we recall that if H is a closed
algebraic subgroup of a linear algebraic group G, then the coset space G/H carries a unique
structure of algebraic variety such that the canonical surjection G → G/H is a so-called
geometric quotient for the action of H on G from the right. Equipped with this structure,
as it always will be, G/H is a smooth quasi-projective variety and the action map

G× (G/H) → G/H, (g, g′H) 7→ gg′H

is a morphism of algebraic varieties (see, for example, [TY05, 25.4.7 and 25.4.10]).
The following proposition, which summarizes properties of the “algebraic” homogeneous

fiber bundle, is extracted from [PV94, Section 4.8]; see also [Tim11, Theorem 2.2].
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Proposition 1.4.2. Let G be a complex connected reductive linear algebraic group, H a
closed algebraic subgroup and F a smooth quasi-projective H-variety. Equip G ×H F with
the quotient Zariski-topology (i.e. the coarsest topology which makes π : G × F → G ×H F
continuous, where G×F carries the Zariski-topolgy) and with the sheaf O which is the direct
image under π of the sheaf of H-invariant regular functions on G × F . Then the following
hold:

(a) The ringed space (G×H F,O) is a smooth complex algebraic variety;

(b) The maps π and p and the action map G × (G ×H F ) → G ×H F are morphisms of
algebraic varieties.

The next proposition recalls a standard fact in the theory of complex algebraic varieties,
see [Ser56, Nr. 5]

Proposition 1.4.3. (a) If X is a smooth complex algebraic variety, then X admits a unique
structure as a complex manifold such that every algebraic chart of X is a holomorphic
chart. We write Xh for X equipped with this structure of complex manifold.

(b) If X and Y are smooth complex algebraic varieties and f : X → Y a morphism of
algebraic varieties, then f : Xh → Y h is holomorphic.

A complex manifold carries a natural structure of a differentiable manifold, by viewing the
holomorphic charts as C∞-charts. Thus proposition 1.4.3 also equips every smooth algebraic
variety with a structure of differentiable manifold, which we will call standard. Whenever
we view a smooth algebraic variety as a differentiable manifold it will be equipped with this
standard structure. In section 4.2 we will make use of the following comparison result. We
include a proof for completeness.

Proposition 1.4.4. Consider the subgroup

B− :=

{(
a 0
c d

)
: a, c, d ∈ C, ad ̸= 0

}
(1.4.2)

of GL(2) and recall the torus T ⊂ U(2) from example 1.3.1. If F is a smooth quasi-projective
B−-variety and we equip GL(2)×B−F with its standard structure as a differentiable manifold,
then

U(2)×T F → GL(2)×B− F, [g, f ] 7→ [g, f ] (1.4.3)

is a U(2)-equivariant diffeomorphism.

Proof. We equip GL(2) and GL(2)/B− with their standard structures as differentiable man-
ifolds. Then U(2) is a closed subgroup of the Lie group GL(2). The inclusion U(2) → GL(2)
induces a transitive smooth action of U(2) on GL(2)/B−. Since B− ∩ U(2) = T we thus
obtain —using [Kaw91, Corollary 4.4] for example— a U(2)-equivariant diffeomorphism
U(2)/T → GL(2)/B−. Let φ : GL(2)/B− → U(2)/T be the inverse diffeomorphism and
recall the map

p : GL(2)×B− F → GL(2)/B−, [g, f ] → gB−.

23



Then φ ◦ p : GL(2) ×B− F → U(2)/T is a U(2)-equivariant smooth map. The claim now
follows from (b) in proposition 1.4.1.

Remark 1.4.5. The argument for proposition 1.4.4 actually yields the following more gen-
eral fact. Suppose K is a compact connected Lie group and G its complexification. Let T
be a maximal torus of K and B be a Borel subgroup of G containing T . If F is a quasi-
projective B-variety and we equip G ×B F with its standard structure as a differentiable
manifold, then

K ×T F → G×B F, [k, f ] 7→ [k, f ]

is a K-equivariant diffeomorphism.
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Chapter 2

Label extension and realization of
3-valent GKM graphs

The realization of GKM graphs, that is, the construction of a GKM manifold with a given
GKM graph, is a huge unsolved problem. While there are certain obstructions to realizing
a graph (see [AMS22]), there are no sufficient conditions for arbitrary valency up to now.
Figuring that it might make sense to think about the realization problem in low dimensions
respectively low valency of the graph, Goertsches, Konstantis and Zoller in fact did realize
certain GKM graphs of valency 3, the lowest interesting case, in [GKZ22]. They were able to
show that a rather general graph theoretic obstruction to realization, namely that the GKM
graph is supposed to satisfy Poincaré duality, is also sufficient for a realization as a rational
GKM manifold.
An important feature for the realization of 3-valent GKM graphs is that the orbit space of
the corresponding (simply-connected) T 2-manifold is homeomorphic to S4. Of course, the
orbit space of a GKM manifold in arbitrary dimensions is not a sphere, not even a manifold.
Therefore, it seems plausible to try to generalize the results in [GKZ22] to the realization
of those graphs that do have the property that they, in principle, could be realized as a
T -manifold whose orbit space is a manifold. These n-valent graphs turn out to be precisely
the GKMn−1-graphs by [A18], or also known as graphs in general position. In [AM19], it
was shown that the orbit space of an equivariantly formal (over Q) T -manifold with such
a graph does have the property that its orbit space has the rational homology of a sphere,
and it was shown that this also holds over Z for connected stabilizers (in this case, the orbit
space is even a manifold, and thus an integer homology sphere). Also, a kind of converse
was proven ([AM19, Theorem 4]): if a T -manifold is given whose stabilizers are connected,
whose orbit space is a rational homology sphere and which satisfies certain other necessary
conditions, then the T -manifold is equivariantly formal over Q.

In this chapter, we first show that a 4-independent graph, if it satisfies certain conditions
necessary for realization, is in fact the restriction of a torus graph. This can be used, for
example, to study equivariantly formal manifolds in general position (although we do not do
this here, in generality).
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After that, and not related to the part before, we prove a converse of [AM19, Theorem 4] for
n = 3 and Z-coefficients, which, in turn, enables us to realize every orientable 3-valent GKM
graph with (signed or unsigned) Z2-labeling as an equivariantly formal (over Z) T 2-manifold,
using the construction in [GKZ22].

2.1 Label extension of certain GKM graphs

The main result of this small section is theorem 2.1.3, which states that certain 4-independent
GKM graphs are actually restrictions of a torus graph. The main assumption is that the
fundamental group of Γ is generated by connection paths. This assumption is quite natural
in view of theorem 1.2.21: if Γ was realizable as an equivariantly formal (even only over
Q) GKM manifold M , then it would follow that b1(M

∗
2 ) = 0, which is equivalent to the

statement that H1(Γ;Q) is generated by connection paths. We will see in remark 2.1.2 that
this, in turn, is equivalent to the same statement on fundamental groups.
Let us begin with a more fundamental concept, for which we do not need the 4-independency
yet.

Lemma 2.1.1. Let Γ be an n-valent GKM graph with the following properties:

1. Any connection path is a two-valent GKM subgraph.

2. The group π1(Γ) is generated by connection paths.

Then there is a maximal contractible tree T ⊂ Γ together with an ordered tuple of edges
e1, . . . , ek = E(Γ) \ E(T ) such that attaching e1 to T closes a connection path, attaching e2
on T ∪ e1 closes a connection path, . . ., attaching ek on Γ \ ek closes a connection path.

Proof. We denote by G1 the set of all connection paths of Γ, ordered increasingly by the
number of their edges. Take any the first connection path γ1 of G1 and remove an edge. This
will be e1. Now set Γ2 := Γ/γ1, and let G2 be the set of all non-trivial (that is, non-constant
paths) descensions of elements of G1, ordered by number of edges. Γ2 is homotopy equivalent
to Γ \ e1, and we claim that the elements of G2 generate the fundamental group of Γ2. To
see this, we need to check that no connection path γ in Γ1 except γ1 descends to a point in
Γ2. This is true as long as not all edges of γ collapse. If γ has more edges than γ1, this is
clear. If γ has the same amount of edges, then these would have been precisely those of γ1,
so γ = γ1.
Now take the firstelement γ′2 ∈ G2 and remove an edge e′2 of γ′2. There is a corresponding
γ2 ⊂ Γ (which might possibly intersect e1) and a corresponding edge e2 in γ2, which is not
contained in γ1. Therefore, putting e1 inside Γ \ (e1 ∪ e2) still closes a connection path, and
so does putting e2 inside Γ \ e2. Now set Γ3 := Γ2/γ

′
2, which is homotopy equivalent to

Γ \ (e1 ∪ e2), define G3 as usual, and so on. Once again, G3 generates the fundamental group
of Γ3 by the same argument as before.
We may repeat these arguments until some Γk+1 is contractible (which eventually has to
happen before Gk becomes empty, because π1(Γ) is generated by connection paths). The
ordered tuple (e1, . . . , ek) then has the desired properties.
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Remark 2.1.2. Under the assumption that each connection path is a two-valent GKM
subgraph, the assumption that π1(Γ) is generated by connection paths is implied by (and
thus equivalent to) the assumption that H1(Γ;Q) is generated by connection paths. Indeed,
by the same process as in the proof of lemma 2.1.1, b1(Γk+1) eventually has to become 0,
which, since Γk+1 is a graph, implies that Γk+1 is contractible.

Consider a two-valent GKM subgraph γ of Γ and fix a vertex v ∈ V (γ). Denote by F (v)
the set E(Γ)v \ E(γ)v. When taking an edge in F (v) and pushing this one time around γ
with the connection, we get a bijection µγ : F (v) → F (v), the monodromy map of γ. Note
that this is trivial for all γ if the Graph is at least 4-independent, and that in this case, any
two edges at one vertex determine a unique two-valent GKM subgraph. We want to prove
the following theorem.

Theorem 2.1.3. Let Γ be an n-valent 3-independent GKM graph with the property that any
three edges belong to a unique 3-valent GKM-subgraph and that the group π1(Γ) is generated
by two-valent GKM subgraphs. Then the Zk-labeling (respectively Zk/ ± 1) extends to an
effective Zn-labeling (respectively Zn/± 1).

Proof. We do this in the signed case, the unsigned case is analogous. We begin by noting
three things.

� For every maximal contractible tree T ⊂ Γ, there is an extension by extending at one
vertex and then pushing this over whole T via the connection.

� By the same reasoning, whenever there is an extension, it is uniquely determined by
the extension at one vertex.

� At any vertex, any three edges e1, e2 and e3 define a unique 3-valent, 3-independent sub-
graph Γ′. We can extend the labeling α(ei) on this vertex to a Zn-labeling (α(ei), 0) ∈
Zk × Zn−k and this clearly gives a well-defined extension on Γ′. It follows that any
three labels α′(ei) ∈ Zn give a well-defined Zn-labeling on Γ′, since the GKM condition
is linear and there is an isomorphism Qn → Qn sending (α(ei), 0) to α

′(ei).
In particular, for any connection path γ, there is an extension of the labeling on all
edges meeting γ. Indeed, we may extend the Zk-labeling at some vertex to an effective
Zn-labeling, and this will give a well-defined effective labeling on every 3-valent GKM-
subgraph that contains γ, so in particular a well-defined labeling on all edges meeting
γ.

Now choose a maximal contractible tree T as in lemma 2.1.1 (which is possible, because
any two adjacent edges belong to a unique two-valent GKM subgraph by our assumption),
choose an extension at some vertex of T and consider the induced extension on whole T .
Normally, when attaching e1, this extension of T might not be compatible. But here, we
close a connection path γ1 when attaching e1, so by the remark above, the GKM-condition
at e1 is indeed fulfilled. When attaching e2, we close a connection path, again, so the GKM
condition is fulfilled, and so on. This shows that the GKM condition holds everywhere on
Γ, which we wanted to prove.
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In particular, every realizable GKM graph which is at least 4-independent comes from an
n-independent GKM graph, since for GKM4-manifolds M we have b1(M

∗
2 ) = π1(M

∗
2 ) = 0,

so M∗
1 = Γ has its fundamental group generated by two-valent subgraphs.

2.2 A sufficient criterion for equivariant formality and

3-valent GKM graphs

Here, we formulate and prove a sufficient criterion for equivariant formality.

Theorem 2.2.1. Consider a GKM action of T 2 on the compact manifold M of dimension
6, such that

� the orbit space is a homology sphere over Z.

� for every finite group H, every connected component of MH contains a fixpoint.

� the orbit space of an arbitrary isotropy submanifold is a disk.

Then M is equivariantly formal over Z.

In the following, we write Z for the isotropy submanifolds of N :=M \ (M ′
1 \X). Every

component hits X non-trivially, so we can set ∂Z = X ∩ Z, which is a union of S1 × T 2’s.
This follows from the assumption that any component of Z contains a fixpoint.
Let C be a connected component of Z, and H ⊂ T be its stabilizer. The boundary E of a
small closed neighborhood of C is equivariantly diffeomorphic to C ×H S1, since C∗ = D2

is contractible and the normal fiber over a torus orbit is of that form. This directly implies
that H is cyclic, because it necessarily acts freely on S1. Note also that the T -action on E is
free over an orbit space homotopy equivalent to S1, so we may also write E = C∗ × S1 × T ,
T acting only on the right factor. In this description, the natural map E → C is a bundle
map (viewing both spaces as non-principal T 2-bundles), but restricted to T it is only a
covering, not a diffeomorphism! In particular, the map in homology between the fibers (see
lemma 1.1.3) is not an isomorphism, but only an injection.
The corresponding map on orbit spaces E∗ = C∗ × S1 → C∗ in this description, however, is
the usual projection. We will also write E = Z∗ ×S1 ×T for the boundary of a small closed
neighborhood of Z in N .
Before proving theorem 2.2.1, we need a small lemma, first.

Lemma 2.2.2. π1(M) → π1(M
∗) is an isomorphism.

Proof. We considerM ′
1 andX := X1 for the manifoldM , see remark 1.2.10, We set N :=M\

(M ′
1\X). It suffices to show that π1(N) → π1(N

∗) is an isomorphism by dimensional reasons.
It is standard theory that this map is surjective, and we may assume by transversality that a
loop γ in its kernel only hits free orbits Nfree. If γ is in the kernel of π1(Nfree) → π1(N

∗
free),

it is in a torus orbit and we are done (because these can be homotoped to a point in M). If
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not, then the image of γ is in the kernel of π1(N
∗
free) → π1(N

∗) and thus can be homotoped
into X∗

free, to be in the kernel of π1(X
∗
free) → π1(X

∗). The kernel of π1(X
∗
free) → π1(X

∗) is
generated by the loop in the fiber of S1 → Y ∗

1 → B1 (see remark 1.2.11). Indeed, let S be a
connected component of the isotropy submanifolds of X. Then S∗ = S1 with trivial normal
bundle S1×D2, so the kernel of π1((X \S)∗) → π1(X

∗) is generated by {pt.}×S1 ⊂ S1×D2.
This is clearly a fiber of S1 → Y ∗

1 → B1, so we can iterate this and see that γ is again
homotopic to a loop contained in a torus orbit.

Now we can come to the proof of theorem 2.2.1.

Proof. We have already shown that π1(M) = π1(M
∗), so H1(M) = H1(M

∗) = 0. Hence,
H1(M ;Z2) = 0, which implies that M is orientable. By Poincaré duality, Hodd(M) =
Hodd(M), and we show that the latter is 0. It is only left to show that H3(M) = 0. Set
N :=M \ (M ′

1 \X), where M ′
1 and X := X1 are as in remark 1.2.10. By H∗(M

∗) = H∗(S
4)

and the Mayer Vietoris sequence belonging to M∗ = M ′∗
1 ∪ N∗, we see that the interesting

homology of N∗ is concentrated in degree 2 (H3(N) = H1(N∗/X∗) = 0 because of Lefschetz
duality) and that H2(X

∗) → H2(N
∗) is an isomorphism.

We only need to show that H3(X) → H3(N) is surjective because of

. . .→ H3(X) → H3(M1)⊕H3(N) → H3(M) → H2(X) → H2(M1)⊕H2(N) → . . . ,

H3(M1) = 0 and H2(X) → H2(M1) being an isomorphism (see remark 1.2.5). If the ac-
tion on N was free, this would be an immediate consequence of the isomorphism (we only
need it to be a surjection) H2(X

∗) → H2(N
∗) and the Serre spectral sequence. Indeed,

E2
p,∗(X) → E2

p,∗(N) is a surjection for p = 2 and an injection (even an isomorphism) for
p = 0, so ker(d22,∗(X)) → ker(d22,∗(N)) is a surjection (remember that, for homology, drp,q
goes to Er

p−r,q+r−1) and thus E3
2,∗(X) → E3

2,∗(N) is. Also, E3
0,∗(X) → E3

0,∗(N) is an injection,
then. Due to degree reasons, E3

2,∗(X) = E∞
2,∗(X) and the same for N . Now the claim follows

by H3(N) = E∞
2,1(N).

In case of the action not being free, we denote by Z the isotropy submanifolds in N
(whose orbit spaces are disks) and consider the diagram for the orbit spaces

H2((X \ ∂Z)∗)⊕H2(∂Z
∗) H2(X

∗) H1(∂Z
∗ × S1) H1((X \ ∂Z)∗)⊕H1(∂Z

∗)

H2((N \ Z)∗)⊕ 0 H2(N
∗) H1(Z

∗ × S1) H1((N \ Z)∗)⊕ 0

∂2 i1

∂2 i2

and the diagram for the total spaces

H3(X \ ∂Z)⊕H3(∂Z) H3(X) H2(∂E) H2(X \ ∂Z)⊕H2(∂Z)

H3(N \ Z)⊕ 0 H3(N) H2(E) H2(N \ Z)⊕H2(Z)

∂3

∂3
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We wrote 0 for the terms of H∗(Z
∗) respectively H∗(Z) that are 0, because Z∗ is a union of

discs and Z is topologically a union of D2 × T 2’s.
In the above diagram, we see by a simple diagram chase and usage of H2(X

∗) → H2(N
∗)

being an isomorphism

� the kernel of i2 is isomorphic to the kernel of i1 via the vertical map.

� H2((X \∂Z)∗) → H2((N \Z)∗) is surjective, because of the last statement, and because
H2((N \ Z)∗) → H2(N

∗) is injective.

Thus, H3(X \ ∂Z) → H3(N \ Z) is surjective by the same type of argument as when the
action is free on N (we only needed H2((X \ ∂Z)∗) → H2((N \ Z)∗) to be surjective). In
order to conclude the theorem, we have to show that K1 → K2, where

K1 := ker(H2(∂E) → H2(X \ ∂Z)⊕H2(∂Z)), K2 := ker(H2(E) → H2(N \ Z)⊕H2(Z)),

is surjective (this suffices by the same proof of the four-lemma about surjectivity, although
the assumptions are slightly different). Under the identification E = Z∗ × S1 × T we can
and we will view K2 ⊂ H0(Z

∗)⊗H2(S
1 × T ) to be naturally contained in

H0(∂Z
∗)⊗H2(S

1 × T ) ⊂ H2((∂E)1)

(see remark 1.1.2 for the notation) from now on. Thus, it suffices to show that

K2 = ker[H2((∂E)1) → H2(X \ ∂Z)⊕H2(∂Z)].

In order to understand this, since the occuring maps on spaces are bundle maps, we want to
first understand the kernel K ′

1 of

E∞
1,1(∂E) → E∞

1,1(X \ ∂Z)⊕ E∞
1,1(∂Z).

By degree reasons, E∞
1,1 = E2

1,1 for all occuring terms. It follows that K ′
1 is contained in

H0(∂Z)⊗H1(S
1)⊗H1(T ),

because ker(H1(∂E
∗) → H1(∂Z

∗)) is contained inH0(∂Z)⊗H1(S
1) and the map in homology

between the fibers is an injection by the discussion just after theorem 2.2.1.
Also, K ′

1 is mapped isomorphically (because ker(i1) → ker(i2) is an isomorphism) to the
kernel K ′

2 of
E∞

1,1(E) → E∞
1,1(N \ Z)⊕ E∞

1,1(Z),

which is contained in
H0(Z)⊗H1(S

1)⊗H1(T ),

so that we may view both K ′
1 and K ′

2 to be the same subgroup K ′ in

H0(∂Z)⊗H1(S
1)⊗H1(T ) ⊂ E∞

1,1(∂E).
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Of course, these groups are not necessarily equal to K1 and K2, so we can not conclude the
assertion just yet. Using remark 1.1.2, we take a look at the following diagram (whose rows
are exact)

0 E∞
0,2(∂E) H2((∂E)1) E∞

1,1(∂E) 0

0 E∞
0,2(∂Z)⊕ E∞

0,2(X \ ∂Z) G1 E∞
1,1(∂Z)⊕ E∞

1,1(X \ ∂Z) 0

0 E∞
0,2(Z)⊕ E∞

0,2(N \ Z) G2 E∞
1,1(Z)⊕ E∞

1,1(N \ Z) 0

j1

j2

Here, G1 = H2((∂Z)1) ⊕ H2((X \ ∂Z)1) and G2 = H2(Z1) ⊕ H2((N \ Z)1) inject into
H2(∂Z)⊕H2(X \ ∂Z) resp. H2(Z)⊕H2(N \ Z).
Therefore, we want to show that any x in K2 ⊂ H2((∂E)(1)) (which is 0 in G2, then) is 0 in
G1.
We know that j1(x) ∈ K ′, so j2(j1(y)) = 0. It follows that the image of x in G1 comes
from E∞

0,2(∂Z)⊕E∞
0,2(X \ ∂Z), but this injects into E∞

0,2(Z)⊕E∞
0,2(N \ Z) (as argued in the

case Z = ∅). So y is 0 in G1, as well, and we have shown the claim and thus the whole
assertion.

Using section 2.2 and the construction in [GKZ22, Section 3], we get as a corollary:

Theorem 2.2.3. Any orientable 3-valent GKM graph with Z2/ ± 1-labeling is realizable as
a simply-connected GKM manifold over Z.

Proof. By [GKZ22, Section 3], there is a T 2-manifoldM whose orbit space is S4 (so π1(M) =
0 by our lemma above) which satisfies all conditions needed in theorem 2.2.1. Smoothness
comes from [GKZ22, 3.5], and the other conditions immediately follow from the part [GKZ22,
3.4] of the construction ofM . There, equivariant 2-handles D2×D2×T/H (H a finite cyclic
subgroup of T , T acting on T/H and on one D2-factor) are attached onto the equivariant
one-skeleton constructed before, and after that only modifications in the free stratum were
made in such a way that the orbit space of M becomes S4.
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Chapter 3

Realization of GKM fibrations

As in the last chapter, this chapter also revolves around the realization problem. However,
we will not restrict ourselves to graphs of low valence, but instead focus on a certain subclass
of GKM graphs, namely certain GKM fiber bundles. This was already done by Goertsches,
Konstantis and Zoller in [GKZ20], where they considered GKM fiber bundles Γ → Γ′ → B,
where B is the GKM graph of a quasitoric manifold X of dimension 4, and Γ′ is the GKM
graph of S2. They were not only able to find a GKM manifold M whose GKM graph is Γ′,
but also constructed M as the total space of an equivariant fiber bundle S2 → M → X.
Moreover, they showed that, if X is toric, M admits a (not necessarily invariant) Kähler
structure, and that M can be chosen to be toric if Γ = Γ′ ×B as unlabeled graphs.
They constructed M as the projectivization of an equivariant C2-bundle over X. This C2-
bundle, in turn, was constructed first over the equivariant one-skeleton of X, only to use
equivariant obstruction theory to show that this extends to X.
The drawback of this approach using equivariant obstruction theory is that it seems difficult
to apply the same technique to GKM fiber bundles Γ′ → Γ → B, where B is now the graph
of an arbitrary (quasi)toric manifold, and Γ′ is the GKM graph of a generalized flag manifold
G/H, where G is a compact, connected semisimple Lie group and H is the centraliser of a
subtorus.
Here, we restrict ourselves to the case H = T being a maximal torus of G. The reason
for this is that then we can classify all graph automorphisms Γ → Γ, allowing us to give a
characterization of realizable fiber bundles based on a certain automorphism, which we call
the twist automorphism. We also construct a big class of examples of ’non-trivial’ GKM
fiber bundles.

3.1 Graph automorphisms

Similar to the definition of an isomorphism between GKM graphs, we can define an auto-
morphism of a single GKM graph.

Definition 3.1.1. Let ψ : Γ → Γ be a connection preserving automorphism of the unlabeled
graph Γ. We call ψ a graph automorphism if there exists a linear map ψ∗ : t

∗ → t∗ such
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that for every edge e ∈ Γ we have ψ∗(α(e)) = α(ψ(e)).

Let Γ → Γ′ → B be a GKM fiber bundle, where B is a two-valent GKM-graph and Γ the
GKM graph of G/T as described in theorem 1.2.25 and the discussion thereafter, endowed
with its canonical connection. We assume now and throughout that any two weights at
some vertex (and hence any vertex) of B, which are elements in the weight lattice of T ,
span a primitive lattice in the latter. We label the n vertices of B by v1, . . . , vn, vn+1 = v1,
and assume without loss of generality that Γ is the fiber over v1. Now, we obtain a graph
automorphism ψ : Γ → Γ by Ψ(vn,v1) ◦ . . . ◦Ψ(v1,v2), see definition 1.2.28.
We give basic examples of graph automorphisms induced by maps from G/T to itself.

Example 3.1.2. Clearly, G-equivariant diffeomorphisms from G/T to itself also define T -
equivariant ones. The former are in one to one correspondence with NG(T )/T , where this
correspondence is given by sending a diffeomorphism f to its value w on eT , or, the other way
around, sending w onto the map gT 7→ gwT , that is, right-multiplication with w. Therefore,
such f induces a graph automorphism ψ : Γ → Γ in the following way:

� A vertex [w′] is sent to the vertex [w′w], where we consider w as an element in W (G).

� An edge e between [w′] and [w′σα] is sent to the edge between [w′w] and [w′σαw].

� Since the diffeomorphism is T -equivariant, ψ∗ sends α to α.

Example 3.1.3. We can also consider left-multiplication with elements in NG(T ), f(gT ) =
wgT . We have the equation f(tgT ) = wtgT = wtw−1wgt = cw(t)f(gT ), so f is not equiv-
ariant, but rather twisted equivariant with respect to cw. Thus, it induces a graph automor-
phism via ψ∗(α) := α ◦ Ad(w)−1 = Ad(w)∗(α).

There is one more natural example coming from certain automorphisms of G.

Example 3.1.4. For an automorphism ψ : G → G sending T to itself, there is an induced
diffeomorphism ψ : G/T → G/T . The graph automorphism is induced in a natural way by
the maps ψ : W (G) → W (G) and ψ∗ : t

∗ → t∗ (i.e., the Lie algebra automorphism). As
ψ : W (G) → W (G) is a homomorphism, at least e ∈ W (G) is fixed and so its corresponding
vertex.

Definition 3.1.5. We say that the automorphisms in 3.1.3 are of Type 1 and that those
in 3.1.4 are of Type 2.

Remark 3.1.1. At first glance, it might seem odd that right-multiplication featured in 3.1.2
is not relevant to us here. However, since multiplication with w ∈ NG(T ) from the right can
be written as composition of left-multiplication with w (which is of Type 1) and conjugation
with w−1 (which is of Type 2), right-multiplication is already covered by 3.1.3 and 3.1.4.

The main part of this section is the statement that all graph automorphisms come from
the examples mentioned before. But first, we need two lemmata, the last of which is standard
and proven for completeness.
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Lemma 3.1.2. Any graph automorphism ψ is uniquely determined by its value on one
vertex v and all edges emerging from it.

Proof. It is clear that the linear map ψ∗ : t
∗ → t∗ is uniquely determined, as the labels on

the edges at a vertex span t∗. So this is a statement purely on graph level.
Let v′ be a vertex connected by the edge e to v. By definition, ψ maps v′ to the vertex ψ(v′)
connected by ψ(e) to ψ(v). Let e′ ̸= e be another edge emerging from v′. We may write
it as ∇eê, where ê is some edge emerging from v. Since ψ prerserves ∇, the edge ψ(e′) is
determined by ψ(e) and ψ(ê). Since Γ was assumed to be connected, we are done.

Lemma 3.1.3. Let g be the Lie algebra of a compact semisimple Lie group, t a maximal
abelian subalgebra and ϕ : t∗ → t∗ a linear automorphism permuting the roots of g. Assume,
moreover, that ϕ respects the Cartan integers. Then ϕ extends to an automorphism of g.

Proof. We start by complexifying everything to obtain an automorphism ϕC of the root
system of gC. Let (α1, . . . , αn) be a basis for the root system, (h1, . . . , hn) a corresponding
real basis for tC, and (α′

1, . . . , α
′
n) and (h′1, . . . , h

′
n) their respective images under ϕC. Let

Xi ∈ gαi
be an element such that [hi, Xi] = 2Xi, [hi, X i] = −2X i and [Xi, X i] = hi, and

choose the X ′
i in the same way. By a theorem of Serre, gC is generated as a Lie algebra by the

hi, the Xi and the X i subject to relations that are left invariant under the transformation
hi → h′i, Xi → X ′

i and X → X
′
. Thus, we get a well defined automorphism of gC which

commutes with complex conjugation and therefore leaves g = gR ⊂ gC invariant. This proves
the claim.

In the next lemma, we link the length of a connection path Pα,β of G/T (with respect to
the canonical connection) generated by two edges at [e] corresponding to two roots α and β
to the Cartan integer of those roots. Denote by ord(g) the order of an element g in a finite
group.

Lemma 3.1.4. We have #E(Pα,β) = 2ord(sαsβ). In particular, the Cartan integer of α and
β is uniquely determined by #E(Pα,β).

Proof. We are free to switch between considering sα and sβ as reflections in t∗ or elements
in W (G). If sα and sβ do not commute (if they do, the path clearly has four edges), the
connection path Pα,β looks as follows.

e

sβ

sα

sαsβ

sαsβs
−1
α = sαsβsα
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The dotted lines indicate that the path continues. This path closes the first time as soon as
(sαsβ)

k = idt∗ or (sαsβ)
ksα = idt∗ . The latter case is impossible, since the left hand side has

determinant −1. In the first case, we clearly have 2k edges in the loop.
The last statement about the Cartan integers now follows from standard Lie theory.

Theorem 3.1.6. Let ψ : Γ → Γ be a graph automorphism. Then there are graph automor-
phisms ψ1 and ψ2 of Type 1 and 2, respectively, such that ψ = ψ1 ◦ ψ2.

Proof. Let v be the vertex corresponding to e ∈ W (G). We define ψ1 to be the graph
automorphism sending v to ψ(v), i.e. ψ1 is left multiplication with an element in NG(T )
descending to ψ(v) ∈ W (G). Then ψ2 := (ψ1)

−1 ◦ ψ sends v to itself and we only need to
check that it is of Type 2, i.e. it comes from an automorphism of G.
Indeed, ψ2 permutes all the edges emerging from v and has the property α(ψ2(e)) =
(ψ2)∗(α(e)), implying that (ψ2)∗ is an isomorphism of t∗ permuting the roots. Since ψ2

preserves the connection, (ψ2)∗ preserves the Cartan integers by 3.1.4. Theorem 3.1.3 de-
livers us an automorphism of g inducing (ψ2)∗. As G was assumed to be simply-connected,
this automorphism of g is induced by an automorphism ϕ of G. The graph automorphism
induced by ϕ agrees with ψ2 on v and all edges emerging from it. In view of 3.1.2, this shows
the assertion.

3.2 Examples of GKM fiber bundles

Now we want to give many examples of GKM fiber bundles Γ → Γ′ → B as described at
the start of this chapter whose twist automorphism is of Type 1 (3.1.3). It will become
apparent in 3.3 why we focus on these.
At first, we note that if a GKM fiber bundle is given and its twist automorphism is deter-
mined by w ∈ W (G), then for any weight α of the fiber graph, the difference Ad(w)∗(α)−α
needs to be contained in the two-dimensional subspace of t∗ spanned by the weights of the
base graph. Thus, Ad(w) has to fix a subspace of t of codimension 2, or equivalently (by
our assumptions on the labeling of B), there is a subtorus T ′ ⊂ T of codimension 2 which is
fixed by cw.

The other way around, given some w ∈ W (G) such that cw fixes a subtorus T ′ ⊂ T
of codimension 2, we can choose a basis (α, β) of ann(Lie(T ′)) and get a graph B of any
toric manifold such that the weights are linear combinations of α and β. Having fixed w,
T ′ and B, we ask ourselves how to construct signed GKM fiber bundles Γ → Γ′ → B up to
automorphisms of T (that is, we assume that the labels of a fiber graph over a base vertex v1
are fixed). We label the n vertices of B by v1, v2, . . . , vn, vn+1 = v1, denote by αi the signed
weight of the edge (vi, vi+1), by Ti its kernel and by ψi an automorphism of T that fixes Ti
and is orientation preserving. Now if we want to construct Γ → Γ′ → B, we already know
how the pure graph has to look like, so we only need to care about the labeling.
We start over the edge (v1, v2). It is clear that there are as many such GKM fiber bundles
Γ → Γ′

(v1,v2)
→ (v1, v2) as there are choices of ψ1. Now there are as many choices to extend
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this bundle to (v1, v2) ∪ (v2, v3) as there are choices for ψ2, and so on. We can go on like
this until we need to consider ψn. In principle, ψn could be chosen arbitrary, but we have
already chosen the ψi, i ∈ {1, . . . , n − 1}, and we need the condition ψn ◦ . . . ◦ ψ1 = Ad(w)
to be satisfied.
Any ψi can be seen as an element in SL(m,Z) which fixes Lie(T ′). We choose a basis
w1, . . . , wm−2 for the canonical lattice of the latter, given by the kernel of the exponential
map, and extend this to a basis w1, . . . , wm for the lattice of Lie(T ) such that wm−1 is fixed
by ψn−1 and wm is fixed by ψn (this is possible by [GHV73, p. 57, Exercise 7]). With respect
to this basis, any ψi is of the form (

1Zm−2 Bi

0 Ai

)
where Bi is some (m− 2)× 2-matrix and Ai is in SL(2,Z), such that the combined m× 2-
matrix fixes the kernel of αi. Note that this condition for i = n − 1 and i = n forces An−1

and An to be of the form

An−1 =

(
1 ∗
0 1

)
, An =

(
1 0
∗ 1

)
Of course, Ad(w) has the same form as the ψi, but without the restriction on Aw and Bw.
Now we can formulate and prove the following theorem.

Theorem 3.2.1. For the basis (w1, . . . , wm) from above, any choice of the above A1, . . . , An
such that An · . . . · A1 = Aw and for any choice of the above B1, . . . , Bn−2, there are unique
Bn−1 and Bn such that ψn · . . . ·ψ1 = Ad(w). So for m ≥ 3, any choice of the labeling of the
fiber graph over v1 such that no weights are contained in the real span of the base weights
yields a GKM fiber bundle.

Proof. We set ψ = Ad(w) · ψ−1
1 · . . . · ψ−1

n−2. This is of the form

ψ =

(
1Zm−2 B
0 An · An−1

)
.

Here, B is of the form (u1, u2), where u1 and u2 are column vectors of lengthm−2. Remember
that An−1 and An are given by

An−1 =

(
1 k1
0 1

)
, An =

(
1 0
k2 1

)
.

for certain integers k1 and k2. Moreover, the left entries of Bn−1 as well as the right entries
of Bn have to be 0, because the combined m× 2-matrix of Bn−1 and An−1, for example, has
to fix wm−1, so we have matrices of the form

ψn =

(
1Zm−2 (u′1, 0)
0 An

)
, ψn−1 =

(
1Zm−2 (0, u′2)
0 An−1

)
.
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Their product ψn · ψn−1 now is

ψn · ψn−1 =

(
1Zm−2 (u′1, u

′
2 + k1u

′
1)

0 An · An−1

)
Thus, we only have the choices u′1 = u1 and u′2 = u2 − k1u1 and have found a labeling.
If the labeling of the fiber over v1 is as proposed in the lemma, then it is clear that the same
holds for v2, v3 and so on, meaning that the labeled graph Γ′ is indeed a GKM graph.

Remark 3.2.2. Above, we started with the base weights and then assumed the existence
of a certain labeling of Γv1 . Of course, this is equivalent to starting with the labeling of Γv1
and then giving the base weights, as long as we assume that the lattice spanned by these is
primitive in the weight lattice of Tm, because there is always an element of SL(m,Z) sending
a primitive lattice of rank r to any other one.
Given a labeling of Γ′ with weights α1, . . . , αj for m ≥ 3, we can find many weights β1 and
β2 such that the lattice spanned by the latter is primitive and contains no element αi. This
directly follows from the following considerations: given non-zero elements v1, . . . , vj in Zm,
we can always find elements β′

1 and β′
2 in Qn such that the rational 2-plane E spanned by

the latter contains none of the vj. Now E ∩Zm is of rank 2, non-empty and primitive in the
sense that any element primitive in E is primitive in Zm, which is equivalent to Zm/E being
free abelian. Now choose an integer basis β1 and β2 of E that give the basis weights at v1.

We can thus find examples of such GKM fiber bundles by finding these Ai in theo-
rem 3.2.1. It seems hard to classify all such solutions, but nonetheless we can find many for
an arbitrary toric base, except CP 2, and lots of Lie groups G.

Example 3.2.3. Let B be the yet unlabeled graph of a Hirzebruch surface. Suppose there
is an embedded su(3) ⊂ Lie(G). This is fixed by the adjoint representation of a subtorus
T ′ ⊂ T of codimension 2. We set e1 = 2πi diag(1,−1, 0), e2 = 2πi diag(0, 1,−1) and
e3 = 2πi diag(1, 0,−1). For some b ∈ Z, we choose the basis wm−1 = be1 + e2 and wm =
(b−1)e1+e2 for the canonical lattice of the maximal torus in su(3), and a basis w1, . . . , wm−2

for the canonical lattice of Lie(T ′). We denote by w the Weyl group element of G whose
action on T ′ is trivial and which sends e1 resp. e2 to −e3 resp. e1 (in the usual identification
of W (su(3)) with S3, this is the element (23) ◦ (12)). The matrix of this isomorphism with
respect to the basis wm−1 and wm is now

Ad(w) =

(
b b− 1
1 1

)(
−1 1
−1 0

)(
1 −b+ 1
−1 b

)
=

(
−3b+ 1 ∗

−3 ∗

)
Now we want the edge (v2, v1) of B to have label dual to wm, (v2, v3) to have label dual to
wm−1 and (v3, v4) to have label dual to wm again. We set A4 to be the identity and have

A−1
3

(
−3b+ 1 ∗

−3 ∗

)
:=

(
1 −b
0 1

)(
−3b+ 1 ∗

−3 ∗

)
=

(
1 k1
−3 −3k1 + 1

)
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for a certain integer k1. Thus,(
1 b
0 1

)(
1 0
−3 1

)(
1 k1
0 1

)
= Ad(w)

By theorem 3.2.1, we obtain many GKM fiber bundles whose twist automorphism is Ad(w)
and whose base B is the graph of a Hirzebruch surface.
Now it is well known that every toric manifold of dimension 4 except CP 2 is obtained by
a sequence of blow-ups of a Hirzebruch surface H (see [YK99, Lemma 6.8], for example).
This gives a GKM fiber bundle for every such base, because we take the GKM fiber bundle
we just constructed for H and set ψi to be the identity for a newly emerging edge after one
single blow-up.

3.3 The construction

Now we want to construct the geometric realizations of all feasible GKM fiber bundles.

Theorem 3.3.1. Let Γ′ be the total space of a GKM fiber bundle Γ → Γ′ → B, where Γ
is the GKM graph of G/T endowed with its canonical connection, and B is the graph of a
quasitoric manifold X. Denote by ψ = ψ1 ◦ψ2 the twist automorphism of this bundle. There
is a geometric realization G/T →M → X of Γ → Γ′ → B if ψ is given by left-multiplication
with an element w ∈ NG(T ).

Proof. We label the vertices of the base graph B by . . . , vn = v0, v1, . . . , vn, vn+1 = v1, . . .,
and we assume n ≥ 2. Without loss of generality we may assume that the fiber graph over
v1 is the graph associated to the G-manifold G/T , that is, the T -action on G/T comes from
the group structure on G by left-multiplication. We call this T -manifold F1. By preapplying
the torus automorphism Ψ(v1,v2), we change the T -action on F1, giving us another copy F2

of G/T where T now acts according to the labels of Γv2 . We iterate this process to define
F3, . . . , Fn. Similarly, we write G1 for the group G considered as a T -manifold (acting as
left-multiplication), and then by G2 the T -action obtained by preapplying Ψ(v1,v2), and iter-
ate this to obtain G3, . . . , Gn. Also, we denote by ψ the geometric realization of the graph
automorphism.

In particular, there are T -equivariant maps fk : S
1 × Gk → Gk+1 (where the kernel of

the T -action on S1 is determined the weight on the edge (vk, vk+1)) defined by demanding
that fk restricted to {e} ×Gk is the identity and extending this equivariantly. This is well-
defined, since when t ∈ T fixes S1, then the actions of T on Gk respectively Gk+1 agree by
the compatibility condition of a GKM fiber bundle.
We also define Gn+1, Fn+1 and fn : S

1 × Gn → Gn+1 in a similar way. Then, the T -spaces
G1 and Gn+1 (and thus F1 and Fn+1) are equivariantly diffeomorphic, via the geometric re-
alization ψ : G1 → Gn+1. In what follows, we construct a T -equivariant, principal G-bundle
(G acting from the right), which allows us to pass to the desired G/T -bundle.
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Let Di be 4-disks (with boundary) with T -action corresponding to the weights at vi
(choose signs, if necessary), and fix equivariant embeddings : Di → X sending 0 to the
fixpoint pi corresponding to vi, for i ∈ {1, . . . , n}, such that the images of the interiors of Di

and Di+1 intersect in a small neighborhood of a T 2-orbit in the two-sphere corresponding to
the edge (vi, vi+1). Denote by U±

i ⊂ Di a small neighborhood of the isotropy subcircle N±
i

corresponding to the edge (vi, vi±1). This induces equivariant diffeomorphisms hi : U
+
i →

U−
i+1.

Now consider the T -manifolds (Di \N+
i )×Gi and (Di+1 \N−

i+1)×Gi+1. We can glue them
along U+

i ×Gi and U
−
i+1 ×Gi+1 using the equivariant diffeomorphism

f̃i : U
+
i ×Gi → U−

i+1 ×Gi+1, (s, z1, z2, p) 7→ (hi(s, z1, z2), fi(z1, p)).

This still has a natural structure of a T -equivariant, principal G-bundle. We can iterate this
process and attach (D3 \N−

3 )×G3, (D4 \N−
4 )×G4, . . . up until Dn×Gn. Then, we remove

N−
1 ×G1 and N+

n ×Gn out of this space and identify U−
1 ×G1 and U+

n ×Gn via

U+
n ×Gn

f̃n→ U−
1 ×Gn+1

id×ψ−1

→ U−
1 ×G1.

The resulting manifold with boundary is the total space of a T -equivariant G-bundle whose
base X ′ is a neighborhood of the equivariant one-skeleton of X, which is equivariantly dif-
feomorphic to X minus an open neighborhood of a free T 2-orbit. Moreover, we still have
the right-action of G, because ψ is given by left-multiplication with w. In order to get the
bundle over whole X, we need to show that it is trivial over the boundary ∂X ′ = S1 × T 2,
and that this trivialization is also G-equivariant with respect to the right-action of G.

By the construction of the bundle over X ′, the bundle over ∂X ′ is obtained by gluing
chunks of the form [0, 1]×T 2×Gi and [0, 1]×T 2×Gi+1 together along their respective bound-
aries by demanding that the gluing map is equivariant with respect to T , and the identity on
{e}×Gi for i ∈ {1, . . . , n− 1} respectively ψ−1 on {e}×Gn. Thus, the bundle over S

1 ×T 2

is both T -equivariantly and G-equivariantly isomorphic to the bundle [0, 1]× T 2 ×G1/ ∼ϕ,
where ϕ is given by (e, p) 7→ (e, ψ−1(p)) and T -equivariant extension.

Now if ψ is given by left-multiplication with w, the equivariance of ψ with respect to T ′,
the kernel of the T -action on X, reads

t · wg = wtg,

which is true if and only if w is in the centralizer of T ′. Since the latter is path-connected,
there is a path from w to {e} through elements centralizing T ′, which means that there is
indeed an isomorphism to S1×T 2×G1 which is compatible with both the T -action and the
G-action. This enables us to extend the bundle over X ′ to whole X equivariantly, and we
are done.

Remark 3.3.1. It is important to note that one could also consider GKM fiber bundles
Γ → Γ′ → B, where Γ is not endowed with its canonical connection (in prinicple, there could
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be many). It is unclear to the authors whether loosing this restriction that Γ is supposed to
be endowed with its canonical connection gives rise to more examples.

Remark 3.3.2. Of course, we can always construct a bundle G/T → M(1) → X1 over the
equivariant one-skeleton X1 ⊂ X associated to Γ → Γ′ → B with the method as in the last
proof, regardless of what ψ is. For any vertex vi in B, any edge e′ in Γvi and any horizontal
edge e at vi, the T -invariant spheres corresponding to e′ and ∇ee

′ are homotopic by our
construction.

We want to show in the following that the bundle is not realizable if ψ2 is not the identity
on Γ. We need a small lemma, first.

Lemma 3.3.3. Let ψ′ : G→ G be an automorphism that sends T to itself. Denote by ψ the
induced self-diffeomorphism G/T → G/T . Then ψ∗ : H2(G/T ) → H2(G/T ) is the identity
if and only if ψ′ restricted to T is the identity.

Proof. We have two T -actions on G now: the one given by the prescribed embedding of
T , whose fundamental vector fields we denote by X, and the one twisted with ψ, whose
fundamental vector fields we denote by X̃. We denote by G the manifold G with the first
T -action and by G′ the manifold G with the twisted T -action.
We use the Cartan models (see [GZ19], for example) of G resp. G′ to see this. We denote the
equivariant differentials by D resp. D′. There is the well-known isomorphism H2(G/T ) ∼= t∗,
coming from the injection t∗ → t∗ ⊗ Ω0(G) ⊂ S(t∗) ⊗ ΩT (G) ([GZ19, Theorem 10.3]).
The automorphism ψ′ induces an isomorphism dψ′ = g : t → t and thus an isomorphism
f : t∗ → t∗ by f(α) = α ◦ g, and thus an chain isomorphism between the Cartan models by
f ⊗ ψ′∗, because

[(f ⊗ ψ′∗)(D′ω)](X) = ψ′∗(Dω(g(X))) = dψ′∗(ω(g(X)))− ψ′∗(i
g̃(X)

ω(g(X)))

and also, because ψ′
∗(X) = g̃(X),

D((f⊗ψ′∗)(ω))(X) = dψ′∗(ω(g(X)))− iX(ψ′∗ω(g(X))) = dψ′∗(ω(g(X)))−ψ′∗(i
g̃(X)

ω(g(X)))

and thus an ismorphism between equivariant cohomologies. We thus get the following com-
mutative diagram:

t∗ H2
T (G

′) H2(G′/T )

t∗ H2
T (G) H2(G/T )

∼=

f

∼=

f⊗ψ′∗ ψ∗

∼= ∼=

This shows the claim.

Lemma 3.3.4. The bundle Γ → Γ′ → B corresponding to ψ = ψ1 ◦ ψ2 is not realizable as
G/T →M → X, where we mean by G/T any T -action on G/T with graph Γ, if ψ2 ̸= idΓ.
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Proof. We denote by w the element of NG(T ) that induces ψ1, by ϕ2 : G/T → G/T an
automorphism that induces ψ2 and by ϕ the composition w · ϕ2. We will show that, if the
bundle is realizable as G/H → M → X, then the lift of ϕ2 to G is necessarily the identity
on T , which would imply that ψ2 = idΓ.
Since multiplication with w induces the identity on H2(G/T ) (we always take homology with
R-coefficients in this proof), we have ϕ∗ = (ϕ2)∗. Therefore, it suffices to show that ϕ∗ is the
identity on H2(G/T ) by lemma 3.3.3.
To do this, we want to show that the monodromy π1(X1) = π1(S

1) → Aut(H2(G/T )) is
generated by ψ∗, just as for the special construction in 3.3.2. Choose an edge e1 in Γv′1 ,
where v′1 is a vertex of B, and some vertex of e1 called v1 and denote by S1 the corre-
sponding T -invariant sphere in F1. We define vi in Γ to be the end of a lift of the edge
path (v′1, v

′
2), (v

′
2, v

′
3), . . . , (v

′
i−1, v

′
i) that starts in v1. Having defined ei−1, we define ei as

ei := ∇(vi−1,vi)ei−1 and correspondingly denote by Si the sphere in Fi (we do this for i = n+1,
as well).
Choose a subcircle that does not fix any Si, and choose an orientation on Si by taking the
fundamental vector field of a generator Y of the Lie algebra of this circle and a radial vector
at the fixpoint corresponding to vi. We claim that the fundamental classes of S(ei) and
S(ei+1) with this orientation define the same element in the total space E of the bundle re-
stricted to the sphere S((vi, vi+1)) ⊂ X1. Since the maps H2(S(ei)) → H2(E) are completely
encoded in the graph of E (the map in cohomology as, and this determines the corresponding
map in homology), it suffices to check this for any GKM-manifold with the same graph. For
this we can take the bundle as in 3.3.2 and restrict it to S((vi, vi+1)), because there, Si and
Si+1 are homotopic with this orientation.
This also shows that for any path γ1,2 from the fixpoint pi of S((vi, vi+1)) to the other fixpoint

pi+1 and any map gi : S2 → Fi such that gi∗[S
2] = [Si], any lift f i of S2 × [0, 1]

π2→ [0, 1]
γ1,2→

S((vi, vi+1)) to M(1) with f
i(·, 0) = gi has the property that f i(·, 1)∗([Si]) = [Si+1].

This holds for both our given bundle and the special bundle constructed in 3.3.2. So, for
both bundles, consider a generator γ = γn,n+1 · . . . · γ1,2 of π1(X1). By composing the f i, we
see that any lift f of

S2 × [0, 1]
π2→ [0, 1]

γ→ X1

to M(1) with f(·, 0) = g1 has the property that f(·, 1)∗([S1]) = [Sn+1]. We want to show that
for any T -action on G/T whose GKM graph agrees with the graph of the standard T -action
there is an isomorphism between the respective second homology groups that respects both
the classes [S1] and [Sn+1], because then the monodromies for both our bundles are the same.
We certainly have an isomorphism between the second cohomology groups coming from the
isomorphism between cohomology of the manifold and graph cohomology. By dualizing, we
get an isomorphism g of the second homology groups, and this will do the job. To see this,
we choose signs at the labels of e1 = (v1, w1) and en+1 = (vn+1, wn+1) in such a way that the
evaluation Lie algebra element Y chosen before is positive. Now, any ω ∈ H2(M) can be
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described by ω ∈ H2
T (Γ), where

H2
T (Γ) =

ω ∈
⊕
v∈V (Γ)

H2(BT ) : ωv − ωv′ ≡ 0 mod α(e) for all edges e between v, v′

 .

With this description, we have (remember that we chose signs for the labels!)

ω([S1]) = 2π(ωw1 − ωv1)/α(e1), ω([Sn+1]) = 2π(ωwn+1 − ωvn+1)/α(en+1),

for both the standard action and any action, because this holds for any effective T -action on
a 2-sphere (use equivariant deRham cohomology, for example, and the ABBV-localization
formula). This shows that in the general case, too, the monodromies for both our bundles
evaluated on R · [S1] agree.

But H2(G/T ) is generated by T -invariant spheres and S1 was arbitrary, so they agree
on H2(G/T ). Since the monodromy of the one in 3.3.2 is generated by ψ∗, both are, and so
the injectivity of H∗(G/T ) → H∗(M) (the spectral sequence associated to G/T → M → X
collapses by degree reasons) implies that ψ∗ is the identity on H2(G/T ) as claimed.
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Chapter 4

Multiplicity free U(2)-manifolds and
triangles

A fundamental invariant of a compact and connected Hamiltonian K-manifold M , where K
is a compact connected Lie group, is its momentum polytope P(M). In [Kno11], F. Knop
showed that ifM is multiplicity free (cf. definition 1.3.6 below) then P(M) together with the
principal isotropy group of the K-action uniquely determines M . This assertion had been
conjectured by Th. Delzant in the 1990s, after proving it for abelian K in [Del88] and for K
of rank 2 in [Del90]. Knop also gave necessary and sufficient conditions for a polytope to be
the momentum polytope of such a multiplicty free manifold M . These conditions involve a
representation theoretic object, called weight monoid, associated to smooth affine spherical
varieties, which constitute a certain class of complex algebraic varieties equipped with an
action of a complex reductive group.

Here, we apply Knop’s classification result in the case where K = U(2) and determine
the compact and connected multiplicity free Hamiltonian U(2)-manifolds whose momentum
polytope is a triangle and whose principal istotropy group is trivial. The result is sum-
marized in table 4.2. In contrast to Knop’s work, which yields local descriptions of the
multiplicty free manifold “above” open subsets of the momentum polytope, we have found
explicit, global descriptions of the U(2)-manifolds under consideration. Our hope is that
they constitute useful “experimental data” to study the following natural question: Which
geometric information about a multiplicity free manifold M can “directly” be read off its
momentum polytope P(M)?

The first purpose of section 4.1 is to further specialize Knop’s theorem 1.3.9 to the
case K = U(2): the classification of smooth affine spherical (SL(2,C) × C×)-varieties from
[PPVS18] yields proposition 4.1.3, which gives an elementary and explicit characterization of
the momentum polytopes of compact and connected multiplictity free U(2)-manifolds with
trivial principal istropy group. A first application is proposition 4.1.7, which extends the
applicability of the Kählerizability criterion [Woo98b, Theorem 8.8] due to C. Woodward.
We also extend [Woo98b, Theorem 9.1] and show in proposition 4.1.17, using the extension
criterion of S. Tolman’s [Tol98], that a multiplicity free U(2)-manifold with trivial principal
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isotropy group carries a U(2)-invariant compatible complex structure if and only if it carries
a T -invariant compatible complex structure, where T is a maximal torus of U(2). We then
apply proposition 4.1.3 to find the list of all triangles which occur as momentum polytopes
of such manifolds in proposition 4.2.2. The rest of section 4.2 is devoted to the proof of
theorem 4.2.3: for each such triangle we explicitly and globally describe the corresponding
compact and connected multiplicity free U(2)-manifold. Finally, in theorem 4.3.3 of sec-
tion 4.3, we show that exactly four nonequivariant diffeomorphism types occur among these
manifolds.

We have tried to keep the exposition explicit and elementary in order to make our results
and the employed techniques, which come from different areas of mathematics, accessible to
as many readers as possible. The techniques can directly be applied to the other compact
Lie groups of rank 2 and should yield analogous classifications and results.

Notation

We use the convention that 0 ∈ N. From section 4.1 onwards, T will be the maximal
torus of U(2) consisting of diagonal matrices and TC the subgroup of diagonal matrices in
GL(2) := GL(2,C). We will use the notation from example 1.3.1 throughout the paper.

Unless otherwise stated, K will denote a compact connected Lie group and G = KC its
complexification, which is a complex connected reductive linear algebraic group.

4.1 Multpliplicity free U(2)-actions with trivial princi-

pal isotropy group

Let M be a multiplicity free U(2)-manifold with trivial principal istotropy group. It follows
from theorem 1.3.9 and example 1.3.8 that “near” a vertex lying on the wall of the Weyl
chamber t+, the momentum polytope P(M) ofM “looks like” the weight monoid of a smooth
affine spherical GL(2)-variety. We distill table 4.1 of all relevant smooth affine spherical
GL(2)-varieties from a result in [PPVS18]. This then allows us to make the conditions
(1.3.14) and (1.3.15) very concrete in proposition 4.1.3.

Weight monoids of smooth affine spherical GL(2)-varieties

Table 5 in [PPVS18] contains all the smooth affine spherical (SL(2)×C×)-varieties and their
weight monoids. We briefly explain how to use this classification to explicitly determine the
weight monoids of smooth affine GL(2)-spherical varieties. We will make use of the notation
in example 1.3.1. In particular, the weight lattice Λ of GL(2) is spanned by the weights
ω1, ω2.

As in [PPVS18] we choose

H =

{(
a 0
0 a−1

)
: a ∈ C×

}
× C×
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as the maximal torus and

U =

{(
1 b
0 1

)
: b ∈ C

}
× {1}

as the maximal unipotent subgroup of SL(2)×C× normalized byH. The weights ω : H → C×

and ε : H → C× defined by

ω

((
a 0
0 a−1

)
, z

)
= a, and ε

((
a 0
0 a−1

)
, z

)
= z

span the weight lattice Hom(H,C×) of SL(2) × C× and the monoid of dominant weights
corresponding to U is

⟨ω, ε,−ε⟩N ⊂ Hom(H,C×).

We define the isogeny
φ : SL(2)× C× → GL(2) : (A, z) 7→ zA (4.1.1)

and denote the induced (injective) map Λ → Hom(H,C×) on weight lattices by φ∗. Then
Γ ⊂ Λ+ is the weight monoid of a smooth affine spherical GL(2)-variety if and only if
φ∗(Γ) ⊂ ⟨ω, ε,−ε⟩N is the weight monoid of a smooth affine spherical (SL(2)× C×)-variety.
Since

φ∗(ω1) = ω + ε and φ∗(ω2) = 2ε

we have
φ∗(Λ) = {aω + bε : a ≡ b mod 2}

and it follows that the images under φ∗ of the weight monoids of smooth affine spherical
GL(2)-varieties are exactly those weight monoids in [PPVS18, Table 5] which are subsets of
{aω + bε : a ≡ b mod 2}.

In view of part (b) of theorem 1.3.9 we restrict ourselves to those weight monoids Γ of
smooth affine spherical GL(2)-varieties such that the cone R≥0Γ generated by Γ is pointed (as
defined in remark 1.3.4(a)) and such that ZΓ = Λ. This yields the weight monoids listed in
table 4.1. In fact, in view of Knop’s condition (1.3.15), we list the weight cones R≥0Γ ⊂ t+
instead of the weight monoids. The cone R≥0Γ determines Γ because we have fixed the
lattice ZΓ generated by Γ to be Λ and because of the equality Γ = ZΓ∩R≥0Γ, which follows
from the fact that smooth varieties are normal. In summary, these computations yield the
following proposition.

Proposition 4.1.1. If X is a smooth affine spherical GL(2)-variety such that ZΓ(X) = Λ
and such that R≥0Γ(X) is pointed, then R≥0Γ(X) is one of the cones listed in table 4.1.

Remark 4.1.2. As they provide local models of multiplicity free U(2)-manifolds with trivial
principal isotropy group, we have included in table 4.1 the (unique) smooth affine spherical
GL(2)-varieties X that realize the listed weight cones R≥0Γ(X). We leave the verification
that each variety X in the table has the given weight cone to the reader. This can be deduced
from [PPVS18, Table 5] using the isogeny φ defined in (4.1.1) or by using basic facts in the
representation theory of GL(2) to determine the highest weights of GL(2) that occur in the
coordinate ring C[X] of X.
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Table 4.1: Pointed weight cones of smooth affine spherical GL(2)–varieties X with ZΓ(X) =
Λ. The “Case” numbers refer to those in [PPVS18, Table 5]

Case X R≥0Γ(X) parameters

11
(
C2 ⊗ Cdet−(k+1)

)
× Cdet−ℓ cone((k + 1)ε1 + kε2, ℓ(ε1 + ε2))

k ∈ Z,
ℓ ∈ {1,−1}

14 GL(2)×TC C−(jα+ε1) cone(α, jα + ε1) j ∈ N
14 GL(2)×TC C−(jα−ε2) cone(α, jα− ε2) j ∈ N

15 GL(2)

/{(
zj 0
0 zj+1

)
: z ∈ C×

}
cone(jα + ε1, jα− ε2) j ∈ N

α = ε1 − ε2 as in example 1.3.1.
In Case 11, C2 stands for the defining representation of GL(2).

Momentum polytopes

In proposition 4.1.3 we specialize Knop’s theorem 1.3.9 to the case K = U(2). We continue
to use the notation in example 1.3.1. In particular, α = ε1 − ε2 is the simple root of U(2).
Combining table 4.1 with theorem 1.3.9 we obtain the following.

Proposition 4.1.3. Let P be a convex polytope in t+. Then P is the momentum polytope
of a (unique) multiplicity free U(2)-manifold with trivial principal isotropy group if and only
if all of the following conditions are satisfied:

(1) dimP = 2;

(2) P is rational with respect to Λ, i.e. for every two vertices a, b of P connected by the
edge [a, b] of P, the intersection R(b− a) ∩Λ is nonempty (we will denote the primitive
elements of Λ on the extremal rays of the cone R≥0(P − a) by ρa1, ρ

a
2);

(3) (Delzant) If a is a vertex of P with ⟨α∨, a⟩ > 0, then (ρa1, ρ
a
2) is a basis of Λ;

(4) If a is a vertex of P with ⟨α∨, a⟩ = 0, then {ρa1, ρa2} is one of the following sets:

{ε1 + ε2, k(ε1 + ε2) + ε1} for some k ∈ Z; (4.1.2)

{−(ε1 + ε2), k(ε1 + ε2) + ε1} for some k ∈ Z; (4.1.3)

{α, jα + ε1} for some j ∈ N; (4.1.4)

{α, jα− ε2} for some j ∈ N; (4.1.5)

{jα + ε1, jα− ε2} for some j ∈ N. (4.1.6)

Proof. Thanks to Knop’s theorem 1.3.9, the cones in the third column of table 4.1 describe
the ”local” shape, near a vertex that lies on the wall of the Weyl chamber t+, of the momen-
tum polytope P of a multiplicity free U(2)-manifold with trivial principal isotropy group.
If a is a vertex of P that lies in the interior of t+, we have (Ka)

C = TC. The shape of P
near a must be as described in part (3) of the proposition due to the well-known structure
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of the weight monoids of smooth affine toric varieties (see, e.g. [Ful93, Section 2.1]). The
proposition follows.

In remark 4.1.4 we give some geometric information related to vertices of the momen-
tum polytopes under consideration in proposition 4.1.3. We first introduce some additional
notation. Suppose (M,µ) is a mulitplicity free U(2)-manifold with momentum polytope P .
Let

Ψ :M → P ⊂ t+, m 7→ µ(K ·m) ∩ t+ (4.1.7)

be the invariant momentum map of M and let µT : M → t∗ be the momentum map of
M considered as a T -manifold, that is µT = r ◦ µ, where r : k∗ ↠ t∗ is the restriction map.
We recall from remark 1.3.7(b) that every fiber of Ψ is a K-orbit and from proposition 1.3.5
that µT (M) is the convex hull of P ∪ sα(P).

Remark 4.1.4 (Vertices and fixpoints). Let P be a polytope satisfying the conditions in
proposition 4.1.3 and let M be the mulitplicity free U(2)-manifold with trivial principal
isotropy group such that P(M) = Ψ(M) = P . The local models X of M given in table 4.1
yield the following information (see also remark 1.3.10(??)).

(a) If a is as in case (3) of proposition 4.1.3, Ψ−1(a) contains exactly two T -fixpoints p1, p2
and µT (p1) = sα(µT (p2)).

(b) If the extremal rays at a are those in eq. (4.1.2) or eq. (4.1.3), then there is a unique
T -fixpoint p in Ψ−1(a). Moreover µT (p) = a and p is even fixed by U(2).

(c) In the cases of eqs. (4.1.4) and (4.1.5), there are exactly two T -fixpoints p1, p2 in Ψ−1(a).
Moreover µT (p1) = µT (p2) = a.

(d) In the case of eq. (4.1.6), Ψ−1(a) does not contain any T -fixpoints.

Invariant compatible complex structures

We recall that a complex structure J on a symplectic manifold (M,ω) is called compatible
if (M,ω, J) is Kähler. In this section we present a generalization of a criterion of Wood-
ward’s for the existence of a U(2)-invariant compatible complex structure on a multiplicity
free U(2)-manifold. More precisely, in [Woo98b, Theorem 8.8], Woodward provided such a
criterion for a certain class of multiplicity free SO(5)-manifolds and remarked that it could
be adapted to other rank 2 groups. In case the acting group is U(2), Woodward’s criterion
applies to those multiplicity free U(2)-manifolds with trivial principal isotropy whose mo-
mentum polytope has a vertex on the wall of the Weyl chamber such that, near this vertex,
the momentum polytope looks like one of the cones spanned by the vectors in (4.1.6). Thanks
to the work [MT12] of J. Martens and M. Thaddeus on non-Abelian symplectic cutting we
can show that his criterion can be used to decide the existence of a U(2)-invariant compatible
complex structure for any multiplicity free U(2)-manifold with trivial principal isotropy, see
proposition 4.1.7. In the proof of proposition 4.1.7 we use the so-called extension criterion of
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Tolman [Tol98] to show in proposition 4.1.17 that a multiplicity free U(2)-manifold with triv-
ial principal isotropy group carries a U(2)-invariant compatible complex structure if and only
if it carries a T -invariant compatible complex structure. Woodward had proved an analogous
statement for certain multplicity free SO(5)-manifolds in [Woo98a, Theorem 9.1]. Proposi-
tion 4.1.17 also gives a second Kählerizability criterion for our U(2)-manifolds in terms of
the T -momentum polytope and the images of the T -fixpoints under the T -momentum map.

Recall that the wall of the Weyl chamber t+ of U(2) is its subset {λ ∈ t∗ : ⟨α∨, λ⟩ = 0},
where α∨ is the simple coroot as in (1.3.2) of example 1.3.1.

Definition 4.1.5. Let P be a 2-dimensional polytope in the Weyl chamber t+ of U(2), let F
be an edge of P and let nF be an inward-pointing normal vector to F . We call F a positive
edge of P if ⟨α∨, nF ⟩ > 0.

Remark 4.1.6. It follows from proposition 4.1.3 that if the momentum polytope P(M) of
a multiplicity free U(2)-manifold with trivial prinicipal istropy group has exactly one vertex
a on the wall of t+, then R≥0(P(M)− a) is the cone spanned by one of the sets {ρa1, ρa2} in
eqs. (4.1.4) to (4.1.6) of that proposition. In particular, P(M) has one or two positive edges
that contain a.

Here is the announced generalization for U(2) of Woodwards’s Kählerizability criterion
[Woo98b, Theorem 8.8]. Its formal proof will be given on page 55.

Proposition 4.1.7. LetM be a multiplicity free U(2)-manifold with trivial principal isotropy
group. Then M admits a U(2)-invariant compatible complex structure if and only if the
following property holds: if the momentum polytope P(M) of M has exactly one vertex on
the wall of t+, then every positive edge of P(M) contains that vertex.

Remark 4.1.8. With a straightforward adaptation of the proof of Proposition 7.27 and
Corollary 7.28 in [CFPVS20] proposition 4.1.7 can also be proved by applying Theorem 7.16
of loc.cit., which gives a (rather technical) general criterion for the existence of an invariant
compatible complex structure on a multiplicity free manifold, using the combinatorial theory
of spherical varieties.

Example 4.1.9 (Woodward). In [Woo98a], Woodward showed that the multiplicity free
U(2)-manifold M with momentum polytope

P(M) = conv(0, ε1,−ε2, 3ε1 − ε2)

is not Kählerizable. This fact can be deduced immediately from proposition 4.1.7: the edge
of P(M) connecting the vertices ε1 and 3ε1 − ε2 is positive, but does not contain the vertex
0 of P(M) that lies on the wall of the Weyl chamber. A picture of P(M) can be found on
page 54: it is the trapezoid with vertices 0, v1, v2 and v3 on the right in fig. 4.1. Similarly,
the multiplicity free U(2)-manifold with momentum polytope

conv(0, ε1, α, 3ε1 − ε2)

is not Kählerizable, because the edge connecting ε1 and 3ε1 − ε2 is positive and does not
contain the vertex 0. This polytope is the trapezoid with vertices v0, v1, v2 and v3 on the
right in fig. 4.2. This kind of polytope was not covered by the criterion in [Woo98a].
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The following lemma establishes a first part of proposition 4.1.7.

Lemma 4.1.10. If M is a multiplicity free U(2)-manifold whose momentum polytope P
does not have exactly one vertex on the wall of the Weyl chamber t+, then M admits a
U(2)-invariant complex structure.

Proof. Our strategy is inspired by [Woo98a, §3] and uses E. Lerman’s symplectic cutting
[Ler95]; see also [LMTW98]. We start with a certain multiplicity free (non-compact) U(2)-
manifold M1 admitting a second Hamiltonian action of the maximal torus T of U(2) that
commutes with the U(2)-action and such that ϕ(m) = Ψ(m) for all m ∈ M , where ϕ :
M1 → t∗ is the momentum map of the second T -action. We then perform a sequence of
symplectic cuts (respecting the actions of both U(2) and T ) until the momentum polytope
has the desired shape P . Because P is of Delzant type (by proposition 4.1.3), it can be
obtained from ϕ(M1) = Ψ(M1) by a finite sequence of cuts along hyperplanes such that, at
each stage, the corresponding symplectic cut yields a smooth manifold.

We first assume that an entire edge of the momentum polytope P lies on the Weyl wall.
Let v be one of the two vertices of P on the Weyl wall and suppose that

cone(P − v) = cone(−(ε1 + ε2), ε1 + k(ε1 + ε2)) for some k ∈ Z.

We set M1 = C3 and equip it with the U(2)-action given by

g · ((z1, z2), z3) := ((det(g)−(k+1) · g) · (z1, z2), det(g) · z3)

(this is precisely the action in the first row of table 4.1 for ℓ = −1) and the standard
Hamiltonian U(2)-structure as representation of U(2); see e.g. [Sja98, Example 2.1]. The
explicit expression for the invariant momentum map Ψ is then

Ψ :M1 → t+, Ψ(z1, z2, z3) =
π

2
(|z1|2 + |z2|2)((k + 1)ε1 + kε2)−

π

2
|z3|2(ε1 + ε2).

Indeed, the restriction of the momentum map of M1 to the cross-section 0 ⊕ C ⊕ C takes
values in t∗ and is thus given by the momentum map of the T -action on 0⊕C⊕C, which is

(0, z2, z3) 7→
π

2
|z2|2((k + 1)ε1 + kε2)−

π

2
|z3|2(ε1 + ε2).

As Ψ is constant on U(2)-orbits, it now follows that it is of the asserted shape.
We also equip M1 with the following additional action of T :

(t1, t2) · (z1, z2, z3) = (t2(t1t2)
−(k+1)z1, t2(t1t2)

−(k+1)z2, t1t2z3).

This action is effective and commutes with the U(2)-action. More importantly, it is Hamil-
tonian with momentum map ϕ equal to Ψ. We can use ϕ to perform the aforementioned
sequence of symplectic cuts until the momentum image of ϕ is equal to P . Since ϕ and Ψ
coincide on M1, they will coincide after every cut. By the uniquess part of Knop’s theo-
rem 1.3.9, the U(2)-manifold obtained at the end of this process isM . Due to basic properties
of the symplectic cut, the manifold is still Kähler.

If P lies in the interior of the Weyl chamber, then we can still start with (for example)
M1 (for some suitable choice of the parameter k) and we can again cut Ψ(M1) = ϕ(M1) until
we reach P .
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Remark 4.1.11. The reason that the resulting manifold after all the symplectic cuts in the
proof of lemma 4.1.10 is Kähler, is that the cuts are made with respect to circle subgroups
of T and that action of T on M with momentum map ϕ is a global action which extends
to an action of the complexification TC of T . In Woodward’s non-Kählerizable example
[Woo98a, §3], only a local circle action was used to perform the cut; in general one does not
obtain a compatible Kähler structure after such a cut.

Remark 4.1.12. The Kähler structures constructed in the proof of lemma 4.1.10 are in fact
toric Kähler structures for a torus of rank 3. Indeed, the constructed manifold carries an
induced T × T -action after every cut. Its kernel always has dimension 1, which means that
it descends to a multiplicity free action of a torus of rank 3.

We now use [MT12, Corollary 4] to establish the next part of proposition 4.1.7.

Lemma 4.1.13. Let M be a multiplicity free U(2)-manifold with trivial principal isotropy
group. Suppose that the momentum polytope P of M has exactly one vertex a on the wall
of t+. If every positive edge of P contains the vertex a, then M admits a U(2)-invariant
compatible complex structure.

Proof. It follows from proposition 4.1.3 that {ρa1, ρa2} is one of the sets in (4.1.4), (4.1.5) or
(4.1.6). LetM1 be the corresponding smooth affine spherical GL(2)-variety in table 4.1, that
is, M1 = GL(2)×TC C−(jα+ε1) when {ρa1, ρa2} is the set in (4.1.4), M1 = GL(2)×TC C−(jα−ε2)

when {ρa1, ρa2} is the set in (4.1.5) andM1 = GL(2)

/{(
zj 0
0 zj+1

)
: z ∈ C×

}
when {ρa1, ρa2}

is the set in (4.1.6). As in [Sja98, §4.1], we view M1 as a Hamiltonian U(2)-manifold by
embedding it into a unitary representation of U(2). Let Ψ : M1 → t+ be the corresponding
invariant momentum map. It follows from [Sja98, Theorem 4.9] that Ψ(M1) = cone{ρa1, ρa2}.
By translating the momentum map of M1 by a, we ensure that Ψ(M1) = a+cone{ρa1, ρa2} =
a+ cone(P − a), in other words, that Ψ(M1) is equal to P in a neighborhood of a. One can
now apply non-abelian symplectic cutting to M1 to obtain a multiplicity free U(2)-manifold
with momentum polytope P . By Knop’s uniquess result in theorem 1.3.9, this multiplicity
free manifold has to be M . Because, as mentioned in remark 4.1.11, non-abelian symplectic
cutting is a local construction which cannot be realized by “global” symplectic reduction,
this does not yet guarantee that M is Kähler, even though M1 was.

Nevertheless, under the assumptions of the current lemma, [MT12, Corollary 4] yields

that M can be constructed as the symplectic reduction of a symplectic U(2)-manifold M̃ ,
which is Kähler because M1 is. It then follows that M is Kähler by the general properties
of symplectic reduction. The key point which allows us to apply loc.cit. is that

P = Ψ(M1) ∩ Q, (4.1.8)

where Q is an outward-positive polyhedral set, using the terminology of [MT12, Definition
3]. To describe Q, let n1, n2, . . . , nr be inward-pointing normal vectors to the r edges of P
that do not contain the vertex a of P lying on the wall of t+. By assumption

⟨α∨, ni⟩ ≤ 0 for all i ∈ {1, 2, . . . , r}. (4.1.9)
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Let η1, η2, . . . , ηr ∈ R be such that, for each i ∈ {1, 2, . . . , r},

P ∩ {v ∈ t+ : ⟨v, ni⟩ = ηi}

is the edge of P to which ni is an inward-pointing normal. Now we set

Q = {v ∈ t+ : ⟨v, ni⟩ ≥ ηi for all i ∈ {1, 2, . . . , r}}.

Then (4.1.8) holds, and (4.1.9) says precisely that Q is outward-positive. As explained in
[MT12, Remark 2], one may need to (and can) impose some extra inequalities to make Q
universal in the parlance of [MT12, Definition 2].

Remark 4.1.14. In the situation of lemma 4.1.13, if P has a positive edge not containing
a, then it has one that is adjacent to an edge containing a. This follows from the convexity
of P .

For the final step in the proof of proposition 4.1.7, we will make use of work of S. Tol-
man’s. In [Tol98], she constructed an example of a Hamiltonian T -space of complexity one in
dimension six that does not admit a T -invariant compatible complex structure. She proved
this by checking that her example does not satisfy a certain extension criterion and showing
that this criterion is necessary for a T -invariant compatible complex structure to exist. For
the convenience of the reader, we will recall this criterion here together with the definitions
necessary to formulate it. The criterion applies to compact Hamiltonian U(1)n-manifolds for
any n ∈ N, but to avoid introducing additional notation, we will use T for the acting torus,
as this is the setting where we will apply it. We refer to [Tol98, §§2,3] for details.

By the x-ray of M , we mean its orbit type stratification

X =
⋃

H subgroup of T

{connected components of MH}

together with the convex polytopes that are the images of its elements under the T -momentum
map µT . We say that a convex polytope ∆ ⊂ t∗ (resp. a strictly convex cone C ⊂ t∗) is
compatible with this x-ray if (there exists a neighborhood U of the vertex of C such that)
for each face σ of ∆ (resp. C), we can choose Xσ ∈ X such that

dim(µT (Xσ)) = dim(σ), (4.1.10)

σ ⊂ µT (Xσ) (resp. σ ∩ U ⊂ µT (Xσ)), and (4.1.11)

Xσ ⊂ Xσ′ whenever σ and σ′ are faces of ∆ (resp. C) with σ ⊂ σ′. (4.1.12)

We say that ∆ is an extension of C when there exists a neighborhood U of the vertex of C
with C ∩ U = ∆ ∩ U .

Definition 4.1.15. An x-ray satisfies the extension criterion if every compatible strictly
convex cone admits an extension to a compatible convex polytope.
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Theorem 4.1.16 ([Tol98, Theorem 3.3]). Let M be a Hamiltonian T -manifold that does not
satisfy the extension criterion. Then M does not admit a T -invariant compatible complex
structure.

It is clear that a compatible convex cone of dimension one always admits an extension
to a compatible convex polytope, so this criterion only needs to be checked for compatible
strictly convex cones of dimension at least two. On the other hand, since our µT takes
values in a vector space of dimension 2, we only need to check this condition for compatible
strictly convex cones of dimension exactly two. The vertices of those have to be image of a
T -fixed point p, and the edges locally have to be images of weight spaces of the corresponding
isotropy representation of T at p. Consequently, we can describe every such cone by giving
two line segments starting at µT (p) that correspond to linearly independent weights of the
isotropy representation at p, and any such line segment can be described by a pair of points
in PT = µT (M), one of which is µT (p). We will use this identification throughout.

Combinatorially linking Tolman’s criterion to the Kählerizability criterion of proposi-
tion 4.1.7 we now also extend [Woo98a, Theorem 9.1] of Woodward’s about certain multiplic-
ity free SO(5)-manifolds to multiplicity free U(2)-manifolds with trivial principal isotropy
whose momentum polytope intersects the Weyl wall in one point. We also rephrase our
Kählerizability criterion in terms of the T -momentum polytope and the T -fixpoints.

Proposition 4.1.17. LetM be a multiplicity free U(2)-manifold with trivial principal isotropy
group whose momentum polytope P intersects the Weyl wall at exactly one point. Then the
following are equivalent:

(1) Every positive edge of P contains the vertex a of P lying on the Weyl wall.

(2) M admits a U(2)-invariant compatible complex structure.

(3) M admits a T -invariant compatible complex structure.

(4) The x-ray of M satisfies the extension criterion.

(5) The set MT is mapped to the boundary of PT = µT (M) under the T -momentum map
µT .

Proof. First we show that (5) implies (1). If (1) does not hold, then P contains a positive
edge that does not meet the wall of the Weyl chamber. This means that the two vertices v
and w adjacent to this edge are the images under µ as well as under µT of T -fixed points in
M , see theorem 1.3.3(a). Call the vertex of P on the wall of the Weyl chamber v0, and set
v′ = sα(v), w

′ = sα(w). Then it follows from proposition 1.3.5 that the polytope

conv(v0, v, v
′,w,w′) (4.1.13)

is a subset of PT . Using that the edge (v,w) of P is positive, elementary geometric consid-
erations show that v or w lies in the interior of the polytope (4.1.13), and therefore not on
the boundary of PT . This shows that (5) does not hold.
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We turn to the implication “(1) ⇒ (5).” Let m ∈ MT . First observe that µ(m) ∈
(k∗)T = t∗ by the equivariance of µ, and therefore that µT (m) = µ(m). Next, µT (m) ∈
{Ψ(m), sα(Ψ(m))} thanks to the well-known isomorphism k∗/K ∼= t∗/{e, sα} induced by the
restriction map k∗ → t∗. Furthermore, Ψ(m) is a vertex of P = Ψ(M). Indeed, if Ψ(m)
lies on the Weyl wall, this is true by assumption and if Ψ(m) lies in the interior of the
Weyl chamber, then it follows from theorem 1.3.3(b) because dimR Tm(K ·m) = 2. We first
consider the case that µT (m) lies on the Weyl wall. Then µT (m) = v0 and it follows from
parts (c) and (d) of remark 4.1.4 that v0 is of type (4.1.4) or of type (4.1.5). Let (v0, v) be the
edge of P that is perpendicular to the Weyl wall. Then, using proposition 1.3.5, one deduces
that (sα(v), v) is an edge of PT and therefore that v0 = µT (m) lies on the boundary of PT .
Suppose now that (5) does not hold and that m ∈ MT is such that µT (m) does not lie on
the boundary of PT . As we just saw, this implies that µT (m) does not lie on the Weyl wall.
It follows from proposition 1.3.5 that the segment [µT (m), sα(µT (m))] = [Ψ(m), sα(Ψ(m))],
which is perpendicular to the Weyl wall, lies in the interior of PT . Therefore (at least) one
of the two edges of P adjacent to Ψ(m) is positive and does not meet the Weyl wall, which
means that (1) does not hold. We have shown that (5) follows from (1).

Next, we observe that (2) follows from (1) by lemma 4.1.13, that the implication “(2) ⇒
(3)” is trivial and that (4) follows from (3) by theorem 4.1.16.

In the remainder of the proof, we show that (4) implies (1). We label the vertices of P
clockwise from v0 to vn (starting at the wall), and we denote by v′j the reflection sα(vj) of
vj across the Weyl wall. Note that for j ̸= 0 the line segment (vj, v

′
j) is always the image

of a connected component of MZ(U(2)), where Z(U(2)) is the center of U(2), and that this
connected component is a sphere except when an edge of P is adjacent to vj is parallel to
α, in which case it is 4-dimensional by theorem 1.3.3(b) together with remark 1.3.4(b).

We consider two cases, depending on whether the vertex v0 is of type (4.1.4) (respectively
of type (4.1.5), which is clearly equivalent) or of type (4.1.6). In each case, the edges of the
x-ray are determined by P in the following way:

� In the first case, there are the aforementioned connected components of MZ(U(2)) to-
gether with all spheres belonging to those edges (vj, vj+1) and (v′j, v

′
j+1) which are not

parallel to α.

� In the second case, there are the connected components of MZ(U(2)) together with all
spheres belonging to those edges (vj, vj+1) and (v′j, v

′
j+1), j ≤ n − 1, which are not

parallel to α, and on top the spheres belonging to (vn, v
′
1) and (v1, v

′
n). The latter are

included, because the horizontal edge starting from v1, for example, needs to end in
one of v′1, . . . , v

′
n, and due to the convexity of the reflection of P across the Weyl wall,

the only possible endpoint is then v′n.

Assume that we are in the second case: v0 is of type (4.1.6). Suppose that (1) does not hold
(a polytope illustrating this situation can be found on the right in fig. 4.1). By remark 4.1.14
and without loss of generality, we may assume that the positive edge is the edge (v1, v2).
Then v1 and v′1 are in the interior of PT . We claim that the compatible cone determined
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by the pair of edges (v1, v
′
1), (v1, v

′
n) does not admit an extension to a compatible convex

polytope. Indeed, the edge (v′1, vn) emerging from vn cannot be part of such a polytope
(since this edge intersects the edge (v1, v

′
n) in a point which is not the image of a T -fixpoint)

and neither can the edge (v′1, v
′
2) as convexity would not hold.

v0

v3 v2

v1v′3

v′1
v′2

v3

v0

v2

v1v′3

v′1

v′2

Figure 4.1: Two polytopes P with v0 of type (4.1.6) and their x-rays. The left x-ray satisfies
the extension criterion, the right one does not.

Now assume that we are in the second case: v0 is of type (4.1.4). Suppose again that (1)
does not hold (such a polytope is given on the right in fig. 4.2). One of the compatible cones
with vertex v0 is spanned by the pairs of edges (v0, v

′
1), (v0, vn). If it admitted an extension to

a compatible convex polytope Q, then the second edge of Q adjacent to v′1 would have to be
(v′1, v1), and the second edge emerging from v1 would have to be (v1, v2), which contradicts
the convexity of Q because (1) does not hold.

v0
v1

v2v3

v′1v′2

v′3

v0 v1

v2v3

v′1

v′2

v′3

Figure 4.2: Two polytopes P with v0 of type (4.1.4) and their x-rays. The left x-ray satisfies
the extension criterion, the right one does not.
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Remark 4.1.18. The momentum polytopes in figs. 4.3 and 4.6 show that the equivalence
of (5) and (1) of proposition 4.1.17 do not hold when P does not meet the Weyl wall in
exactly one point. On the other hand, proposition 4.1.7 tells us that when P(M) does not
meet the Weyl wall in exactly one point, then the multiplicity free U(2)-manifold M with
trivial principal isotropy group always admits an invariant compatible complex structure,
and therefore the equivalences (1) ⇔ (3) ⇔ (4) hold in this case as well.

Proof of proposition 4.1.7. The proposition immediately follows from lemma 4.1.10 and the
equivalence of (1) and (2) in proposition 4.1.17.

4.2 Triangles

We continue to use the notation in example 1.3.1. In this section, we classify the multiplicity
free U(2)-manifolds with trivial principal isotropy group of which the momentum polytope
is a triangle. The following lemma determines the Delzant triangles and will be used to
describe the triangles in t+ which can occur as momentum polytopes of such manifolds.

Lemma 4.2.1. Let u, v and w ∈ t∗ = Λ⊗Z R such that

v − u,w − u,w − v ∈ Λ⊗Z Q.

and let ρ1, ρ2, ρ3 be the primitive elements of Λ such that

R≥0ρ1 = R≥0(v − u),R≥0ρ2 = R≥0(w − u),R≥0ρ3 = R≥0(w − v).

Suppose (ρ1, ρ2) is a basis of Λ. Both pairs (ρ1, ρ3) and (ρ2, ρ3) are bases of Λ if and only if
ρ3 = ρ2 − ρ1.

Proof. The “if” statement is clear. To prove the converse, let a, b ∈ Z such that ρ3 =
aρ1 + bρ2. It follows from the assumption that (ρ1, ρ3) and (ρ2, ρ3) are bases of Λ, that
a, b ∈ {1,−1}. The definitions of ρ1, ρ2, ρ3 then imply that a = −1 and b = 1.

Recall from example 1.3.1 that α = ε1 − ε2 is the simple root of U(2).

Proposition 4.2.2. The triangles in t+ that occur as momentum polytopes of multiplicity
free U(2)-manifolds with trivial principal isotropy group are:

1. r(−ε2)+ s(ε1+ ε2)+ t · conv(0, a1(−ε2)+ b1ε1, a2(−ε2)+ b2ε1), where r, t ∈ R>0, s ∈ R,

a1, b1, a2, b2 ∈ Z with det

(
a1 a2
b1 b2

)
= 1 and ai + bi ≥ 0 for each i ∈ {1, 2};

2. s(ε1 + ε2) + t · conv(0, ℓ(ε1 + ε2), k(ε1 + ε2) + ε1), where s ∈ R, t ∈ R>0, k ∈ Z,
ℓ ∈ {−1, 1};

3. s(ε1 + ε2) + t · conv(0, α, jα + ε1), where s ∈ R, t ∈ R>0, j ∈ N
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4. s(ε1 + ε2) + t · conv(0, α, jα− ε2), where s ∈ R, t ∈ R>0, j ∈ N;

5. s(ε1 + ε2) + t · conv(0, ε1,−ε2), where s ∈ R, t ∈ R>0.

Proof. Observe that the all the sets in eqs. (4.1.2) to (4.1.5) and the one in eq. (4.1.6) with
j = 0 are bases of Λ. The proposition now follows from proposition 4.1.3 and lemma 4.2.1
once we prove the following claim: if P ⊂ t+ is a triangle satisfying conditions (2) and (3)
of proposition 4.1.3 and a is a vertex of P such that ⟨α∨, a⟩ = 0 and

{ρa1, ρa2} = {jα + ε1, jα− ε2} for some j ∈ N,

then j = 0. We may assume that ρa1 = jα + ε1 and ρa2 = jα − ε2. Let b, c be the other two
vertices of P , such that R≥0(b − a) = R≥0ρ

a
1 and R≥0(c − a) = R≥0ρ

a
2 and write ρ for the

primitive element of Λ on the ray R≥0(c− b). Since (ρ, ρa1) is a basis of Λ by condition (3) of
proposition 4.1.3, there exist m,n ∈ Z such that ρa2 = mρ + nρa1. Using that (ρ, ρa2) is also
a basis of Λ it follows that n ∈ {−1, 1}. As ρa2 belongs to the cone {pρ + qρa1 : p, q ∈ R≥0}
we obtain n = 1 and m > 0. Consequently mρ = ρa2 − ρa1 = −(ε1 + ε2). As ρ ∈ Λ it follows
that ρ = −(ε1 + ε2). Using once more that (ρ, ρa1) is a basis of Λ it follows that j = 0, which
completes the proof of the claim.

For each triangle in proposition 4.2.2, Knop’s theorem 1.3.9 guarantees the existence of
a multiplicity free Hamiltonian U(2)-manifold whose momentum polytope is that triangle.
Theorem 4.2.3 below gives an explicit description of these manifolds. Propositions 4.2.5
to 4.2.9 provide the Hamiltonian structures.

Theorem 4.2.3. Let Q be one of the triangles listed in proposition 4.2.2 and let M be
the (up to isomorphism) unique multiplicity free U(2)-manifold with P(M) = Q and trivial
principal isotropy group. Then:

(a) M is U(2)-equivariantly diffeomorphic to the corresponding manifold listed in the second
column of table 4.2.

(b) M is isomorphic (as a Hamiltonian U(2)-manifold) to the corresponding manifold listed
in the second column of table 4.2 equipped with the Hamiltonian structure described in
the proposition listed in the last column of table 4.2.

(c) M has an invariant compatible complex structure J such that the complex manifold
(M,J), equipped with the action of GL(2) that is the complexification of the U(2)-action,
is GL(2)-equivariantly biholomorphic to the corresponding GL(2)-variety listed in the
third column of table 4.2.

Proof. In each proposition listed in the fourth column of table 4.2, we define a structure of
multiplicity free U(2)-manifold on the smooth complex GL(2)-variety M listed in the third
column such that

� the momentum polytope of M is the corresponding triangle of proposition 4.2.2;
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� the U(2)-invariant complex structure that M carries by virtue of being a smooth com-
plex GL(2)-variety (cf. proposition 1.4.3) is compatible with the symplectic form on
M ; and

� M , viewed as a differentiable manifold, is U(2)-equivariantly diffeomorphic to the man-
ifold listed in the second column of table 4.2.

Since, in each case, the U(2)-action on M has a trivial principal isotropy group, all the
assertions now follow from part (a) of Knop’s theorem 1.3.9.

Table 4.2: Multiplicity free U(2)-manifolds M with trivial principal isotropy group for wich
P(M) is a triangle, as asserted in theorem 4.2.3. The cases are numbered as in proposi-
tion 4.2.2.

Case M as U(2)-manifold M as GL(2)-variety Prop.

(1)

U(2)×T P(V ),
where V = C⊕ C−δ1 ⊕ C−δ2 ,
with δ1 = a1(−ε2) + b1ε1,
δ2 = a2(−ε2) + b2ε1,
a1, b1, a2, b2 ∈ Z as in
proposition 4.2.2(1)

GL(2)×B− P(V ) 4.2.8

(2)
P
(
(C2 ⊗ Cdet−(k+1))⊕ Cdet−ℓ ⊕ C

)
,

where k ∈ Z, ℓ ∈ {−1, 1}. idem 4.2.5

(3)
U(2)×T P(C2 ⊕ C−jα),
where j ∈ N. GL(2)×B− P(C2 ⊕ C−jα) 4.2.6

(4)
U(2)×T P((C2)∗ ⊕ C−jα),
where j ∈ N. GL(2)×B− P((C2)∗ ⊕ C−jα) 4.2.7

(5)
SO(5)/[SO(2)× SO(3)],
where U(2) acts through
U(2) ↪→ SO(4) ⊂ SO(5)

SO(5,C)/P ,
where P ⊂ SO(5,C) is the
minimal standard parabolic
assoc. to the short simple root,
GL(2) acts through
GL(2) ↪→ SO(4,C) ⊂ SO(5,C).

4.2.9

C always stands for the trivial representation.
C2 stands for the definining representation of GL(2) or its restriction to U(2), T or B−.

We will make use of the following standard fact, which follows directly from the defini-
tions, taking into account that ε1 + ε2 ∈ t∗ ⊂ u(2)∗ is a fixpoint for the coadjoint action of
U(2).

Lemma 4.2.4. Let (M,ωM , µM) be a compact Hamiltonian U(2)-manifold with momentum
polytope Q. If s ∈ R, t ∈ R>0, then

µs,tM := tµM + s(ε1 + ε2)
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is a momentum map for the symplectic form tωM on M and the momentum polytope of the
Hamiltonian U(2)-manifold (M, tωM , µ

s,t
M ) is

s(ε1 + ε2) + t · Q.

Furthermore, if (M,ωM , µM) is multiplicity free, then so is (M, tωM , µ
s,t
M )

The next proposition gives the multiplicity free U(2)-manifold associated to the momen-
tum polytope (2) of proposition 4.2.2. In what follows, we will write e1, e2 for the standard
basis of C2.

Proposition 4.2.5. Let k ∈ Z, ℓ ∈ {−1, 1}. Let V be the U(2)-representation

V := (C2 ⊗ Cdet−(k+1))⊕ Cdet−ℓ ⊕ C ∼= V (ϖ1 − (k + 1)ϖ2)⊕ V (−ℓϖ2)⊕ V (0).

(a) The projective space P(V ), equipped with the Fubini-Study symplectic form and the mo-
mentum map µP(V ) of example 1.3.2, is a multiplicity free U(2)-manifold with trivial
principal isotropy group.

(b) The T -fixpoints in P(V ) are

x1 := [(e1 ⊗ 1)⊕ 0⊕ 0], x2 := [(e2 ⊗ 1)⊕ 0⊕ 0], x3 := [0⊕ 1⊕ 0], x4 := [0⊕ 0⊕ 1]

and their images under µP(V ) are (in the same order)

k(ε1 + ε2) + ε2, k(ε1 + ε2) + ε1, ℓ(ε1 + ε2), 0 (4.2.1)

(c) The momentum polytope of (P(V ), µP(V )) is the triangle

conv(0, ℓ(ε1 + ε2), k(ε1 + ε2) + ε1)

in case (2) of proposition 4.2.2.

(d) If s ∈ R, t ∈ R>0, then
µs,tP(V ) := tµP(V ) + s(ε1 + ε2)

is a momentum map for the symplectic form tωP(V ) on P(V ) and the momentum polytope
of the multiplicty free U(2)-manifold (P(V ), µs,tP(V )) is the triangle

s(ε1 + ε2) + t · conv(0, ℓ(ε1 + ε2), k(ε1 + ε2) + ε1)

of case (2) in proposition 4.2.2
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Figure 4.3: The triangle in part (d) of proposition 4.2.5 for k = 2, ℓ = 1.

Proof. We begin with (a). It follows from example 1.3.2 that (P(V ), µP(V )) is a Hamiltonian
U(2)-manifold. A computation shows that the only element of U(2) that fixes

[(e1 ⊗ 1)⊕ 1⊕ 1] ∈ P(V )

is the identity, which implies that the principal istotropy group of the U(2)-action on P(V ) is
trivial. Since P(V ) is compact and connected, it follows from eq. (1.3.13) that (P(V ), µP(V ))
is multiplicity free.

To show (b) we first observe that all the T -weight spaces in V have dimension 1. This
implies that the T -fixpoints in P(V ) are exactly the lines spanned by T -eigenvectors in
V , which shows the first assertion in (b). It follows that µ(xi) ∈ t∗ ∼= (k∗)T for every
i ∈ {1, 2, 3, 4}. We now use example 1.3.2 to compute µP(V )(x1). Let ξ ∈ t. Since v :=
e1⊗1⊕0⊕0 ∈ V has T -weight γ := ε1−(k+1)(ε1+ε2) we have ξ ·(v) = 2π

√
−1γ(ξ)v which

implies that µP(V )(x1)(ξ) = −γ(ξ), that is, µP(V )(x) = −γ, as claimed. The computations of
µP(V )(x2), µP(V )(x3) and µP(V )(x4) are analogous.

We turn to (c). Since
µP(V )(x2) = k(ε1 + ε2) + ε1

is the only weight in (4.2.1) that belongs to the interior of t+, it is the only vertex of P(M)
in the interior of t+, thanks to theorem 1.3.3(a).

In order to apply part (b) of theorem 1.3.3, we next show that the T -weights in the
symplectic slice Nx2 of P(V ) at x2 are

Πx2 = {k(ε1 + ε2) + ε1, (k − ℓ)(ε1 + ε2) + ε1}.

Indeed, as P(V ) comes with an invariant complex structure which is compatible with its
Fubini-Study symplectic form by construction, we have the following isomorphisms of T -
modules

Nx2
∼= Tx2P(V )/Tx2(K · x2) = Tx2P(V )/Tx2P(C2 ⊗ Cdet−(k+1) ⊕ 0⊕ 0)

∼= C(k−ℓ)(ε1+ε2)+ε1 ⊕ Ck(ε1+ε2)+ε1 .
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Since the extremal rays

µP(V )(x2)− R≥0(k(ε1 + ε2) + ε1) and µP(V )(x2)− R≥0((k − ℓ)(ε1 + ε2) + ε1)

of the cone µP(V )(x2) − coneΠx2 intersect the wall of the Weyl chamber t+ in the points 0
and ℓ(ε1 + ε2) it follows from part (b) of theorem 1.3.3 that

P(P(V )) = conv(0, ℓ(ε1 + ε2), k(ε1 + ε2) + ε1)

as claimed.
Part (d) follows from part (c) and lemma 4.2.4.

We now describe the multiplicity free U(2)-manifold associated to the momentum poly-
tope (3) of proposition 4.2.2. Recall from example 1.3.1 that α = ε1 − ε2 is the simple root
of U(2) and GL(2).

Proposition 4.2.6. Let j ∈ N and set

M = GL(2)×B− P(C2 ⊕ C−jα)

where the group B− of lower triangular matrices in GL(2) acts on P(C2 ⊕ C−jα) through
the standard linear action of GL(2) on C2 and with weight −jα on the 1-dimensional space
C−jα.

(a) The map
U(2)×T P(C2 ⊕ C−j(ε1−ε2)) →M, [g, [y]] 7→ [g, [y]]

is a U(2)-equivariant diffeomorphism.

(b) Let V be the irreducible GL(2)-representation with highest weight jα and let v ∈ V be a
lowest weight vector in V . Then

ιM :M → Y := GL(2)×B− P(C2 ⊕ V ), [g, [u⊕ z]] → [g, [u⊕ zv]]

is a GL(2)-equivariant closed embedding and

ιY : Y → P(C2)× P(C2 ⊕ V ), [g, [u⊕ v]] 7→ ([ge2], [gu⊕ gv])

is a GL(2)-equivariant isomorphism of varieties.

(c) Let ω1 be the Fubini-Study symplectic form on P(C2) and

µ1 : P(C2) → u(2)∗

the associated momentum map as in example 1.3.2, ω2 the Fubini-Study symplectic form
on P(C2 ⊕ V ) and µ2 : P(C2 ⊕ V ) → u(2)∗ the associated momentum map. If ωM is the
pullback along ιY ◦ ιM of the symplectic form ω1 + ω2 on P(C2)× P(C2 ⊕ V ) then ωM is
a symplectic form on M with momentum map

µM = (µ1 + µ2) ◦ ιY ◦ ιM

and (M,µM) is a multiplicity free U(2)-manifold with trivial principal isotropy group.
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(d) Set n :=

(
0 1
1 0

)
∈ U(2). The T -fixpoints in M are

x1 := [e, [1 : 0 : 0]], x2 := [n, [1 : 0 : 0]], x3 := [e, [0 : 1 : 0]],

x4 := [n, [0 : 1 : 0]], x5 := [e, [0 : 0 : 1]], x6 := [n, [0 : 0 : 1]]

and their images under µM are (in the same order)

−ε1 − ε2, −ε1 − ε2, −2ε2, −2ε1, jα− ε2, −jα− ε1. (4.2.2)

(e) The momentum polytope of (M,µM) is the triangle (−ε1 − ε2) + conv(0, α, jα + ε1) in
case (3) of proposition 4.2.2

(f) If s ∈ R, t ∈ R>0, then
µs,tM := tµM + (s+ t)(ε1 + ε2)

is a momentum map for the symplectic form tωM on M . The momentum polytope of the
multiplicity free U(2)-manifold (M,µs,tM ) is the triangle

s(ε1 + ε2) + t · conv(0, α, jα + ε1)

of case (3) in proposition 4.2.2

Figure 4.4: The triangle in part (e) of proposition 4.2.6 for j = 0, j = 1 and j = 3.

Proof. Part (a) is just an application of proposition 1.4.4.
We proceed to assertion (b). The assertion about ιM follows from the fact that C−jα →

V : z 7→ zv is a B−-equivariant injective linear map. The claim about ιY is a standard fact;
see, e.g., [Tim11, Lemma 2.3].

The assertion in (c) that (M,ωM , µM) is a Hamiltonian U(2)-manifold follows from stan-
dard and well-known facts about Hamiltonian actions. Furthermore, a straightforward com-
putation shows that the isotropy group U(2)x of (for example) x = [e, [1 : 1 : 1]] ∈ M is
trivial, which implies that the principal istropy group is trivial as well. It now follows from
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eq. (1.3.13) and from the fact that M is compact and connected, that M is a multiplicity
free.

To prove (d) we will use example 1.3.2. A straightforward calculation shows that the
listed points are the six T -fixpoints in M . It follows that their images under µM lie in
t∗ ∼= (k∗)T . Let ξ ∈ t. We begin by computing µM(x1)(ξ). First off,

ιY ◦ ιM(x1) = ([e2], [e1 ⊕ 0]).

Since e2 has weight ε2 and e1 has weight ε1, we have ξ · e2 = 2π
√
−1ε2(ξ)e2 and ξ · (e1⊕0) =

2π
√
−1ε1(ξ)(e1 ⊕ 0) which implies that

µ1([e2])(ξ) = −ε2(ξ) and µ2([e1 ⊕ 0])(ξ) = −ε1(ξ).

The claimed equality µM(x1) = −ε1 − ε2 follows.
Similar elementary computations yield the images of x2 through x6 under µM , using

ιY ◦ ιM(x2) = ([e1], [e2 ⊕ 0]), ιY ◦ ιM(x3) = ([e2], [e2 ⊕ 0]), ιY ◦ ιM(x4) = ([e1], [e1 ⊕ 0]),

ιY ◦ ιM(x5) = ([e2], [0⊕ v]), ιY ◦ ιM(x6) = ([e1], [0⊕ nv])

and
ξ · v = 2π

√
−1(−jα)(ξ)v, ξ · nv = 2π

√
−1(jα)(ξ)nv,

which hold because v has weight −jα and nv has weight jα.
We turn to (e). Since

u := µM(x3) = −2ε2 and w := µM(x5) = jα− ε2

are the only weights in (4.2.2) that belong to the interior of t+, they are the only possible
vertices of P(M) in the interior of t+, thanks to theorem 1.3.3(a). In order to apply part
(b) of theorem 1.3.3, we next show that the T -weights in the symplectic slice Nx3 of M at
x3 are

Πx3 = {α,−jα− ε2}

whereas those in the symplectic slice Nx5 at x5 are

Πx5 = {jα + ε1, jα+ ε2}.

Indeed, as M comes with an invariant complex structure which is compatible with ωM by
construction, we have the the following isomorphisms of T -modules

Nx3
∼= Tx3M/Tx3(K · x3) ∼= T[0:1:0]P(C2 ⊕ C−jα) ∼= Cε1−ε2 ⊕ C−jα−ε2

Nx5
∼= T[0:0:1]P(C2 ⊕ C−jα) ∼= Cε1+jα ⊕ Cε2+jα

Since the two weights in Πx3 are linearly independent, theorem 1.3.3(b) implies that x3 is a
vertex of P(M), and the same holds for x5. As

w − (jα + ε2) = u and u− α = w − (jα + ε1) = −ε1 − ε2
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it also follows from part (b) of theorem 1.3.3 that −ε1 − ε2 is the only remaining vertex of
P(M) and we have proven that

P(M) = conv(−ε1 − ε2, u,w),

as required.
Finally, assertion (f) follows from lemma 4.2.4.

With proofs similar to that of proposition 4.2.6, one establishes the following descriptions
of the U(2)-manifolds associated to the triangles (4) and (1) of proposition 4.2.2.

Proposition 4.2.7. Let j ∈ N and set

M = GL(2)×B− P((C2)∗ ⊕ C−jα)

where the group B− of lower triangular matrices in GL(2) acts on P((C2)∗ ⊕ C−jα) through
the linear action of GL(2) on (C2)∗ dual to the standard action on C2 and with weight −jα
on the 1-dimensional space C−jα.

(a) The map
U(2)×T P((C2)∗ ⊕ C−j(ε1−ε2)) →M, [g, [y]] 7→ [g, [y]]

is a U(2)-equivariant diffeomorphism.

(b) Let V be the irreducible GL(2)-representation with highest weight jα and let v ∈ V be a
lowest weight vector in V . Then

jM :M → P(C2)× P((C2)∗ ⊕ V ), [g, [u⊕ z]] 7→ ([ge2], [gu⊕ gzv])

is a GL(2)-equivariant closed embedding.

(c) Let ω1 be the Fubini-Study symplectic form on P(C2) and

µ1 : P(C2) → u(2)∗

the associated momentum map as in example 1.3.2, ω2 the Fubini-Study symplectic form
on P((C2)∗ ⊕ V ) and µ2 : P(C2 ⊕ V ) → u(2)∗ the associated momentum map. If ωM is
the pullback along jM of the symplectic form ω1 + ω2 on P(C2)× P((C2)∗ ⊕ V ) then ωM
is a symplectic form on M with momentum map

µM = (µ1 + µ2) ◦ jM

and (M,µM) is a multiplicity free U(2)-manifold with trivial principal isotropy group.

(d) The momentum polytope of (M,µM) is the triangle conv(0, α, jα − ε2) in case (4) of
proposition 4.2.2
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(e) If s ∈ R, t ∈ R>0, then
µs,tM := tµM + s(ε1 + ε2)

is a momentum map for the symplectic form tωM on M . The momentum polytope of the
multiplicity free U(2)-manifold (M,µs,tM ) is the triangle

s(ε1 + ε2) + t · conv(0, α, jα− ε2)

in case (4) of proposition 4.2.2.

Figure 4.5: The triangle in part (d) of proposition 4.2.7 for j = 3.

Proposition 4.2.8. Let a1, b1, a2, b2 ∈ Z with det

(
a1 a2
b1 b2

)
= 1 and ai + bi ≥ 0 for each

i ∈ {1, 2}. Set δ1 = a1(−ε2) + b1ε1, δ2 = a2(−ε2) + b2ε1 and

M = GL(2)×B− P(C⊕ C−δ1 ⊕ C−δ2)

where the group B− of lower triangular matrices in GL(2) acts on P(C⊕C−δ1⊕C−δ2) through
its linear action with weight 0, −δ1 and −δ2 on the 1-dimensional spaces C,C−δ1 and C−δ2,
respectively.

(a) The map
U(2)×T P(C⊕ C−δ1 ⊕ C−δ2) →M, [g, [y]] 7→ [g, [y]]

is a U(2)-equivariant diffeomorphism.

(b) For i ∈ {1, 2}, let Vi be the irreducible GL(2)-representation with lowest weight −δi and
let vi be a lowest weight vector in Vi. Then

jM :M → P(C2)× P(C⊕ V1 ⊕ V2), [g, [z0 ⊕ z1 ⊕ z2]] 7→ ([ge2], [z0 ⊕ gz1v1 ⊕ gz2v2])

is a GL(2)-equivariant closed embedding.
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(c) Let c ∈ R>0. We write ω1 for the Fubini-Study symplectic form on P(C2) and

µ1 : P(C2) → u(2)∗

for the associated momentum map as in example 1.3.2, ω2 for the Fubini-Study symplectic
form on P(C⊕V1⊕V2) and µ2 : P(C⊕V1⊕V2) → u(2)∗ for the associated momentum map.
If ωcM is the pullback along jM of the symplectic form cω1+ω2 on P(C2)×P(C⊕V1⊕V2)
then ωcM is a symplectic form on M with momentum map

µcM = (cµ1 + µ2) ◦ jM

and (M,µcM) is a multiplicity free U(2)-manifold with trivial principal isotropy group.

(d) The momentum polytope of (M,µcM) is the triangle c(−ε2) + conv(0, δ1, δ2) in case (1)
of proposition 4.2.2

(e) If s ∈ R, r, t ∈ R>0, then

µr,s,tM := tµ
r/t
M + s(ε1 + ε2)

is a momentum map for the symplectic form tω
r/t
M on M . The momentum polytope of

the multiplicity free U(2)-manifold (M,µs,tM ) is the triangle

r(−ε2) + s(ε1 + ε2) + t · conv(0, δ1, δ2)

of case (1) of proposition 4.2.2.

Figure 4.6: The triangle in part (d) of proposition 4.2.8 for c = 1,

(
a1 a2
b1 b2

)
=

(
1 −1
0 1

)
.

Finally, we describe the multiplicity free U(2)-manifold associated to the momentum
polytope (5) of proposition 4.2.2.

Proposition 4.2.9. Let
M = SO(5)/[SO(2)× SO(3)]

be the Grassmannian of oriented 2-planes in R5. We give M the structure of a Hamiltonian
SO(5)-manifold by viewing it as the coadjoint orbit through the short roots of SO(5), with

respect to the maximal torus S =
{(

A 0 0
0 B 0
0 0 1

)
: A,B ∈ SO(2)

}
. We define an embedding
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ι : U(2) ↪→ SO(5) by embedding SO(4) into SO(5) as the upper left block and identifying
U(2) with the centralizer of {( A 0

0 A ) : A ∈ SO(2)} in SO(4) in such a way that the restriction
of ι to T is an isomorphism from T onto S that identifies the shorts roots of SO(5) with the
four weights −ε1,−ε2, ε1, ε2 ∈ Λ of U(2).

Let µM : M → u(2)∗ be the momentum map and ωM be the symplectic form of the
restricted Hamiltonian U(2)-action on M induced by the inclusion ι : U(2) ↪→ SO(5).

(a) (M,ωM , µM) is a multiplicity free U(2)-manifold with trivial principal isotropy group
whose momentum polytope is the triangle conv(0, ε1,−ε2), in case (5) of proposition 4.2.2.

(b) If s ∈ R and t ∈ R≥0, then (M, tωM , tµM+s(ε1+ε2)) is a multiplicity free U(2)-manifold
with trivial principal isotropy group whose momentum polytope is the triangle

s(ε1 + ε2) + t · conv(0, ε1,−ε2),

of case (5) of proposition 4.2.2.

Proof. Since (b) follows from (a) and lemma 4.2.4, we only need to prove part (a). Let
r : u(2)∗ → t∗ be the restriction map. Then µT = r ◦ µM is the momentum map of the
restricted T -action on M . The momentum polytope PT (M) = µT (M) of this restricted
T -action was computed in [CK13, Example 4.2] to be the following square:

ε1−ε1

−ε2

ε2

(4.2.3)

In this picture, the lines (also the ones in the interior of the momentum image) are the
images under µT of the points of M with nontrivial T -isotropy, and the dots are the images
of the four T -fixed points. Our goal is to show that the U(2)-momentum polytope P(M) of
M is
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ε1

−ε2

and that M is a multiplicity free U(2)-Hamiltonian manifold with trivial principal isotropy
group.

By theorem 1.3.3(a), any vertex of P(M) that lies in the interior of t+ is the image
under µM of a T -fixed point. Together with proposition 1.3.5 it follows that ε1 and −ε2 are
the only two vertices of P(M) in t+. In order to show that P(M) is the asserted triangle,
we now only need to prove that the two points where the boundary of the T -momentum
image PT (M) intersects the Weyl wall do not lie in P(M). Let q be the T -fixed point on
M with µM(q) = ε1. Then the orbit U(2) · q ∼= U(2)/T ∼= S2 is, via the T -momentum map
µT , mapped onto the line segment between ε1 and ε2. This implies that the weights of the
T -representation on the symplectic slice Nq in q are given by the directions of the other two
rays emerging from ε1 in (4.2.3). Then theorem 1.3.3(b) implies that P(M) has the desired
form locally around ε1. Together with similar considerations near −ε2, this forces P(M) to
be globally as claimed.

Next we show the claim that M contains points with trivial isotropy. A neighborhood
of q is U(2)-equivariantly diffeomorphic to U(2) ×T Nq (see remark 1.3.4(b)). Note that T
acts on the symplectic slice Nq with two weights which form a basis of the weight lattice
Λ, because they are a long and a short root of SO(5). The claim follows. Since M has
dimension 6, eq. (1.3.13) now yields that M is a multiplicity free U(2)-manifold.

4.3 Diffeomorphism types

In this final section we discuss the nonequivariant diffeomorphism types of the manifolds
in table 4.2. We start off with a brief review of some standard facts in the theory of (real
or complex) vector bundles V → E

π→ Sk with structure group G ⊂ GL(V ) over spheres
(for details, see [Hat17, Section 1.2]). Denote by N and S the north and south pole of the
k-sphere Sk (k ≥ 2), respectively. Then both U− := Sk \ {N} and U+ = Sk \ {S} are
homeomorphic to the open k-disk Uk and therefore contractible, so there are trivializations

ϕ− : π−1(U−) → U− × V, ϕ+ : π−1(U+) → U+ × V.
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Now, as U− ∩ U+ ∼= Sk−1 × (−1, 1), we obtain a map

ϕ+ ◦ ϕ− : Sk−1 × (−1, 1)× V → Sk−1 × (−1, 1)× V,

which is of the form (x, t, v) 7→ (x, t, γ(x, t)(v)), for a map γ : Sk−1 × (−1, 1) → G. In
particular, the map

γE : Sk−1 → G, γE(x) = γ(x, 0),

defines an element [γE] in the set [Sk−1, G] of free homotopy classes of maps from Sk−1 to G.
Conversely, given an element [γ] ∈ [Sk−1, G] represented by γ : Sk−1 → G, we can define

a bundle V → Eγ
π→ Sk by gluing two copies of Dk × V , where Dk is the closed k-disk,

together via γ. More precisely, writing D− × V and D+ × V for the two copies of Dk × V ,
we define

Eγ := (D− × V ) ∪ϕγ (D+ × V ),

where ϕγ : ∂D
− × V → ∂D+ × V is given by ϕγ(x, v) = (x, γ(x)(v)). This is called the

clutching construction and γ the clutching function. It turns out that the isomorphism class
of this bundle only depends on the free homotopy class of γ and that this construction inverts
the assignment [E] 7→ [γE] described above. In summary, we have the following

Theorem 4.3.1. The map from [Sk−1, G] to the set of isomorphism classes of vector bundles
V → E → Sk with structure group G ⊂ GL(V ), which is given by mapping [γ] ∈ [Sk−1, G] to
the isomorphism class of the bundle Eγ, is a bijection. Its inverse is given by the assignment
[E] 7→ [γE].

Recall that the set Vect1(S2) of isomorphism classes of complex line bundles over S2

is an abelian group with respect to the tensor product operation. Theorem 4.3.1 gives us
the bijection Vect1(S2) → [S1,GL(1,C)], [E] 7→ [γE]. Since S1 = U(1) ⊂ GL(1,C) is a
deformation retract of GL(1,C) = C× we can identify [S1,GL(1,C)] with [S1, S1] = π1(S

1).
Also, by definition, the tensor product of two line bundles E1 and E2 has the clutching
function γE1 · γE2 (multiplying in S1 = U(1)), which makes the assignment

Vect1(S2) → π1(S
1) : [E] 7→ [γE]

a group homomorphism and, by theorem 4.3.1, a group isomorphism.
We now fix group isomorphisms ϕ1 : Vect1(S2) → Z and ϕ2 : π1(S

1) → Z. Such
isomorphisms are unique up to sign, but it will turn out that the choice of sign will not be
important in what follows. By abuse of notation, we will write ϕ1(E) for ϕ1([E]) and ϕ2(γ)
for ϕ2([γ]). Since H

2(S2,Z) ∼= Z, ϕ1(E) can be understood as the Chern class of the complex
line bundle E up to sign, see e.g. [Hat17, Proposition 3.10].

Lemma 4.3.2. Let S1 act on S2 by standard rotation and on two copies of C via weights
k1 ∈ Z and k2 ∈ Z, respectively. Consider the corresponding S1-equivariant line bundle
C → E → S2 with weight k1 on the fibre at the south pole S and k2 on the fibre at the north
pole N . Then ϕ1(E) = ±(k1 − k2), depending on the chosen ϕ1.
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Proof. We only have to determine ϕ2(γ) up to sign, where γ : S1 → S1 is the clutching
function of the line bundle E. Trivializations of E around S and N look like D2 × C with
S1-actions

s · (z1, z2) = (sz1, s
k1z2) and s · (z1, z2) = (sz1, s

k2z2),

respectively. The isomorphism between the boundaries of these two trivializations induced
by the clutching function γ has to preserve this S1-action, which gives the condition (now
z1 ∈ ∂D2 = S1)

(sz1, γ(sz1)s
k2z2) = (sz1, s

k1γ(z1)z2).

This immediately implies that ϕ2(γ) is ±(k1−k2), the sign depending on the choice of ϕ2.

Theorem 4.3.3. There are precisely four diffeomorphism types occuring in table 4.2:

(a) the manifolds in case (2) are diffeomorphic to P(C4),

(b) the manifold in case (5) has the diffeomorphism type of the Grassmannian of oriented
2-planes in R5,

(c) those manifolds U(2) ×T P(V ) in cases (1), (3) and (4) for which the first Chern class
of the vector bundle V → U(2) ×T V → U(2)/T is divisible by 3 are diffeomorphic to
S2 × P(C3),

(d) those manifolds U(2) ×T P(V ) in cases (1), (3) and (4) for which the first Chern class
of the vector bundle V → U(2) ×T V → U(2)/T is not divisible by 3 are diffeomorphic
to the total space of any non-trivial P(C3)-bundle over S2.

Proof. As P(C4) is spin and the aforementioned Grassmannian is not, these two manifolds
are not diffeomorphic. In addition, both of them are not diffeomorphic to the manifolds
occurring in cases (1), (3) and (4) of table 4.2 due to the equality of Euler characteristics
χ(M) = χ(MT ) which holds for any torus action on a compact manifold M . The real task
here is to distinguish between the manifolds in cases (1), (3) and (4).

Let M = U(2)×T P(V ) be one of these manifolds. As the projective bundle of the vector
bundle E = U(2) ×T V of rank 3 over U(2)/T ∼= S2, it can be described by a clutching
function γ : S1 → PGL(3,C), which comes from the clutching function γ̃ of E. Because E
is the sum L1 ⊕ L2 ⊕ L3 of three line bundles, we have γ̃ = (γ1, γ2, γ3) : S

1 → U(1)3 ⊂ U(3),
where γ1, γ2 and γ3 are the clutching functions of L1, L2 and L3. The class of γ̃ in π1(U(3)) =
π1(GL(3,C)) = Z is now given by

ϕ2(det(γ̃)) = ϕ2(γ1) + ϕ2(γ2) + ϕ2(γ3).

It follows that the class of γ in [S1,PGL(3,C)] = π1(PGL(3,C)) = Z/3Z is determined by
the value

f(γ) := [ϕ2(γ1 · γ2 · γ3)] = [ϕ2(γ1) + ϕ2(γ2) + ϕ2(γ3)] ∈ Z/3Z,
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since the fibration Z(GL(3,C)) → GL(3,C) → PGL(3,C) induces a short exact sequence

0 → π1(Z(GL(3,C))) → π1(GL(3,C)) → π1(PGL(3,C)) → 0.

Note that f(γ) is equal up to sign to ϕ1(L1) + ϕ1(L2) + ϕ1(L3) modulo 3, where the Li are
the line bundles from above and ϕ1 is the fixed isomorphism Vect1(S2) → Z.

We only need to check that the total spaces E1 and E−1 of the P(C3)-bundles with
f(γ+) = 1 and f(γ−) = −1, where γ+ : S1 → PGL(3,C) and γ− : S1 → PGL(3,C) are
the clutching functions of E1 and E−1, are diffeomorphic, and that E1 and S2 × P(C3) are
not (note that all these statements do not depend on the isomorphisms ϕ1 and ϕ2 we have
chosen).

Because the vector bundles of E±1 are sums of three line bundles, the first statement
follows immediately from the fact that two complex line bundles over S2, whose first Chern
classes differ only in their sign, are C-antilinearly isomorphic (as a change in sign of the
first Chern class corresponds to a change in sign of the complex structure on the fiber).
The second statement is true as E1 and S2 × P(C3) are not even homotopy equivalent.
Indeed, by e.g. [Hus94, §17.2], the cohomology ring of E1 is Z[x, y]/(x2, y3 + xy2), where
x represents a generator of H∗(S2) and y represents a generator of H∗(P(C3)), whereas
H∗(S2 × P(C3)) = Z[x, y]/(x2, y3). These two cohomoloy rings are not isomorphic since any
graded ring isomorphism

Z[x, y]/(x2, y3) → Z[x, y]/(x2, y3 + xy2)

would have to send x to ±x and therefore y to ax ± y for some a ∈ Z, but y3 = 0 on the
left, whereas (ax± y)3 = 3axy2 ± y3 ̸= 0 on the right.

Remark 4.3.4. In order to determine the first Chern class modulo 3 of the C3-bundle E
giving the P(C3)-bundle M of case (1), (3) or (4) in table 4.2, it is sufficient to look at the
directions λ1 = a1ε1+b1ε2 and λ2 = a2ε1+b2ε2 in which the edges of the momentum polytope
P(M) emerge at some vertex v. Indeed, a neighborhood of the U(2)-orbit Ψ−1(v) inM looks
like the bundle L′ = U(2)×T (C−λ1⊕C−λ2). Now consider the action of U(1)×{e} ⊂ T ⊂ U(2)
on L′ and note that the weights of that circle action on the fiber over eT ∈ U(2)/T are given
by −a1 and −a2, whereas the weights in the fiber over the other T -fixed point in U(2)/T
are −b1 and −b2. Using lemma 4.3.2, we see that the first Chern class of L′ is (up to sign)
equal to −a1 − a2 + b1 + b2. Now observe that P(L′ ⊕ C) = P(E) = M , which implies that
M is diffeomorphic to S2 × P(C3) if and only if a1 + a2 − b1 − b2 is a multiple of 3.
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