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1. Introduction 

Erosion leads to on-site sediment loss and increased sediment accumulation downstream, hinders runoff ways, 

which increases potentials for flooding, decreases reservoir capacity, degrades water quality, and on long-term 

influences soil productivity and weathering (Xiong et al., 2019; Anache et al., 2017; García‐Ruiz et al., 2017). 

Erosion rates were observed to be increasing across landscapes and climate zones.  (Borrelli et al., 2021; Li 

and Zhang, 2001) and due to its heavy impacts, it is thus of importance to understand the drivers of erosions.  

One of the major local biotic factors influencing erosion is the burrowing activity of terrestrial bioturbators (Gabet 

et al., 2003). Previous studies showed that bioturbation affects microtopography (Reichman and Seabloom, 

2002; Kinlaw and Grasmueck, 2012), roughness of the surface (Yair, 1995; Jones et al., 2010; Hancock and 

Lowry, 2021), and physical properties of the soil (Ridd, 1996; Yair, 1995; Hall et al., 1999; Reichman and 

Seabloom, 2002; Hancock and Lowry, 2021; Coombes, 2016; Larsen et al., 2021; Corenblit et al., 2021). 

Through the reworking of sediment, bioturbators increase soil permeability and porosity, leading to impacts on 

infiltration and erosion rates (Shipitalo and Le Bayon, 2004; Bowker et al., 2013; Wilkinson et al., 2009; Gabet 

et al., 2003; Nkem et al., 2000). The construction of underground burrows redistributes and concentrates 

nutrients (Platt et al., 2016; Zhang et al., 2020; Yu et al., 2017) and especially positively influences soil carbon 

storage (Frouz et al., 2009; Qin et al., 2021). These effects ultimately decrease the ratio of stable and unstable 

soil carbonate aggregates (Don et al., 2019).  

Previous studies showed both, positive (Hazelhoff et al., 1981; Black and Montgomery, 1991; Chen et al., 2021) 

and negative impact of burrowing animals on sediment redistribution (Imeson and Kwaad, 1976; Hakonson, 

1999). Increased bioturbation activity was observed with higher (Milstead et al., 2007; Meserve, 1981; Tews et 

al., 2004; Wu et al., 2021; Ferro and Barquez, 2009), as well as with lower vegetation cover (Simonetti, 1989; 

Zhang et al., 2020; Zhang et al., 2019; Qin et al., 2021). What is more, vertical soil mixing rates are not uniform 

throughout the year but depend on the animal phenological cycles (Eccard and Herde, 2013; Jimenez et al., 

1992; Katzman et al., 2018; Malizia, 1998; Morgan and Duzant, 2008; Monteverde and Piudo, 2011; Gray et 

al., 2020; Yu et al., 2017). The habitat preferences of bioturbators were shown to be species dependent (Qin et 

al., 2021; Turnock et al., 2017; Tang et al., 2019; Tajik et al., 2020; Jacob, 2008) and were associated with cacti 

(Milstead et al., 2007) , herbs (Meserve, 1981) , grass or shrubs (Ferro and Barquez, 2009; Tews et al., 2004) 

, rocks (Simonetti, 1989)  or increased diversity (Louw et al., 2019). 

1.1 Research gap and motivation 

Previous studies failed to address several significant issues. The studies concentrated only on the habitat 

preferences of the single bioturbator species. However, they did not consider varying amount of excavated 

sediment and burrow density between single species. It thus remains unclear which environmental parameters 

are mostly associated with high density and distribution of all present vertebrate bioturbators’ burrows. 

Furthermore, previous studies did not address the daily excavation dynamics of the sediment by the animal, if 

and how it is connected to catchment-wide rainfall – driven sediment redistribution, and how much sediment the 

bioturbators excavate throughout the year to the surface.  

What is more, previous studies estimating the impact of bioturbation on sediment redistribution were all case 

studies, concentrating on one animal species and several particular burrows. All of these studies failed to 

estimate the impacts of bioturbation on sediment redistribution in spatio-temporal context for the whole 
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catchment. For this, an area–wide estimation of sediment redistribution caused by the bioturbation at a very 

high resolution is needed but was never addressed.  

Furthermore, it is unknown how these impacts differ along a climate gradient. Previous case studies came to 

contrasting results, showing both positive and negative influence of bioturbation on sediment redistribution. 

None of them addressed the question, how the impacts of bioturbation on sediment redistribution changes in 

the space throughout the catchment. Finally, it is also unknown, which environmental parameters drive these 

impacts.   

It is of utmost importance to close the stated research gaps for several reasons. Only when the spatial 

distribution of burrows is known, we can estimate the magnitude of the sediment reworked and excavated to 

the surface by the animal. The ongoing excavation processes need to be monitored for the same reason on a 

very high spatial and temporal scale - as can assume that the burrow structures do not stay the same but 

change over time due to rainfall, expansion of the burrow by the animal or burrow abandonment. As this animal 

– driven sediment redistribution was shown to redistribute nutrients (Platt et al., 2016; Zhang et al., 2020; Yu et 

al., 2017) and especially positively influences soil carbon storage (Frouz et al., 2009; Qin et al., 2021), it is if 

urgent importance to accurately estimate the burrow distribution and excavation processes. 

Secondly, bioturbation has significant impacts on soil properties and previous field-based case studies came to 

contrasting results regarding influence of bioturbation on sediment redistribution (Ridd, 1996; Yair, 1995; Hall 

et al., 1999; Reichman and Seabloom, 2002; Hancock and Lowry, 2021; Coombes, 2016; Larsen et al., 2021; 

Corenblit et al., 2021). It can be thus assumed that bioturbation will have a significant impact on catchment-

wide surface processes. This might affect habitats, influence weathering processes and shape the landforms 

on long-term. It is thus out of importance to estimate the role of bioturbation on daily sediment redistribution to 

provide better understanding of its contributions to these processes. Due to varying precipitation patterns, soil 

properties and vegetation coverage, the impacts must be estimated separately for each climate zone. Finally, it 

is important to know what drives the positive or negative impact of bioturbation on sediment redistribution to be 

able to upscale the results toward large spatial and temporal scales. 

 

1.1 Previously applied methods 

Previous studies failed to address the stated research gap in the interplays between bioturbation, sediment 

redistribution and environment. This reason for this was the insufficiency of applied methods to comprehend 

spatial and temporal variations in sediment redistribution caused by the animals. 

First, methods to estimate density of burrows were mostly labour-intensive in-situ measurements (Übernickel 

et al. 2019). Remote sensing offers here a more practical approach, as it provides opportunities for effective 

area-wide spatial estimates. Previous studies used UAVs to directly map the burrows and mounds created by 

burrowing animals by using image segmentation (Sandino et al., 2017) or classification approaches (Bycroft et 

al., 2019; Old et al., 2019; Albores-Barajas et al., 2018; Tang et al., 2019). All of these studies were conducted 

in areas where the burrows were directly recognizable on images. However, the approaches heavily 

underestimated the amount of burrows and the detection success predominantly depended on the vegetation 

density and height (Old et al., 2019).  

In cases where the burrows were partly or completely overlaid by vegetation, solely the habitats populated by 

bioturbators were delineated. Remotely sensed estimated vegetation height and volume have previously been 
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used as predictors to delineate vertebrate habitats (Olsoy et al., 2018). Similarly, land cover classification 

derived from satellite images was used to predict animal distribution (Fritz et al., 2018; Szantoi et al., 2017) or 

population sizes (Guo et al., 2012). Furthermore, texture metrics and diversity indices were shown to be suitable 

for predictions of species richness or habitat structures in diverse ecosystems (St-Louis et al., 2006; Culbert et 

al., 2012; Wallis et al., 2017; Gholizadeh et al., 2018). In these cases, MaxEnt models (Koshkina et al., 2020) 

based on vegetation (Young et al., 2017) or topographic predictors (Borgatti et al., 2017) were used. Thus, none 

of the previous studies estimated density and distribution of burrows in areas with dense with vegetation canopy. 

Effects of bioturbators on sediment redistribution were mostly measured using rainfall simulators. Previous 

authors estimated the volume of sediment excavated by the animal or set up instruments such as erosion pins, 

splash boards, or simple rulers in the field (Imeson and Kwaad, 1976; Reichman and Seabloom, 2002; Wei et 

al., 2007; Le Hir et al., 2007; Li et al., 2018; Li et al., 2019b; Li et al., 2019c; Voiculescu et al., 2019; Chen et 

al., 2021; Übernickel et al., 2021a; Li et al., 2019a). However, rainfall simulators were not capable to study 

redistribution processes under real life conditions. When using erosion pins or splash boards, the data were 

obtained only sporadically (Imeson and Kwaad, 1976; Hazelhoff et al., 1981; Richards and Humphreys, 2010). 

To explain the soil mixing processes, box measurements were conducted and linked them with mathematical 

equations, such as random walks (Boudreau, 1986; Wheatcroft et al., 1990), stochastic differential equations 

(Boudreau, 1989; Milstead et al., 2007), finite difference mass balancing (Soetaert et al., 1996; François et al., 

1997) or Markov chain theory (Jumars et al., 1981; Foster, 1985; Trauth, 1998; Shull, 2001). 

High-resolution, ground-based monitoring techniques have the potential to address temporal and spatial 

variations of sediment redistribution caused by bioturbation. Terrestrial laser scanner systems are already 

broadly used for the estimation of sediment redistribution and erosion processes (Nasermoaddeli and Pasche, 

2008; Afana et al., 2010; Eltner et al., 2016a; Eltner et al., 2016b; Longoni et al., 2016). Another high resolution 

surface monitoring technique is based on Time-of-Flight (ToF) technology. ToF-based cameras illuminate the 

targeted object with a light source for a known amount of time and then estimate the distance between the 

camera and the object by measuring the time needed for the reflected light to reach the camera sensor 

(Sarbolandi et al., 2018). This approach would thus enable to cost-effectively monitor surface change at a high 

resolution (Eitel et al., 2011; Hänsel et al., 2016), however, it was never tested before.  

An approach to estimate catchment-wide impacts of bioturbation on sediment redistribution offer raster-based 

models. Most process models do not yet implement impacts of bioturbators on sediment redistribution in their 

algorithms (Brosens et al., 2020; 121 Anderson et al., 2019; Braun et al., 2016; Cohen et al., 2015; Cohen et 

al., 2010; Carretier et al., 2014; 122 Welivitiya et al., 2019). Few models do consider bioturbation (Black and 

Montgomery, 1991; 104 Meysman et al., 2003; Yoo et al., 2005; Schiffers et al., 2011, (Temme and 

Vanwalleghem, 2016; Vanwalleghem et al., 2013; Yoo and Mudd, 2008; Pelletier et al., 2013).  

However, all of these models are landscape evolution models, which intend to predict into thousands of years. 

Furthermore, the inclusion of bioturbation into modelling has severe limitations: (i) models include vertical soil 

mixing caused by invertebrates but not burrow structures caused by vertebrate bioturbators; (ii) bioturbation is 

always precoded to be positively associated with vegetation cover, although field-base studies show positive 

and negative association of bioturbation with vegetation; (iii) bioturbation is precoded to increase erosion which 

makes all of the models incapable to study impact of bioturbation on soil erosion. Thus, none of these models 

consider that the interaction of bioturbation with environmental parameters and the effect on sediment 
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redistribution may not be uniform but context dependent. To really comprehend the dynamics between 

bioturbation, sediment redistribution and environment, a model including bioturbation as an independent 

variable, which is capable to predict the processes at a very high spatial and temporal resolution is needed, but 

missing.  

2. Conceptual design of the thesis 

2.1 Hypothesis 

To close the stated research gaps and estimate the interplay between bioturbation, sediment redistribution and 

environment, the aims of my thesis were thus to: 

A1: Predict the density of burrows from vegetation patterns. 

A2: Monitor animal-triggered sediment redistribution at a very high temporal and spatial scale 

and estimate their spatial-wide impact on sediment redistribution. 

A3: Identify environmental parameters which determine the magnitude of the burrow’ impact on redistribution. 

 

To fulfil the aims, I applied following approaches: 

M1: Machine-learning to test the predictability of burrow density from remotely sensed vegetation patterns. 

M2: High resolution Time-of-Flight cameras for surface monitoring. 

M3: Including burrow structures created by bioturbating animals into a soil erosion model. 

 

I tested following hypothesis: 

H1: Distribution of burrows created by bioturbating animals depends on vegetation patterns. 

H2: Bioturbators-driven sediment redistribution depends on rainfall-driven redistribution. 

H3: Surrounding environment determines the magnitude of the burrow’ impact on redistribution. 

H4: Presence of burrows created by bioturbators increases sediment redistribution. 

 

2.2 Study area 

My thesis was part of EarthShape consortium (DFG SPP 1803) with the overarching research question how the 

microorganisms, animals, and plants influence the shape and development of the Earth’s surface. 

The study was performed within four study sites along Chilean Coastal Cordillera preselected by the consortium: 

Pan de Azúcar (PdA) National Park (NP), Santa Gracia (SG), La Campana (LC) NP, and Nahuelbuta (NA) NP 

(Figure 2.1). The reason for the selection of these site were similarities regarding topography, rock types and 

distance to the coast (Übernickel et al., 2021c). Each study site consisted of one north-facing and one south-

facing catchment. 

PdA is located in the arid climate zone in the southern part of the Atacama Desert, with almost no rainfall. The 

vegetation cover is less than 5 % and dominated by desert shrubs, cacti and biocrusts  (Lehnert et al., 2018). 

SG is a natural reserve located in the semi-arid climate zone near La Serena. Vegetation consists of shrubs 

and cacti, which cover up to 40 % of the surface. LC is in the Mediterranean climate zone in the Valparaiso 

Region and is affected by cattle. The study site is dominated by an evergreen sclerophyllous forest with endemic 

palms and understory consisting of deciduous shrubs and herbs. NA is in the humid-temperate climate zone 



 

5 
 

and is characterized by a dense evergreen Araucaria Forest. The ground is covered by bamboo, shrubs, and 

herbs (Bernhard et al., 2018; Oeser et al., 2018).  

 

 

Figure 2.1. Study area and study sites. Black solid lines outline the catchments. Black dashed lines symbolize 

the catena, along which the in-situ data (burrow locations, soil samples, vegetation) were collected. The blue 

circles are the positions of sediment fences. 3 fences were located on each hillside: on the upper, middle and 

lower part of the hillside. Time-of-Flight cameras were located ultimately uphill on the fences on the upper and 

middle part of the catchment. 80 plots were located randomly around the catena. (a) Position of the study sites 

along the climate gradient. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana, NA = Nahuelbuta. 

(b) PdA; (c) SG; (d) LC; and (e) NA. The background image is an RGB-composite calculated from WorldView-

2 satellite imagery. Images were obtained with a single license from GAF AG.  

 

2.3 Bioturbators in Chile 

There are at least 45 vertebrate and over 300 invertebrate burrowing species in Chile (Übernickel et al., 

2021b). The most common vertebrate burrowing animals are in PdA carnivores (Lycalopex culpaeus, 

Lycalopex griseus); marsupials (Didelphis marsupialis, Didelphis albiventris) and rodents (Phyllotis 

xanthopygus, Phyllotis limatus, Abrothrix andinus) (Jimenez et al., 1992; Cerqueira, 1985); in SG marsupials 

(Thylamys elegans) and rodents (Phyllotis darwini, Abrothrix olivaceus, Octodon degus, Abrocoma bennetti, 

Rattus rattus) (Milstead et al., 2007); in LC and NA rodents (Octodon degus, Rattus norvegicus and Phyllotis 

darwini) and carnivores (Lycalopex griseus) (Muñoz-Pedreros et al., 2018) (Figure 2.2) 
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Figure 2.2. Burrowing vertebrate animals found in Chile. (a) Abrocoma bennetti, (b) Abrothrix olivaceus, (c) 

Abrothrix andinus, (d) Didelphis albiventris, (e) Didelphis marsupialis, (f) Lycalopex culpaeus, (g) Lycalopex 

griseus, (h) Octodon degu, (i) Phyllotis darwinii, (j) Phyllotis xanthopygus, (k) Rattus rattus, (l) Thylamys 

elegans. Source: https://inaturalist.mma.gob.cl/  

 

2.4 Workflow 

The workflow consisted of 3 working packages with the final goal to estimate catchment-wide impacts of 

bioturbation (Figure 2.3).  

WP1: Within the first working package, I tested the H1, concretely, if the distribution of burrows created by 

bioturbating animals depends on vegetation structures. I tested if the density of the burrows and burrow 

distribution and be predicted by vegetation patterns estimated from UAV and WorldView-2 data. I then used the 

best model for a catchment-wide prediction. The processing is described in sections 3 and 5. 

WP2: Within the second working package, I tested the hypothesis H2, saying that bioturbator-driven sediment 

redistribution depends on rainfall-driven sediment redistribution. For this, I set up several Time-of-Flight based 

cameras monitoring the sediment redistribution on the burrow surface and around the burrow. I estimated (i) 

sediment excavation rates by the animal during monitoring period (bioturbator-driven redistribution); (ii) 

https://inaturalist.mma.gob.cl/
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Sediment redistribution during rainfall events (rainfall-driven redistribution); (iii) if the bioturbator-driven 

redistribution depends on rainfall driven redistribution. The processing is described in section 4.  

WP3: Within the third working package, I tested the H3, saying that surrounding environment determines the 

magnitude of the burrow’ impact on redistribution; as well as H4, presence of burrows created by bioturbating 

animals increases sediment redistribution. I first included bioturbation into a soil erosion model. For the 

inclusion, I used the catchment-wide prediction of burrow distribution from WP1 and the findings about the 

dependency between bioturbators-driven and rainfall-driven redistribution from WP2. The processing is 

described in section 5. 

 

 

Figure 1.3. Workflow of this thesis. Blue indicates remote sensing and in-situ datasets. Green indicates results. 

WP are working packages. H indicates results which confirm or reject a hypothesis.  

 

2.5 Data used in this study 

For the WP1, I needed in-situ measured density and distribution of burrows, as well as UAV and WorldView-2 

data to estimate vegetation patterns and for the WP2, I needed several Time-Flight cameras. To parametrize 

the soil erosion model within WP3, I used the results from WP1 and WP2. Additionally, I needed to estimate 

soil properties, vegetation cover and topography of the catchment. To run the model, I needed to know daily 

precipitation and temperature. To validate the model, I needed to collect sediment redistributed in-situ. 

I collected needed in-situ data during a field campaign from September until November 2019 within plots and 

along a catena (Table 2.1). For catena measurements, I defined a line with a width of one meter from the top to 

the base of each hillside catchment. I subdivided the track into tiles of 1 m2 and saved the GPS information of 

each tile. Additionally, I used 10 plots per catchment with a size of 10 m × 10 m. The plots were dispersed 

randomly and the distance between the plots was at least 20 m. 
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Along the catena, I mapped the locations of burrows, estimated the land cover and extracted soil samples. I 

noted the size of the burrow, vegetation cover and land cover types (bare soil, herbs, shrubs, trees) and I 

extracted 162 soil samples. From the plots, I used the information on the density of burrows (Kraus et al. 2022) 

soil samples from mounds created by bioturbators (Kraus et al. 2023); and I mapped the vegetation coverage 

and type. 

Furthermore, I set up sediment traps, with six traps per site, two of which were located at the catchment base 

and four were located on two random positions within the catchment. The sediment traps consisted of geotextile 

vertically attached to wooden poles to enable the collection of sediment. The traps had a length of 2 m – 5 m, 

a width of ~1.5 m and a height of ~1 m. I retrieved the climate information from our project-internal climate 

stations, located within a short distance to our catchments (Lehnert et al., 2018; Übernickel et al., 2020).  

 

Table 2.1. In-situ data used in this study. Response means, I used this data as a response variable within a 

machine-learning model to predict the variable into the area. Parameter means, I used this data as one of the 

model input parameters. Validation means, I used this data for the validation of my model.  

Measure Sampling 

strategy 

Data Number  Purpose for 

study 

Working 

package 

Burrows Catena Presence or absence  845 Response  1 

Plots Density (Kraus et al. 2022) 80 Response 1 

Vegetation Catena Type 845 Response 3 

Plots Density, cover, type, size 80 Response 1 

Soil 

samples 

Catena Soil properties 

Photo of the surface 

162 Response 3 

Plots Soil properties (Kraus et al. 

2023) 

151 Parameter 3 

Sediment 

fences 

Catena Eroded sediment 21 Validation 3 

Climate 

station 

One per 

site 

Climate information  

(Übernickel et al. 2021) 

4 Parameter 3 

 

 

I conducted UAV flights during the same field campaign from September to November 2019. I used a 3D 

Robotics SOLO quadrocopter equipped with a GoPRO Hero 4 Black RGB camera. The digital elevation models 

(DEM) were calculated from the LiDAR data (Kügler et al., 2022; Horn, 1981) at a resolution of 0.5 m. Single 

license stereo WorldView-2 images with a resolution of 0.5 m were retrieved from GAF Munich GmbH. Lastly, 

21 Time-of-Flight based cameras were installed in March 2019 to monitor the burrows. The monitoring took 

place for seven months, and I collected the data in October 2019 (Table 2.2). 
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Table 2.2. Remote sensing data used in this study. Predictor means, I used this data as a response variable 

within a machine-learning model to predict the variable into the area. Parameter means, I used this data as one 

of the model input parameters. Monitoring means, I used this data for direct monitoring of redistribution.   

Remote sensing 

data 

Platform Resolution Coverage Purpose 

for study 

Working 

package 

Orthophotos UAV 2.3 cm catchments Predictor 1 

WorldView-2 Airborne 0.5 m catchments Predictor 1 

Time-Of-Flight Cameras 0.3 cm burrows Monitoring 2 

LiDAR Airborne 0.5 m  catchments Parameter 3 
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Abstract 

Burrowing animals are important ecosystem engineers affecting soil properties, as their burrowing activity leads 

to the redistribution of nutrients and soil carbon sequestration. The magnitude of these effects depends on the 

spatial density and depth of such burrows, but a method to derive this type of spatially explicit data is still lacking. 

In this study, we test the potential of using consumer-oriented UAV RGB imagery to determine the density and 

depth of holes created by burrowing animals at four study sites along a climate gradient in Chile, by combining 

UAV data with empirical field plot observations and machine learning techniques. To enhance the limited 

spectral information in RGB imagery, we derived spatial layers representing vegetation type and height and 

used landscape textures and diversity to predict hole parameters. Across-site models for hole density generally 

performed better than those for depth, where the best-performing model was for the invertebrate hole density 

(R2 = 0.62). The best models at individual study sites were obtained for hole density in the arid climate zone (R2 

= 0.75 and 0.68 for invertebrates and vertebrates, respectively). Hole depth models only showed good to fair 

performance. Regarding predictor importance, the models heavily relied on vegetation height, texture metrics, 

and diversity indices. 

Keywords: UAV; machine learning; burrowing animals; climate gradient; Chile; vegetation patterns; 

heterogeneity 
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3.1. Introduction 

Terrestrial burrowing vertebrates and invertebrates are important ecosystem engineers. Through their 

burrowing activity, they increase soil porosity and permeability, thus affecting the infiltration and erosion rates 

(Shipitalo and Le Bayon, 2004; Bowker et al., 2013; Wilkinson et al., 2009; Gabet et al., 2003; Nkem et al., 

2000). The construction of underground burrows leads to the redistribution and concentration of nutrients (Platt 

et al., 2016; Zhang et al., 2020; Yu et al., 2017). Their burrowing positively influences soil carbon storage (Frouz 

et al., 2009; Qin et al., 2021) and decreases the ratio of sTable 3.and unsTable 3.carbonate aggregates in the 

soil (Don et al., 2019). The mixing of soil shifts the soil horizons and drives soil production and pedogenesis on 

a long-term basis (Wilkinson and Humphreys, 2005; Cunha et al., 2016; JOECKEL and TUCKER, 2013). To 

understand the abundance of burrowing animals, their burrowing behavior and their potential distribution 

patterns is thus of importance. 

The habitat preferences of burrowing animals in regard to the vegetation distribution were shown to be 

species dependent (Qin et al., 2021; Turnock et al., 2017; Tang et al., 2019; Tajik et al., 2020; Jacob, 2008) 

The distribution of single burrowing animal species was associated with cacti (Milstead et al., 2007) , herbs 

(Meserve, 1981) , perennial grass or dense shrubs (Ferro and Barquez, 2009; Tews et al., 2004) , skeleton 

(Simonetti, 1989)  or increased landscape heterogeneity (Louw et al., 2019). Due to the important role of 

burrowing animals as ecosystem engineers and the contradictory habitat preferences of burrowing animals, a 

spatial analysis showing the dependence of the burrowing intensity on vegetation patterns across the species 

and climate zones is needed. For this, a suiTable 3.approach for the area-wide prediction of burrowing intensity, 

which can be expressed by the density and depth of holes created by all present burrowing animals, must be 

developed. 

As taking in situ hole density and depth measurements is labor-intensive, remote sensing can serve as a 

more practical approach, as it provides opportunities for effective area-wide spatial estimates. Previous studies 

have used UAVs to directly map the burrows and mounds created by burrowing animals. However, these studies 

were conducted in areas where the burrows could be directly recognized in images, were limited to vertebrates, 

and focused on single species. The burrows were then mapped using image segmentation (Sandino et al., 

2017) or classification approaches (Bycroft et al., 2019; Old et al., 2019; Albores-Barajas et al., 2018; Tang et 

al., 2019). The detection success predominantly depended on the vegetation density and height. Even within 

grassland areas with low vegetation cover, significantly more burrows were counted in ground-truth surveys 

than were detected in UAV-obtained orthomosaic images (Old et al., 2019). If burrows were not visible in the 

images because they were partly or completely overlaid by vegetation, previous authors did not estimate the 

density and depth of burrows, but only defined areas with or without burrows. In these cases, MaxEnt models 

(Koshkina et al., 2020) based on predictors from vegetation (Young et al., 2017) or Digital Surface Models 

(DSMs) generated from UAV images (Borgatti et al., 2017) have been applied. However, beyond hole detection, 

none of the previous studies has estimated the area-wide density and depth of holes created by all vertebrate 

and invertebrate burrowing animals, regardless of the vegetation coverage and taxa, or tested their approach 

in several climate zones. As demonstrated in this study, a combination of ecological in situ measurements, 

geospatial information, and application of machine learning techniques offers possibilities for the prediction of 

the area-wide hole density and depth, even in areas with dense vegetation coverage. 
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UAVs offer here a suiTable 3.solution to identify environmental parameters which might be linked to the 

animal burrowing intensity. UAV-estimated vegetation height and volume have previously been used as 

predictors to delineate vertebrate habitats (Olsoy et al., 2018). Similarly, land-use and the distribution of single 

vegetation types have been derived from UAV images and were associated with animal distribution (Fritz et al., 

2018; Szantoi et al., 2017) or used as predictors for the estimation of population sizes (Guo et al., 2012). In 

cases where the landscape structure is of major importance, texture metrics and diversity indices have been 

shown to be suiTable 3.predictors for area-wide predictions of species richness in diverse ecosystems (St-Louis 

et al., 2006; Culbert et al., 2012; Wallis et al., 2017; Gholizadeh et al., 2018). The texture metrics obtained from 

high-resolution UAV images notably improved the estimation of habitat structures (Bourgoin et al., 2020; Fu et 

al., 2021). 

For this study, we developed, applied, and tested machine learning approaches based on consumer-

oriented UAV RGB (Red–Green–Blue spectral range) imagery, in order to predict the density and depth of holes 

created by all present burrowing vertebrates and invertebrates. We tested several predictor sets and included 

3D landscape structures, their textures, land-cover fractions, and diversity as predictors, in addition to spectral 

bands, topography, and climate, which can only be obtained by UAVs at such high resolution. We analyzed the 

model performance and identified the most important predictors, and the performance of models trained for the 

vertebrate and invertebrate hole density and depth was determined across a climate gradient and at individual 

climate sites. Finally, we present the area-wide prediction of hole density and depth along the climate gradient. 

 

3.2. Materials and Methods 

We hypothesize that the animal burrowing intensity is dependent on vegetation patterns and can be 

spatially predicted by UAV-obtained data. We measured the density and depth of holes within plots created by 

local communities of vertebrate and invertebrate burrowing animals across four study sites in Chile. We first 

tested if there is a high correlation between in situ vegetation patterns and our targeted variables by setting up 

linear models and using data from ground vegetation survey as predictors. We then collected high-resolution 

UAV imagery of the study sites and trained machine learning models to predict the density and depth of holes 

(Figure 3.1). We used climate, topography, spectral bands, vegetation indices, land-cover fractions and diversity 

indices derived from land-cover classification, vegetation height, texture metrics derived from vegetation height, 

and texture metrics derived from spectral bands as predictors in our models. Then, we fitted one random forest 

(RF) model for the whole study area and one RF model per study site, and estimated the most important 

predictors. To test the impact of various predictor sets on the model performance, we separately tested models 

using different predictor sets consisting of several predictors describing similar environmental parameters. We 

present the predicted hole density and depth across the four study sites and their association with the estimated 

land-cover and vegetation height diversity. 
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Figure 3.1. Workflow. Pre-processing comprises the acquisition and preparation of in situ and remote sensing 

data. Model input describes the calculated predictors and response data. Predictor selection describes the 

estimation of the predictors used in the final models. Hyperparameter tuning describes the tuned parameters 

and validation techniques. DSM = digital surface model; ntree = optimal number of trees after each split; mtry = 

optimal number of predictors randomly selected at each split. 

3.2.1. Study Area 

Our study was performed along a climate and vegetation gradient in Chile, comprising four study sites in 

the Chilean Coastal Cordillera: Pan de Azúcar (PdA) National Park (NP), Santa Gracia (SG), La Campana (LC) 

NP, and Nahuelbuta (NA) NP (Figure 3.2). PdA NP is located in the arid zone in a fog-laden environment in the 

southern part of the Atacama Desert, with almost no precipitation. The vegetation cover is less than 5% and 

dominated by small desert shrubs, several types of cacti and biocrusts (Lehnert et al., 2018). SG is a natural 

reserve located in the semi-arid zone near La Serena, which is dominated by goat grazing. The vegetation 

consists of shrubs and cacti, covering up to 40% of the study area. LC NP is part of the Mediterranean-type 

climatezone in the Valparaiso Region and is also affected by cattle. The study site is dominated by an evergreen 

sclerophyllous forest with endemic palms. The canopy reaches a height of up to 9 m, and the understory consists 

of deciduous shrubs and herbs. NA is located in the humid-temperate zone and characterized by a dense 

evergreen Araucaria forest comprising broadleaved trees with heights of up to 14 m. The ground is covered by 
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bamboo, shrubs, and herbs (Bernhard et al., 2018; Oeser et al., 2018). There are at least 45 vertebrate and 

345 invertebrate species in Chile which exhibit burrowing behavior (Übernickel et al., 2021). The most common 

vertebrate burrowing animals are in PdA carnivores (Lycalopex culpaeus, Lycalopex griseus); marsupials 

(Didelphis marsupialis, Didelphis albiventris) and rodents (Phyllotis xanthopygus, Phyllotis limatus, Abrothrix 

andinus) (Jimenez et al., 1992; Cerqueira, 1985); in SG marsupials (Thylamys elegans) and rodents (Phyllotis 

darwini, Abrothrix olivaceus, Octodon degus, Abrocoma bennetti, Rattus rattus) (Milstead et al., 2007); in LC 

and NA rodents (Octodon degus, Rattus norvegicus and Phyllotis darwini) and carnivores (Lycalopex griseus) 

(Muñoz-Pedreros et al., 2018). The most commoninvertebrate burrowing animals are in PdA Curculionida and 

Tenebrionidae (Pizarro-Araya and JEREZ, 2004); in SG Araucomyrmex goetschi, Brachymyrmex giardia and 

Solenopsis gayi (Medel and Vásquez, 1994); in LC Arthroconus elongates and Nycterinus rugicep (Pizarro-

Araya and JEREZ, 2004); and in NA Staphylinidae, Curculionidae and Cerambycidae (VERGARA et al., 2006). 

 

Figure 3.2. Study area and study sites. Green dots indicate the positions of plots. The green lines outline the 

UAV orthophotos: (a) Position of the study sites along the climate gradient. PdA = Pan de Azúcar, SG = Santa 

Gracia, LC = La Campana, NA = Nahuelbuta; Positions of plots in (b) PdA; (c) SG; (d) LC; and (e) NA. The 

background image is an RGB-composite calculated from WorldView-2 satellite imagery with applied hillshade. 

3.2.2. In Situ Data 

The response data were collected during a field campaign from September to November 2019 in 13–20 10 

m × 10 m plots dispersed randomly on one north-facing and one south-facing hillside per study site (68 plots in 

total, Figure 3.1). The distance between the plots was at least 20 m. Within each plot, we counted the number 

of holes created by burrowing animals and measured the diameter and depth (tunnel length until first obstacle) 

of each hole (Table 3.S1, Figure 3.S7). We assumed that holes with a diameter equal to or greater than 2.5 cm 

were created by vertebrates and that holes with a diameter less than 2.5 cm were created by invertebrates 

(Übernickel et al., 2021). We created four response data sets: Density of vertebrate holes, density of 

invertebrate holes, depth of vertebrate holes, and depth of invertebrate holes. 
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Additionally, we mapped the ground land cover within each plot. We estimated the abundance, coverage, 

size (diameter and height) and position of all vegetation individuals and skeleton. We classified the mapped 

vegetation into herbs, shrubs, cacti and trees. We mapped only the skeleton with a diameter of 0.20 m and 

above. For trees, we measured the diameter of the stem and the height to the top of the crown. The height of 

vegetation individuals below 2.5 m was measured. Ten plots included at least one individual with a height of 

above 2.5 m. In this case, we guessed the height of the individual. The coverage of each class was estimated 

by multiplying the average cover by the number of individuals for each class. The vegetation cover was the sum 

of the calculated cover of each class. Additionally, we calculated the average vegetation height of each class 

and of all vegetation. 

The climate data were measured in project-specific climate stations, located either directly on the studied 

hillsides or within a 1 km distance (Lehnert et al., 2018; Übernickel et al., 2020). The average air temperature 

[°C], average soil temperature [°C], and cumulative precipitation [mm] for the year 2019 were calculated for 

each site. 

 

3.2.3. Linear Regression Models 

We first tested if the response data sets can be predicted by the in situ measured vegetation patterns. We 

calculated 24 predictors from the land cover data estimated in plots. We used the soil, vegetation and skeleton 

coverage, average vegetation height as well as the coverage, height, diameter and abundance of individuals 

for each class as predictors. Additionally, we calculated the heterogeneity of each plot, by estimating the 

variance of measured vegetation height, abundance, size and coverage between the classes. Lastly, we 

included the site as a predictor, to be able to examine the predictor strength on the response variable per site. 

We first applied a backward stepwise elimination to remove the redundant predictors and then fitted linear 

mixed effect regression models (Bates et al., 2015) . We validated the models by implemented Leave-One-Out 

cross validation (Sammut and Webb, 2010). 

 

3.2.4. UAV Data 

The UAV flights were conducted during the same field campaign from September to November 2019. We 

obtained UAV images of one north-facing and one south-facing hillside per study site, which included the 68 

plots (Figure 3.3) . We used a 3D Robotics SOLO quadrocopter equipped with a GoPRO Hero 4 Black RGB 

camera. Eight flights were conducted for each hillside (total of 64 flights). The flight plans were created using 

the Mission Planner version 1.3.700 software (Gandor et al., 2015). Flight altitude was set at 20 m above the 

drone starting and landing points, and the flights were conducted downward from this point. The width and 

length of the overflown areas were set with respect to the hillside inclination and canopy level, in order to ensure 

that the maximum drone altitude above the ground did not exceed 40 m. Two flights were performed with 

opposite flying angles over every area, in order to ensure full coverage and to create a 3D model of the 

landscape afterwards. The flying speed was 5 m/s, the overlap was set to 90%, and the site overlap was at 

least 70%. The camera angle was  

 

Table 3.1. List of the calculated predictors. 
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Predictor set Number of Predictors Description 

Climate 3 

Mean annual air temperature [°C] 

Mean annual soil temperature [°C] 

Mean annual precipitation [mm] 

Topography 3 

Elevation [m.a.s.l] 

Inclination [°] (Horn, 1981) 

Aspect [°] (Horn, 1981) 

Spectral bands 3 

Red band 

Green band 

Blue band 

Vegetation indices 7 

Red–green–blue vegetation index 

(RGBVI) (Bendig et al., 2015), 

green-leaf-index (GLI) (Canham, 

1988), visible atmospherically 

resistant index (VARI) (Gitelson et 

al., 2002), normalized green–red 

difference index (NGRDI) (Tucker, 

1979), vegetation dryness index 

(VDI) (Rahimzadeh-Bajgiran et al., 

2012), excess green vegetation 

index (EXG) (Woebbecke et al., 

1995), and green chromatic 

coordinate (GCC) (Gillespie et al., 

1987) 

Land-cover fractions 

per 10 m × 10 m 
7 

Soil, skeleton, herbs, shrubs, cacti, 

trees,  

all vegetation 

Average vegetation height 

per 10 m × 10 m 
5 

Herbs, shrubs, cacti, trees, all 

vegetation 

Texture metrics calculated from the 

spectral bands + vegetation indices + 

vegetation height with a surrounding of 

10 m × 10 m or 108 × 108 pixels 

(Haralick et al., 1973) 

21 + 14 + 7 

Variance, entropy, homogeneity, 

second moment, correlation, 

dissimilarity, contrast 

Diversity indices (calculated from land-

cover classification using a moving 
7 

Shannon’s Diversity (Shannon, 

1948), Pielou’s Evenness (Pielou, 
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10°, and a photo was taken every 0.74 s during the mission. The photos were geo-tagged using CAM 

messages from the data-flash protocol. The images were then used to create an orthophoto and a Digital 

Surface Model (DSM) of each hillside. The processing was carried out using the Agisoft Metashape Professional 

version 1.5.5.9097 software. The photos were aligned using a generic pre-selection method, and a point cloud 

was created. The DSM was calculated from the point cloud, and the orthophotos were built from the aligned 

photos. The ground sampling distance of the DSM and orthophotos varied between 1.76 and 3.7 cm. The 

orthophotos were resampled to a uniform ground sampling distance of 3.7 cm, in order to allow for a comparison 

of model performance between the study sites (Table 3.S2). 

 

3.2.5. Calculation of the Predictors 

We used several predictor sets in the models to determine spatial hole densities and depths (Table 3.1). 

The predictor sets included climate, topography, spectral bands, vegetation indices, land-cover, vegetation 

height, texture metrics (calculated from two vegetation indices, spectral bands and vegetation height), and 

diversity indices calculated from land-cover classification. 

The ‘red’ (R), ‘green’ (G), and ‘blue’ (B) spectral bands were extracted from orthophotos. The following 

vegetation indices were calculated using the relative data extracted directly from GoPro: The red–green–blue 

vegetation index (RGBVI) (Bendig et al., 2015), green-leaf-index (GLI) (Canham, 1988), visible atmospherically 

resistant index (VARI) (Gitelson et al., 2002), normalized green-red difference index (NGRDI) (Tucker, 1979), 

vegetation dryness index (VDI) (Rahimzadeh-Bajgiran et al., 2012), excess green vegetation index (EXG) 

(Woebbecke et al., 1995), and green chromatic coordinate (GCC) (Gillespie et al., 1987). These indices were 

selected due to their various vegetation detection abilities under diverse environmental conditions, which are 

possibly related to the disturbances caused by burrowing animals (Bendig et al., 2015; Canham, 1988; Gitelson 

et al., 2002; Tucker, 1979; Rahimzadeh-Bajgiran et al., 2012; Gillespie et al., 1987; Woebbecke et al., 1995). 

The land-cover fractions were obtained through land-cover classification. The basis for calculating the 

fractions of land-cover per 10 m × 10 m pixels was the land-cover classification at 3.7 ground sampling distance. 

One pixel-based supervised classification per study site was conducted using Random Forest Classification 

from the R ‘caret’ package (Kuhn, 2008). The RF algorithm is based on building several uncorrelated decision 

trees during training, then merging them together and providing an output, which is calculated as the mean 

predicted value of the individual trees (Breiman, 2001). We used the DSM, RGB bands, and vegetation indices 

as predictors. We specified six main classes and divided them into sub-classes. The main classes were soil, 

skeleton, herbs, shrubs, cacti, and trees. The sub-classes varied between sites (Table 3.S3). In PdA, soil was 

sub-divided into soil largely covered by soil crusts, weathered granite soil, and saprolite soil, while cacti were 

window of 108 × 108 pixels) (Rocchini 

et al., 2021) 

1966), the Berger–Parker Index 

(Berger and Parker, 1970), Rao’s 

quadratic  

entropy (Rao, 1982), Cumulative 

Residual Entropy (Rao et al., 2004), 

Hill’s numbers (Hill, 1973), Rényi’s 

Index 
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sub-divided into classes of the genera Copiapoa and Eulychnia. In SG, the soil was sub-divided into two sub-

classes, and cacti were classified into the genus Eulychnia and other genera. In NA, skeleton was classified 

into rocks (equal to or less than 25.5 cm in diameter) and boulders (greater than 25.5 cm in diameter), while 

trees were sub-divided into the genera Araucaria and others. No trees were classified in PdA, and no cacti in 

LC and NA. Training areas for the land-cover classification were visually identified in the orthophotos. 

Approximately 200 pixels per land-cover class per site were tagged, in order to create the training/testing data 

set. This data set was randomly split into 70% training and 30% testing data. The land-cover classification model 

was trained using the 70% training data and validated using 30% test pixels. Classification performance was 

estimated by Cohen’s Kappa and Sensitivity. Sensitivity was calculated separately for each land-cover class. 

The performance of the land-cover models varied along the climate gradient (in PdA: κ = 0.81; in SG: κ = 0.72; 

in LC: κ = 0.81; in NA: κ = 0.76). The highest sensitivity was observed for the classes soil, cacti, and trees (Table 

3.S4), which were correctly classified in more than 80% of cases. In SG, all soil pixels were classified 

accordingly. The sensitivity was lower for the class skeleton, which was often misclassified as soil. Cacti were 

misclassified as shrubs or herbs in roughly 10% of all cases, but the model almost always correctly differentiated 

between the various types of cacti. The predictability of the shrubs and herbs classes varied. Overall, the 

sensitivity of both was 70%. However, in NA, the model misclassified 40% of herbs as shrubs; meanwhile, in 

SG, 75% of shrubs were classified as herbs. The study sites were then classified using the trained models. The 

resolution of the classification output layer was downscaled to 10 m, and the soil fraction, herb fraction, shrub 

fraction, tree fraction, cacti fraction, and skeleton fraction were calculated as the percent coverage per pixel. 

Additionally, the vegetation fraction was calculated as the percent coverage of any vegetation type per pixel. 

The elevation predictor was obtained by calculating the digital elevation model (DEM) using the DSM and 

the land-cover classification. A masked DSM layer was created by removing all pixels classified as any class 

other than soil or skeleton in the corresponding land-cover classification. The remaining pixels were used to fit 

a thin plate spline (TPS) model, by applying the TPS regression algorithm from the ‘fields’ R package (Nychka, 

2016). The distribution of pixels used for the regression fit was uniform across the elevation gradient on hillsides 

in PdA, SG, and LC. However, in NA, most of the pixels at lower altitudes were masked. The TPS models were 

trained separately for each site. The smoothing parameter was chosen using generalized cross-validation. The 

mean absolute error (MAE) of the regression model was the lowest in NA (MAE = 0.05), SG (MAE = 0.08), and 

PdA (MAE = 0.11), and the highest in LC (MAE = 0.41). The DEM was created by applying the fitted TPS models 

for the interpolation of the masked DSM using the function ‘interpolate’ from the R ‘raster’ package (Hijmans et 

al.). The inclination and aspect predictors were calculated from the DEM (Horn, 1981). The number of neighbors 

was 8. 

The vegetation height predictor was calculated by subtracting the DEM from the DSM. The height was 

additionally calculated for each vegetation type (herbs, shrubs, trees, and cacti) separately. For this, the 

corresponding difference values classified as the respective vegetation type in the land-cover classification were 

used, while all other values were set to zero. 

As burrowing animals are expected to increase landscape heterogeneity (Ballová et al., 2019; Valkó et al., 

2021), we calculated several texture metrics and diversity indices. The texture metrics were calculated from the 

spectral bands, two vegetation indices, and the vegetation height predictor, and were derived from gray-level 

co-occurrence matrices using the ‘glcm’ R-package (Zvoleff). We used a moving window of 108 × 108 pixels, 
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which is equal to 10 m x 10 m, corresponding to the size of the plots. The texture metrics applied were ‘variance’, 

‘entropy’, ‘homogeneity’, ‘second moment’, ‘correlation’, ‘dissimilarity’, and ‘contrast’ (Haralick et al., 1973) 

(Table 3.S7). These metrics determine the heterogeneity of habitats (Tuanmu and Jetz, 2015; Regolin et al., 

2020), particularly in relation to vegetation structure (Wood et al., 2012). The texture metrics mean, variance, 

and correlation were least correlated with each other. There was a higher positive correlation between the 

entropy, dissimilarity, and contrast metrics, which were negatively correlated with homogeneity and second 

moment (Hall-Beyer, 2017). We calculated several diversity indices from the land-cover classifications using 

the ‘rasterDiv’ package (Rocchini et al., 2021); namely, Shannon’s Diversity (Shannon, 1948), Pielou’s 

Evenness (Pielou, 1966), the Berger–Parker Index (Berger and Parker, 1970), Cumulative Residual Entropy 

(Rao et al., 2004), Rao’s quadratic entropy (Rao, 1982), Hill’s number (Hill, 1973), and Rényi’s index (Rényi, 

1961). The window size was also 10 m x 10 m (or 108 × 108 pixels), corresponding to the size of the plots. 

These indices were selected due to their various representations of diversity (in our case, the land-cover class 

diversity), which is expected to be largely affected by burrowing animals (Louw et al., 2019; Parsons et al., 

2016). 

A cumulative error developed during the calculation of the predictors. The DEM layers were created with 

an R2 = 0.95. The land cover classifications had an average R2 = 0.80. The vegetation height layers thus have 

a cumulative error of R2 = 0.95 × 0.80 = 0.76. The diversity predictors have R2 = 0.76 (when derived from 

vegetation height) till R2 = 0.80 (when derived from land cover classification). 

 

3.2.6. Model Setup 

To obtain the best-fit models for the whole study area for each response data set, we first selected the 

predictors, then tuned the hyperparameters and, finally, trained the models. 

To select the predictors, we first calculated Pearson’s correlation between all predictors and removed all 

redundant predictors with an absolute correlation of ≥0.75. Using the remaining predictors with an absolute 

correlation of <0.75, we applied a recursive feature elimination algorithm (RFE). The RFE first trains a model 

and estimates the importance of the predictors. Then, the RFE iteratively removes predictors with the least 

importance and trains the models using the remaining predictors. The outcome of the RFE is the number and 

composition of predictors that were used in the best-performing model, based on the specified model 

performance metrics (Kuhn, 2008). Within the RFE, we used an RF selection function and validated the models 

by performing repeated 5-fold cross-validation. We selected the predictors used in the model through use of the 

lowest root-mean-square error (RMSE). 

After the RFE, hyperparameter tuning was conducted. We used the ‘tuneRF’ function, which enables the 

training of several RF models with varying hyperparameter values, and then examined the performance of the 

models. The tuning consisted of selecting the optimal number of trees after each split (ntree) and the optimal 

number of predictors randomly selected at each split (mtry) (Kuhn, 2008). We gradually tested ‘ntree’ with values 

between 50 and 1000 (in steps of 50) and selected the ‘ntree’ value leading to the highest model performance. 

We selected the ideal ‘mtry’ by selecting the model with the lowest Out-of-bag Error (OOB Error). We started at 

mtry = 1 and increased it stepwise by 1, and continued as long as the OOB Error decreased by at least 1e-5 

[64]. 



 

32 
 

Additionally, we trained models for each response data set separately for each study site. We followed the 

same predictor selection and parameter tuning workflow. To test the impact of individual predictor sets on model 

performance, we trained models using only spectral bands, vegetation indices, topography, climate, texture 

metrics, diversity indices, land-cover fractions, and vegetation height predictors. 

The models were validated by independent data (data not used for the model training). We implemented a 

Leave-One-Out cross validation. During this validation, the model step-wise uses one instance of the dataset 

for testing and the remaining instances for training. This validation method was used due to limited number of 

plots (Sammut and Webb, 2010). 

We used the models trained for the whole study area for the prediction. As the plots had a size of 10 m × 

10 m, we aggregated the predictors to a spatial resolution of 10 m. We predicted the vertebrate and invertebrate 

hole density and depth on all eight hillsides and present 32 maps. 

 

3.3. Results 

3.3.1. Model Performance 

The linear mixed effect regression models trained using in situ measured vegetation patterns achieved 

high accuracy. The best results were obtained for vertebrate hole depth (R2 = 0.84, p < 0.001) and vertebrate 

hole density (R2 = 0.83, p < 0.001). The models for the invertebrate hole density (R2 = 0.76, p < 0.001) and hole 

depth (R2 = 0.64, p < 0.001) achieved good performance. 

The random forest models trained using vegetation patterns obtained by UAV achieved varying 

performances. Of the models trained for the whole study area, the highest performance was achieved by the 

invertebrate hole density prediction model (R2 = 0.62, p < 0.001, MAE = 4.05), followed by the invertebrate hole 

depth model (R2 = 0.44, p < 0.001, MAE = 0.3). The model for the vertebrate hole density had a similar 

performance (R2 = 0.43, p < 0.01, MAE = 3.79). The model for the vertebrate hole depth performed worse than 

the other three models (R2 = 0.22, p < 0.05, MAE = 2.23; Figure 3.3, Table 3.2). 

The performance of the significant models trained for the study sites varied strongly (from R2 = 0.29 to R2 

= 0.75). The best results were obtained in the models trained for PdA, in terms of vertebrate hole density (R2 = 

0.75, p < 0.001, MAE = 1.29) and invertebrate hole density (R2 = 0.68, p < 0.001, MAE = 4.5). In SG, none of 

the models reached an R2 above 0.30; while, in LC, only the model for the vertebrate hole depth reached an R2 

exceeding 0.30 (R2 = 0.66, p < 0.001, MAE = 0.81). In NA, all models showed a significant relationship between 

the predicted and measured data. The highest performance was achieved by the model for the prediction of 

vertebrate hole density (R2 = 0.46, p < 0.01; Table 3.2. 

The performance of the models trained separately with each of the predictor sets ranged from R2 = 0.05 to 

R2 = 0.32. For all response variables, the best results were achieved with the following predictor sets: Vegetation 

height (for the invertebrate hole depth), diversity indices (for the vertebrate hole depth), land-cover fractions (for 

the invertebrate hole density), and texture metrics (for the vertebrate hole density); see Table 3.S5. 

The models underestimate the hole density and depth for plots with higher hole density and deeper holes 

and overestimate the hole density and depth for the plots with lower hole density and less deep holes. 
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Figure 3.3. Performance of the models trained for the whole study area. The red line is the linear regression 

line. The green shadow is the confidence interval. MAE = mean absolute error: (a) Vertebrate hole density/10 

m × 10 m; (b) invertebrate hole density/10 m × 10 m; (c) vertebrate hole depth [cm]/10 m × 10 m; and (d) 

invertebrate hole depth [cm]/10 m × 10 m. Significance level: p *** ≤ 0.001; p ** ≤ 0.01; p * ≤ 0.05.  

Table 3.2. Performance of models trained for individual study sites and for the whole study area (all study sites). 

‘mtry’ is the optimal number of predictors randomly selected at each split. PdA = Pan de Azúcar, SG = Santa 

Gracia, LC = La Campana, NA = Nahuelbuta.; p *** ≤ 0.001; p ** ≤ 0.01; p * ≤ 0.05. 

Unit Animals Study Site 
Number of Selected  

Predictors 
Mtry R2 

Hole density 

Vertebrates 

All 23 5 0.43 ** 

PdA 2 1 0.75 *** 

SG 5 1 0.04 

LC 2 1 0.11 

NA 2 1 0.46 *** 

Invertebrates 
All 13 3 0.62 *** 

PdA 10 3 0.68 *** 
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SG 20 6 0.15 

LC 26 8 0.10 

NA 6 2 0.29 * 

Hole depth 

Vertebrates 

All 5 2 0.22 * 

PdA 7 2 0.01 

SG 33 11 0.01 

LC 8 2 0.66 *** 

NA 4 1 0.36 ** 

Invertebrates 

All 3 1 0.44 *** 

PdA 34 11 0.07 

SG 15 5 0.19 

LC 30 10 0.01 

NA 6 2 0.31 * 

 

3.3.2. Predictor Selection and Importance 

The significant predictors describing in situ measured vegetation patterns which were selected during 

backward feature selection and used in the linear regression models varied between the models (Tables S6–

S9). For the hole density, site SG was not selected as significant while for hole depth, all sites were significant. 

The significant predictors for the vertebrate hole density were vegetation cover, skeleton cover and diameter of 

shrubs. The significant predictors for the invertebrate hole density were cacti height, cacti abundance and the 

vegetation cover in PdA. The significant predictors for vertebrate hole depth were vegetation cover and the 

cover of the single classes as well as heterogeneity. Lastly, the significant predictors for invertebrate hole depth 

were heterogeneity, shrub height and diameter. 

Following predictors calculated from the UAV-data and used in random forest models were selected. Of 76 

predictors, 40 were highly correlated with each other and were removed before further analysis. The retained 

indices were all land-cover fractions, most of the diversity indices, texture metrics, and vegetation height 

predictors, all spectral bands and topographic indices, one vegetation index, and one climate predictor. The 

number of selected predictors and their composition varied from 2 to 34 for the different responses (Figure 3.S1, 

Table 3.2). The RFE conducted using data from the whole study area retained between 3 and 23 predictors 

(Table 3.2). For the individual study sites, the number of chosen predictors varied between 2 and 34. 

For the vertebrate hole density, the most important predictors were the texture metric dissimilarity 

calculated from the vegetation height; the texture metrics-based contrast, variance, and second moment 

calculated from the blue or red band; and several land-cover fractions and diversity indices (Figure 3.4). For the 

invertebrate hole density, the Berger–Parker diversity index was the most important, followed by the land-cover 

fractions rocks, soil, and shrubs (Figure 3.4). In terms of vertebrate hole depth, the aspect and tree fraction, and 

the variance and dissimilarity calculated from the vegetation height were important (Figure 3.4). For the 

invertebrate hole depth, the contrast texture metrics calculated from the red band and cacti height were the 

most important (Figure 3.4). 

For the individual study sites, the selected predictors varied. In PdA, the texture metrics calculated from 

the vegetation height and the NGRDI were the most important for the vertebrate and invertebrate hole density. 



 

35 
 

In LC, for the vertebrate hole depth, the soil and tree fraction and inclination were the most important. In NA, 

the correlation texture metric calculated from the green band was the most important for the invertebrate hole 

density and depth. 

 

Figure 3.4. Predictor importance in the models fitted for the whole study area and the individual study sites. 

Only statistically significant models are shown. The importance of all predictors estimated by RFE was 

normalized from 0 to 1 separately for each model. The predictors not selected by the RFE were assigned a 

value of 0. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana, NA = Nahuelbuta, VARI = visible 

atmospherically resistant index (Gitelson et al., 2002), NGRDI = normalized green–red difference index (Tucker, 

1979). 
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3.3.3. Prediction 

We used the models trained for the whole study area for the prediction. The predicted hole density and 

depth varied across sites and hillsides (Figures 5, S2–S6). The highest vertebrate hole density was predicted 

in SG, with an average of 6.1 holes per 10 m × 10 m, followed by LC with 5.3 holes per 10 m × 10 m. The 

average vertebrate hole density was 3 holes per 10 m × 10 m in PdA and 4.1 holes per 10 m × 10 m in NA. In 

SG, on average, 1.5 more holes per 10 m × 10 m were predicted on south-facing than north-facing hillsides. In 

LC, five more holes, on average, were predicted on the north-facing than south-facing hillsides. There was no 

difference between the hillsides in PdA and NA. The highest invertebrate hole density was predicted in PdA (13 

holes per 10 m × 10 m), followed by SG and LC (ca. 10 holes per 10 m × 10 m), and the lowest density was 

predicted in NA (4.1 holes per 10 m × 10 m). A higher density was predicted on north-facing than south-facing 

hillsides in PdA and LC (up to five more holes per 10 m × 10 m), while a lower hole density was predicted on 

north-facing than south-facing hillsides in SG (up to three fewer holes per 10 m × 10 m). 

 

Figure 3.5. Predicted hole density per 10 m × 10 m across north-facing hillsides using models trained for the 

whole study area: (a) Vertebrate hole density in LC; (b) vertebrate hole density in PdA; (c) invertebrate hole 

density in LC; and (d) invertebrate hole density in PdA. 

The distribution of holes and their depth was not uniform along the hillsides and depended on vegetation 

patterns and inclination of the hillside (Figures S3–S6). The dependencies varied between the sites. In general, 
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higher density of vertebrate holes was predicted in areas with lower density of invertebrate holes. The density 

and depth of the holes increased with decreasing hillside inclination and slope. 

More vertebrate holes were predicted within the hillside rills. The vertebrate hole density was rather 

positively associated with the shrub, herb and cacti cover in all climate zones and negatively with the tree cover 

in the humid-temperate climate zone. It was positively associated with vegetation height in all climate zones 

except for the humid-temperate zone. The density of invertebrate holes was higher in areas with less vegetation 

cover and more skeleton within all sites. It was also negatively associated with vegetation height in all climate 

zones. 

The depth of the holes was positively associated with vegetation cover and vegetation height in the arid 

and semi-arid zone and negatively in the Mediterranean-type and humid-temperate zone. The depth of all holes 

in arid and semi-arid climate zone was higher in areas with a higher density of vertebrate holes. Deeper holes 

were predicted near shrubs and herbs. In the Mediterranean-type and humid-temperate climate zone, the depth 

of vertebrate holes is higher in areas with higher density of vertebrate holes and vice versa. Deeper vertebrate 

holes were here predicted near herbs, deeper invertebrate holes near skeleton. 

 

3.4. Discussion 

We analyzed the potential use of UAV data for the area-wide prediction of the density and depth of holes 

created by vertebrates and invertebrates in several climate zones. The results demonstrated the importance of 

including texture metrics, land-cover fractions, land-cover diversity indices, and vegetation height in models. 

Most of our models achieved a good to moderate performance. 

 

3.4.1. Model Performance 

In comparison to models not predicting the density of burrows but only the presence or absence of burrows 

and mounds (Koshkina et al., 2020), the occurrence of burrowing animals (Valerio et al., 2020), or their species 

richness (Wallis et al., 2016), our models performed lower. This might be due to the burrowing patterns being 

dependent on the behavior of individual animals. Animal behavior cannot be predicted by strict physical 

processes, and is not necessarily the same under similar habitat conditions. On the contrary, it depends on a 

large variety of factors, such as small-scale soil and vegetation conditions, (Deacon, 2006), intra-species 

competition, or even the well-being of every individual (Jirkof, 2014). 

The models trained using plots from all 4 sites (Figure 3.3) underestimate higher hole density and deeper 

hole depth. These errors more likely occurred due to response data variability and possible range of predictor 

values describing environmental parameters. The predictor values described the vegetation patterns per 10 m. 

This might lead to a lower accuracy especially in the semi-arid and Mediterranean-type climate with 

homogenous vegetation patterns within the site. The models could not distinguish small-scale changes and 

aptitudes in hole density and depth in dependence on these parameters and thus the model predicts very similar 

values for these sites. Another reason might be the data variability. Due to random resampling of the data during 

the training, the models might capture the changing hole density and depth tendencies between the sites but 

not the magnitudes within the sites. This explanation is supported by the higher accuracy of models trained 

separately for the arid and humid-temperate sites, in comparison to models trained for the whole study area 

and for the semi-arid and Mediterranean-type climate zone (Table 3.2). 
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The lower model accuracy can furthermore be caused by error propagation, as the models trained using 

same predictors estimated in situ achieved higher accuracy. The uncertainties accumulated during the 

calculation of predictors vegetation cover and vegetation height might cause lower model accuracy. However, 

the models trained separately for the arid zone PdA, in which the UAVs captured the ground vegetation in 

comparison to Mediterranean-type and humid-temperate areas where the ground vegetation is covered by tree 

canopy, did still achieve the highest accuracy. 

The models trained for invertebrates outperformed those trained for vertebrates. The reason for this may 

be due to the differences in habitat preferences between vertebrates and invertebrates. In the case of 

vertebrates, limitations of remote sensing-based predictors have been attributed to the unpredictability of 

vertebrate behavior and the number of suitable, yet unoccupied areas (Leyequien et al., 2007). Furthermore, 

the applicability of remote sensing predictors depends on the vertebrate trophic level, as the distribution of 

herbivore species is more likely to correlate with various vegetation characteristics, while predator and generalist 

habitat characteristics are not associated with variables directly measurable by remote sensing (Leyequien et 

al., 2007; Cowley et al., 2000). In contrast, the distribution of all soil-living invertebrates has been shown to be 

highly associated with vegetation diversity and soil properties, which directly affect vegetation distribution (Tajik 

et al., 2020). 

The models for predicting hole density outperformed those for hole depth. The worst result was obtained 

when predicting vertebrate hole depth. For invertebrates, the measured hole depth presumably determines the 

maximum depth that they have reached, whereas vertebrate burrows are more complex (Mukherjee et al., 

2017). As we measured only the depth of the hole leading to the burrow, and not the complexity of the 

underground burrow, this may explain the poorer model performance. 

Among the models trained for each of the study sites, the models for the arid PdA and humid-temperate 

NA performed better than those for LC and SG. In the arid climate zone, a strong link between burrowing and 

vegetation distribution can be expected, as the habitat choice has been shown to be associated with water and 

nutrient supply, due to limited resources (Cerqueira, 1985). No such clear relationship can be applied to semi-

arid and Mediterranean-type climate zones, where the distribution of burrowing animals has been found to be 

both positively (Milstead et al., 2007) and negatively (Meserve, 1981; Cramer and Willig, 2005) associated with 

vegetation distribution. Thus, it is not surprising that the models for study sites performed better where a clear 

positive relationship between vegetation distribution and burrowing animals can be expected. 

3.4.2. Predictor Importance 

The predictor importance varied between the models. The texture metrics were more important in the 

models for the whole study area, while land-cover fractions were more important in the models trained for 

individual sites. Our results indicate that the level of spatial heterogeneity determines the difference in burrowing 

patterns between sites. At the same time, small-scale differences within sites were dependent on specific 

vegetation distribution and vegetation types. Previous studies have shown a strong link between biodiversity 

and spectral heterogeneity (Rocchini et al., 2004; Rocchini et al., 2010; Rocchini et al., 2018; Oldeland et al., 

2010). Although we did not predict the biodiversity of burrowing animals, the burrowing patterns were shown to 

be species-dependent (Platt et al., 2016). 

Predictors selected for the hole density were mostly the texture metrics calculated from the NGRDI and 

VARI. These indices have been shown to correlate with plant biomass and the vegetation fraction, and were 
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able to detect small-scale patterns of biomass variability (Bendig et al., 2015; Gitelson et al., 2002). Burrowing 

animals have an impact on the vegetation coverage (Davidson and Lightfoot, 2007; Pang et al., 2021; Zhang et 

al., 2017; Zhao et al., 2021); however, the specific impacts seem to vary between species, with some species 

mainly being affecting the distribution of cacti (Milstead et al., 2007), thorn shrubs (Turnock et al., 2017), or 

herbs (Contreras and Gutiérrez, 1991). Therefore, it is no surprise that the indices describing variation in 

vegetation biomass (Bendig et al., 2015; Gitelson et al., 2002), and not simple land-cover fractions, were 

identified as the most important predictors. Our results are furthermore in line with studies using satellite images 

which have identified indices related to vegetation density as being significant for the prediction of animal 

abundance (Chidodo et al., 2020; Andreo et al., 2019). 

The diversity indices and texture metrics calculated from the vegetation height and vegetation indices were 

especially important predictors for vertebrate hole density and depth. The texture metrics entropy and 

dissimilarity and the diversity indices Shannon’s and Rao’s quadratic entropy were selected, which are all 

associated with a heterogeneous landscape (Shannon, 1948; Rao, 1982). Previous studies using heterogeneity 

and texture metrics in their models have identified them as significant for the prediction of the habitats of 

burrowing vertebrates (Valerio et al., 2020). An association between landscape heterogeneity and the 

distribution of animals has been shown in a number of ecological studies considering the long-term impacts of 

burrowing animals (Ballová et al., 2019; Valkó et al., 2021). Burrowing vertebrates, in particular, have been 

found to create dense vegetation patches due to the concentration of resources near burrows [18,24,25]. 

For invertebrates, the texture metrics homogeneity and correlation were identified as the most important 

predictors. In comparison to our results, a previous study (Wallis et al., 2017) found the diversity of invertebrate 

species to be associated with the texture entropy calculated from the NDVI and ARI. The habitat complexity has 

also been shown to be positively associated with invertebrate diversity and abundance (Mormul et al., 2011), 

possibly as the distribution of roots and stems creates suiTable 3.microhabitats (Thomaz, Sidinei,M. et al., 

2007). Thus, the findings of previous studies support our results. 

 

3.5. Conclusions 

In this study, we demonstrated the potential of using UAV data to predict the density and depth of holes 

created by burrowing animals. Our models achieved moderate performance. Models trained for the study area 

outperformed models trained separately for the single study sites, except for the arid climate zone. Models for 

the invertebrates outperformed models for the vertebrates and models for the hole density outperformed models 

for the hole depth. The results furthermore show the importance of inclusion of vertical and horizontal landscape 

structures into the models, as the models mostly relied on the diversity indices, vegetation height and texture 

metrics calculated from the vegetation height. 

The results furthermore showed the dependence of burrowing intensity on vegetation patterns. Vertebrate 

hole density and depth was rather positively associated with vegetation cover and height (especially of shrubs 

and herbs) in all except in the humid-temperate climate zone. Invertebrate hole density was negatively 

associated with the vegetation cover in all climate zones and with vegetation height in the Mediterranean-type 

climate zone. 
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Supplementary material 

Table 3.S1: Mean density and depth of vertebrate and invertebrate holes per site. N = number of plots. 

Unit Animals PdA SG LC NA 

Mean 

density  

Vertebrates 1.46 6.75 5.60 1.70 

Invertebrates 16.3 9.90 7.07 3.20 

Mean 

depth 

Vertebrates 2.84 2.44 2.87 2.44 

Invertebrates 0.74 0.73 0.76 0.72 

 

Table 3.S2: Summary of the collected UAV data sets (PdA = Pan de Azúcar, SG = Santa Gracia, LC = 

La Campana, NA = Nahuelbuta; Aspect = the average direction that hillsides are facing counterclockwise 

from the east; Extent = the minimum and maximum longitude and latitude values of the generated 

orthophotos of the hillsides [EPSG:4326WGS 84]; Inclination = mean inclination of the hillsides in degrees; 

Altitude range [a.s.l.] = minimum and maximum altitudes of the hillsides in meters above sea level). 

Site Aspect [°] Extent 
Inclination 

[°] 

Altitude range 

[m a.s.l.] 

Ground 

Sampling 

Distance 

[cm] 

Covered 

area 

[km2] 

PdA 173.10 

-70.61875999999 

-25.97690569047  

-70.61122717402 

-25.97072500000 

16.42 485–760 2.57 0.34 

 73.10 

-70.61747800000 

-25.98792750527  

-70.61004863371 

-25.97936899999 

6.62 633–720 3.07 0.58 

SG 204.84 

-

71.169226580458 

-

29.758944299143 

-

71.162390068944 

-

29.754619999691 

11.73 630–740 2.57 0.27 

 86.76 

-

71.167225099000 

-

29.764107785292 

4.18 611–723 1.76 0.28 
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-

71.162634910771 

-

29.758786575999 

LC 225.36 

-71.09082499999 

-32.94316192996  

-71.08180970164 

-32.93423200000 

11.09 433–591 2.74 0.67 

 87.84 

-71.09315231476 

-32.93436314092  

-71.08806183080 

-32.92908755615 

17.01 399–541 1.58 0.30 

NA 65.90 

-73.01619835389 

-37.80900328612 

-73.00848544256 

-37.80456593102 

10.50 1190–1248 2.59 0.31 

 185.00 

-73.01734991663 

-

37.811992231189 

-73.01034841517 

-37.80787731366 

5.04 1190–1240 2.59 0.33 

 

Table 3.S3: Hierarchy of classes for the land-cover classification (PdA = Pan de Azúcar, SG = Santa 

Gracia, 

LC = La Campana, NA = Nahuelbuta, X = class represented within the site). 

Main 

class 
Sub-class PdA SG LC NA 

Soil  Soil    X X 

 Weathered granite soil X X   

 Saprolite  X X   

 Soil covered by soil crusts  X    

Cacti Copiapoa X    

 Eulychnia X X   

 Other cacti  X   

Shrubs  Shrubs  X X X X 

Herbs  Herbs  X X X X 

Skeleton  Skeleton X X X  

 Rocks     X 
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 Boulders     X 

Trees  Trees   X X  

 Araucaria    X 

 Other genera     X 

 

Table 3.S4: Sensitivity of individual land-cover classes of the land-cover classification models trained for 

each site separately. Sensitivity = the proportion [%] of positives that are correctly identified. 

Main 

class 
Sub-class PdA SG LC NA 

Soil  Soil  94  94 78 

 Granite  87 83   

 Saprolite  86 1   

 Soil crusts  95    

Cacti Copiapoa 77    

 Eulychnia 84 85   

 Other cacti  92   

Shrubs  Shrubs  82 47 84 68 

Herbs  Herbs  53 79 83 60 

Skeleton  Skeleton 90 58 72  

 Rocks     59 

 Boulders     69 

Trees  Trees    81  

 Araucaria    80 

 Other genera     92 

 

Table 3.S5: Performance of models trained with each predictor set separately. 

 Hole density Hole depth 

 Vertebrates Invertebrate Vertebrates Invertebrate 

Predictor sets R2 MAE R2 MAE R2 MAE R2 MAE 

Spectral bands 0.08 4.6 0.01 6.4 0.13 2.25 0.23 0.27 

Climate 0.10 4.2 0.36 5.2 0.18 2.52 0.13 0.29 

Land-cover fractions 0.10 4.3 0.50 4.1 0.05 2.38 0.10 0.28 

Diversity indices 0.28 4.0 0.16 5.7 0.16 2.3 0.10 0.31 

Vegetation height 0.24 3.8 0.33 5.0 0.14 2.2 0.29 0.25 

Vegetation indices 0.28 3.7 0.26 5.4 0.08 2.2 0.03 0.32 

Texture metrics  0.28 3.8 0.31 5.3 0.07 2.4 0.10 0.30 

Topography 0.06 4.4 0.33 5.1 0.06 2.4 0.01 0.39 
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Table 3.S6: Significant variables selected by the linear mixed model for the vertebrate hole density (R2 = 0.83; 

p < 

0.0001). p-value* < 0.05. p-value** < 0.01. p-value*** < 0.001. 

Predictors Estimate Error t value p-value 

(Intercept) 1.06027 1.74163 0.609 0.546291 

Vegetation cover 0.43305 0.03806 11.377 8.41e-14 *** 

Skeleton -0.45436 0.22290 -2.038 0.048510 * 

Shrub diameter -4.20671 1.17676 -3.575 0.000974 *** 

Site LC 6.24868 2.43901 2.562 0.014497 * 

Vegetation cover at site LC -0.50120 0.04753 -10.546 7.64e-13 *** 

Vegetation cover at site PdA -0.48401 0.04961 -9.755 6.76e-12 *** 

Shrub diameter at site LC 4.10939 1.22249 3.361 0.001778 ** 

 

Table 3.S7: Significant variables selected by the linear mixed model for the invertebrate hole density (R2 = 0.76; 

p < 

0.0001). p-value* < 0.05; p-value** < 0.01; p-value*** < 0.001. 

Predictors Estimate Error t value p-value 

(Intercept) 9.21479 2.21611 4.158 0.000183 *** 

Cacti height -7.87052 2.33218 -3.375 0.001746 ** 

Cacti abundance -0.43325 0.08503 -5.095 1.05e-05 *** 

Site PdA 13.96073 3.27388 4.264 0.000133 *** 

Vegetation cover at site PdA 0.19026 0.09018 2.110 0.041715 * 

 

Table 3.S8: Significant variables selected by the linear mixed model for the vertebrate hole depth (R2 = 0.84; p 

< 

0.0001) p-value* < 0.05; p-value** < 0.01; p-value*** < 0.001. 

Predictors Estimate Error t value p-value 

(Intercept) 4.628e+00 2.013e+00 2.299 0.029762 * 

Vegetation cover -4.134e-01 1.847e-01 -2.238 0.033974 * 

Shrub cover -5.319e-01 2.110e-01 -2.521 0.018179 * 

Cacti cover -1.911e+00 5.529e-01 -3.456 0.001895 ** 

Trees cover -4.609e-01 1.508e-01 -3.056 0.005136 ** 

Trees diameter 3.595e+00 1.529e+00 2.351 0.026570 * 

Cacti abundance 7.804e-01 3.292e-01 2370 0.025467 * 

Tree abundance 6.068e-01 1.714e-01 3540 0.001532 ** 
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Skeleton abundance 2.984e-01 7.706e-02 3873 0.000651 *** 

Cover heterogeneity 2.172e-01 8.778e-02 2474 0.020196 * 

Site SG -3.475e+01 5.572e+00 -6237 1.34e-06 *** 

Site LC -5.881e+00 2.632e+00 -2235 0.034260 * 

Vegetation cover at site SG 5.890e-01 1.900e-01 3099 0.004617 ** 

Shrub diameter at site SG 6.031e+01 2.632e+00 2476 0.020108 * 

Cover heterogeneity at site SG -2.696e-01 8.794e-02 -3066 0.005015 ** 

Cover heterogeneity at site LC -1.878e-01 8.524e-02 -2203 0.036630 * 

Cover heterogeneity at site NA -1.823e-01 8.518e-02 -2141 0.041846 * 

Abundance heterogeneity at site SG -4.936e-02 2.182e-02 -2263 0.032247 * 

 

Table 3.S9: Summary of the linear mixed model for the invertebrate hole depth (R2 = 0.64; p < 0.01). p-value* 

< 0.05; 

p-value** < 0.01; p-value*** < 0.001. 

 Estimate Error t value p-value 

(Intercept) -1.648610 0.712062 -2.315 0.026095 * 

Cacti cover -0.228478 0.077160 -2.961 0.005260 ** 

Soil cover 0.015397 0.006048 2.546 0.015081 * 

Shrub diameter -11.838280 2.812155 -4.210 0.000151 *** 

Cacti diameter 0.609415 0.232873 2.617 0.012664 * 

Shrub height 12.358300 2.907531 4.250 0.000133 *** 

Shrubs abundance 0.056238 0.011687 4.812 2.38e-05 *** 

Cacti abundance 0.064426 0.016059 4.012 0.000273 *** 

Trees abundance 0.048822 0.001302 4.086 0.000219 *** 

Cover heterogeneity -0.038438 0.016170 -2.377 0.022586 * 

Abundance heterogeneity -0.004589 0.001302 -3.525 0.001123 ** 

Site SG -1.687547 0.784658 -2.151 0.037926 * 

Site NA 1.361993 0.586687 2.321 0.025720 * 

Vegetation cover at site NA -0.054720 0.026520 -2.063 0.045961 * 

Shrub diameter at site SG 13.354248 2.946862 4.532 5.67e-05 *** 

Shrub diameter at site LC 11.910892 2.817994 4.227 0.000143 *** 

Shrub diameter at site NA 11.735616 2.818636 4.164 0.000173 *** 

Shrub height at site SG -12.367284 2.939758 -4.207 0.000152 *** 

Shrub height at site LC -12.819465 2.936441 -4.392 8.68e-05 *** 

Shrub height at site NA -12.718590 2.936441 -4.331 0.000104 *** 

Cover heterogeneity at site LC 0.035311 0.016198 2.180 0.035529 * 

Cover heterogeneity at site NA 0.040147 0.016192 2.479 0.017710 * 

Abundance heterogeneity at site NA 0.004269 0.001525 2.800 0.007988 ** 
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Figure 3.S1. Predictor selection by means of recursive feature elimination (RFE). The blue points show 

the number of selected predictors with the lowest achieved RMSE: (a) Vertebrate hole density; (b) 

Invertebrate hole density; (c) Vertebrate hole depth; and (d) Invertebrate hole depth. 
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Figure 3.S2. Predicted hole density and depth across hillsides. The position refers to the position on either 

the upper or lower part of the hillside. The upper part of the hillside is the convex part of the hillside, while 

the lower part of the hillside is the concave part of the hillside. The points represent the mean overall 

value, the triangles are the mean overall values on the upper or lower part of the hillside, and the error 

bars are the standard deviations. (a) Predicted vertebrate hole density; (b) predicted invertebrate hole 

density; (c) predicted vertebrate hole depth; and (d) predicted invertebrate hole depth. 
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Figure 3.S3. Predicted hole density and depth in PdA (arid climate zone). (a) Vertebrate hole density on 

the north-facing hillside; (b) Vertebrate hole depth on the north-facing hillside; (c) Invertebrate hole density 

on the north-facing hillside; (d) Invertebrate hole depth on the north-facing hillside; (e) Vertebrate hole 

density on the south-facing hillside; (f) Vertebrate hole depth on the south-facing hillside; (g) Invertebrate 

hole density on the south-facing hillside; (h) Invertebrate hole depth on the south-facing hillside. 
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Figure 3.S4. Predicted hole density and depth in SG (semi-arid climate zone). (a) Vertebrate hole density 

on the north-facing hillside; (b) Vertebrate hole depth on the north-facing hillside; (c) Invertebrate hole 

density on the north-facing hillside; (d) Invertebrate hole depth on the north-facing hillside; (e) Vertebrate 

hole density on the south-facing hillside; (f) Vertebrate hole depth on the south-facing hillside; (g) 
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Invertebrate hole density on the south-facing hillside; (h) Invertebrate hole depth on the south-facing 

hillside. 

 

Figure 3.S5. Predicted hole density and depth in LC (Mediterranean-type climate zone). (a) Vertebrate 

hole density on the north-facing hillside; (b) Vertebrate hole depth on the north-facing hillside; (c) 

Invertebrate hole density on the north-facing hillside; (d) Invertebrate hole depth on the north-facing 
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hillside; (e) Vertebrate hole density on the south-facing hillside; (f) Vertebrate hole depth on the south-

facing hillside; (g) Invertebrate hole density on the south-facing hillside; (h) Invertebrate hole depth on the 

south-facing hillside. 
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Figure 3.S6. Predicted hole density and depth in NA (humid-temperate climate zone). (a) Vertebrate hole 

density on the north-facing hillside; (b) Vertebrate hole depth on the north-facing hillside; (c) Invertebrate 

hole density on the north-facing hillside; (d) Invertebrate hole depth on the north-facing hillside; (e) 

Vertebrate hole density on the south-facing hillside; (f) Vertebrate hole depth on the south-facing hillside; 

(g) Invertebrate hole density on the south-facing hillside; (h) Invertebrate hole depth on the south-facing 

hillside. 

 

Figure 3.S7. Examples of measured holes. (a) in PdA; (b) in SG; (c) in LC. 
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Abstract 

Burrowing animals influence surface microtopography and hillslope sediment redistribution, but changes often 

remain undetected due to a lack of automated high resolution field monitoring techniques. In this study, we 

present a new approach to quantify microtopographic variations and surface changes caused by burrowing 

animals and rainfall-driven erosional processes applied to remote field plots in arid and Mediterranean Chile. 

We compared the mass balance of redistributed sediment between burrow and burrow embedding area, 

quantified the cumulative sediment redistribution caused by animals and rainfall, and upscaled the results to a 

hillslope scale. The newly developed instrument, a Time-of-Flight camera, showed a very good detection 

accuracy. The animal-caused cumulative sediment excavation was 14.6 cm3 cm-2 year-1 in the Mediterranean, 

and 16.4 cm3 cm-2 year-1 in the arid climate zone. The rainfall-caused cumulative sediment erosion within 

burrows was higher (10.4 cm3 cm-2 year-1) in the Mediterranean than the arid climate zone (1.4 cm3 cm-2 year-1). 

Daily sediment redistribution during rainfall within burrow areas were up to 350% / 40% higher in the 

mediterranean / arid zone compared to burrow embedding areas, and much higher than previously reported in 

studies which were not based on continuous microtopographic monitoring.  38% of the sediment eroding from 

burrows accumulated within the burrow entrance while 62% was incorporated into hillslope sediment flux, which 

exceeds previous estimations two-fold. Animals burrowed between on average 1.2 – 2.3 times a month, and 

the burrowing intensity increased after rainfall. This revealed a newly detected feedback mechanism between 

rainfall, erosion, and animal burrowing activity, likely leading to an underestimation of animal-triggered hillslope 

sediment flux in wetter climates. Our findings hence show that the rate of sediment redistribution due to animal 

burrowing is climate dependant, and that animal burrowing plays a larger than previously expected role in 

hillslope sediment redistribution. Subsequently, animal burrowing activity should be incorporated into soil 

erosion and landscape evolution models that rely on soil processes but do not yet include animal-induced 

surface processes on microtopographical scales in their algorithms. 

 

Keywords: Biogeomorphology, bioturbation, sediment transport, burrowing animals, rainfall, Time-of-Flight 

camera, Chile 
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4.1. Introduction 

Animal burrowing activity affects surface microtopography (Reichman and Seabloom, 2002; 

Kinlaw and Grasmueck, 2012), surface roughness (Yair, 1995; Jones et al., 2010; Hancock and Lowry, 

2021), and soil physical properties (Ridd, 1996; Yair, 1995; Hall et al., 1999; Reichman and Seabloom, 

2002; Hancock and Lowry, 2021; Coombes, 2016; Larsen et al., 2021; Corenblit et al., 2021). Previous 

studies estimated both positive as well as negative impacts of burrowing animals on sediment 

redistribution rates. These studies relied on applying tests under laboratory conditions using rainfall 

simulators, conducting several field campaigns weeks to months apart, or by measuring the volume of 

excavated or eroded sediment in the field using instruments such as erosion pins, splash boards, or 

simple rulers (Imeson and Kwaad, 1976; Reichman and Seabloom, 2002; Wei et al., 2007; Le Hir et al., 

2007; Li et al., 2018; Li et al., 2019b; Li et al., 2019c; Voiculescu et al., 2019; Chen et al., 2021; 

Übernickel et al., 2021a; Li et al., 2019a). Although burrowing animals are generally seen as ecosystem 

engineers (Gabet et al., 2003; Wilkinson et al., 2009), their role in soil erosion in general, and for 

numerical soil erosion models in particular, is to date limited to predictions of burrow locations and 

particle mixing (Black and Montgomery, 1991; Meysman et al., 2003; Yoo et al., 2005; Schiffers et al., 

2011). The complex interaction of sediment excavation and accumulation, and erosion processes at the 

burrow and hillslope scale are not yet included in earth-surface-models.  

The reason for this knowledge gap is that previous studies have not provided data on low 

magnitude but frequently occurring sediment redistribution due to a lack of spatio-temporal high-

resolution microtopographic surface monitoring techniques which can also measure continuously in the 

field. Field experiments with, for example, rainfall simulators can unveil processes but cannot cover the 

time-dependant natural dynamics of sediment redistribution. When using erosion pins or splash boards, 

the sites had to be revisited each time and the data were thus obtained only sporadically (Imeson and 

Kwaad, 1976; Hazelhoff et al., 1981; Richards and Humphreys, 2010). This limited all previous studies 

in their explanatory power, because biotic-driven processes are typically characterised by small quantity 

and a frequent re-occurrence (Larsen et al., 2021). It is hence likely that previous studies based on non-

continuously conducted measurements or rainfall experiments underestimated the role of burrowing 

animals on rates of hillslope sediment flux. 

High-resolution, ground-based imaging sensing techniques have the potential to overcome 

limitations of previous surface monitoring techniques. Terrestrial laser scanner systems have been 

shown to be a suiTable 4.tool for the estimation of sediment redistribution and erosion processes 

(Nasermoaddeli and Pasche, 2008; Afana et al., 2010; Eltner et al., 2016a; Eltner et al., 2016b; Longoni 

et al., 2016). However, these instruments are expensive and labour-intensive. Hence, a simultaneous, 

continuous, and automated monitoring of several animal burrows is for this reason not possible. Time-

lapse photogrammetry is a low-cost (up to 5000 USD), topographic monitoring technique, which can be 

applied at variable observation distances and scales (e.g. (James and Robson, 2014; Galland et al., 

2016; Eltner et al., 2017; MALLALIEU et al., 2017; Kromer et al., 2019; Blanch et al., 2021). However, 

several cameras are needed to monitor the surface under various angles, which makes the field 

installation difficult and yields the large potential to disturb the animals and lead to behavioural changes.  

Another high resolution surface monitoring technique is based on Time-of-Flight (ToF) 

technology. ToF-based cameras illuminate the targeted object with a light source for a known amount 
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of time and then estimate the distance between the camera and the object by measuring the time needed 

for the reflected light to reach the camera sensor (Sarbolandi et al., 2018). ToF cameras exhibit lower 

spatial resolution and aerial coverage compared to time-lapse photogrammetry. But, the technique also 

has several advantages: as an active remote sensing tool it is able to monitor surface change at night, 

the processing is less complex compared to photogrammetry because the distance values are 

immediately received in a local coordinate system, and the field installation is much smaller and less 

invasive. ToF offers hence a new possibility for surface monitoring, as a technique for a cost-effective, 

high-resolution monitoring of sediment redistribution (Eitel et al., 2011; Hänsel et al., 2016), which can 

be achieved by a simple installation of only one device in the field.  

In this study we developed, tested and applied a cost-effective Time-of-Flight camera for 

automated monitoring of the rainfall and burrowing animal-driven sediment redistribution of burrows and 

burrow embedding areas with a high temporal (four times a day) and spatial (6 mm) resolution. For this, 

we equipped several plots in remote field study sites in the Chilean arid and mediterranean climate zone. 

The selected field sites had a variable rainfall regime and sunlight exposure, and were all affected by 

burrowing activity (Grigusova et al., 2021). After 7 month of field monitoring including wet and dry 

season, we estimated burrowing intensity and its dependence on rainfall. Then, we quantified the daily 

sediment redistribution within the burrow and its embedding area, which enabled us to better understand 

the impacts of animal burrowing activity, and rainfall, on the local sediment redistribution. This allowed 

us to quantify the volume of burrow sediment which was incorporated into the hillslope sediment flux. 

Finally, we upscaled sediment redistribution rates to the entire hillslope. 

 

4.2. Study area 

Our study sites were located in the Chilean Coastal Cordillera in two climate zones (Fig. 4.1): in the 

National Park Pan de Azúcar (further as Pan de Azúcar or PdA) and the National Park La Campana 

(further as La Campana or LC). The Las Lomitas site in PdA is located in the arid climate zone of the 

Atacama Desert with a precipitation rate of 12 mm year–1, and it has a mean annual temperature of 

16.8 °C (Übernickel et al., 2021b). Here, the vegetation cover is below 5%, and it is dominated by small 

desert shrubs, several species of cacti (Eulychnia breviflora, Copiapoa atacamensis) and biocrusts 

(Lehnert et al., 2018). LC is located in the mediterranean climate zone with a precipitation rate of 367 

mm year–1 and a mean annual temperature of 14.1 °C (Übernickel et al., 2021b). LC is dominated by an 

evergreen sclerophyllous forest with endemic palm trees, Jubaea chilensis. Both research sites have a 

granitic rock base, and the dominating soil texture is sandy loam (Bernhard et al., 2018). In PdA, the 

study setup consisted of one north-facing and one south-facing hillslope. The hillslope inclinations were 

~20°, and a climate station was located ~15 km from the camera sites. In LC, the setup consisted of two 

north-facing and one south-facing hillslopes. The hillslope inclinations were ~25°, and a climate station 

was located ~250 m from the south-facing hillslope (Übernickel et al., 2021b).  
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Figure 4.1. Location of the cameras and climate stations on which this study was based. Black points 

show the location of the research sites in Chile. The green points represent the camera plots, and the 

blue points the climate stations: (a) Location of study sites in Chile: PdA stands for Pan de Azúcar, LC 

for La Campana; (b) Study setup in Pan de Azúcar; (c) Study setup in LC. The background images in 

(b) and (c) are orthophotos created from WorldView-2 data from 19 July 2019. For exact latitude and 

longitude see Table 4.A2. 

 

4.2.1 Local burrowing animals 

In order to assess which animal species burrowed at both study sites, we adapted a two-step approach. 

First, we used motion-activated camera traps to capture animals during the borrowing process at our 

field sites. Then, we complimented the list of identified species by a literature review. We found that the 

most common vertebrate animal species which burrow in PdA were carnivores of the family Canidae 

(Lycalopex culpaeus, Lycalopex griseus) as well as rodents of the families Abrocomidae (Abrocoma 

bennetti), Chnichillidae (Lagidium viscacia), Cricetidae (Abrothrix andinus, Phyllotis xanthopygus, 

Phyllotis limatus, Phyllotis darwini) and Octogontidae (Cerquiera 1985, Jimenéz et al. 1992, Übernickel 

et al. 2021) (Table 4.1). In LC, the most common burrowing vertebrate animal species were the 

carnivores of the family Canidae, Lagomorpha of the family Leporidae (Oryctolagus cuniculus), and 

rodents of the families Cricetidae (Abrothrix longipilis, Abrothrix olivaceus, Phyllotis darwini), Muridae 

(Mus musculus) and Octogontidae (Octogon degus, Spalacopus cyanus) (Munoz-Pedreros et al. 2018, 

Übernickel et al. 2021) (Table 4.1. The motion-activated camera traps recorded several burrowing 

animals which all agreed with the list of burrowing vertebrate animals collected from literature: Lycalopex 

culpaeus, Oryctolagus cunniculus and Abrocoma bennettii) (Figure 4.2) 

 

Table 4.1. Most common burrowing animals in the study sites. The list includes both, animal species 

recorded with our motion-activated wildlife traps and those from the review by Übernickel et al. 2021, 
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Cerquiera 1985, Jimenéz et al. 1992, Munoz-Pedreros et al. 2018). “X” indicates at which site the 

species can be found.  

Order Family Species Common name Site 

PdA LC 

Carnivora Canidae Lycalopex culpaeus Culpeo X X 

Carnivora Canidae Lycalopex griseus South-American grey fox X X 

Carnivora Methitidae Conepatus chinga Molina’s Hog noised skunk  X 

Lagomorpha Leporidae Oryctolagus cuniculus European rabbit  X 

Rodentia Abrocomidae Abrocoma bennetti Bennett’s chinchilla rat X X 

Rodentia Chinchillidae Lagidium viscacia Southern mountain vischacha  X  

Rodentia Cricetidae Abrothrix andinus Andean grass mouse X  

Rodentia Cricetidae Abrothrix longipilis Long-haired mouse X X 

Rodentia Cricetidae Abrothrix olivaceus Olive grass mouse X X 

Rodentia Cricetidae Phyllotis darwini Darwin’s leaf-eared mouse X X 

Rodentia Cricetidae Phyllotis xanthopygus Yellow leaf-eared mouse X  

Rodentia Cricetidae Phyllotis limatus Lima leaf-eared mouse X  

Rodentia Muridae Mus musculus Common house mouse X X 

Rodentia Octogontidae Octogon degus Degu (rat) X X 

Rodentia Octogontidae Spalacopus cyanus Coruro (rat) X X 

 

 

 

Figure 4.2. Examples of burrowing vertebrate animals recorded by motion-activated camera traps. (a) 

Set-up of motion-activated camera trap. (b) and (c) European rabbit (Oryctolagus cunniculus). (d) and 

(e) Culpeo (Lycalopex culpaeus). (f) Bennett’s chinchilla rat (Abrocoma bennettii). The yellow box 

highlights the position of the animal on the photo. Photo courtesy: Diana Kraus. 
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4.3. Methodology 

4.3.1 Time-of-Flight (ToF) principle 

A Time-of-Flight-based camera illuminates an object with a light source, usually in a non-visible 

spectrum, such as near-infrared, for a precise length of time. ToF cameras rely on the principle of 

measuring the phase shift, with different options to modulate the light source to be able to measure the 

phase shift. The here employed cameras used pulse-based modulation, meaning the light pulse was 

first emitted by the camera, then reflected from the surface, and finally measured by the camera using 

two temporary windows. The opening of the first window is synchronized with the pulse emission i.e. the 

receiver opens the window with the same Δt as the emitted pulse. Then, the second window is opened, 

for the same duration Δt, which is synchronised with the closing of the first window. The first temporary 

window thus measures the incoming reflected light while the light pulse is also still emitting from the 

camera. The second temporary window measures the incoming reflected light when no pulse is emitting 

from the camera. The captured photon number (i.e. measured by electrical charge) in both windows can 

be related according to equation 1 and the distance from the camera to the object can then be calculated 

as follows: 

𝑑 =
1

2
∗ 𝑐 ∗ 𝑡 ∗ (

𝑔1

𝑔1+𝑔2
) .         (1) 

In Eq. (1), d (m) is the distance from the camera to the object, c (m s-1) is the speed of light (299,792,458 

m s-1 ), t (s) is the overall time of the illumination and measurement, g1 is the ratio of the reflected photons 

to all photons accumulated in the first window, and g2 the ratio of the reflected photons to all photons 

accumulated in the second window (Sarbolandi et al., 2018; Li, 2014). 

The sensor in our camera came from Texas Instruments and the data scan contained 

information on 320 x 240 points. The camera field of view (FOV) and the spatial resolution of the scans 

depended on the height of the camera above the surface and camera orientation. The distance was 

calculated for every point, and the object was saved in binary format as a collection of 3D points with x-, 

y- and z-coordinates. The point clouds taken by the camera were transformed from the binary format to 

an ASCII format. Each point in the point cloud was assigned to an x-, y- and z-coordinate. The 

coordinates were distributed within a three-dimensional Euclidian space, with the point at the camera 

nadir (the centre of the camera sensor) being the point of origin of the 3D Cartesian coordinate system. 

x- and y-coordinates describe the distance to the point of origin (m). z-coordinate describes the distance 

(m) from the object to the camera. The lowest point of the scanned surface thus has the highest z-

coordinate value. 

 

4.3.2 Data processing 

The distortion caused by the hillslope and the camera angle was corrected for each point cloud 

as follows: 

𝑧𝑐𝑜𝑟 = 𝑧𝑢𝑛𝑐𝑜𝑟 − tan(α + β) ∗ (𝑦1 − 𝑦𝑖) .       (2) 

In Eq. (2), zcor is the corrected distance (m) between the camera and surface (m), zuncor is the uncorrected 

z-coordinate (m), α is the tilt angle of the camera (°), β is the surface inclination (°), and yi (m) is the 

distance between each point, and the point with i) an y-coordinate = 0 and ii) the same x-coordinate as 

the respective point. The most frequent errors were identified and treated as follows. Due to the ambient 
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light reaching the camera sensor, the z-coordinate values of some of the points were incorrect 

(scattering error). To remove this error, a threshold value was calculated for each point cloud: 

Ω = 𝑚𝑒𝑎𝑛𝑧𝑐𝑜𝑟−𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠  ±  𝑠𝑑𝑧𝑐𝑜𝑟−𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠  .     (3) 

In Eq. (3), Ω is the threshold value, meanzcor-coordinate is the average value, and sdzcor-coordinate is the 

standard deviation of the corrected z-coordinates (m). Then, all points with a z-coordinate above and 

below this value were deleted. Point clouds with more than 50% of points above the threshold value Ω 

were also not considered for further processing. A drift error occurred when the z-coordinate values of 

around one-third of the point clouds decreased by several centimetres from one point cloud to another. 

Here, the average z-coordinate of ten point clouds before and after the drift were calculated, and the 

difference was added to z-coordinates of the points affected by the drift. The corrected height values 

were then transformed into a digital surface model (DSM). 

 

4.3.3 Accuracy of the ToF cameras 

The accuracy of the ToF camera was tested under laboratory conditions by recreating similar surface 

conditions as in the field (sloping surface, covered by sediment). An artificial mound using sediment 

extracted from a riverbank in central Germany was used, mimicking a mound created by a burrowing 

animal. During the test, the camera was installed 100 cm above the surface. The camera FOV was 3 

m2 and the scan spatial resolution was 6 mm. The surface was scanned twice by the ToF camera. Then 

100 – 450 cm3 of sediment was manually extracted from the mound. The volume of the extracted 

sediment was measured by a measuring cup. After extraction, the surface was again scanned twice by 

the camera. The experiment was repeated 45 times with varying amounts of extracted sediment. The 

scans were transformed to point clouds in VoxelViewer-0.9.10, and the point clouds were corrected 

according to Eq. (2) and (3). The z-coordinates of the two point clouds before and two point clouds after 

the extraction were averaged. The standard deviation of the z-coordinate of the two scans was 0.06 cm. 

Figure 4.A1 shows the spatially distributed standard deviation. The deviation increases from the centre 

towards the corners of the scan. The mound was outlined and only the points representing the mound 

were used in the further analysis. The point clouds were then transformed into DSMs, and the 

differences between the time steps were calculated. A scan was taken of a smooth surface (linoleum 

floor) and a point cloud was created from the data. Then, we fitted a plane into the point cloud and 

calculated the distance between the plane and the camera sensor. The standard variation (0.17 cm) in 

the distance measurements was saved. Solely, the differences between the DSMs below this variation 

were considered in the calculation of the detected sediment extraction. The detected extracted sediment 

volume was then calculated for each experiment as follows: 

𝑉𝑜𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = ∑ (𝐷𝑆𝑀𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐷𝑆𝑀𝑎𝑓𝑡𝑒𝑟) ∗  𝑟𝑒𝑠21
𝑝   ,      (4) 

In Eq. (4), Voldetected is the volume of the extracted sediment as detected by the camera (cm3), p is the 

number of pixels, DSMbefore (cm) is the DSM calculated from the scan taken before the extraction, 

DSMafter (cm) is the DSM calculated from the scan taken after the extraction, res (cm) is the resolution 

of the scan, which was 0.6 cm. To evaluate the camera’s accuracy, the measured volume of the 

extracted sediment was compared to the volume detected by the camera. The camera’s accuracy was 

estimated between the detected volume and measured volume as follows: 
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𝑀𝐴𝐸 = ∑
(𝑉𝑜𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑−𝑉𝑜𝑙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

 𝑎𝑟𝑒𝑎 
 𝑛

1    .      (5) 

In Eq. (5), MAE (cm3/cm2) is the mean absolute error, n is the number of scans, Volmeasured (cm3) is the 

volume of the extracted sediment measured by the measuring cup, and the area is the total surface area 

monitored by the camera (cm2).   

 

4.3.4 Installation of the cameras in the field 

We installed 8 custom-tailored ToF-based cameras on 4 hillslopes in two climate zones in areas 

including visible signs of bioturbation activity (burrows) and areas without visible signs of bioturbation 

(Fig. 4.3). The cameras were installed in LC on the north-facing upper hillslope (LC-NU), north-facing 

lower hillslope (LC-NL), south-facing upper hillslope (LC-SU) and the south-facing lower hillslope (LC-

SL); in PdA on the north-facing upper hillslope (PdA-NU), north-facing lower hillslope (PdA-NL), south-

facing upper hillslope (PdA-SU) and south-facing lower hillslope (PdA-SL). The custom-tailored cameras 

were installed during a field campaign in March 2019, the monitoring took place for seven months, and 

the data were collected in October 2019. The construction consisted of a 3D ToF-based sensor from 

Texas Instruments (Li, 2014), a RasperryPi single board computer (SBC), a timer, a 12 V 12 Ah battery 

and three 20 W solar panels for unattended operation (Fig. 4.2). Solar panels were located at the camera 

pole and were recharging the battery via a charge controller. The camera was located approximately 

one meter above the surface, facing the surface with a tilt angle of 10 degrees. The timer was set to 

close the electric circuit 4 times a day: at 1 a.m., 5 a.m., 8 a.m. and 10 p.m. At these times, the camera 

and the computer were turned on for 15 minutes. The camera turned on and took five scans delayed 

one second from each other and sent them to the SBC. Each camera had its own WiFi (Wireless Fidelity) 

and the data could be read from the SBC via Secure Shell (SSH). The cameras collected the data for 

the time period of 7 months.  

 

  



 

72 
 

Figure 4.3. Scheme and photo example of a Time-of-Flight-based camera installation in the field. The 

photo example is from upper north-facing hillslope in La Campana. Black boxes describe single 

installation parts. Purple descriptions are the variables needed for the correction of the scans. Roof, 

entrance and mound describe parts of the burrow. The x-, y- and z-coordinates are 3D coordinates 

identifying the position of each point in space, where the x-coordinate is the length, y-coordinate is the 

width and the z-coordinate is the distance between the camera sensor and the surface. α is the 

inclination of the camera, and β is the surface inclination. 

 

4.3.5 Delineation of burrows and burrow embedding areas 

The surface area scanned by the cameras was divided by a delineation scheme into burrows 

(B) and burrow embedding areas (EM). The burrows included three sub-areas: (i) mound (M), (ii) 

entrance (E) and (iii) burrow roof (R). “Mound” describes the sediment excavated by the animal while 

digging the burrow. “Entrance” describes the entry to the animal burrow up to the depth possible to 

obtain via the camera. “Burrow roof” describes the part of the sediment above and uphill the burrow 

entrance (BANCROFT and Hill, D. and Roberts, J.D., 2004). During the burrow’s creation, sediment was 

not only excavated but also pushed aside and uphill the entrance, which created the burrow roof. We 

assume that this elevated microtopographical feature then forms an obstacle for sediment transported 

from uphill, which leads to its accumulation in this area. The remaining surface within the camera’s FOV 

was burrow embedding area. Please note, that this area may still be affected by the burrowing activity 

of the animal and is not completely unaffected by the animal.  

For the delineation, we used the DSM calculated from the point cloud, and a slope layer 

calculated from the DSM (Horn, 1981). The DSM had a size of 4 m2 a resolution of 0.6 cm. Entrance 

was assigned to an area determined by a search algorithm starting at the lowest point of the DSM (pixel 

with the highest z-coordinate value). We increased the circular buffer around the starting point by one 

pixel until the average depth of the new buffer points was not higher than the height of the camera above 

the surface, or until the slope of at least 50% of the new buffer points was not 0. Then, we masked all 

pixels within the buffer with a depth lower than the average depth of the points within the buffer, which 

had a slope that was 0. The remaining pixels belonged to the entrance area. Then, the surface scan 

was divided into an uphill and downhill part with regards to the entrance position. Both the uphill and the 

downhill parts were subdivided into 16 squares, so that each of the four quadrants within the 2D grid (x- 

and y-axis) contained four squares. The squares had size of 0.5 m2. 

To delineate the mound in the downhill part, we first identified the highest points (pixel with the lowest 

z-coordinate value) within all 16 squares. We then calculated the distance of these maxima to the 

entrance, and the pixel located nearest to the entrance was identified as the highest point of the mound 

(i.e., seed point). Consecutively, we increased the circular buffer around the seed point by one pixel until 

the average depth of the new buffer points was not lower than the height of the camera above the 

surface, or until the slope of at least 50% of the new buffer points was not 0. Then, we masked all pixels 

within the buffer with a depth higher than the average depth of the points within the buffer, which had a 

slope that was 0. The remaining pixels were classified as mound area. To delineate burrow roof, we 

used the same approach as for the delineation of mound and applied it on the uphill part of the surface 



 

73 
 

scan. We used the DEM and slope layers for the delineation for several reasons. The distance from the 

surface to the camera was the most important parameter to derive (i) the deepest point of the entrance 

and (ii) the highest point of the mound or burrow roof, as this was (mostly) the closest point to the 

camera. After the angle correction of the z-coordinate according to chapter 3.2., the surface inclination 

of the areas without burrow was 0°, while the angle between the border of the burrow entrance or mound 

and the burrow embedding surface was above 0°. Because neither the entrance nor the mound have a 

perfect circular form, we would largely overestimate or underestimate the entrance or mound size. 

Overestimate by not stopping the search algorithm until the angle between all new points of the buffer 

to the rest of the buffer was 0°. Underestimate by stopping the algorithm when the angle of one point of 

the buffer to the nearest point of the buffer was 0°. The value of 50% thus minimized the error. All pixels 

that were not classified during the entire delineation process were treated as burrow embedding areas.  

The position and the boundaries of entrance, mound and burrow roof were validated visually (Fig. 4.4 

and A2).  

  

Figure 4.4. Corrected digital surface model of the camera on the upper north-facing hillslope in La 

Campana with delineated areas. The point of origin of the coordinate system is at the camera nadir. 

Distance refers to the distance between surface and camera. The red line delineates the burrow 

entrance, blue the mound and orange the burrow roof. The area which was outside of any delineated 

area was classified as burrow embedding area. The arrow indicates a downhill direction of the hillslope.   

 

In LC, the burrows always consisted of an entrance, mound and burrow roof. In PdA, there was 

no burrow roof on the upper hillslopes. Burrows without a burrow roof were located on shallower parts 

of the hillslopes (up to an inclination of 5°), and the angle of the burrow entrance to the ground was 

~90°. Burrows with a burrow roof were located on steeper parts of the hillslopes (with an inclination 

above 5°), and the angle of the burrow entrance to the ground was ~45°. 

  

4.3.6 Calculation of animal-caused and rainfall-caused sediment redistribution 

We pairwise compared the DSMs of each scan with the scan saved before and identified 3 types 

of sediment redistribution which occurred in the time period between these images. The 3 types of 

redistribution were: a) animal caused; b) rainfall-caused; c) both animal and rainfall caused.  

The animal-caused sediment redistribution occurred when the animal actively reworked 

sediment within its burrow. Following five prerequisites had to be met when the sediment redistribution 
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was caused solely by the animal: (i) as the animal excavates sediment from the entrance, the depth of 

the entrance must increase in the second scan; (ii) as the excavated sediment accumulates on the 

mound, the height of the mound must increase in the second scan; (iii) as the burrowing might lead to 

an expansion or a collapse of the burrow roof, an increase or decrease of the burrow roof must occur 

between the scans; (iv) as the animal only digs within his burrow, no changes must occur between the 

two scans within the burrow embedding area by the animal; (v) no rainfall occurred during this period.  

The rainfall-caused sediment redistribution was calculated as follows: From the data from the 

climate stations (Übernickel et al., 2021b), we calculated the daily precipitation in mm. The sediment 

redistribution recorded immediately and within five scans before and after a rainfall event is defined to 

be the result of the rainfall event. This was necessary as the climate stations are located up to a 15 km 

distance from the cameras (Fig. 4.1). To attribute sediment redistribution to rainfall event, three 

preconditions had to be met: (i) A rainfall event occurred; (ii) sediment is eroded from burrow roof, mound 

and the embedding area; (iii) sediment is accumulated within the burrow entrance. 

To attribute sediment redistribution to a combination of animal activity and rainfall, four 

preconditions had to be met: (i) A rainfall event occurred; (ii) sediment is eroded from embedding area; 

(iii) the height of burrow roof and mound decreased or increased; (iv) the depth of burrow entrance 

increased.  

The animal-caused sediment redistribution was calculated as the sediment volume excavated 

from the entrance. Animal excavation always increased depth of the burrow entrance. The rainfall-

caused sediment redistribution was calculated as the sediment volume which eroded from the burrow 

roof and mound. During a rainfall event, sediment eroding from burrow roof might accumulate within 

burrow entrances. In this case, the depth of the burrow entrance decreased. No sediment could erode 

from the entrance during a rainfall event. Decreased depth of a burrow entrance always points to 

sediment redistribution caused by rainfall, increased depth of burrow entrance always means 

redistribution by animals. Rainfall-caused redistribution always occurred before animal-caused 

redistribution, as without erosion caused by rainfall, the animals did not need to reconstruct their 

burrows. 

 

4.3.7 Calculation of daily sediment mass balance budget  

The volume of the redistributed sediment was calculated daily and was then cumulated from 

the first day of monitoring. For the calculation of the daily sediment redistribution, the change in the 

surface level detected by the camera was calculated first. For each day, the scans from the day before 

and after the respective day were averaged and subtracted. The average standard deviation of the z-

coordinate of these scans was 0.06 cm. As described in Section 2.2., all values with a difference below 

and above the threshold value of 0.2 cm were set to 0. The redistributed sediment volume was then 

calculated from the surface change for each pixel as follows: 

𝑉𝑜𝑙𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = (𝑆𝑏  − 𝑆𝑎) ∗ 𝑟𝑒𝑠2 .       (6) 

In Eq. (6), Volredistributed (cm3 pixel-1) is the volume of the calculated redistributed sediment, Sb (cm) the 

scan before, Sa (cm) the scan after the rainfall event and res is the spatial resolution (cm). Using the 

daily volume of the redistributed sediment per pixel, we calculated the daily mass balance budget by 

summing the volume of sediment eroding or accumulating within each delineated area. 
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4.3.8 Calculation of the overall volume of redistributed sediment after the period of 7 months 

From the camera data, we calculated the average cumulative volume of redistributed sediment 

for the period of 7 months within burrows (Volburrows (cm3 cm–2 year–1)) and burrow embedding (Volembedding 

(cm3 cm–2 year–1)) areas and the average sediment volume redistributed (excavated) by the animal 

(Volexc (cm3 cm–2 year–1)), separately for each site.  We estimated the volume of sediment that was 

redistributed during rainfall events due to the presence of the burrow (Voladd (cm3 cm–2 year–1)). Voladd 

was calculated as the difference in the redistributed sediment volume between burrows and burrow 

embedding areas according to Eq. (7). 

𝑉𝑜𝑙𝑎𝑑𝑑 = (𝑉𝑜𝑙𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 − 𝑉𝑜𝑙𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑) ∗ 1.71   ,      (7) 

Additionally, we calculated the average volume of the redistributed sediment per burrow (Volper burrow 

[cm3 burrow-1 year -1]).  

𝑉𝑜𝑙𝑝𝑒𝑟 𝑏𝑢𝑟𝑟𝑜𝑤 = (𝐴𝑟𝑒𝑎𝑏𝑢𝑟𝑟𝑜𝑤 ∗ 𝑉𝑜𝑙) ∗ 1.71       (8) 

In Eq. (8), Areaburrow (cm2) is the average size of the burrows that are monitored by the cameras; Vol is 

Volburrow (cm3 cm–2 year –1), Volexc (cm3 cm–2 year –1) or Voladd (cm3 cm-2 year -1).  

We then upscaled the Volburrow (cm3 cm–2 year–1), Volexc (cm3 cm–2 year–1)) and Voladd (cm3 cm–2 

year –1)) to the hillslope using the following approach. Hillslope-wide upscaling of the results generated 

in this study was performed by using a previous estimation of vertebrate burrow density (Grigusova et 

al., 2021). In this study, the density of burrows was measured in situ within eighty 100 m2 plots and then 

upscaled to the same hillslopes on which the cameras were located by applying machine-learning 

methods, using the UAV-data as predictors. For upscaling, we applied a random forest model with 

recursive feature elimination. The model was validated by a repeated Leave-One-Out cross validation. 

The density of vertebrate burrows was between 6 and 12 100 m2 in LC and between 0 and 12 100 m–2 

in Pan de Azúcar. Using the hillslope-wide predicted vertebrate burrow densities (Densburrow (number of 

burrows 100 m–2)) from Grigusova et al. 2021, we estimated the volume of redistributed sediment for 

each pixel of the raster layers (Volper pixel (cm3 m–2 year–1)) according to Eq. (9): 

𝑉𝑜𝑙𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 = 𝑉𝑜𝑙𝑝𝑒𝑟 𝑏𝑢𝑟𝑟𝑜𝑤 ∗   𝐷𝑒𝑛𝑠𝑏𝑢𝑟𝑟𝑜𝑤 ∗ 1.71       (9) 

The average hillslope-wide volume of redistributed sediment (Volhillslope-wide (m3 ha–1 year–1)) was 

then estimated as follows: 

𝑉𝑜𝑙ℎ𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒−𝑤𝑖𝑑𝑒 = ∑ 𝑉𝑜𝑙 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙  𝑚
1 ∗ 0.001 ∗ 1.71   ,    (10) 

In Eq (10), m is the number of pixels.  

 

4.4. Results 

4.4.1 Camera accuracy and data availability 

The accuracy between the measured extracted sediment volume and sediment volume 

calculated from the camera scans was very high (MAE = 0.023 cm3 cm–2, R2 = 0.77, SD = 0.02 cm3 cm–

2, Fig. 4.A3). The accuracy between the calculated and measured extracted sediment was higher when 

the two scans taken before as well as after the extraction of the sediment were averaged and the 

sediment volume was estimated using these averaged scans. When calculating the redistributed 
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sediment from solely one scan before and after extraction, the accuracy slightly decreased (MAE = 

0.081 cm3 cm–2, R2 = 0.64). The cameras tended to overestimate the volume of redistributed sediment. 

Six out of eight custom-tailored cameras collected data over the seven-month period (Table 4.A2). One 

camera collected data for a period of three months and one camera stopped working a few days after 

installation. The quantity of usable point clouds taken at 1 a.m., 5 a.m. and 10 p.m. was higher than of 

point clouds taken at 8 a.m. Approximately 20% of points was removed from the point clouds before 

final analysis due to the high scattering at the point cloud corners. After data filtering (see Section 3.2.), 

1326 scans were usable and for 86% of the days, at least one usable scan was available. The usable 

scans were distributed continuously within the monitoring period. 

 

4.4.3 Mass balance of redistributed sediment  

The cameras detected (i) sediment redistribution directly following rainfall events and (ii) due to 

the burrowing activity in times without rainfall (Fig. 4.5, A4 and A5). In all cases, burrows (entrance, 

burrow roof and mound) exhibited higher sediment redistribution rates than burrow embedding areas. 

In addition, the volume of redistributed sediment by animal activity was higher after a rainfall event 

occurred.  

In the following, the dynamics are exemplary explained for four cameras. Animal burrowing 

activity was detected seven times by the camera LC NU (Fig. 4.5a, A4, A5) during the monitoring period, 

by an increase in sediment volume in the area delineated as mound. Simultaneously, the burrow 

entrance showed signs of modification and sediment accumulation, but these changes were less clear. 

Overall, the volume of the excavated soil varied. From April until June, up to 0.5 cm3 cm–2 of sediment 

was excavated by the animal and accumulated on the mound. From June until September, animal 

burrowing activity was detected at four time slots (5 June 2019, 9 June 2019, 1 July 2019 and 18 August 

2019) and sediment volume of up to 2 cm3 cm–2 accumulated each time on the mound, burrow roof and 

within the entrance. During the rainfall events of up to 20 mm day–1 on 16 June 2019, 27 mm day–1 on 

29 June 2019 and 7 mm day–1 on 13 July 2019, sediment volume of up to 4 cm3 cm–2 eroded, especially 

from the burrow roof and the mound while a sediment volume of up to 1 cm3 cm–2 accumulated within 

the entrance during each rainfall event.  Camera LC-SL (Fig. 4.A4, A5) showed burrowing activities eight 

times and sediment volumes of up to 3 cm3 cm–2 accumulated within the entrance and burrow roof. The 

camera detected sediment erosion of up to 2 cm3 cm–2 after a rainfall event of 27 mm day–1 on 27 July 

2019. On the south-upper hillslope, the camera detected animal burrowing activity six times, with a 

sediment accumulation of up to 3 cm3 cm–2 (Fig. 4.A2 and A3). 

In contrast, camera PdA-NU pointed to animal burrowing activity up to 15 times where up to 1 

cm3 cm–2 of sediment volume was redistributed from the entrance to the mound (Fig. 4.5b, A4, A5). At 

the end of June on 27 June 2019, a rainfall event of 1.5 mm day–1 occurred and up to 2 cm3 cm–2 of 

sediment eroded from the burrow roof and accumulated within the burrow entrance. We observed 

increased sediment redistribution by the animal after the rainfall events. Camera PdA-SL evenly 

revealed animal burrowing activity up to 15 times ((Fig. 4.A4, A5)). The burrowing had a strong effect on 

the sediment redistribution. The rainfall event of 1.5 mm day–1 on 27 June 2019 did not cause any 

detecTable 4.surface change.   
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Figure 4.5. Examples of the mass balance of redistributed sediment for burrows and burrow embedding 

areas (a) The record of the camera on the upper north-facing hillslope in La Campana showed that 

larger rainfall events cause a negative sediment balance (sediment loss), followed by a phase of positive 

sediment mass balance after approximately 3 days due to sediment excavation; (b) The record of the 

camera on the upper north-facing in Pan de Azúcar hillslope showed a similar pattern to the camera on 

the upper north-facing hillslope, but the phase of positive mass balance was delayed in comparison. 

The blue line is the daily precipitation in mm day–1, and “X” marks the days at which animal burrowing 

activity was detected. Positive values indicate sediment accumulation. Negative values indicate 

sediment erosion. Mass balances for all cameras are displayed in Fig. 4.A2 and A3.   

 

The analysis of cumulative volume of the redistributed sediment caused by burrowing animal 

activity and rainfall over the monitored period of seven months for all eight cameras showed a 

heterogeneous pattern.  

In LC, the cumulative volume of the sediment excavated by the animal within the burrow roof 

and mound increased continuously (Fig. 4.6, A7). Especially between the rainfall events from June until 

August, a cumulative volume of on average 6.5 cm3 cm–2 was excavated by the animal. We calculated 

that, on average, 8.53 cm3 cm–2 cumulatively eroded from the burrow roof and mound; while 2.44 cm3 
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cm–2 sediment volume accumulated within the entrance (Fig. 4.6, A7). These results indicate that 28% 

of sediment eroding from the burrow roof accumulated within the entrance, while over 62% of sediment 

eroded downhill. Averaged over all camera scans, 338% more sediment was redistributed by rain within 

burrow compared to the burrow embedding area (Fig. 4.7).  

In PdA, cameras continuously detected animal burrowing activity and excavation of the 

sediment (Fig. 4.A7). The volume of the detected excavated sediment increased steadily within all 

cameras. The cumulative sediment accumulation surpasses the sediment eroded due to the rainfall. 

The volume of the sediment eroded within the burrows was 40% higher than within the burrow 

embedding areas. The results show that approximately 50% of the eroded sediment accumulated within 

the entrance (Fig. 4.7).  

 

 

Figure 4.6. Examples of the cumulative volume of redistributed sediment within burrows and burrow 

embedding areas caused by animal burrowing activity or rainfall in mediterranean La Campana: (a) 

Upper north-facing hillslope; (b) Lower south-facing hillslope. Positive values indicate sediment 

accumulation. Negative values indicate sediment erosion. E is the burrow entrance; M is the mound; R 

is burrow roof; EM is the burrow embedding area. Cumulative volumes for all cameras are in Fig. 4.A7. 
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Figure 4.7. Cumulative volume of the redistributed sediment for the time period of 7 months for all 

cameras. Positive values indicate sediment accumulation. Negative values indicate sediment erosion. 

Whiskers indicate the median of sediment redistribution. E is the burrow entrance; M the mound; R is 

the burrow roof; EM is burrow embedding area; LC stands for National Park La Campana in the 

mediterranean climate zone; PdA stands for National Park PdA in the arid climate zone.  

 

4.4.4 Volume of redistributed sediment 

The average size of the burrows was 84.3 cm2 (SD = 32.5 cm2) in LC and 91.3 cm2 in PdA (SD = 8.5 

cm2). The animals burrowed on average 1.2 times month-1 in LC and 2.3 times month-1 in PdA. The 

volume of the excavated sediment was 102.2 cm-3 month-1 in LC and 124.8 cm3 month-1 in PdA. Each 

time the animals burrowed, they excavated 42 cm3 sediment volume in LC and 14.3 cm3 sediment 

volume in PdA. The burrowing intensity increased in winter after the rainfall occurrences in LC and 

stayed constant during the whole monitoring period in PdA. The burrows deteriorate after rainfall events 

with a rate of 73.0 cm3 month-1 or 63.9 cm3 event-1 in LC and 10.5 cm-3 month or 24.5 cm3 event-1. 

The overall volume of the sediment excavated by the animal and redistributed during rainfall 

events varied between the sites (Table 4.1). The volume of the sediment redistributed by the animal was 

lower in LC than in PdA. However, on the hillslope scale, a higher total area-wide volume of excavation 

was calculated for LC compared to PdA, due to the higher burrow density in LC. The volume of the 
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sediment redistributed within burrows during rainfall events was higher in LC than in PdA. The volume 

of additionally redistributed sediment due to the presence of burrows was higher in LC than in PdA 

(Table 4.2, Fig. 4.8). 

 

 

Figure 4.8. Example of the hillslope-wide volume of redistributed sediment on the south-facing hillslope 

in La Campana: (a) Density of burrows as estimated by Grigusova et al. (2021); (b) Volume of the 
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sediment excavated by the animals; (c) Volume of the sediment redistributed during rainfall events within 

burrows; (d) Volume of additionally redistributed sediment during rainfall events due to the presence of 

the burrows. The values were calculated per burrow as stated in Section 3.7. by subtracting the sediment 

volume redistributed within burrows from the sediment volume redistributed within burrow embedding 

area and then upscaled. The letters in brackets indicate if the upscaling was conducted using data from 

burrows or burrow embedding areas. “B” stands for burrow. By “EM-B”, the redistribution calculated 

within burrow embedding areas was subtracted from the redistribution calculated within burrows to 

obtain the additional volume of redistributed sediment due to the burrows’ presence. Positive values 

indicate sediment accumulation. Negative values indicate sediment erosion. 

 

Table 4.2. Summary of the volume of redistributed sediment, according to area and disturbance type. 

Volexc describes volume of the sediment excavated by the animals. Volburrow describes volume of the 

sediment redistributed during rainfall events within burrows. Voladd describes the difference in 

redistributed sediment volume within burrows and burrow embedding areas during rainfall. Positive 

values indicate sediment accumulation; negative values indicate sediment erosion.  

Disturbance Area PdA LC 

Volexc Burrow   16.4 cm3 cm-2 year-1 14.6 cm3  cm-2 year-1 

 Per burrow  1498.6 cm3  burrow-1  year-1 1226.1 cm3  burrow-1 year-1 

 Hillslope-

wide 

0.8 m3  ha-1 year-1 0.7 m3  ha-1  year-1 

Volaffected Burrow   -1.9 cm3  cm-2 year-1 -10.4 cm3  cm-2  year-1 

 Per burrow  -126.3 cm3  burrow-1 year-1 -876.8 cm3  burrow-1  year-1 

 Hillslope-

wide 

-0.1 m3  ha-1 year-1 -0.4 m3  ha-1  year-1 

Voladd Burrow   -1.1 cm3  cm -2  year-1 -7.3 cm3  cm-2 year-1 

 Per burrow  -48.3 cm3  burrow-1  year-1 -619.2 cm3  burrow-1  year-1 

 Hillslope-

wide 

-0.1 m3  ha-1  year-1 -0.3 m3  ha-1  year-1 

 

 

4.5. Discussion 

Our results showed that the custom-made ToF device is a suiTable 4.tool for high-resolution, 

automated monitoring of surface changes, applicable also in remote areas. The continuous observation 

of sediment redistribution over a longer time period provided new insights into the relative importance 

of burrowing animals for hillslope sediment flux. Our research revealed that the presence of vertebrate 

burrows increases hillslope sediment redistribution rates much more than previously assumed (increase 

of up to 208%). We showed that the quantity of animal-related sediment redistribution, however, varied 

with rainfall occurrence, with an increase in sediment redistribution between 40% in the arid research 

area and 338% percent in the mediterranean research area. 
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4.5.1 Suitability of the ToF - cameras for surface monitoring 

The newly introduced monitoring technique ToF enables an automatic monitoring of surface 

changes on a microtopographic scale, and is less costly and invasive than other techniques. The 

measurement continuity of the device also allows for the analysis of ongoing biogeomorphological 

processes in high temporal and spatial resolution.  

With regard to the costs, measurement frequency and sampling autonomy, the custom-made ToF device 

constitutes an improvement to earlier studies which used laser scanning technology to monitor 

microtopographic changes (Table 4.A5).  This is because previous studies applied expensive laser 

scanning for the estimation of sediment redistribution, and due to the costs of the instrument it was not 

left in the field for continuous measurements, and hence research sites had to be revisited for each 

measurement (Nasermoaddeli and Pasche, 2008; Eltner et al., 2016a; Eltner et al., 2016b; Hänsel et 

al., 2016). The estimated costs in studies using time-lapse photogrammetry were similar to our study 

(up to 5000 USD) (James and Robson, 2014; Galland et al., 2016; MALLALIEU et al., 2017; Eltner et 

al., 2017; Kromer et al., 2019; Blanch et al., 2021). However, time-lapse monitoring needs several 

devices set up in different viewing angles, which increases installation efforts and disturbance 

significantly.  

In terms of data quality, our ToF device is more precise or comparable to those employed in 

earlier studies using ToF. The accuracy of the camera (R2 = 0.77) was in the range of previous studies 

(R2 = 0.26–0.83 (Eitel et al., 2011), Table 4.A5). The horizontal point spacing of our cameras was 0.32 

cm, and the maximum number of points per cm2 was 8.5. These values are similar to previous studies 

in which the used devices had a horizontal point spacing in the range of 0.25–0.57 cm (Kaiser et al., 

2014; Nasermoaddeli and Pasche, 2008)) (Table 4.A5), and the maximum number of points per cm2 in 

a range of 1 point–25 points cm-2 (Eitel et al., 2011; Longoni et al., 2016) (Table 4.A5).  

Our cameras tended to slightly overestimate or underestimate the volume of redistributed 

sediment. This error occurs when the pulse reflects from several vertical objects such as walls or, in our 

case, branches or stones and then enters the camera sensor. This phenomenon was also observed in 

previous studies applying laser scanners and is ineviTable 4.if the goal is to study surface changes 

under natural field conditions  (Kukko and Hyyppä, 2009; Ashcroft et al., 2014). During operation of the 

cameras, we learnt that our newly developed instruments are particularly capable of delivering usable 

scans at night. This is likely due to the strong scattered sunlight reaching the camera sensor during the 

day, blurring the data (Li, 2014). Thus, in future studies, we recommend focusing on nocturnal operation 

to prevent light contamination. 

  

4.5.2 The role of climate variability and burrowing cycles 

We have found that rainfall plays a key role in triggering burrowing activity, which means that 

wet seasons experience higher sediment redistribution rates than dry seasons. In the year of 

investigation (2019), the dry season lasted from January until April, and from September until December 

(8 months), and the wet season lasted from May until August (4 months). The monitoring period lasted 

from March until October which covered 3 dry and 4 wet months (7 months in total). A yearly rate of 

sediment redistribution can be calculated by simply averaging the redistribution rate of the 7 monitored 
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months and multiplying this result by 12 months, which results in an average redistribution rate of 0.4 

m2 ha-1 year-1 for LC and 0.1 m2 ha-1 year-1 for PdA. However, because burrowing activity and rain-driven 

sediment redistribution is mainly determined by rainfall, this method might have led to an overestimation 

of the annual redistribution rate based on averaging, because the unmonitored part of the year 2019 

was predominantly dry (Übernickel et al., 2021b). This can be accounted for by adding five times the 

dry month redistribution rate to the monitored 7 months, which leads to a lower annual redistribution 

rates for LC of 0.3 m2 ha-1 year-1 and for PdA of 0.1 m2 ha-1 year-1. Our values might thus overestimate 

sediment redistribution for the year 2019. This difference between both values (0.1 m2 ha-1 year-1 for LC 

and under 0.1 m2 ha-1 year-1 for PdA) can be interpreted as the uncertainty range for the year of 

observation.  

However, decadal rainfall variability indicates that the year of monitoring (2019) was among the 

drier years of the last 30 years (Yáñez et al., 2001; Valdés-Pineda et al., 2016; Garreaud et al., 2002; 

Wilcox et al., 2016)). The amount of precipitation since 1980 ranges from 200 mm until 800 mm per year 

(https://climatologia.meteochile.gob.cl/application/requerimiento/producto/RE3005) while the amount of 

precipitation in 2019 was just above 100 mm. This means, our results might underestimate sediment 

redistribution on a longer time perspective by 2 - 7 times.  

Furthermore, the phenology of the burrowing animals is an additional source for uncertainty 

when calculating annual rates. The most common burrowing animal families in the area are active for 

three months of the year. The months in which they are active, are between April and September. None 

of the most common burrowing animal families were reported to be active from November until February. 

(Eccard and Herde, 2013; Jimenez et al., 1992; Katzman et al., 2018; Malizia, 1998; Monteverde and 

Piudo, 2011). This is also in line with our observations, because burrowing intensity increased from 

March until May, reached its peak between May and June and declined until September (Figure 4.6). 

By extrapolating from 7 months to one-year period, our estimated excavation was 0.7 m2 ha-1 year-1 in 

LC and 0.8 m2 ha-1 year-1 in PdA. By adding five times the low active months to the 7 months of 

observation, the estimated excavation would be 0.6 m2 ha-1 year-1 in LC and 0.6 m2 ha-1 year-1 in PdA. 

Our values might thus overestimate the sediment excavation and the excavation uncertainty range is 

0.1 m2 ha-1 year-1 for LC and 0.2 m2 ha-1 year-1 for PdA.  

 

4.5.3. Sediment Redistribution 

Our research reveals that the presence of vertebrate burrows generally increases hillslope 

sediment redistribution. We show, however, that the ratio between the sediment redistribution caused 

by rainfall within burrow and burrow embedding areas varies between climate zones. Sediment 

redistribution within burrow areas was 40% higher at the arid research site, and at the mediterranean 

research site, it was 338% higher when compared to burrow embedding area (Table 4.A6). 

By monitoring microtopographical changes in a high spatio-temporal resolution, we found that 

the occurrence of larger rainfall events played a two-fold, accelerating role in influencing sediment 

redistribution (Fig. 4.9). Firstly, rainfall-runoff eroded burrow material caused increased sediment loss. 

This was followed by animal burrowing activity after the rainfall. This means that  rainfall triggered animal 

burrowing activity which was very likely related to a lower burrowing resistance of the soil due to the 

increased soil moisture (Rutin, 1996; Romañach et al., 2005; Herbst and Bennett, 2006). This double 
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feedback led to frequently occurring but small redistribution rates. However, cumulatively, the 

mechanism increased downhill sediment fluxes. Previous studies most likely missed this low magnitude 

but frequent surface processes due to a lower monitoring duration and frequency, or artificial laboratory 

conditions, and thus, did not quantify the full volume of redistributed sediment associated with burrowing 

activity. To quantify all occurred sediment redistribution processes, a continuous surface monitoring, like 

the here presented, is needed.  

 

 

Figure 4.9. Scheme of animal-driven and rainfall-driven sediment redistribution processes in both 

investigated climate zones: (a) Describes the initial surface of the burrow before the start of a sediment 

redistribution process, and (b) the animal excavation process in the arid climate zone. Here, due to 

rarely occurring rainfall events, sediment redistribution is mostly controlled by the animal burrowing 

activity; (c) describes the initial burrow surface in the mediterranean climate zone, (d) the process of 

sediment redistribution during a rainfall event and (e) the subsequent animal burrowing activity. 

Burrowing is triggered by decreased soil resistance due to the increased soil moisture after rainfall as 

well as by sediment accumulation within the burrow’s entrance. Burrowing activity leads to a new supply 

of sediment being excavated to the surface. In the mediterranean climate zone, sediment redistribution 

is controlled by both animal burrowing activity and rainfall. The alternating excavation and erosion 

process ultimately lead to an increase in redistribution rates.  
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Our results indicate an up to 338% increase in the sediment volume redistributed during rainfall events 

measured within burrows when compared to burrow embedding areas. In contrast to our result, the 

maximum increase estimated in previous studies was 208% (Table 4.A6, (Imeson and Kwaad, 1976). 

The two climate zones also show different patterns: In the mediterranean climate, the contribution of 

animals’ (vertebrates’) burrowing activity appear larger than previously observed by using field methods 

such as erosion pins or splash traps (from –3% until – 208%, Table 4.A6, (Imeson and Kwaad, 1976; 

Hazelhoff et al., 1981; Black and Montgomery, 1991). In contrast, in arid PdA, our study found a much 

smaller increase (40%, Table 4.A6) in the sediment volume redistributed during rainfall events measured 

within burrows when compared to burrow embedding areas. This is lower than previously estimated 

(125%, Table 4.A6, (Black and Montgomery, 1991). However, solely one rainfall event above 0.2 mm 

day–1 occurred during our monitoring period. Hence, we conclude that the contribution of burrowing 

activity of animals to hillslope sediment transport is much larger in areas with frequent rainfall events 

than previously thought, while it has been realistically estimated by previous studies for areas with rare 

rainfall events (Table 4.A6).  

Magnitudes of sediment volume redistributed within burrows similar to our results were 

previously obtained solely in studies applying rainfall simulators. These studies estimated an increase 

in the volume of sediment redistributed during rainfall events, measured within burrows when compared 

to burrow embedding areas, to be between 205% and 473% (Table 4.A6, (Li et al., 2018; Chen et al., 

2021). However, a rainfall simulator can only provide data on surface processes within a plot of a few 

m2 in size and under ideal laboratory conditions while ignoring the uphill microtopography, vegetation 

cover and distribution (Iserloh et al., 2013), which were shown to reduce erosion rates. More importantly, 

the rainfall intensity on hillslopes decreases with (i) the angle of incidence of the rain, (ii) the inclination 

of the surface and iii) the relative orientation of the sloping surface to the rain vector (Sharon, 1980). 

When simulating a rainfall event with the same rainfall volume as in the field, the rain is induced directly 

over the treated surface and has thus a higher velocity which leads to an increased splash erosion than 

under natural conditions (Iserloh et al., 2013). We thus propose that the rainfall experiments 

overestimate the erosion rate while the correct erosion rate can be measured solely under field 

conditions.  

Cumulative sediment redistribution within burrow roof, mound and entrance was, on average, 

28% lower than cumulative sediment redistribution only within the mound and the burrow roof (Figure 

4.A7). These results suggest that 28% of the eroded sediment from animal mounds and burrow roofs is 

re-accumulated within the burrow entrance during rainfall-runoff events, and the remaining 62% is 

incorporated into overall hillslope sediment flux. Our numbers contrast with previous studies, which 

quantified that about 58% of the sediment excavated by animals will accumulate back in the burrow 

entrance and only 42% is incorporated to downhill sediment flux (Andersen, 1987; Reichman and 

Seabloom, 2002). Hence, our results indicate not only higher redistribution rates within burrows by 

burrowing animals but also point to much higher supply of sediment to the downhill sediment flux than 

previously thought.   

Our cost-effective ToF device provides data on surface changes in a high spatio-temporal 

resolution. The high temporal resolution was able to unravel ongoing low magnitude but frequent animal 
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excavation and erosion processes. The high spatial resolution enabled us to estimate the exact volume 

of sediment fluxes from the burrows downhill. The here presented results indicate that the contribution 

of burrowing animals on the burrow as well as on the hillslope scale was much higher than previously 

assumed. Our results can be integrated into long-term soil erosion models that rely on soil processes 

and improve their accuracy by including animal-induced surface processes on microtopographical 

scales in their algorithms. 
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Supplementary Material 

Table 4.A1. List of abbreviations 

α [°] Tilt angle of the camera 

b [°] Surface inclination 

Ω Threshold value for the scan scattering error 

B Burrow 

Areaburrow mean in the field measured size of the burrows which are monitored 

Area total surface area monitored by the camera 

BD  Bulk density 

c [m/s] Speed of light 

D Distance from the camera to the object 

Densburrow Burrow density 

DSM Digital surface model 

DSMafter DSM calculated from the scan taken after the extraction 

DSMbefore DSM calculated from the scan taken before the extraction 

EM Burrow embedding area 

Entrance entrance to the animal burrow 

g [-] ratio [-] of the reflected photons to all photons  

LC National Park LC 

LC-NL Camera in LC on the lower north-facing hillslope 

LC-NU Camera in LC on the upper north-facing hillslope 

LC-SL Camera in LC on the lower south-facing hillslope 

LC-SU Camera in LC on the upper south-facing hillslope 

MAE Mean absolute error 

MAP [°] Mean annual precipitation 

m.a.s.l. Meters above sea level 

MAT  Mean annual temperature 
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mClay [%] Mean content of clay 

meanz-coordinate Mean value of the z-coordinates 

Mound the sediment excavated by the animal while digging the burrow 

mSand [%] Mean content of sand 

mSilt [%] Mean content of silt 

n Number of scans 

PdA National Park Pan de Azúcar 

PdA-NL Camera in PdA on the lower north-facing hillslope 

PdA-NU Camera in PdA on the upper north-facing hillslope 

PdA-SL Camera in PdA on the lower south-facing hillslope 

PdA-SU Camera in PdA on the upper south-facing hillslope 

Res Resolution 

Roof sediment pushed aside and uphill the entrance during burrow creation 

Sa scan after the rainfall event 

Sb scan before the rainfall event 

SBC Single board computer 

sdz-coordinate standard deviation of the z-coordinates 

SSH Secure shell 

t [s] Overall time of camera illumination 

TOC [%] Total organic carbon 

ToF Time-of-Flight 

Volburrow volume of redistributed sediment within burrow 

Voldetected volume of the extracted sediment as detected by the camera 

Voladd difference in redistributed sediment volume between burrows and burrow 

embedding areas 

Volexc Volume of the sediment excavated by the animal 

Volhillslope-wide Hillslope-wide volume of redistributed sediment 

Volmeasured volume of the extracted sediment measured by the measuring cup 

Volper burrow Volume of redistributed sediment per burrow 

Volper pixel Volume of redistributed sediment per pixel 

Volredistributed volume of the calculated redistributed sediment 

Volembedding volume of redistributed sediment within burrow embedding area 

yi distance of the point to the point of origin at the camera nadir 

zcor Corrected z-coordinate 

zuncor Uncorrected z-coordinate 

 

Table 4.A2. Number of usable scans for each camera 

Camera Latitude Longitud

e 

Number of 

scans 

Percentage of usable scans 

taken at 1am / 5am / 8am / 10pm 

Time 

period 
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PdA-NU -25.98131 -70.6166 238 29 / 27 / 20 / 24 18.3.-18.9. 

PdA-NL -25.98277 -70.61278 52 24 / 0 / 40 / 36 27.3.-31.5 

PdA-SU -25.97477 -70.61641 351 30 / 26 / 32 / 11 16.3.-19.9. 

PdA-SL -25.97177 -70.61409 167 48 / 38 / 7 / 8 16.3.-19.9. 

LC-NU -32.95230 -71.06231 215 37 / 20 / 8 / 33 9.3.-9.9. 

LC-NL -32.93928 -71.08613 3 - 6.3.-12.9 

LC-SU -32.93078 -71.09066 160 22 / 28 / 26 / 25 28.3.-22.5 

LC-SL -32.93110 -71.08987 167 27 / 25 / 22 / 26 16.3.-19.9. 

 

Table 4.A3. Summary of the volume of redistributed sediment, according to area and disturbance type. 

Volexc describes volume of the sediment excavated by the animals. Volburrow describes volume of the 

sediment redistributed during rainfall events within burrows. Voladd describes the difference in 

redistributed sediment volume within burrows and burrow embedding area during rainfall.  

Disturbance Area PdA LC 

Volexc Burrow   16.41 cm3 cm-2 year-1 14.62 cm3  cm-2 year-1 

 Per burrow  1498.66 cm3  burrow-1  year-1 1226.61 cm3  burrow-1 year-1 

 Hillslope-

wide 

0.18 m3  ha-1 year-1 0.67 m3  ha-1  year-1 

Volburrow Burrow    -1.97 cm3  cm-2 year-1 -10.44 cm3  cm-2  year-1 

 Per burrow  -126.36 cm3  burrow-1 year-1 -876.38 cm3  burrow-1  year-1 

 Hillslope-

wide 

-0.05 m3  ha-1 year-1 -0.48 m3  ha-1  year-1 

Voladd Burrow   -1.18 cm3  cm -2  year-1 -7.37 cm3  cm-2 year-1 

 Per burrow  -48.36 cm3  burrow-1  year-1 -619.2 cm3  burrow-1  year-1 

 Hillslope-

wide 

-0.02 m3  ha-1  year-1 -0.34 m3  ha-1  year-1 

 

 

Table 4.A4. Summary of the volume of redistributed sediment, according to area and disturbance type. 

Volexc describes volume of the sediment excavated by the animals. Volburrow describes volume of the 

sediment redistributed during rainfall events within burrows. Voladd describes the difference in 

redistributed sediment volume within burrows and burrow embedding areas during rainfall.  

Disturbance Area PdA LC 

Volexc Burrow   9.57 cm3 cm-2 7 months-1 8.53 cm3  cm-2 7 months-1 

 Per burrow  874.22 cm3  burrow-1  7 

months-1 

715.52 cm3  burrow-1 7 months-1 

 Hillslope-

wide 

0.11 m3  ha-1 7 months-1 0.39  m3  ha-1  7 months-1 

Volburrow Burrow   -1.15 cm3  cm-2 7 months-1 -6.09 cm3  cm-2  7 months-1 
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 Per burrow  -73.71 cm3  burrow-1 7 months-

1 

-511.22 cm3  burrow-1  7 months-1 

 Hillslope-

wide 

-0.03 m3  ha-1 7 months-1 -0.28 m3  ha-1  7 months-1 

Voladd Burrow  -0.69 cm3  cm -2 7 months-1 -4.30 cm3  cm-2 7 months-1 

 Per burrow  -28.21 cm3  burrow-1  7 

months-1 

-361.20 cm3  burrow-1  7 months-1 

 Hillslope-

wide 

-0.01 m3  ha-1  7 months-1 -0.2 m3  ha-1  7 months-1 

 

Table 4.A5. Review of studies which used laser scanners for the estimation of surface processes.  

Reference R2 Error Horizontal 

point 

spacing 

Points 

per cm-2 

Model Price 

Our results 0.77 0.15 cm 0.32 cm 8.5 Texas 

Instruments 

OPT3101 

900 USD 

(Eitel et al., 2011) 0.23-

0.86 

0.07 cm NA 25 Leica 

ScanStation 2 

102 375 

USD 

(Eltner et al., 2013) NA 0.4 cm NA 6.4 Riegl LMS-

Z420i 

16 795 

USD 

(Kaiser et al., 2014) NA NA 0.57 cm NA Riegl LMS-

Z420i 

16 795 

USD 

(Longoni et al., 

2016) 

NA NA NA 1 Riegl LMS-

Z420i 

16 795 

USD 

(Morris et al., 2011) NA 0.5 cm NA NA Maptek I-Site 

4400LR 

240 000 

USD 

(Nasermoaddeli 

and Pasche, 2008) 

NA 0.2 cm 0.25 cm NA Leica Cyrax 

HDS 2500 

4500 USD 

(Thomsen et al., 

2015) 

NA NA 0.4 cm NA Leica 

ScanStation 2 

102 375 

USD 

 

Table 4.A6. Review of studies which estimated the sediment redistribution within burrows and burrow 

embedding areas and the proposed impact.  

Reference Climate Animals Method Monitoring 

period 

Frequenc

y  

Burrows Burrow 

embeddi

ng area 

impa

ct 

(Imeson 

and 

continen

tal 

Rodents erosion 

pins 

15 months monthly 20 mm   NA 
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Kwaad, 

1976) 

(Imeson 

and 

Kwaad, 

1976) 

continen

tal 

Rodents splash 

boards 

15 months monthly 91.75g 

24.49 cm-2 

= 3.75 cm3 

cm-2 

94g -3% 

(Imeson 

and 

Kwaad, 

1976) 

continen

tal 

Rodents rainfall 

simulati

on (7.5 

cm / 

hour 

intensity

) 

One-time 

measureme

nt 

NA 0.2 g – 

0.73 g 

0.009 g – 

0.23 g 

+208

% 

(Imeson, 

1977) 

continen

tal 

Vertebra

tes 

rainfall 

simulati

on 

One-time 

measureme

nt 

NA 0.18-0.3 

100 J-1 m-² 

rain 

0.146 

100 J-1 m 

-² rain 

+123

% 

(Hazelhoff 

et al., 

1981) 

continen

tal 

Earthwor

ms 

splash 

traps 

12 months monthly NA NA +180

% 

(Black and 

Montgome

ry, 1991) 

arid pocket 

gopher 

erosion 

pins 

10 months 2 months NA NA +125

% 

(Hakonso

n, 1999) 

tempera

te 

pocket 

gophers 

rainfall 

simulato

r (60 mm 

/ hour) 

2 years 2 – 3 

weeks 

2.4 – 8.7 

mg ha-1  

4.4 – 15 

mg ha-1 

-43% 

(Li et al., 

2018) 

tempera

te 

mole 

crickets 

rainfall 

simulati

on (36 

mm / 

hour) 

One time 

measureme

nt 

15 

measure

ments 

22.1 g 115 

cm-2 = 5.2 

cm3  cm-2 

5 g 123 

cm-2 = 

1.09 cm3  

cm-2 

+473

% 

(Li et al., 

2018) 

tempera

te 

mole 

crickets 

rainfall 

simulati

on (36 

mm / 

hour) 

One time 

measureme

nt 

15 

measure

ments 

35.3 g 

220.5 cm-2 

= 6.24 cm3 

cm-2 

5 g 123 

cm-2 = 

1.09 cm3 

cm-2 

+473

% 

(Chen et 

al., 2021) 

lab chinese 

zocor 

rainfall 

simulati

on (80 

One-time 

measureme

nt 

3 

measure

ments 

2,69 g cm-

²  = 2.69 

cm3 cm-2 

0,88 g 

cm-² = 

0.88 cm3  

cm-2 

+205

% 
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mm / 

hour) 

 

 

Table 4.A7. Review of studies which estimated the sediment redistribution within burrows, average 

burrow density as found in the literature and area-wide yearly contribution of burrowing animals to 

sediment redistribution.  

Climate Animals Burrows Average 

burrow 

density 

Average 

burrow size 

Area-wide 

redistribution 

Continental Rodents 91.75g 24.49 

cm-2 = 3.75 cm3 

cm-2 (Imeson 

and Kwaad, 

1976) 

14 625 m-2 = 

0.02 m-2 (Pang 

and Guo, 2017) 

24.49 cm2 

(Imeson and 

Kwaad, 1976) 

0.183 m3  ha-1  

year-1 

Temperate mole crickets 22.1 g 115 cm-2 

= 5.2 cm3  cm-2  

(Li et al., 2018) 

405 ha-1 

(Castner and 

Fowler, 1984) 

115 cm2  (Li et 

al., 2018) 

0.24 m3  ha-1  

year-1 

Temperate mole crickets 35.3 g 220.5 

cm-2 = 6.24 cm3 

cm-2 (Li et al., 

2018) 

405 ha-1 

(Castner and 

Fowler, 1984) 

220.5 cm2 (Li et 

al., 2018) 

0.56 m3  ha-1  

year-1 

Lab chinese zocor 2,69 g cm-² = 

2.69 cm3 cm-2 

(Chen et al., 

2021) 

94.69 2500m-2 

= 0.04 m-2 = 

400 ha-1 

1256 cm2 1.35 m3  ha-1  

year-1 

 

Table 4.A8. Review of studies which estimated the volume of sediment excavated by burrowing animals.  

 Climate Animals Method Monitoring 

period 

Frequency  volume of 

the 

excavated 

sediment 

(Black and 

Montgomery, 

1991) 

Arid porcupines mound 

volume 

3 years yearly 0.2  m3  ha-1  

year-1 

(Black and 

Montgomery, 

1991) 

Arid isopods mound 

volume 

3 years yearly 0.11 m3  ha-1  

year-1 
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(Black and 

Montgomery, 

1991) 

Arid pocket 

gopher 

mound 

volume 

2 years 3 model 

runs 

0.05 – 0.11 

m3  ha-1  year-

1 

(Rutin, 1996) Subtropical scorpions mound 

volume 

6 months 2-29 days 0.42 m3  ha-1  

year-1 

(Hall et al., 

1999) 

Alpine rodents mound 

volume 

1 year yearly 0.02 m3  ha-1  

year-1 

(Hall et al., 

1999) 

Alpine bears mound 

volume 

1 year yearly 0.49 m3  ha-1  

year-1 

(Yoo et al., 

2005) 

Arid pocket 

gopher 

mound 

volume 

1 year One model 

run 

0.1-0.2 m3  

ha-1  year-1 

 

 

 

Figure 4.A1. Standard deviation of the z-coordinate of unprocessed five scans showed exemplary for 

the camera on the upper north-facing hillside. SD is standard deviation. The error increases with 

distance from the camera nadir point. The standard deviation was here calculated from scans before 

any corrections. 
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Figure 4.A2. Delineation of the areas. The point of origin of the coordinate system is at the camera 

nadir. Depth is the distance between the surface and the camera. Red is the outline of the burrow 

entrance. Green is the outline of mound. Orange is the outline of burrow roof. Area which is not outlined 

is burrow embedding area. Arrow indicates downhill direction of the hillslope.  (a) LC-NU. (b) LC-NL (c) 

LC-SU. (d) LC-SL. (e) PdA-NU. (f) PdA-NL. (g) PdA-SU. (h) PdA-SL. 
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Figure 4.A3. a) Estimation of Time-of-Flight camera accuracy based on averaging two surface scans 

before and after the sediment extraction under controlled conditions. The x-axis shows the exact 

sediment volume measured with a cup. The y-axis represents the volume of the sediment calculated 

from the camera scans (according to Equation (4)). The blue line is the linear regression calculated from 

the measured and detected volume. The green shadow shows the confidence interval of 95% for the 

linear regression slope. ***p ≤ 0.001. MAE is the mean absolute error, SD is standard deviation and R2 

the coefficient of determination. b) Measured sediment volume subtracted from the detected sediment 

volume for all measurements. 
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Figure 4.A4. Sediment mass balance for the period of 7 months separately for burrows and burrow 

embedding areas as measured by the cameras. (a) LC-NU. (b) LC-SU. (c) LC-SL. (d) PdA-NU. (e) PdA-

NL.  

(f) PdA-SU. (g) PdA-SL. For abbreviations see Table 4.A1. 
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Figure 4.A5. Sediment mass balance for the period of 7 months separately for all delineated areas as 

measured by the cameras. (a) LC-NU. (b) LC-SU. (c) LC-SL. (d) PdA-NU. (e) PdA-NL. (f) PdA-SU. (g) 

PdA-SL. For abbreviations see Table 4.A1. 
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Figure 4.A6. Examples of surface scans showing the digital surface model (DSM) before a rainfall event 

(a, c) at two camera locations in La Campana, and the calculated volume of redistributed sediment (b, 

d) after the rainfall event: (a) DSM of a scan from the camera on the upper north-facing hillslope in La 

Campana; (b) Detected sediment redistribution (cm3 cm–2) on the upper north-facing hillslope in La 

Campana after a rainfall event of 17.2 mm day–1; (c) DSM of a scan from the camera on the upper south-

facing hillslope in La Campana; (d) Detected sediment redistribution (cm3 cm–2) on the upper south-

facing hillslope after a rainfall event of 17.2 mm day–1. Red is the outline of the burrow entrance. Green 

is the outline of mound. Orange is the outline of the burrow roof. The area which is not outlined is burrow 

embedding area. Redistribution is the volume of the redistributed sediment, either accumulated (positive 

value) or eroded (negative value) per cm3 cm–2. After the rainfall events, sediment mostly accumulated 

within the burrow entrance or near mounds and eroded from burrow roofs and mounds.  
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Figure 4.A7. Cumulative volume of redistributed sediment for all cameras. Positive values indicate 

sediment accumulation. Negative values indicate sediment erosion. Whiskers are the median sediment 

redistribution. E is the burrow entrance. M is the mound. R is burrow roof. EM is burrow embedding 

area. LC is mediterranean climate zone. PdA is arid climate zone. (a) LC-NU. (b) LC-SU. (c) LC-SL. (d) 

PdA-NU. (e) PdA-NL. (f) PdA-SU. (g) PdA-SL. For abbreviations see Table 4.A1. 
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Figure 4.A8. Hillslope-wide volume of redistributed sediment for a time period of one year in LC. (a-d) 

North-facing hillslope. (e-h) South-facing hillslope. (a) and (e) Density of burrows as estimated by 

Grigusova et al. 2021. (b) and (f) Volume of the sediment excavated by the animals. (c) and (g) Volume 

of the sediment redistributed during rainfall events within burrows. (d) and (h) Volume of additionally 

redistributed sediment during rainfall events due to presence of the burrows. The values were calculated 

per burrow as stated in section 3.7 by subtracting the sediment volume redistributed within burrows from 
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the sediment volume redistributed within burrow embedding area and then upscaled. B stays for burrow, 

EM stays for burrow embedding area. 

 

 

Figure 4.A9. Hillslope-wide volume of redistributed sediment for a time period of one year in Pan de 

Azúcar. (a-d) North-facing hillslope. (e-h) South-facing hillslope. (a) and (e) Density of burrows as 

estimated by Grigusova et al. 2021. (b) and (f) Volume of the sediment excavated by the animals. (c) 
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and (g) Volume of the sediment redistributed during rainfall events within burrows. (d) and (h) Volume 

of additionally redistributed sediment during rainfall events due to presence of the burrows. The values 

were calculated per burrow as stated in section 3.7 by subtracting the sediment volume redistributed 

within burrow from the sediment volume redistributed within burrow embedding area and then upscaled. 

B stays for burrow, EM stays for burrow embedding area by the burrowing animal. 
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Abstract 

Soil bioturbation activity affects soil texture, bulk density, soil water content and redistribution of 

nutrients. All of these parameters influences sediment redistribution, which shapes the earth surface. 

Hence it is important to include bioturbation into erosion models. However, up to present, the inclusion 

of bioturbation into erosion models was limited. This is because to realistically include bioturbation into 

the modelling, the interplay between bioturbation, sediment redistribution and environmental parameters 

is not understood.  

Here, we included bioturbation into a soil erosion model and interpreted the impacts of bioturbation on 

sediment redistribution. To do this, we measured the needed soil properties and location of burrows 

created by bioturbating animals in four research sites located along the Chilean climate gradient. Then, 

we parametrized a semi-empirical erosion model by applying machine learning algorithms to upscale 

soil properties and burrow distribution. We ran the model for a time period of 6 years under two 

conditions: With and without bioturbation. We validated the model using several sediment fences in the 

field. We estimated the modelled sediment redistribution and surface runoff in all climate zones. Lastly, 

we identified environmental parameters determining the positive or negative impact of bioturbation on 

sediment redistribution. 

We found that the model with integrated bioturbation performed much better (R2 = 0.71, RMSE = 0.63) 

than the model without integrated bioturbation (R2 = 0.17, RMSE = 1.18), meaning that model runs which 

considered bioturbation predicted the sediment redistribution more realistically. Furthermore, 

bioturbation increased sediment redistribution in all but the humid climate zone, especially in the 

Mediterranean zone. The quantity of sediment redistributed due to bioturbation was reliant on an 

interplay between elevation, slope, surface roughness and sink connectivity. Overall, bioturbation 

enhances sediment erosion in areas where more erosion is expected, and enhances sediment 

accumulation in areas which are more prone to accumulate sediment. In other words, considering 

bioturbation when studying earth surface evolution means an amplification of existing tendencies in 

sediment redistribution, and leads to a faster hillslope relief equalisation.   
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5.1. Introduction 

Bioturbation was shown to shape the land surface (Hazelhoff et al., 1981; Istanbulluoglu, 2005; Taylor 

et al., 2019; Tucker and Hancock, 2010; Whitesides and Butler, 2016; Wilkinson et al., 2009; Corenblit 

et al., 2021) by influencing surface microtopography (Reichman and Seabloom, 2002; Kinlaw and 

Grasmueck, 2012; Debruyn and Conacher, 1994), and soil properties such as soil porosity, permeability 

and infiltration (Reichman and Seabloom, 2002; Yair, 1995; Hancock and Lowry, 2021; Ridd, 1996; Hall 

et al., 1999; Coombes, 2016; Larsen et al., 2021). Cumulatively, these modifications lead to changes in 

sediment redistribution (Gabet et al., 2003; Nkem et al., 2000; Wilkinson et al., 2009) and hence have 

the potential to affect surface topography and nutrient redistribution on large spatial and temporal scale. 

To quantify these effects, the shared role of climate, landscape characteristics and burrowing dynamics 

on sediment redistribution needs to be understood. 

On a local scale, currently used field methods to monitor sediment redistribution under real-life condition 

are mainly erosion pins, splash boards, or rainfall simulators (Imeson and Kwaad, 1976; Wei et al., 2007; 

Le Hir et al., 2007; Li et al., 2019a; Li et al., 2019b; Li et al., 2018; Voiculescu et al., 2019; Chen et al., 

2021; Übernickel et al., 2021a). The monitoring of box experiments yields a high spatio-temporal 

resolution, and can also be linked with mathematical equations, such as random walks (Boudreau, 1986; 

Wheatcroft et al., 1990), stochastic differential equations (Boudreau, 1989; Milstead et al., 2007), finite 

difference mass balancing (Soetaert et al., 1996; François et al., 1997) or Markov chain theory (Jumars 

et al., 1981; Foster, 1985; Trauth, 1998; Shull, 2001) to describe sediment redistribution. Another 

approach offer raster-based soil erosion and landscape evolution models which integrate co-

dependencies between bioturbation relevant environmental parameters (Black and Montgomery, 1991; 

Meysman et al., 2003; Yoo et al., 2005; Schiffers et al., 2011). Most common soil erosion models are 

empirical (Wischmeier and Smith, 1978; Williams, 1975; Renard et al., 1991), process-based (Morgan 

et al., 1998; ROO et al., 1996; Nearing et al., 1989; Beasley et al., 1980), or semi-empirical models, the 

latter of which are a combination of both (Morgan et al., 1984; BEVEN and KIRKBY, 1979). Empirical 

models are limited to one study site, but they provide highly accurate predictions at low computational 

costs, as they are based on simple mathematical equations. In contrast, process-based models require 

an intensive parametrisation and calibration process, however, once calibrated, they can be applied to 

almost any site (Lal, 2001; Merritt et al., 2003). Semi-empirical models combine semi-empirical 

equations with a physical basis and thus include the advantages of the both model types (Morgan et al., 

1984; Morgan, 2001; Morgan and Duzant, 2008; Devia et al., 2015; Lilhare et al., 2015).  

Previously used methods have, however, several limitations when studying bioturbation. Field 

measurements likely lead to an underestimation of sediment fluxes, as they are one-time or seasonal 

measurements, and thus do not capture the continuous excavation of the sediment by the animal 

(Grigusova et al., 2022) at a high temporal resolution. Box experiments and from them derived 

mathematical equations describe bioturbation as an isolated process and ignore surrounding 

environmental parameters (such as climate or vegetation). Most erosion or landscape evolution models 

do not yet implement impacts of bioturbators on water and sediment fluxes (Brosens et al., 2020; 

Anderson et al., 2019; Braun et al., 2016; Cohen et al., 2015; Cohen et al., 2010; Carretier et al., 2014; 

Welivitiya et al., 2019). Models which include bioturbation as an input factor still have large limitations. 

They predict landscape evolution on a millennial scale, but ignore processes acting on a daily basis. 
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This rather large spatio-temporal scale also means an omission of the natural variability in burrow sizes 

and densities, climate zones and seasonality (Temme and Vanwalleghem, 2016; Vanwalleghem et al., 

2013; Yoo and Mudd, 2008; Pelletier et al., 2013). The most significant limitation is, however, that in all 

models bioturbation is hard-coded to have predefined effects on the environment: (i) soil erosion is 

proportionally increasing with increasing bioturbation, (ii) vertical soil mixing rates are uniform, and (iii) 

bioturbation is positively linked with vegetation cover. Thus, none of these models consider that the 

interaction of bioturbation with environmental parameters and the effect on sediment redistribution may 

not be uniform but context dependent. However, the field measurements showed both, positive 

(Hazelhoff et al., 1981; Black and Montgomery, 1991; Chen et al., 2021) and negative impact of 

bioturbation on erosion (Imeson and Kwaad, 1976; Hakonson, 1999). Also, previous field based studies 

observed an increased bioturbation activity with higher (Milstead et al., 2007; Meserve, 1981; Tews et 

al., 2004; Wu et al., 2021; Ferro and Barquez, 2009), but also with lower vegetation cover (Simonetti, 

1989; Zhang et al., 2020; Zhang et al., 2019; Qin et al., 2021). Furthermore, soil mixing rates are not 

homogenous throughout the year but depend on the animal phenological cycles (Eccard and Herde, 

2013; Jimenez et al., 1992; Katzman et al., 2018; Malizia, 1998; Morgan and Duzant, 2008; Monteverde 

and Piudo, 2011; Gray et al., 2020; Yu et al., 2017). 

To improve this, bioturbation has to be included into erosion models at a high spatial and temporal 

resolution under real-life conditions across several climate zones. A suiTable 5.model which can be 

extended to include continuous bioturbating activity is the semi-empirical Morgan – Morgan – Finney 

soil erosion model (Morgan et al., 1984; Morgan, 2001). This model was successfully tested in several 

climate zones and land use types, such as Mediterranean sites (Jong et al., 1999),  rainfed agrosystems, 

fields and pastures (López-Vicente et al., 2008), East-African Highlands (Vigiak et al., 2005) or humid 

forests (Vieira et al., 2014). One of the recently developed improvements of this model is the Daily 

Morgan – Morgan – Finney model (DMMF), which introduces subsurface flow, vegetation structures 

(type, size, height, root depth), and enables modelling at a high spatial (0.5 m) and temporal (daily) 

resolution (Choi et al., 2017). These improvements yield the potential to integrate the bioturbation into 

the model, as the burrowing activity is not constant and depends on vegetation structure (Tews et al., 

2004; Ferro and Barquez, 2009).   

To study the interplay between bioturbation, environmental parameters and sediment redistribution 

along a climate gradient, we (i) include bioturbation into a semi-empirical soil erosion model (DMMF) at 

a high temporal and spatial resolution. We specifically not presuppose a homogenous relationship 

between bioturbation, sediment transport and vegetation cover. Based on (i), we (ii) identify 

environmental parameters which determine if the bioturbation enhances sediment erosion or sediment 

accumulation.  In order to do this, we included bioturbation into the DMMF while considering (i) variable 

co-dependency between bioturbation and vegetation type, density and height; (ii) various burrow sizes 

and burrow densities, (iii) variable soil mixing rates due to continuous reconstruction of the burrow by 

the animal depending on season and (iv) variable influence of bioturbation on litter and coarse grain 

size. Furthermore, we set up generalized additive models to unveil significant environmental parameters 

that determine the impact of bioturbation on sediment redistribution. Lastly, we analyse how the impact 

of bioturbation on sediment redistribution depends on the burrow structure, climate, topography and 
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surrounding vegetation. Our study shows the importance of including bioturbation into erosion modelling 

and the interplay between bioturbation, environmental parameters and sediment redistribution. 

 

5.2. Study area 

Our study was performed along a climate and vegetation gradient in Chile (Übernickel et al., 2021b), 

comprising four study sites in the Chilean Coastal Cordillera: Pan de Azúcar (PdA) National Park (NP), 

Santa Gracia (SG), La Campana (LC) NP, and Nahuelbuta (NA) NP (Fig. 5.1). PdA NP is located in the 

arid zone in a fog-laden environment in the southern part of the Atacama Desert, with almost no rainfall. 

The vegetation cover is less than 5 % and dominated by small desert shrubs, several types of cacti and 

biocrusts  (Lehnert et al., 2018). SG is a natural reserve located in the semi-arid zone near La Serena, 

which is dominated by goat grazing. The vegetation consists of shrubs and cacti, covering up to 40 % 

of the study area. LC NP is part of the Mediterranean-type climate zone in the Valparaiso Region and is 

also affected by cattle. The study site is dominated by an evergreen sclerophyllous forest with endemic 

palms. The canopy reaches a height of up to 9 m, and the understory consists of deciduous shrubs and 

herbs. NA is located in the humid-temperate zone and characterized by a dense evergreen Araucaria 

forest comprising broadleaved trees with heights of up to 14 m. The ground is covered by bamboo, 

shrubs, and herbs (Bernhard et al., 2018; Oeser et al., 2018). The most common bioturbating vertebrate 

animal species recorded within these sites are carnivores of the family Canidae (Lycalopex culpaeus, 

Lycalopex griseus) as well as rodents of the families Abrocomidae (Abrocoma bennetti), Chnichillidae 

(Lagidium viscacia), Cricetidae (Abrothrix andinus, Phyllotis xanthopygus, Phyllotis limatus, Phyllotis 

darwini) and Octogontidae (Cerqueira, 1985; Jimenez et al., 1992; Übernickel et al., 2021a). 

 

 

Figure 5.1. Study area and study sites. Black lines outline the catchments. Along the blue lines, the in 

situ data (mound locations, soil samples, vegetation mapping) were collected. (a) Position of the study 

sites along the climate gradient. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana, NA = 

Nahuelbuta; Positions of plots in (b) PdA; (c) SG; (d) LC; and (e) NA. The background image is an RGB-

composite calculated from WorldView-2 satellite imagery. 
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5.3. Methodology 

We combined semi-empirical soil erosion modelling with in-situ measurements, remote sensing data 

and machine learning methods (Fig. 5.2). Along 8 catchments within 4 climate zones we mapped 

locations of burrows, estimated the vegetation cover and extracted soil samples. We analyzed the soil 

samples in the laboratory. Then we used remote sensing datasets and machine learning to upscale 

burrow distribution, vegetation cover and soil properties into the catchments. The catchment-wide 

predictions, the topographical information retrieved from LiDAR data (Kügler et al., 2022) and the climate 

information retrieved from climate stations were the input parameters for our soil erosion model. We ran 

the model with and without bioturbation. We included the bioturbation into the model by adjusting the 

input parameters at the predicted burrow locations, by including the continuous burrowing activity and 

soil mixing (Grigusova et al., 2021), and the seasonality (Kraus et al., 2022).and the animal phenological 

cycle as found in (Jimenez et al., 1992). The models were validated using self-constructed sediment 

traps. We studied the modeled surface runoff and sediment redistribution. Lastly, we analyzed if and 

how the impact of bioturbation on sediment redistribution depends on environmental parameters 

(topography, landscape connectivity and vegetation).  

 

 

Figure 5.2. Flow chart of our study. Green color indicates in-situ input data, blue indicates remote 

sensing input data. Red indicates Model parametrization. Yellow indicates model output and analysis. 

Grey indicates model validation.  

 

5.3.1 In-situ data 

The study set-up consisted of eight hillside catchments: one north-facing and one south-facing hillside 

catchment per study site. We defined a line with a width of one meter from the top to the base of each 

hillside catchment (see blue line, Fig. 5.1). We subdivided the track into tiles of 1 m2. We saved the GPS 

information of each tile. 

Within each tile of the line, we mapped burrow presence, land cover and extracted soil samples. A 

burrow consisted of an entrance and a mound (Fig. 5.3a). Each 1 m2 tile with a burrow was described 
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as a presence data point, tiles without a burrow as absence data points. We noted the size of the burrow, 

vegetation cover and land cover types (bare soil, herbs, shrubs, trees) within the tile. We extracted 162 

soil samples from soil without a mound at a depth of 10 cm. Additionally, we took a photo of the surface 

every second tile along the track.  

To validate the model output, we set up sediment traps (Fig. 5.3b), with six traps per site, two of which 

were located at the catchment base and four were located on two random positions within the catchment. 

The sediment traps consisted of geotextile vertically attached to wooden poles for stability. The traps 

had a length of 2 m – 5 m, a width of ~1.5 m and a height of ~1 m. 1.5 m of geotextile was laid down at 

the surface uphill the wooden poles to enable the collection of sediment. The sediment accumulated 

within the traps was collected after 1 year and its mass [cm3] and dry weight [kg] were estimated.  

Climate information was retrieved from climate stations located adjacent to the catchments which 

provide climate data in 5 minute intervals (Übernickel et al. 2021). To force the model on an hourly basis, 

hourly air temperature, precipitation total and intensity, wind speed, wind direction and humidity was 

calculated for the study period from 1st April 2016 to 1st December 2021. Evapotranspiration was 

estimated by the Penman-Monteith equation (Penman, 1948). 

 

 

Figure 5.3. In-situ constructions. (a) Example of a burrow consisting of burrow entrance and mound. (b) 

Fence construction used for the collection of eroded sediment to validate the model. 

 

5.3.2 Estimation of soil properties  

We estimated several soil properties from the soil samples and photos collected in-situ ( (Grigusova et 

al., 2022). We estimated above-ground skeleton and debris from the photos taken every second tile. 

For this, the photos were firstly classified into 5 classes. The classification was unsupervised using k-

means (Fig. 5.A1). Then we calculated the ratio of pixels classified as skeleton and / or debris to the 

overall amount of all pixels to determine the amount of both parameters in percent.   

In the lab, we estimated soil water content, bulk density, soil particle density, soil texture (sand, silt, clay, 

coarse / middle / fine sand, coarse / middle / fine silt), soil skeleton, organic matter and organic carbon.  

Gravimetric soil water content [%] (GSWC) described the mass of water within the soil sample and was 

estimated as in Eq (1): 
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𝐺𝑆𝑊𝐶 =
(𝑆𝑚−𝑆𝑑)

𝑆𝑑
∗ 100  ,         (1) 

where Sm [g] is the mass of moist soil measured directly after the extraction and Sd [g] is the mass of 

soil dried at 105 °C for at least 24 hours. Bulk density [g cm-3] (BD) was calculated as following: 

𝐵𝐷 =
𝑆𝑑

𝑆𝑣
     ,          (2) 

where Sv [cm-3] is the volume of the sample. Soil particle density [g cm-3] (SPD) was calculated as in Eq 

(3): 

𝑆𝑃𝐷 =
𝑑𝑚

𝑆𝑣
  ,  ,          (3) 

where dm [g] is the dry mass of soil particles.  

Particle size distribution [%] – clay (< 0.002 mm), coarse, middle and fine silt (0.002 mm to 0.02 mm), 

and coarse, middle and fine sand (0.02 mm to 2 mm) was estimated using a PARIO method (Durner et 

al., 2017). Soil skeleton was estimated as the ratio of particles with a diameter above 2 mm. Ratio of 

organic matter (OM) was estimated as in Eq. (4) 

𝑂𝑀 =
𝑆𝑐

𝑆𝑑
  ,         (4) 

where Sc is the weight [g] of the sample dried at 500 °C for 16 hours.  

We used pedotransfer functions to determine porosity, saturated soil moisture, hydraulic conductivity, 

water content at field capacity, and permanent wilting point. Pore ratio (θs) was estimated from bulk and 

particle density as in Eq. (5): 

𝜃𝑠 =
𝐵𝐷

𝑆𝑃𝐷
           (5) 

Saturated water content [g g-1] (Ws) was estimated as in Eq. (6): 

𝑊𝑠 =  θs
𝑝𝑤

𝐵𝐷
  ,            (6) 

where pw [g cm-3] is the density of water which is set to be 1 g cm-3  (Pollacco, 2008).  

Hydraulic conductivity Ks [m s-1] was estimated as in Eq. (8): 

𝐾𝑠 = 1.15741 ∗ 0.0000001 ∗ exp (𝑥)  ,      (7) 

where x for sandy soil is: 

𝑥 = 9.5 − 1.471 ∗ (𝐵𝐷 ∗ 𝐵𝐷) − 0.688 ∗ 𝑂𝑀 + 0.0369 ∗ (𝑂𝑀 ∗ 𝑂𝑀) − 0.332 ∗ 𝐶𝑆  ,  (8) 

and x for loamy and clayey soils is: 

𝑥 = −43.1 + 64.8 ∗ 𝐵𝐷 − 22.21 ∗ (𝐵𝐷 ∗ 𝐵𝐷) + 7.02 ∗ 𝑂𝑀 − 0.1562 ∗ (𝑂𝑀 ∗ 𝑂𝑀) + 0.985 ∗ ln(𝑂𝑀) −

0.01332 ∗ 𝐶 ∗ 𝑂𝑀 − 4.71 ∗ 𝐵𝐷 ∗ 𝐶𝑆  ,      (9) 

where C is percentage of clay and CS is percentage of clay and silt (Wösten, 1997). To estimate water 

content at field capacity [%] (FC) and permanent wilting point (PWP), we applied functions by (Tomasella 

et al., 2000) as these were developed for South American soils: 

𝐹𝐶 = 4.046 + 0.426 ∗ 𝑆𝑖 + 0.404 ∗ 𝐶 ,       (10) 

𝑃𝑊𝑃 = 0.91 + 0.15 ∗ 𝑆𝑖 + 0.396 ∗ 𝐶 ,       (11) 

where Si is the percentage of silt.  

 

5.3.3 Processing of remote sensing data 

The digital elevation models (DEM) were calculated from the LiDAR data (Kügler et al., 2022; Horn, 

1981) at a resolution of 0.5 m. Slope was calculated according to Horn (1981). Manning’s surface 

roughness coefficient was estimated following (Li and Zhang, 2001). Topographic position index (TPI) 
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and Topographic ruggedness index were calculated according to (Wilson et al., 2007). Plan and profile 

curvature were determined after (Zevenbergen and Thorne, 1987). Connectivity indices, Sinks, Wetness 

index, Flow direction, Flow path, Catchment slope and Catchment were calculated in SAGA GIS. 

Single license stereo WorldView-2 images with a resolution of 0.5 m were retrieved from GAF Munich 

GmbH. The topographic correction of WorldView-2 images was done using the LiDAR data, solar 

elevation angle, solar zenith angle and azimuth angle according to Goslee (2019). The digital surface 

models (DSMs) were calculated from the stereo images. Additionally, we extracted single bands and 

calculated the normalized difference vegetation index (NDVI). 

 

5.3.4 The erosion model  

5.3.4.1 Daily Morgan-Morgan-Finney model 

The DMMF model is a combined soil erosion model used to estimate surface runoff and sediment flux 

on a field scale on a daily basis. Spatially, the DMMF model represents an area as several 

interconnected elements (e.g. pixels) of uniform topography, soil characteristics, land cover type, and 

vegetation structure. Through coupling, the model operates with flow direction algorithms: each element 

receives water and sediments from upslope elements and delivers the generated surface runoff and 

eroded soils to downslope elements. On a temporal scale, the model estimates surface runoff and 

sediment flux of each element on a daily basis. The model input parameters include climate, topography, 

soil properties and land cover information (Choi et al., 2017). Data pre-processing, modelling and 

analysis (see Fig. 5.2) was done in R statistic environment. The raster data were cropped to the size of 

the catchments (Fig. 5.1). Input parameters are listed in Table 5.1 and plotted in Fig. 5.A2.  

 

5.3.4.2 Estimation of spatial parameters 

For spatial parameterization of the DMMF model, we upscaled land cover, soil properties and burrow 

distribution onto the catchments using machine learning techniques. For each parameter, we trained 

one random forest (RF) model per site. The upscaling was done at 0.5 m spatial resolution. We used 

the WorldView-2 layers, NDVI, DEM, DSM, slope and roughness as predictors while the response data 

were the parameters which we measured in-situ (soil properties, vegetation, burrow locations). The most 

important predictors were selected by forward feature selection. The quality of the random forest models 

was assessed by Leave-Location-Out cross validation. We trained the model stepwise, using in-situ 

data collected from seven of the catchments and validated the model using in-situ data from the 

remaining catchment (Meyer et al., 2018).  

For the area-wide upscaling of burrow locations across the catchments, we used the burrow presence 

and absence data (section 3.1) as the response data within the RF models. The accuracy was 0.82 for 

PdA, 0.77 for SG, 0.75 for LC and 0.85 for NA.  

The upscaling of soil properties was done using soil properties estimated along the track line (see 

section 3.1) as response data within the RF models. All of the models reached a high accuracy (Table 

5.A1).  

To upscale the vegetation cover and type, we used as the response within the RF models the land cover 

measured in-situ. The classes were soil without rocks, rocks, biocrusts, grass/herbs, shrubs and trees. 

Predictor values for each class were extracted from at least 100 polygons per site and class. The 
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accuracy of the RF models was 0.71 for PdA, 0.81 for SG, 0.83 for LC and 0.75 for NA. The vegetation 

height measured in plots was averaged for each class per site. All pixels classified as respective class 

were assigned the same vegetation height information. Vegetation density was estimated per catchment 

as the amount of vegetation individuals per m2. Vegetation diversity was calculated by Shannon index  

(Shannon, 1948). The interception area was the area not covered by vegetation (herbs, shrubs or trees).  

 

5.3.4.3 Inclusion of bioturbation 

In the grid cells with predicted burrow locations, we adapted the values of input parameters to include 

bioturbation. The adaptations varied with climate zone and burrow size. The size, geometric structure 

and excavation rates of burrowing animalswere previously estimated at a high spatial and temporal 

resolution (Grigusova et al., 2022). Based on this results, we firstly adjusted the microtopography. We 

modified the layer depth to represent burrow entrance and elevation to represent animal mound. Mounds 

were always located downslope of burrow entrances in the direction of flow.  

Secondly, we adjusted the soil properties. Soil properties texture and organic carbon were estimated 

from soil extracted from mounds in Kraus et al. (in review). In this study we additionally estimated bulk 

density, initial water content, soil skeleton, porosity, saturated water content, available water capacity 

and water content at field capacity from the same dataset (see section 3.2). We calculated the median 

value of each property for the samples extracted from mounds and for the samples extracted from soil 

without mounds. Then, we estimated the change in percent between these two values. This was then 

used to adjust the soil property for each pixel including a mound.  

Thirdly, modelled mound pixels had to be cleared from ground vegetation cover. For this, we removed 

ground vegetation cover from pixels with burrow locations and decreased ground vegetation cover, 

height, diameter and amount of ground vegetation individuals from surrounding pixels as measured in 

situ. Then, the amount of above-ground skeleton and debris was set as estimated from soil samples 

(section 3.2) 

Animal activity has been found to be highly variable throughout the year (Grigusova et al., 2022; Kraus 

et al., 2022). The density of burrows does not stay sTable 5.throughout the year but increases or 

decreases depending on the season and climate zone. For this, we artificially removed or added burrows 

into the catchments at the particular seasons. Furthermore, the animals do not burrow at the same pace 

in the course of the year. There is a 3-month period, during which they are highly active.   

Lastly, we also included the vertical movement of sediment particles from deeper soil layers to the 

surface in dependence on climate. The animals were found to reconstruct their burrows after each 

rainfall event (Grigusova et al., 2022). Corresponding with these findings, we increased the entrance 

depth and mound height by 30% after each rainfall event.    

 

Table 5.1. Model input layers and respective changes to layer values at the predicted burrow locations. 

Ground vegetation was removed from the respective pixels, while tree canopy was not changed. The 

values were estimated as described in 3.5.2. Using the adjusted values, we calculated 

Evapotranspiration using Penman-Monteith equation, surface roughness from the elevation layer, and 

hydraulic conductivity, water content at field capacity and saturated water content using pedotransfer 

functions.  
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   Pixel value at burrow locations 

Parameter 

group 

Parameter Units PdA SG LC NA 

Topography Elevation m asl +0.24 +0.23 +0.36 +0.19 

 Surface roughness - - - - - 

 Depth m -0.23 -0.41 -0.22 -0.04 

Soil Water content % +120 -6  -68  -62  

 Bulk density g cm-3 - -6  -17  - 

 Sand % -29 -12  +57  -43  

 Silt % +54  +22  +23  ns 

 Clay % +145  +44  +19  -73  

 Organic carbon % +168  +72  +105  +25  

 Hydraulic conductivity m s-1 - - - - 

 Water content at field 

capacity 

% - - - - 

 Saturated water content % - - - - 

Cover Ground vegetation cover % 0 0 0 0 

 Soil and debris % 100 100 100 100 

 Skeleton % 0 0 0 0 

 Average plant height m 0 0 0 0 

 Average plant diameter m 0 0 0 0 

 Number of plants n m-2 0 0 0 0 

 

5.3.5 DMMF model sensitivity test and validation  

We conducted a sensitivity test to identify the input parameters, which significantly influence the model 

output. For this, we estimated the mean, minimum and maximum values of each input parameter. For 

this, we first created an artificial catchment of 100 m * 100 m. Then, each pixel received a mean value 

of each parameter. We ran the model under these conditions. The model output described: (i) sediment 

erosion, (ii) sediment accumulation and (iii) surface runoff. We estimated sediment redistribution by 

subtracting the erosion from accumulation for each pixel. Then, we stepwise changed the input 

parameter values from their minimum to their maximum values while we did not adjust any other 

parameters. To quantify the significance of the input variations, we conducted a t-test (Fig A2). For this, 

we compared the amount of redistributed sediment of each model run to the first model run with 

homogeneous parameters. 

For the validation, we ran the model for the time periods between the installation of sediment fences 

and the collections of sediment. We compared the mass and weight of modelled and collected sediment 

and estimated R2 and RMSE. To test the importance of the inclusion of individual bioturbation 

parameters into the model, we ran the model under 4 conditions: (i) No burrows; (ii) Solely entrances; 

(iii) Solely mounds; (iv) Entire burrows (entrances and mounds). 
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5.3.6 Impact of burrows on surface processes 

We estimated burrow density, as a ratio of pixels with predicted burrows to all pixels. Additionally, we 

calculated the ratio of pixels which are part of a burrow aggregation to all pixels which include a burrow. 

Burrow aggregation describes at least 4 neighboring pixels with predicted burrows. We calculated the 

amount of excavated sediment as a sum of burrow density and the burrow excavation rate as estimated 

in Grigusova et al. (2022). 

To estimate the impact of burrows on sediment redistribution and surface runoff, we ran the DMMF 

model for the time period from 1st April 2016 until 31th December 2021 for all catchments. We ran the 

model (i) with no burrows and (ii) with entire burrows. We estimated (i) sediment redistribution 

(accumulation - erosion) and (ii) surface runoff. We analyzed the redistribution and runoff on the plot (1 

m2) and catchment (1 ha) scale. 

Lastly, to analyze under which biotic and abiotic environmental parameters (topography, vegetation 

cover) the bioturbation enhances sediment erosion or accumulation, we set-up a generalized additive 

model (GAM) (Wood, 2006). For this, we first subtracted the output of the model with no burrows from 

the output of the model with entire burrows. Positive pixel values thus meant, bioturbation enhanced 

sediment accumulation, negative pixel values meant, bioturbation enhanced sediment erosion. We 

tested following environmental parameters: mound density, vegetation cover, elevation, slope, aspect, 

TRI, curvature and connectivity and wetness index. The model performance was evaluated by the 

percentage of explained data variance. We analyzed the impact of environmental parameters within 1-

meter and within 10-meter distance from the burrows.  

 

5.4 Results 

5.4.1 Model sensitivity test and accuracy 

Parameters which significantly influenced the model output were precipitation, slope, vegetation cover, 

surface roughness, silt content and water content (Table 5.A2). We quantified the model performance 

by comparing the modelled and measured sediment redistribution. The performance varied depending 

on the burrow inclusion (Figure 5.4). The performance of the model without any bioturbation was lower 

(R2 = 0.73, RMSE = 1.50, MSE = 2.27), as when burrow entrances (R2 = 0.81, RMSE = 1.34, MSE = 

1.16) or mounds (R2 = 0.83, RMSE = 1.10, MSE = 1.22) were included. The model had the highest 

performance when entire burrows were included (R2 = 0.85, RMSE = 1.01, MSE = 1.01). However, as 

the scatterplots showed, the model performance seemed to be determined strongly by one 

measurement (Fig. 5.A3). For this reason, we calculated the metrics without this measurement (Fig. 

5.A4). The model without any burrows (R2 = 0.17, RMSE = 1.18, MSE = 1.39) in this case performed 

much lower than models with burrows. The model performance continuously strongly increased when 

burrow entrances (R2 = 0.48, RMSE = 0.61, MSE = 0.78), mounds (R2 = 0.51, RMSE = 0.75, MSE = 

0.57) were included. The model with whole burrows reached the highest performance (R2 = 0.71, RMSE 

= 0.63, MSE = 0.39). When we compare the modelled redistribution to the sediment redistribution 

estimated by Time-of-Flight cameras in Grigusova et al. (2022), then the differences are minor (R2 = 

0.62, RMSE = 0.12, MSE = 0.35).  
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Figure 5.4. R2 and RMSE of the Morgan-Morgan-Finney soil erosion model. For dataset A, we 

compared the amount of sediment collected in all sediment fences with the modelled eroded sediment 

(see Fig. 5.A3). For dataset B, we removed one measurement, as the R2 seemed to be defined by this 

measurement (see Fig. 5.A4). For Scenario A, we did not include any burrows into the model. For 

scenario B, we included burrow entrances and for scenario C, we included mounds. For scenario D, we 

included whole burrows into the model. The adjustments made to include entrances, mounds and 

burrows into the model are described in section 3.5.2.  

 

5.4.2 Model output: Surface runoff and sediment redistribution 

Catchment – wide sediment redistribution (1 ha resolution) was the highest in humid NA, followed by 

Mediterranean LC, semi-arid SG and arid PdA (Fig. 5.5a, 5b, 6). In NA, LC and SG, the erosion 

processes dominated, while in PdA, more sediment accumulated than eroded. The impact of burrows 

on sediment redistribution was significant in PdA, SG and LC. Burrows increased sediment erosion by 

137.8 % in PdA (3.53 kg ha-1 year-1 vs. 48.79 kg ha-1 year-1), by 6.5 % in SG (129.16 kg ha-1 year-1 vs. 

122.05 kg ha-1 year-1) and by 15.6 % in LC (4602.69 kg ha-1 year-1 vs. 3980.96 kg ha-1 year-1).  

Surface runoff was the highest in humid NA, followed by Mediterranean LC, arid PdA and semi-arid SG 

(Figure 5.5c). The impact of burrows on surface runoff was significant in all climate zones. Burrows 

increased surface runoff in PdA by 34 %, in SG by 40% and in LC by 4.1 %; and decreased surface 

runoff by 5.9 % in NA. Catchment-wide maps are shown in Fig. 5.A6-A8.  
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Figure 5.5. Summary of model outputs across the climate gradient. (a) and (b) Modelled sediment 

redistribution. Positive values indicate sediment accumulation; negative values indicate sediment 

erosion. (a) Sediment redistribution on a pixel scale in kg m-2 year-1. (b) Sediment redistribution on the 

catchment scale in kg ha-1 year-1. The impact of bioturbation on sediment redistribution was estimated 

by a t-test and was significant in PdA***, SG** and LC***. Bioturbation increased sediment erosion by 

137.8 % in PdA, by 6.5 % in SG and by 15.6 % in LC. For catchment-wide maps see Fig. 5.A6-A8). (c) 

Modelled surface runoff on the catchment scale in m3 ha-1 year-1. Impact of bioturbation on surface runoff 

was estimated by a t-test and was significant at all sites. Bioturbation increased surface runoff in PdA 

by 34 %, in SG by 40 % and in LC by 4.1 %; and decreased surface runoff by 5.9 % in NA. For catchment-

wide maps see Fig. 5.A6.  
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Figure 5.6. Catchment-wide predicted sediment redistribution. Colours indicate sediment redistribution. 

Positive values indicate sediment accumulation; negative values indicate sediment erosion. Grey 

shadows indicate the hill shading. (a) Pan de Azúcar, (b) Santa Gracia, (c) La Campana, (d) Nahuelbuta. 

 

5.4.3 Role of continuous burrowing activity on sediment redistribution 

We included the excavation of the sediment by the animal itself into the model. The density of burrows 

was the highest in PdA, then LC, SG and the lowest in NA (Table 5.2). The burrow aggregations were 

most predominant in LC and SG, almost non-existent in NA. The burrows were of largest size in LC, 

followed by PdA, SG and NA. Similarly, the highest volume of excavated sediment at the beginning of 

the modelling period was in LC and PdA. After each rainfall event, the animals reconstructed their 

burrows as described in Grigusova et al. 2022. Due to various number of rainfall events, the volume of 

excavated sediment during our modelling period was the highest in NA, followed by LC, SG and PdA. 

However, when the percentage of sediment which was excavated before and during the modelling to 

the amount of sediment redistributed during rainfall events was 47 % in PdA, 24 % in SG, 33.5 % in LC 

and 5.6 % in NA.  

 

Table 5.2. Impact of animal bioturbation activity on overall sediment redistribution on various scales. 

The bioturbation activity was estimated using Time-of-Flight based cameras in Grigusova et al. 2022. 

This study showed that animals reconstruct their burrows after each rainfall events. During this process, 
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10 % of the overall sediment burrow volume is relocated from within the burrow to the surface. We 

integrated this process into our model and calculated the percentage of newly excavated sediment by 

the animals to the amount of sediment which was redistributed during rainfalls for the period of one year.  

Parameter Units PdA SG LC NA 

 

Burrow density ha-1 91.35 71.50 84.36 13.30 

Burrow aggregations % 24 62 73 5 

Burrow size m3 0.015 0.012 0.047 0.008 

Sediment at the surface at the start of modelling  m3 ha-1 1.35 0.88 4.11 0.10 

Sediment excavated after each rainfall m3 ha-1 0.07 0.04 0.22 0.01 

Number of rainfall events year-1 3 7 16 137 

Sediment excavated by the animal after the rain  m3 ha-1 year-1 0.21 0.28 3.52 0.69 

Sediment redistributed due to rainfall m3 ha-1 year-1 0.44 1.17 10.51 12.21 

Excavated sediment to redistributed sediment % 47 24 33.5 5.6 

 

5.4.4 Role of surrounding environment 

We subtracted the output of the model with included burrows from the output of the model without 

burrows (Figure 5.A8). Although, the burrows on average enhanced sediment erosion on the catchment 

– scale, the high–resolution maps unveiled that burrows enhance sediment erosion within some pixels 

while they rather increased sediment accumulation within others.  

The amount of data variance explained by the GAM models (see section 3.6.) differed between models 

(Table 5.A3). Models estimating the impact of environmental parameters on sediment redistribution 

within 1-meter distance from the burrows, explained 3.84 % of variance in PdA, 37.1 % in SG, 46 % in 

LC and 42. % in NA. Models estimating the impact of environmental parameters on sediment 

redistribution within 10-meter distance from the burrows, explained 1.99 % of variance in PdA, 12.8 % 

in SG, 52 % in LC and 72.9 % in NA. The parameters selected for SG were slope, roughness, curvature, 

TRI and NDVI. Parameters selected for LC were elevation, slope, NDVI, sinks and roughness. 

Parameters selected for NA were elevation, slope, aspect, TRI, sinks and roughness (Table 5.3).   

Bioturbation strongly increased sediment redistribution (erosion and accumulation) at high values of 

elevation, slope, surface roughness TRI, sinks and topographic wetness index, at the middle values of 

elevation and aspect, and at low values of profile curvature and NDVI. From these parameters, 

bioturbation increased sediment erosion at high and middle values of elevation, at high values of slope, 

sinks and TRI, and at low values of profile curvature. Bioturbation increased sediment accumulation at 

high values of surface roughness and topographic wetness index and at low values of NDVI (Fig. 5.A9 

– A14).  

Bioturbation somewhat enhanced sediment erosion at medium values of surface roughness, NDVI and 

sinks, and at low values of topographic wetness index. Bioturbation somewhat increased sediment 

accumulation at low values of slope and TRI, at low and medium values of elevation and at high values 

of profile curvature.  
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Figure 5.7. Catchment-wide impact of bioturbation on sediment redistribution. Colour indicates the 

impact. Positive values indicate bioturbation enhanced sediment accumulation, negative values indicate 

bioturbation enhanced sediment erosion. Grey shadows indicate the hill shading. (a) Pan de Azúcar, (b) 

Santa Gracia, (c) La Campana, (d) Nahuelbuta. 

 

Table 5.3. Parameters influencing impact of bioturbation on sediment redistribution. The catchment-

wide analysis showed that bioturbation has varying impact on sediment redistribution (see Fig. 5.5,7). 

The x-axis shows the parameter values. The y-axis shows the amount of sediment which was 

redistributed due to bioturbation. Red colour indicates that at these parameter values, bioturbation 

caused sediment accumulation. Blue colour indicates that at these parameter values, bioturbation 

enhanced sediment erosion. One GAM model was run per site. The lines are not smooth as this is a 

conceptual Figure 5.only. For regression fits as estimated by the GAMs see Fig. 5.A9-A14. For the 

amount of explained variance of each GAM model see Tab. A2.   
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5.5. Discussion 

5.5.1 The inclusion of bioturbation increases model performance 

Overall, our DMMF model including bioturbation performed much better than the model without 

bioturbation. The DMMF model without bioturbation performed worse (RMSE of 1.18 kg ha-1 year-1 and 

R2 of 0.17) than the model with bioturbation (RMSE was 0.63 kg ha-1 year-1 and R2 was 0.71).  

We hence argue that the higher accuracy of our model can be explained with the inclusion of 

bioturbation. This is confirmed by the fact that our model run without bioturbation performed similarly to 

previously run models without bioturbation: In earlier studies, the accuracy of the MMF model reached 

an RMSE in between 4.9 and 8.2 kg ha-1 year-1, with an estimated R2 of in between 0.21 and 0.57 (Jong 

et al., 1999; Vigiak et al., 2005; López-Vicente et al., 2008; Vieira et al., 2014; Choi et al., 2017). 

However, we acknowledge that previous studies were all conducted in more temperate climate zones. 

To be able to compare our results with previous studies, we calculated the model performance 

considering solely the Mediterranean and humid climate zone. Here, our model performed better than 

when we considered all climate zones (R2 = 0.72, RMSE = 0.45 kg ha-1 year-1), confirming the conclusion 

that bioturbation increased model performance. Additionally, we compared the model output with the 

values on sediment redistribution estimated in previous studies. Again, these were solely conducted in 

more humid climate regions. In the humid zone, our model predicted an erosion up to 3.5 kg m-2 year-1. 

This estimation is in line with erosion rates due to bioturbation established by in-situ measurements in 

other studies (between 1.5 kg m-2 year-1 and 3.7 kg m-2 year-1) (Black and Montgomery, 1991; Yoo and 

Mudd, 2008; Yoo et al., 2005; Rutin, 1996). This also confirms the reliability of our approach. 

 

5.5.2 The relevance of bioturbation for sediment redistribution depends on the landscape context 

On the catchment scale (1 ha), our study finds that bioturbation increases erosion in all climatic zones 

except within the humid zone (Figure 5.5b). In contrast, bioturbation increases both, erosion and 

accumulation, on the plot scale (1 m2) (Figure 5.5a). On this scale, in the arid and semi-arid zone, 

sediment erosion and accumulation were predicted to be about equal ((erosion and accumulation both 

up to 0.1 kg m-2 year-1 in the arid zone, and erosion and accumulation both up to 0.2 kg m-2 year-1 in the 

semi-arid zone (see Figure 5.5a)). Bioturbation marginally increased erosion and decreased 

accumulation in the semi-arid zone, but reduced by twofold the accumulation in the arid zone. In 

contrast, in the Mediterranean and humid zone, erosion was predicted to be almost double when 

compared to accumulation (predicted erosion up to 2.5 kg m-2 year-1, and accumulation up to 1.4 kg m-2 

year-1). Inclusion of bioturbation increased erosion up to 3 kg m-2 year-1, and accumulation up to 1.6 kg 

m-2 year-1 in the Mediterranean zone, while it had no significant effect in humid zone. We argue that 

sediment redistribution due to bioturbation is heavily influenced by meso-topographic structures which 

determine the creation of surface runoff. Due to this, the erosion and accumulation on the plots scale is 

heavier impacted by bioturbation with increasing surface runoff.  

According to our analysis, bioturbation increases erosion or accumulation of sediment mostly based on 

an interplay between topographic structures elevation, slope and TRI (Table 5.3). Over all research 

sites, this study found that bioturbation leads to an increase in surface erosion in areas where erosional 

processes dominate (upper, and/or steeper slopes), and tends to increase sediment accumulation in 

areas where sediment is naturally deposited, e.g. lower slopes or shallow depressions (Figure 5.8). This 
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finding is based on the fact that erosion in general is positively affected by slope, and negatively by 

surface roughness and vegetation (Rodríguez-Caballero et al., 2012; Wang et al., 2013; Kirols et al., 

2015). Additionally, the redistribution of sediment is largely affected by topographic meso-/macroforms, 

such as rills or cliffs. These can be quantified by topographic ruggedness index (TRI) which describes 

the amount of elevation drop between adjusting cells of DEM (Wilson et al., 2007). At high values of this 

index, we would therefore expect high erosion rate, due to concentrated runoff within the connected rills 

or undisturbed flow of runoff from the cliffs downslope.  

Our data show that one burrow provides up to 0.43 m3 of additional loose sediment at the surface (Table 

5.2), while the surface roughness increases up to 200 % (Grigusova et al., 2022). When including 

burrows into the model, at the slope values from 0 to 5 degrees, the presence of burrows had no impact 

on sediment redistribution. From 5 degrees onwards it increased sediment erosion proportionally to the 

slope of the hillside (an increased erosion from 0.4 g ha-1 year-1 in the semi-arid zone until up to 150 kg 

ha-1 year-1 in the Mediterranean zone, Fig. 5.A9 and A12). Similarly, at locations with sudden elevation 

drops 0 m until 0.2 m (lower TRI values), the presence of burrows had no impact. However, at locations 

with elevation drops of 0.2 until 0.5 m (higher TRI values), bioturbation increases sediment erosion by 

1.5 kg ha-1 year-1 (Fig. 5.A9, A12-A14). Lastly, bioturbation proportionally increased accumulation when 

the surface roughness values were above 0.5 (an increased accumulation from 0.2 g ha-1 year-1 in semi-

arid zone until 5000 kg ha-1 year-1 in the Mediterranean zone, Fig. 5.A9 and A12).  

We conclude that in locations with slope values over 5 degrees, or at locations with sudden drops in 

elevation (high TRI) and connected rills, more sediment is eroding than accumulating. Here, additional 

surface sediments generated by bioturbators provides more source material for erosion and thus 

bioturbation increases sediment erosion at these locations (Table 5.3). In contrast, at locations with a 

slope below 5 degrees, where processes are dominantly controlled by surface roughness, sediment 

accumulation caused by bioturbation increases proportionally when the surface roughness has a value 

above 0.5. This is likely because burrows through their above-ground structures heavily increase surface 

roughness (Grigusova et al., 2022), and hence the presence of bioturbating animals leads to an increase 

in sediment accumulation.  

Additionally, we hypothesize that it is not only the additional availability of sediment on the surface and 

the topography of the vicinity which controls the contribution of bioturbation to sediment surface flux, but 

also the spatial distribution of animal burrows. We interpret that in locations with high burrow 

aggregation, surface flow might be redirected and centralized around the aggregates and thus increase 

the sediment erosion in the areas surrounding burrow aggregates (Figure 5.A15). This mechanism could 

explain, why bioturbation promotes sediment erosion especially in the Mediterranean zone. The relative 

role of burrow aggregation should be studied in detail and included in future studies. 
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Figure 5.8. Bioturbation amplifies erosion within the erosion zone and accumulation within the 

accumulation zone. The zones were defined based on the values of surrounding environmental 

parameters. The arrow direction indicates decrease or increase of sediment amount within a pixel and 

thus erosion or accumulation. The arrow thickness indicates the amount of redistributed sediment. 

Please note that the location of the erosion zone on the upper hillside and of the accumulation zone on 

the lower hillside is purely conceptual. Should the respective values of environmental parameters listed 

for the erosion zone be found on the lower hillside, it would still be erosion zone. Vice versa for the 

accumulation zone. The importance of the parameters is ranked and described in section 5.5.3. 

 

 

Figure 5.9. Context dependency of sediment redistribution. (a) Pan de Azúcar, (b) Santa Gracia, (c) La 

Campana, (d) Nahuelbuta. Brown arrows indicate the direction and magnitude of overall sediment 

redistribution within each climate zone. Blue arrows indicate the direction of flow (runoff vs. infiltration). 
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Half-moons indicate the distribution and size of burrows. The dashed line indicates the median value of 

each parameter for the first four parameters. 

 

5.6. Conclusion 

In summary, our results show that the presence of animal burrows leads to an increase in erosion and 

net sediment loss. According to our results, bioturbation enhances sediment erosion in areas where 

more erosion is expected and enhances sediment accumulation in areas which are more prone to 

accumulate sediment.   

On geological time scales, as burrowing animals increase both, erosion in steeper zones, and 

accumulation in areas with gentler slopes and higher roughness, hillslope relief should become faster 

equalised and overall more flat. This tendency is the most pronounced in the Mediterranean zone with 

high burrow density and excavation rates, as well as high precipitation rates. Our study furthermore 

shows that the impact of bioturbation heavily depends on the surrounding environmental parameters.  
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Supplementary material 

Table 5.A1: R2 and RMSE of random forest models trained for the prediction of soil properties needed 

for model parametrization. RMSE is root mean square error.  

Variable R2 RMSE 

Soil water content 0.80 0.05 

Bulk density 0.60 0.22 

Porosity 0.63 0.09 

Silt 0.64 0.04 

Middle silt 0.64 0.04 

Sand 0.68 0.09 

Middle sand 0.64 0.05 

Organic components 0.77 0.05 

Organic carbon  0.70 0.03 

 

 

Table 5.A2. Model sensitivity analysis. For the analysis, the minimum, maximum and mean value of 

each parameter was calculated. The model was run for a catchment of 1km2 with homogenous mean 

parameters. Then, the minimum and maximum values of each parameter were tested. Each parameter 

was stepwise changed to its minimum or maximum value while the remaining parameters stayed 

homogenous. The significance of the parameter was estimated by a t-test conducted between the 

erosion estimated by the model with homogenous mean parameters and the erosion estimated by the 

model with varying minimum and maximum parameter values. Only significant parameters are shown.   

Abbre

viation 

Parameter mean 

value 

min 

value 

max 

value 

mean 

erosion 

min 

erosion  

max 

erosion 

 

 

 

 

R precipitation 19.9 0.2 65.6 0.07 0 4.1 

P_c clay content 10.61 3.87 34.64 0.07 0.07 0.07 

https://doi.org/10.1016/j.geoderma.2017.07.041
https://doi.org/10.1002/esp.3290120107
https://doi.org/10.1016/j.marpolbul.2019.01.063
https://doi.org/10.1007/s11802-020-4112-2
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P_z silt content 38.49 13.32 59.59 0.07 0.04 0.11  

 

 

 

 

 

 

 

 

 

Erosion in kg 

m-1 

P_s sand content 47.04 24.13 79.17 0.07 0.07 0.07 

theta_i

nit 

water content 3.87 2.38 12.68 0.07 0.09 0.06 

n_s roughness 0.97 0 236.7

5 

0.07 0.34 0.01 

GC vegetation  79.54 50.38 92.48 0.07 0.01 0.004 

DEM Slope of DEM 18.21 0 89.78 0.07 0 inf. 

 

 

Table 5.A3. Summary of GAM models. We analyzed the impact of parameters within a 1-meter and 10-

meter distance from burrows. The Stars indicate p-values of the selected parameters. p*** < 0.001, p** 

< 0.01, p* < 0.05, p. < 0.1. One GAM model was run per parameter. Only results for models with an 

explained variance above 5 % are shown.   

Parameters Within 1 meter from burrows Within 10 meters from burrows 

 PdA SG LC NA PdA SG LC NA 

Explained 

Variance 

3.8 % 37 % 46 % 42 % 2.0 % 13 % 52 % 73 % 

Burrow 

density 

.    .    

Elevation   *** *** *  * *** 

Slope  ***     * ** 

Aspect . **  * *   . 

Roughness  ***     ** * 

TPI         

TRI  **  **     

Plan 

curvature 

 .      . 

Profile curv.  ** .      

NDVI   **   **  . 

Sinks    * *** *  *  

Wetness    **     

Flow 

direction 

        

Flow path         

Catchment   *   *    
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Catchment 

slope 

 ***  .     

 

 

 

Figure 5.A1. Example of the unsupervised k-means classification of the surface photo from La 

Campana. The collection of in-situ data is explained in section 3.1., the estimation of soil properties in 

section 3.2. The image was classified into 5 classes using unsupervised k-means classification; the land 

cover was then assigned manually. In some cases, like in this case for rocks, multiple k-means classes 

stand for the same land cover. These were then unified to the class “rocks”. 
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Figure 5.A2. Input parameter values per site. The barplots show all pixel values within the researched 

catchments for each site. The seemingly black lines outside of whiskers are as well outliers.  
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Figure 5.A3. Measured and modelled redistributed sediment for different scenarios. (a) Model without 

bioturbation. (b) Model with entrances. (c) Model with mounds. (d) model with burrows.  
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Figure 5.A4. Measured and modelled redistributed sediment without an outlier. (a) Model without 

bioturbation. (b) Model with entrances. (c) Model with mounds. (d) model with burrows. 
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Figure 5.A5. Predicted mounds in all climate zones. (a) Pan de Azúcar, (b) Santa Gracia, (c) La 

Campana, (d) Nahuelbuta. 
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Figure 5.A6. Catchment-wide predicted surface runoff. Colors indicate surface runoff. (a) Pan de 

Azúcar, (b) Santa Gracia, (c) La Campana, (d) Nahuelbuta. 
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Figure 5.A7. Catchment-wide predicted sediment redistribution. Colours indicate sediment 

redistribution. Positive values indicate sediment accumulation; negative values indicate sediment 

erosion. Grey shadows indicate the hill shading. (a) Pan de Azúcar, (b) Santa Gracia, (c) La Campana, 

(d) Nahuelbuta. 
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Figure 5.A8. Catchment-wide impact of bioturbation on sediment redistribution. Colour indicates the 

impact. Positive values indicate bioturbation enhanced sediment accumulation, negative values indicate 

bioturbation enhanced sediment erosion. Grey shadows indicate the hill shading. (a) Pan de Azúcar, (b) 

Santa Gracia, (c) La Campana, (d) Nahuelbuta. 
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Figure 5.A9. Environmental parameters influencing impact of bioturbation on sediment redistribution in 

Santa Gracia within 1-meter distance from burrows. Positive values indicate bioturbation enhances 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 

enhances sediment erosion at the respective parameter values. 

 

 

Figure 5.A10. Environmental parameters influencing impact of bioturbation on sediment redistribution 

in Santa Gracia within 10-meter distance from burrows. Positive values indicate bioturbation enhances 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 

enhances sediment erosion at the respective parameter values. 

 

 

 

Figure 5.A11. Environmental parameters influencing impact of bioturbation on sediment redistribution 

in La Campana within 1-meter distance from burrows. Positive values indicate bioturbation enhances 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 

enhances sediment erosion at the respective parameter values. 
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Figure 5.A12. Environmental parameters influencing impact of bioturbation on sediment redistribution 

in La Campana within 10-meter distance from burrows. Positive values indicate bioturbation enhances 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 

enhances sediment erosion at the respective parameter values. 

 

 

 

Figure 5.A13. Environmental parameters influencing impact of bioturbation on sediment redistribution 

in Nahuelbuta 1-meter distance from burrows. Positive values indicate bioturbation enhances sediment 

accumulation at the respective parameter values, negative values indicate bioturbation enhances 

sediment erosion at the respective parameter values. 
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Figure 5.A14. Environmental parameters influencing impact of bioturbation on sediment redistribution 

in Nahuelbuta 10-meter distance from burrows. Positive values indicate bioturbation enhances sediment 

accumulation at the respective parameter values, negative values indicate bioturbation enhances 

sediment erosion at the respective parameter values. 

 

 

Figure 5.A15.  Burrow aggregation concentrates the runoff and increases erosion. Example for the 

north-facing hillside in Mediterranean La Campana for the time period of one year. (a) Sediment erosion 

as estimated by model without bioturbation. (b) Sediment erosion as estimated by model with 

bioturbation. (c) Sediment erosion as estimated by model with bioturbation with predicted burrow 

locations. (d) Surface runoff as estimated by model without bioturbation. (e) Surface runoff as estimated 

by model with bioturbation. (f) Surface runoff as estimated by model including bioturbation and predicted 

burrow locations. Black colour indicates, at least one burrow was located within this pixel. Four 

neighbouring pixels which contain a burrow form a burrow aggregation.   
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6. Conclusion 

In my thesis I analysed the interplay between burrow distribution (WP1, section 3), bioturbator-driven 

redistribution (WP2, section 4), surrounding environment and impact of bioturbation on catchment-wide 

rainfall-driven sediment redistribution (WP3, section 5). 

 

6.1 Hypothesis 

To study these interplays, I set up 4 hypotheses: 

My results confirmed the H1, distribution of burrows created by bioturbating animals depends on 

vegetation patterns (WP1, section 3 and 5). The density of burrows created by bioturbating animals was 

predicted the best by in-situ measured vegetation cover as well as by the diameter and height of shrubs. 

In the arid and semi-arid climate zone, cacti height and coverage were important predictors while in the 

humid zone, rather tree trunk diameter and coverage were selected by the model. However, as well the 

biodiversity of the plants was important in all climate zones. When predicting the density of burrows 

using UAV images, vegetation heterogeneity indices were important. The density of vertebrate burrows 

increased with the shrub, herb and cacti cover in all climate zones and decreased with the tree canopy 

cover in the humid climate zone. The density of invertebrate burrows was higher in rockier areas with 

less vegetation in all sites (section 3). Lastly, the vegetation index describing high leaf area index was 

an important predictor. The burrow distribution was catchment-wide best predicted by WorldView-2 NIR 

band and NDVI as well as single vegetation land cover classes. The topography features calculated 

from LiDAR data were not selected as important predictors, except for aspect (section 5).  

My thesis partially confirms the hypothesis H2, saying that bioturbator-driven sediment redistribution 

depends on the rainfall-driven redistribution (WP2, section 4). An increased amount of sediment 

excavation by the animal was observed immediately after rainfall events in the Mediterranean climate 

zone: Here, the animals were observed to reconstruct their burrows after the rainfall while 

simultaneously excavate more additional sediment to the surface. In the arid climate zone, the sediment 

excavation was mostly not proceeded by a rainfall event. Additionally, to the dependence on rainfall-

triggered sediment redistribution, bioturbator-driven sediment redistribution as well depended on the 

season. The multi-daily monitoring of burrows identified a time period from Mai until August, during 

which the animals more actively excavate the sediment to the surface. However, even from September 

until April, rainfall event was still followed by the animal excavating more sediment to the surface.   

The results confirmed H3 saying that surrounding environment determined the magnitude of the burrow’ 

impact on the catchment-wide rainfall-driven sediment redistribution (WP3, section 5). The results 

showed, that most determining environmental parameters were elevation, surface roughness and 

inclination as well as vegetation cover derived from NDVI. Bioturbation increased sediment erosion in 

areas where erosional processes dominate (high elevation, high inclination, low surface roughness, low 

vegetation cover); and similarly increased sediment accumulation in areas where sediment is naturally 

deposited (high surface roughness, high vegetation cover, low inclination) 

My results partially confirmed the hypothesis H4 saying, that bioturbation increases sediment erosion. 

Bioturbation increased sediment erosion in all but humid climate zone. The multi-daily monitoring of 

burrows revealed an increase in erosion of over 300% when compared to burrow embedding areas 
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(section 4). According to the output of the soil erosion model, bioturbation increased erosion the most 

in the Mediterranean zone, followed by arid and semi-arid zone. The impacts of bioturbation were not 

significant in the humid zone (section 5). 

 

6.2 Suitability of the applied methods 

In the first working package, I used UAV images and WorldView-2 data to predict the catchment-wide 

density and distribution of burrows created by bioturbating animals. The most suitable model was 

random forest, applied with predictors estimated from WorldView-2 data. 

My study showed that Time-of-Flight cameras are a suitable technique to monitor surface changes at a 

very high spatial and temporal resolution. Our approach with multi-daily monitoring of 4 frames per day 

was shown to be suitable to distinguish between bioturbator-driven and rainfall-driven sediment 

redistribution. However, due to backscattering of sunlight, the quality of frames taken at night was higher. 

In the third working package, I integrated bioturbation into a soil erosion model by adjusting the input 

parameters at predicted burrow locations. This approach allowed to integrate bioturbation into the model 

without predefining its impacts on the redistribution during the model parametrisation. The inclusion of 

bioturbation increased the accuracy of the modelled sediment redistribution. Already the inclusion of 

solely burrow entrances or mounds significantly improved the model. The best results were obtained 

when the burrow structures; including the burrow topography, soil properties and impacts on surrounding 

vegetation; were integrated into the model parametrisation. The results were similar for all climate zones 

and thus did not depend on the position of the sediment fence used for validation.  

 

6.3 New contributions 

My thesis closes several research gaps and provides new insights regarding the interplay between 

bioturbation, sediment redistribution and environment: 

Within WP1, I showed that the density of bioturbator’s burrows does not only depend on vegetation and 

rock cover as previously assumed, but also on vegetation height, diversity and heterogeneity. 

Additionally, I found out that the vegetation patterns determining burrow distribution differ along the 

climate gradient. 

Within WP2, I unveiled the dynamics between bioturbator-driven and rainfall-driven sediment 

redistribution. My results showed that the animals excavate new sediment to the surface after each 

rainfall event - a dynamic previously not known, which up until now consecutively lead to an 

underestimation of the impacts of bioturbation on sediment redistribution by previous authors. 

Within WP3, I estimated, analysed and compared the catchment-wide impacts of bioturbation on 

sediment redistribution along the climate gradient. I found out that bioturbation increases sediment 

erosion as previously assumed. However, the magnitude of their impact varies along the climate 

gradient and is not significant in the humid zone. In contrast to previous studies, I was capable to analyse 

the impacts of bioturbation within a spatial context – The output of my model showed that bioturbation 

does not uniformly increase erosion throughout the catchment. Lastly, I was able to identify the 

environmental parameters which cause this variation throughout the catchment. 

Additionally, my thesis showed possibilities of several previously not tested methods: 
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Within WP1, I predicted the density and distribution of burrows into the area in catchments largely 

covered by canopy. This approach was previously not tested, as the mapping of bioturbators burrows 

was limited to catchments with no or low vegetation cover. Within WP2, I, for the first time, used Time-

of-Flight technology, which I integrated into a camera system, to monitor surface changes at a very high 

spatial and temporal resolution. Within WP3, I tested in the field the suitability of sediment fences 

constructed of geotextile for the validation of my model. Additionally, I, for the first time, integrated 

vertebrate burrow structures into a soil erosion model as well as the seasonality and variability of their 

burrowing behaviour. Lastly, no previous authors estimated the impacts of bioturbation on sediment 

redistribution at such a high spatial (0.5 m) and temporal (daily) resolution for such a long time period 

(6 years). 

 

6.4 Perspectives and future investigations 

The here used methods and results can be further improved and integrated into studies researching 

long-term impacts of bioturbation on sediment redistribution.  

Approaches combining remote sensing and machine learning were previously shown to be a suitable 

technique for mapping of vegetation parameters (Sprot et al. 2021, Holden et al. 2021, Puliti et al. 2018). 

I propose a future study might concentrate to combine UAV, airborne and satellite remote sensing 

images, which might make it possible to upscale burrow distribution into the whole catchments at a 

higher accuracy. After being the first to test Time-of-Flight based cameras for surface monitoring, further 

investigations need to be done for multi-annual time period and within areas not only embedding burrows 

but without any visible sign of burrowing activity within a distance. However, an approach needs to be 

developed to deal with the light backscattering during daytime.  

To estimate long-term impacts, bioturbation needs to be integrated into landscape evolution models. 

First attempts to include bioturbation into these models were done previously (Temme and 

Vanwalleghem, 2016; Yoo and Mudd, 2008; Pelletier et al., 2013). However, a uniform distribution and 

uniform spatial and temporal impact of bioturbation was precoded in these models. My results showed 

that the impacts of bioturbation on sediment redistribution are not temporally and spatially uniform and 

distribution of bioturbation is not uniformly positively associated with vegetation. To realistically upscale 

long-term impacts of bioturbation, and estimate how bioturbation affect habitats, influence weathering 

processes and shape the landforms, the spatial and temporal variations estimated within this thesis 

need to be considered.  
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Zusammenfassung 
Die Grabaktivität terrestrischer Bioturbatoren beeinflusst die Mikrotopographie, Rauheit der Oberfläche 

die physikalischen Eigenschaften des Bodens. Durch die Umarbeitung von Sedimenten erhöhen 

Bioturbatoren die Durchlässigkeit und Porosität des Bodens, was zu Auswirkungen auf die Infiltrations- 

und Erosionsraten führt. Der Bau von unterirdischen Gängen verteilt und konzentriert Nährstoffe und 

wirkt sich besonders positiv auf die Kohlenstoffspeicherung im Boden aus.Frühere Studien haben 

mehrere Forschungslücken offen gelassen. Die Studien konzentrierten sich nur auf die 

Lebensraumpräferenzen der einzelnen Arten und berücksichtigten nicht die unterschiedliche Menge an 

ausgegrabenem Sediment und die Baudichte einzelner Arten. Es bleibt daher unklar, welche 

Umweltparameter innerhalb des Einzugsgebiets hauptsächlich mit der hohen Dichte und Verteilung aller 

vorhandenen Baute von Bioturbatoren zusammenhängen. Darüber hinaus ging die vorherigen Autoren 

nicht auf die tägliche Aushubdynamik des Sediments durch das Tier ein, ob und wie sie mit der durch 

einzugsgebietsweiten Niederschlag getriebenen Sedimentumverteilung zusammenhängt und wie viel 

Sediment die Bioturbatoren das ganze Jahr über an die Oberfläche austragen. 

Meine Dissertation war Teil des EarthShape-Konsortiums mit der übergeordneten Forschungsfrage, wie 

die Mikroorganismen, Tiere und Pflanzen die Form und Entwicklung der Erdoberfläche beeinflussen. 

Die Studie wurde an vier Studienstandorten entlang der chilenischen Küstenkordilleren durchgeführt: 

aridem Pan de Azúcar, semi-aridem Santa Gracia, mediterranem La Campana und humidem 

Nahuelbuta. Der Arbeitsablauf bestand aus 3 Arbeitspaketen mit dem Endziel, die einzugsgebietsweiten 

Auswirkungen der Bioturbation zu bestimmen. 

Innerhalb des ersten Arbeitspakets habe ich getestet, ob die Dichte der Höhlen und die Verteilung der 

Bauten durch Vegetationsmuster vorhergesagt werden können, die aus UAV- und WorldView-2-Daten 

berechnet wurden. Dann habe ich das beste Modell für eine einzugsgebietsweite Vorhersage 

verwendet. Innerhalb des zweiten Arbeitspakets habe ich getestet, ob die bioturbatorgetriebene 

Sedimentumverteilung von der niederschlagsgetriebenen Sedimentumverteilung abhängt. Zu diesem 

Zweck habe ich mehrere Time-of-Flight-basierte Kameras aufgestellt, die die Sedimentumverteilung auf 

der Grabenoberfläche und um den Graben herum überwachen. Im dritten Arbeitspaket habe ich die 

Bioturbation in ein Bodenerosionsmodell integriert. Dann habe ich den Einfluss der Bioturbatoren auf 

die Sedimentverteilung und die Umweltparameter bestimmt, die über das Ausmaß dieses Einflusses 

entscheiden.  

Meine Ergebnisse zeigten, dass die Verteilung der von bioturbierenden Tieren geschaffenen Bauten 

hängt von Vegetationsmustern ab. Die Dichte der von bioturbierenden Tieren geschaffenen Höhlen 

wurde am besten durch die in-situ gemessene Vegetationsbedeckung sowie den Durchmesser und die 

Höhe der Sträucher vorhergesagt. In der ariden und semiariden Zone waren Kakteenhöhe und 

Bedeckung wichtige Prädiktoren, während in der feuchten Zone eher Baumstammdurchmesser und 

Bedeckung durch das Modell ausgewählt wurden. Aber auch die Artenvielfalt der Pflanzen war in allen 

Klimazonen wichtig. Bei der Vorhersage der Dichte von Höhlen unter Verwendung von UAV-Bildern 

waren ebenfalls Indizes der Vegetationsheterogenität wichtig. Die Dichte der Bauten nahm mit der 

Strauch-, Kräuter- und Kakteenbedeckung in allen Klimazonen zu und mit der Baumkronenbedeckung 

in der feuchten Klimazone ab. Die Dichte der Wirbellosenbauten war in felsigeren Gebieten mit weniger 
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Vegetation an allen Standorten höher. Schließlich war der Vegetationsindex, der einen hohen 

Blattflächenindex beschreibt, ein wichtiger Prädiktor. Die Bautenverteilung wurde im gesamten 

Einzugsgebiet am besten durch das WorldView-2 NIR-Band und NDVI sowie einzelne 

Vegetationslandbedeckungsklassen vorhergesagt. Die aus LiDAR-Daten berechneten 

Topografiemerkmale wurden nicht als wichtige Prädiktoren ausgewählt, mit Ausnahme des Aspekts. 

Zweitens, die Ergebnisse zeigten, dass die durch Bioturbatoren ausgelöste Sedimentumverteilung von 

der durch Niederschlag ausgelösten Umverteilung abhängt. Unmittelbar nach Niederschlagsereignissen 

in der mediterranen Klimazone wurde ein erhöhter Sedimentaustrag durch die Tiere beobachtet: Hier 

wurde beobachtet, dass die Tiere nach den Regenfällen ihre Bauten rekonstruierten und gleichzeitig 

mehr zusätzliches Sediment an die Oberfläche gruben. Hingegen, in der ariden Klimazone ging dem 

Sedimentaustrag meist kein Niederschlagsereignis voraus.  

Die Ergebnisse bestätigten, dass die Umgebung das Ausmaß der Auswirkungen des Grabens auf die 

durch Niederschläge ausgelöste Sedimentumverteilung im gesamten Einzugsgebiet bestimmt. Die 

Ergebnisse zeigten, dass die wichtigsten Umweltparameter Höhenlage, Oberflächenrauheit und -

neigung sowie Vegetationsbedeckung, abgeleitet von NDVI, waren. Bioturbation erhöhte 

Sedimenterosion in Gebieten, in denen Erosionsprozesse dominieren (Überhang, starke Neigung, 

geringe Oberflächenrauhigkeit, geringe Vegetationsbedeckung); und ähnlich erhöhte 

Sedimentansammlung in Gebieten mit natürlicher Sedimentablagerung (hohe Oberflächenrauhigkeit, 

hohe Vegetationsbedeckung, geringe Neigung) 

Das Modeloutput hat gezeigt, dass Bioturbation die Sedimenterosion verstärkt. Bioturbation verstärkte 

die Sedimenterosion in allen außer der humiden Klimazone. Die Überwachung der Bauten zeigte eine 

Zunahme der Erosion von über 300 % im Vergleich zu den Einbettungsbereichen der Bauten. Nach den 

Ergebnissen des Bodenerosionsmodells erhöhte die Bioturbation die Erosion am stärksten in der 

mediterranen Zone, gefolgt von der ariden und semiariden Zone. Die Auswirkungen der Bioturbation 

waren in der humiden Zone nicht signifikant. 

Um langfristige Auswirkungen abzuschätzen, muss die Bioturbation in Landschaftsentwicklungsmodelle 

integriert werden. Allerdings wurde in diesen Modellen von einer gleichmäßigen Verteilung und 

räumlichen und zeitlichen Auswirkung der Bioturbation ausgegangen. Meine Ergebnisse zeigten, dass 

die Auswirkungen der Bioturbation auf die Sedimentumverteilung zeitlich und räumlich nicht einheitlich 

sind und die Verteilung der Bioturbation nicht einheitlich positiv mit der Vegetation assoziiert ist. Um die 

langfristige Auswirkungen der Bioturbation realistisch vorherzusagen, müssen die in dieser Arbeit 

geschätzten räumlichen und zeitlichen Variationen berücksichtigt werden. 
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2017/09 – 2017/10  German Research Centre for Geosciences, Potsdam  

Section 1.4. - Remote Sensing  

Research Internship  

• Processing and Analysis of RapidEye Data, with main focus on vegetation 

and agriculture data, with ArcMap, Erdas and R  

• Atmospheric correction of optical satellite data with ATCOR  

• Preprocessing, Testing and Optimizing of Algorithms in R  

• Statistical Analysis of satellite and in-situ data with R  

Supervision: Claudia Vallentin  

 

2016/05 – 2016/09  Project GlobE – Wetlands in East Africa  

Hydrology Research Group, University of Bonn  

Student assistant 

• Modelling of water fluxes and soil moisture dynamics with Hydrus-1D  

• Simulating feedbacks between pedosphere, hydrosphere and biosphere  

• Analysis of climate, soil water and soil-physical data  

• Derivation of soil properties using pedotransfer functions  

• Teaching experience  

Supervision: Dr. Constanze Leemhuis, Geofrey Gabiri 
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EDUCATION  

 2019/05 – 2023/04 Philipps University Marburg  

PhD in Geography 

Specialization: Environmental modelling, Remote sensing 

PhD thesis: „Interplay between bioturbation, environment    and sediment 

redistribution: New insights provided by combining remote sensing, machine 

learning and semi-empirical modelling”  

Supervisor: Prof. Dr. Jörg Bendix, Dr.A. Annegret Larsen (WUR Wageningen)  

 

2016/10 - 2019/03 Philipps University Marburg  

Master of Science in Physical Geography  

Specialization: Environmental Informatics  

Master thesis: „Predicting multi-taxa plant and animal species diversity at 

Mount Kilimanjaro using Sentinel-2 data“  

Supervisor: Prof. Dr. Thomas Nauss  

 

2012/10 – 2016/04  Rheinish Friedrich Wilhelm University Bonn  

Bachelor of Science in Geography  

Specialization: Environmental Modelling and Hydrology  

Bachelor thesis: „Modelling water-fluxes and soil moisture dynamics in a 

wetland in Uganda “  

Supervisor: Prof. Dr. Bernd Diekkrüger  

 

EXTRACURRICULUM ACTIVITIES 

2020/12 - now  Society for tropical ecology Scientific board member 

2020/05 - now  University of Marburg  Representative for international students 

2020/12 – 2022/06 Hessen mentoring  Mentee within ProAcademia program 

2018/04 - 2018/12  Portal Mauerstraße, Marburg  Support for refugee families 

2014/09 - 2016/09 UNICEF    Student working group Bonn   

2013/10 – 2016/09  Connexxion e.V. Bonn   Support for international students 

2013/08 – 2013/10  Cape Town / South Africa  Support in social and ecological projects  

 

Language skills  Slovak     native speaker  

German    near native/fluent (C2)  

English     excellent command (C1)  

GIS – Skills   ArcGIS, QGIS  

Programming skills  R     expert  

Python    advanced  

IDL    beginner  

Hobbies  Rock climbing, paragliding, camping, yoga 
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LIST OF PUBLICATIONS 

Grigusova, P.; Larsen, A.; Achilles, S.; Klug, A.; Fischer, R.; Kraus, D.; Übernickel, K.; Paulino, L.; 

Pliscoff, P.; Brandl, R.; Farwig, N.; Bendix, J. Area-Wide Prediction of Vertebrate and Invertebrate Hole 

Density and Depth across a Climate Gradient in Chile Based on UAV and Machine Learning. Drones 

2021, 5, 86. https://doi.org/10.3390/drones5030086 

Grigusova, P., Larsen, A., Achilles, S., Brandl, R., del Río, C., Farwig, N., Kraus, D., Paulino, L., Pliscoff, 

P., Übernickel, K., and Bendix, J.: Higher sediment redistribution rates related to burrowing animals than 

previously assumed as revealed by time-of-flight-based monitoring, Earth Surf. Dynam., 10, 1273–1301, 

https://doi.org/10.5194/esurf-10-1273-2022 , 2022.  

Grigusova, P., Larsen, A., Brandl, R., del Río, C., Farwig, N., Kraus, D., Paulino, L., Pliscoff, P., and 

Bendix, J.: Mammalian bioturbation amplifies rates of both, hillslope sediment erosion and accumulation, 

in coastal Chile, Biogeosciences [preprint], https://doi.org/10.5194/egusphere-2023-84 , 2023. 

Grigusova, P., Larsen, A., Brandl, R., Farwig, N., and Bendix, J.: Spatial and temporal vegetation 

patterns along Chilean climate gradient estimated by WorldView-2 and Landsat time-series (in 

preparation) 

Stallman, K., Bendix, J., Larsen, A., Brandl, R., Farwig, N., and Grigusova, P.: Spatial and temporal 

vegetation patterns along Chilean climate gradient estimated by WorldView-2 and Landsat time-series 

(in preparation) 

Kraus D, Brandl R, Achilles S, Bendix J, Grigusova P, Larsen A., Pliscoff P., Übernickel K, Farwig N, 

2022. Vegetation and vertebrate abundance as drivers of bioturbation patterns along a climate gradient. 

PLOS ONE 17, e0264408. doi:10.1371/JOURNAL.PONE.0264408 

Kraus D, Brandl R, Bendix J, Grigusova P., Köhler S, Larsen A, Pliscoff P, Farwig N.: Bioturbation 

enhances C and N contents of near-surface soils in the desert while it promotes adverse effects in 

climate regions providing more food and shelter resources. (in review) 

Kraus D, Brandl R, Bendix J, Grigusova P., Larsen A, Farwig N.: Meta-analysis: The positive link 

between geo- and biodiversity and the importance of scales. (in preparation) 

 

WORKSHOPS AND OUTREACH 

2022/03 UAV: Innovation and Praxis. German Association for Geodesy, Geoinformation and 

Land Management. Workshop.  

2022/12 Presentation of the thesis results. Soil Geography and Landscape Group at 

Wageningen University & Research 

CONFERENCE CONTRIBUTIONS 

https://doi.org/10.3390/drones5030086
https://doi.org/10.5194/esurf-10-1273-2022
https://doi.org/10.5194/egusphere-2023-84
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2020/05 European Geoscience Assembly EGU, online 

Area-wide detection and spatial modeling of signs of bioturbation activity along a climate 

and elevation gradient in Chile using UAVand their dependence on vegetation and soil 

characteristics (presentation) 

 

2021/04 European Geoscience Assembly EGU, online 

Identification of the preferred areas for animal burrowing activitywith regard to the land 

cover, topography and soil properties usingvery high resolution WorldView-2 and LiDAR 

data (presentation) 

 

2021/08 50th Annual Meeting of the Ecological Society, online 

Quantification of microtopography and sediment deposition caused by animal 

burrowing activity using continuous surface monitoring (presentation) 

 

2021/12 British Ecology Society: Ecology across borders, online 

Prediction of burrow density and depth based on in-situ and UAV obtained vegetation 

patterns and machine learning (poster) 

 

2021/04 European Geoscience Assembly EGU in Vienna, Austria 

Impacts of burrowing animals on surface processes (presentation) 

 

2022/06 Annual conference of Society for Tropical ecology in Montpellier, France 

The potential of in-situ and remote sensing datasets on the analysis of impacts of 

bioturbation on vegetation in Chile (joined presentation with Diana Kraus) 

 

2022/08 Soil Science Congress in Glasgow, Scotland 

Effect of animal bioturbation on chemical and physical soil properties and sediment 

redistribution across climate gradients 

 

2022/10 AK Klima in Würzburg 

Climate determines the impact of bioturbation on landscape (poster) 

 

2022/11 Mid-European Geomorphology Meeting in Kaprun / Salzburg, Austria 

Influence of bioturbation on sediment redistribution along climate gradient in Chile 

(presentation) 

 

2023/04 European Geoscience Assembly EGU in Vienna, Austria 

Influence of bioturbation on sediment redistribution along climate gradient in Chile 

estimated by combining semi-empirical modelling, remote sensing and machine 

learning (presentation) 

 


