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Abstract
We develop a novel approach to the topology of singular symplectic quotients by extending
Sjamaar’s complex of differential forms to the complex of resolution differential forms. The
motivation for this is to extend Sjamaar’s complex in a way which makes the definition of a

Kirwan map possible. In his theory this is not possible due to the singularities of any
connection form at the fixed points of the action. Thus, the idea is to resolve the group action

by blow-ups. Doing this using real blow-ups results in a locally free action on the whole
manifold but also in difficult exceptional bundles. Carrying out the construction using

symplectic blow-ups the exceptional bundles turn out to be more controllable. This approach
then allows to define a Kirwan map, whose surjectivity we study in case that the fixed point
set has vanishing cohomology in odd degrees. It turns out that this map is surjective in even

degrees while it is not surjective in odd degrees.

Zusammenfassung
Wir entwickeln einen neuartigen Zugang zur Topologie singulärer symplektischer Quotienten,
indem wir Sjamaars Komplex von Differentialformen zu dem Komplex der Auflösungsformen
erweitern. Die Motivation hierfür ist, dass wir Sjamaars Komplex in einer solchen Weise

erweitern wollen, dass die Definition einer Kirwan-Abbildung möglich wird. In seiner Theorie
ist dies nicht möglich aufgrund von Singularitäten einer jeden Zusammenhangsform in
Fixpunkten der Wirkung. Deshalb ist die Idee, die Gruppenwirkung mit Hilfe von

Aufblasungen aufzulösen. Der Versuch mittels reeller Aufblasungen resultiert zwar in einer
lokal freien Wirkung auf der Mannigfaltigkeit, allerdings auch in schwierigen exzeptionellen
Bündeln. Symplektische Aufblasungen führen hingegen zu exzeptionellen Bündeln, die besser

zu kontrollieren sind. Dieser Zugang erlaubt uns dann auch die Definition einer
Kirwan-Abbildung, deren Surjektivität wir im Falle untersuchen, dass die Komponenten der

Fixpunktmenge verschwindende ungerade Kohomologie haben. Es zeigt sich, dass diese
Abbildung surjektiv in geraden Graden, allerdings im allgemeinen nicht surjektiv in

ungeraden Graden ist.
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Chapter 1

Introduction

Since Kirwan’s seminal thesis [37] was published in 1984, a branch of symplectic geometry
focused on studying the so called Kirwan map. This map relates the equivariant cohomology
of a Hamiltonian G-manifold to the de Rham cohomology of the corresponding symplectic
quotient and is defined as follows. Let (M,σ) be a compact connected symplectic manifold
which carries a Hamiltonian symmetry of a compact Lie group G with momentum map

J: M −→ g∗,

which means that for all X in the Lie algebra of G we have the equality iXσ = dJX , where X
is the fundamental vector field associated to X, and J is a smooth map which is equivariant
with respect to the coadjoint action of G on g∗. It is the equation iXσ = dJX which ties
Hamiltonian actions to equivariant cohomology as explained in [3, Section 6] and [14, Section
5], a tie which is moreover strengthened by the Kirwan map. To introduce it, we assume that
0 ∈ g∗ is a regular value of the momentum map, so that J−1(0) is a closed submanifold of M
invariant under the S1-action and we form the symplectic quotient (M0 := J−1(0)/S1, σ0) which
is a symplectic orbifold according to a classical theorem by Marsden-Weinstein and Meyer, see
[42, Lemma 3.9]. Important to this theorem is that the regularity assumption on the reduction
parameter 0 ∈ g∗ assures finiteness of all stabilizers of the G-action on J−1(0), which means
that the action restricted to the zero level set is locally free. We may therefore look at the
canonical projection

π : J−1(0) −→M0

from the zero level set to the symplectic quotient M0 which is an orbifold and the induced
isomorphism

π∗ : Ω(M0) −→ ΩbasG(J
−1(0)),

where Ω(M0) is the complex of differential forms on M0 and ΩbasG(J
−1(0)) is the complex

of G-basic differential forms on J−1(0) where a differential form is called G-basic if it is both
G-invariant and G-horizontal. Moreover, since the action of G on J−1(0) is locally free, the
natural map from basic differential forms ΩbasG(J

−1(0)) on J−1(0) to equivariant differential
forms CG(J

−1(0)) on J−1(0) given as

ΩbasG(J
−1(0)) −→ CG(J

−1(0)) =
(
S(g∗)⊗ Ω

(
J−1(0)

))G

ω 7−→ 1⊗ ω
induces an isomorphism in cohomology, whose homotopy inverse can be made explicit after
choosing a connection form α ∈ Ω1(J−1(0), g) with curvature Ω := dα+ 1

2
[α, α] ∈ Ω2(J−1(0), g)

by the so-called Cartan map. This map is defined as
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Chapter 1. Introduction

Car : CG(J
−1(0)) −→ ΩbasG(J

−1(0))

ω 7−→ Phor(ω(Ω))

on the level of differential forms, where the curvature components are plugged in ω for the Lie
algebra variables and Phor denotes horizontal projection as in [48, Theorem 5.17]. If we now let
ι : J−1(0)→M denote the inclusion, we may form the composition

κ : H∗
G(M)

ι∗−→ H∗
G(J

−1(0))
Car−→ H∗

basG(J
−1(0))

(π∗)−1

−→ H∗(M0)

which is known as Kirwan map. Here Car and (π∗)−1 are isomorphisms and it was Kirwan’s
major discovery that ι∗ is surjective, which she proved by using Morse-theoretic arguments
which do not rely on the regularity of 0 ∈ R. This regularity assumption is only needed to
build a bridge from the basic cohomology of the zero level set to the cohomology of the sym-
plectic quotient.

Starting with the landmark paper of Lerman-Sjamaar [56] an interest in singular symplec-
tic spaces, namely stratified symplectic spaces, emerged. Lerman-Sjamaar showed that the
stratification of a symplectic manifold M acted upon in a Hamiltonian way by a Lie group
G into orbit types induces a stratification of the symplectic quotient M0 and that this is the
case even if 0 ∈ g∗ is not a regular value. Furthermore, they proved that those induced strata
are themselves symplectic manifolds again. Since the topology of singular spaces is difficult to
handle due to an absence of for example Poincaré duality, the focus in the exploration of the
topology of singular symplectic quotients shifted to studying the intersection cohomology of sin-
gular symplectic reductions. Intersection cohomology was introduced by Goresky-McPherson
in 1971 and overcomes the difficulties of the usual singular cohomology of singular spaces.
Even though a lot of work has been done on the intersection cohomology of singular symplectic
quotients, see Chapter 6, the (non-intersection) cohomology of singular symplectic quotients
remains somewhat mysterious. Nevertheless, one work focussing on the singular cohomology
with real coefficients of singular symplectic quotients was carried out by Sjamaar in 2005 [57],
giving a de Rham model for the real cohomology of singular symplectic quotients which works
as follows: Consider G and set J−1(0)⊤ as the points in the zero level set whose orbit type is
just the identity subgroup {1} ⊂ G, called the top stratum of J−1(0). Assume that this set
is open and dense in the zero level set. Moreover, define the top stratum of the symplectic
quotient as

M
⊤
0 :=

J−1(0)⊤

G
.

The top stratum M⊤
0 is a manifold and sits inside the diagram

M J−1(0)⊤

M⊤
0 .

ι⊤

π⊤

Sjamaar defines the complex of differential forms on the symplectic quotient M0 as

Ω(M0) :=
{
ω ∈ Ω(M⊤

0 )
∣∣∣ ∃ η ∈ Ω(M) : π∗

⊤ω = ι∗⊤η
}

and proves a de Rham theorem which states that the cohomology of the complex of differential
forms, where the differential is the usual exterior derivative of differential forms, computes the
cohomology of M0 with real coefficients, i.e.

H∗(M0;R) ∼= H∗(Ω(M0), d).

12



It was this de Rham model of the real cohomology of the symplectic quotient M0 which inspired
us to define a singular Kirwan map using differential forms. In case that G = S1, a first naive
attempt would be to simply define the singular Kirwan map as follows. Take an equivariant
differential form

∑
I

ωI · xI on M , restrict it to the top stratum of the zero level set J−1(0)⊤,

apply the Cartan map with respect to a connection form on the top stratum of the zero level
set, where the action of S1 is free and obtain a basic differential form on the top stratum of the
zero level set of the form

∑

I

ωI |J−1(0)⊤ ∧ ΩI − α ∧
∑

I

(iXωI |J−1(0)⊤) ∧ ΩI ,

which induces a differential form on the top stratum of the symplectic quotient M⊤
0 . While

this seems to be a nice expression for a singular Kirwan map it is no differential form on M0

in Sjamaar’s sense, the reason beeing that the presence of fixed points in J−1(0), in which the
fundamental vector fields of the S1 action vanish, forces the connection form α, which is dual
to the fundamental vector fields, to be unbounded near the fixed points. Hence, there cannot
be a global 1-form on M extending α and our above expression cannot be a differential form
on M0 in Sjamaar’s sense. To overcome this obstacle, the idea is to find a space related to
M on which the pull-back of the connection form of J−1(0)⊤ admits an extension to the whole
space. Our first idea was to consider a resolution of the group action on M by performing real
blow-ups of M along the isotropy components F in M as in [13, Section 2.9]. This procedure
leads to a G-space BlRG(M) on which the G-action is locally free and a smooth G-equivariant
map

βR : BlRG(M) −→M,

which is a diffeomorphism away from the isotropy components in M . Since the action on
BlRG(M) is now locally free, there is a connection form on J−1(0)⊤ whose pullback under
βR|(βR)−1(J−1(0)⊤) extends to the blown-up space BlRG(M) and thus makes this space attrac-
tive for studying a singular Kirwan map. We therefore extend Sjamaar’s notion of differential
forms on M0 by considering the diagram

BlRG(M) (βR)−1
(
J−1(0)⊤

)

M J−1(0)⊤

M⊤
0 ,

βR

ιR⊤

βR

⊤

ι⊤

π⊤

and introducing the space

Ω̂(M0) :=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃η̃ ∈ Ω(BlRG(M)) : (βR

⊤)
∗π∗

⊤ω0 = (ιR⊤)
∗η̃
}

of real resolution differential forms on M0. Since every differential form in Sjamaar’s sense is a
real resolution differential form, we may form the short exact sequence

0 Ω(M0) Ω̂(M0) C(M0) 0,

where C(M0) denotes the cokernel complex of the inclusion Ω(M0)→ Ω̂(M0). This short exact
sequence of complexes induces a long exact cohomology sequence in a standard way of the form

13



Chapter 1. Introduction

0 H0(Ω(M0), d) H0(Ω̂(M0), d) H0(C(M0), d)

H1(Ω(M0), d) H1(Ω̂(M0), d) H1(C(M0), d)

H2(Ω(M0), d) H2(Ω̂(M0), d) H2(C(M0), d) . . . ,

δ

δ

where δ denotes the boundary operator. When dealing with the blow-up βR we may form the

strict transform of J−1(0) defined as ĈR := (βR)−1J−1(0)⊤, its quotient M̂0 := ĈR/G by the
induced G-action, and consider the induced map

βR
0 : M̂0 −→M0.

Since this is again a diffeomorphism away from the exceptional loci F̂ := (βR
0 )

−1(F ), it seems
plausible that the cohomology of the cokernel complex C(M0) is connected to the cohomology
of these exceptional loci. We therefore study these spaces using a Gysin sequence for locally
free circle actions and determine the cohomology of the fibres of the bundles F̂ → F . Since we
cannot apply Leray-Hirsch’s theorem to the bundles

F̂ −→ F

they seem to be not suitable to work with, forcing us to end our investigation of the real blow-up
method at this point.

We therefore consider symplectic blow-ups to resolve the S1 action instead. These blow-ups
seem on the one hand less attractive since they introduce invariant complex projective spaces
sitting inside the blown-up space BlCG(M), which make it impossible for the blown-up action to
be locally free. On the other hand they seem more natural in the context of Hamiltonian group
actions since the blown-up space is again Hamiltonian with respect to the lifted action with
momentum map J̃. We proceed analougously to the real situation by performing symplectic
blow-ups along all fixed point components to obtain a Hamiltonian manifold (BlCG(M), σ̃) for

which zero is now a regular value of the momentum map J̃ and its zero level is the strict
transform of J−1(0). Now, we consider the map

βC
0 : M̃0 :=

J̃−1(0)

G
−→M0

where the space M̃0 is called the partial desingularization of M0. This space was already
considerd by Kirwan [38] in the GIT context and was later brought to the general Hamiltonian
setting by Meinrenken-Sjamaar [46]. We find that the fibres of the exceptional bundles of the
partial desingularization βC

0 are themselves regular symplectic reductions of complex projective
spaces and their cohomology was determined by Kalkman [32, Section 5]. Now the situation is
much more well-behaved than in the real analogue due to the existence of the symplectic class

of M̃0 and the easier topology of the exceptional bundles; in fact Leray-Hirsch’s theorem now
applies to those bundles. Again, we define a complex of resolution forms, but now with respect
to the symplectically blown-up space by considering the diagram

14



BlCG(M) (βC)−1
(
J−1(0)⊤

)

M J−1(0)⊤

M⊤
0

βC

ιC⊤

βC

⊤

ι⊤

π⊤

and making the definition

Ω̃(M0) :=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃η̃ ∈ Ω(BlCG(M)) : (βC

⊤)
∗π∗

⊤ω0 = (ιC⊤)
∗η̃
}
.

We then consider the resulting short exact sequence of cochain complexes

0 Ω(M0) Ω̃(M0) C(M0) 0,

and the induced long exact sequence in cohomology. This sequence is of the form

0 H0(Ω(M0), d) H0(Ω̃(M0), d) H0(C(M0), d)

H1(Ω(M0), d) H1(Ω̃(M0), d) H1(C(M0), d)

H2(Ω(M0), d) H2(Ω̃(M0), d) H2(C(M0), d) . . . ,

δ

δ

which enables us to interpret all occuring terms geometrically. In fact, Sjamaar’s de Rham
theorem shows that

H∗(Ω(M0), d) ∼= H∗(M0;R),

we prove the isomorphism

H∗(Ω̃(M0), d) ∼= H∗(M̃0)

and determine the cohomology of the cokernel complex as

H∗(C(M0), d) ∼=
⊕

F∈F0

coker(H∗(F )→ H∗(F̃ )) ∼=
⊕

F∈F0

H∗(F )⊗ R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF
,

where σ̃0|F̃ and Ω̃|F̃ are generators of the cohomology of the fibre of the exceptional bundle F̃ →
F of degree two, IF is a certain ideal of relations between these generators and R[σ̃0|F̃ , Ω̃|F̃ ]≥1

is the set of polynomials in these two generators of degree at least one. F0 denotes the set of
fixed point components contained in the zero level set. This reveals the long exact sequence as
being of the form

. . . −→ Hk(M0;R) −→ Hk(M̃0) −→
⊕

F∈F0

coker(Hk(F )→ Hk(F̃ )) −→ Hk+1(M0;R) −→ . . . .

15
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This sequence allows us to detect the case of Hamiltonian circle actions, where the components
of the fixed point set have vanishing cohomology in odd degrees. In this case the long exact
sequence above splits into short exact sequences and there is a (non-canonical) splitting

Hev
(
M̃0

)
∼= Hev (M0)⊕ V

of even-degree cohomology groups for some vector space V . Thus there is a projection map

Hev(M̃0) → Hev(M0;R). Note that while the cohomology of resolution differential forms of

M0 simply computes the cohomology of the partial desingularization M̃0 the main merit of

the concept of resolution differential forms is that it allows a comparison of H∗
(
M̃0

)
and

H∗ (M0) and provides the specific framework of differential forms in which one can carry out
this comparison. Now, in order to define the singular Kirwan map we introduce the g-differential
graded algebras Ω(J−1(0)) and Ω̃(J−1(0)) by pulling back the differential forms and resolution
differential forms of M0 to the top stratum of the zero level set J−1(0)⊤. This allows us to

consider the corresponding basic complexes Ω∗ (J−1(0))bas g and Ω̃∗ (J−1(0))bas g as well as the

associated Cartan complexes CG(J
−1(0)) := CG

(
Ω∗ (J−1(0))

)
and CG

(
Ω̃∗ (J−1(0))

)
and their

cohomologies. Ultimately, we define the singular Kirwan map K, called the resolution Kirwan
map, as the composition

H∗
G(M) H∗

G (J−1(0)) H∗
(
CG
(
Ω̃∗
(
J−1(0)

))
, dG

)
H∗
(
Ω̃∗ (J−1(0))bas g , d

)

H∗(Ω̃∗(M0), d),

ι∗⊤

K

inc Car

(π∗
⊤)

−1

where H∗
G (J−1(0)) = H∗(CG(J

−1(0)), dG) and inc denotes the map induced by the natural

inclusion CG(J
−1(0)) → CG

(
Ω̃∗ (J−1(0))

)
. We prove that the image of the resolution Kir-

wan map K : H∗
G(M) → H∗(Ω̃∗(M0), d) contains the image of the natural map H∗(M0;R) →

H∗(Ω̃∗(M0), d), which can be seen as a weak form of resolution Kirwan surjectivity. In partic-
ular, this implies that in the case where the components of the fixed point set have vanishing
cohomology in odd degrees we obtain a surjection

Hev
G (M) −→ Hev(M0;R).

Notice that this surjectivity is interesting for many applications as the cohomology classes
of even degree are particularly interesting for problems concerning integration on the even
dimensional spaces M or M0, such as residue formulas. We furthermore find an example which
shows that it is in general not true that there is a surjection

H∗
G(M) −→ H∗(M0;R).

We then apply our results to a class of examples, namely to Abelian polygon spaces, where we
consider the example of the standard diagonal rotational action of S1 on the product S2×. . .×S2

of 2-spheres. In the case of four spheres, we show that the singular symplectic quotient M0 has
non-vanishing third cohomology.

The outline of the thesis is as follows: In Chapter 2, we recall the relevant aspects of
Hamiltonian group actions and equivariant cohomology. Chapter 3 deals with the real blow-up
construction. Its implications and limitations for studying resolution cohomology are dealt with
in Chapter 4. In the following Chapter 5 we develop the partial desingularization via symplectic

16



blow-ups. Our main results are contained in Chapter 6, where we define resolution differential
forms and prove ’weak’ resolution Kirwan surjectivity. The chapter concludes with a discussion
of an important family of examples, the so-called Abelian polygon spaces. Chapter 7 discusses
other approaches to the topology of singular symplectic quotients and singular Kirwan maps
and some connections to our work. Finally, in Chapter 8 we give a brief outlook on what could
be done on this topic in the future.

Throughout the thesis cohomology is considered with real coefficients and we consider effec-
tive left actions of compact Lie groups G on compact connected manifolds. Often, we consider
a Hamiltonian S1-action on (M,σ). Throughout we fix an invariant almost complex structure
on M and an identification Lie(S1) ∼= R where a fixed generator X ∈ Lie(S1) corresponds to
1 ∈ R.

17



Chapter 2

Symplectic geometry and the Kirwan

map

2.1 Hamiltonian group actions and symplectic reduction

In order to introduce our setup and fix notation, let’s briefly recapitulate the basic framework
of symplectic geometry and Hamiltonian group actions. We omit the proofs since these are
excellently covered in the literature. The reader unfamiliar with the material is encouraged to
consult [9], [4] and [45].

2.1.1 Symplectic geometry and Hamiltonian group actions

Definition 2.1.1. A differential form σ ∈ Ω2(M) on a 2n-dimensional manifold M is called
symplectic if

❼ σ is closed and

❼ σ is non-degenerate, which means σn is nowhere vanishing.

The pair (M,σ) is called a symplectic manifold.

Definition 2.1.2. Two symplectic manifolds (M1, σ1) and (M2, σ2) are called symplectomorphic
if there is a diffeomorphism ϕ : M1 →M2 with ϕ∗σ2 = σ1.

Example 2.1.3. The wide list of examples of symplectic manifolds contains orientable surfaces,
Kähler manifolds, coadjoint orbits of compact Lie groups, cotangent bundles and the Euclidean

spaces

(
R2n, σ =

n∑
k=1

dxk ∧ dyk
)
, where x1, y1, . . . , xn, yn are coordinates on R2n.

Remark 2.1.4. One can produce further examples by taking products of the aforementioned
according to the following simple principle: Let (M1, σ1) and (M2, σ2) be symplectic manifolds.
Then their product (M1 ×M2, pr

∗
1σ1 + pr∗2σ2) is again a symplectic manifold.

A fundamental feature of symplectic geometry is that there are no local invariants of sym-
plectic manifolds. This statement is made precise in the following

Theorem 2.1.5 (Darboux). Let (M,σ) be a 2n-dimensional symplectic manifold. Then (M,σ)

is locally symplectomorphic to

(
R2n,

n∑
k=1

dxk ∧ dyk
)
.

We thus have to study symplectic manifolds by global means. One possibility is to impose
symmetries on (M,σ) and explore their nature. Let therefore G be a compact connected Lie
group acting on a compact connected symplectic manifold (M,σ).
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Definition 2.1.6. The action of G on (M,σ) is called symplectic if g∗σ = σ for any g ∈ G, so
when the symplectic form σ is G-invariant.

Given such an action, any element X ∈ g induces a vector field X ∈ X (M), defined as

Xp :=
d

dt

∣∣∣
t=0

exp(tX) · p,

where p ∈M and the action is defined by the map G×M →M where (g, p) 7→ g · p. Since we
assumed the action to be symplectic σ will be invariant under the flow of X for all X ∈ g and
thus

LXσ =
d

dt

∣∣∣
t=0

exp(tX)∗σ = 0,

where L denotes the Lie derivative. By Cartan’s formula and the closedness of σ we have

0 = LXσ = d(iXσ) + iXdσ = d(iXσ),

so the differential form iXσ is closed for all X ∈ g. As turns out, we want ask for even more,
namely that the differential form iXσ is exact for all X ∈ g. This directly leads to

Definition 2.1.7. An action of a Lie group G on a compact symplectic manifold (M,σ) is
called Hamiltonian if there exists a smooth G-equivariant map J: M → g∗, such that for every
X ∈ g

dJX = iXσ,

where JX : M → R is defined by JX(p) := J(p)(X) and G acts on g∗ by the coadjoint action.
Such a map J is called momentum map. For Abelian Lie groups G an additive constant may
be added to J and one still has a momentum map.

Example 2.1.8. The 2-sphere is a sympletic manifold where the symplectic form is the stan-
dard volume form. The standard S1-action given by rotation around the z-axis is Hamiltonian
with momentum map

J: S2 −→ R

(x, y, z) 7−→ z.

Example 2.1.9. The standard diagonal action of S1 on Cn given as eit · (zk) := (eit · zk) is
Hamiltonian when we equip Cn ∼= R2n with the standard symplectic form. A momentum map
is

J : Cn −→ R

(zk)k 7−→ −
1

2

n∑

k=1

|zk|2.

If more generally a compact n-torus T n = S1 × . . .× S1 acts on Cn by (eitk) · (zk) = (eitk · zk)
this action is again Hamiltonian, a momentum map is

J : Cn −→ Rn

(zk)k 7−→ −
1

2
(|zk|2)k.

19
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Example 2.1.10. When we endow complex projective space CPn with the Fubini-Study form
σFS the T n-action (eit1 , . . . , eitn) · [z1 : . . . : zn+1] := [eit1 · z1 : . . . : eitn · zn : zn+1] is Hamiltonian
with momentum map

J: CPn −→ Rn

[z1 : . . . : zn+1] 7−→ −
1

2



|z1|2

n+1∑
i=1

|zi|2
, . . . ,

|zn|2
n+1∑
i=1

|zi|2


 .

And for the circle action eit · [z1 : . . . : zn+1] := [eit · z1 : . . . : eit · zn : zn+1] we have the
momentum map

J: CPn −→ R

[z1 : . . . : zn+1] 7−→ −
1

2

n∑
i=1

|zi|2

n+1∑
i=1

|zi|2
.

Their rich structure on the one hand and local simplicity on the other have made momentum
maps a driving force not only in symplectic geometry but also in combinatorics, algebraic
geometry and theoretical mechanics where the origins of momentum maps lie. Since we will
be mostly concerned with circle actions later on, we will now state the local and convexity
properties of momentum maps in restricted generality only for G = S1 or Abelian G. Denote
by F the set of fixed point components of the fixed point setMG and by F0 the set of those fixed
point components contained in the zero level set. WhenM is compact both F and F0 are finite
as explained in [51, Section 2.4.14 (i)]. Full local understanding of an effective Hamiltonian
action of S1 on a compact connected symplectic manifold (M,σ) near a fixed point component
F ∈ F is provided by the local normal form theorem, [40, Lemma 3.1], [51, Theorem 7.5.5] and
[10, Prop. 3.2]:

Lemma 2.1.11. For each fixed point component F ∈ F , there exist numbers ℓ+F , ℓ
−
F ∈ N such

that there is

1. a faithful unitary representation ̺ : S1 → (S1)
ℓ+
F
+ℓ−

F ⊂ U(ℓ+F + ℓ−F ) with positive weights
λ1, . . . , λℓ+

F
and negative weights λℓ+

F
+1, . . . , λℓ+

F
+ℓ−

F
,

2. a principal KF -bundle PF over F , where KF is a subgroup of U(ℓ+F )×U(ℓ−F ) that commutes
with ̺(S1),

such that there is a symplectomorphism Φ from a neighbourhood U of F inM to a neighbourhood
U0 of the zero section in the associated normal bundle ΣF

∼= PF ×KF
Cℓ+

F
+ℓ−

F → F . This

symplectomorphism is equivariant with respect to the circle action on PF ×KF
Cℓ+

F
+ℓ−

F which

is given by z · [p, z1, . . . , zℓ+
F
+ℓ−

F
] := [z · p, zλ1z1, . . . , z

λ
ℓ
+
F

+ℓ
−
F zℓ+

F
+ℓ−

F
]. Moreover Φ pulls back the

momentum map J to the map µ : PF ×KF
Cℓ+

F
+ℓ−

F → R given below; that is J ◦ Φ = µ, where

µ
(
[p, z1, . . . , zℓ+

F
+ℓ−

F
]
)
=

1

2

ℓ+
F
+ℓ−

F∑

i=1

λi|zi|2 + J(F ).

The numbers 2ℓ−F and 2ℓ+F are called the index and the co-index of F . The tuple (2ℓ−F , 2ℓ
+
F ) is

called the signature of F .
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Remark 2.1.12. From the local normal form one can guess that it is worth it to study momentum
maps within Morse-Bott theory. In fact, for a Hamiltonian action of a torus T n on a compact
connected symplectic manifold (M,σ) with momentum map

J: M −→ t∗

and X ∈ t the component function JX : M → R is a Morse-Bott function. For further informa-
tion on this see [50, Theorem 3.52].

One striking result of the study of momentum maps is the convexity theorem from Atiyah and
Guillemin-Sternberg, see [9, Theorem 27.1]. This theorem tells us that the momentum image of
a compact connected symplectic manifold (M,σ) is a convex polytope in g∗. We have therefore
now overcome the struggle of the absence of local invariants of symplectic manifolds and found
an invariant of Hamiltonian manifolds, the momentum polytope.

Theorem 2.1.13 (Atiyah, Guillemin-Sternberg). Let T k act on a compact connected symplectic
manifold (M,σ) in a Hamiltonian way with momentum map J: M → t∗. Then

1. The level sets of J are connected.

2. J(M) is a closed convex polytope in t∗.

3. The image of J is the convex hull of the images of the fixed points under J.

Example 2.1.14. 1. Let us apply the convexity theorem in Example 2.1.8. The fixed point
set of the rotational circle action consists of the north- and southpole. Hence the mo-
mentum image is the convex hull of J(0, 0, 1) = 1 and J(0, 0,−1) = −1 inside R, i.e. the
closed intervall [−1, 1]. We therefore might picture the momentum map as

.

2. If we consider the T 2 action on CP2 from Example 2.1.10, we obtain the fixed point set
{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} and the momentum polytope is the convex hull of{(
−1

2
, 0
)
,
(
0,−1

2

)
, (0, 0)

}
. This convex hull is the following triangle
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.

The relation between Hamiltonian torus actions T k y (M,σ) with momentum map J :M → Rk

and their momentum polytopes is particularly fruitful in the case that the dimension of T k is
half the dimension of M , i.e. k = n. We call (M,σ, T n, J) a toric symplectic manifold in this
case. Only special polytopes arise as momentum polytopes of toric symplectic manifolds, called
Delzant polytopes, see [9, Definition 28.1], and Delzant proved that toric symplectic manifolds
are classified by their momentum polytope, see see [4, Theorem IV.4.20 and Section VII.2], [21,
Chapter 1] and [9, Theorem 28.2]. In fact, he proved

Theorem 2.1.15 (Delzant). The momentum map constitutes a bijective correspondence

{symplectic toric manifolds} −→ {Delzant polytopes}
(M,σ, T n, J) 7−→ J(M).

In particular, two toric symplectic manifolds, whose momentum polytopes coincide, are equiv-
ariantly symplectomorphic.

2.1.2 Symplectic reduction

To form a new symplectic manifold from a Hamiltonian action, a cornerstone result of Marsden-
Weinstein and Meyer is contained in

Theorem 2.1.16. Let G act on (M,σ) in a Hamiltonian fashion with momentum map J: M →
g∗ and suppose that 0 is a regular value of J and G acts freely on J−1(0). Then the quotient
space M0 := J−1(0)/G carries a unique symplectic form σ0 ∈ Ω2(M0) satisfying π∗σ0 = ι∗σ,
where π and ι are the natural projection and inclusion sitting in

J−1(0) M

M0.

ι

π

Definition 2.1.17. In the situation of the aforementioned theorem the symplectic manifold
(M0, σ0) is called the symplectic quotient or symplectic reduction of the Hamiltonian action
Gy (M,σ) with momentum map J.
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2.1. Hamiltonian group actions and symplectic reduction

Remark 2.1.18. The assumption on the freeness of the action on the zero level set in the
Marsden-Weinstein-Meyer theorem is not too necessary in the sense that even if G does not
act freely on J−1(0) it is guaranteed by the regularity assumption that G acts locally freely on
J−1(0), which means that all stabilizer groups are finite. Thus for 0 a regular value of J the
symplectic quotient M0 is still a reasonable smooth space, namely a symplectic orbifold, see [4,
Propositon III.2.20] (For more information on (symplectic) orbifolds we may recommend [42,
Part 1], [8, Chapter 4], [11, Section 14.1] and [1]). When we restrict ourselves to G = S1 there
is nothing special about the level set J−1(0) because for any ε ∈ R ∼= g∗ we may form the map
J− ε which is again a momentum map of the S1-action on M .

As locally free actions are central to our endeavour, we note the following definition.

Definition 2.1.19. An action of a Lie group G on a manifold M is called locally free if the
stabilizer Gp is finite for every point p ∈M .

If we drop the regularity assumption the reduced space M0 := J−1(0)/G will have serious
singularities. Nevertheless, Lerman-Sjamaar [56] managed to find a nice symplectic structure
on M0: It is a symplectic stratified space. For the general definitions and properties of stratified
spaces see [56, Section 1, Section 6] or [13, Section 2.7]. We can summarize the relevant part
of Lerman-Sjamaar’s work for us in the following theorem, which is an amalgamation of [56,
Theorem 2.1] and [56, Theorem 5.9]

Theorem 2.1.20 (Lerman-Sjamaar). The stratification of M =
∐
H<G

M(H) by orbit types in-

duces a stratification

M0 =
∐

H<G

J−1(0) ∩M(H)

G
=:
∐

H<G

(M0)(H)

of the symplectic quotient. Each stratum (M0)(H) is a symplectic manifold, where the symplectic

form is induced by the restriction of σ to J−1(0) ∩M(H). Furthermore there is a unique open,
connected and dense stratum M⊤

0 , which we call the regular stratum or top stratum.

Remark 2.1.21. We could also partition M by infinitesimal orbit types M(h) which would result
in a stratification of M0 by symplectic orbifolds.

Example 2.1.22. Let us examine one example of this stratification. Consider the product
S2 × S2 of two spheres. This is a symplectic manifold with symplectic form σ = pr∗1(volS2) +
pr∗2(volS2) and the diagonal S2-action induced by rotation around the z-axis is Hamiltonian
with momentum map

J: S2 × S2 −→ R

((x1, y1, z1)(x2, y2, z2)) 7−→ z1 + z2

as depicted in
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.

Zero is not a regular value of this as the zero level set J−1(0) contains the fixed points
((0, 0, 1), (0, 0,−1)) and ((0, 0,−1), (0, 0, 1)). Apart from these fixed points the circle action
is free on the zero level set and J−1(0) is homeomorphic to a suspended 2-torus which is indi-
cated partly by the dashed portion of the above picture. Quotienting this by S1 gives us as
symplectic quotient M0 a suspension of the circle where the singular stratum consists of the
two cone points.

In general, the regular stratum M⊤
0 is of the form

J−1(0)∩M(H)

G
=: J−1(0)⊤

G
for some orbit

type M(H) and its symplectic form σ⊤ satisfies π∗
⊤σ⊤ = ι∗⊤σ, where π⊤ and ι⊤ are the natural

projection and inclusion as in

J−1(0)⊤ M

M⊤
0 .

ι⊤

π⊤

This observation can be seen as a first instance of Sjamaar’s de Rham theory of symplectic
quotients which he developed in [57] and we will review now. Let

Ω∗(M)G :=
{
ω ∈ Ω∗(M)

∣∣∣ g∗ω = ω ∀g ∈ G
}

denote the complex of G-invariant differential forms on M .

Definition 2.1.23. The complex of differential forms on M0 is defined as

Ω(M0) :=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃η ∈ Ω(M) : π∗

⊤ω0 = ι∗⊤η
}
.

24
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By averaging over G, we may replace Ω(M) by Ω(M)G in this definition as mentioned in [57, p.
155]. It is straight forward to relate this complex to a subcomplex of the G-invariant differential
forms on M in the following way. Consider the complex

ΩJ(M) :=
{
ω ∈ Ω(M)G

∣∣∣ ι∗⊤ω = ω|J−1(0)⊤ horizontal
}

and the ideal

IJ(M) :=
{
η ∈ Ω(M)G

∣∣∣ ι∗⊤η = 0
}
.

Proposition 2.1.24. We have an isomorphism of complexes

Ω(M0) ∼=
ΩJ(M)

IJ(M)
.

Sjamaar further noticed that any differential form on M0 induces forms on the lower dimensional
strata. In [57, Lemma 3.3] he proves that there is a natural restriction map

Ω(M0) −→ Ω((M0)(H)),

for any lower dimensional stratum (M0)(H) of the reduced space M0. The significance of the
complex of differential forms on M0 and the main result of [57] is a de Rham theorem for
Ω(M0). In [57, Theorem 5.5] he proves

Theorem 2.1.25 (Sjamaar). The cohomology of the complex of differential forms on M0 is
isomorphic to the singular cohomology of M0 with real coefficients, that is

H∗(Ω(M0), d) ∼= H∗(M0;R).

He proved his result for cohomology with values in the locally constant sheaf R, but you can
also think of singular cohomology with real coefficients since M0 is (para-)compact and locally
contractible.

A very interesting question combining symplectic reduction and the convexity theorem is

how the symplectic quotients
(
Mε :=

J−1(ε)
G

, σε

)
vary as one varies the reduction parameter

ε ∈ g∗. Let us restrict to the case G = S1. Then the momentum polytope is in fact a
closed interval in R ∼= g∗ which we can decompose into the connected components of the
subset of regular values inside J(M). It is common to refer to these connected components
of the momentum polytope as chambers which are seperated by critical values referred to as
walls. As long as the reduction parameter ε varies inside one chamber the classical theorem of
Duistermaat-Heckman, see [12, Theorem 1.1] or [21, Theorem 2.3] for details, reads as follows.

Theorem 2.1.26 (Duistermaat-Heckman). If ε and ε′ are in the same connected component
of the set of regular values of J, then the symplectic quotients Mε and Mε′ are diffeomorphic
and their symplectic classes are related by

[σε] = [σε′ ] + (ε− ε′) · [c] ∈ H2(Mε),

where c ∈ H2(Mε) is the (common) curvature class of the Mε.

Now, if ε crosses a critical value, a so called wall-crossing occurs and the change of the symplectic
quotient is controlled by masterly work of Guillemin-Sternberg, see [21, Section 2.3] and [20]
for details. In fact the part interesting for us of what they proved is
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Theorem 2.1.27 (Guillemin-Sternberg). As ε crosses a critical value, the diffeomorphism type
of the Mε undergoes the change of a blow-up followed by a blow-down.

Moreover they had the insight, see [20, p. 511 and p. 499] and [21, p. 35 f.], that whenever a
critical level set only contains fixed point components of index or co-index 2 the reduction at
this critical value is well-behaved in the following sense

Proposition 2.1.28. If 0 is a critical value of J and every fixed point component F ⊂ J−1(0)∩
MG has signature (2, 2p) or (2q, 2) and S1 acts semi-freely on M (this means that the isotropy
subgroups are either {1} or S1), then the reduced space M0 is in fact a smooth symplectic
manifold, whose symplectic form is induced by the symplectic form of M .

2.2 Equivariant cohomology and g-differential graded al-

gebras

Hamiltonian group actions and equivariant cohomology are tightly connected, one such con-
nection being the Kirwan map, which is one of the driving forces of this dissertation. In this
section we will recall the necessary background from equivariant cohomology, again without
proofs, and refer the reader to [18], [23] and [60].

2.2.1 Algebraic topology of group actions

It is very convenient to study the topology of manifolds by de Rham’s theorem, see [61, Theorem
5.45].

Theorem 2.2.1 (de Rham). There is an isomorphism

ΦdR : H
∗(M) ∼= H∗(M ;R)

of graded R-algebras between the (de Rham) cohomology of the complex of differential forms on
M and the singular cohomology of M with real coefficients.

When concerned with compact Lie group actions on smooth compact manifolds, one might
wonder whether the topology of such actions could be studied by investigating cohomological
properties of some suitable complex of differential forms tied to the action. Natural candidates
might me the following two complexes

Definition 2.2.2. Let a compact Lie group G act on a smooth compact manifold M . Then
the complex of G-invariant differential forms is

Ω∗(M)G :=
{
ω ∈ Ω∗(M)

∣∣∣ g∗ω = ω ∀g ∈ G
}
.

The complex of G-basic differential forms is

Ω∗
basG(M) :=

{
ω ∈ Ω∗(M)G

∣∣∣ iXω = 0 ∀X ∈ g
}
,

so a G-basic differential form is a differential form which is G-invariant and G-horizontal.

From these complexes we obtain the G-invariant cohomology algebra H∗(M)G and the G-
basic cohomology algebra H∗

basG(M). Concerning the invariant cohomology, a straightforward
averaging argument, [18, Theorem 2.2], shows that for compact and connected G the inclusion(
Ω∗(M)G, d

)
→ (Ω∗(M), d) of complexes induces an isomorphism

H∗(M)G −→ H∗(M).
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Thus, the invariant cohomology does not contain information about the group action. The
G-basic cohomology on the other hand is a bit more interesting. If G acts freely/locally freely
on M the quotient space M/G is a manifold/orbifold and the projection

π : M −→M/G

is a smooth principal G-bundle/G-orbibundle which induces an isomorphism of complexes

π∗ : Ω∗(M/G) −→ Ω∗
basG(M).

In particular, it defines an isomorphism in cohomology H∗(M/G) ∼= H∗
basG(M), see [18, Propo-

sition 2.5], [22, Corollary B.30], [22, Corollary B.31], [22, Corollary B.36], [31, Proposition
3.5.4], [11, Section 16.2], [14, Section 3] and [47, p. 380].
As noted in [18, Remark 2.8] the G-basic cohomology H∗

basG(M) is isomorphic to H∗(M/G;R),
the singular cohomology of the quotient space, even if the G-action is singular and the quotient
is not a manifold. Since there are many interesting non-trivial group actions with contractible
quotient space the basic cohomology is not appropriate to study those. The ’right’ definition
of equivariant cohomology was found by topologists and we will now shortly describe their
construction, also called Borel construction. You can find further information on this in [23,
Chapter I] and [60, Part I].
For each compact Lie group G there is a principal G-bundle

EG −→ BG,

called the universal G-bundle, which is unique up to homotopy equivalence. The space EG is
contractible and G acts freely on EG. The base space of the universal bundle BG is called
classifying space. Now, we can form the product

M × EG.

This product is homotopy-equivalent toM because EG is contractible and the diagonalG-action
on M × EG is free since it is free on the second factor. We arrive at

Definition 2.2.3. The spaceMG :=M ×GEG = (M ×EG)/G is called the homotopy quotient
of the action of G on M . Its singular cohomology is called the singular equivariant cohomology
of the G action on M and we set

H∗
G(M ;R) := H∗(MG;R).

Now, this definition, while tremendously useful to topologists, is of limited help in our search
for a de Rham model for the study of smooth actions, because EG is no longer a manifold, but
an infinite-dimensional space. It was the seminal work of Cartan in the 1950s that translated
the topological simplicity of the homotopy quotient into the algebraic simplicity of a suitable
de Rham model.
The action of G on M induces an action of G on Ω(M) by pull-back. On the other hand G
acts on the symmetric algebra S(g∗), which consists of polynomials P : g→ R, by the coadjoint
representation, which means that for ω ∈ Ω(M), X ∈ g and P ∈ S(g∗) we have the actions

g · ω :=
(
g−1
)∗
ω and (g · P )(X) := P (Ad g−1(X)).

This defines an action of G on Ω(M)⊗ S(g∗) and we set

Definition 2.2.4. The Cartan complex of the G action on M is defined as

CG(M) := (Ω(M)⊗ S(g∗))G .
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Elements of CG(M) can be regarded as polynomial maps ω : g −→ Ω(M) which are G-
equivariant in the sense that for ω ∈ CG(M):

(
g−1
)∗

(ω(X)) = ω (Ad gX) .

Now, we define the map dG : CG(M)→ CG(M) by

dG(ω)(X) := d(ω(X))− iXω(X)

and give CG(M) the grading

Cn
G(M) :=

⊕

k,l : k+2l=n

(
Ωk(M)⊗ Sl(g∗)

)G
.

This turns dG into a differential of degree 1.

Remark 2.2.5. When we fix a basis {Xi}ki=1 of g with dual basis {xi} we can write an element
ω ∈ CG(M) as

ω =
∑

I

ωI · xI

for multi-indices I and differential forms ωI ∈ Ω(M). In such a basis the differential looks like

dGω = dG

(∑

I

ωI · xI
)

=
∑

I

(
dωI −

k∑

i=1

iXi
ωI · xi

)
· xI .

Definition 2.2.6. The equivariant de Rham cohomology of the action of G on M is

H∗
G(M) := H∗(CG(M), dG).

That we have reached the goal of our search for a suitable model guarantees the following
equivariant version of the de Rham theorem [60, Theorem 21.6 and Appenidx A]:

Theorem 2.2.7 (Cartan). Let G be a compact connected Lie group acting on a manifold M .
Then there is a graded S(g∗)G-algebra isomorphism between the singular equivariant cohomology
of M and the equivariant de Rham cohomology of M :

ΦG
dR : H

∗
G(M ;R) −→ H∗

G(M).

2.2.2 Locally free actions and the Cartan map

Let G act on M . Then for each X ∈ g, the Lie derivative with respect to the fundamental
vector field X is a derivation of degree 0, while the contraction with the fundamental vector
field is an anti-derivation of Ω(M) of degree −1:

LX := LX : Ωk(M)→ Ωk(M) and iX := iX : Ωk(M)→ Ωk−1(M).

These two operators are related to the exterior differential d by Cartan’s homotopy formula

LX = iX ◦ d+ d ◦ iX .

Generalizing this one arrives at the following definition, see [17, Definition 3.1], [15, Definition
6] and [48, Sections 5.2 and 5.6].

Definition 2.2.8. Let g be a finite-dimensional Lie algebra and A =
⊕

Ak a Z-graded algebra.
We call A a g-differential graded algebra (g-dga) if there is a derivation d : A→ A of degree 1,
together with derivations iX : A → A of degree −1 and LX : A → A of degree 0 for all X ∈ g,
iX and LX depending linearly on X, such that
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1. d2 = 0,

2. i2X = 0,

3. [LX , LY ] = L[X,Y ],

4. [LX , iY ] = i[X,Y ],

5. [d, LX ] = 0,

6. LX = diX + iXd.

At present, our main example is the de Rham complex Ω(M) of a manifold M on which a
Lie group G with Lie algebra g acts. For connected G a differential form ω ∈ Ω(M) is G-
invariant if and only if LXω = 0 for all X ∈ g. Thus we may state the following definition,
which translates the former concepts of invariant, basic and equivariant differential forms to
the language of g-differential graded algebras.

Definition 2.2.9. Let A be a g-differential graded algebra. From A we may form

❼ the invariant subcomplex AG := {ω ∈ A | ∀X ∈ g : LXω = 0},

❼ the basic subcomplex Abas g := {ω ∈ AG | ∀X ∈ g : iXω = 0}, whose cohomology
Hbas g(A) := H∗(Abas g, d) is the basic cohomology of A,

❼ the Cartan complex Cg(A) := (A⊗ S(g∗))g, where ω : g → A is an invariant element if
LX(ω) = 0 for all X ∈ g and the action of g on A⊗S(g∗) is defined similarly to Definition
2.2.4. The differential of Cg(A) is

dgω(X) := d(ω(X))− iX(ω(X)),

the cohomology of (Cg(A), dg), denoted by Hg(A), is the equivariant cohomology of A.

For a compact connected Lie group G acting on a manifold M the notions Hbas g(A) and
HbasG(A) as well as Hg(A) and HG(A) coincide when A is some subcomplex of the de Rham
complex of M . A situation in which basic and equivariant cohomology of A relate very well by
the natural map

Hbas g(A) −→ Hg(A)

induced by sending a basic element ω ∈ Abas g to ω ⊗ 1 ∈ Cg(A) occurs for locally free g-
differential graded algebras. To reformulate the geometric concept of locally free group actions
from Definition 2.1.19 algebraically, we have to speak about connection forms of Lie group
actions.

Definition 2.2.10. A g-valued 1-form θ ∈ Ω1(M)⊗g =: Ω1(M, g) is called connection form, if

❼ for every g ∈ G : (g−1)
∗
θ = Ad g ◦ θ,

❼ for every X ∈ g : iXθ = X.

The curvature form F θ ∈ Ω2(M)⊗ g of a connection θ is defined by

F θ(X, Y ) = dθ(X, Y ) +
1

2
θ([X, Y ]),

where X, Y are vector fields on M . Sometimes we will denote a connection form by α and its
curvature form by Ω.

As explained in [11, Section 16.2] and [23, Section 2.3.4] we have the following characteri-
zations of local freeness.

Proposition 2.2.11. For the action of G on M the following are equivalent:
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❼ The action is locally free.

❼ The fundamental vector field X is nowhere vanishing for all X ∈ g.

❼ There exists a connection form θ ∈ Ω1(M)⊗ g.

Remark 2.2.12. Let {Xi}ki=1 be a basis of g with dual basis {xi} of g∗ and θ ∈ Ω1(M) ⊗ g a
connection form. Then we may define the real-valued 1-forms

θi := xi ◦ θ,
which are simply the components of θ in our chosen basis and we call them connection elements
in accordance with [23, Definition 2.3.4].

Fix a basis {X1, . . . , Xk} of g. Then, as in [23, Definition 2.3.4]

Definition 2.2.13. A g-differential graded algebra A is called locally free if there are invariant
elements θl ∈ A1, 1 ≤ l ≤ k satisfying

iXm
θn = δm,n for all 1 ≤ m,n ≤ k.

A is moreover called of Type (C) if the θl can be chosen such that their span inside A1 is
g-invariant.

Remark 2.2.14. As mentioned in [23, p. 24] or [17, p. 8] the condition of span({θk}) being
g-invariant inside A1 is automatically fulfilled for actions induced by compact connected Lie
groups.

Now, let A be a locally free g-differential graded algebra with connection θ ∈ A1 ⊗ g. In
our usual basis {xi} of g∗ dual to {Xi} ⊂ g we can decompose θ into its components θi ∈ A1.
These connection elements θi allow us to define the horizontal projection

P θ
hor : A→ Ahor := {ω ∈ A | ∀X ∈ g : iXω = 0}

ω 7→
∏

i

(ω − θi · iXi
ω).

The importance of this notion lies in the following theorem, see [48, Theorem 5.17], [23, Chapter
5] and [18, Theorem 5.2]:

Theorem 2.2.15. Let A be a locally free g-differential graded algebra with connection θ ∈ A1⊗g.
Then the Cartan map

Carθ : Cg(A) −→ Abas g

α 7−→ P θ
hor

(
α(F θ)

)

induces an isomorphism in cohomology, which is inverse to the map Hbas g(A)→ Hg(A) induced
by sending a basic element ω ∈ Abas g to ω ⊗ 1 ∈ Cg(A).

Remark 2.2.16. When we fix a basis {Xi} of g with dual basis {xi}, we can write the curvature
as

F θ =
k∑

i=1

F θ
i ·Xi.

An element α ∈ Cg(A) is again of the form

α =
∑

I

αI · xI ,

where I = (i1, . . . , il) is some multi-index and xI = xi1 · . . . · xil . Plugging the curvature into α
is then

α(F θ) =
∑

I

αI ·
(
F θ
)I

=
∑

I=(i1,...,il)

αI · F θ
i1
· . . . · F θ

il
.
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Remark 2.2.17. Since we are mostly interested in S1 actions we may summarize the afore-
mentioned theory as follows, c.f. [32, p. 43] and [14, Section 3]. Let A be a locally free
Lie(S1)-differential graded algebra. Then the map

Abas Lie(S1) −→ CLie(S1)(A)

ω 7−→ ω ⊗ 1

induces an isomorphism in cohomology whose inverse is, after the choice of an connection
element α with curvature Ω := dα and a generator X ∈ Lie(S1), induced by the Cartan map

Car : CLie(S1)(A) −→ Abas Lie(S1)∑

I

ωI · xI 7−→
∑

I

ωI · ΩI − α ·
∑

I

(iXωI) · ΩI .

2.2.3 The Kirwan map

A major link between Hamiltonian actions and equivariant cohomology is the Kirwan map.
Suppose that G acts on a compact symplectic manifold (M,σ) in a Hamiltonian fashion with
momentum map

J: M −→ g∗.

Assume furthermore, that 0 is a regular value of the momentum map. Then the level set
J−1(0) is a closed G-invariant submanifold of M and the symplectic quotient M0 is naturally a
symplectic orbifold. After considering the inclusion ι : J−1(0)→ M , we can define the Kirwan
map as the composition

κ : H∗
G(M)

ι∗−→ H∗
G(J

−1(0))
Car−→ H∗

basG(J
−1(0))

(π∗)−1

−→ H∗(M0). (2.2.1)

By the previous considerations we have that Car and π∗ are isomorphisms. Generalizing tech-
niques from Morse-Bott theory, Kirwan proved that the inclusion ι induces a surjectiction in
equivariant cohomology, proving surjectivity of the Kirwan map

κ : H∗
G(M) −→ H∗(M0).

We may summarize Kirwan’s reasoning roughly for an actual Morse-Bott function f in the
following way, for details see [16, Theorem 7.1], [58, Section 3], [38, Section 5], [7, Theorem 1]
and [27]: Consider a G-invariant Morse-Bott function f : M −→ R and let ν0 ∈ R be critical
value of f . Moreover, let {Ni} be the critical components of the critical level set f−1(ν0).
Denote the negative Disk-/ Sphere-bundle of the components Ni by D

−Ni/S
−Ni, where D

−Ni

has rank λi. When we now look at a small ε > 0, such that ν0 is the only critical value of f
in the interval (ν0 − ε, ν0 + ε) we consider the sublevel sets M ν0±ε := f−1((−∞, ν0 ± ε]). The
equivariant long exact sequence of the pair (M ν0+ε,Mν0−ε) turns out, using excision and the
Thom isomorphism on the left side, as

. . . H∗
G(M

ν0+ε,Mν0−ε) H∗
G(M

ν0+ε) H∗
G(M

ν0−ε) . . .

⊕
i

H∗
G(D

−Ni, S
−Ni)

⊕
i

H∗
G(D

−Ni)

⊕
i

H∗−λi
G (Ni)

⊕
i

H∗
G(Ni)
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Now the downmost horizontal map H∗−λi
G (Ni)→ H∗

G(Ni) is multiplication with the equivariant
Euler class and therefore injective since the Euler class is not a zero divisor. But this means,
that the long exact sequence of the pair (M ν0+ε,Mν0−ε) breaks down into short exact sequences
of the form

0 −→ H∗
G(M

ν0+ε,Mν0−ε) −→ H∗
G(M

ν0+ε) −→ H∗
G(M

ν0−ε) −→ 0.

If we now argue like this, starting from the top (remember thatM is compact) critical value, the
sublevel set at the top will be M itself, while at the bottom we arrive at the minimal level set
f−1(νmin) and obtain a surjection H∗

G(M)→ H∗
G(f

−1(νmin)). Kirwan showed that one can argue
in a similar manner for the function ‖J‖2, which is not a Morse-Bott function by [27, Remark
7.2 (4)], but realizes the zero level set J−1(0) as its minimal level set. Moreover, it turns out that
the regularity assumption we made at the beginning of the subsection – 0 should be a regular
value of the momentum map – is not necessary to prove that ι∗ : H∗

G(M ;R)→ H∗
G(J

−1(0);R) is
surjective, but only necessary to connect H∗

G(J
−1(0)) and H∗(M0). In fact, as in [27, Theorem

8.1], one has

Theorem 2.2.18 (Kirwan). The inclusion ι : J−1(0)→M induces a surjection

ι∗ : H∗
G(M ;R) −→ H∗

G(J
−1(0);R)

in equivariant cohomology.

The purpose of this thesis is to overcome this gap between H∗
G(J

−1(0);R) and H∗(M0) for circle
actions.

Remark 2.2.19. As noted in [18, Example 7.9] a similar argument as above implies that the
G-action onM is equivariantly formal for Abelian G. This means, that there is an isomorphism
of graded S(g∗)G-modules

H∗
G(M) ∼= S(g∗)G ⊗H∗(M).

If we combine this with the Borel localization theorem, [18, Theorem 8.1], we obtain an injection

S(g∗)G ⊗H∗(M) ∼= H∗
G(M) −→ H∗

G(M
G) =

⊕

F∈F

S(g∗)G ⊗H∗(F ).

An easy consequence of this is, that if we have a Hamiltonian circle action where the components
of the fixed point set have vanishing odd cohomology, then the odd cohomology of M is also
zero, because all polynomial parts have even degree.

Ansatz: We would like to define the Kirwan map in the singular setting analougously to
(2.2.1) by restricting to J−1(0)⊤ and M⊤

0 on the level of differential forms and then use Sja-
maar’s de Rham theory. This is not so easily possible as the incorporation of the Cartan map,
and therefore the incorporation of multiplication with the connection form, introduces singu-
larities of the differential forms on J−1(0)⊤ at the fixed point strata. Our main idea is now,
to desingularize the group action in order to make multiplication with the connection form
well-defined and generalize Sjamaar’s de Rham complex in a suitable way using equivariant
blow-ups.
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Chapter 3

Equivariant real blow-up and partial

desingularization of group actions

Summary: Let (M,σ) be a compact connected symplectic manifold with a Hamil-
tonian action of G = S1 with momentum map J: M → R. In this chapter we follow
the common approach to desingularizing group actions by equivariant real blow-ups
as in [13, Section 2.9] to obtain a manifold BlRG(M), which admits a locally free
G-action and a smooth G-equivariant map

βR : BlRG(M) −→M,

such that βR : BlRG(M) \ (βR)−1(MG) → M \MG is an equivariant diffeomorphism
where we focus on the case G = S1.

3.1 The basic construction

In this section we describe a blow-up procedure to define a manifold BlRG(M), which admits a
locally free G-action and a smooth G-equivariant map

βR : BlRG(M) −→M,

such that βR : BlRG(M) \ (βR)−1(MG) → M \MG is an equivariant diffeomorphism. We will
spend some time reviewing the procedure and various angles from where to see it. We focus
on the case G = S1 even though this procedure works for any smooth action of a compact Lie
group G on a smooth manifold as explained in [13, Section 2.9].

3.1.1 Glueing

Let M be an 2n-dimensional smooth manifold and N ⊂M a smooth submanifold of codimen-
sion 2k whose normal bundle

ν : Q −→ N, Qp := TpM/TpN for all p ∈M

has structure group U(k). Projectivize this bundle fibrewise and denote the resulting bundle
by RP(Q)→ N . Next, consider the space

lQ := {(l, q) ∈ RP(Q)×Q | q ∈ l},
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Chapter 3. Equivariant real blow-up and partial desingularization of group actions

where q ∈ l in particular means that l is a real line in Qν(q), together with the commutative
diagram

lQ Q

RP(Q) N,

ϕ

λ ν (3.1.1)

where the map ϕ sends (l, q) to q and the map λ sends (l, q) to l.
In order to describe the structure of lQ it is convenient to first introduce the universal line

bundle
l := {(l, w) ∈ RP2k−1 × R2k | w ∈ l} −→ RP2k−1. (3.1.2)

In particular, l represents the real blow-up of R2k along the origin. With this notation, we see
that lQ is a smooth fibre bundle over N with bundle projection ν ◦ϕ and fibre l. Furthermore,
lQ is a smooth line bundle over RP(Q) with bundle projection given by the map λ in (3.1.1).

Let further V ⊂ Q be a closed disc bundle, diffeomorphic to a closed tubular neighbourhood
W ⊂ M of N , put Ṽ := ϕ−1(V ), and identify V and W , which allows us to consider ϕ|Ṽ as a

map ϕ : Ṽ → W . In particular, since ϕ is clearly a diffeomorphism outside the zero section of
Q, we get that ϕ|∂Ṽ : ∂Ṽ → ∂W is a diffeomorphism. With these preparations, we make the
following

Definition 3.1.1. The real blow-up of M along N is the smooth manifold

BlRN(M) :=M \W ∪ϕ|
∂Ṽ
Ṽ

obtained by glueing the manifolds with boundary M \W and Ṽ with the gluing map ϕ|∂Ṽ :

∂Ṽ → ∂W .
The map βR : BlRN(M)→M defined by

βR :=

{
id on M \W
ϕ on Ṽ

is called the blow-down map.
The set (βR)−1(N) ⊂ Ṽ is called the exceptional divisor of BlRN(M). It is the zero section

of lQ, regarded as a line bundle over RP(Q), and can thus be identified with RP(Q).

Remark 3.1.2. The various choices involved in the construction of the blow-up do not cause
problems since they lead to equivalent results in the sense that two different choices lead to blow-
down maps βR : BlRN(M) → M and (βR)′ : BlRN(M)′ → M for which there is a diffeomorphism
f : BlRN(M)→ BlRN(M)′ such that (βR)′ ◦ f = βR.

We immediately see that the blow-down map βR is a diffeomorphism outside the exceptional
divisor.

3.1.2 Principal bundles

We can also see the construction in the light of principal bundles as in [44] and [59, Chapter
4]. By assumption, there is a reduction of the normal frame bundle to U(k). Therefore there
is a principal U(k)-bundle P → N such that

Q ∼= P ×U(k) C
k ∼= P ×U(k) R

2k.

From R2k we may form the projective space RP 2k−1 and the universal line bundle l as in (3.1.2)
to obtain
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3.1. The basic construction

P ×U(k) l P ×U(k) R
2k ∼= Q

RP (Q) ∼= P ×U(k) RP
2k−1 N,

ϕ

ν

where again ϕ([A, (l, p)]) = [A, p]. From here we proceed as above to define the blow-up of M
along N . This description will allow us, by the local normal form theorem, to desingularize the
group action as sketched in the beginning of this chapter.

Remark 3.1.3. We can also regard subgroups of H ⊂ U(k), when reducing the structure group
of the normal frame bundle, the blow-up is then defined analogously.

We can also describe l in two other fashions:

Lemma 3.1.4. l =
{
([ti], (pj)) ∈ RP 2k−1 × R2k

∣∣∣ tipj = tjpi ∀1 ≤ i, j ≤ 2k
}

∼= (S2k−1 × R)/Z2.

In particular, l is equal to the real blow-up of R2k along the origin.

Proof. Let us begin with clarifying the first equality. So let l = [t1 : . . . : t2k] ∈ RP 2k−1 be
homogeneous coordinates and p = (pj) ∈ R2k such that p ∈ l. Then there is a real number
λ ∈ R such that pi = λti for all 1 ≤ i ≤ 2k and tipj = λtitj = pitj. On the other hand, if
l = [ti] ∈ RP 2k−1 and p = (pj) ∈ R2k are such that tipj = tjpi for all 1 ≤ i, j ≤ 2k, there is
some tj 6= 0. It follows that for all 1 ≤ i ≤ 2k:

pi =
pj
tj
ti.

So, by setting λ :=
pj
tj
, we have pi = λti for all i, meaning that and p ∈ l.

In order to understand the second isomorphism, we first have to say how Z2 acts on S
2k−1×R.

The action is given by
(−1)(w, r) := (−w,−r).

Now, we consider

f : (S2k−1 × R)/Z2 →
{
(l, p) ∈ RP 2k−1 × R2k | p ∈ l

}

[w, r] 7→ ([w], rw).

The action of Z2 on the sphere is exactly the antipodal action defining real projective space,
RP 2k−1 ∼= S2k−1/Z2, and the inverse of f is given by

f−1 :
{
(l, p) ∈ S2k−1/Z2 × R2k | p ∈ l

}
→ (S2k−1 × R)/Z2

([w], λw) 7→ ([w], λ),

where one easily checks that all occuring maps are well-defined.

3.1.3 Coordinates

For later use it will be convenient to have explicit coordinates on BlRN(M) at our disposal. Since
N is a codimension 2k submanifold of M , there is an atlas {(U, ϕU)} of M with coordinate
maps ϕU(p) = w = (w1, . . . , w2n) such that if U ∩N 6= ∅,

ϕU(U ∩N) = {(w1, . . . , w2n) ∈ ϕU(U) | (w1, . . . , w2k) = 0}.

By shrinking the sets U , we assume w.l.o.g. that every U with U ∩ N 6= ∅ is contained in the
interior of W . Then, recalling the identification W ∼= V , the atlas {(U, ϕU)} induces an open
cover

{
U# := (βR)−1(U)

}
of BlRN(M) such that
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❼ if U# ∩ (βR)−1(N) = ∅, βR : U# → U is a diffeomorphism;

❼ if U# ∩ (βR)−1(N) 6= ∅, we have

U# ∼= {(l, p) ∈ RP2k−1 × U | (l, (w1, . . . , w2k)) ∈ l},

where ϕU(U) ⊂ R2k × R2(n−k).

In the first case, we get coordinates ϕU# := ϕU ◦ βR on U#; in the following, it will sometimes
be convenient to identify U ∼= U# and just write ϕU instead of ϕU# .

To obtain coordinate maps in the second case, consider the standard open cover {Vi}1≤i≤2k of
RP2k−1, where Vi := {l = [t1 : . . . : t2k] | ti 6= 0}. Introduce coordinates on Vi by setting

(v1, . . . , v2k−1) :=

(
t1
ti
, . . . ,

ti−1

ti
,
ti+1

ti
, . . . ,

t2k
ti

)
. (3.1.3)

The Vi induces a cover of U# by sets U#
i
∼= {(l, p) ∈ Vi × U | (l, (w1, . . . , w2k)) ∈ l}, which by

Lemma 3.1.4 are given in terms of the equations

wj = wivj, 1 ≤ j < i and wj = wivj−1, i < j ≤ 2k,

yielding the coordinate maps

ϕ
U

#
i
: U#

i −→ ϕ
U

#
i
(U#

i ) ⊂ R2k−1 ×Wi

(l, p) 7−→ (v1, . . . , v2k−1, wi, w2k+1, . . . , w2n),

where Wi is the image of ϕU(U) in R× R2(n−k) under the projection

R2n −→ R× R2(n−k), (w1, . . . , wn) 7−→ (wi, w2k+1, . . . , w2n).

A simple computation then shows that the charts {(U#, ϕU#)} and {(U#
i , ϕU#

i
)} indeed con-

stitute a smooth atlas for BlRN(M), compare [28, Section 3.1].

With respect to the charts introduced above, the blow-down map βR is given near the
exceptional divisor as follows: If U# ∩ (βR)−1(N) 6= ∅, then β|U# amounts to mapping (l, p)
to p. In the latter case, if p /∈ N , one has wi 6= 0 for some 1 ≤ i ≤ 2k and (βR)|−1

U#({p}) ∼=
{(l, p) | l = [w1 : . . . : w2k]}; on the contrary, if p ∈ N , then (βR)|−1

U#({p}) ∼= RP2k−1 × {p}.
More precisely, in the coordinates provided by ϕ

U
#
i
and ϕU ,

❼ the map βR is given by the monoidal transformation

ϕU ◦ (βR)|
U

#
i
◦ ϕ−1

U
#
i

:

(v1, . . . , v2k−1, wi, w2k+1, . . . , w2n) 7−→ (wi(v1, . . . , 1, . . . , v2k−1), w2k+1, . . . , w2n)

with 1 at the i-th position,

❼ (βR)−1(N) ∩ U#
i corresponds to the set of points {(l, p) | wi = 0}.

In particular, the second statement means that the exceptional divisor (βR)−1(N) ⊂ BlRN(M)
is a smooth submanifold of real codimension one. Now, let (M,σ) be a compact connected
symplectic manifold with a Hamiltonian action of G = S1 with momentum map J: M → R.

36



3.1. The basic construction

Definition 3.1.5. We denote by BlRG(M) the real blow-up ofM , which we define as the smooth
manifold that results from successively blowing up M according to Definition 5.1.1 along all
F ∈ F with respect to Lemma 2.1.11, and by βR : BlRG(M) → M the composition of all the
blow-down maps. Recall that F is a finite set due to the compactness of M .

We call ER := (βR)−1(MG) ⊂ BlRG(M) the exceptional divisor and for F ∈ F we call
ER
F := (βR)−1(F ) the exceptional locus associated with F .
Furthermore, the strict transform is the closure

ĈR := (βR)−1(J−1(0)⊤) ⊂ BlRG(M).

Note that the exceptional loci are the connected components of the exceptional divisor.

Proposition 3.1.6. The strict transform ĈR and the exceptional divisor ER are smooth sub-
manifolds of BlCG(M) of real codimension 1, with simple normal crossings. More precisely, there

is an atlas {(U , ϕU )} of BlRG(M) such that for each U satisfying U ∩ ĈR ∩ ER
F 6= 0 for some

F ∈ F , the coordinate map ϕU (p) = (w1, . . . , w2n) = (w1, . . . , w2k, w2n−dimF+1, . . . , w2n) fulfills

❼ w2n−dimF+1, . . . , w2n are local coordinates on F ;

❼ ER
F ∩U = {wi = 0} for some 1 ≤ i ≤ 2n− dimF ;

❼ ĈR ∩U = {wj = 0} for some 1 ≤ j ≤ 2n− dimF with i 6= j;

❼ βR(w1, . . . , w2n) = (wi(w1, . . . , 1, . . . , w2k), w2n−dimF+1, . . . , w2n) with 1 at the i-th posi-
tion, where on the right-hand side we use local coordinates of M in the open set βR(U ).

Proof. Since the exceptional loci ER
F are the connected components of ER and Section 5.1 shows

that each ER
F is a smooth codimension 1-submanifold of BlRG(M), we see that the same holds

for ER.
If an F ∈ F satisfies ĈR∩ER

F 6= 0, then F ⊂ J−1(0). For such an F , recall the description of

the symplectic normal bundle ΣF
∼= PF ×KF

Cℓ+
F
+ℓ−

F with codimF = 2n−dimF = 2(ℓ+F +ℓ
−
F ) =

2k and the local normal form of the momentum map near F given in Proposition 2.1.11, by
which the zero level set is locally described by the relation

ΦF (J
−1(0) ∩ UF ) =

{
[℘, z1, . . . , zℓ+

F
+ℓ−

F
] ∈ VF ⊂ PF ×KF

Cℓ+
F
+ℓ−

F

∣∣∣
∑

λFi |zi|2 = 0
}
.

Construct an atlas {(U , ϕU )} of BlRG(M) following the procedure described in Section 5.1,
where the atlas {(U, ϕU)} ofM with ϕU(p) = w = (w1, . . . , w2n) underlying this construction is
given in terms of the local trivializations of the fibre bundle ER

F over F and the diffeomorphisms

ΦF : UF → VF with the identification Cℓ+
F
+ℓ−

F ∋ z = (z1, . . . , zℓ+
F
+ℓ−

F
) ≡ (w1, . . . , w2ℓ+

F
+2ℓ−

F
) ∈

R2ℓ+
F
+2ℓ−

F . Each U with U ∩ ER
F 6= ∅ is then mapped by ϕU onto a set of the shape

{
(l, p) ∈ Vi × U

∣∣∣ (l, (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ l

}

for some suitable U and 1 ≤ i ≤ 2k, with w2ℓ+
F
+2ℓ−

F
+1, . . . , w2n local coordinates of F and

ϕU (U ∩ ER
F ) = {wi = 0}. Since the group KF ⊂ U(ℓ+F ) × U(ℓ−F ) leaves the quadratic form∑

λFi |zi|2 invariant, we get

ϕU

(
U ∩ (βR)−1(J−1(0)⊤)

)
=
{
(l, p) ∈ Vi × (J−1(0)⊤ ∩ U)

∣∣∣ (l, (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ l

}

=

{
(l, p) ∈ Vi × U

∣∣∣ (l, (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ l,

ℓ+
F
+ℓ−

F∑

k=1

λFk (w
2
k + w2

ℓ+
F
+ℓ−

F
+k
) = 0, (w1, . . . , w2ℓ+

F
+2ℓ−

F
) 6= 0

}
.
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Chapter 3. Equivariant real blow-up and partial desingularization of group actions

Thus,

ϕU (U ∩ ĈR) =

{
(l, p) ∈ Vi × U

∣∣∣ ([t1 : . . . : tk], (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ l,

ℓ+
F
+ℓ−

F∑

k=1

λFk |tk|2 = 0

}

(3.1.4)

since the standard coordinates (v1, . . . , v2n−dimF−1) from (3.1.3) for the elements l ∈ Vi reveal
that if (l, (w1, . . . , w2ℓ+

F
+2ℓ−

F
)) ∈ l, then

ℓ+
F
+ℓ−

F∑

k=1

λFk (w
2
k + w2

ℓ+
F
+ℓ−

F
+k
) = 0 ⇐⇒

i−1∑

k=1

λFι(k)v
2
k + λFi +

2n−dimF∑

k=i+1

λFι(k)v
2
k = 0

for suitable indices ι(k). Moreover, (3.1.4) is actually a local description of ĈR as a non-singular

quadric (recall that λFi 6= 0 for all i), which reveals that ĈR is a smooth submanifold of BlRG(M).

Further, since ϕU (U ∩ ER
F ) = {wi = 0}, ĈR is transversal to ER

F . Taking
∑i−1

k=1 λ
F
ι(k)v

2
k + λFi +∑2n−dimF

k=i+1 λFι(k)v
2
k as a coordinate and relabling the others proves the third claim. Finally,

the statement about the blow-down map in coordinates follows from the description of βR in
coordinates given in Section 3.1.3.

3.2 Lifting symmetries

We want to define a canonical locally free G-action on BlRG(M), making βR : BlRG(M) → M
equivariant. Denote by F the set of components of MG, and recall that for any component
F ∈ F the local normal form theorem, see Lemma 2.1.11, yielded a diffeomorphism Φ of a
neighbourhood of F in M to a neighbourhood U0 of the zero section in the associated bundle
PF ×KF

Cℓ+
F
+ℓ−

F → F .
As was explained in Section 3.1.2, we can blow-up M along all components F of the fixed

point set using for each F ∈ F the diagram

PF ×KF
l PF ×KF

R2ℓ+
F
+2ℓ−

F

PF ×KF
RP 2ℓ+

F
+2ℓ−

F
−1 F.

ϕ

ν

After identifying Cℓ+
F
+ℓ−

F with R2ℓ+
F
+2ℓ−

F , the action on Cℓ+
F
+ℓ−

F reads

z · (zi) =
(
zλ

F
i · zi

)

=
(
eiλ

F
i t · zi

)

=
(
(cos(λFi t) + i sin(λFi t)) · (xi + iyi)

)

=

(
cos(λFi t) − sin(λFi t)
sin(λFi t) cos(λFi t)

)(
xi
yi

)

= (cos(λFi t)xi − sin(λFi t)yi, cos(λ
F
i t)yi + sin(λFi t)xi).

The sphere S2k+2l−1 ⊂ R2k+2l is invariant under this S1 action and the action furthermore
commutes with the antipodal Z2-action on the sphere. Therefore S1 also acts on P ×KF

RP 2ℓ+
F
+2ℓ−

F
−1 by

eit · [p, [xn : yn]n] := [eit · p, [cos(λFn t)xn − sin(λFn t)yn : cos(λFn t)yn + sin(λFn t)xn]n].
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3.2. Lifting symmetries

Now we take the diagonal action S1 y RP 2k−1 × R2k, for l is invariant under this action and
ϕ : P×KF

l→ P×KF
R2k becomes equivariant. This equips BlRG(M) with a natural circle action.

Moreover, one hase the following

Lemma 3.2.1. The circle action on BlRG(M) is locally free and βR is equivariant with respect
to this action.

Proof. The action is locally free away from the exceptional locus, since it coincides with the
original action there. On the exceptional divisor the action is equal to the isotropy action on
the odd-dimensional real projective space, coming from the circle action on the sphere with no
zero weights. Thus, the action on the sphere is locally free and the action on the exceptional
divisor stays locally free after dividing by Z2. The equivariance of βR is immediate from the
construction.

Corollary 3.2.2. There is a connection form α ∈ Ω1(J−1(0)⊤) for the G-action on the regular

part of J−1(0) such that there is a connection form α̂ ∈ Ω1(ĈR) for the G-action on ĈR which
extends α in the sense that α̂

∣∣
(βR)−1(J−1(0)⊤)

= (βR)∗α.

Thus, we have resolved the G-action on M by going over to the locally free G-action on
BlRG(M), see also [13, Section 2.9].

Remark 3.2.3. Let us understand in more detail, how the action of S1 on the exceptional
fibres l behaves under the isomorphism l ∼= (S2ℓ+

F
+2ℓ−

F
−1 × R)/Z2 from Lemma 3.1.4. For some

(l, p) ∈ RP 2ℓ+
F
+2ℓ−

F
−1 × R2ℓ+

F
+2ℓ−

F with p ∈ l, the action is simply

z · (l, p) := (z · l, z · p).

Now we represent some line l ∈ RP 2k−1 by l = [w] ∈ S2k−1/Z2. Then there is a scalar λ ∈ R

such that p = λw and the circle acts as

z · ([w], λw) = ([z · w], λ(z · w)).

To make the isomorphism l ∼= (S2k−1×R)/Z2 equivariant, we therefore define the circle action
on (S2k−1 × R)/Z2 to be given by

z · [w, r] := [z · w, r].
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Chapter 4

Real resolution differential forms and

the real blow-up

Summary: Using the notation as in the previous chapter, we now consider the
diagram

BlRG(M) (βR)−1
(
J−1(0)⊤

)

M J−1(0)⊤

M⊤
0

βR

ιR⊤

βR

⊤

ι⊤

π⊤

and define the complex of real resolution differential forms on M0 as

Ω̂(M0) :=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃η̃ ∈ Ω(BlRG(M)) : (βR

⊤)
∗π∗

⊤ω0 = (ιR⊤)
∗η̃
}

in which we can embed Sjamaar’s complex of differential forms on M0. As the
S1-action is locally free on BlRG(M) we find a global connection form on BlRG(M)
which is what we wanted as explained in our ansatz. We then continue to relate the
cohomology of Ω̂(M0) to Sjamaar’s complex of differential forms by studying the
short exact sequence

0 Ω(M0) Ω̂(M0) C(M0) 0,

where C(M0) denotes the cokernel complex. As the cohomology of the cokernel
complex seems impalpable, we end our investigation of real resolution forms at this
point.

To begin with, the blow-up βR : BlRG(M)→M sits in the following diagram

BlRG(M) (βR)−1
(
J−1(0)⊤

)

M J−1(0)⊤

M⊤
0 .

βR

ιR⊤

βR

⊤

ι⊤

π⊤

40



We use this to make the following

Definition 4.0.1. The complex of real resolution forms on M0 is defined as

Ω̂(M0) :=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃η̃ ∈ Ω(BlRG(M)) : (βR

⊤)
∗π∗

⊤ω0 = (ιR⊤)
∗η̃
}
.

Again, by averaging over G we can replace Ω(BlRG(M)) by Ω(BlRG(M))G in this definition. We
may characterize these differential forms by considering

ΩJ(Bl
R
G(M)) :=

{
ω ∈ Ω(BlRG(M))G

∣∣∣ ω|(βR)−1(J−1(0)⊤) is horizontal
}

and
IJ(Bl

R
G(M)) :=

{
ω ∈ Ω(BlRG(M))G

∣∣∣ ω|(βR)−1(J−1(0)⊤) = 0
}
.

Proposition 4.0.2. There is an isomorphism of cochain complexes

Ω̂(M0) ∼=
ΩJ(Bl

R
G(M))

IJ(Bl
R
G(M))

.

Proof. We have the natural surjection

ΩJ(Bl
R
G(M))

(ιR⊤)∗−→ ΩbasG

(
(βR)−1

(
J−1(0)⊤

)) ((βR

⊤)−1)
∗

−→ ΩbasG

(
J−1(0)⊤

) (π∗
⊤)

−1

−→ Ω̂(M0),

whose kernel is precisely IJ(Bl
R
G(M)).

The relation between real resolution forms and the exceptional loci is described in

Proposition 4.0.3. Let ER
F ∈ E be a component of the exceptional divisor (βR)−1

(
MG

)
inter-

secting ĈR, where E is the set of all components of the exceptional divisor. Then

1. For ω ∈ ΩJ(Bl
R
G(M)) the restriction ω|ER

F
∩ĈR

is horizontal.

2. For η ∈ IJ(BlRG(M)) the restriction η|ER

F
∩ĈR

is zero.

3. There is a well-defined surjective restriction map Ω̂(M0)→ Ω((ER
F ∩ ĈR)/G).

Proof. Let z ∈ ER
F ∩ ĈR and (zn) ⊂ (βR)−1(J−1(0)⊤) be a sequence converging to z. Then for

ω ∈ ΩJ(Bl
R
G(M)), η ∈ IJ(BlRG(M)) and X ∈ g one has

iXz
ωz = lim

n→∞
iXzn

ωzn = 0 and ηz = lim
n→∞

ηzn = 0,

showing (1) and (2). Furthermore, this implies that, in view of Proposition 4.0.2, each real

resolution form gives a well-defined form on the quotient (ER
F ∩ ĈR)/G, yielding a map

Ω̂(M0) −→ Ω((ER
F ∩ ĈR)/G).

To show its surjectivity take ω ∈ ΩbasG(E
R
F ∩ ĈR). Since E

R
F ∩ ĈR is a transverse intersection of

two closed submanifolds of BlRG(M) it is itself again a closed submanifold of BlRG(M). Now, let

U be a G-invariant tubular neighbourhood of ER
F ∩ ĈR in BlRG(M) diffeomorphic to the normal

bundle ν(ER
F ∩ ĈR) of E

R
F ∩ ĈR. Denote the natural equivariant retraction by π : U → ER

F ∩ ĈR.
We then define

ω′ := ̺U · π∗ω,

where ̺U ∈ C∞c (U) is a smooth G-invariant cut-off function on U with ̺U = 1 near ER
F ∩ ĈR.

Then
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Chapter 4. Real resolution differential forms and the real blow-up

❼ g∗w′ = (̺U ◦ g) · g∗π∗ω = ̺U · π∗g∗ω = ̺U · π∗ω = ω′, where g ∈ G

❼ iXω
′ = ̺U · π∗iXω = 0 for X ∈ g.

This proves that ω′ ∈ ΩJ(Bl
R
G(M)) and ω′

∣∣
ER

F
∩ĈR

= ω, yielding (3).

Alternatively, we can describe real resolution forms by introducing the real partial desingu-
larization of M0.

Definition 4.0.4. The real partial desingularization of M0 is the orbifold M̂0 := ĈR/G and
comes together with the continuous map βR

0 which is a diffeomorphism away from the excep-
tional set defined by the following diagram:

M̂0 M0

ĈR J−1(0).

βR
0

βR

πR π

We denote the exceptional fibre bundles of βR
0 by

βR,F
0 : F̂ := (βR

0 )
−1(F ) −→ F

and the restriction of βR
0 to the top stratum as

(βR
0 )⊤ : M̂0

⊤
:= (βR

0 )
−1
(
M

⊤
0

)
−→M

⊤
0 .

Proposition 4.0.5. There is an isomorphism of cochain complexes

Ω̂(M0) ∼= Ω(M̂0).

Proof. Let ω be a real resolution form on M0. Then there is η ∈ Ω(BlRG(M)) such that

(βR
⊤)

∗π∗
⊤ω = (ιR⊤)

∗η. By restricting this form η to ĈR we obtain a G-basic form which does

not depend on the extension η of ω since (βR)−1(J−1(0)⊤) is dense in ĈR and (βR
0 )⊤ is a

diffeomorphism. Thus we have a natural map

Ω̂(M0) −→ Ω(M̂0).

On the other hand, ĈR is a closed submanifold of BlRG(M) and therefore every differential form

on ĈR, and in particular every G-basic form, admits an extension to BlRG(M) and therefore
gives us a real resolution form on M0 and a map

Ω(M̂0) −→ Ω̂(M0).

These maps are inverse to each other, commute with the differentials and the isomorphism is
proved.

The advantage of studying the complex Ω̂(M0) is that there is a natural inclusion

Ω(M0) →֒ Ω̂(M0)

ω 7→ ω.

Indeed, let ω ∈ Ω(M0) and η ∈ Ω(M) be such that π∗
⊤ω = ι∗⊤η. Pulling back this equation

to BlRG(M) gives (βR
⊤)

∗π∗
⊤ω = (βR

⊤)
∗ι∗⊤η = (ιR⊤)

∗(βR)∗η. Hence ω is a real resolution form with
smooth extension (βR)∗η.
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Definition 4.0.6. We set C(M0) to be the cokernel complex of the inclusion Ω(M0) →֒ Ω̂(M0):

C(M0) :=
Ω̂(M0)

Ω(M0)
.

The three differential complexes Ω(M0), Ω̂(M0) and C(M0) are naturally related by the
short exact sequence of complexes

0 Ω(M0) Ω̂(M0) C(M0) 0.

This induces a long exact sequence in cohomology, see [6, p. 17],

0 H0(Ω(M0), d) H0(Ω̂(M0), d) H0(C(M0), d)

H1(Ω(M0), d) H1(Ω̂(M0), d) H1(C(M0), d)

H2(Ω(M0), d) H2(Ω̂(M0), d) H2(C(M0), d) . . . ,

δ

δ

where δ is the so-called boundary operator. We shall try to understand the individual terms of
this sequence.

Since the blow-down map βR
0 : M̂0 → M0 is a diffeomorphism away from the exceptional

set, we expect the cokernel C(M0) to be related to
⊕
F∈F0

coker
(
Ω(F ) →֒ Ω

(
ER

F∩ĈR

G

))
where F0

denotes the set of fixed point components contained in the zero level set. So let us examine the

exceptional divisors
ER

F∩ĈR

G
of βR

0 more closely.

Proposition 4.0.7. For each F ∈ F0,
ER

F∩ĈR

G
is the total space of a fibre bundle

((S2ℓ+
F
−1 × S2ℓ−

F
−1)/Z2)/G −→

ER
F ∩ ĈR

G
−→ F.

Proof. From the construction of the blow-up, it is clear that the projection

ER
F ∩ ĈR

G
−→ F,

with ER
F = (βR)−1(F ), defines a fibre bundle. From the local normal form theorem, see Lemma

2.1.11, we know that in a neighbourhood U of F the zero level of the momentum map is
diffeomorphic to

U ∩ J−1(0) ∼=



[p, z1, . . . , zℓ+

F
+ℓ−

F
] ∈ PF ×KF

Cℓ+
F
+ℓ−

F

∣∣∣
ℓ+
F∑

i=1

λFi
(
x2i + y2i

)
= −

ℓ+
F
+ℓ−

F∑

i=ℓ+
F
+1

λFi
(
x2i + y2i

)




∼= PF ×KF

(
[0,∞)× S2ℓ+

F
−1 × S2ℓ−

F
−1

{0} × S2ℓ+
F
−1 × S2ℓ−

F
−1

)
.

Therefore in a neighbourhood Ũ of ER
F we can describe ĈR as

Ũ ∩ ĈR
∼=
{
[p, (ts), [xr : yr]r] ∈ PF ×KF

(R2ℓ+
F
+2ℓ−

F × RP 2ℓ+
F
+2ℓ−

F
−1)

∣∣∣
ℓ+
F∑

i=1

λFi
(
x2i + y2i

)
= −

ℓ+
F
+ℓ−

F∑

i=ℓ+
F
+1

λFi
(
x2i + y2i

)
, (ts) ∈ [xr : yr]r

}
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Intersecting with ER
F is now simply looking at (ts) = 0, so

Ũ∩ER
F∩ĈR

∼=



[p, [xr : yr]r] ∈ PF ×KF

RP 2ℓ+
F
+2ℓ−

F
−1
∣∣∣

ℓ+
F∑

i=1

λFi
(
x2i + y2i

)
= −

ℓ+
F
+ℓ−

F∑

i=ℓ+
F
+1

λFi
(
x2i + y2i

)


 .

Now Ũ ∩ER
F ∩ ĈR is diffeomorphic to PF ×KF

V , where V = S
2ℓ+

F
−1

×S
2ℓ−

F
−1

Z2
. The diffeomorphism

is given by

Ũ ∩ ER
F ∩ ĈR −→ PF ×KF

S2ℓ+
F
−1 × S2ℓ−

F
−1

Z2

[p, [xr : yr]r] 7−→
[
p,

[√
|λFr |
C
· xr,

√
|λFr |
C
· yr
]

r

]

[
p,

[
1√
|λFr |

· xr :
1√
|λFr |

· yi
]

r

]
←−p [p, [xr : yr]r],

where C =
ℓ+
F∑

i=1

λFi (x2i + y2i ) = −
ℓ+
F
+ℓ−

F∑
i=ℓ+

F
+1

λFi (x2i + y2i ). One easily checks that these maps are

well-defined and inverse to each other.

We continue, by examining the cohomology of that fibre ((S2ℓ+
F
−1 × S2ℓ−

F
−1)/Z2)/G. For

this we need a certain long exact sequence, called the Gysin sequence for locally free S1-actions
whose construction is inspired by [54, Section 3.7]. Let S1 act locally freely on a compact
manifold M . Let X ∈ g be the infinitesimal generator of the Lie algebra of S1 and consider the
sequence

0 −→ Ω∗
basG(M) −→ Ω∗(M)G

i
X−→ Ω∗−1

basG(M) −→ 0.

By definition, this sequence is exact in the first and second place. We should therefore check,
that the contraction with X gives a surjective map

iX : Ω∗(M)G −→ Ω∗−1
basG(M).

Note that for any invariant form ω ∈ Ω∗(M)G the contraction iXω is basic. In order to show
surjectivity, consider some G-basic form η ∈ Ω∗

basG(M). Since the action was locally free, there
is a connection form α ∈ Ω1(M)G such that α(X) = 1. Thus

iX(α ∧ η) = iXα ∧ η − α ∧ iXη = η,

and the above sequence is exact. Therefore, it induces a long exact sequence in cohomology

. . . Hk
basG(M) Hk(M)G Hk−1

basG(M) Hk+1
basG(M) . . .δ

After using the canonical isomorphisms H∗(M) ∼= H∗(M)G and π∗ : H∗(M/G) → H∗
basG(M)

we obtain

. . . Hk(M/G) Hk(M) Hk−1(M/G) Hk+1(M/G) . . .π∗ i
X δ

While iX can be identified with the fibre integration π∗ of the S1-orbibundle π : M →M/G, it
remains to specify the connecting homomorphism

δ : Hk−1(M/G) −→ Hk+1(M/G).
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From the definition of δ, see [6, p. 17] again, we have

δ([η]) = [d(α ∧ η)] = [dα][η].

Thus, δ is multiplication with the curvature class Ω = [dα] and summarizing, we obtain the
Gysin sequence as

Proposition 4.0.8. Let G = S1 act locally freely on M and let α ∈ Ω1(M) be a connection
form of the S1-orbibundle π : M →M/G with curvature form Ω = dα ∈ Ω2

basG(M). Then there
is a long exact sequence

. . . Hk(M/G) Hk(M) Hk−1(M/G) Hk+1(M/G) . . . ,π∗ π∗ ·[Ω]

which we call the Gysin sequence for locally free circle actions.

As an application of this sequence, we compute the cohomology of ((S2m−1 × S2l−1)/Z2)/G
where m := ℓ+F and l := ℓ−F . Note that, since the spheres are odd-dimensional we know that

H∗((S2m−1 × S2l−1)/Z2) ∼= H∗
basZ2

(S2m−1 × S2l−1)

= H∗(S2m−1 × S2l−1)Z2

= H∗(S2m−1 × S2l−1)

∼= R[x, y]

(x2, y2)
,

where x has degree 2m− 1 and y has degree 2l − 1. Thus

Hk((S2m−1 × S2l−1)/Z2) =

{
R , k = 0, 2m− 1, 2l − 1, 2m+ 2l − 2

0 , else.

If we plug this into the Gysin sequence, we get similar results as [52, Lemma 1.1], where the
authors computed the integral cohomology ring of the quotient space of a free S1 action on a
space with the same cohomology as S2m−1 × S2l−1, while their proof only points to a standard
calculation with the Gysin sequence, we want to give some details.

Lemma 4.0.9. When G = S1 acts locally freely on M = S2m−1 × S2l−1 the real cohomology
ring of the resulting quotient orbifold M/G is isomorphic to

1. R[Ω,x]
(Ωm,x2)

, where deg(Ω) = 2 and deg(x) = 2l − 1 or

2. R[Ω,y]

(Ωl,y2)
, where deg(Ω) = 2 and deg(y) = 2m− 1.

Here Ω denotes the curvature class associated to a connection form α ∈ Ω1(M).

Proof. Without loss of generality we can assume l ≤ m. From the cohomology of S2m−1×S2l−1

we find that the interesting portions of the Gysin sequence of the locally free action S1 y M
look like
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Chapter 4. Real resolution differential forms and the real blow-up

0 H0(M/G) H0(M) H−1(M/G)

H1(M/G) H1(M) H0(M/G)

H2(M/G) H2(M) H1(M/G)

H3(M/G) H3(M) H2(M/G) . . .

...

. . . H2l−4(M/G) H2l−4(M) H2l−5(M/G)

H2l−3(M/G) H2l−3(M) H2l−4(M/G)

H2l−2(M/G) H2l−2(M) H2l−3(M/G)

H2l−1(M/G) H2l−1(M) H2l−2(M/G)

H2l(M/G) H2l(M) H2l−1(M/G)

H2l+1(M/G) H2l+1(M) H2l(M/G) . . .

...

. . . H2m−4(M/G) H2m−4(M) H2m−5(M/G)

H2m−3(M/G) H2m−3(M) H2m−4(M/G)

H2m−2(M/G) H2m−2(M) H2m−3(M/G)

H2m−1(M/G) H2m−1(M) H2m−2(M/G)

H2m(M/G) H2m(M) H2m−1(M/G)

H2m+1(M/G) H2m+1(M) H2m(M/G) . . .

...

. . . H2l+2m−4(M/G) H2l+2m−4(M) H2l+2m−5(M/G)

H2l+2m−3(M/G) H2l+2m−3(M) H2l+2m−4(M/G)

H2l+2m−2(M/G) H2l+2m−2(M) H2l+2m−3(M/G)

H2l+2m−1(M/G) H2l+2m−1(M) H2l+2m−2(M/G) 0
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And after plugging in H∗(S2m−1 × S2l−1) we have

0 H0(M/G) R 0

H1(M/G) 0 H0(M/G)

H2(M/G) 0 H1(M/G)

H3(M/G) 0 H2(M/G) . . .

...

. . . H2l−4(M/G) 0 H2l−5(M/G)

H2l−3(M/G) 0 H2l−4(M/G)

H2l−2(M/G) 0 H2l−3(M/G)

H2l−1(M/G) R H2l−2(M/G)

H2l(M/G) 0 H2l−1(M/G)

H2l+1(M/G) 0 H2l(M/G) . . .

...

. . . H2m−4(M/G) 0 H2m−5(M/G)

H2m−3(M/G) 0 H2m−4(M/G)

H2m−2(M/G) 0 H2m−3(M/G)

H2m−1(M/G) R H2m−2(M/G)

H2m(M/G) 0 H2m−1(M/G)

H2m+1(M/G) 0 H2m(M/G) . . .

...

. . . H2l+2m−4(M/G) 0 H2l+2m−5(M/G)

H2l+2m−3(M/G) 0 H2l+2m−4(M/G)

H2l+2m−2(M/G) R H2l+2m−3(M/G)

H2l+2m−1(M/G) 0 H2l+2m−2(M/G) 0
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Chasing this diagram, we see that for all even degrees 2n ≤ 2l − 2 we have H2n(M/G) = R =
〈[Ωn]〉 while for all odd degrees 2n− 1 ≤ 2l − 3 the cohomology group H2n−1(M/G) vanishes.
Now we have to distinguish the cases where

H2l−1(M) H2l−2(M/G)

R R

∼= ∼=

is either zero or an isomorphism.
Case 1: Let this map be the zero map. Then H2l−1(M/G) = R = 〈x〉 for some element x ∈
H2l−1(M/G) such that π∗x is the generator of H2l−1(S2k−1×S2l−1). Furthermore, we find that
for all degrees 2n ≤ 2m− 2 : H2n(M/G) = R = 〈[Ωn]〉 and for all odd degrees 2n− 1 ≤ 2m− 3
the cohomology group H2n−1(M/G) ∼= R. Since M/G, as an orbifold, fulfills Poincaré duality,
we have H2m(M/G) ∼= H2m+2l−3−2k(M/G) = H2l−3(M/G) = 0 and [Ω]m = 0. Moreover, this
implies that H2m−1(M/G) ∼= R and that fibre integration π∗ : H

2m−1(M)→ H2m−2(M/G) is an
isomorphism which sends a generator y ∈ H2m−1(S2m−1×S2l−1) to some multiple of [Ωm−1]. As
an orbifoldM/G has dimension 2m+2l−3 implying that Hn(M/G) = 0 for all n ≥ 2m+2l−2
and H2l+2m−3(M/G) ∼= R. We arrive at

H∗(M/G) ∼= R[Ω, x]

(Ωm, x2)
, deg(x) = 2l − 1, deg(Ω) = 2.

Case 2: Now, let H2l−1(M) → H2l−2(M/G) be an isomorphism. Then H2l−1(M/G) = 0,
H2l(M/G) = 0 and all even and odd cohomologies of M/G vanish until degree 2m − 1. Here
we obtain H2m(M/G) = 0 and an isomorphism H2m−1(M/G) ∼= R. Therefore, all even degree
cohomologies above this degree vanish, while the odd cohomologies are isomorphic to R. Finally
H2l+2m−3(M/G) ∼= R and the cohomologies vanish above.

With this, we are now able to proof

Proposition 4.0.10. In the situation above, the cohomology of the exceptional fibre is given as

H∗
(
((S2ℓ+

F
−1 × S2ℓ−

F
−1)/Z2)/G

)
∼= R[Ω, x]

(Ωm, x2)
,

where m ∈ {ℓ+F , ℓ−F} and deg(x) ∈ {2ℓ−F − 1, 2ℓ+F − 1}.
Proof. The locally free action of G on (S2ℓ+

F
−1 × S2ℓ−

F
−1)/Z2 is given by

z · [(xi, yi), (xj, yj)] := [(zλixi, z
λiyi), (z

λjxj, z
λjyj)].

Let us initially ignore the Z2-action and consider the S1-orbibundle

S1 −→ S2ℓ+
F
−1 × S2ℓ−

F
−1 −→ (S2ℓ+

F
−1 × S2ℓ−

F
−1)/S1.

With the help of the Gysin sequence, see Proposition 4.0.8, one calculates

H∗
(
(S2ℓ+

F
−1 × S2ℓ−

F
−1)/G

)
∼= R[Ω, x]

(Ωm, x2)
,

as in Lemma 4.0.9, where Ω is the curvature of the action and x is the a generator ofH2m−1(S2m−1)
andm is either ℓ+F or ℓ−F . But now Ω and x are invariant under the antipodal action, theG-action
and the Z2-action commute, and therefore

H∗(((S2ℓ+
F
−1 × S2ℓ−

F
−1)/Z2)/G) ∼= H∗((S2ℓ+

F
−1 × S2ℓ−

F
−1)/G)Z2 =

R[Ω, x]

(Ωm, x2)
,

by [5, III, Corollary 2.3].
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Since we are not able to find a global cohomology class on the exceptional divisor F̂ re-
stricting to the generator x in the cohomology of the fibre we cannot apply Leray-Hirsch’s
theorem. We will see later why this is a major flaw of the real blow-up procedure that ends
our investigation of real resolution cohomology associated to the real blow-up at this point.

We want to conclude this section by regarding our complex of real resolution differential
forms in the light of g-differential graded algebras as in Section 2.2.2 and define the g-differential
graded algebras

Ω∗(J−1(0)) :=
{
ω ∈ Ω(J−1(0)⊤)

∣∣∣ ∃η ∈ Ω(M) : ι∗⊤η = ω
}

Ω̂∗(J−1(0)) :=
{
ω ∈ Ω(J−1(0)⊤)

∣∣∣ ∃η ∈ Ω(BlRG(M)) : (ιR⊤)
∗η = (βR

⊤)
∗ω
}
.

Our complexes of resolution and differential forms on M0 are isomorphic to the basic subcom-
plexes of these g-differential graded algebras via the pullback associated to the quotient map
π⊤ : J

−1(0)⊤ → M⊤
0 . Now, the big difference between Ω∗(J−1(0)) and Ω̂∗(J−1(0)) and driving

force of our investigations is that Ω∗(J−1(0)) is not invariant under multiplication with a con-

nection form, while Ω̂∗(J−1(0)) is when considering a connection form as in Corollary 3.2.2.

This makes Ω̂∗(J−1(0)) a W ∗-module, and even a g-differential graded algebra of type (C) in
the sense of [23, Definition 3.4.1] and [23, Definition 2.3.4]. This is a powerful property, because
for such a g-differential graded algebra A of type (C), the map

Abas g −→ CG(A)

ω 7−→ 1⊗ ω

induces an isomorphism in cohomology with homotopy inverse Car : CG(A) → Abas g as in
Theorem 2.2.15.
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Chapter 5

Equivariant symplectic blow-up and

partial desingularization of symplectic

quotients

Summary: Instead of desingularizing the whole group action as in Chapter 3, we
focus on desingularizing the group action on the zero level set in this chapter as in [38,
Remark 6.10] and [46, Section 4] in order to obtain a symplectic manifold BlCG(M) as
a result of an iteration of symplectic blow-ups, which admits a Hamiltonian G-action
and a smooth G-equivariant map

βC : BlCG(M) −→M,

such that βC : BlCG(M) \ (βC)−1(MG) → M \MG is an equivariant diffeomorphism

and 0 ∈ R is now a regular value of the momentum map J̃ : BlCG(M) → R. This
leads to a desingularization of the symplectic quotient

βC
0 : M̃0 −→M0

whose exceptional loci we investigate closely. It turns out that they are much more
well-behaved than their analogues in the former real desingularization of Chapter 3.
Again, we work with G = S1 here.

5.1 Complex blow-up

Let M be a 2n-dimensional smooth symplectic manifold and N ⊂M a smooth submanifold of
codimension 2k whose normal bundle

ν : Q −→ N, Qp := TpM/TpN for all p ∈M
has structure group U(k). Projectivize this bundle fibrewise where the fibres are now considered
as complex vector spaces invoking the almost complex structure ofM , and denote the resulting
bundle by CP(Q)→ N . Next, consider the space

LQ := {(l, q) ∈ CP(Q)×Q | q ∈ l},
where q ∈ l in particular means that l is a line in Qν(q), together with the commutative diagram

LQ Q

CP(Q) N,

ϕ

λ ν (5.1.1)
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5.1. Complex blow-up

where the map ϕ sends (l, q) to q and the map λ sends (l, q) to l.
In order to describe the structure of LQ it is convenient to first introduce the universal line

bundle
L := {(l, z) ∈ CPk−1 × Ck | z ∈ l} −→ CPk−1,

whose total space can also be described as

L = {(l, z) ∈ CPk−1 × Ck | lizj = ljzi ∀ 1 ≤ i < j ≤ k}, (5.1.2)

where l = [l1 : · · · : lk] denote homogeneous coordinates. In particular, L represents the complex
blow-up of Ck along the origin. With this notation, we see that LQ is a smooth fibre bundle
over N with bundle projection ν ◦ϕ and fibre L. Furthermore, LQ is a smooth line bundle over
CP(Q) with bundle projection given by the map λ in (5.1.1).

Let further V ⊂ Q be a closed disc bundle, diffeomorphic to a closed tubular neighbourhood
W ⊂ M of N , put Ṽ := ϕ−1(V ), and identify V and W , which allows us to consider ϕ|Ṽ as a

map ϕ : Ṽ → W . In particular, since ϕ is clearly a diffeomorphism outside the zero section of
Q, we get that ϕ|∂Ṽ : ∂Ṽ → ∂W is a diffeomorphism. With these preparations, we make the
following

Definition 5.1.1. The complex blow-up of M along N is the smooth manifold

BlCN(M) :=M \W ∪ϕ|
∂Ṽ
Ṽ

obtained by glueing the manifolds with boundary M \W and Ṽ with the gluing map ϕ|∂Ṽ :

∂Ṽ → ∂W .
The map βC : BlCN(M)→M defined by

βC :=

{
id on M \W
ϕ on Ṽ

is called the blow-down map.
The set (βC)−1(N) ⊂ Ṽ is called the exceptional divisor of BlCN(M). It is the zero section

of LQ, regarded as a line bundle over CP(Q), and can thus be identified with CP(Q).

Remark 5.1.2. The various choices involved in the construction of the blow-up do not cause
problems since they lead to equivalent results in the sense that two different choices lead to blow-
down maps βC : BlCN(M) → M and (βC)′ : BlCN(M)′ → M for which there is a diffeomorphism
f : BlCN(M) → BlCN(M)′ such that (βC)′ ◦ f = βC. Furthermore, we can also regard subgroups
H ⊂ U(k) when reducing the structure group of the normal frame bundle of N , the blow-up is
then defined analogously.

We immediately see that the blow-down map βC is a diffeomorphism outside the exceptional
divisor.

Blow-up in coordinates

For later use it will be convenient to have explicit coordinates on BlCN(M) at our disposal. Since
N is a codimension 2k submanifold of M , there is an atlas {(U, ϕU)} of M with coordinate
maps ϕU(p) = w = (w1, . . . , w2n) such that if U ∩N 6= ∅,

ϕU(U ∩N) = {(w1, . . . , w2n) ∈ ϕU(U) | (w1, . . . , w2k) = 0}.

By shrinking the sets U , we assume w.l.o.g. that every U with U ∩ N 6= ∅ is contained in the
interior of W . Then, recalling the identification W ∼= V , the atlas {(U, ϕU)} induces an open
cover

{
U# := (βC)−1(U)

}
of BlCN(M) such that
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quotients

❼ if U# ∩ (βC)−1(N) = ∅, βC : U# → U is a diffeomorphism;

❼ if U# ∩ (βC)−1(N) 6= ∅, we have

U# ∼= {(l, p) ∈ CPk−1 × U | (l, (z1, . . . , zk)) ∈ L},

where we identified ϕU(U) ⊂ R2k × R2(n−k) ∼= Ck × R2(n−k), introducing the complex
coordinates (z1, . . . , zk) := (w1, . . . , w2k), where zd := wd + i · wk+d.

In the first case, we get coordinates ϕU# := ϕU ◦ βC on U#; in the following, it will sometimes
be convenient to identify U ∼= U# and just write ϕU instead of ϕU# .

To obtain coordinate maps in the second case, consider the standard open cover {Vi}1≤i≤k of
CPk−1, where Vi := {l = [l1 : · · · : lk] | li 6= 0}. Introduce coordinates on Vi by setting

(u1, . . . , uk−1) :=

(
l1
li
, . . . ,

li−1

li
,
li+1

li
, . . . ,

lk
li

)
. (5.1.3)

The Vi induce a cover of U# by sets U#
i
∼= {(l, p) ∈ Vi × U | (l, (z1, . . . , zk)) ∈ L}, which by

(5.1.2) are given in terms of the equations

zj = ziuj, 1 ≤ j < i and zj = ziuj−1, i < j ≤ k,

yielding the coordinate maps

ϕ
U

#
i
: U#

i −→ ϕ
U

#
i
(U#

i ) ⊂ Ck−1 ×Wi

(l, p) 7−→ (u1, . . . , uk−1, zi, w2k+1, . . . , w2n),

where Wi is the image of ϕU(U) in C× R2(n−k) under the projection

R2n −→ C× R2(n−k), (w1, . . . , wn) 7−→ (zi, w2k+1, . . . , w2n).

A simple computation then shows that the charts {(U#, ϕU#)} and {(U#
i , ϕU#

i
)} indeed con-

stitute a smooth atlas for BlCN(M), compare [28, Section 3.1].
With respect to the charts introduced above, the blow-down map βC is given near the

exceptional divisor as follows: If U#∩ (βC)−1(N) 6= ∅, then βC|U# amounts to mapping (l, p) to
p. In the latter case, if p /∈ N , one has zi 6= 0 for some 1 ≤ i ≤ k and (βC)|−1

U#({p}) ∼= {(l, p) |
l = [z1 : . . . : zk]} as p defines a unique line; on the contrary, if p ∈ N , then (βC)|−1

U#({p}) ∼=
CPk−1 × {p}. More precisely, in the coordinates provided by ϕ

U
#
i
and ϕU ,

❼ the map βC is given by the monoidal transformation

ϕU ◦ (βC)|
U

#
i
◦ ϕ−1

U
#
i

:

(u1, . . . , uk−1, zi, w2k+1, . . . , w2n) 7−→ (zi(u1, . . . , 1, . . . , uk−1), w2k+1, . . . , w2n)

with 1 at the i-th position,

❼ (βC)−1(N) ∩ U#
i corresponds to the set of points {(l, p) | zi = 0}.

In particular, the second statement means that the exceptional divisor (βC)−1(N) ⊂ BlCN(M)
is a smooth submanifold of real codimension two.
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5.2. Partial desingularization of a Hamiltonian circle action

5.2 Partial desingularization of a Hamiltonian circle ac-

tion

The case relevant to us is when M is a 2n-dimensional symplectic manifold and N ⊂ M is a
connected symplectic submanifold of codimension 2k, which we will assume from now on. In
this case, the normal bundle ν : Q → N can be identified with the symplectic normal bundle
and carries an almost complex structure. As a consequence, there is a reduction of the normal
frame bundle to U(k), i.e., we get a principal U(k)-bundle P → N with

Q ∼= P ×U(k) C
k.

Thus, the diagram (5.1.1) from the above construction can be written as

LQ ∼= P ×U(k) L P ×U(k) C
k ∼= Q

CP(Q) ∼= P ×U(k) CP
k−1 N

ϕ

λ ν

with the map ϕ given by ϕ([℘, (l, z)]) = [℘, z]. Compare [44] and [59, Chapter 4].
From now on, M carries a Hamiltonian action of G = S1 with momentum map J: M → R.

Recall the notation from Chapter 2; in particular, F denotes the set of connected components
of MG. Given Lemma 2.1.11 we make the following

Definition 5.2.1. We denote by BlCG(M) the complex blow-up of M , which we define as the
smooth manifold that results from successively blowing up M according to Definition 5.1.1
along all F ∈ F , and by βC : BlCG(M)→M the composition of all the blow-down maps. Recall
that F is a finite set due to the compactness of M .

We call EC := (βC)−1(MG) ⊂ BlCG(M) the exceptional divisor and for F ∈ F we call
EC
F := (βC)−1(F ) the exceptional locus associated with F .
Furthermore, the strict transform is the closure

C̃C := (βC)−1(J−1(0)⊤) ⊂ BlCG(M).

Note that the exceptional loci are the connected components of the exceptional divisor.

Proposition 5.2.2. The strict transform C̃C and the exceptional divisor EC are smooth sub-
manifolds of BlCG(M) of real codimension 1 and 2, respectively, with simple normal cross-
ings. More precisely, there is an atlas {(U , ϕU )} of BlCG(M) such that for each U satis-

fying U ∩ C̃C ∩ EC
F 6= 0 for some F ∈ F , the coordinate map ϕU (p) = (w1, . . . , w2n) =

(z1, . . . , zk, w2n−dimF+1, . . . , w2n) fulfills

❼ w2n−dimF+1, . . . , w2n are local coordinates on F ;

❼ EC
F ∩U = {wi = wi+k = 0} = {zi = 0} for some 1 ≤ i ≤ k;

❼ C̃C ∩U = {wj = 0} for some 1 ≤ j ≤ 2n− dimF with j 6= i, j 6= i+ k;

❼ βC(w1, . . . , w2n) = (zi(z1, . . . , 1, . . . , zk), w2n−dimF+1, . . . , w2n) with 1 at the i-th position,
where on the right-hand side we use local coordinates of M in the open set βC(U ).

Proof. Since the exceptional loci EC
F are the connected components of EC and Section 5.1 shows

that each EC
F is a smooth codimension 2-submanifold of BlCG(M), we see that the same holds

for EC.
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If an F ∈ F satisfies C̃C∩EC
F 6= 0, then F ⊂ J−1(0). For such an F , recall the description of

the symplectic normal bundle ΣF
∼= PF ×KF

Cℓ+
F
+ℓ−

F with codimF = 2n−dimF = 2(ℓ+F +ℓ
−
F ) =

2k and the local normal form of the momentum map near F given in Proposition 2.1.11, by
which the zero level set is locally described by the relation

ΦF (J
−1(0) ∩ UF ) =

{
[℘, z1, . . . , zℓ+

F
+ℓ−

F
] ∈ VF ⊂ PF ×KF

Cℓ+
F
+ℓ−

F

∣∣∣
∑

λFi |zi|2 = 0
}
.

Construct an atlas {(U , ϕU )} of BlCG(M) following the procedure described in Section 5.1,
where the atlas {(U, ϕU)} ofM with ϕU(p) = w = (w1, . . . , w2n) underlying this construction is
given in terms of the local trivializations of the fibre bundle EC

F over F and the diffeomorphisms

ΦF : UF → VF with the identification Cℓ+
F
+ℓ−

F ∋ z = (z1, . . . , zℓ+
F
+ℓ−

F
) ≡ (w1, . . . , w2ℓ+

F
+2ℓ−

F
) ∈

R2ℓ+
F
+2ℓ−

F . Each U with U ∩ EC
F 6= ∅ is then mapped by ϕU onto a set of the shape

{
(l, p) ∈ Vi × U

∣∣∣ (l, (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ L

}

for some suitable U and 1 ≤ i ≤ k, with w2ℓ+
F
+2ℓ−

F
+1, . . . , w2n local coordinates of F and

ϕU (U ∩ EC
F ) = {zi = 0}. Since the group KF ⊂ U(ℓ+F ) × U(ℓ−F ) leaves the quadratic form∑

λFi |zi|2 invariant, we get

ϕU

(
U ∩ (βC)−1(J−1(0)⊤)

)
=
{
(l, p) ∈ Vi × (J−1(0)⊤ ∩ U)

∣∣∣ (l, (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ L

}

=

{
(l, p) ∈ Vi × U

∣∣∣ (l, (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ L,

ℓ+
F
+ℓ−

F∑

k=1

λFk (w
2
k + w2

ℓ+
F
+ℓ−

F
+k
) = 0, (w1, . . . , w2ℓ+

F
+2ℓ−

F
) 6= 0

}
.

Thus,

ϕU (U ∩ C̃C) =

{
(l, p) ∈ Vi × U

∣∣∣ ([l1 : . . . : lk], (w1, . . . , w2ℓ+
F
+2ℓ−

F
)) ∈ L,

ℓ+
F
+ℓ−

F∑

k=1

λFk |lk|2 = 0

}

(5.2.1)

since the standard coordinates (u1, . . . , u2n−dimF−1) from (5.1.3) for the elements l ∈ Vi reveal
that if (l, (w1, . . . , w2ℓ+

F
+2ℓ−

F
)) ∈ L, then

ℓ+
F
+ℓ−

F∑

k=1

λFk (w
2
k + w2

ℓ+
F
+ℓ−

F
+k
) = 0 ⇐⇒

i−1∑

k=1

λFι(k)u
2
k + λFi +

2n−dimF∑

k=i+1

λFι(k)u
2
k = 0

for suitable indices ι(k). Moreover, (5.2.1) is actually a local description of C̃C as a non-singular

quadric (recall that λFi 6= 0 for all i), which reveals that C̃C is a smooth submanifold of BlCG(M).

Further, since ϕU (U ∩ EC
F ) = {zi = 0}, C̃C is transversal to EC

F . Taking
∑i−1

k=1 λ
F
ι(k)u

2
k + λFi +∑2n−dimF

k=i+1 λFι(k)u
2
k as a coordinate and relabling the others proves the third claim. Finally,

the statement about the blow-down map in coordinates follows from the description of βC in
coordinates given in Section 5.1.

Corollary 5.2.3. For any component F of the fixed point set the restriction of βC to the
intersection of the exceptional locus EC

F associated with F and the strict transform C̃C defines
a fibre bundle over F with fibre

{
l = [l1 : . . . : lk] ∈ CPk−1

∣∣∣ 1
2

k∑

i=1

λFi |li|2 = 0

}
. (5.2.2)
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5.2. Partial desingularization of a Hamiltonian circle action

Proof. Let’s compute the strict transform C̃C more explicitely first. In a neighbourhood of F
the zero level set is diffeomorphic to

{
[p, z] ∈ VF ⊂ PF ×KF

Ck
∣∣∣ 1
2

k∑

i=1

λFi |zi|2 = 0

}
.

Thus, the inverse image under the blow-down map of the non-singular part in this neighbour-
hood is {

[p, z, l] ∈ PF ×KF
Ck × CPk−1

∣∣∣ [p, z] ∈ VF ,
1

2

k∑

i=1

λFi |zi|2 = 0, z ∈ l, z 6= 0

}
.

Using homogeneous coordinates, this is isomorphic to
{
[p, (z1, . . . , zk), [l1 : . . . : lk]] ∈ PF ×KF

Ck × CPk−1 :

[p, z] ∈ VF ,
1

2

k∑

i=1

λFi |zi|2 = 0, zilj = zjli, z 6= 0

}
.

To proceed, we study this set in a standard open subset
Uj := {[l1 : . . . : lk] ∈ CPk | lj 6= 0} ∼= Ck−1 of complex projective space and obtain after
normalizing lj = 1:

{
[p, (z1, . . . , zk), [l1 : . . . : 1 : . . . : lk]] ∈ PF ×KF

Ck × Ui :

[p, z] ∈ VF ,
1

2

k∑

i=1

λFi |zi|2 = 0, zi = zjli, z 6= 0

}
.

Using the relation zi = zjli we get
{
[p, (zjl1, . . . , zjlk, l1, . . . , lk)] ∈ PF ×KF

Ck × Ck−1 :

[p, z] ∈ VF ,
1

2
|zj|2

k∑

i=1

λFi |li|2 = 0, (l1, . . . , zj, . . . , lk) 6= 0

}
.

Since zj 6= 0 in this affine piece, we can divide the crucial equation by |zj|2. This reveals
{
[p, (zjl1, . . . , zjlk, l1, . . . , lk)] ∈ PF ×KF

Ck × Ck−1 :

[p, z] ∈ VF ,
1

2

k∑

i=1

λFi |li|2 = 0, (l1, . . . , zj, . . . , lk) 6= 0

}
.

The closure of this is{
[p, (zjl1, . . . , zjlk, l1, . . . , lk)] ∈ PF ×KF

Ck × Ck−1
∣∣∣ [p, z] ∈ VF ,

1

2

k∑

i=1

λFi |li|2 = 0

}
.

In total, we obtain that in a neighbourhood of EC
F the strict transform C̃C is diffeomorphic to

{
[p, z, l] ∈ PF ×KF

Ck × CPk−1
∣∣∣ [p, z] ∈ VF ,

1

2

k∑

i=1

λFi |li|2 = 0, z ∈ l
}

which proves our claim.
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Remark 5.2.4. Notice that the fibre (5.2.2) is the zero level set J−1
CPk−1,λ

(0) of the Hamiltonian

circle action
S1 × CPk−1 −→ CPk−1, z · [l1 : . . . : lk] := [zλ

F
1 l1 : . . . : z

λF
k lk]

with momentum map

JCPk−1,λ : CP
k−1 −→ R, [l1 : . . . : lk] 7−→

k∑
i=1

λFi · |li|2

k∑
i=1

|li|2

and 0 is a regular value in this case, see [32, Section 5.1]. As a consequence, S1 acts locally
freely on J−1

CPk−1,λ
(0). We will denote this complex projective space with the Hamiltonian circle

action induced by the isotropy representation of F by CPk−1
λ,F .

The resolution or desingularization of the G-action on M is the content of the following

Proposition 5.2.5. BlCG(M) carries a unique G-action making βC : BlCG(M)→M equivariant.

Furthermore when restricted to C̃C the G-action is locally free.

Proof. Let F ∈ F and recall the description of the symplectic normal bundle ΣF
∼= PF ×KF

Cℓ+
F
+ℓ−

F of F given in Proposition 2.1.11. Blowing up M along F leads to the diagram

PF ×KF
L PF ×KF

Cℓ+
F
+ℓ−

F ∼= ΣF

PF ×KF
CPℓ

+
F
+ℓ−

F
−1 F

ϕ

ν

where L is defined using k = ℓ+F + ℓ−F in the notation above. The sphere S2ℓ+
F
+2ℓ−

F
−1 ⊂ Cℓ+

F
+ℓ−

F is

invariant under the S1-action on Cℓ+
F
+ℓ−

F from Proposition 2.1.11. Since the latter also commutes

with the diagonal action on the sphere, it induces an S1-action on CPℓ
+
F
+ℓ−

F
−1. Thus, S1 acts on

the line bundle L by means of the product action S1 y CPℓ
+
F
+ℓ−

F
−1×Cℓ+

F
+ℓ−

F , and since this action
commutes with the KF -action by Proposition 2.1.11, we obtain an S1-action on LQ ∼= PF×KF

L

induced by the product action on PF × L. The map ϕ : PF ×KF
L → PF ×KF

Cℓ+
F
+ℓ−

F is S1-
equivariant, which means that the S1-actions on LQ and M glue together to an S1-action on
BlCG(M).

This action is locally free away from the exceptional divisor, since there it coincides with
the original G-action on M , while on the exceptional divisor the action is equal to the isotropy
action on the complex projective space. When we restrict this action to the strict transform
C̃C it is locally free by Remark 5.2.4.

The equivariance of βC is immediate from the construction. Finally, the uniqueness of the
action follows from the fact that the complement of the exceptional divisor, on which the action
is uniquely determined by the G-action on M , is dense in BlCG(M).

As a consequence we obtain

Corollary 5.2.6. There is a connection form α ∈ Ω1(J−1(0)⊤) for the G-action on the regular

part of J−1(0) such that there is a connection form α̃ ∈ Ω1(C̃C) for the G-action on C̃C which
extends α in the sense that α̃

∣∣
(βC)−1(J−1(0)⊤)

= (βC
⊤)

∗α where βC
⊤ is the restriction of βC to

(βC)−1(J−1(0)⊤).

From now on, fix such a connection α.
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Remark 5.2.7. Note that one could have hoped that the action of S1 on the whole of BlCG(M)
was locally free, but in order for the S1-action to be (locally) free on the blow-up, it has in
particular to be (locally) free on the exceptional divisor. But for a compact manifold X acted
on by a torus T , the Euler characteristic satisfies χ(X) = χ(XT ) by [18, Theorem 9.3]. The
Euler characteristic of CP k is k + 1, so there cannot exist a (locally) free S1-action on CP k

because the Euler characteristic of the empty set is χ(∅) = 0.

Definition 5.2.8. The partial desingularization of M0 is the orbifold M̃0 := C̃C/G and comes
together with the continuous map βC

0 which is a diffeomorphism away from the exceptional set
defined by the following diagram:

M̃0 M0

C̃C J−1(0).

βC
0

βC

πC π

We denote the exceptional fibre bundles of βC
0 by

βC,F
0 : F̃ := (βC

0 )
−1(F ) −→ F

and the restriction of βC
0 to the top stratum as

(βC
0 )⊤ : M̃0

⊤
:= (βC

0 )
−1
(
M

⊤
0

)
−→M

⊤
0 .

According to Remark 5.2.4, the exceptional bundles are of the form

CPk−1
λ,F //S

1 −→ F̃ −→ F,

where 2k is the codimension of F in M .

The curvature form dα̃ ∈ Ω2(C̃C) is basic and therefore descends to a form Ω̃ ∈ Ω2(M̃0)
still called curvature form. Let S1 act on Ck as induced by the isotropy representation of a
fixed point component F . We can decompose Ck = Cℓ+

F ×Cℓ−
F into positive and negative weight

spaces and define

S±
F :=



(z1, . . . , zℓ±

F
) ∈ Cℓ±

F

∣∣∣
ℓ±
F∑

i=1

±λFi |zi|2 = 1



 .

Now the isotropy representation induces an S1-action on these ellipsoids as

z · (z1, . . . , zℓ±
F
) := (zλ1 · z1, . . . , z

λ
ℓ
±
F · zℓ±

F
).

Proposition 5.2.9. If all weights of the S1-action on Ck have the same absolute value, there
is a diffeomorphism

CPk−1
λ,F //S

1 −→ (S+
F /S

1)× (S−
F /S

1).

Proof. Let [l1 : . . . : lk] ∈ CPk−1 be such that
k∑
i=1

λFi |li|2 = 0. Define

C :=

ℓ+
F∑

i=1

λFi |li|2 =
ℓ−
F∑

i=1

−λF
ℓ+
F
+i
|lℓ+

F
+i|2.
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Then the smooth map

H : CPk−1
λ,F //S

1 −→ (S+
F /S

1)× (S−
F /S

1)

S1 · [l1 : . . . : lk] 7−→
(
S1 · 1√

C
(l1, . . . , lℓ+

F
), S1 · 1√

C
(lℓ+

F
+1, . . . , lℓ+

F
+ℓ−

F
)

)

is well-defined with smooth inverse

G : (S+
F /S

1)× (S−
F /S

1) −→ CPk−1
λ,F //S

1

(
S1 · (l1, . . . , lℓ+

F
), S1 · (lℓ+

F
+1, . . . , lℓ+

F
+ℓ−

F
)
)
7−→ S1 · [l1 : . . . : lk].

Indeed, denote by H̃ the map of which we claim that it induces H by passing to the S1-quotient
in the domain, i.e., H̃ is defined like H but without the “S1·” on the left-hand side. Consider
firstly z ∈ S1. Then H̃ maps

[zλ1 · l1 : . . . : zλk · lk] 7→
(
S1 · 1√

C
(zλ1 · l1, . . . , z

λ
ℓ
+
F · lℓ+

F
),

S1 · 1√
C
(z
λ
ℓ
+
F

+1 · lℓ+
F
+1, . . . , z

λ
ℓ
+
F

+ℓ
−
F · lℓ+

F
+ℓ−

F
)

)

=

(
S1 · 1√

C
(l1, . . . , lℓ+

F
), S1 · 1√

C
(lℓ+

F
+1, . . . , lℓ+

F
+ℓ−

F
)

)
.

Secondly, consider w ∈ C \ {0}. Then

ℓ+
F∑

i=1

λFi |w · li|2 = |w|2 · C

and H̃ maps

[w · l1 : . . . : w · lk] 7→
(
S1 · 1

|w| ·
√
C
(w · l1, . . . , w · lℓ+

F
),

S1 · 1

|w| ·
√
C
(w · lℓ+

F
+1, . . . , w · lℓ+

F
+ℓ−

F
)

)

=

(
S1 · 1√

C
(
w

|w| · l1, . . . ,
w

|w| · lℓ+F ), S
1 · 1√

C
(
w

|w| · lℓ+F+1, . . . ,
w

|w| · lℓ+F+ℓ−
F
)

)
.

Now there are z1, z2 ∈ S1 such that zλ1 = z−λ2 = w
|w|

, where λF1 = . . . = λF
ℓ+
F

=: λ and

λF
ℓ+
F
+1

= . . . = λF
ℓ+
F
+ℓ−

F

= −λ by assumption, so that

(
S1 · 1√

C
(
w

|w| · l1, . . . ,
w

|w| · lℓ+F ), S
1 · 1√

C
(
w

|w| · lℓ+F+1, . . . ,
w

|w| · lk)
)

=

(
S1 · 1√

C
(zλ1 · l1, . . . , zλ1 · lℓ+

F
), S1 · 1√

C
(z−λ2 · lℓ+

F
+1, . . . , z

−λ
2 · lk)

)

=

(
S1 · 1√

C
(l1, . . . , lℓ+

F
), S1 · 1√

C
(lℓ+

F
+1, . . . , lk)

)
.
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Thus, H is well-defined. On the other hand, take z1, z2 ∈ S1 and let z′1, z
′
2 ∈ S1 be such that

(z′i)
2 = zi. Then

[zλ1 · l1 : . . . : z−λ2 · lk] = [(z′1z
′
2)
λ · (z

′
1)
λ

(z′2)
λ
· l1 : . . . : (z′1z′2)−λ ·

(z′1)
λ

(z′2)
λ
· lk]

= [(z′1z
′
2)
λ · l1 : . . . : (z′1z′2)−λ · lk]

= (z′1z
′
2) · [l1 : . . . : lk]

implying that G is well-defined.

5.3 Symplectic blow-ups, symplectic cuts and partial desin-

gularization

Based on ideas of Gromov, McDuff [44] showed that the blow-up construction described above
is compatible with the symplectic structure in the following sense

Proposition 5.3.1. There is a symplectic form σ̃ ∈ Ω2(BlCG(M)) such that

(i) σ̃ = (βC)∗σ outside a neighbourhood of all exceptional loci EC
F ,

(ii) When restricted to a fibre of some exceptional bundle EC
F → F , σ̃ is equal to ε · σFS for

some ε > 0, where σFS ∈ Ω2(CPk−1) is the Fubini-Study form.

This was then utilized by Kirwan [38, Remark 6.10] to give a first idea of a partial desingu-
larization of a symplectic quotient by a succession of symplectic blow-ups along certain isotropy
strata followed by a symplectic reduction. This was made rigorous by Meinrenken-Sjamaar [46,
Section 4] who used the symplectic cut technique by Lerman [41]. Let us recall symplectic cuts
briefly first.
Suppose S1 acts on a symplectic manifold (M,σ) in a Hamiltonian fashion with momentum
map

J: M −→ R.

Now consider the S1-action on the product (M × C, σ ⊕ dx ∧ dy) defined by z · (p, z′) :=
(z · p, z−1 · z′). This is again a Hamiltonian action with momentum map

J: M × C −→ R

(p, z′) 7−→ J(p)− 1

2
|z′|2.

Then if ε is a regular value of J it is also a regular value of J and

J
−1
(ε) =

{
(p, z′)

∣∣∣ J(p) > ε, z′ = eiϕ ·
√
2(J(p)− ε)

}
∪ {(p, 0) | J(p) = ε}

∼=
(
J−1((ε,∞)× S1)

)
∪ J−1(ε).

The symplectic cut of (M,σ) at ε is defined as the symplectic reduction

(MJ≥ε, σε) := (M × C)//εS
1 = J

−1
(ε)/S1 ∼= J−1((ε,∞)) ∪ M//εS

1.

If furthermore another Lie group G acts on (M,σ) with momentum map JG : M → g∗ and the
G-action commutes with the S1-action, then G also acts on (MJ≥ε, σε) in a Hamiltonian way
with momentum map

JG : MJ≥ε −→ g∗

p 7−→
{
JG(p), if p ∈ J−1((ε,∞)),

JG(q), if p = [q] ∈M//εS
1.

(5.3.1)
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As one easily sees, the symplectic blow-up along a symplectic submanifold is a special case of
the symplectic cut where one considers a tubular neighbourhood of the symplectic submanifold
and the S1-action of fibrewise scalar multiplication as explained in [46, Section 4.1.1] and

one obtains the Hamiltonian S1-manifold (BlCG(M), σ̃) with momentum map J̃ : BlCG(M)→ R.
Meinrenken-Sjamaar define the partial desingularization of M0 as the (now regular) symplectic
quotient BlCG(M)//S1 of BlCG(M) at 0, see [46, Section 4.1.2].

By above expression (5.3.1) of the momentum map of the blow-up, the local normal form

theorem and Remark 5.2.4 our strict transform C̃C coincides with the regular zero level set
J̃−1(0) and we conclude

Corollary 5.3.2. Our partial desingularization M̃0 = C̃C/G is diffeomorphic to Kirwan-
Meinrenken-Sjamaars’s partial desingularization BlCG(M)//S1.

This equips the partial desingularization M̃0 with a symplectic form σ̃0 which allows the identi-
fication of Remark 5.2.4 to be a symplectic one after rescaling the Fubiny-Study form on CPk−1

λ,F

and with which we can understand the topology of the exceptional fibre bundles

CPk−1
λ,F //S

1 −→ F̃ −→ F

more deeply:

Proposition 5.3.3. Let
[σ̃0|F̃ ], [Ω̃|F̃ ] ∈ H∗(F̃ )

be the restriction of the symplectic class and the curvature class of M̃0 to (βC
0 )

−1(F ). Then

H∗(F̃ ) ∼= H∗(F )⊗ R[σ̃0|F̃ , Ω̃|F̃ ]
IF

,

where IF is an ideal encoding relations between [σ̃0|F̃ ] and [Ω̃|F̃ ].

Proof. By a theorem of Kalkman [32, Theorem 5.2 and Remark 5.3], the cohomology of the
fibre is isomorphic to

H∗(CPk−1
λ,F //S

1) ∼= R[φ, η]

I
,

where φ and η are the cohomology classes represented by the symplectic form of CPk−1
λ,F //S

1 and

the curvature class of the S1-orbibundle J−1
λ,F (0) → CPk−1

λ,F //S
1, respectively. Moreover, I is an

ideal of relations between these generators which is specified in [32, loc. cit.]. Since both of the

generators are restrictions of classes on F̃ , namely the restriction of the symplectic class [σ̃0]

and the curvature class [Ω̃] of M̃0 to F̃ , we may apply Leray-Hirsch’s theorem, see [6, Theorem
5.11], which finishes the proof.

Remark 5.3.4. This proposition manifests a striking difference between real and complex partial
desingularization because Leray-Hirsch’s theorem applies to the exceptional bundles in the
complex case while this is not clear in case of real partial desingularization!

Let S1 act on Ck as induced by the isotropy representation of a fixed point component F .
We can define connection forms on S±

F by

Ξ± := ±
ℓ±
F∑

i=1

xidyi − yidxi.

The basic forms dΞ± descend to forms on S±
F /S

1 denoted by the same name.
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Proposition 5.3.5. If all weights of the S1-action on Ck have the same absolute value, the
diffeomorphism

CPk−1
λ,F //S

1 −→ (S+
F /S

1)× (S−
F /S

1),

which exists by Proposition 5.2.9, pulls back the form 1
2
(dΞ+ − dΞ−) to the symplectic form

induced by the Fubini-Study form σFS on CPk−1 and dΞ+ + dΞ− to the curvature form of
CPk−1

λ,F //S
1.

Proof. The Fubini-Study form of CPk−1
λ,F //S

1 is induced by restricting the standard symplectic

form
k∑
i=1

dxi ∧ dyi of Ck to S2k−1, so it is equal to 1
2
(dΞ+ − dΞ−). The same reasoning applies

to the curvature form.
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Chapter 6

Resolution cohomology and the Kirwan

map

Summary: We consider the diagram

BlCG(M) (βC)−1
(
J−1(0)⊤

)

M J−1(0)⊤

M⊤
0 ,

βC

ιC⊤

βC

⊤

π′
⊤ι⊤

π⊤

and define the complex of resolution differential forms

Ω̃(M0) :=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃ ˜̺ ∈ Ω(BlCG(M)) : (π′

⊤)
∗ω0 = (ιC⊤)

∗ ˜̺
}
,

which we use to obtain information on the singular cohomology of M0 by embedding
Sjamaar’s complex of differential forms in Ω̃(M0), forming the short exact sequence

0 Ω(M0) Ω̃(M0) C(M0) 0,

and studying the induced long exact cohomology sequence. We give geometrical
meaning to each occuring cohomological term and identify some special cases in
which the long exact cohomology sequence is particularly nice. We then move on to
define the resolution Kirwan map

K : H∗
G(M) −→ H∗(Ω̃∗(M0), d)

and investigate its surjectivity properties. To shed some light on our results some
examples are studied.

6.1 Resolution differential forms and their underlying g-

differential graded algebra

In this section we introduce a new topological invariant for symplectic quotients of S1-actions
called resolution cohomology, and study its basic properties. We use the notation from the
previous sections. In order to define resolution forms consider the following diagram
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BlCG(M) (βC)−1
(
J−1(0)⊤

)

M J−1(0)⊤

M⊤
0 .

βC

ιC⊤

βC

⊤

π′
⊤ι⊤

π⊤

(6.1.1)

Definition 6.1.1. With the notation of the diagram (6.1.1) we define the cochain complex of
resolution forms on M0 as

Ω̃(M0) :=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃ ˜̺ ∈ Ω(BlCG(M)) : (π′

⊤)
∗ω0 = (ιC⊤)

∗ ˜̺
}
,

with the exterior derivative d as the differential.

Again, by averaging over G we can replace Ω(BlCG(M)) by Ω(BlCG(M))G in this definition.

Remark 6.1.2. The first thing to notice about this definition is that it does not depend on the
choices involved in the definition of the blow-up BlCG(M) by Remark 5.1.2.
Another useful observation is that, even though for a given form ω0 ∈ Ω(M⊤

0 ) the existence of
a form ˜̺∈ Ω(BlCG(M)) satisfying

(βC
⊤)

∗π∗
⊤ω0 = (π′

⊤)
∗ω0 = (ιC⊤)

∗ ˜̺

might seem quite restrictive because the exceptional divisor EC ⊂ BlCG(M) is a “larger space”
than the fixed point set MG, it is actually less restrictive than being a differential form on M0

because for any p ∈ (βC)−1(J−1(0)⊤) one has

((βC
⊤)

∗π∗
⊤ω0)p(v1, . . . , vdegω0) = (π∗

⊤ω0)βC(p)((β
C
⊤)∗v1, . . . , (β

C
⊤)∗vdegω0),

and the kernel of βC
∗ at any point p0 ∈ EC contains the tangent space T (EC

F )βC(p0) of the fibre
of EC

F over βC(p0), where F ∈ F is such that p0 ∈ EC
F . This makes extending (βC

⊤)
∗π∗

⊤ω0 to
EC
F potentially easier than extending π∗

⊤ω0 to F – informally, one could describe this as the
phenomenon that there is “more room” for finding an extension in BlCG(M) than there is in M .

Let
ΩJ(Bl

C
G(M)) :=

{
ω̃ ∈ Ω(BlCG(M))G

∣∣∣ ω̃|(βC)−1(J−1(0)⊤) is G-horizontal
}

and
IJ(Bl

C
G(M)) :=

{
ω̃ ∈ Ω(BlCG(M))G

∣∣∣ ω̃|(βC)−1(J−1(0)⊤) = 0
}
.

Proposition 6.1.3. We have an isomorphism of cochain complexes

Ω̃(M0) ∼=
ΩJ(Bl

C
G(M))

IJ(Bl
C
G(M))

.

In particular, considering an element ω ∈ Ω̃(M0) as a coset on the right-hand side, it is only
specified by the restriction of any of its representatives to (βC)−1

(
J−1(0)⊤

)
.

Proof. We have the natural surjection

ΩJ(Bl
C
G(M))

(ιC⊤)∗−→ ΩbasG

(
(βC)−1

(
J−1(0)⊤

)) ((βC

⊤)−1)
∗

−→ ΩbasG

(
J−1(0)⊤

) (π∗
⊤)

−1

−→ Ω̃(M0),

whose kernel is precisely IJ(Bl
C
G(M)). Here ΩbasG

(
J−1(0)⊤

)
and ΩbasG((β

C)−1(J−1(0)⊤)) are
the complexes of basic differential forms on J−1(0)⊤ and (βC)−1(J−1(0)⊤), respectively.
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The relation between resolution forms and the exceptional loci is described in

Proposition 6.1.4. Let F ∈ F be such that F ⊂ J−1(0), i.e. F ∈ F0. Then

1. For ω ∈ ΩJ(Bl
C
G(M)) the restriction ω|EC

F
∩C̃C

is horizontal.

2. For η ∈ IJ(BlCG(M)) the restriction η|EC

F
∩C̃C

is zero.

3. There is a well-defined surjective restriction map Ω̃(M0)→ Ω((EC
F ∩ C̃C)/G) = Ω(F̃ ).

Proof. First we note that F ⊂ J−1(0) implies EC
F ∩ C̃C 6= ∅. Let z ∈ EC

F ∩ C̃C and (zn) ⊂
(βC)−1(J−1(0)⊤) be a sequence converging to z. Then for ω ∈ ΩJ(Bl

C
G(M)), η ∈ IJ(BlCG(M))

and X ∈ g one has

iXz
ωz = lim

n→∞
iXzn

ωzn = 0 and ηz = lim
n→∞

ηzn = 0,

showing (1) and (2). Furthermore, this implies that, in view of Proposition 6.1.3, each reso-

lution form gives a well-defined form on the quotient (EC
F ∩ C̃C)/G, yielding a map Ω̃(M0) →

Ω((EC
F ∩ C̃C)/G). To show its surjectivity take ω ∈ ΩbasG(E

C
F ∩ C̃C). Since EC

F ∩ C̃C is a
transverse intersection of two closed submanifolds of BlCG(M) it is itself again a closed subman-

ifold of BlCG(M). Now, let U be a G-invariant tubular neighbourhood of EC
F ∩ C̃C in BlCG(M)

diffeomorphic to the normal bundle ν(EC
F ∩ C̃C) of EC

F ∩ C̃C. Denote the natural equivariant

retraction by π : U → EC
F ∩ C̃C. We then define

ω′ := ̺U · π∗ω,

where ̺U ∈ C∞c (U) is a smooth G-invariant cut-off function on U with ̺U = 1 near EC
F ∩ C̃C.

Then

❼ g∗w′ = (̺U ◦ g) · g∗π∗ω = ̺U · π∗g∗ω = ̺U · π∗ω = ω′, where g ∈ G

❼ iXω
′ = ̺U · π∗iXω = 0 for X ∈ g.

This proves that ω′ ∈ ΩJ(Bl
C
G(M)) and ω′

∣∣
EC

F
∩C̃C

= ω, yielding (3).

Next, observe that there is a natural inclusion

Ω(M0) →֒ Ω̃(M0), ω 7→ ω.

Indeed, let ω ∈ Ω(M0) and η ∈ Ω(M) be such that π∗
⊤ω = ι∗⊤η. Pulling back this equation to

BlCG(M) gives (βC
⊤)

∗π∗
⊤ω = (βC

⊤)
∗ι∗⊤η = (ιC⊤)

∗(βC)∗η. Hence ω is a resolution form with smooth
extension (βC)∗η. This leads to the following

Definition 6.1.5. Denote by C(M0) the cokernel complex of the natural inclusion Ω(M0) →֒
Ω̃(M0), that is,

C(M0) :=
Ω̃(M0)

Ω(M0)
.

The three differential complexes Ω(M0), Ω̃(M0) and C(M0) are naturally related by the
short exact sequence of complexes

0 Ω(M0) Ω̃(M0) C(M0) 0.
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This induces a long exact sequence in cohomology

0 H0(Ω(M0), d) H0(Ω̃(M0), d) H0(C(M0), d)

H1(Ω(M0), d) H1(Ω̃(M0), d) H1(C(M0), d)

H2(Ω(M0), d) H2(Ω̃(M0), d) H2(C(M0), d) . . . .

δ

δ

(6.1.2)
We want to understand this sequence by interpeting each occuring cohomology geometrically.
By Sjamaar’s theorem [57, Theorem 5.5] H∗ (Ω(M0)) ∼= H∗(M0;R), which interprets one third
of the occuring spaces. Moreover,

Proposition 6.1.6. There is an isomorphism of cochain complexes

Ω̃(M0) ∼= Ω(M̃0).

Proof. Let ω be a resolution form on M0. Then there is η ∈ Ω(BlCG(M)) such that (βC
⊤)

∗π∗
⊤ω =

(ιC⊤)
∗η. By restricting this form η to C̃C we obtain a G-basic form which does not depend on

the extension η of ω since (βC)−1(J−1(0)⊤) is dense in C̃C and (βC
0 )⊤ is a diffeomorphism. Thus

we have a natural map

Ω̃(M0) −→ Ω(M̃0).

On the other hand, C̃C is a closed G-invariant submanifold of BlCG(M) and therefore every

G-invariant differential form on C̃C, and in particular every G-basic form, admits a G-invariant
extension to BlCG(M) and therefore (since C̃ contains (βC)−1(J−1(0)⊤)) gives us a resolution
form on M0 and a map

Ω(M̃0) −→ Ω̃(M0).

These maps are inverse to each other, commute with the differentials and the isomorphism is
proved.

Thus, the natural map

H∗(M0;R) ∼= H∗(Ω(M0), d) −→ H∗(Ω̃(M0), d) ∼= H∗(M̃0)

is in fact induced by the pullback of forms on M0 to forms on M̃0 which we denote by

(βC
0 )

∗ : Ω(M0) −→ Ω(M̃0).

Corollary 6.1.7. The complex of resolution forms can equivalently be defined as

Ω̃(M0) =
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃ ˜̺∈ ΩbasG(C̃C) : (π

′
⊤)

∗ω0 = (ι̃⊤)
∗ ˜̺
}

=
{
ω0 ∈ Ω(M⊤

0 )
∣∣∣ ∃ ̺′ ∈ Ω(M̃0) : ((β

C
0 )⊤)

∗ω0 = (ι⊤0 )
∗̺′
}
,

where ι̃⊤ denotes the inclusion (βC)−1(J−1(0)⊤)→ C̃C and ι⊤0 is the inclusion M̃0

⊤ → M̃0 of

M̃0

⊤
:= πC

(
(βC)−1(J−1(0)⊤)

)
= (βC

0 )
−1
(
J−1(0)⊤

)
and (βC

0 )⊤ : M̃0

⊤ → M⊤
0 is the restriction

of βC
0 to the top stratum of M0.
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So it remains to understand H∗ (C(M0)), the cohomology of the cokernel. We start by looking
at the restriction maps

Ω(M0) −→ Ω(F ) and Ω(M̃0) −→ Ω(F̃ )

from [57, Lemma 3.3] and the collection F0 :=
{
F ⊂ J−1(0) ∩MS1

}
consisting of all compo-

nents of the fixed point set contained in the zero level. We obtain the maps

r : Ω(M0) −→
⊕

F∈F0

Ω(F ),

ω 7−→ (ω|F )F∈F0 =: (rF (ω))F∈F0

and

r̃ : Ω(M̃0) −→
⊕

F∈F0

Ω(F̃ ),

ω 7−→ (ω|F̃ )F∈F0 .

Now, consider the following diagram

0 ker(r) Ω (M0)
⊕
F∈F0

Ω(F ) 0

0 ker(r̃) Ω
(
M̃0

) ⊕
F∈F0

Ω(F̃ ) 0,

(βC
0 )

∗
r

(βC
0 )

∗

r

⊕
F∈F0

(βC,F
0 )∗

r̃

where (βC
0 )

∗
r : ker(r) → ker(r̃) is the restriction of (βC

0 )
∗ to ker(r). This diagram is of major

interest to us because

C(M0) ∼= coker((βC
0 )

∗)

as a consequence of Proposition 6.1.6. By the Snake lemma, there is an exact sequence of the
form

0 ker((βC
0 )

∗
r) ker((βC

0 )
∗) ker(

⊕
F∈F0

(βC,F
0 )∗)

coker((βC
0 )

∗
r) coker((βC

0 )
∗) coker(

⊕
F∈F0

(βC,F
0 )∗) 0.

But ker((βC,F
0 )∗) = 0 because βC,F

0 is a surjective orbifold submersion. Thus, we have the exact
sequence

0 −→ coker((βC
0 )

∗
r) −→ coker((βC

0 )
∗) −→ coker(

⊕

F∈F0

(βC,F
0 )∗) −→ 0. (6.1.3)

We now claim that

H∗(coker((βC
0 )

∗
r)) = 0, (6.1.4)
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which by the long exact cohomology sequence associated with the short exact sequence (6.1.3)
immediately implies that there is an isomorphism

H∗(C(M0)) = H∗(coker((βC
0 )

∗)) ∼= H∗(coker(
⊕

F∈F0

(βC,F
0 )∗)) =

⊕

F∈F0

H∗(coker((βC,F
0 )∗)).

(6.1.5)
To prove our claim, we first observe that since ker((βC

0 )
∗
r) = 0, we have the short exact sequence

0 −→ ker(r) −→ ker(r̃) −→ coker((βC
0 )

∗
r) −→ 0 (6.1.6)

to compute H∗(coker((βC
0 )

∗
r)) again by using the induced long exact sequence in cohomology.

By [23, Theorem 11.1.1] we have an isomorphism

H∗(ker(r̃)) ∼= H∗
c

(
M̃0 \

( ⋃

F∈F0

F̃

))
,

where the right-hand side denotes the cohomology of the complex Ωc(M̃0 \ (∪F∈F0F̃ )) formed

by the differential forms on M̃0 \ (∪F∈F0F̃ )) with compact support, and the map Ωc(M̃0 \
(∪F∈F0F̃ )) → Ω(M̃0) inducing the above isomorphism is extension by zero. This implies (by
the long exact sequence associated with (6.1.6)) that our claim (6.1.4) follows from the following
Proposition, taking into account that βC

0 is a diffeomorphism away from the exceptional loci:

Proposition 6.1.8. Extension by zero induces an isomorphism

ext : H∗
c

(
M0 \

( ⋃

F∈F0

F

))
−→ H∗(ker(r)).

For the proof we need the following basic lemma:

Lemma 6.1.9. Let F ⊂ M be a component of the fixed point set, π : U → F be an invariant
tubular neighbourhood and i : F → U be the inclusion. If ω ∈ Ωk

basG(U) is closed and i∗ω = 0,
there is ν ∈ Ωk−1

basG(U) with i
∗ν = 0 and dν = ω.

Proof of Lemma 6.1.9. Since U is an equivariant deformation retraction, we have isomorphisms

π∗ : H∗
basG(F ) −→ H∗

basG(U) i∗ : H∗
basG(U) −→ H∗

basG(F ).

From i∗ω = 0 it follows that [i∗ω] = 0 ∈ H∗
basG(F ). Since i∗ is an isomorphism, we find that

[ω] = 0 ∈ H∗
basG(U) and there is ν ′ ∈ Ωk−1

basG(U) with dν
′ = ω. Moreover, 0 = i∗ω = i∗dν ′ = di∗ν ′

and i∗ν ′ is closed. Then

ν := ν ′ − π∗i∗ν ′

is such that

❼ dν = d(ν ′ − π∗i∗ν ′) = dν ′ − π∗(di∗ν ′) = dν ′ = ω,

❼ i∗ν = i∗(ν ′ − π∗i∗ν ′) = i∗ν ′ − i∗π∗i∗ν ′ = i∗ν ′ − (π ◦ i︸︷︷︸
=id

)∗i∗ν ′ = 0.
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Proof of Proposition 6.1.8. 1. Well-definedness: At first, we have to make sure that the
extension map is well-defined with the specified target. To this end, we use the following
identification from Section 2.1.2:

Ω(M0) ∼=
ΩJ(M)

IJ(M)
,

where
ΩJ(M) :=

{
ω ∈ Ω(M)G

∣∣∣ ω|J−1(0)⊤ basic
}

and
IJ(M) :=

{
ω ∈ Ω(M)G

∣∣∣ ω|J−1(0)⊤ = 0
}
.

Then

ker(r) ∼=

{
ω ∈ Ω(M)G

∣∣∣ ω|J−1(0)⊤ basic, ω|F = 0 for allF ∈ F0

}

{
ω ∈ Ω(M)G

∣∣∣ ω|J−1(0)⊤ = 0, ω|F = 0 for allF ∈ F0

} .

Thus, extension by zero induces a well-defined map

ext : Ωbas G(J
−1(0)⊤)c −→ ker(r).

2. Surjectivity: Let ω ∈ Ωk(M)G be such that

❼ ω|J−1(0)⊤ is basic,

❼ ω|F = 0 for all F ∈ F0,

❼ dω = 0.

For F ∈ F0, let π : U → F be an invariant tubular neighbourhood and i : F → U the
inclusion. By the above lemma, we find νF ∈ Ωk−1

basG(U) such that

ω = dνF on U and (νF )|F = 0.

Now, let ̺F ∈ C∞c (U)G be a G-invariant compactly supported function, which is equal to
1 on a neighbourhood of F . Then

ω̃ :=

(
ω −

∑

F∈F0

d(̺F · νF )
)∣∣∣∣∣

J−1(0)⊤

∈ Ωk
bas G(J

−1(0)⊤)c

is well-defined and such that

❼ dω̃ = 0,

❼ ω̃ is basic,

which shows that ext(ω̃) ∈ ker(r), and by construction we have [ext(ω̃)] = [ω] ∈ H∗(ker(r)).

3. Injectivity: Let ω ∈ Ωk
basG(J

−1(0)⊤)c and ν
′ ∈ Ωk−1(M)G be such that

ext(ω) = dν ′, ν ′|J−1(0)⊤ is basic, and ν ′|F = 0 for allF ∈ F0.

Then, for each F ∈ F0, there is an invariant tubular neighbourhood U of F on which
ext(ω)|U = 0, and consequently ν ′|U is closed. By the above lemma there exists αF ∈
Ωk−2

basG(U) such that
ν ′|U = dαF and (αF )|F = 0.
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Now, let ̺F ∈ C∞c (U)G be a G-invariant compactly supported function, which is equal to
1 on a neighbourhood of F . Then

ν :=

(
ν ′ −

∑

F∈F0

d(̺F · αF )
)∣∣∣∣∣

J−1(0)⊤

is an element of ΩbasG(J
−1(0)⊤)c and ω = dν.

As stated above, this proves the following

Corollary 6.1.10. The cohomology of the cokernel complex coker((βC
0 )

∗
r) is

H∗(coker((βC
0 )

∗
r)) = 0.

Using Corollary 6.1.10, we deduce from Proposition 5.3.3 that

H∗(C(M0)) ∼=
⊕

F∈F0

H∗(coker((βC,F
0 )∗)) =

⊕

F∈F0

coker
(
H∗(F )

(βC,F
0 )∗−→ H∗(F̃ )

)

=
⊕

F∈F0

coker

(
H∗(F )→ H∗(F )⊗ R[σ̃0|F̃ , Ω̃|F̃ ]

IF

)

∼=
⊕

F∈F0

H∗(F )⊗ R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF
,

where R[σ̃0|F̃ , Ω̃|F̃ ]≥1 denotes the ideal in the polynomial ring R[σ̃0|F̃ , Ω̃|F̃ ] given by all polynomi-

als of degree ≥ 1. In the first line we used that ker((βF0 )
∗) = 0 on forms since βC,F

0 is a surjective

orbifold submersion, and in the last line that (βC,F
0 )∗ embeds H∗(F ) into H∗(F )⊗ R[σ̃0|F̃ ,Ω̃|

F̃
]

IF
as

the degree zero subspace.

This finally gives a full understanding of the long exact sequence (6.1.2), yielding:

Theorem 6.1.11. There is a long exact sequence of the form

. . . −→ Hk (M0)
(βC

0 )
∗

−→ Hk(M̃0)
R̃−→
⊕

F∈F0

H∗(F )⊗ R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF

δ−→ Hk+1(M̃0) −→ . . . ,

where R̃ : H∗(M̃0)→
⊕
F∈F0

coker(H∗(F )→ H∗(F̃ )) is the natural map

R̃ : H∗(M̃0) −→
⊕

F∈F0

H∗(F̃ ) −→
⊕

F∈F0

coker(H∗(F )→ H∗(F̃ )),

induced by restriction to the exceptional components and projection to the according cokernels.

As a special case we get

Corollary 6.1.12. If the fixed point set J−1(0)∩MS1
consists only of isolated fixed points and

one has H2k+1(M0) = 0 for all k, then the natural map H∗(M0) → H∗(M̃0) is injective and
there is a (non-canonical) isomorphism

H∗(M̃0) ∼= H∗ (M0)⊕
⊕

F∈F0

R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF
.
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Remark 6.1.13. This corollary gives us a way to identify those classes in H∗(M̃0) which come
from classes in H∗(M0). In fact, we have

H∗(M0) ∼=
{
[ω] ∈ H∗(M̃0)

∣∣∣ R̃([ω]) = 0
}
.

Proof. Since H∗(F ) = R when F is a point and the generators σ̃0|F̃ , Ω̃|F̃ are of degree 2, and

in particular even, the odd degree components of
⊕
F∈F0

H∗(F )⊗ R[σ̃0|F̃ ,Ω̃|
F̃
]≥1

IF
=
⊕
F∈F0

R[σ̃0|F̃ ,Ω̃|
F̃
]≥1

IF

vanish and the long exact sequence from Theorem 6.1.11 breaks down into sequences

0→ H2k (M0)→ H2k(M̃0)→
(⊕

F∈F0

R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF

)

2k

→ H2k+1 (M0)→ H2k+1(M̃0)→ 0,

where we denote by the subindex 2k the subspace of degree 2k elements. Now the vanishing

of the odd cohomology of M0 implies that also the odd cohomology of M̃0 vanishes and the
above sequence further reduces to

0 −→ Hk (M0) −→ Hk(M̃0) −→
(⊕

F∈F0

R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF

)

k

−→ 0,

where in case of odd k all the vector spaces in the sequence are 0. But every short exact
sequence of vector spaces is split by [43, Proposition 4.3] and the corollary follows.

More generally we can also obtain

Theorem 6.1.14. Suppose that for each component F ∈ F we have H2k+1(F ) = 0 for all

k ∈ N. Then, the natural map H2k(M0) → H2k(M̃0) of even cohomology groups is injective
for every k ∈ N and there is a (non-canonical) isomorphism

H2k(M̃0) ∼= H2k(M0)⊕ V,

where V := ker

( ⊕
F∈F0

coker
(
H2k(F )→ H2k(F̃ )

)
δ→ H2k+1 (M0)

)
.

Proof. Again, since H2k+1(F ) = 0 our long exact sequence from Theorem 6.1.11 breaks down
into sequences of the form

0→ H2k (M0)→ H2k
(
M̃0

)
→ ⊕

F∈F0

coker
(
H2k(F )→ H2k(F̃ )

)
→ H2k+1 (M0)→ H2k+1

(
M̃0

)
→ 0.

Moreover, by [18, Example 7.9] the S1-action on M is equivariantly formal so on the one hand,
[18, Corollary 8.7], there is an injection

H∗
S1(M) −→ H∗

S1(MS1

) =
⊕

F⊂MS1

R[x]⊗H∗(F )

while on the other hand, [18, Theorem 7.3], there is an isomorphism H∗
S1(M) ∼= R[x]⊗H∗(M).

But now the degree of x being two and the odd cohomology of the F vanishing implies that
H∗(M) vanishes in odd degrees. By [44, Proposition 2.4] we also have H2k+1(BlCG(M)) = 0

and H2k+1
S1 (BlCG(M)) = 0 as H∗

S1(Bl
C
G(M)) ∼= R[x] ⊗H∗(BlCG(M)) again. Since M̃0 is a regular

symplectic reduction of BlCG(M) the Kirwan map

κ : H∗
S1(BlCG(M)) −→ H∗(M̃0)
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is surjective and degree-preserving which implies that H∗(M̃0) vanishes in odd degrees. We
have thus shortened our sequence of interest to

0→ H2k (M0)
A→ H2k

(
M̃0

)
B→
⊕

F∈F0

coker
(
H2k(F )→ H2k(F̃ )

)
C→ H2k+1 (M0)→ 0,

where A := (βC
0 )

∗, B := R̃ and C is the connecting homomorphism δ. Now, setting V := ker(C)
we may look at the sequence

0 −→ H2k (M0)
A−→ H2k

(
M̃0

)
B′

−→ ker(C) −→ 0,

whereB is equal toB′ and we only changed the codomain ofB from
⊕
F

coker
(
H2k(F )→ H2k(F̃ )

)

to ker(C) which was allowed since ker(C) = Im (B). This sequence is still exact since ker(B) =
ker(B′) and since every short exact sequence of real vector spaces splits, we obtain the desired

H2k(M̃0) ∼= H2k(M0)⊕ V.

Remark 6.1.15. In the situation of Theorem 6.1.14, the injectivity does not have to hold in
odd degrees, even if Hk(F ) = 0 for all k ∈ N, k ≥ 1 and F ∈ F , as we will see later in
Example 6.3.4. Note that also from the general theory of resolution of singularities we cannot

expect that the natural map H∗(M0) −→ H∗(M̃0) is always injective, since resolutions do not
always induce injective maps in cohomology as the example of the nodal curve shows, see [24,
Example I.4.9.1]. In fact, the nodal curve has non trivial cohomology in positive degrees while
the resolution is contractible.

Remark 6.1.16. The isomorphism H∗
(
M̃0

)
∼= H∗ (M0) ⊕

⊕
F∈F0

R[σ̃0|F̃ ,Ω̃|
F̃
]≥1

IF
of the previous

Corollary 6.1.12 can be made explicit by recalling how short exact sequences of vector spaces
split, compare [43, Propositions 4.2 and 4.3]. More precisely, let A,B,C be real vector spaces
and

0 −→ A
f−→ B

g−→ C −→ 0

a short exact sequence of these. Now take a basis {ci}i∈I of C. By surjectivity of g, there are
elements {bi}i∈I in B which map to that basis. We can now specify a map

h : C −→ B

by sending ci to bi because {ci}i∈I is a basis. Since h is a right inverse of g, the sequence is
split and

A⊕ C −→ B, (a, c) 7−→ f(a) + h(c)

is the splitting isomorphism. By means of the map h one can also find a projection p : B → A
which is left inverse to f . For this one considers the mapping

B −→ ker(g)⊕ Im(h), b 7−→ (b− h(g(b))) + h(g(b)).

Since Im(h) ∼= C and ker(g) = Im(f) ∼= A, f being injective,

B −→ ker(g) ∼= A b 7−→ (b− h(g(b))),
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is the desired projection. Applying this to our present situation, we see that the splitting
isomorphism from Corollary 6.1.12 and a projection

H∗(M̃0) −→ H∗(M0)

can be made explicit by fixing a basis of
⊕
F∈F0

R[σ̃0|F̃ ,Ω̃|
F̃
]≥1

IF
and finding preimages of the basis

vectors inside H∗
(
M̃0

)
, or in other words by fixing a right-inverse

h :
⊕

F∈F0

R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF
−→ H∗

(
M̃0

)

to the map R̃ from Theorem 6.1.11.

Example 6.1.17. As an example consider the product S2 × S2 with its product symplectic
form where we equipped each sphere with its standard volume form. Then the S1 action defined
by diagonally rotating around the z-axis with speed 1 is a Hamiltonian action with momentum
map

J: S2 × S2 −→ R

((xi, yi, zi))i=1,2 7−→ z1 + z2.

Now, zero is not a regular value of J as the zero level contains the fixed points ((0, 0, 1), (0, 0,−1))
and ((0, 0,−1), (0, 0, 1)). In fact, the zero level set is a suspended 2-torus and the symplectic
quotient M0 is a suspension of S1 and in particular homeomorphic to S2. From Proposition
5.2.9 we see that in this case all the occuring exceptional divisors of the partial desingularization
are in fact points, as the occuring spheres S±

F in the weight spaces are one-dimensional. Thus,

for all fixed points F in the zero level set we have F = F̃ and the long exact sequence from
Theorem 6.1.11 shows that

β∗ : Hk(M0) ∼= Hk(M̃0) ∀k ∈ N.

Consequently, resolution cohomology and ordinary cohomology of M0 are isomorphic. More-
over, using techniques from toric geometry, one shows that the curvature class of the partial

desingularization M̃0 vanishes in this case. In fact, M = S2×S2 is a toric symplectic manifold
acted upon by the two-torus T 2 = S1 × S1 where each circle rotates one of the spheres around
the z-axis. A momentum map for this action is given by

J′ : M −→ R2

((xi, yi, zi))i=1,2 7−→ (z1, z2),

where we identified the dual of the Lie algebra of T 2 with R2. Our original momentum map J
arises from J′ by composing it with the map

R2 −→ R

(x, y) 7−→ x+ y

as we consider the diagonal S1-action. Now, the momentum image of J′(M) ⊂ R2 is the convex
polytope
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where the drawn anti-diagonal depicts J′(J−1(0)). From Proposition 2.1.28 we already know,
that M0 will be indeed a symplectic manifold. Then, the complementary S1 ⊂ T 2, z 7→ (z, 1)
acts in a Hamiltonian way with momentum map J′′ whose momentum image we obtain by the
projection of the anti-diagonal as

.

Now, M0 is a toric symplectic two-manifold whose momentum polytope associated to the S1-
action is an interval. By the classification of symplectic toric manifolds due to Delzant, see [4,
Theorem IV.4.20 and Section VII.2], [21, Chapter 1] and [9, Theorem 28.2] M0 has to be S2.
A similar reasoning applies to the blow-up BlCG whose momentum polytope is

by [41, Remark 1.5]. Now, we may depict the strict transform as the anti-diagonal in

.

The dashed part represents a neighbourhood of J̃−1(0) in BlCG(M) and the image tells us that
it is T 2-equivariantly symplectomorphic to a neighbourhood of S2 × S1 in S2 × S2 as depicted
in

and the bundle J̃−1(0)→ M̃0 is trivial.

Example 6.1.18. Moving on from the previous example to the case of the standard diagonal
S1-action on M := S2 × S2 × S2 with momentum map

J: S2 × S2 × S2 −→ R

((xi, yi, zi))i=1,2,3 7−→ z1 + z2 + z3

we see that the critical values are −3,−1, 1 and 3. There are 3 isolated fixed points in the
−1-level set and the isotropy representation at each of those has one positive and two negative
weights. Again, using toric geometry and the fact thatM is indeed a toric symplectic manifold,

one proves that M0 is CP2 and M̃0 is the blow-up of M0 in three points. Moreover, the
exceptional bundles F̃ are equal to CP1s in this case and the curvature of M0 does not vanish.
Thus, in this example all terms in the long exact sequence from Theorem 6.1.11 are excplicitely
known. In fact, we considerM as a toric Hamiltonian T 3-manifold, whose momentum polytope
is a cube. By arguments similar to those in Example 6.1.17, one obtains that the momentum
image of a complementary T 2-action on the smooth quotient M0 is
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and M0, which is a smooth symplectic manifold by Proposition Proposition 2.1.28, is symplec-

tomorphic to CP2 while the partial desingularization M̃0 has momentum image

and is therefore symplectomorphic to CP2 blown-up in the three corner points. Now the bundle

J̃−1(0) → M̃0 cannot be trivial since it is equal to the Hopf bundle, when restricted to the
exceptional loci of the blow-up

BlC3 (CP
2) −→ CP2

and the curvature class of M̃0 does not vanish.

Finally, we want to see how to relate the cohomology of the cokernel C(M0) which turned out
to fulfill

H∗(C(M0)) ∼=
⊕

F∈F0

coker
(
H∗(F )→ H∗(F̃ )

)

to relative de Rham theory defined in [6, p. 78]. Paraphrasing the construction, we make the
following

Definition 6.1.19. Consider orbifolds M and N and let f : M → N be a smooth map. Define
the complex

Ωq(f) := Ωq(N)⊕ Ωq−1(M)

d(ω, θ) := (dω, f ∗ω − dθ).

This complex sits inside the short exact sequence

0 −→ Ω∗−1(M)
α−→ Ω∗(f)

β−→ Ω∗(N) −→ 0,

where α(θ) := (0, θ) and β(ω, θ) = ω. The cohomology H∗(Ω∗(f)) =: H∗(Ω(f : M → N)) =:
H∗(f) is called the relative de Rham cohomology of f : M → N and the above short exact
sequence induces a long exact sequence in the following way

. . . −→ Hq(f)
β∗

−→ Hq(N)
f∗−→ Hq(M)

α∗

−→ Hq+1(f) −→ . . . .

Now, since βC,F
0 :

EC

F∩C̃C

G
→ F is a fibre bundle and a surjective orbifold submersion the pull-back

(βC,F
0 )∗ : Ω(F )→ Ω(

EC

F∩C̃C

G
) is injective and we obtain a short exact sequence of complexes

0 −→ Ω∗(F ) −→ Ω∗

(
EC
F ∩ C̃C

G

)
−→ coker

(
(βC,F

0 )∗
)
−→ 0.

Consider the map

ψ =

(
ψk : Ωk

(
βC,F
0 :

EC
F ∩ C̃C

G
→ F

)
−→ cokerk−1

(
(βC,F

0 )∗
))

(ω, θ) 7−→ [θ] = θ + Ω∗(F ).
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The map ψ anticommutes with the differential because

ψk(d(ω, θ)) = ψk(dω, (βC,F
0 )∗ω − dθ) =

(
(βC,F

0 )∗ω − dθ
)
+ Ω∗(F ) = [−dθ] = −d(ψk−1(ω, θ)),

and therefore induces a map ψ : H∗(βC,F
0 ) → H∗−1

(
coker

(
(βC,F

0 )∗
))

. Now, H∗(βC,F
0 ) and

H∗(coker
(
(βC,F

0 )∗
)
) sit inside long exact sequences, which ψ relates by the diagram

. . . Hq−1(F ) Hq−1
(
EC

F∩C̃C

G

)
Hq(βC,F

0 ) Hq(F ) Hq
(
EC

F∩C̃C

G

)
. . .

. . . Hq−1(F ) Hq−1
(
EC

F∩C̃C

G

)
Hq−1

(
coker((βC,F

0 )∗)
)

Hq(F ) Hq
(
EC

F∩C̃C

G

)
. . . .

id

(βC,F
0 )∗

id

α∗

ψq

β∗

id

(βC,F
0 )∗

id

(βC,F
0 )∗ pr δ (βC,F

0 )∗

We need to check, that this diagram is commutative. Of course, the interesting squares are the

ones containing ψ. For [θ] ∈ Hq−1
(
EC

F∩C̃C

G

)
we have

ψq(α∗)([θ]) = ψq([0, θ]) = [θ] = pr([θ])

and for [ω, θ] ∈ Hq(βC,F
0 ),

β∗([ω, θ]) = [ω] = δ([θ])

by the construction of the connecting homomorphism δ, see [6, p. 17]. With the five lemma we
conclude that

ψ : H∗(βC,F
0 ) −→ H∗−1

(
coker((βC,F

0 )∗)
)

is an isomorphism. As a corollary we obtain

Corollary 6.1.20. The cohomology of the cokernel H∗(C(M0)) is iomorphic to the direct sum

of the relative cohomologies associated to the exceptional fibre bundles βC,F
0 : F̃ → F for F ∈ F0

where the degree is shifted by one, i.e.

H∗(C(M0)) ∼=
⊕

F∈F0

H∗+1(βC,F
0 ).

6.2 The Kirwan map

Let (M,σ) be a compact connected symplectic manifold carrying a Hamiltonian group action
of a compact Lie group G with equivariant momentum map J: M → g∗ and consider the
associated symplectic quotient M0 := J−1(0)/G. One of the main tools in the study of its
cohomology is the Kirwan map, which in the case when 0 is a regular value of the momentum
map is defined as the composition

κ : H∗
G(M) H∗

G(J
−1(0)) H∗

basG(J
−1(0)) H∗(M0),

ι∗ Car (π∗)−1

where ι : J−1(0) → M and π : J−1(0) → M0 are the natural injection and projection, respec-
tively, and Car : H∗

G(J
−1(0)) → H∗

basG(J
−1(0)) is the Cartan isomorphism of equivariant and

basic cohomology. For G = S1 it is explicitely given by [14]

Car

(∑

I

ωI · xI
)

:=
∑

I

ωI ∧ ΩI − α ∧
∑

I

iXωI ∧ ΩI ,
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Chapter 6. Resolution cohomology and the Kirwan map

for α ∈ Ω1(M) a connection form, Ω its curvature and X a generator of g with α(X) = 1.
As a major application of our theory of resolution differential forms developed in the previous
section, we are able to extend the above definition of the Kirwan map to the case where 0 is
not necessarily a regular value of J: We define a linear map

K : H∗
G(M)→ H∗(Ω̃∗(M0), d) (6.2.1)

from the equivariant cohomology H∗
G(M) to the resolution cohomology H∗(Ω̃∗(M0), d) which

we call the resolution Kirwan map. To do so, let us first look at our complex of resolution
differential forms in the light of g-differential graded algebras, see Section 2.2.2 and [15, Section
4] and [23] for a systematic exposition.

In our setting, we introduce the g-differential graded algebras

Ω∗(J−1(0)) :=
{
ω ∈ Ω(J−1(0)⊤)

∣∣∣ ∃η ∈ Ω(M) : ι∗⊤η = ω
}
,

Ω̃∗(J−1(0)) : =
{
ω ∈ Ω(J−1(0)⊤)

∣∣∣ ∃η ∈ Ω(BlCG(M)) : (ιC⊤)
∗η = (βC

⊤)
∗ω
}
.

(6.2.2)

These complexes of differential and resolution forms on M0 are isomorphic to the basic sub-
complexes of these g-differential graded algebras, respectively, via the pullback associated to
the quotient map π⊤ : J

−1(0)⊤ → M⊤
0 because G is connected. The associated equivariant

cohomology groups are

H∗
G(J

−1(0)) := H∗(CG(Ω
∗(J−1(0))), dG) and H∗(CG(Ω̃

∗(J−1(0))), dG),

respectively, where dG is the equivariant differential. The crucial difference between Ω∗(J−1(0))

and Ω̃∗(J−1(0)) and driving force behind our investigations is that after fixing a connection
form as in Corollary 5.2.6, Ω∗(J−1(0)) is not invariant under multiplication with this connection

form, while Ω̃∗(J−1(0)) is. This makes Ω̃∗(J−1(0)) aW ∗-module, and even a g-differential graded
algebra of type (C) in the sense of [23, Definition 3.4.1] and [23, Definition 2.3.4]. This is a
powerful property, because for such a W ∗-module A, the map

Abas g −→ CG(A), ω 7−→ 1⊗ ω, (6.2.3)

induces an isomorphism in cohomology with homotopy inverse given by the Cartan map

Car: CG(A) −→ Abas g,

see [23, Sections 4 and 5]. In fact, there it is proved, that Car is a quasi-isomorphism. But
clearly, Car(1 ⊗ ω) = ω for ω ∈ Abas g, so (6.2.3) induces the inverse to the Cartan map in
cohomology. We are now ready to define the resolution Kirwan map.

Definition 6.2.1. The resolution Kirwan map K is defined as the composition of maps

H∗
G(M) H∗

G (J−1(0)) H∗
(
CG
(
Ω̃∗
(
J−1(0)

))
, dG

)
H∗
(
Ω̃∗ (J−1(0))bas g , d

)

H∗(Ω̃∗(M0), d),

ι∗⊤

K

inc Car

(π∗
⊤)

−1

where inc denotes the map induced by the inclusion CG
(
Ω∗
(
J−1(0)

))
→֒ CG

(
Ω̃∗
(
J−1(0)

))
.
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Remark 6.2.2. Another angle from where to see the resolution Kirwan map is given by Propo-
sition 6.1.6, Corollary 5.3.2 and Lemma 6.2.8. In fact, the resolution Kirwan map K is equal to
the composition of (βC)∗ : H∗

G(M)→ H∗
G(Bl

C
G(M)) with the regular Kirwan map of the blow-up

κ : H∗
G(Bl

C
G(M))→ H∗(M̃0), i.e.

K : H∗
G(M)

(βC)∗−→ H∗
G(Bl

C
G(M))

κ−→ H∗(M̃0).

An immediate question is whether the resolution Kirwan map is non-trivial; more precisely,
how large its image is. To study this question, recall from Section 6.1 that there is a natural
map

H∗(M0;R) −→ H∗(Ω̃∗(M0), d)

from the singular cohomology H∗(M0;R) with real coefficients to the resolution cohomology,
the target space of K. While this natural map is not necessarily injective (see Remark 6.1.15),
we have seen in Theorem 6.1.14 that it is at least injective in even degrees under appropriate
assumptions. This shows that the image of H∗(M0;R) in H

∗(Ω̃∗(M0), d) is an interesting space,
even if in general it contains less information than the full singular cohomology H∗(M0;R).
Therefore, the following main result of this section can be seen as a weak form of “resolution
Kirwan surjectivity”:

Theorem 6.2.3. The image of the resolution Kirwan map K : H∗
G(M)→ H∗(Ω̃∗(M0), d) con-

tains the image of the natural map H∗(M0;R)→ H∗(Ω̃∗(M0), d).

The proof is given in the following subsection. Let us collect some consequences of Theorem
6.2.3:

Remark 6.2.4 (Resolution Kirwan surjectivity onto subspaces of the singular cohomology).

Suppose that a subspace H ⊂ H∗(M0;R) is injectively mapped into H∗(Ω̃∗(M0), d) by the

natural map H∗(M0;R)→ H∗(Ω̃∗(M0), d), and denote by H ⊂ H∗(Ω̃∗(M0), d) the image of H.
Then Theorem 6.2.3 allows us to build from the resolution Kirwan map K a surjective map

H∗
G(M) ∋ K−1(H) −→ H (6.2.4)

by identifying H with H and composing K with a linear projection prH : H∗(Ω̃∗(M0), d)→ H.
While in general there is no canonical choice of such a projection, it can still be useful to choose
one.

Example 6.2.5 (Resolution Kirwan surjectivity in even degrees). Assume that for all connected
components F ⊂MS1∩J−1(0) we haveH2k+1(F ) = 0 for all k ∈ N. Then Theorem 6.1.14 shows

that the cohomology in even degrees Hev(M0;R) ⊂ H∗(M0;R) is injected into H∗(Ω̃∗(M0), d)

by the natural map. Identify it with its imageH ⊂ H∗(Ω̃∗(M0), d) and choose a linear projection

prH : H∗(Ω̃∗(M0), d) → H. Then, since K is degree-preserving, its composition with prH
restricts to a surjective map

Hev
G (M) −→ Hev(M0;R). (6.2.5)

In the case that the odd cohomology of M0 vanishes, we obtain a surjective linear map

κ : H∗
G(M) −→ H∗(M0;R). (6.2.6)

Remark 6.2.6. Note that in general the resolution Kirwan map K : H∗
G(M) → H∗(M̃0) itself

cannot be surjective as it can be seen as the composition of the map induced by the blow-down
βC composed with the regular Kirwan map of the blown-up Hamiltonian action

K : H∗
G(M)

(βC)∗−→ H∗
G(Bl

C
G(M))

κ−→ H∗(M̃0).
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Now, by [44, Proposition 2.4] the cohomology of the blow-up BlCG(M) is generated by cohomol-
ogy classes pulled back from M and the symplectic class of each exceptional bundle. These
exceptional symplectic classes are not in the image of (βC)∗. Thus, in the situation of Corollary
6.1.12 the only exceptional contributions of K are the curvature class terms introduced by the

Cartan map and the symplectic class of M̃0 is not in the image of K, whereas the symplectic

form ω⊤
0 ∈ Ω2(M0) defines a cohomology class [ω⊤

0 ] ∈ H2(M0;R) ⊂ H2(M̃0) which is contained
in the image of K as the equivariant symplectic class of M is mapped to it.

Remark 6.2.7. In the case that the odd cohomology of all F ∈ F0 vanishes and the odd
cohomology of M0 vanishes, we have a linear surjection

κ : H∗
G(M) −→ H∗(M0;R)

by (6.2.6). It would be interesting to know if κ is in fact a ring homomorphism, which is not
clear from our construction since the isomorphism

H∗(M̃0) ∼= H∗ (M0)⊕
⊕

F∈F0

R[σ̃0|F̃ , Ω̃|F̃ ]≥1

IF
.

from Corollary 6.1.12 is linear but not necessarily multiplicative. This is a common drawback
of a resolution Kirwan map as becomes clear from the approaches mentioned in Remark 7.2.11.

Proof of Theorem 6.2.3

We start with some preparations. We want to prove Theorem 6.2.3 by evoking the equivariant
de Rham isomorphism on the one hand and surjectivity of

ι∗ : H∗
G(M ;R) −→ H∗

G(J
−1(0);R),

on the other hand, which was proved by Kirwan using Morse-Bott-Kirwan theory [27, Theorem
8.1]. Note that for any homomorphism Ψ between the cohomologies of two cochain complexes
of R-vector spaces there exists a cochain map ϕ inducing Ψ, which follows from the fact that
every short exact sequence of R-vector spaces splits (c.f. [62, Exercise 1.1.3 and beginning of
Section 1.4]) as in Appendix A.1. Thus, the equivariant de Rham isomorphism

ΨG
dR : H

∗
G(M) −→ H∗

G(M ;R)

is induced by a cochain map

ΨG
dR : CG(M) −→ SG(M ;R),

where SG(M ;R) := S(MG;R) denotes the complex of G-equivariant singular cochains of M
with real coefficients which are singular cochains of the homotopy quotient MG from Definition
2.2.3.
For every ω ∈ CG(Ω∗(J−1(0))) there is some η ∈ CG(M) such that ω = ι∗⊤η and we now set

ϕ(ω) := ι∗(ΨG
dRη) ∈ SG(J−1(0);R).

This map is a well-defined cochain map since the following diagram

CG(M) SG(M ;R)

CG(Ω(J
−1(0))) SG(J

−1(0);R)

CG(J
−1(0)⊤) SG(J

−1(0)⊤;R),

ι∗⊤

ΨG
dR

ι∗

ϕ

res

ΨG
dR
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where res denotes restriction, commutes and J−1(0)⊤ is dense in J−1(0). Thus, we obtain a
well-defined induced map

ϕ : H∗
G(J

−1(0)) −→ H∗
G(J

−1(0);R).

By the commutativity of

H∗
G(M) H∗

G(M ;R)

H∗
G(J

−1(0)) H∗
G(J

−1(0);R)

ι∗⊤

ΨG
dR

ι∗

ϕ

one sees that ϕ is surjective. Next, we want to relate the cohomology of the equivariant
resolution forms to the cohomology of the strict transform C̃C. Analogous to Proposition 6.1.6,
we have

Lemma 6.2.8. The map Φ defined as the composition

Φ: H∗
G(C̃C;R)

(ΨG
dR

)−1

−→ H∗
G(C̃C)

(ι̃⊤)∗−→ H∗
G((β

C)−1(J−1(0)⊤))
((βC

⊤)∗)−1

−→ H∗
G(CG(Ω̃(J

−1(0))), dG)

is an isomorphism.

Proof. The inverse is given by

ω 7−→ (βC
⊤)

∗ω = (ιC⊤)
∗η̃ 7−→ (ιC)∗η̃ 7−→ ΨG

dR((ι
C)∗η̃),

which is well-defined because (βC)−1(J−1(0)⊤) is dense in C̃C and the strict transform C̃C is a
G-invariant submanifold of BlCG(M).

Lemma 6.2.9. The pull-back π∗
⊤ : Ω̃

∗(M0) → Ω̃∗ (J−1(0))bas g is an isomorphism of real alge-
bras.

Proof. Since the G-action is free on J−1(0)⊤, the pull-back

π∗
⊤ : Ω(M

⊤
0 ) −→ Ω∗(J−1(0)⊤)bas g

is an isomorphism by [18, Proposition 2.5]. Now, let ω ∈ Ω̃∗(M0). Then there is η̃ ∈
Ω∗(BlCG(M)) such that (βC

⊤)
∗π∗

⊤ω = (ιC⊤)
∗η̃. Thus, π∗

⊤ω is an element of Ω̃∗ (J−1(0))bas g. Analo-

gously (π∗
⊤)

−1θ ∈ Ω̃∗(M0) for any θ ∈ Ω∗(J−1(0)))bas g.

Now we are ready to prove Theorem 6.2.3:

Proof of Theorem 6.2.3. Consider the commutative diagram

H∗
G(M ;R) H∗

G(J
−1(0);R) H∗

G(C̃C;R)

H∗
G(M) H∗

G(J
−1(0)) H∗

(
CG
(
Ω̃∗
(
J−1(0)

))
, dG

)
H∗
(
Ω̃∗ (J−1(0))bas g , d

)

H∗(Ω̃∗(M0), d)

ι∗ (βC)∗

ΦΨG
dR

K

ι∗⊤

ϕ

inc Car

(π∗
⊤)

−1

where the maps ι, ι′C, and β
C form the commutative diagram
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BlCG(M) C̃C

M J−1(0).

βC βC

ιC

ι

Denote by H ⊂ H∗(Ω̃∗(M0), d) the image of H∗(M0;R) and let [̺] ∈ H with π∗
⊤̺ =: ω = ι∗⊤η

for some η ∈ Ω∗(M). Then Car([1⊗ω]) = [ω]. Since ι∗⊤(1⊗η) = 1⊗ω, we can regard [1⊗ω] as
an element in H∗

G(J
−1(0)) and ϕ([1 ⊗ ω]) ∈ H∗

G(J
−1(0);R). By Kirwan’s surjectivity theorem

[27, Theorem 8.1] there is [η̃′] ∈ H∗
G(M ;R) with

ι∗[η̃′] = ϕ([1⊗ ω]).

By commutativity and setting [η′] := (ΨG
dR)

−1[η̃′], we have

ϕ([1⊗ ω]) = ι∗ΨG
dR((Ψ

G
dR)

−1[η̃′]) = ϕ([ι∗⊤η
′]).

But this implies that in H∗
(
CG
(
Ω̃∗
(
J−1(0)

))
, dG
)
we have

[1⊗ ω] = inc([1⊗ ω]) = Φ((βC)∗(ϕ([1⊗ ω])))
= Φ((βC)∗(ϕ([ι∗⊤η

′]))) = inc(ι∗⊤[η
′]).

In total, we conclude
K([η′]) = [̺].

6.3 Examples - Abelian polygon spaces

Let us finally see one interesting family of examples, where our theory applies, namely the
family of Abelian polygon spaces, which have been of interest for symplectic and algebraic
geometers as well as combinatorialists for a long time, see [26] and the abundant references
therein.
To begin with, consider a product of spheres

n∏

i=1

S2
αi
⊂
(
R3
)n

endowed with the product symplectic form, which it inherits from the symplectic forms σi ∈
Ω2(S2

αi
) and let S1 act on this product diagonally where the circle acts on each 2-sphere as

rotation around the z-axis. This action is Hamiltonian and a momentum map is given by

J:
n∏

i=1

S2
αi
−→ R

(xk, yk, zk)k 7−→
n∑

k=1

zk.

When all radii are equal to 1, the regularity of 0 ∈ R depends on the parity of n and 0 is a
regular value of the momentum map if and only if n is odd. Let us now deal with the stratified
symplectic quotient

M0 :=
J−1(0)

S1
.
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The singular stratum of this space consists of isolated points which are induced by the fixed
point set

J−1(0) ∩
(

n∏

i=1

S2
αi

)S1

=
{
((0, 0,±αk))k ∈ J−1(0)

}
.

Now, our results, and in particular Example 6.2.5, apply and show that there is a surjective
map

K : Hev
S1

(
n∏

i=1

S2
αi

)
−→ Hev(M0;R).

Note that since the whole fixed point set

(
n∏
i=1

S2
αi

)S1

consists of isolated points, our results

will also hold for reduction parameters α ∈ R which are different from 0 since we can shift the
momentum map by a constant. This leads us to

Definition 6.3.1. In general the polygon space Pol(α1, . . . , αn), (α1, . . . , αn) ∈ Rn
+, is defined

as the family of piecewise linear paths in R3, whose ith step (which is of lengh αi) can proceed
in any direction subject to the polygon ending where it begins, considered up to rotation and
translation. In other words

Pol(α1, . . . , αn) :=

{
(x1, . . . , xn) ∈

n∏

i=1

S2
αi

∣∣∣
n∑

i=1

xi = 0

}/
SO(3)

These spaces have a natural symplectic structure as they arise as symplectic reductions of
n∏
i=1

S2
αi
. This is because

n∏

i=1

S2
αi
−→ R3

(x1, . . . , xn) 7−→
n∑

i=1

xi

is a momentum map of the diagonal SO(3) action and

Pol(α1, . . . , αn) =

(
n∏

i=1

S2
αi

)//
0
SO(3) =

(
n−1∏

i=1

S2
αi

)//
αn

SO(3),

where the subscript indicates the reduction parameter. Thus, symplectic geometry is a powerful
tool to study polygon spaces. These have been of interest naturally to combinatorialists but also
to algebraic geometers since they play a role in studying the moduli space of n-times punctured
Riemann spheres as well as the moduli space of n unordered weighted points in CP1, see [2]. In
differential geometers, polygon spaces spark interest as they are connected to the moduli space
of flat connections on Riemann-surfaces, see [2] again.
One important class of spaces associated to polygon spaces are the so called Abelian polygon
spaces which are used to determine the cohomology ring of smooth polygon spaces in [26].

Definition 6.3.2. The Abelian polygon space APol(α1, . . . , αn) is defined as

APol(α1, . . . , αn) :=

(
n−1∏

i=1

S2
αi

)//
αn

S1.
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Chapter 6. Resolution cohomology and the Kirwan map

Note that while the homology of singular polygon spaces has been studied in [33], where it was
for example shown that the homlogy groups of singular polygon spaces generally do not fulfil
Poincaré-duality, [33, Remark 1.7], the case of singular Abelian polygon spaces seems uncovered
in the literature. But computing the local homology of a singular point p with the help of the
local normal form theorem analogously to [25, p. 231] reveals

H∗(APol(α1, . . . , αn),APol(α1, . . . , αn) \ {p};R) = H∗(C(S
2k−1 ×S1 S2l−1),R× S2k−1 × S2l−1

S1
;R)

∼= H̃∗(R×
S2k−1 × S2l−1

S1
;R) 6∼= H̃∗(S

m;R)

and these Abelian polygon spaces are in general no real homology manifolds and thus no
orbifolds by [55, p. 362]. In contrast to the regular situation, the polygon spaces Pol(α1, . . . , αn)
need not be even cohomology spaces, i.e. H2k−1(Pol(α1, . . . , αn)) 6= 0 for some k, as was pointed
out in [33, Remark 1.7], and the cohomology ring H∗(Pol(α1, . . . , αn)) remains unknown. Ne-
vertheless, our results applied to the Abelian polygon spaces yield

Theorem 6.3.3. There is a linear surjection

Hev
S1

(
n−1∏

i=1

S2
αi

)
−→ Hev(APol(α1, . . . , αn);R).

Proof. Apply Theorem 6.2.3 as in Example 6.2.5.

Let us end this section by exploring one example, related to the ones above, in whichHodd(M0) 6=
0.

Example 6.3.4. Consider as M the product of four 2-spheres of radius 1 equipped with the
standard volume forms and with the standard diagonal rotational action of S1 with speed 1.
The standard momentum map is given as

J: S2 × S2 × S2 × S2 −→ R

(xi, yi, zi)1≤i≤4 7−→ z1 + z2 + z3 + z4.

The image of the moment map is the closed interval [−4, 4] and the critical values inside this
interval are {−4,−2, 0, 2, 4}:

−4 −2 0 2 4

If we intersect the level sets of these critical values with the fixed point set of the action we
obtain

J−1(4) ∩MS1

= {(N,N,N,N)}
J−1(2) ∩MS1

= {(S,N,N,N), (N,S,N,N), (N,N, S,N), (N,N,N, S)}
J−1(0) ∩MS1

= {x ∈ {N,S}4 | exactly two entries of x are N}
J−1(−2) ∩MS1

= {(N,S, S, S), (S,N, S, S), (S, S,N, S), (S, S, S,N)}
J−1(−4) ∩MS1

= {(S, S, S, S)}
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and

#
(
J−1(4) ∩MS1

)
= 1

#
(
J−1(2) ∩MS1

)
= 4

#
(
J−1(0) ∩MS1

)
= 6

#
(
J−1(−2) ∩MS1

)
= 4

#
(
J−1(−4) ∩MS1

)
= 1,

where N = (0, 0, 1) ∈ S2 and S = (0, 0,−1) ∈ S2. Now we may look at the symplectic
quotients Mε where ε ∈ [−4, 4] and study them by invoking the local normal form theorem,
the Duistermaat-Heckman theorem and [21, Section 2.3]. From the local normal from theorem
one knows that

Mε
∼= CP3

for ε > −4 but close to −4, where the isomorphism is meant as diffeomorphism. By the
Duistermaat-Heckman theorem it follows that Mε

∼= CP3 for all ε ∈ (−4,−2). When we cross
the critical value −2, as explained in [21, p. 35 f.], we are facing four fixed points where the
positive weight space in the isotropy representation in each of these fixed points is complex
one-dimensional. Therefore Mε is diffeomorphic to the blow-up of CP3 in four points when
ε ∈ (−2, 0). In particular, the dimension of the second cohomology group of this space is
dimH2(Mε) = 5. Now, when passing from ε ∈ (−2, 0) to 0 we have to collapse six isolated
CP1’s inside Mε. When decomposing M0 = U ∪ V and Mε = U ′ ∪ V ′, the Mayer-Vietoris
sequences connected by the maps induced by collapsing look like

. . . H2(M0) H2(U)⊕H2(V ) H2(U ∩ V ) H3(M0) . . .

. . . H2(Mε) H2(U ′)⊕H2(V ′) H2(U ′ ∩ V ′) H3(Mε) . . . ,A

where U ′ is the union of disjoint tubular neighbourhoods of the six CP1’s, V ′ is the slighty
enlarged complement of U ′ inside Mε and U and V are the corresponding images under the
collapsing map. In this case H∗(V ) ∼= H∗(V ′), H∗(U∩V ) ∼= H∗(U ′∩V ′), H∗(U ′) =

⊕
H∗(CP1)

and by the long exact cohomology sequence of the pair (U ′,
⋃

CP1), see [25, p. 199 f.], we have
Hk(U) = 0 for k > 1. Now, H3(Mε) = 0 and the map

A : H2(U ′)⊕H2(V ′) −→ H2(U ′ ∩ V ′)

is surjective. Moreover, as dimH2(U ′) = 6, while dimH2(Mε) = 5, the kernel kerA can
be at most 5-dimensional as it is the image Im (H2(Mε) → H2(U ′) ⊕ H2(V ′)) by exactness.
Therefore A cannot be the zero map. We find an element a ∈ H2(U ′) which is not in the image
of the map H2(Mε)→ H2(U ′) and therefore (a′, 0) ∈ H2(U ′)⊕H2(V ′) maps to some non-zero
v′ ∈ H2(U ′ ∩ V ′). Then there is a unique non-zero element v ∈ H2(U ∩ V ), which maps to v′.
Claim: The image of v under the map H2(U ∩ V )→ H3(M0) is not zero.
Suppose this was not the case and v maps to zero. By exactness, there is an element (0, w) ∈
H2(U)⊕H2(V ) (remember that H2(U) = 0) which maps to v. Denote the image of (0, w) under
the map 0 ⊕ H2(V ) → H2(U ′) ⊕ H2(V ′) by (0, w′). Since the above diagram is commutative
we have that

(a′,−w′) = (a′, 0)− (0, w′) 7−→ v′ − v′ = 0.
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Chapter 6. Resolution cohomology and the Kirwan map

Thus, there exists an element b ∈ H2(Mε) which maps to (a′,−w′). But this is a contradiction
as a′ is not in the image of the map H2(Mε)→ H2(U ′).

Conclusion: Looking back, our ansatz to extend Sjamaar’s complex of differential forms on
M0 using blow-ups was not too exciting in the case of real blow-ups, while it was fruitful when
we performed symplectic blow-ups. In this case, the complex of resolution differential forms on
M0 and the long exact sequence (6.1.11) allowed us to define the resolution Kirwan map and
study its surjectivity properties. Even though the resolution Kirwan map is not as well-behaved
as its regular counterpart, as Example 6.3.4 showed, it is still a very interesting object which
deserves to be studied more deeply in the future.
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Chapter 7

Comparison

Summary: We will now compare our results to previous work in the field. On
the one hand we compare our resolution process to known resolutions of singular
symplectic quotients while on the other hand we also want to look for similarities
or differences to other defintions of singular Kirwan maps.

7.1 Desingularizations of symplectic quotients

Recall that we desingularized the action of G on M or the zero level set J−1(0) by successively
blowing up the minimal orbit type using real or complex blow-ups, which also resulted in the

desingularitzations M̂0 and M̃0 of the symplectic quotient.

7.1.1 Shift desingularization

By Sard’s theorem, the set of regular values is dense in the momentum polytope. Now, we can
shift our reduction parameter 0 a bit to a regular value and take the reduced space there. The
comparison to this desingularization was already fully worked out by [46, Section 4.3]. At the
heart of this comparison lies the seminal paper [20] by Guillemin and Sternberg.

7.1.2 Lerman-Tolman’s small resolution

Instead of shifting the reduction parameter a bit, Lerman-Tolman [40] cleverly perturb the
momentum map in order to construct a small resolution of the symplectic quotient. They start
with the following

Definition 7.1.1. A simple stratified space is a topological Hausdorff space X with the fol-
lowing properties:

❼ The space X is a disjoint (set-theoretic) union of even-dimensional orbifolds, called strata.

❼ There exists an open dense oriented stratum X⊤, called the top stratum.

❼ The complement of X⊤ in X is a disjoint union of connected orbifolds, X \X⊤ =
∐
Yi,

called the singular strata.

❼ For each singular stratum Y there is a neighbourhood T of Y in X and a retraction map
π : T → Y which is a C0 fibre bundle with typical fibre C(L) for some orbifold L, which
depends on Y , where C(L) := L× [0, 1)/ ∼ is the open cone over L. Note that Y embeds
into T as the vertex section.
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❼ There exists a diffeomorphism from the complement T \ Y to Q × (0, 1), where Q → Y
is a C∞ fibre bundle of orbifolds with typical fibre L, such that the following diagram
commutes:

T \ Y Q× (0, 1)

Y Y.

π

In Lerman-Tolman’s work it is then shown in [40, Proposition 3.2] that a symplectic quotient
M0 by a Hamiltonian circle action is in general a simple stratified space. The authors then
proceed to study this space by constructing a so-called small resolution f : M ′

0 →M0. What
we mean by a resolution is clarified by the following

Definition 7.1.2. Let X = X⊤ ∪⋃Yi be a simple stratified space. A resolution h : X ′ → X
is a continuous surjection from a smooth orbifold X ′, such that h−1(X⊤) is dense in X ′ and
h : h−1(X⊤)→ X⊤ is a diffeomorphism. A resolution h : X ′ → X is called small if and only if
for all r > 0

codim
{
x ∈ X

∣∣∣ dim
(
h−1(x)

)
≥ r
}
> 2r.

Indeed, Lerman-Tolman construct a small resolution of M0 by perturbing the momentum
map J: M → R. They construct a new map J′ : M → R which is an S1-invariant Morse-Bott
function such that 0 is a regular value of J′ and

f : M
′
0 := (J′)−1(0)/S1 −→ J−1(0)/S1 = M0

is a small resolution.

Remark 7.1.3. It is worthwile to think of βC
0 : M̃0 → M0 as a desingularization and compare

it to other desingularizations of the singular quotient M0. Lerman-Tolman’s desingularization
[40] is rather different from ours, since they construct a small resolution of M0 by perturbing the

momentum map. Let us consider βC
0 : M̃0 →M0 and some x ∈ F for some fixed point stratum

F ⊂M0. As submanifold ofM the fixed point component F has codimension codimM(F ) = 2k.
Thus, on the one hand

codimM0(F ) = 2k − 2,

while on the other hand

dim((βC
0 )

−1(x)) = dim
(
CPk−1//S1

)
= 2k − 4

and even though βC
0 is a resolution of M0, it is in general not small, since our exceptional fibres

are “too big”. A similar dimension count shows that the shift-desingularization obtained by
reducing M at a regular value near 0 is in general not small as well, see [21, Section 2.3].

7.2 Singular Kirwan maps and intersection cohomology

Let us begin this section by recalling the notion the complex of intersection differential forms
of a simple stratified space.

Definition 7.2.1. Let π : E → B be a smooth submersion of orbifolds. The Cartan filtration
FkΩ

∗(E) of the complex of differential forms Ω∗(E) on E is given by

FkΩ
∗(E) :=

{
ω ∈ Ω∗(E)

∣∣iξ0 ◦ . . . ◦ iξk(ωe) = 0 = iξ0 ◦ . . . ◦ iξk(dωe)
}
,

for all e ∈ E and all ξ0, . . . , ξk ∈ ker(dπe).
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Remark 7.2.2. The 0-th step of the Cartan filtration, F0Ω
∗(E), consists of basic differential

forms.

Before we head to the definition of intersection differential forms and finally intersection
cohomology, we first have to define what a perversity is.

Definition 7.2.3. Let X = X⊤⊔∐Yi be a simple stratified space. A perversity p : {Yi} → N is
a function that assigns a non-negative integer to each singular straum Yi. The middle perversity
m is defined by

m(Yi) :=
1

2

(
dim(X⊤)− dim(Yi)

)
− 1 =:

1

2
codim(Yi)− 1.

Definition 7.2.4. Consider a simple stratified space
(
X = X⊤ ⊔∐Yi, {πi : Ti → Yi}

)
and a

perversity p : {Yi} → N. The complex of intersection differential forms IΩ∗
p(X) is a subcomplex

of the complex of differential forms on the top stratum Ω∗(X⊤) defined as follows: ω ∈ IΩ∗
p(X)

if and only if ω|Ui
∈ Fp(Yi)Ω

∗(Ui∩X⊤) on some neighbourhood Ui ⊂ Ti of every singular stratum
Yi, where the Cartan filtration Fp(Yi)Ω

∗(Ui∩X⊤) is relative to the submersion πi|Ui
: Ui∩X⊤ =

Ui\Ti → Yi and the coboundary map is the exterior differential d. The intersection cohomology
IH∗

p (X) of a simple stratified space X with perversity p is the cohomology of the complex(
IΩ∗

p(X), d
)
.

Remark 7.2.5. Intersection differential forms ω ∈ IΩq
p(X) of degree q > dim(Yi)+p(Yi) vanish in

a neighbourhood of Yi. In particular, all forms ω ∈ IΩdim(X⊤)
m (X) are compactly supported and

we may define an integration map
∫
X⊤

: IΩ
dim(X⊤)
m (X)→ R. Thus, the symplectic volume form of

the top stratum does not define an intersection differential form! Moreover, if dim(X⊤)− 1 >
dim(Yi) + p(Yi) as is the case for example when p is the middle perversity, the integration

map gives a well-defined map
∫
X⊤

: IH
dim(X⊤)
m (X) → R, which after extension by zero in non-

top degrees gives
∫
X⊤

: IH∗
m(X) → R and leads us to the definition of the intersection pairing

defined as

IHp
m(X)× IHq

m(X) −→ R

([α], [β]) 7−→
∫

X⊤

α ∧ β.

The non-degeneracy of this pairing was a major motivation to study intersection cohomology
when dealing with stratified spaces.

In their study of the intersection cohomology of M0, Lerman-Tolman consider another
complex of differential forms on M⊤

0 , whose definition we will now recall:

Definition 7.2.6. Let h : X ′ → X be a resolution of a simple stratified space X. Let X⊤

be the top stratum of X, let (X ′)⊤ be its preimage h−1(X⊤) and let ι : (X ′)⊤ → X ′ denote
the inclusion. By construction there are maps of complexes h∗ : IΩ∗

m(X) → Ω∗((X ′)⊤) and
ι∗ : Ω∗(X ′)→ Ω∗((X ′)⊤). We define the complex of resolution intersection forms to be

A∗
m(X) := h∗ (IΩ∗

m(X)) ∩ ι∗ (Ω∗(X ′)) .

Remark 7.2.7. Corollary 6.1.7 reveals that the complexes Ω̃(M0) (and Ω̂(M0)) naturally extend
the resolution intersection forms studied in [40]. These are intersection differential forms on
M⊤

0 whose pullback to a resolution of singularities of M0 extends to the whole resolution
space, see [40, Definition 5.2]. Our definition drops this intersection condition using the partial
desingularization as a resolution.
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Remark 7.2.8. Small resolutions are so useful when studying stratified spaces because their
cohomology is equal to the intersection cohomology of the stratified space with respect to the
middle perversity, see [19, Section 6.2]. Lerman-Tolman actually reprove this statement for
symplectic circle quotients using the complex A∗

m(X), see [40, Proposition 5.6].

By studying the perturbed momentum map J′ : M → R using Morse-Bott-Kirwan theory,
Lerman-Tolman find a map

κ′ : H∗
S1(M) −→ H∗(M ′

0)
∼= IH∗(M0)

and prove, see [40, Theorem 1 and Theorem 1′],

Theorem 7.2.9. The map

κ′ : H∗
S1(M) −→ H∗(M ′

0)
∼= IH∗(M0)

is surjective. Moreover, there is a ring structure on IH∗(M0), such that κ′ is a ring homomor-
phism.

Remark 7.2.10. Notice, that even though there is a ring structure on IH∗(M0), namely the
one induced by the isomorphism H∗(M ′

0)
∼= IH∗(M0), this is no canonical structure by [19,

Remark p. 121] and [35, Remark 7.6].

Remark 7.2.11. Such non-canonicity phenomenona occur in most approaches to a singular
Kirwan map, see [36, Theorem 1 and Theorem 6], [63, Corollary 3.5] and [29, p. 234], and
are in congruence to the maps (6.2.4), (6.2.5) being non-canonical, c.f. Remark 6.1.16. In the
GIT case of [29], it turns out, see [29, p. 234], that there is a natural choice of projection

H∗(M̃0)→ IH∗(M0) due to the Hard Lefschetz theorem.

The intersection cohomology of singular symplectic quotients has subsequently been studied
in [29], [35] and [36]. In general their approach is quite close to ours and relies on the following
(roughly summarized) construction: Consider a Hamiltonian S1-action on M with symplectic

quotient M0 and the partial desingularization M̃0 obtained by reducing the blow-up BlCG(M)

at the regular value 0. Since M̃0 is an orbifold, there is an isomorphism H∗(M̃0) ∼= IH∗(M̃0)
and one considers the map

H∗
G(M) −→ H∗

G(Bl
C
G(M)) −→ H∗(M̃0) ∼= IH∗(M̃0).

The crux consists in finding IH∗(M0) as a summand inside H∗(M̃0) and a projection

H∗(M̃0) −→ IH∗(M0)

in order to define a singular Kirwan map as the composition

κ : H∗
G(M) −→ H∗

G(Bl
C
G(M)) −→ H∗(M̃0) −→ IH∗(M0).

The existence of such a projection and the surjecitvity of the resulting Kirwan map is still not
known, see [36, p. 1], but in some situations both problems have been solved, sometimes at the
cost of non-canonicity:

❼ In [36] Kiem-Woolf showed the existence of a non-canonical map

H∗
G(J

−1(0);R) −→ IH∗(M0),
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for a general HamiltonianG-action onM with momentum map J: M → g∗, where the sur-
jectivity remains unknown. Composing this with the map ι∗ : H∗

G(M ;R)→ H∗
G(J

−1(0);R)
one obtains a non-canonical singular Kirwan

κ : H∗
G(M ;R) −→ IH∗(M0).

By [30, Theorem A.1] and references therein, this singular Kirwan map κ is surjective in
case of an almost-balanced action. This is a technical condition, see [34, Definition 5.1],
but for the special case where S1 acts linearly on CPn it is equivalent to the number of
positive weights being equal to the number of negative weights as explained in [34, p.
177].

❼ In [29], [63] and [39] symplectic quotients of nonsingular connected complex projective
varieties equipped with the pull-back of the Fubini-Study form along their embedding into
complex projective space and an action of a complex reductive group G are studied as
quotients in the sense of geometric invariant theory. In this situation there is a surjective
map

H∗
G(M) −→ IH∗(M0)

which is canonical due to the Hard Lefschetz theorem. In fact, in [29] Jeffrey-Kiem-
Kirwan-Woolf studied actions of connected complex reductive groups on smooth con-
nected complex projective varieties which are linear when lifted to an ample line bundle
over the variety. Let G y X be such an action and consider a maximal compact sub-
group K ⊂ G. After endowing X with the symplectic form it inherits from an embedding
into complex projective space, the K action on X turns out to be Hamiltonian with
momentum map

J: X −→ k∗

and the symplectic quotient X//K is homeomorphic to the geometric invariant-theoretic
quotient of the G action which we denote by (X/G)GIT by the Kempf-Ness theorem, see
[49, Theorem 8.3]. They then use the successive blow-up of X along isotropy components

to get X̃, the induced partial desingularization X̃//K and the map

H∗
K(X) −→ H∗

K(X̃) −→ H∗(X̃//K),

where the first arrow is induced by the blow-down map and the second map is the reg-

ular Kirwan map. Since X̃//K is an orbifold, its usual cohomology coincides with its
intersection cohomology, i.e.

H∗(X̃//K) = IH∗(X̃//K).

By using algebro-geometric arguments involving the decomposition theorem of Beilinson-
Bernstein-Deligne and the Hard Lefschetz theorem, see [29, p. 234], they conclude that

IH∗(X//K) is canonically a direct summand of IH∗(X̃//K). Thus there is a canonical
projection

H∗(X̃//K) −→ IH∗(X//K)

which is then used to define the Kirwan map as

κ : H∗
K(X) −→ H∗

K(X̃) −→ H∗(X̃//K) −→ IH∗(X//K).

This map κ is surjective and is their instrument to study the intersection cohomology
IH∗((X/G)GIT). Now, to span the arc between our theory and theirs, consider a Hamilto-
nian S1-action on a compact connected symplectic manifold (M,σ). We then proceeded
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to blow-up all the occuring fixed point components to obtain BlCG(M) and the partial

desingularization M̃0 of the symplectic quotient M0 of interest. We looked at the map

H∗
S1(M) −→ H∗

S1(BlCG(M)) −→ H∗(M̃0)

and related subspaces of H∗(M̃0) to the real cohomology H∗(M0;R) of the symplectic
quotient. Thus, our approach is somewhat similar to the one of [29] but instead of looking
for IH∗(M0) we search for H∗(M0;R) in the more general context of Hamiltonian circle
actions on compact symplectic manifolds.

One is often interested in examining the intersection pairing

IH∗(M0)× IH∗(M0) −→ R

from Remark 7.2.5 and most of the above cited papers are concerned with this in one way or
another, see [40, Theorem 1], [35, Theorem 1.3] or [29, Section 7]. In the surjective setting this
pairing couples well with the Poincaré duality of intersection cohomology to give a description
of the kernel of the Kirwan map, namely

κ([ω]) = 0⇔ 〈κ([ω]), κ([η])〉 = 0 ∀[η] ∈ H∗
G(M).

Due to the absence of Poincaré duality for the real cohomology of M0, this determination of
the kernel of the Kirwan map is not open to our resolution Kirwan map. Nevertheless we can
make the following

Remark 7.2.12. In [35], Kiem and Woolf identified the intersection cohomology IH∗(M0) with
respect to the middle perversity with a subspace of H∗

G(J
−1(0);R). Namely, they found an

isomorphism

IH∗(M0) ∼=
{
η ∈ H∗

G(J
−1(0);R)

∣∣∣ η|F ∈ H∗(F ;R)⊗ R[x]≤2d−2 ∀F ⊂ J−1(0)
}
,

where H∗(F ;R) ⊗ R[x]≤2di−2 ⊂ H∗(F ;R) ⊗ R[x] ∼= H∗
G(F ;R) and d := min{ℓ+F , ℓ−F}, which

identifies the intersection pairing in IH∗(M0) with the cup product in H∗
G(J

−1(0);R).
Remark 6.1.13 provides a description of singular cohomology inside resolution cohomology
similiar in spirit as we characterize singular classes as those classes in resolution cohomology
whose restriction to the exceptional fibres vanish in cohomology.

Another approach to the topology of singular symplectic quotients could be given by considering
L2-cohomology after endowing M0 with a suitable Riemannian structure. This is defined as
the cohomology of the complex L2 whose definition we will now recall:

Definition 7.2.13. The complex of L2-differential forms on a simple stratified space X, where
X is endowed with a suitable Riemannian structure, is defined as

L2(X) :=
{
ω ∈ Ω∗(X⊤) | ∀x ∈ X∃Ux ⊂ X : x ∈ Ux, ω|U⊤

x
∈ L2(U⊤

x ) and dω|U⊤
x
∈ L2(U⊤

x )
}
,

where the neighbourhoods Ux should be open and U⊤
x := Ux∩X⊤. This complex is closed under

the usual exterior derivative of differential forms and its cohomology is called the L2-cohomology
of X.

The fact connecting this theory to the aforementioned approaches is that in certain situations
L2-cohomology coincides with intersection cohomology, see [19, Example p. 105]. In this context
one might also hope to build a bridge between resolution differential forms and L2-differential
forms on M⊤

0 . Unfortunately we could not find a canonical map from resolution differential
forms to L2-differential forms on M0 or vice-versa for some suitable Riemannian structure on
M0.
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Chapter 8

Outlook

We want to close this thesis by pointing out some directions in which future work might be
headed.

8.1 Riemann-Roch formulas of singular symplectic quo-

tients

In the context of geometric quantization, Delarue-Ioos-Ramacher proved in [10] that the S1-
invariant Riemann-Roch number of a compact connected prequantized Hamiltonian S1-manifold
(M,σ) fulfills

RRS1

(M) =

∫

M⊤
0

eσ0K(Tdg(M)) +R,

where Tdg(M) ∈ Ωω
G(M) is the equivariant Todd class of M (which is an equivariant form

whose Lie algebra parts are infinite power series on g as explained in [22, Appendix I.2]),
K : Ωω

G(M) −→ Ω∗(M⊤
0 ) is our resolution Kirwan map on the level of differential forms and R

is an explicit remainder term, which would lead us to far off now. For the detailed definitions
consider [10]. Important for us is that in case where all the weights of the isotropy representa-
tions of the fixed point components in F0 have the same absolute value, as in Proposition 5.2.9
and Proposition 5.3.5, the integrand eσ0K(Tdg(M)) is not only a differential form on the top
stratum of M0, but is indeed a resolution differential form and can be interpreted as a term in
resolution cohomology H∗(Ω̃(M0), d)! It will be very interesting to elaborate this connection of
our theory of resolution cohomology and the associated resolution Kirwan map and the results
of [10].

8.2 Extending the circle case

We worked things out for G = S1. It will be worthwhile to consider more general Hamilto-
nian actions of tori or even non-Abelian compact Lie groups. The partial desingularization
has already been worked out by Meinrenken-Sjamaar [46], Sjamaar’s de Rham theory [57] is
available and our ansatz carries over in the straight forward way but one would have to study
the exceptional divisors carefully and see if anything can be said about their topology. This
is more involved than in our case as the blow-up procedure gets more complicated when more
isotropy types occur.
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Chapter 8. Outlook

8.3 Examples

A good starting point for dwelling deeper into our theory would be examples. Consider certain
classes of Hamiltonian actions, e.g. polygon spaces or toric symplectic manifolds, and try to
understand singular symplectic quotients and their topology in these realms. Then, relate it to
resolution cohomology and the resolution Kirwan map.
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Appendix A

Appendix

A.1 Induced maps in cohomology

Proposition A.1.1. Let (C•, d) and (D•, d′) be cochain complexes over R and

ψ : H∗(C•, d) −→ H∗(D•, d′)

a homomorphism. Then there exists a homomorphism of complexes

ϕ : (C•, d) −→ (D•, d′)

such that ψ = ϕ, i.e. ψ is induced by ϕ.

Proof. Since the cochain complex

. . . −→ Ck−1 dk−1

−→ Ck dk−→ Ck+1 −→ . . .

is made of real vector spaces we may decompose

Ck ∼= Im (dk)⊕ ker(dk).

Now
Hk(C•, d) = ker(dk)/Im (dk−1)

and we further decompose

Ck ∼= Im (dk)⊕Hk(C•, d)⊕ Im (dk−1)

as in [62, Exercise 1.1.3 and beginning of Section 1.4]. Under this identification the differential
reads as

dk : Im (dk)⊕Hk(C•, d)⊕ Im (dk−1) −→ Im (dk+1)⊕Hk+1(C•, d)⊕ Im (dk)

(u, v, w) 7−→ (0, 0, u)).

If we decompose the cochain complex (D•, d′) in the same manner, we can define

ϕk : Im (dk)⊕Hk(C•, d)⊕ Im (dk−1) −→ Im ((d′)k)⊕Hk(D•, d′)⊕ Im ((d′)k−1)

(u, v, w) 7−→ (0, ψ(v), 0),

which is a cochain map such that ϕ = ψ, as was explained in [53].
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Appendix B

Glossary

Occuring spaces

❼ Symplectic compact connected ambient manifold M and submanifold N .

❼ Acting compact connected Lie group G = S1.

❼ Lie algebra of the acting group g ∼= R.

❼ The fixed point set of the action MG.

❼ The finite set of the fixed point components F .

❼ The finite set of fixed point components contained in the zero level set F0.

❼ A component of the fixed point set F with codim(F ) = 2k.

❼ The real blow-up of M along all fixed point components BlRG(M) with exceptional divisor
ER := β−1

R (MG).

❼ The complex blow-up of M along all fixed point components BlCG(M) with exceptional
divisor EC := β−1

C (MG).

❼ The zero level set of the momentum map J−1(0) with its smooth part J−1(0)⊤.

❼ The symplectic quotient M0 with smooth locus M⊤
0 .

❼ The strict transform of the zero level set ĈR = β−1
R (J−1(0)⊤) associated to the real blow-

up.

❼ The strict transform of the zero level set C̃C = β−1
C (J−1(0)⊤) associated to the complex

blow-up.

❼ The exceptional loci of the blow-up ER
F := β−1

R (F ).

❼ The exceptional loci of the blow-up EC
F := β−1

C (F ) with fibers CPk−1
λ,F and their standard

open subsets Vi. The subscript encodes the Hamiltonian action of S1 on these projective
spaces.

❼ The real partial desingularization M̂0 := ĈR/G with top part M̂0

⊤
= β−1

R (J−1(0)⊤)/G.

❼ The complex partial desingularization M̃0 := C̃C/G with top part M̃0

⊤
= β−1

C (J−1(0)⊤)/G.

❼ The exceptional loci of the real partial desingularization F̂ = (βR
0 )

−1(F ) = (ER
F ∩ ĈR)/G.
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❼ The exceptional loci of the partial desingularization F̃ = (βC
0 )

−1(F ) = (EC
F ∩ C̃C)/G.

❼ Symplectic cut at ε is MJ≥ε.

Occuring maps

❼ Momentum map J: M → g∗.

❼ Real blow-down βR : BlRG(M)→M .

❼ Complex blow-down βC : BlCG(M)→M .

❼ Real partial desingularization βR
0 : M̂0 →M0 with smooth part (βR

0 )
⊤ : M̂0⊤ →M⊤

0 .

❼ Complex partial desingularization βC
0 : M̃0 →M0 with smooth part (βC

0 )⊤ : M̃0

⊤ →M⊤
0 .

❼ Quotient map π : J−1(0)→M0 with smooth part π⊤ : J
−1(0)⊤ →M⊤

0

❼ Exceptional bundles βR
F : E

R
F → F of BlRG(M).

❼ Exceptional bundles βC
F : E

C
F → F of BlCG(M).

❼ Exceptional bundles βR,F
0 : F̂ → F of M̂0.

❼ Exceptional bundles βC,F
0 : F̃ → F of M̃0.

❼ The universal bundle L→ CPk−1.

❼ The normal bundle ν : Q→ N .

❼ The (normal) frame bundle P → N .

❼ π′
⊤ = π⊤ ◦ βC

⊤ : (β
C)−1(J−1(0)⊤)→M⊤

0 .

Occuring coordinates

❼ Real coordinates (wi), (xi), (yi), (pi).

❼ Complex coordinates (zi).

❼ Real homogeneous coordinates (ti).

❼ Complex homogeneous coordinates (li).

❼ Standard coordinates of real projective space (vj) :=
(
tj
ti

)
in Vi ⊂ RPk−1.

❼ Standard coordinates of complex projective space (uj) :=
(
lj
li

)
in Vi ⊂ CPk−1.

Occuring Forms

❼ Symplectic forms: σ on M , σ̃ on BlCG(M), σ0 on M0 and σ̃0 on M̃0.

❼ Fubini-Study form σFS.

❼ Connection form α.

❼ Curvature form Ω = dα.
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Appendix B. Glossary

Occuring g-differential graded algebras

❼ Differential forms on a manifold M are Ω(M).

❼ Differential forms on the symplectic quotient Ω(M0) in Sjamaar’s sense.

❼ Real resolution forms Ω̂(M0).

❼ Resolution forms Ω̃(M0).

❼ Differential forms on J−1(0) are Ω(J−1(0)) analogous to Sjamaar’s definition.

❼ Resolution forms on J−1(0) are Ω̃(J−1(0)) analogous to our definition.

❼ The basic subcomplex of a g-differential graded algebra (A, d) is (AbasG, d).

❼ The Cartan complex associated with a g-differential graded algebra (A, d) is (CG(A), dG).

Miscellaneous

❼ The fundamental vector field associated with some X ∈ g is Xp =
d
dt
|t=0 exp(tX) · p.

Fundamental diagrams

ER
F BlRG(M) ĈR M̂0 F̂

F M J−1(0)

M0 F

βR

F βR βR

ιR

πR

βR
0 β

R,F
0

ι

π

EC
F BlCG(M) C̃C M̃0 F̃

F M J−1(0)

M0 F

βC

F βC βC

ιC

πC

βC
0 β

C,F
0

ι

π

C̃C M̃0

BlCG(M) (βC)−1
(
J−1(0)⊤

)
M̃0

⊤

M J−1(0)⊤

M⊤
0

πC

βC

ι̃⊤

βC

⊤

ιC⊤

πC

⊤

ι⊤0

(βC
0 )

⊤ι⊤

π⊤
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H∗
G(M) H∗

G (J−1(0)) H∗
(
CG
(
Ω̃∗
(
J−1(0)

))
, dG

)
H∗
(
Ω̃∗ (J−1(0))bas g , d

)

H∗(Ω̃∗(M0), d)

ι∗⊤

K

inc Car

(π∗
⊤)

−1

H∗
G(M ;R) H∗

G(J
−1(0);R) H∗

G(C̃C;R)

H∗
G(M) H∗

G(J
−1(0)) H∗

(
CG
(
Ω̃∗
(
J−1(0)

))
, dG

)
H∗
(
Ω̃∗ (J−1(0))bas g , d

)

H∗(Ω̃∗(M0), d)

ι∗ (βC)∗

ΦΨG
dR

K

ι∗⊤

ϕ

inc Car

(π∗
⊤)

−1
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