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Abstract

We study homogeneous and inhomogeneous manifolds with various Sasakian geometries.
First we provide a new and more illustrative proof of the classification of homogeneous 3-
Sasaki manifolds, which was originally obtained by BOYER, GALICKI and MANN [BGM].
In doing so we construct an explicit one-to-one correspondence between simply connected
homogeneous 3-Sasaki manifolds and simple complex Lie algebras via the theory of root
systems. These results also yield an alternative derivation of the classification of homo-
geneous positive quaternionic Kdhler manifolds due to ALEKSEEVSKII [Alek].
Subsequently we apply similar techniques to degenerate 3-(a, d)-Sasaki manifolds to de-
duce several results which limit the number of homogeneous spaces with this geometry.
We prove that this category contains no non-trivial compact examples as well as exactly
one family of nilpotent Lie groups, namely the quaternionic Heisenberg groups.

By way of contrast we present a method to construct degenerate 3-(«, §)-Sasaki manifolds
as certain 73-bundles over hyperkihler manifolds with integral Kihler classes, which is
similar to the famous Boothby-Wang bundle [BW]. The manifolds obtained this way
are necessarily inhomogeneous and we develop a way to quantify “how far away from
homogeneous” they are. To this end we utilize that Sasakian geometries naturally come
with the so-called characteristic foliation and elaborate a generalization of the famous
Bochner technique for foliations [Boch]. Later it turned out that this Bochner technique
for foliations also follows from results in the article [HR], but the applications to Sasakian

geometries are new.



Zusammenfassung

Wir untersuchen homogene sowie inhomogene Mannigfaltigkeiten mit verschiedenen
Sasakischen Geometrien. Zunichst geben wir einen neuen und anschaulicheren Beweis
fiir die Klassifikation der homogenen 3-Sasaki-Mannigfaltigkeiten, welche urspriinglich
von BOYER, GALICKI und MANN [BGM]| bewiesen wurde. Dabei konstruieren wir eine
explizite Bijektion zwischen einfach zusammenhingenden homogenen 3-Sasaki-Mannig-
faltigkeiten und einfachen komplexen Lie-Algebren mithilfe der Theorie der Wurzelsys-
teme. Diese Ergebmisse liefern zudem eine alternative Herleitung fiir die Klassifika-
tion der homogenen positiven quaternionischen Kahler-Mannigfaltigkeiten von ALEK-
SEEVSKII [Alek].

Anschliefend wenden wir &hnliche Techniken auf entartete 3-(a,d)-Sasaki-Mannigfal-
tigkeiten an, um die Anzahl der homogenen Réume mit dieser Geometrie einzugrenzen.
Wir beweisen, dass diese Kategorie keine nicht-trivialen kompakten Beispiele enthélt
sowie genau eine Familie von nilpotenten Lie-Gruppen, némlich die quaternionischen
Heisenberg-Gruppen.

Als Kontrast hierzu présentieren wir eine Methode zur Konstruktion von entarteten 3-
(v, 6)-Sasaki-Mannigfaltigkeiten als gewisse T°-Biindel iiber Hyperkihler-Mannigfaltig-
keiten mit integralen Kahler-Klassen, dhnlich dem beriihmten Boothby-Wang-Biindel
[BW]. Die auf diese Weise erhaltenen Mannigfaltigkeiten sind notwendigerweise inho-
mogen und wir entwickeln ein Verfahren, um zu quantifizieren ,wie weit entfernt von
Homogenitét” sie sind. Zu diesem Zweck nutzen wir, dass Sasakische Geometrien stets
mit der sogenannten charakteristischen Blitterung versehen sind, und entwickeln eine
Verallgemeinerung der berithmten Bochner-Technik fiir Blitterungen [Boch]. Im Nach-
hinein stellte sich heraus, dass diese Bochner-Technik fiir Bldtterungen auch aus bereits
bekannten Resultaten in dem Artikel [HR] folgt, aber die Anwendungen auf Sasakische

Geometrien sind neu.
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Introduction

“Symmetry, as wide or as narrow as you may define its meaning, is one idea
by which man through the ages has tried to comprehend and create order,
beauty, and perfection.”

Hermann Weyl |Weyl|

As illustrated by this quote, taking advantage of symmetry in order to understand pat-
terns and structure is a pervasive concept throughout human history. In mathematics
and specifically geometry this is exemplified particularly clearly by FELIX KLEIN’s semi-
nal Erlangen Program from 1872 [Klei]. He proposed the investigation of geometric
objects via their symmetry groups and established the framework of homogeneous spaces

as those entities which admit the most symmetries.

One area where this approach has often proved successful is that of special Riemannian
geometries. These are modeled by Riemannian manifolds which are endowed with certain
structure tensors like vector fields, differential forms or endomorphisms. Such manifolds
are called homogeneous if the group of all isometries which preserve the structure tensors

acts transitively.

For example quaternionic Kdahler (qK) manifolds can be characterized as Riemannian
manifolds which locally admit three compatible almost complex structures that obey
the multiplication rules of the quaternions. Under the additional assumption of positive
scalar curvature these so-called homogeneous positive ¢K manifolds have been classified
through the work of WoLF [Wolf] and ALEKSEEVSKII [Alek| in the 1960s.

Their results have also led to a corresponding classification for the odd-dimensional geo-
metry of 3-Sasaki manifolds by BOYER, GALICKI and MANN in 1994 [BGM]|. The first
milestone of this thesis is to revisit this classification and provide a new proof which is
more illustrative and self-contained. As WOLF and ALEKSEEVSKII had already pointed
out for qK geometry, homogeneous 3-Sasaki manifolds also give rise to a mazimal root of
a certain root system. This connection ultimately manifests in a one-to-one correspon-
dence between simply connected homogeneous 3-Sasaki manifolds and simple complex

Lie algebras.



Subsequently we apply similar techniques to the newer geometry of 3-(«, §)-Sasaki mani-
folds which were invented in 2020 by AGRICOLA and DILEO |AD|. These form a common
generalization which accommodates both 3-Sasaki manifolds and certain other interest-
ing examples like the gquaternionic Heisenberg groups. This larger class of spaces still
retains many favorable properties like hypernormality or the existence of a connection

with totally skew-symmetric torsion which is well-adapted to the geometry [AD].

In this thesis we focus on the less studied case of so-called degenerate 3-(a, d)-Sasaki
manifolds where the three almost contact metric structures are more independent of
each other in the sense that their Reeb vector fields commute. We prove that no non-
trivial compact homogeneous degenerate 3-(«, §)-Sasaki manifolds exist as well as that
the quaternionic Heisenberg groups are the only nilpotent Lie groups with an invariant

degenerate 3-(a, §)-Sasaki structure.

As a counterpoint we explain how to use certain hyperkdhler manifolds to construct de-
generate 3-(«, §)-Sasaki manifolds which are necessarily inhomogeneous. This approach
is based on and similar to the famous Boothby- Wang bundle [BW]. Since interesting
candidates for the base space of this bundle are known to exist [Cor|, this opens up the

possibility to construct many new examples of degenerate 3-(«, §)-Sasaki manifolds.

Finally we devise a way to quantify “how far away from homogeneous” these and certain
other manifolds are. Our approach uses the fact that Sasakian geometries are natu-
rally endowed with the so-called characteristic foliation. We then develop and apply a
generalization of the famous Bochner technique [Boch]| for foliations with non-negative

transverse Riccl curvature.

Structure

This thesis is divided into four chapters. In Chapter 1 we lay out all of the necessary pre-
liminaries about the odd-dimensional geometries of Sasaki, 3-Sasaki and 3-(a, §)-Sasaki
manifolds. The remaining three chapters could theoretically be read mostly indepen-

dently of each other.

Chapter 2 discusses the classification of homogeneous 3-Sasaki manifolds. After sketch-
ing the history of the problem (Section 2.1) we furnish several aspects of our new proof
in Sections 2.2 to 2.4. The consequences of our approach for the isotropy groups, the
non-simply connected case as well as the classification of homogenous positive K mani-

folds are explored in Sections 2.5 to 2.7.



In Chapter 3 we investigate homogeneous and inhomogeneous degenerate 3-(a, d)-Sasaki
manifolds. Sections 3.1 and 3.2 limit the number of homogeneous and compact homoge-
neous spaces with this geometry and Section 3.3 does the same for nilpotent Lie groups.
These “negative results” are contrasted by a contruction of degenerate 3-(«, d)-Sasaki

manifolds over hyperkdhler manifolds in Section 3.4.

Chapter 4 is concerned with a Bochner technique for foliations and its relation to in-
homogeneity of Sasakian geometries. After explaining prerequisites about Riemannian
foliations and basic Hodge theory (Sections 4.1 and 4.2) we complete the proof of our
generalization in Section 4.3. Finally we apply this method to degenerate 3-(a, §)-Sasaki

manifolds as well as certain Sasaki-n-Einstein spaces (Section 4.4).

The material in Chapters 2 and 3 is adapted from joint work with OLIVER GOERTSCHES
and LEANDER STECKER in the publications [GRS1] and [GRS2]|, respectively. In parti-
cular the constructive result from Section 3.4 first appeared in [Ste| and then in [GRS2]
and is only rendered here for the coherence of the arguments. The content of Chapter 4
is based on the author’s preprint [Ros|. After its announcement on the arXiv it was
pointed out to the author by GEORGES HABIB that the main Theorem 4.31 also follows
from work of his with KEN RICHARDSON [HR, Proposition 6.7 & Theorem 6.16].



Chapter 1

Preliminaries about

Odd-Dimensional Geometries

In this chapter we briefly outline the fundamentals of several interesting odd-dimensional
geometries. We shall start with almost contact metric and Sasaki manifolds, which exist
in every odd dimension 2n+1 and have served as inspiration for numerous generalizations
and modifications. Among the latter are 3-Sasaki and 3-(a, §)-Sasaki manifolds, which

only exist in dimensions 4n + 3 and will be introduced afterwards.

1.1 Sasaki Manifolds

Contact geometry was studied since the late 19th century by various authors following
motivation from physics, especially classical mechanics [BG, Section 6.1]. The prominent
special case of Sasaki manifolds was introduced in 1962 by SASAKI and HATAKEYAMA
[SH| as an odd-dimensional analogue of Kahler manifolds. A lot more historical context
as well as most of the important developments and results on the topic can be found in

the comprehensive monograph Sasakian Geometry by BOYER and GALICKI [BG].

Definition 1.1. Let (M?"* g, ¢ 1, ¢) be an odd-dimensional Riemannian manifold en-
dowed with a unit length vector field &, its g-dual one-form 7 and an almost Hermitian
structure ¢ on kern. Then M is an almost contact metric manifold it

pE=0, P*=-id+E0n, golpxp)=g-nen.
The structure tensors € and 7 are called Reeb vector field and contact form, respectively.

The fundamental two-form is given by ®(X,Y) := g(X, ¢Y) and M is a Sasaki manifold
if [, o] +dn® & =0 as well as dn = 29.

Sasaki manifolds may always be oriented using the volume form (dn)™ An. A plethora

of examples of such manifolds will be provided in subsequent chapters.



The relationship of Sasaki manifolds to Kéhler geometry is twofold: On the one hand
there is always a Kahler manifold “above” every Sasaki manifold, namely the Riemannian
cone in dimension 2n + 2 [BG, Definition 6.5.15]. On the other hand there is often also
a Kahler space “below” a Sasaki manifold in dimension 2n: The Reeb vector field &
spans an integrable distribution which induces the so-called characteristic foliation F.
Under certain regularity assumptions the space M /F of leaves of this foliation admits the
structure of a Kdhler orbifold or even manifold [BG, Theorem 7.1.3]. A partial converse
to the latter construction is the famous Boothby- Wang bundle [BW]:

Theorem 1.2. Let N be a Kdahler manifold with integral Kdhler class. Then a certain

principal St-bundle over N admits a Sasaki structure.

As mentioned in the introduction we are particularly interested in Sasaki manifold with

a striking presence or absence of symmetries:

Definition 1.3. An automorphism of a Sasaki manifold M is an isometry ¢ : M — M
which satisfies one of the equivalent conditions ¢.& =&, ¢*n =nor ¢p.op = pop,. The
collection of all such automorphisms constitutes a Lie group which we denote by Aut(M)
and M is called homogeneous if Aut(M) acts transitively on M. The Lie algebra aut(M)
of Aut(M) is comprised of all complete Killing vector fields X which satisfy Lx§ = 0,
Lxn=0and Lxp=0.

1.2 3-Sasaki Manifolds

3-Sasaki manifolds were conceived independently by UDRISTE in 1969 [Udri| and Kuo
in 1970 [Kuo].

Definition 1.4. A Riemannian manifold (M*"*3, g) endowed with three Sasaki struc-
tures (&, M, @i)i=1,2,3 is a 3-Sasaki manifold it g(&;,&;) = 6;; and [&;, ;] = 2, where
(i,7,k) is a cyclic permutation of (1,2, 3).

3-Sasaki manifolds are always spin as well as Finstein with a positive Einstein constant
[BGM, Theorem A & Corollary 2.7| and they satisfy stringent topological constraints
[BG, Section 13.5].

Again there is a twofold connection to important even-dimensional geometries: The
Riemannian cone over any 3-Sasaki manifold admits a hyperkéhler structure |[BG, Defi-
nition 13.1.8] and the Reeb vector fields induce the characteristic foliation whose space
of leaves is often a positive gK orbifold or manifold [BG, Theorem 13.3.13]. Conversely

the Konishi bundle over any positive gK manifold admits a 3-Sasaki structure [Koni].

Definition 1.5. An automorphism of a 3-Sasaki manifold is an isometry ¢ : M — M
which satisfies one of the equivalent conditions ¢.& = &;, @™ 1n; = 1; Or ¢y 0 ; = ©; © Py



for i = 1,2,3. The collection of all such automorphisms constitutes a Lie group which
we denote by Aut(M) and M is called homogeneous if Aut(M) acts transitively. The
Lie algebra aut(M) of Aut(M) is comprised of all complete Killing vector fields X which
satisfy Lx& =0, Lxn; =0 and Lxp; =0 fori=1,2,3.

1.3 3-(a, 9)-Sasaki Manifolds

3-(«, §)-Sasaki manifolds were introduced very recently in 2020 by AGRICOLA and DILEO
[AD] as a common generalization to accommodate both 3-Sasaki manifolds as well as
other interesting examples like the quaternionic Heisenberg groups. For more information
we refer the interested reader to the introductory articles [AD] and [ADS] as well as the
thesis [Ste].

Definition 1.6. A Riemannian manifold (M3 g) endowed with three almost con-
tact metric structures (&;,7;, ¢i)i=1,2,3 i an almost 3-contact metric manifold if their

interrelation is governed by the equations

vi & =&, 7 0 Yj = Nk, piop;=pr+&§Qn;,

where (4,7, k) is a cyclic permutation of (1,2,3). The fundamental two-forms are given
by ®;(X,Y) := g(X,p;Y) and M is a 3-(«, d)-Sasaki manifold if there exist «,d € R,
a # 0 such that

dn; = 20®; + 2(a — 6)nj Ay

for any cyclic permutation (¢, j, k) of (1,2, 3). A 3-(a, §)-Sasaki manifold is called positive
if ad > 0, negative if ad < 0 and degenerate if 6 = 0. In the degenerate case the above
condition simplifies to

dn; = 2a<I>ZH ,

where H := (), kern; and ®7(X,Y) 1= &;( Xy, Yy ).

One can show that 3-Sasaki manifolds are embedded in this definition as the special
case « = § = 1. The more general class of 3-(«, §)-Sasaki manifolds still retains several
)2 AL A2 Amgs),
hypernormality or the existence of a connection with skew torsion adapted to the geo-
metry [AD].

favorable properties like orientability (e.g. via the volume form (dn;

It follows from the definition that [&;,&;] = 20¢, for any cyclic permutation (4, j, k) of
(1,2,3) [AD], which in part explains why there are pronounced qualitative differences
between degenerate and non-degenerate 3-(«, §)-Sasaki manifolds. The Reeb vector fields
induce the characteristic foliation and the corresponding space of leaves locally admits
a qK structure whose scalar curvature is positive/negative/zero if the 3-(«,d)-Sasaki

manifold is positive/negative/degenerate [ADS, Section 2.2]. In the degenerate case we



will later discuss a partial converse to the latter construction akin to the Boothby-Wang
bundle.

Definition 1.7. An automorphism of a 3-(«, §)-Sasaki manifold is an isometry ¢ which
satisfies one of the equivalent conditions ¢.&; = &, ¢*n; = 1m; or ¢y 0 Y; = Y; o Py for
i =1,2,3. The collection of all such automorphisms constitutes a Lie group which we
denote by Aut(M) and M is called homogeneous if Aut(M) acts transitively. The Lie
algebra aut(M) of Aut(M) is comprised of all complete Killing vector fields X which
satisfy Lx& =0, Lxn; =0 and Lxp; =0 fori=1,2,3.

Since homogeneous non-degenerate 3-(a, §)-Sasaki manifolds have already been studied
intensively [ADS, Section 3], we instead focus on the degenerate case, where notably the

Reeb vector fields are infinitesimal automorphisms.



Chapter 2

Classification of Homogeneous
3-Sasaki Manifolds

Homogeneous 3-Sasaki manifolds have successfully been classified after a long and com-
plicated process culminating in a publication by BOYER, GALICKI and MANN in 1994
[BGM]. In this chapter we provide a new, more direct and self-contained proof of this
classification by constructing an explicit one-to-one correspondence between simply con-
nected homogeneous 3-Sasaki manifolds and simple complex Lie algebras via the theory

of root systems:

Theorem 2.1. There is a one-to-one correspondence between simply connected homoge-
neous 3-Sasaki manifolds and simple complex Lie algebras.

Given a simple complex Lie algebra u, choose a mazimal root o of u and let v denote
the direct sum of the subspace ker o and the root spaces of roots perpendicular to . Let
g and b be the compact real forms of u and v, respectively, and write € = sp(1) for the
compact real form of the sl(2,C)-subalgebra defined by o. Let B denote the Killing form
of g, set g1 = (h @ €)1B and consider the reductive complement m = h+8 = £ @ g1. Let
G be the simply connected Lie group with Lie algebra g and let H C G the connected
subgroup with Lie algebra . Define a G-invariant Riemannian metric g on M = G/H

by extending the inner product on T, g M = m given by

1 1

— — ,B = —7_8 = .
9|éx€ 4(n+2) ) 9’g1><g1 8(n—|—2) ) 9‘8><g1 0

Consider a basis X1, X2, X3 of £ satisfying the commutator relations [ X;, X;] = 2X}, and
extend X; e m = T, g M to o G-invariant vector field & on M. Let n; denote the metric
dual of & and @; the G-invariant endomorphism field defined by extending

1
<pi|g:§adxi, ©ilg, = adx;, .

Then (g, &, ni, i)i=1,23 is a G-invariant 3-Sasaki structure on M.

Conwversely, given a simply connected homogeneous 3-Sasaki manifold M, represented



as the quotient C:’/ﬁ, where G is a connected Lie group acting effectively on M, then
G = Auto(M), the connected component of the 3-Sasaki automorphism group of M, and

M 1s the unique space associated with the complezification of the Lie algebra of G.

Using this characterization we rediscover the list of homogeneous 3-Sasaki manifolds as

given by BOYER, GALICKI and MANN:

Corollary 2.2. Every homogeneous 3-Sasaki manifold M = G/H (not necessarily sim-

ply connected) is isomorphic to one of the following spaces:

Sp(n+1) o gin+3 Sp(n+1) ~ R pAnt3 SU(m)
Sp(n) " Sp(n) X Zs T S(U(m—2)xU))’
SO(k) Ga Fy Eg Er Eg

SO(k—4) x Sp(1)”  Sp(1)’ Sp(3)° SUG)  Spin(12)’ E;’
To avoid redundancy, we need to assume n >0, m >3 and k > 7.

As a consequence we also arrive at the complete list of homogeneous positive gK mani-
folds as discovered by ALEKSEEVSKIL:

Corollary 2.3. Every homogeneous positive ¢K manifold is isometric to one of the spaces

Sp(n+1) SU(m) SO(k)
Sp(n) x Sp(1)” S(U(m —2)xU(2)" SO(k—4)x SO4)’
G2 F4 E6 E? E8

SO(4)  Sp(3)Sp(1)"  SU(6)Sp(1)’  Spin(12)Sp(1) " E7Sp(1)’

where the Riemannian metric and quaternionic structure are also determined by Theo-
rem 2.1 via the Konishi bundle (see Section 2.7 for details).

The discussion of Theorem 2.1 and its consequences will be divided into several sections:
We begin by summarizing the tortuous history of the classification in Section 2.1. We
then introduce a certain Z-grading of semisimple complex Lie algebras based on their
root systems and use it we construct homogeneous 3-Sasaki manifolds from simple Lie
algebras. The centerpiece of the chapter is the converse argument in Section 2.3. We
complete the proof of Theorem 2.1 by showing that no proper subgroup of the identity
component Autg(M) of the automorphism group can act transitively in Section 2.4. In
Section 2.5 we compute the isotropy groups described in Corollary 2.2 explicitly for the
classical spaces and Lie theoretically via Borel-de Siebenthal theory in the exceptional
cases. In Section 2.6 we show that the only non-simply connected homogeneous 3-
Sasaki manifolds are the real projective spaces RP*"*3 which are the Zs-quotient of the
previously described space S4"*3 = Sp(n + 1)/Sp(n). Finally, since our arguments are
independent of the classification of homogeneous positive K manifolds, they allow for

an alternative proof of the latter (Section 2.7).



2.1 History of the Classification

The earliest result concerning our topic was the classification for the related notion
of (compact simply connected) homogeneous complex contact manifolds (so-called C-
spaces) by BOoOTHBY in 1961 [Boot|, who showed that these are in one-to-one corre-
spondence with simple complex Lie algebras. The much more famous next step was
the work of WOLF and ALEKSEEVSKII on qK manifolds in the 1960s. WOLF showed in
1961 that there is a one-to-one correspondence between C-spaces and compact simply

connected symmetric positive K manifolds [Wolf, Theorem 6.1].

BooTuBY and WOLF already emphasized the importance of the maximal root in the
root system of a simple Lie algebra, which also plays a key role in our construction:
WOLF demonstrated that the compact simply connected symmetric positive K mani-
folds are precisely of the form G/Ng(K), where G is a compact simple Lie group and
N¢g(K) denotes the normalizer of the subgroup K corresponding to the compact real
form of the subalgebra generated by the root spaces of a maximal root and its negative.
These manifolds became known as WOLF spaces. As we will show in this chapter, the
simply connected homogeneous 3-Sasaki manifolds are of the form G/(Cq(K))o, where
(Ce(K))o is the identity component of the centralizer C(K) of K in G. In 1968 ALEK-
SEEVSKII fully classified compact homogeneous positive gK manifolds by demonstrating
that they are necessarily of the form G/Ng(K) [Alek, Theorem 1].

By 1994 BOYER, GALICKI and MANN transferred these results to the 3-Sasaki realm
[BGM]. They combined the classification of homogeneous positive ¢K manifolds with

the Konishi bundle to obtain the following diffeomorphism type classification:

Theorem 2.4 (|[BGM, Theorem C|). Every homogeneous 3-Sasaki manifold M = G/H

(not necessarily simply connected) is precisely one of the following:

Sp(n+1) o gin+3 Sp(n+1) ~ R pint3 SU(m)
Sp(n) " Sp(n) X Zs T S(U(m—2)xU())’
SO(k) Go Fy Eg Er Eg

SO(k—4) x Sp(1)”  Sp(1)’ Sp3)° SUG)  Spin(12)’ E;’

To avoid redundancy, we need to assume n >0, m >3 and k > 7.

They also provided a more precise description of the 3-Sasaki structures in the four clas-
sical cases via a technique called 3-Sasaki reduction [BGM]. In 1996 BIELAWSKI [Biel|
described the Riemannian structure on these spaces uniformly. Both for his result and
for several later discussions, we need to recall the following construction: As was first
described systematically by KoBAvAsHI and Nomizu [KN], the study of G-invariant
geometric objects on a reductive homogeneous space M = G/H = G/G), can be greatly

simplified by instead considering Ad(H )-invariant algebraic objects on a fixed reductive

10



complement m of b in g. More precisely the map ¢ : m — T,M, X — X, (where X, de-
notes the fundamental vector field of the left G-action at p) is an isomorphism that allows
us to translate between Ad(H )-invariant tensors on m and the restriction of G-invariant
tensor fields to T, M. While actually working on a more algebro-geometric problem
(singularities of nilpotent varieties) and employing very different methods (e.g. Nahm’s

differential equation), BIELAWSKI obtained the following

Theorem 2.5 ([Biel, Theorem 4]|). Given a homogeneous 3-Sasaki manifold M = G/H
with reductive decomposition g = m @ b, there is a natural decomposition m = sp(1) Gm’

such that the metric on M corresponds to an inner product on wm of the form
c
(X,Y) = —e B(Xep1): Yop(1)) = 5 B(Xw, Yiw),

where B denotes the Killing form of g and ¢ > 0 is some constant.

In 2020 the work of DRAPER, ORTEGA and PALOMO gave a new hands-on description
of homogeneous 3-Sasaki manifolds [DOP]. Their study was based on the following

Definition 2.6 (|DOP, Definition 4.1|). A 3-Sasaki datum is a pair (g,h) of real Lie
algebras such that

1. g = go ® g1 is a Zs-graded compact simple Lie algebra whose even part is a sum

of two commuting subalgebras,
go =sp(1) ®b;

2. there exists an h®-module W such that the complexified gg—module g(lc is isomorphic
to the tensor product of the natural sp(1)¢ = sl(2, C)-module C2 and W:

gt =Clow.

Their main result is the following

Theorem 2.7 (|DOP, Theorem 4.2|). Let M = G/H be a homogeneous space such
that H is connected and the Lie algebras (g,h) constitute a 3-Sasaki datum. Consider
the reductive complement m := sp(1) @ g1 and let X1, Xo, X3 € m denote the standard
basis of sp(1) and &1, &2, &3 the corresponding G-invariant vector fields on M. If g and
p; are the Riemannian metric and endomorphism fields described in Theorem 2.1 and
ni = 9(&,-), then the tuple (M,g,&,ni, pi)i=123 constitutes a homogeneous 3-Sasaki

structure.

Furthermore they conducted a case-by-case study to show that every compact simple Lie
algebra admits a 3-Sasaki datum, thus providing a detailed analysis of one homogeneous

3-Sasaki structure (it is at this point not clear if there could be more than one such
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structure on a given space) on each of the diffeomorphism types discovered by BOYER,
GALICKI and MANN.

We finish this section by giving an overview of the structure of our proof of Theorem 2.1:
In Section 2.2 we first describe a way to construct a simply connected homogeneous
3-Sasaki manifold from a simple complex Lie algebra u and a maximal root « of u. More
precisely, we first utilize the theory of root systems to generate a complexified version
(u,v) of a 3-Sasaki datum. We then pass to the compact real forms (g,h) to obtain a
“real” 3-Sasaki datum in the sense of Definition 2.6 and apply Theorem 2.7.

For the converse argument in Sections 2.3 we start with a simply connected homogeneous
3-Sasaki manifold M = G/H, where G is a compact simply connected Lie group acting
almost effectively and transitively on M via 3-Sasaki automorphisms. We prove that the
Lie algebra g and its complexification u = g€ are simple and that the 3-Sasaki structure
gives rise to a maximal root a of u. We can therefore apply the previous construction
and then show that this yields the same 3-Sasaki structure that we started with.
Section 2.4 completes the proof of Theorem 2.1 by showing that no subgroup of Auto(M)
can act transitively. In particular, this proves that any two homogeneous 3-Sasaki mani-
folds M = G/H, M' = G'/H' associated with two different simple complex Lie algebras
a® # (g)® are not isomorphic.

2.2 Constructing 3-Sasaki Manifolds from Lie Algebras

For the announced construction we first need certain basic facts about root systems.
Let u be a (finite-dimensional) semisimple complex Lie algebra. Its Killing form is
non-degenerate and thus gives rise to an isomorphism u — u* and a non-degenerate,
symmetric bilinear form (-,-) on u*. We fix a Cartan subalgebra ¢ C u and denote the

corresponding root system and root spaces by ® C ¢* and u,, C ufor o € ¢*, respectively.

Fach root @ € ® has an associated coroot H, € ¢ defined as the unique element of
[Ua, u_q] satisfying a(H,) = 2. Furthermore s, 1= o @ u_q @ [uq, U_y] is a subalgebra
of u which is isomorphic to s[(2,C). This isomorphism can be made explicit by choosing

an sly-triple, i.e. vectors X, € Uy, Yy € u_, satisfying the commutation relations

[Ho, Xo] =2X0, [Ha, Yol =-2Y,, [Xa, Yol =H,. (2.1)

Moreover it can be shown that for any root @ € ® and any linear form S € ¢*:

_2p.a)

(o, o)

CaB ‘= 5(Ha)

In particular ¢, = 0 if and only if o and § are perpendicular to each other (with respect

to (-,-)). In case B is also a root c,p is an integer, which we call the Cartan number of
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B with respect to . Fixing a root o € & we can therefore decompose

u= @u(k), where ul® ;= @ ug.

keZ pect,

Since cqp is linear in 3, this decomposition is in fact a Z-grading, i.e. [u®), u¥)] c uk+0),
We also note that u(®) is precisely the k-eigenspace of ad(Hy). One can visualize this gra-

ding using parallel copies of hyperplanes perpendicular to «, e.g. for the root system As:

The structure of this grading is related to the notion of maximality of the root a:
Assuming we have chosen a set A C ® of simple roots, we may introduce a partial
order < on ® by stipulating that o < § if and only if § — « is a linear combination of
roots in A with non-negative coefficients. A root a € ® is called mazimal if there is a
choice of simple roots such that there is no strictly larger root than a with respect to

the induced partial order. The following lemma was adapted from [Wolf, Theorem 4.2]:

Lemma 2.8. For any root o € ®, the following statements are equivalent:
i) a is mazimal.
i) |cap| <2 for all roots B € ® and cop = £2 if and only if § = *a.

Proof. i) = i): It is well-known that for § € ® \ {+a} the Cartan number is
given by cog = p — ¢, where p,q € Ny are the greatest non-negative integers such that
B+ ra € ® for every 7 € {—p,...,q} [Knap, Proposition 2.29]. Suppose there was
some 3 € ®\ {a} such that cop > 2. Then p > 2, so that f — o, f —2a € ¢ and their
negatives o — ,2a — B € ® are roots. In fact @ — 8 has to be a non-negative linear
combination of simple roots (for some choice of simple roots with respect to which « is
maximal), since otherwise 8 > «. But then 2a — 8 > « and maximality of a would
imply 2a — f = o, i.e. f = a. For f € &\ {—a} such that c,3 < —2 we apply this
argument to —f.

i1) = i): We may choose a set of simple roots A in such a way that c,z > 0 for all
B € A. This can be achieved by first choosing positive roots using a slight perturbation
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of the hyperplane perpendicular to o. Let 5 € ® such that 8 > a, ie. f—a =" | Ny,
where A\; > 0 and «; € A. Then,

n
CaB = Caa T+ Ca(f—a) = 2+ Z Ai Cac; = 2.
=l >0

Hypothesis ii) then implies 8 = «, so that « is maximal. O

We remark that in an irreducible root system ® the maximal root is unique up to the
action of the Weyl group: This follows because in an irreducible root system the maximal
root is uniquely determined after choosing simple roots and any two choices of simple
roots can be mapped to each other by the Weyl group. Our goal is now to establish the

following construction:

Theorem 2.9. Let u be a simple complex Lie algebra, o a mazimal root in its root system,
g the compact real form of u and ¢ = sp(1) the compact real form of the subalgebra
S0 = Ug DU_ D [Ug,u_qo] = sl(2,C). Let G denote the simply connected Lie group
with Lie algebra g, K the connected subgroup with Lie algebra € and H = (Cq(K))o
the identity component of the centralizer Cq(K) of K in G. Then the simply connected
homogeneous space M = G/H admits a homogeneous 3-Sasaki structure whose tensors
are given by Theorem 2.1. All possible choices of a mazximal root lead to isomorphic
3-Sasaki manifolds.

Definition 2.10. A complex 3-Sasaki datum is a pair (u,v) of C-Lie algebras such that

1. U = Ugyen P Uodq is a Zo-graded simple Lie algebra whose even part is a sum of two
commuting subalgebras,
Ueven = 0 D 51(2,C) ;

2. there exists a v-module W such that uygq = C?2 @ W as Ueyen-modules.

Remark 2.11. We formulated the above definition in the given way because it allows
us to branch off into two cases: Our primary interest here is be to consider the compact
real forms (g, b) of (u,v) which then form a 3-Sasaki datum in the sense of Definition 2.6.
On the other hand, one may also look at the real form (g*,h) of (u,v) given by g* =
h @ s, @ ig1 to obtain a generalized 3-Sasaki datum in the sense of [ADS|. These
give rise to homogeneous negative 3-(«, §)-Sasaki manifolds by a construction similar to
Theorem 2.7, compare [ADS, Theorem 3.1.1].

Proposition 2.12. Let u be a simple complex Lie algebra and o € ® a maximal root in

its root system. Set ®¢ := {f € ®|c,p =0} as well as

v:=kera® @ ug.
BePo

Then (u,v) is a complex 3-Sasaki datum.
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Proof. Using the above Z-grading we let
teven = TP @u@ @ u® | upqq = uD gu®)

Since |cap| < 2 for all § € ® by Lemma 2.8, we have u = Ueven P Uogd. Because Ueyen
and uoqq are comprised of the u®) with even and odd k respectively, this decomposition

is in fact a Zs-grading. We claim that
Ueyen = S D 0

as a direct sum of Lie algebras, where 5, = o @ u_q D (U, U_q]. Since c,p = £2 if and

only if § = +a, we have the following vector space decompositions:

Ueyen = Ug DU_o D c D @ ug, €= [Ug, U_q] B kero.
BePg

In order to show that v is indeed a subalgebra of u note that [ug,u,] C ug;, for any
B,v € ®9. Now if 8+ v is a root, then 3+ € ®g, so ugy, C v. If 3+ is not a root
and not zero, then ug,, =0 C v. If 34 v =0, then [ug,u_g] = (Hg) C ker o because
B € ®gy. To check that s, and v commute we recall that v is a subset of u® = ker adg,, .

For B € ®g we have [uiq,ug] Cutpqig C u®F2)

= U4q, SO U4 and ug commute.
We now verify the second condition from Definition 2.10 for the v-module W := u(V).

We choose an slo-triple (X4, Y,, Hy) and identify it (in order) with the three standard

madtrices
01 0 0 1 0
, , €sl(2,C).
0 0 1 0 0 -1

This fixes isomorphisms s, 22 5[(2, C) and teyen = 0 P sl(2,C). We consider the following
linear map:
U:uggg = uDaeu® - CPoW ;
X =XED 4 x5 (1,000 XM 4+(0,1) ® [Xq, XD .

If 5 € ® such that cop = —1, then § + o must be a root and [u,,ug] = uysyg. This
shows that ady, : ug — ugy, and by extension ¥ are linear isomorphisms. It remains
to be shown that W preserves the ueyen-module structure, where teyen = 0 @ sl(2, C) acts
on C? @ W via the above fixed isomorphism. We remind the reader of the commutator
relations in (2.1).

If Z cvcu®, then ady preserves the decomposition uygq = u= @ u. Since v and

5, are commuting subalgebras of u, so are their respective adjoint subrepresentations,

¥(2.X)) = (1,0)® [2.X V] + (0,1) ® [Xa, [2, X V]
= (1,0) & [Z,X(l)] + (0, 1) ® [Z, [Xa,X(fl)H —7. \IJ(X)
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Here “-” denotes the adjoint representation of v on W, whereas in the following equa-
tions it will signify the standard representation of s[(2,C) on C2. Finally we check the
representation of the basis (X, Yy, Hy) of 84:

W ([Xas X]) = ¥([Xa, X)) = (1,0) @ [Xa, XTV] = Xo - W(X).
By virtue of the Jacobi identity:

\I’([YaaX]) = \I’([YavX(l)]) = (Ov 1) ® [Xom [YaaX(l)H
= (0,1) @ ([[XV), Xa], Ya] + [Xa, Ya], X 1)
T tl—,la_/
=(0,1) XY =Y, ¥(X).

Ultimately:
U([Ho, X)) = (XD - XY = (1,000 XD 4 (0, -1) @ [ X0, XV = H, - ¥(X). O

Proof of Theorem 2.9. Starting from a simple complex Lie algebra u and a maximal root
a Proposition 2.12 yields a complex 3-Sasaki datum (u,v). As mentioned in Remark 2.11
the compact real forms (g, h) constitute a “real” 3-Sasaki datum in the sense of Defini-
tion 2.6 and Theorem 2.7 endows M = G/H with a homogeneous 3-Sasaki structure.
Since v = Cy(s,) and thus h = Cy(¥), it follows that H = (Cg(K))o. O

Example 2.13. Let us illustrate the construction using the special case rku = 2: Here
the only simple Lie algebras are sl(3,C), sp(4,C) and go corresponding (in order) to the
root systems As, Cy and Go. The following diagrams depict the subalgebras v and s,

from the proposition in these three cases:

5 5 5
Ag « Co o Go o

NIIZSEN
AN N

The corresponding homogeneous 3-Sasaki manifolds are (in order) the Aloff-Wallach
space Whl = SU(3)/S!, the 7-sphere ST = Sp(2)/Sp(1) and the exceptional space
G2/Sp(1).
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We finish this section by showing that the maximal root is in fact an auxiliary choice:

Lemma 2.14. All possible choices of a mazimal root in Proposition 2.12 lead to isomor-

phic 8-Sasaki manifolds.

Proof. Let u be a simple complex Lie algebra, g its compact real form, G the corre-
sponding simply connected Lie group and T C G a maximal torus. Let «, @ denote two
maximal roots in the root system ® of u with respect to the Cartan subalgebra given
by the complexification of the Lie algebra of T. As mentioned above the maximal root
of ® is unique up to the action of the Weyl group W(G) = Ng(T)/T, so there is a
representative w € Ng(T') such that Adg(Ha) = Hj.

Because the Weyl group acts orthogonally on the root system Adg :u — u maps the
Z-grading u®) with respect to « to the grading u®) with respect to &@. This implies
that Ad,bh = E, where h,a C g are the compact real forms of the subalgebras v,b C u
considered in Proposition 2.12. Consequently wHw ™! = H for the corresponding con-
nected subgroups H, H C G and we have a well-defined diffeomorphism G/H — G/ H ,
gH — wgwilf[. One easily checks from the definitions in Theorem 2.1 that this map

transforms one 3-Sasaki structure into the other. O

2.3 Deconstructing 3-Sasaki Manifolds

This section is the centerpiece of the chapter, where we explain a crucial step in the

proof of Theorem 2.1:

Theorem 2.15. Every simply connected homogeneous 3-Sasaki manifold arises from the

construction described in Section 2.2.

From now on let (M*"+3 g & n;, ©i)i=1,2,3 denote a simply connected homogeneous 3-
Sasaki manifold and let G be a compact simply connected Lie group acting almost
effectively (i.e. the kernel of the action is discrete and hence finite) and transitively on
M by 3-Sasaki automorphisms. We show that the Lie algebra g of G and its complexifi-
cation u = g€ are simple and describe how the 3-Sasaki structure gives rise to a maximal
root o of u with respect to a suitably chosen Cartan subalgebra. We can then apply
the construction from Section 2.2 and prove that this yields the same 3-Sasaki structure
that we started with.

The prototypical example to have in mind is where G is the universal cover of Auto(M),
the identity component of the 3-Sasaki automorphism group of M. Since M is com-
plete and positively Einstein, it follows that M is compact, so by the Myers-Steenrod
theorem the isometry group Iso(M) of M is a compact Lie group. The closed subgroup
Aut(M) C Iso(M) of 3-Sasaki automorphisms of M is thus also compact. Since M is

connected, the identity component Autg(M) still acts transitively. The universal cover
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of Autg(M) acts almost effectively, transitively and by 3-Sasaki automorphisms. It will
follow from the results that we are about to prove that the universal cover of Auto(M)
is also compact. Later on we will show that in fact the effectively acting quotient of any
group G satisfying the above assumptions is automatically the full identity component

Autg(M) of the automorphism group.

Since G is compact, its Lie algebra g is reductive, i.e. decomposes as a direct sum of a

semisimple subalgebra and its center Z(g). We first show that g itself is semisimple.

Lemma 2.16. For X,Y € g the fundamental vector fields satisfy the equation

dni(X,Y) = mi([X,Y]).

Notably evaluating the left-hand side at a point p € M depends on X,Y only through their

values at p, while the right-hand side a priori depends on the values in a neighborhood of p.

Proof. The standard formula for the exterior derivative reads

dni(X,Y) =X (n:(Y)) =Y (n:(X)) —m([X, Y]).

The Leibniz rule for the Lie derivative implies

X(mi(Y)) = Lx(m(Y)) = (Lxmi) (V) +ni(LxY) = ni([X, Y]),

where L+m; = 0 because G acts by 3-Sasaki automorphisms. Applying the same reason-
ing to the second term yields Y (n;(X)) = —n:i([X,Y]). O

Proposition 2.17. The Lie algebra g has trivial center and is therefore semisimple.

Proof. Let X € g such that X # 0. Since G acts almost effectively, there is a point
p € M such that X, # 0 and thus an index i € {1,2,3} such that X, is not proportional
to (§i)p- We show that there exists some Y € g satisfying 7;([X,Y],) # 0, which implies
[X,Y] # 0: Because G acts transitively we may choose some Y € g such that Y, = ¢; X,

From the previous lemma we have

ni([X,Y],) = —dni(Xp, Yp) = —dni(Xp, 0iXp) -

One of the Sasaki equations in Definition 1.1 reads (p?yp = —Yp + Piyp, where P;
denotes the orthogonal projection to the line through (&;),. Hence:

i ([X, Y]p) = Qgp(ypvyp - Piyp) = 2Hyp - Piysz 7 0. a

Remark 2.18. The compactness assumption fails for homogeneous negative 3-(«, ¢)-

Sasaki manifolds. Thus unlike with the construction in the previous section, a classifi-
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cation cannot be achieved by the method described here. Indeed in [ADS] homogeneous
negative 3-(«, §)-Sasaki manifolds with a transitive action by a non-semisimple Lie group

are constructed.

Since g is now both semisimple and the Lie algebra of a compact Lie group, its Killing
form B is negative definite. We fix a point p € M and let H := G, denote its isotropy
group. We write § : G — M, g — g-p for the orbit map, which has surjective differential
doe : T.G =g —T,M, X — Yp. Let «; := 0*n; denote the pullback of the contact form
along the orbit map, which we may view - depending on the context - as either a linear
form on g or as a left-invariant differential one-form on G. In their seminal 1958 article
[BW]| BooTuBY and WANG exhibited the following results:

Lemma 2.19 (|[BW, Lemmata 2, 3, 4|). The one-form «; is Ad(H)-invariant, satisfies
ai(h) = 0 and da; has rank 4n + 2. Furthermore the Lie algebra of the closed subgroup
{9 € G| Adja; = i} is given by ker da;, contains b and has dimension dim b + 1.

We now let )72 € g denote the Killing dual of «y, i.e. B(E,-) = «; and consider
X; = E/B(E,XVZ) Ad-invariance of B implies that {g € G | Ady,X; = X;} and
{g € G| Adja; = a;} coincide, so

Cy(Xi) =kerda; =h @ (X;) .

Proposition 2.20. The fundamental vector fields X; coincide with the Reeb vector fields
& at the point p and obey the same commutator relations [X;, X;| = 2X}, where (7, j, k)

is a cyclic permutation of (1,2, 3).

Proof. Clearly X; € Cy(X;) = kerdo, so that (X;), € ker(dn;),. Furthermore we
have 1 = a;(X;) = (7;)p(Xi)p. Thus (X;), statisfies the uniquely defining equations of
the Reeb vector (&;),. Phrased differently X; (viewed as a left-invariant vector field on
G) and &; are f-related. Consequently the Lie brackets [X;, X;]| and [&;,&;] = 2 are
also f-related and in particular mp = 2(&)p = 2(Xk)p. Hence [X;, X;] and 2Xj
could only differ by an element of h. But B(Xy,h) = ax(h) = 0 and B([X;, Xj],h) =

B(X;,[X;,b]) =0, so that also B([X;, X;] — 2X},h) =0. O

Let s be a maximal Abelian subalgebra of h. Since Cy(X1) = h & (Xi), it follows
that t := s & (X;) is a maximal Abelian subalgebra of g. In particular we obtain that
rtkG = rk H + 1. The Riemannian metric g corresponds to an Ad(H)-invariant and
thus also ad(h)-invariant inner product on a reductive complement of our choice. The

following lemma states that this inner product is even ad(t)-invariant:

Lemma 2.21. For all Y, Z € g we have

gp([X%Y}p??p) + 9p(Yp, [ X5, Z]p) =0.
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Proof. Since X; is a Killing vector field (G acts isometrically) that coincides with &; at

p, we obtain

Because the Levi-Civita connection V is metric and torsion free and all G-fundamental

fields commute with & (G acts by 3-Sasaki automorphisms) we have

Ep(9(Y,2)) = 9p(V ), Y+ Zp) + 9p (Y. Vi, Z2) = 9p(Vy, i Zp) + 9p(Y . V7 &) -
Finally V& = —y; and g(-, ¢;-) is skew-symmetric. O

We now move on to the complex picture and let u := g€, v := hC, ¢ := Cand a := 2ia(1c\c.
Let us consider the vectors H,, X, Y, € u defined by

1 1 ) 1 )
Xl, X, = f(XQ—’LXg), Y, = f(XQ—i-’LXg),

H, = = =
@ Y] Y]

T
which satisfy the commutation relations

[Ho, Xo] =2X0, [Ha, Yol =-2Y,, [Xa,Ya]=H,.

Proposition 2.22. The linear form « is a root of u with respect to ¢, whose root space

is given by u, = (X,). Furthermore u_, = (Y,) and H, is the coroot of a.

Proof. First [Hy, Xo] = 2X, = a(Hy)X,. Since Xy, X3 commute with b, the vector

X, commutes with v and in particular with s©. Likewise o vanishes on b, so that a

vanishes on v and in particular on sC. 0

Let @ C ¢* denote the root system of u with respect to ¢. We consider the Z-grading of

u introduced in the previous section, viz.

¥ = @) us.
BGC*v
cap=k

Lemma 2.23. The 0- and +£2-components of the grading are given by u® = v @ (Hq)

and u®F) =, respectively.

Proof. u9) =kerady, = Cy(Hy,) = v@® (H,). Suppose there was a root § # « such that
cap = 2. Then (B,a) > 0 and B8 — a was a root satisfying c,(3_q) = 0. We would need
to have [tg,Ug_q] = g, but ug_, C u® =0 @ (H,) and [ug, 0] = 0, [Ua, Ho] =ty O

Proposition 2.24. The Lie algebras g and u are simple.
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Proof. The semisimple Lie algebra g decomposes as a direct sum g = g(1) © ... © g(m)
of simple ideals. Since the Killing form of g is negative definite, the same applies to the
ideals g(;), which thus cannot be the realification of a complex Lie algebra. Therefore
their complexifications u;) = g((ci) are also simple and yield a similar decomposition
u = un) @ ... S Uy, into simple ideals [Knap, Theorem 6.94]. Accordingly the root
system is a disjoint union ® = ®; ... U ®,,. We claim that g = g(;) (and hence
u= u(i)), where ¢ is the unique index such that o € ®;.

For j # i the ideal g(;) commutes with gy D (ua @ u_q) Ng > Xa, X3, 50 g(j) C b = g,.
Since g(;) is an ideal and G is connected, it follows that g¢;) = Adg(g(;)) C Adg(gp) = ggp

for all g € G. Because the G-action is almost effective we must have g(;) = 0. 0

It is well-known that for any root system ® and any roots «, 8 € ® the Cartan numbers
are bounded by |cog| < 3. Furthermore the only érreducible case where |co5| = 3 occurs
is when g = go, « is one of the short roots and § is the long root that forms an angle of
150 (210) degrees with o. We relegate the proof that this case cannot actually occur in

our situation to the end of this section.

In all the remaining cases we have therefore shown that a is a maximal root (cf.
Lemma 2.8), so we may carry out the construction from Section 2.2. We now prove
that the 3-Sasaki structure obtained this way indeed coincides with the original one we

started with. We simplify the analysis by studying the reductive complement m := h=5.

Lemma 2.25. The reductive complement m decomposes B-orthogonally as

m = <X17X2>X3>@ @ (uﬁ@u—ﬁ)ﬂng@gl

BE(I)’
cap=1

Proof. O: Clearly X1, Xo, X3 are B-orthogonal to h. For 8, € ¢* with 8+« # 0 the
subspaces ug and u, are BC-orthogonal. This implies that for all 3 € ® with Cag = 1
the subspaces uig are also BC-orthogonal to .

C: By virtue of Lemma 2.23 both sides of the equation have dimension 4n + 3. O

We can compare the structure tensors of the two 3-Sasaki structures in question via the
isomorphism ¢ : m — T,M, X Yp. Proposition 2.20 has already shown that the
vectors X; correspond to the Reeb vector fields &;. Looking back at Theorem 2.1 we

observe that equality of the contact forms is equivalent to the following
Lemma 2.26. o; = —B(X;,)/4(n + 2).

Proof. By definition o; = B(Xj,-)/B(X;, X;). We have

B(X1,X1) = B%(iH,,iH,) = —B®(H,, Hy) = —trady,
= —4 . (dimu® 4+ dimu?) — 1. (dimu® + dimuY) = —4(n +2).
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We also have B(X2, X2) = B(X3, X3) = —4(n + 2), since we could have used the same

arguments for a maximal torus of e.g. the form s @ (X3). O

Because the contact forms coincide, so do their differentials, which are the fundamental
two-forms. Since the Riemannian metrics are determined by the fundamental two-forms
together with the almost complex structures it suffices to show that the latter coincide.
Let L; : m — m denote the Ad(H)-invariant endomorphism of m corresponding to the
G-invariant endomorphism field ¢;, i.e. L; = 1~ o (¢;), 0. Recalling Theorem 2.1 the

claim reduces to showing that
1
Li|g:§adxi, Li‘gl :adxi.
The first equation is clear from Proposition 2.20.

Proposition 2.27. The almost complex structures of the two 3-Sasaki structures in

question coincide.

Proof. We first claim that Ly is not only ad(h)- but even ad(t)-invariant, i.e. that the

endomorphisms L; and adx, commute on g;. For all Y, Z € g; we have

2gp (?pv mp) d771 (?pa 71’))
dnl([le Y]p7 [Xlﬂ Z]p)
29([X1,Y],, L1[X1, Z])

= _2gp(Yp> [X17 Ll[le Z]p) .

In the second equation we used that adx, corresponds to an almost complex structure on
g1 which is compatible with the common fundamental two-form dn;. The last equation
follows from Lemma 2.21. This shows that L; = —adx, oLjoadx, on g; and consequently
adx, o L1 = —adg(l olLjoadyx, = L1oady,.

Let 3 be aroot such that c,g = 1. Since adp, leaves ug invariant, so does adi(;(l. Because
Ly is ad(t)-invariant it follows that LY is ad(c)-invariant and thus also leaves ug invariant.
Now adgj{1 and LY are C-linear maps on the one-dimensional subspace ug which square
to —id, so they must be given by multiplication with £¢. Since both endomorphisms
commute with complex conjugation, they act on u_g = ug by multiplication with Fi.
Therefore L; and ady, coincide on (ug @ u_g) N g up to sign. We finish the proof that
L; = adx, on g; by observing that for Y € g;,Y # 0 Lemma 2.16 implies

20([X1,Y],, 1Y) = dm ([X1,Y],, Y )

=m([[X1,Y]Y]y) = —ea([[X1, Y], Y])
_ B(X, [X0, Y] Y])  B([X1, Y] [X0, YY)

4(n+2) T 4(n+2) > 0.
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Again we can repeat the arguments for the maximal tori s ® (X;), i = 2,3. Even though
the root spaces look differently then, the subalgebra g; is still the same because it can
be defined independently of the maximal torus as the B-orthogonal complement of £ in
m by virtue of Lemma 2.25. This proves that the almost complex structures in question

also coincide for ¢ = 2, 3. O

Remark 2.28. In later sections instead of working with the simply connected, almost
effectively acting Lie group G with Lie algebra g, we may sometimes turn to a non-simply
connected (possibly effectively acting) group G with Lie algebra g. For g = so(k) using
G = SO(k) instead of G = Spin(k) allows us to describe the corresponding coset space
more explicitly via matrices. If we consider a description G / H , then the isotropy group
of the G-action on G / H is given by the connected subgroup H C G whose Lie algebra
coincides with that of H. This follows from the fact that M is simply connected via the
long exact sequence of homotopy groups. Hence G / H and G /H are governed by the

same Lie algebraic data and are therefore isomorphic homogeneous 3-Sasaki manifolds.
We finish this section by closing the gap that we previously left:

Proposition 2.29. Even in the case of a homogeneous 3-Sasaki manifold with automor-

phism algebra go the root described in Section 2.3 is maximal.

For the sake of contradiction let us assume that o was one of the short roots of go. Again
we consider the reductive complement m := b5 as well as the maps ¢ : m — T,M,
X X, and L; == v~ lo (pi)po v : m — m. Using the same arguments as in the proof

of Lemma 2.25 we obtain the B-orthogonal decomposition

m:<X1,X2,X3>EB @ (ug@u_ﬁ)ﬂg.
66@,
Caﬁe{l,S}

Under the isomorphism v : m — T, M this induces a decomposition of the tangent space:

T,M = (¢,&.8)8 P Vs,
BED,
C&g€{1,3}

where V3 := 9 ((ug ®u_g) Ng).
Lemma 2.30. The above decomposition of T,M is g,-orthogonal.

Proof. If Y € (ug®u_g) N g, then
9p((&i)p Yp) = mi(Yy) = ai(Y) = B(X;,Y)/B(X;, X;) = 0,

Hence each Vp is gp-orthogonal to (£1,&2,&3). If 1, B2 are roots such that 1 # —fs,
then there exists some X € ¢ such that (X)) # —f2(X). We extend v and g, complex
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(bi-)linearly, let Y € ug,, Z € ug, and complexify Lemma 2.21 to obtain

Bi(X)gp(WY, 9 Z) = gp(V[X, Y], 9 2) = —gp(VY, Y[X, Z]) = =B2(X)gp (Y, 9 Z) .

Since B1(X) # —B2(X), it follows that 1ug, and 1ug, are g,-orthogonal. This implies
that for 3 # £ the subspaces V3 and V, are g,-orthogonal. O

Lemma 2.31. For oll Y, Z € g we have

9(Yp, LiZ,) =0 < B(X,,[Y,Z]) =0.

p

Proof. By virtue of Lemma 2.16:

v 7 B(X;, [Y, Z])

29p(?paLin) = dm(?pvzp) = T]i([Y, Z]p) = _ai([Yv Z]) - B(Xi>Xi) -

Lemma 2.32. For any root B € ® we have 2V C Vg1a ® Va_q.

Proof. Let v € ® such that v # oca + 70 for all 0,7 € {£1}. Then, o8 + 7y ¢ {xa}
for all 0,7 € {£1}. Consequently the subspace [ug ® u_g,u, ® u_,| is BC-orthogonal
t0 Uy D u_q 3 Xq, Y, and thus also to Xo = (X4 + Yy) (see the equations above
Proposition 2.22). The previous lemma now implies that ¢2Vj3 is gp-orthogonal to V.

The claim then follows from Lemma 2.30. OJ

Proof of Proposition 2.29. Let us label some of the roots of go according to the following

diagram:

Lemma 2.32 implies that @2V C V,. Since ¢ is injective on the horizontal space, we in
fact have ¢2V3 = V,. Another application of Lemma 2.32 yields @2V, C Vg @ V5. If we
can show that there exists some Y € V,, such that oY has a non-trivial Vs-component,
then we arrive at a contradiction to the fact that ¢3 = —id on Vj.

Let Z* denote the complex conjugate of a vector Z € u. We can choose X, € uy, X5 € us
in such a way that .

X, X5] = Xo = (X2 — iXa).
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We note that

X, = —%(Xg +iX3)=-Y,, i(Xo— X)) =X,
and
B([Xy + X7, 1(X5 — X5)], Xo) = B(i(Xa — X3), X2) = B(X2,X5) #0.
Lemma 2.31 finally implies that ¢2Y has a Vs-component for Y := (X, + X),. O

2.4 Why no Subgroup Acts Transitively

We have shown that any simply connected homogeneous 3-Sasaki manifold M is obtained
from a complex 3-Sasaki datum as explained in Section 2.2. Hence M can be written as
G/H, where G is a simply connected compact simple Lie group. Since G is simple, a
finite quotient G of G acts effectively and thus forms a subgroup GcC Auto(M). We can
now write M = G/H and will show below that g = Lie(G) = aut(M). This concludes

the proof of Theorem 2.1 as M determines its 3-Sasaki datum.

Proposition 2.33. If a subgroup GcC Autg(M) acts transitively on a simply connected
homogeneous 3-Sasaki manifold M, then G = Auto(M).

Proof. We show that the Lie algebra g of G is tied to purely geometric data of M.
Recall the setup from Theorem 2.1: We have a reductive decomposition g = h & m,
where m = h-2 and m = & @ g1, where £ corresponds to the Reeb vector fields & and
g1 = (h ® £)1LB. Note that we have the commutator relations (cf. Proposition 2.12)

[bah] C b? [h»é] = O? [h)gl] C g1, [Ea E] - Ev [Ea gl] C g1, [glagl] Cgo= b &L

Consider the subspace m + [m,m] C g. Using the commutator relations we find that
this is an ideal in g and thus (Proposition 2.24) already g itself. Hence the knowledge of
m embedded in the Lie algebra of Killing vector fields iso(M) on M via X +— X alone
determines g C iso(M).

We now characterize m as the subset of Killing fields whose covariant derivatives obey a
certain behavior at 0 = eH. By analogy recall that in a symmetric space the analogue
of m can be characterized as the Killing fields whose covariant derivatives vanish at o.
Let V be the Levi-Civita connection on M and « : m X m — m the associated Nomizu
operator defined by

a(X)Y), =V Y - [X,Y]

o
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It satisfies

0, XetandY €g;,
[X,Y]m, X, Yetor XY €gy,
[X,Y]m, XegiandY €t

a(X,Y) =

N[

see [DOP, Theorem 4.2|. By definition of the Nomizu operator we have

VY =a(X,Y), +[X,Y],.

o

This means that

_ 3IX,Y] =-33"m iX,, Xe€Et,
vy 7 [Tl =3 ST
Q[Xv Y]o = _22771'(}/0)901')(01 X e g1,
for Y € £ and
_ X.,Y] = (X)) i (Ys), Xet,
Ve V= (X, Y], =30 ni(Xo)ei(Yo)

(X, Y]y), = —3 2 dni (X, Vo), X €1,

for Y € g1, where we used Lemma 2.16 in the last equation. Hence the fundamental
vector field of Y € m = ¢ @ gy satisfies

3

3
VoY = =33 mi(Yo)m;(v)ei&s — 2 Y mi(Yo)pi(vw)

"j_l =1 (2.2)

+Z772 @z?H—*ZdThUY)ﬁ
i=1

for all v € T,M, where vy denotes the projection of v to H = (ker;. Note that (VY),
depends only on the value Y, € T,M. We now consider the maps

m — {Y Killing field on M | Y satisfies (2.2) for all v € T,M} — T, M ,

where the first map is Y ~ Y and the second is evaluation at o. The first map is injective
beacuse the G-action is effective. The evaluation map is also injective, as for Killing fields
Y1, Ys in the middle space with (Y1), = (Y2), by Property (2.2) also (VY1)o = (VY2)o,

which implies Y7 = Y5. Because m = T, M both maps are isomorphisms. Hence:
m = {Y Killing field on M |Y satisfies (2.2) for all v € T,M} C iso(M).

Therefore we have shown that every connected Lie group G with Lie algebra g acting
effectively and transitively on M has the same Lie algebra, namely g = aut(M). The
corresponding connected subgroup of Aut(M) is then G = Auty (M). O
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2.5 Determining the Isotropy

After proving Theorem 2.1 we now derive the precise list given in Corollary 2.2. By
virtue of Theorems 2.9 and 2.15 any simply connected homogeneous 3-Sasaki manifold
can be written in the form G/H, where G is a simply connected simple Lie group and
H = (Cg(K))p, where K C G is the connected subgroup with Lie algebra € = sp(1)
determined by a maximal root. In this section we determine the isotropy group H,
thereby proving Corollary 2.2 in the simply connected case. The classical spaces are

dealt with in the following

Proposition 2.34. For G = Sp(n+ 1), SU(m) and G = SO(k) the isotropy groups are
given by H = Sp(n), S(U(m —2) x U(1)) and H = SO(k — 4) x Sp(1), respectively.

Proof. We use the explicit description of the root systems of the compact groups provided
in |[Tapp, Chapter 11].

G = Sp(n+1): We may choose the maximal root « such that £ = {diag(0,,sp(1))} (by
letting & = 4,41 in TAPP’s notation). Accordingly:

K = {diag(I,, Sp(1))},

Cq(K) = {diag(Sp(n), 1)},
H = (Cg(K))o = {diag(Sp(n), 1)} .

(
(

G = SU(m): We may choose « such that € = {diag(0,,—2,5u(2))} (by letting o = am—1.m
in TAPP’s notation). Accordingly:

K = {diag(Im-2,SU(2))},
Ca(K)=H = {diag(SU(m — 2),z12) | z€ U(1)} N SU(m) .

G = SO(k): We recall that there are two embeddings Sp(1)™, Sp(1)~ C SO(4), de-
pending on whether Sp(1) is viewed as acting on H = R* by multiplication from the left
or right, respectively. We may choose a such that € = {diag(0x_4,sp~ (1))} (by letting
@ = Qi/9)—1,[k/2] in TAPP’s notation). Accordingly:

K = {diag(Ix—s,Sp~ (1))},
Cx(K) = H = {diag(SO(k — 4), Sp™ (1))} .

O

We now present a different method based on Borel-de Siebenthal theory which allows us
to understand the isotopy algebra b in the exceptional cases:
Using the same notation as before we let s C h be a maximal Abelian subalgebra and

consider the maximal Abelian subalgebra t := s @ (X1) of g. Let a denote the maximal

27



root that vanishes on s€. We fix a set of positive roots of g using a slight perturbation
of the hyperplane perpendicular to the maximal root «. By intersecting this hyperplane
with s we also obtain a notion of positive root for h. By definition any root of b becomes

a root of g by extending it by zero on Xi, since h commutes with Xj.

Proposition 2.35. The simple h-roots are precisely those simple g-roots which are per-

pendicular to a.

Proof. By our notions of positivity any h-simple root is also g-simple: If an h-root is the
sum of two positive g-roots, then both of them have to lie in the hyperplane perpendicular
to a. Conversely recall that by Proposition 2.12 the roots of h are exactly those roots 3

perpendicular to the maximal root a. O

We can thus determine the isotropy type of H by deleting the nodes in the Dynkin
diagram of G corresponding to simple roots that are not perpendicular to . For each
simple G these were determined by BOREL and DE SIEBENTHAL in [BdS]: In the table
on p. 219 they draw the Dynkin diagrams for every simple g, extended by the lowest
root (which they denote by P). In order to find the isomorphism type of H one therefore
only needs to erase this lowest root as well as all roots connected to it. As an example

consider the Dynkin diagram of Fjg:

Deleting o as well as the unique simple root connected to it results in the Dynkin diagram
of SU(6) and the homogeneous 3-Sasaki manifold corresponding to Eg is Eg/SU(6).

Remark 2.36. If one removes only the nodes in the Dynkin diagram of G that are
connected to a but not « itself, then one obtains the Dynkin diagram of the normalizer
N¢g(K) which then yields the Wolf space G/Ng(K). Note that by the list in [BdS| in
all cases except G = SU(n) the maximal root « is connected to only one other node
which means that in these cases the groups H and Ng(K) are semisimple, whereas in
case G = SU(n) the groups H and Ng(K) have one-dimensional center. Furthermore
in the cases except SU(n) the normalizer Ng(K) is a maximal subgroup of maximal
rank. The types of such groups are exactly those that were classified by BOREL and DE
SIEBENTHAL in [BdS]: Given a compact simple Lie group G one adds the lowest root to

the Dynkin diagram and removes one other simple root from it.
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Going through the list in [BdS| one obtains the Lie algebras of the isotropy groups
of the homogeneous spaces occurring in Corollary 2.2. As we determined the isotropy
groups in the classical cases above, in order to finish the proof of this corollary in the
simply connected case, we only need to argue that in the exceptional cases the isotropy
groups are simply connected. ISHITOYA and TODA showed in [IT, Corollary 2.2| that
in the cases G = Gy, Fy, Fg, E7, Eg, we have mo(G/N¢g(K)) = Zg, which is, since G
is simply connected, equivalent to 71 (Ng(K)) = Zgo. (See also [BdS, Remarque II,
p. 220] for how to compute the fundamental group of a maximal subgroup of G of
maximal rank.) Moreover by [IT, Theorem 2.1] the normalizer Ng(K) is of the form
Ng(K) = (H x Sp(1))/Zy which finally implies that H is simply connected.

2.6 Non-Simply Connected 3-Sasaki Manifolds

Having treated the simply connected case of Corollary 2.2 our goal is now to prove the

following

Theorem 2.37. The only homogeneous 3-Sasaki manifolds which are not simply con-

nected are the real projective spaces RP+3.

Let M = G/H be a homogeneous 3-Sasaki manifold (not necessarily simply connected),
where G is a simply connected compact Lie group and H is possibly disconnected. The
universal cover of G/H is given by G/H, where H denotes the identity component of H,
and the homogeneous 3-Sasaki structure lifts to the simply connected space G/H. As
shown in Section 2.3 the automorphism group G has to be simple. The vectors X; € g
from Section 2.3 span a subalgebra € := (X1, Xo, X3) = sp(1) and we let K C G denote
the corresponding connected subgroup.

Since H is the identity component of H, we have H C Ng(H). Furthermore the 3-
Sasaki structure descends from G/H to G/H,so H C Cg(K). Conversely any subgroup
H C Ng(H)NCg(K) containing H allows us to define a 3-Sasaki structure on G/H. In
summary the non-simply connected quotients of a given simply connected homogeneous

3-Sasaki manifold G/H are classified by the subgroups of the group
(No(H) 1 Ca(K)) /H .
Hence it suffices to show that this quotient is Zg for G = Sp(n+1) and trivial otherwise.

Lemma 2.38. The numerator Ng(H)NCq(K) is the subgroup generated by HU Z(K).

Proof. Clearly H U Z(K) C Ng(H) N Cg(K). The vector X; € g is the infinitesimal
generator of a circle subgroup S1 C K. Since Cy(X1) = bh @ (X1) and the centralizer
of any torus (not necessarily maximal) in a compact connected Lie group is always

connected, it follows that Cg(S1) is the subgroup generated by H U S;. Consequently
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any g € Cg(K) C Cg(S1) can be represented as g = hgy for some h € H, g1 € S1. Since
H C Cg(K), we have g1 = h™lg € Co(K)N K = Z(K). O

Proposition 2.39. The quotient (Ng(H) N Cq(K))/H is Zy for G = Sp(n + 1) and

trivial otherwise.

Proof. By the previous lemma, it suffices to check if Z(K) is contained in H.

G = Sp(n+1): We have already seen in Section 2.5 that the center Z(K) = {diag(I,, £1)}
is not contained in H = {diag(Sp(n),1)}.

G = SU(m): We have also shown that in this case Z(K) = {diag(l,,—2, +I2)} is con-
tained in H = S(U(m —2) x U(1)).

G = Spin(k): We have seen that for G = SO(k) the center Z(K) = {diag(Ij_4, +14)} is
contained in H = SO(k —4) x Sp(1)*. We now transfer this statement to G = Spin(k):
Denote the universal covering map by 7 : Spin(k) — SO(k). First we observe that the
connected subgroup of Spin(r) that maps onto a block-diagonally embedded SO(r—1) is
Spin(r — 1) for r > 4: This is because S"~! = SO(r)/SO(r — 1) is 2-connected for r > 4
and hence equal to Spin(r)/Spin(r—1) by the long exact sequence in homotopy. Thus for
k > 7 the subgroups SO(k—4) and SO(4) lift to Spin(k—4) and Spin(4), respectively. As
misa2: 1-covering the group covering SO(k—4)xSO(4) is Spin(k—4)x z,Spin(4), where
the Zs-quotient means that the nontrivial elements in the kernels of the respective projec-
tions are identified. Thus Spin(k —4) Xz, Spin(4) = Spin(k —4) xz, (Sp(1)* x Sp(1)7).
This implies that the center of Sp(1)~ is contained in H = Spin(k —4) x Sp(1)*.

G = Go, Fy, Fg, 7, Eg: IsHITOYA and TODA showed that the subgroup U of the cor-
responding symmetric base space G/U has to be of the form U = (H x Sp(1))/Z2 and
that the center Z(Sp(1)) is contained in H [IT, Theorem 2.1]. O

2.7 Positive QK Manifolds

We end this chapter by showing that the classification of homogeneous positive K mani-
folds in Corollary 2.3, which had originally been the stepping stone for the classification
of homogeneous 3-Sasaki manifolds, can in turn be derived from our results.

Let B be a positive gK manifold. We recall that qK manifolds may be characterized
by a subbundle @ C EndT'B of the endomorphism bundle which admits a local frame
satisfying the multiplication rules of the quaternions. In her 1975 article [Koni] KONISHI
showed that the SO(3)-principal fibre bundle P — B of oriented orthonormal frames of
() admits a 3-Sasaki structure. This construction is known as the Konishi bundle over B
and constitutes the inverse of the fibration over the space of leaves of the characteristic
foliation. Another natural and interesting bundle over B is the unit sphere bundle
Z = S(Q) in @ known as the twistor fibration. Its total space Z is both a complex
contact manifold and a Fano variety |[BG, Chapters 12, 13].

A ¢K automorphism of B is an isometry ¢ : B — B such that conjugation with its
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differential d¢ leaves the bundle @) invariant. We call B a homogeneous gK manifold
if there is a Lie group G acting transitively on B by qK automorphisms. We will first

prove the following

Proposition 2.40. The Konishi bundle over a simply connected homogeneous positive

gK manifold is a homogeneous 3-Sasaki manifold.

Let B be a simply connected homogeneous positive gK manifold, so that we may write
B = G/U, where G is simply connected and U is connected. Because G acts on B by qK
automorphisms, the G-action lifts to the Konishi bundle P. In particular the isotropy
group U acts on the fiber F' of P over the identity coset eU € B.

Choose and fix a frame p € F. This allows us to identify F' with SO(3) via the orbit bijec-
tion 6, : SO(3) — F, g — p-g. The SO(3)-left action on itself by left multiplication now
induces a left action on F' (which depends on the choice of p), viz. g - q := Hp(gﬁgl(q)).
Since the U-action commutes with the SO(3)-right action on F', there exists a homo-
morphism p : U — V onto a subgroup V' C SO(3) (again all depending on p) such that
u-q = p(u)-pq for all ¢ € F, namely p(u) := Hgl(u-p). Clearly d :=dimV € {0, 1, 3}.

Lemma 2.41. d = 3.

Proof. Let us first assume that d = 0. Then the connected group U would act trivally
on F'. Hence we would obtain a well-defined global section B — P, gU + g - p, meaning
the principal fiber bundle P was trivial. But the first Pontryagin class p1(P) of P is
(up to a factor) given by the class of the fundamental four-form Q € Q*(B) of B and is
therefore non-trivial [Bess, Proposition 14.92].

If we suppose that d = 1, then V is a connected one-dimensional subgroup of SO(3) and
is thus comprised of rotations around a fixed axis L C R3. Choose a point = € L N S2.
We view the frame p € F as a linear isometry R? — @ and consider the mapping B — Z,
gU — (g - p)(x). This map is well-defined because

(u-p)(@)=(p- 0, (u-p)(x) = (p- pw)(x) = p(p(u)(z)) =plz) YueU.

We would thus obtain a global section of the twistor fibration which is impossible on
compact positive gK manifolds [AMP, Theorem 3.8]. O

Proof of Proposition 2.40. From the previous lemma we know that U acts transitively
on F and consequently G acts transitively on P. This action preserves the 3-Sasaki
structure, since the Reeb vector fields are (by construction of the Konishi bundle) the

infinitesimal generators of the SO(3)-action which commutes with G. O

Proof of Corollary 2.3. By Proposition 2.40 the Konishi bundle P over a simply con-
nected homogeneous positive gK manifold B is a homogeneous 3-Sasaki manifold, i.e. one
of the manifolds listed in Corollary 2.2. By dividing P by the action of the group K C G
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from the previous sections we obtain the list in Corollary 2.3. The statement about the
Riemannian metric and quaternionic structure follows from the fact that the Konishi
bundle is a Riemannian fibration.

Let us now assume that B = G/U was a non-simply connected homogeneous positive
gK manifold, where U is disconnected. Then B is finitely covered by B = G/U, where
U denotes the identity component of U. The K structure lifts from B to B and the
Konishi bundles P, P over B, B form a diagram

This implies the existence of the dashed equivariant map P — P, so that P is a non-
simply connected homogeneous 3-Sasaki manifold. By Theorem 2.37 the manifold P can
only be RP3 which leads to the same quotient B = Sp(n + 1)/(Sp(n) x Sp(1)) as
P = §ints, O
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Chapter 3

Homogeneous and Inhomogeneous
3-(a, 6)-Sasaki Manifolds

In this chapter we reapply some of the techniques from the previous one to a different
geometry, namely degenerate 3-(a, 0)-Sasaki manifolds. This allows us to prove several
results which limit the number of homogeneous manifolds with this geometry under cer-
tain assumptions. More precisely we show that no non-trivial compact examples exist
as well as that there is exactly one family of nilpotent Lie groups with an invariant de-
generate 3-(a, §)-Sasaki structure, namely the quaternionic Heisenberg groups.

By way of contrast we demonstrate how to use hyperkihler manifolds to construct dege-
nerate 3-(«, 6)-Sasaki manifolds which are then necessarily inhomogeneous. This method
is akin to the famous Boothby-Wang bundle and may be seen as a counterpart to ob-

taining 3-Sasaki manifolds via the Konishi bundle over positive gK spaces.

AGRICOLA, DILEO and STECKER have shown that all 3-(«, §)-Sasaki manifolds locally
submerge onto a qK space whose curvature depends on the sign of ad [ADS, Theorem
2.2.1]. This result motivated them to construct plentiful examples of homogeneous non-
degenerate 3-(«, ¢)-Sasaki manifolds over quaternionic Kéhler spaces of non-vanishing
curvature [ADS, Section 3|. To some extent this property also explains why it could be
expected that there are rather few homogeneous degenerate 3-(«, d)-Sasaki manifolds.
This is because ideally such spaces would submerge onto homogeneous hyperkéhler ma-
nifolds which are known to be completely flat, i.e. products of tori and Euclidean spaces
[AK]. However, compared to the non-degenerate case it is less clear if the corresponding
hyperkéhler space will globally be a manifold. We identify two such scenarios where the
base space is indeed a manifold and show that there are even more restrictions beyond
those imposed by [AK].

About the structure of this chapter: Unlike in the non-degenerate case the Reeb vector
fields are now elements of the automorphism algebra of a homogeneous degenerate 3-
(a, §)-Sasaki manifold because they commute with one another. In Section 3.1 we show

that they comprise the center of the automorphism algebra and conclude that they
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generate a closed subgroup of the automorphism group. Combining this with classical
results due to ALEKSEEVSKII [Alek]| as well as CONNER and RAYMOND [CR] we prove
that the only connected compact homogeneous degenerate 3-(a,d)-Sasaki manifold is
the trivial example of the three-torus 7° (Section 3.2). In Section 3.3 we study simply
connected nilpotent Lie groups with a left-invariant degenerate 3-(a, d)-Sasaki structure.
Again using traditional results by WILSON [Wil] as well as MILNOR |Mil| we show that
there is exactly one family of such spaces, the quaternionic Heisenberg groups. This
parallels a result about nilpotent Sasaki Lie groups by ANDRADA, FINO and VEZZONI
[AFV, Theorem 3.9]. Finally we provide the promised construction of degenerate 3-

(o, 6)-Sasaki manifolds over hyperkahler manifolds in Section 3.4.

3.1 Homogeneous Spaces

Let (M3, g, & mi, vi)i—1.23 be a connected homogeneous degenerate 3-(c, §)-Sasaki
manifold, i.e. the identity component G := Auto(M) of its group Aut(M) of 3-(«, 6)-
Sasaki automorphisms acts transitively. The Lie algebra g is (anti-)isomorphic to the
space aut(M) of all complete Killing vector fields on M which commute with the Reeb
vector fields &1, &o, &3 via the map g — aut(M), X + X, where X denotes the funda-

mental vector field of the left G-action.

Since the automorphisin group acts transitively, the Reeb vector fields are complete.
Unlike in the 3-Sasaki and more generally the non-degenerate 3-(a,d)-Sasaki case the
Reeb vector fields commute with each other, so we have &1,&2,&3 € aut(M). In fact the
corresponding elements X1, Xo, X3 € g (i.e. X; = &) clearly even lie in the center Z(g)
of g. We show that g contains no other central elements using techniques very similar

to those from Section 2.3: The same proof as for Lemma 2.16 yields
Lemma 3.1.

dnl(yﬂv):nl([y’?])v 7::1’2737 XaYEB-

Lemma 3.2. A vector field of the form Z?Zl fi &, where fi, fo, f3 € C°(M), lies in
aut(M) if and only if f1, fa2, f3 are constant functions.

Proof. TtV = 32| f;& € aut(M), then for j = 1,2,3 and W € T(TM):

0= (Lvn) (W) = 3 (i (Lem) (W) + W () (&) ) = W)

=1 v
—0 S
Since M is connected, it follows that f1, f2, f3 have to be constant. O
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Proposition 3.3. Z(g) = (X3, X», X3) =: £.

Proof. Let X € Z(g) and choose some p € M and Y € g such that Y, = p1 X, (which

is possible, since G acts transitively). Then by virtue of Lemma 3.1:

0 =m([X, Y]p) = _dnl(ypﬂolyp) =2a H(YP)HHZ )

where H := (), kern; and vy denotes the horizontal component of a tangent vector
v € TM. Since a # 0 and p € M was arbitrary, the vector field X has to be of the
form described in Lemma 3.2. Consequently X = Z?Zl a;&; for some aj,az,a3 € R and
X=? aX ct O

Corollary 3.4. The connected subgroup K C G with Lie algebra € is closed.

Proof. Since G is connected, the Lie algebra of Z(G) is given by Z(g). Thus Proposi-
tion 3.3 implies that K = Zy(G), the identity component of the center. Since Z(G) is
closed in G and Zy(G) is closed in Z(G), it follows that K is closed in G. O

3.2 Compact Homogeneous Spaces
We start with the following observation:

Lemma 3.5. The only connected compact three-dimensional degenerate 3-(a,d)-Sasaki
manifold is T3.

Proof. 1f (M3, g,&,mi,pi)i=123 is a connected compact three-dimensional degenerate 3-
(ar,§)-Sasaki manifold, then the Reeb vector fields generate an R3-action on M. The
isotropy groups of this action are discrete (since the Reeb vector fields vanish nowhere),
so any orbit is three-dimensional and thus by connectedness equal to all of M. Hence
M = R3/H is a connected compact Abelian Lie group (H is a normal subgroup, since
R? is Abelian), i.e. a torus. The structure tensors (g,&, i, ¢i)i=123 are completely

determined by the definition of an almost 3-contact metric structure. O

Let us now assume that (M4”+3,g, & Mi, Pi)i=1,2,3 1s a connected compact homogeneous
degenerate 3-(«, §)-Sasaki manifold. Then its isometry group Iso(M) as well as the closed
subgroups Aut(M) and Autg(M) =: G are also compact, as is K by Corollary 3.4. Thus
the space M /K of K-orbits is at least an orbifold. However, since M is G-homogeneous,
the K-action on M only has one isotropy type. Hence the orbit space M/K is a compact

smooth manifold, in fact:

Proposition 3.6. M /K is a torus.
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Proof. AGRIcOLA, DILEO and STECKER have shown that the space of leaves of the cha-
racteristic foliation of a degenerate 3-(c, d)-Sasaki manifold (the foliation generated by
the Reeb vector fields) locally admits a hyperkdhler structure [ADS, Theorem 2.2.1].
Concretely the hyperkidhler forms are induced by dn; which are basic by (1.6). Since
X1, X5, X3 are the infinitesimal generators of both K and the characteristic foliation,
the space of leaves is given by the orbit space M /K. By construction the hyperkéihler
structure on M/K is also G-homogeneous. A result by ALEKSEEVSKII then concludes
that M /K has to be a torus [Alek, Theorem 1 b)]. O

Theorem 3.7. The only connected compact homogeneous degenerate 3-(c, §)-Sasaki ma-
nifold is T3.

Proof. Let L be the kernel of the G-action on the hyperkdhler quotient space M/K.
Then G/L is a connected compact Lie group which acts effectively on a closed aspherical
manifold (i.e. a manifold whose universal cover is contractible). It follows from the work
of CONNER and RAYMOND that G/L is also a torus [CR, Theorem 5.6].

Since L is a normal subgroup of G, its Lie algebra [is an ideal in g. Because G is compact
we may choose an Ad(G)-invariant (and thus also ad(g)-invariant) inner product on g
and consider the complementary ideal m := [*. Again by compactness of G we have
g = [g,0] ®¢and [g,g] = & (independently of the choice of the inner product). Since
K C L, it follows that m is an ideal inside the semisimple algebra [g, g] and is therefore
itself semisimple. But on the other hand m is isomorphic to the Lie algebra g/l of G/L
which is Abelian. Consequently m = {0}.

It follows that G/L has to be the trivial torus, meaning G acts trivially on M/K.
Since this action is also transitive, we obtain that M /K is a singleton and M is three-

dimensional. Lemma 3.5 finally implies that M is isomorphic to T3. O

3.3 Nilpotent Lie Groups

In this section we investigate simply connected nilpotent Lie groups with a left-invariant
degenerate 3-(a, d)-Sasaki structure. We recall the specific example of the quaternionic
Heisenberg groups, which were first described as naturally reductive spaces in [AFS]| and

later identified as a homogeneous degenerate 3-(c, §)-Sasaki manifolds in [AD|:

Example 3.8. The quaternionic Heisenberg group of dimension 4n + 3 is the simply
connected Lie group H determined by the following Lie algebra h: As a set h = Z o H",
where Z is the span of the imaginary quaternions i, j, kK which we denote by &1, &, &3. We
define an inner product g on h by requiring that &, &2, &3 are orthonormal, g|gn«mn is
the standard Euclidean inner product on H"” and ¢|zxm» = 0. Let n; be the g-dual one-
form of & and ¢; the endomorphism of b such that ¢;§; = & for any cyclic permutation
(i,7,k) of (1,2,3) and ;g is quaternionic multiplication from the left by ;. Finally
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the Lie bracket on b is determined by the conditions Z(h) = Z, [H",H"] C Z (implying
that b is two-step nilpotent) and

As shown in [AFS, Subsection 2.2|] and [AD, Example 2.3.2| the corresponding left-
invariant tensor fields (g,&;, i, pi)i=1,2,3 constitute a homogeneous degenerate 3-(a, d)-
Sasaki structure on H with o = 1/2. As always one can modify this structure (and
in particular the value of a) by applying an H-homothetic deformation [AD, Definition
2.3.1]. In fact the presentation of the quaternionic Heisenberg group in [AFS]| and [AD]
already incorporates an H-homothetic deformation with parameters a = 1, b = A2 — 1
and ¢ = A, where A > 0.

Remark 3.9. In fact the quaternionic Heisenberg groups are the most elementary Lie
groups with a degenerate 3-(«, §)-Sasaki structure that one could imagine: The almost 3-
contact metric structure is derived from the standard one on the quaternions H", the Lie
bracket is defined to be zero whenever possible and Equation (3.1) is just a restatement
of the defining Condition (1.6). Maybe somewhat surprisingly we will show below that
these are in fact the only simply connected nilpotent Lie group with a left-invariant

degenerate 3-(a, d)-Sasaki structure.

Now let N4"*3 denote a simply connected nilpotent Lie group with a left-invariant dege-
nerate 3-(a, 6)-Sasaki structure (g, &, M, @i)i=1,2,3- f H =), kern; and V := (&1, &2, €3),
then the Lie algebra Lie(N) = n = H @&V decomposes both as vector spaces and as left-

invariant distributions inside the tangent bundle.

Lemma 3.10. Z(n) C V.

Proof. Since n; is left-invariant, we have dn (X,Y) = —n1([X,Y]) for all X, Y € n. Thus
if X € Z(n), then Condition (1.6) implies that for Y := ¢ X:

0=m([X,Y]) = —dm(X,Y) = 2o X»|*.

Proposition 3.11. Z(n) =V and n is two-step nilpotent.

Proof. Let V denote the connected subgroup of N with Lie algebra V. Since N is simply
connected and nilpotent, the (Lie group) exponential map of N is a global diffeomor-
phism [Knap, Theorem 1.127|. Hence V is a closed subgroup and N/V is (globally) a
smooth manifold. Now N/V is also the space of leaves of the characteristic foliation of
N, which admits a hyperkéhler structure [ADS, Corollary 2.2.1] that is homogeneous as
argued in the proof of Proposition 3.6.
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Let W denote the kernel of the N-action on N/V. Then W is known as the normal core
of V and it is the largest subgroup of V' which is normal in N. The connected nilpotent
quotient group N/W acts effectively and transitively by isometries on N/V | so N/V is
isometric to N/W by virtue of a result due to WILSON |Wil, Theorem 2|. Consequently
dimV = dimW, so V = Lie(W) is an ideal in n. But n;([X,&]) = dn;j(&, X) = 0
for all X € n, so V = Z(n). Moreover N/V is nilpotent and Ricci-flat, so a result
by MILNOR implies that its Lie algebra n/V = n/Z(n) is Abelian [Mil, Theorem 2.4].
Finally [n,n] C Z(n), so n is two-step nilpotent. O

Theorem 3.12. The only simply connected nilpotent Lie groups with a left-invariant
degenerate 3-(«, 0)-Sasaki structure are the quaternionic Heisenberg groups endowed with

the structure described in Ezample 3.8.

Proof. Since N is simply connected, it suffices to construct a Lie algebra isomorphism
¥ : n — b which preserves the structure tensors. First let ¢ map the Reeb vec-
tor fields of n to those of h. Both H C n and H"™ C bh are left quaternionic vector
spaces with compatible inner products, so they admit orthonormal bases of the form
(e1,p1€1, P2€1, P3€L, ..., En, P1€n, P2en, P3ey). Let 1 map such a basis of H to a corre-
sponding basis of H”.

From these definitions it is clear that ¢ is a linear isomorphism which respects the struc-
ture tensors, so it only remains to check that ¢ preserves the Lie bracket. To this end
first note that by the previous proposition: ¥(Z(n)) = (V) = Z = Z(h). Likewise
[W(H),v(H)] = [H",H"] C Z and ¢[H,H] C ¥(V) = Z. Finally for all X,Y € H we

have (possibly after a suitable H-homothetic deformation to match the values of «):

Ml (WX, ¥Y]) = dd (VY 0 X) = 206" (PP X, 0Y) = 2a¢ (Pl X, YY)
= 2ag™(P1X,Y) = dn (Y, X) = q} (X, Y]) = 0] (¥[X, Y]).

O

Remark 3.13. This theorem is very analogous to a result by ANDRADA, FINO and
VEzzONI: They showed that the only simply connected nilpotent Lie groups with an in-
variant Sasaki structure are the odd-dimensional Heisenberg groups [AFV, Theorem 3.9].
We would like to warn the reader about the somewhat counterintuitive fact that, at least
in the Sasaki realm, there exist (non-nilpotent) Lie groups with a left-invariant structure

where the Reeb vector field does not lie in the center of the Lie algebra.

3.4 A Constructive Result

Whereas plentiful non-degenerate 3-(«, d)-Sasaki structures are known on Konishi bun-
dles over qK orbifolds of non-vanishing scalar curvature [ADS, Section 3|, the only de-

generate 3-(«, §)-Sasaki manifolds studied so far are the quaternionic Heisenberg groups
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and derived spaces (cf. [AFS, Subsection 2.2|, [AD, Example 2.3.2]). Now we present a

method to construct many more interesting examples:

Let (N,gn, 11,12, I3) be a hyperkihler manifold. Suppose that the fundamental two-
forms represent integer classes [w;] € H?(N,Z). Then we obtain a Boothby-Wang bundle
S — P, =5 N for each Kihler structure [BW, Theorem 3]. In particular these
bundles have Chern class [w;] and the total spaces P; are equipped with Sasaki structures

(93, @iy mi, &) such that &; generates the fiber. Now consider the product bundle

=(m1,m2,73)

T3 — Py x Py x Py — N3,
Let M := II"!(AN) denote the restriction of the product bundle P; x Py x P3 to the
diagonal A(N) = {(x,z,2) € N3} and consider M as a fiber bundle M —— N, where 7

is the composition
P1XP2XP3DML>A(N)i>N7 (p17p27p3)'_>($737737)’_>x‘

If we denote the fiber of P; over x € N by (P;), := m; *({}) = S', then the bundle
M 5 N can be seen as the fiber bundle with fiber (P;), x (Ps), x (P3), over any given
point x € N. For p = (p1,p2,p3) € M we have

T,M = T,N @ (£1,&2, &3)

as & generates the fiber of P;. The construction as a fiber product bundle ensures that
the Reeb vector fields &; are linearly independent and [&;,§;] = 0 as it ought to be for
degenerate 3-(a, d)-Sasaki manifolds.

Extend n; trivially, i.e. kern; := TN & (§;, &) with j,k # ¢ and n;(&;) := 1. Define the
metric g := gy + N} + 13 + 03, so that w: (M, g) — (N, gn) becomes a Riemannian
submersion. Finally set ¢; 1= @; +1; ® § — nr ® & for any cyclic permutation (7, j, k)
of (1,2,3).

Theorem 3.14. Let (N,gn,I1,1I2,13) be a hyperkihler manifold with integer Kdhler
classes. Then (M, g,&,ni, vi)i=1,2,3 constructed as above is a degenerate 3-(av, §)-Sasaki
manifold with « =1, § = 0.

Remark 3.15. The T3-bundle M also appears in FOWDAR’s paper |Fow| in his con-
struction of K metrics on R x M albeit without the geometric structure, see also |Cor,
Lemma 2.1].

In [Forl] FOREMAN obtains a so-called complex contact manifold by constructing a 7
bundle over N in similar fashion. His construction imposes a less restrictive assumption
than hyperkihler on N. However, in this special case the complex T2-bundle he con-

siders can be obtained from our construction as the quotient by one of the Reeb vector
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fields. This should be considered as the analogue of the twistor space over a positive qK

manifold and the 3-Sasaki space above (cf. [For2|).

Proof. Observe that (g, m:, &, ¢i) extends the almost contact metric structure on T), P; =
TpN & (&) to TyM =T, N & (&, &;,&k). The three almost contact metric structures are
compatible on the vertical subspace by definition of ;. On the horizontal distribution
@; projects to Ij, so ¢; 0 vjly = vr|u.

The last identity to check is the differential Condition (1.6). As (&;,7;, @) defines a Sasaki
structure on P; we have 2¢g;(X, ¢;Y) = dn;(X,Y") for vertical vectors X,Y € T}, P;. This
remains true for X, Y € H C T,M as p; is just ¢; on H. If either vector of X,Y lies in V,
then the left-hand side of (1.6) has to vanish. We have

Lﬁjdm = Lfﬂ?z‘ - d(%ﬂ?i) =0

as 1; is defined on the factor P; of the product P. In particular it is invariant under &;

for j # . Finally t¢,dn; = 0 from the Sasaki condition on F;. O

Remark 3.16. We call this construction the 3-Boothby- Wang bundle over N. It is the
inverse of the canonical submersion introduced in [ADS, Theorem 2.2.1].

In [Cor| CORTES shows that non-flat compact hyperkihler manifolds with integral K&h-
ler classes exist in arbitrary dimensions. This implies the existence of plentiful compact
degenerate 3-(a, 0)-Sasaki manifolds which are necessarily inhomogeneous by virtue of
Theorem 3.7.

In summary our findings paint the somewhat curious picture that there are no non-trivial
compact homogeneous examples in the degenerate 3-(«, §)-Sasaki category, despite there
being both interesting non-compact homogeneous (quaternionic Heisenberg groups) and
compact inhomogeneous cases (3-Boothby-Wang bundles over compact inhomogeneous
hyperkéhler manifolds). Qualitatively this geometry is in stark contrast to the classical
3-Sasakian one where homogeneous examples are automatically compact and there exist

as many as compact simple Lie groups (cf. Chapter 2).

As a proposal for future research an even more systematic treatment of this geometry
would be desirable: Are the quaternionic Heisenberg groups maybe even the only non-
compact homogeneous examples? Are there more ways to construct new degenerate
3-(a, §)-Sasaki manifolds, for example via reduction? Can one classify the compact

inhomogeneous examples in some way?
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Chapter 4

A Bochner Technique for Foliations

and Inhomogeneity

In the previous chapter we encountered certain degenerate 3-(«,d)-Sasaki manifolds
which were necessarily inhomogeneous. Now we develop a method to quantify “how
far away from homogeneous” these and a number of other spaces are. One might also
consider the conclusions we will arrive at as “rigidity” or “non-deformation” results. The
key to obtaining these is to use the characteristic foliation generated by the Reeb vector
field(s) of a Sasaki or 3-(a, §)-Sasaki manifold and generalize the famous Bochmner tech-
nique to foliations. Since this approach is of independent interest, we first develop it in

a more general context and later specialize to Sasakian geometries.

The Bochner technique is a highly acclaimed method of proof in classical differential
geometry which is attributed to BOCHNER [Boch| and sometimes also YANO [YB]. It
discusses how Ricci curvature affects the types of vector fields that a manifold admits.
A modern introduction to the topic can be found in [Pete, Chapter 7|, which also served

as inspiration for the generalization in this chapter.

Let (M, g) be a connected closed oriented Riemannian manifold and let Ric denote the
Riccei curvature tensor of (M, g). The Bochner technique culminates in the following two
theorems [Pete, Theorems 36 & 48]:

Theorem 4.1. If Ric is negative semi-definite everywhere, then every Killing vector field
is parallel. If additionally Ric is negative definite at one point, then no non-trivial Killing

vector fields ewxist.

Theorem 4.2. If Ric is positive semi-definite everywhere, then every harmonic vector
field (i.e. the g-dual one-form is harmonic) is parallel. If additionally Ric is positive

definite at one point, then no non-trivial harmonic vector fields exist.

By combining these results with the famous Hodge theorem, which states that the space
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of harmonic one-forms is isomorphic to the first cohomology group, we obtain the fol-

lowing interesting consequences:

Corollary 4.3. If Ric is positive semi-definite everywhere and positive definite at one
point, then the first Betti number by (M) = 0.

Corollary 4.4. If Ric vanishes everywhere, then the dimension of the isometry group of
(M, g) is equal to by(M).

Over the years Theorems 4.1 and 4.2 have been adapted to work with various additional
structures on M, in particular Riemannian foliations. We go through all of the neces-
sary preliminaries about Riemannian foliations thoroughly in Section 4.1. KAMBER and
TONDEUR devised the following analogue of Theorem 4.1 [KT2, Theorem B]:

Theorem 4.5. Let M be a connected closed oriented manifold endowed with a Rieman-
nian foliation (F,g) and let RicT denote the transverse Ricci curvature of (F,g). If RicT
s negative semi-definite everywhere, then every transverse Killing vector field is trans-
verse parallel. If additionally RicT is negative definite at one point, then no non-trivial

transverse Killing vector fields exist.

In fact Theorem 4.5 is even a generalization of Theorem 4.1, where the latter corresponds
to the special case that F is the trivial foliation of M by singletons. In the direction of
Corollary 4.3 there is the following vanishing theorem for basic cohomology which was
discovered independently by MIN-O0, RUH and TONDEUR [Tond, Theorem 8.16] as well
as HEBDA [Hebd, Theorem 1]:

Theorem 4.6. If (M, F,qg) are as in Theorem 4.5 and Ric? is positive definite every-
where, then the first basic Betti number by (F) = 0.

One main goal of this chapter is to develop the following generalization of Theorem 4.2:

Theorem 4.7. Let M be a connected closed oriented manifold endowed with a trans-
versely oriented harmonic Riemannian foliation (F,g). If Ric? is positive semi-definite
everywhere, then every basic harmonic vector field is transverse parallel. If additionally
Ric” is positive definite at one point, then no non-trivial basic harmonic vector fields

exist.

By combining Theorems 4.5 and 4.7 with a basic Hodge theorem we obtain the following

variations of Corollary 4.4 and Theorem 4.6:

Corollary 4.8. If (M, F,g) are as in Theorem 4.7 and RicT is positive semi-definite
everywhere, then by (F) < codim F. If additionally Ric” is positive definite at one point,
then by (F) = 0.
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Corollary 4.9. If (M, F,g) are as in Theorem 4.7 and Ric! vanishes everywhere, then
the dimension of the vector space iso(F) of transverse Killing vector fields of (F,g) is
equal to by (F).

Finally we apply Corollary 4.9 to two classes of spaces which naturally naturally satisfy
all of the required conditions, namely degenerate 3-(a,d)-Sasaki and certain so-called

Sasaki-n-Einstein manifolds:

Theorem 4.10. Let M be a connected closed degenerate 3-(a,d)-Sasaki manifold with
characteristic foliation F. Then the dimension of the automorphism group Aut(M) is
at most by (F) + 3.

In particular if M arises via Theorem 3.14 as the 3-Boothby-Wang bundle over a compact
hyperkihler manifold N with integral Kdhler classes, then dim Aut(M) < b;(N) + 3.

Theorem 4.11. Let M be a connected closed Sasaki-n-Einstein manifold with transverse
Calabi- Yau structure and characteristic foliation F. Then the dimension of the automor-
phism group Aut(M) is at most by (F) + 1.

In particular if M arises as the Boothby- Wang bundle over a compact Calabi- Yau mani-
fold N with integral Kdhler class, then dim Aut(M) < b;(N) + 1.

About the structure of this chapter: We start with a self-contained explanation of the
required fundamentals about Riemannian foliations (Section 4.1) and basic Hodge theory
(Section 4.2). In Section 4.3 we complete the proof of the main Theorem 4.7 as well as

its consequences and in Section 4.4 we provide the promised applications.

4.1 Riemannian Foliations

Let M be a smooth manifold and (F,gr) a Riemannian foliation on M. This means
that F is a foliation on M defined by an integrable subbundle £ C T'M and gr is
a transverse melric, i.e. a symmetric positive semi-definite (0, 2)-tensor field such that
kergr = E and Lxgr = 0 for all X € T'y(F), where I'; denotes the set of all local
sections of a fiber bundle. In order to avoid having to deal with quotient bundles we
shall choose and fix a so-called bundle-like metric g on M, i.e. a Riemannian metric such
that g(X+,Y+) = gp(X,Y) for all X,Y € TM, where Z+ denotes the g-orthogonal
projection of Z € TM to E*+.

Definition 4.12. The Lie algebra of foliated vector fields and the vector space of trans-
verse vector fields are given by fol(F) := Nprar) (T'(E)), the normalizer of T'(E) in-
side I'(T'M), as well as trans(F) := fol(F) NT(E'), respectively. We call a function
f:M — R basic if X(f)=0forall X € I'y(E).

Lemma 4.13.  a) If X € fol(F), then f := 1 gr(X, X) is basic.

b) If f is basic, then its gradient (with respect to g) satisfies V f € trans(F).
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Proof. a) Forall Y e I'y(E): Y(f) = gr(]Y,X],X) =0.

b) First 0 = X(f) = g(Vf, X) for all X € T'((E), so Vf € T'(E+). Furthermore for
all X e T'(E), Y € Ty(EY):

gr([V£, X],Y) = gr(Vf, [X,Y]) = X (9r(Vf,Y)) = [X,Y](f) = X (Y(f)) = 0.
O

Definition 4.14. Let V denote the Levi-Civita connection of g. The transverse Levi-

Civita or Bott connection V7 is the connection in the vector bundle E*+ given by

(VxY)t | X eTy(EL),

viy =
[XaY]J_ ) XGFE(E)

The condition Lxgr = 0 ensures that [X,Y]" is indeed tensorial in X € T'y(E). Note
that if Y € tvans(F), then VLY = [X, Y]+ = 0 for all X € I',(E). The connection V7
is the unique metric and torsion-free connection in E+ [Tond, Theorem 5.9], i.e. for all
X €Ty(TM) and Y, Z € Ty(E*L):

X(9r(Y,2)) = gr(VXY,Z) + gr(Y, VX Z),
viz —viy =1y, 21*.

Furthermore V7 may be characterized via a Koszul formula [KT1, Proposition 1.7],
ie forall X,Z € Ty(TM),Y € T'(EL):

207(VRY,Z) = X (97(Y, Z)) + Y (97(Z, X)) — Z(97(X,Y))
+ QT([Xa Y]?Z) + gT([Z> X]>Y) - gT([Yv Z]vX) .

Definition 4.15. Let f be a basic function. The #ransverse Hessian Hessy f is the

symmetric (0, 2)-tensor field given by
Hessy f(X,Y) := gr(VLXVSY), X,Y €Ty(TM).
Clearly tx Hessy f = 0 for all X € T'y(E). The transverse Laplacian Arf is defined as

Arf :=trgHessp f =Y Hessy (B, Ei)

where E; is a local g-orthonormal frame. The transverse Riemann curvature tensor RT

is given by

RU(X,Y)Z :=VyVyZ - VYV Z = Vi Z, X,Y €Ty(TM), Z e Ty(E").
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Again txRT = 0 for all X € I'y(F) [Tond, Proposition 3.6]. As usual:
RU(X,Y,Z2,V):=gr(R"(X,Y)Z,V), VeTM.
Finally the transverse Ricci curvature Ric” is defined as

Ric" (X, X) :=tr (Y = RT(Y,X)X) =Y R"(E;,X,X,E;), X e€Ty(E").
i
Remark 4.16. It is well-known that a Riemannian foliation can be characterized equi-
valently via local Riemannian submersions ¢ : U — N onto a Riemannian model space
(N, gn). The transverse Riemann curvature tensor R then reflects the Riemann curva-
ture tensor RY of the local model N, as made precise by the following equation [Tond,
Equation 5.40]:

0 RT(X,Y)Z = RN (¢ X, 0.Y ) Z, X,Y,Z € Ty(E1).
Likewise Ric” mirrors the Ricci curvature tensor RicY of N, viz.
RicT (X, X) = Ric (¢ X, 0. X) 0 ¢, X € Ty(E1).

Hence if the Riemannian foliation (F,g) was simply given by one (global) Riemannian
submersion ¢ : M — N onto a Riemannian manifold N, then we could just apply the
ordinary Bochner technique to N instead of the more complicated approach presented
here. However, the advantage of a Bochner technique for foliations is that it also works
if the model space (globally) is not as well-behaved as a smooth manifold, which is often

a non-trivial condition.
From now on let n:=dim M, p:=rk F and q:=n — p.

Definition 4.17. We call F transversely orientable if E- is orientable. Suppose that M
is orientable and F is tranversely orientable. Then we shall orient M and E* using their
Riemannian volume forms p and pr, respectively. This means we choose a local oriented
orthonormal frame Fj1, ..., E, of TM such that E,,1,..., E, is an oriented frame of E+
and require u(En, ..., Ey) = pur(Epta, ..., Ey) = 1.

If X € fol(F) is a foliate vector field, then vy Lxpur = 0 for all Y € T'y(F). Thus Lxur
may be viewed as a section of the vector bundle A9(E+)* which has rank one. Hence we

can define the transverse divergence divy X as the unique function which satisfies
Lxpr =divr X - pr .
Lemma 4.18. For any transverse vector field X € teans(F):
divp X =tr V' X .
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In particular for any basic function f:
divprVf =Arf.

Proof. Since X is transverse, we have VgX =0forall Y € Ty(E). If Epp1,...,Ey is

an oriented local orthonormal frame of E-, then:
(Lxur)(Epits- -y En) = X (ur(Ept, -, En)) — ZMT(EPH, L LXVE, . Ey)
= _ZQT([X’ Eil, Ei) pr(Epy1, - - Ey) = — ZQT([X’ Eil, E;) .
On the other hand:
tr V' X = ZQT(VEX E;) = ZQT(V§Ei>Ez’)—9T([X> Ei],E;) = — ZQT([X, Ei], E;).

O]

Definition 4.19. A foliation F is called taut if there exists a Riemannian metric g on M
such that the leaves of F are minimal submanifolds of M with respect to g. If a Rieman-
nian foliation is taut, then g may be chosen to be bundle-like [Tond, Proposition 7.6],

in which case (F, g) is called harmonic.
One key tool for us is the following transverse divergence theorem |Tond, Theorem 4.35|:

Theorem 4.20. Let M be a closed oriented manifold endowed with a transversely orien-
ted harmonic Riemannian foliation (F,g). Then for any foliate vector field X € fol(M):

/ divp X - u=0.
M
4.2 Basic Hodge Theory

Let M be a smooth manifold endowed with a foliation F of codimension ¢ defined by an
integrable subbundle £ C T M.

Definition 4.21. A differential k-form w € Q¥(M) is called basic if 1xw = 0 as well as
Lxw = 1xdw = 0 for all X € Ty(E). Note that for f € Q°(M) this coincides with the
Definition 4.12 of a basic function.

If w is basic, then so is dw, meaning the basic differential forms constitute a subcomplex
Qp(F) of the de Rham complex Q(M). Clearly Q% (F) = 0 for k > q. We denote the
restriction of d to Qp(F) by dg. The cohomology ring of the complex (Qp(F),dR) is
called the basic cohomology of F and will be denoted by Hg(F). The basic Betti numbers
of F are defined as by(F) := dim H%(F).
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The inclusion QL(F) — QY(M) induces an injective map H5(F) — H'(M) [Tond,
Proposition 4.1]. Furthermore, if M is closed and (F, gr) is a Riemannian foliation on
M, then by (F) < oo for k=0, ...,q [Tond, Chapter 4].

From now on we assume that M is closed and oriented, (F, gr) is a transversely oriented
Riemannian foliation on M and ¢ is a bundle-like metric compatible with gr. As usual
the metric g induces an inner product on A*T*M for every € M. We let pu € Q*(M)
denote the Riemannian volume form of (M, g) and consider the inner product (-,-) on

QF(M) given by
(w,w') = / gw, ) -, w,w € QF(M).
M

We write (-, ) p for the restriction of (-,-) to the subspace Q% (F) C QF(M).

Definition 4.22. The basic codifferential dp : V% (F) — Q% 1(F) is the formal adjoint
of dp : Q5 1(F) — Q&(F) with respect to (-, )5, viz.

<dBw777>B = <w75377>37 w e Q]E_I(I)v ne Q%("r) .
The basic Laplacian is given by
Ap :=dpdp +dpdp : QR (F) — QR(F).

A basic form w € Q%(F) is called basic harmonic if Agw = 0. The vector space of all
basic harmonic k-forms will be denoted by H(F).

Beware that Ap is not the restriction of the ordinary Laplacian A = dd + &d to Q%(F)
[Tond, Equation 7.28]. On basic functions Ap differs from the previously defined trans-
verse Laplacian At by a sign, see Remark 4.26. By definition of g every w € Q% (F)

satisfies
(Apw,w)p = (dpdpw,w)p + (dpdpw,w)p = (dpw,dpw)p + (0pw,dpw)p .

Therefore Agw = 0 if and only if both dpw = 0 and dgw = 0. In particular we have a
natural map 7—[]]“3(.7:) — Hg(}'). In case the bundle-like metric is chosen appropriately
there is the following basic Hodge theorem |Tond, Theorem 7.51]:

Theorem 4.23. Let M be a closed oriented manifold endowed with a transversely orien-
ted harmonic Riemannian foliation (F,g). Then the natural map HY%(F) — HE(F) is

an isomorphism.

In preparation for the Bochner technique in the next section we now specialize to one-
forms: Recall the usual one-to-one correspondence between vector fields X € I'(T'M)
and their g-dual one-forms wy = tyg € Q'(M). One easily checks that X € trans(F)
if and only if wy € QL(F).
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Lemma 4.24. We have dpwyx = 0 if and only if VT X is gr-symmetric, i.e.
9r(ViX,2)=gr(Y,V;X), Y,Zel\(TM).
Proof. The Koszul formula from Definition 4.14 can be rewritten as
291 (Vy X, Z) = (dpwx)(Y, Z) + (Lxgr)(Y, Z), Y,Z € Ty(TM).
Since dpwx is skew-symmetric and L£xgr is symmetric, this yields the claim. O

Lemma 4.25. If (F,g) is harmonic, then dpwx = —divy X.

Proof. By definition of §p we need to show that for all basic functions f € Q%(F):

/ gldpf,wx) p= —/ fodivp X - p.
M M
Using Lemma 4.18 we calculate:
divp(f-X) = f-divp X +g(Vf,X) = f-divp X + g(dp [, wx) -

If we integrate over M, then the left-hand side vanishes by Theorem 4.20, since f - X is

foliate and (F, g) is harmonic, and the claim follows. O

Remark 4.26. Lemmas 4.18 and 4.25 imply that for all basic functions f:
Apf=dpdpf =dpwyy=—divpVf=—-Arf.

Corollary & Definition 4.27. If (F, g) is harmonic, then wx is basic harmonic if and

only if VT X is gp-symmetric and divy X = 0. In this case we call X basic harmonic.

4.3 A Bochner Technique for Foliations

From now on let M be a connected closed oriented manifold endowed with a transversely

oriented harmonic Riemannian foliation (F, g) of codimension q.
Definition 4.28. A transverse vector field X € tvans(F) is transverse parallel if VI X = 0.

Beware that a transverse vector field X € trans(F) which is parallel in the usual sense
that VX = 0 is also transverse parallel, but the converse is not true. By virtue of
Lemma 4.18 and Corollary & Definition 4.27 every transverse parallel vector field is

basic harmonic.

Lemma 4.29. Transverse parallel vector fields have constant length. Hence they are

uniquely determined by their value at one point.
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Proof. If X € trans(F) is transverse parallel and f := 2g(X, X) = 2g7(X, X), then for
all Y € Ty(TM):

Y(f) = gr(Vy X, X) =0.
Since M is connected, this implies that f is constant. O

For an endomorphism field A € T'(End(TM)) we set
|A]? := tr(A o A¥) Zg (Ey)),

where F1q,..., FE, is a local orthonormal frame.

Proposition 4.30. Let X € trans(F) be a basic harmonic vector field and consider the
basic function f := %gT(X,X). Then:

a) Vf=VEX

b) Hessr f(Y,Y) = gr(VEX, VEX)+RT(Y, X, X, Y)+97(VEVLX,Y)—gr (VL
for all Y € Ty(E4).

VTYX Y)

¢) Arf =|VTX?+Ricl (X, X).
Proof.  a) By virtue of Lemma 4.24:

g(VIY)=Y(f) = gr(VV X, X) = gr(VX X,Y) = g(VXX,Y), Y eTy(TM).

b) Part a) and Lemma 4.24 imply that for all Y € T'y(E™):

Hessy f(Y,Y) = gr(VEVLY) = gT(VTVTX Y)

=RU(Y, X, X,Y) + gr(VEVLX,Y) + T(V[YX]X Y)

=RT(Y,X,X,Y) +gT(VXVyX Y) + gr(VLE vixXY) - (VVTYX Y)
=RT(Y, X, X,Y) + gr(VEVEX,Y) + gr(VIX, VLX) - (VVTYX Y)
=gr(VEX VIEX)+ RT(Y, X, X,Y) + gr(VEVEX,Y) — gT(vaYX Y).

From the second to the third line we implicitly used that V[Y X]X V[Y X+ X,
since X € trans(F).

¢) If we sum b) over any local orthonormal frame, then the first two terms on the
right-hand side yield [V X |? and Ric? (X, X) as desired.
Fix a point x € M. As shown in [KTT, Section 3| there exists a local orthonor-
mal frame FEi,...,E, in a neighborhood of z such that Ei,...,E, € T'(E),
Epi1,...,E, € Ty(EY) and (VTE;), = 0 for i = p+1,...,n. If we sum b)
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at x over such a frame, then the last term on the right-hand side vanishes and the

third term reduces to

> or(VEVEX,E) =) X(9r(VEX,E)) = X(divp X) = 0.

We can now finally come to our main result:

Theorem 4.31. Let M be a connected closed oriented manifold endowed with o trans-
versely oriented harmonic Riemannian foliation (F,g). If Ric” is positive semi-definite
everywhere, then every basic harmonic vector field is transverse parallel. If additionally
Ric? is positive definite at one point, then no non-trivial basic harmonic vector fields

exst.

Proof. Let X € trans(F) be a basic harmonic vector field and f := %gT(X,X). By
virtue of Lemma 4.18, Theorem 4.20 and Proposition 4.30:

o:/ ATf-u:/ (]VTX|2+RicT(X,X))'M2/ IVTX]? > 0.
M M M

Therefore |VT X |? vanishes everywhere, meaning X is transverse parallel. Furthermore
also RicT (X, X) vanishes everywhere, so if additionally Ric? is positive definite at one
point, then X vanishes at that point. But then X vanishes everywhere by virtue of
Lemma 4.29. O

Remark 4.32. Note that Theorem 4.31 is indeed a generalization of Theorem 4.2: If F
is the trivial foliation of M by singletons (i.e. the corresponding integrable distribution
E = 0), then transverse orientability of F coincides with ordinary orientability of M,
the Riemannian foliation (F, g) is trivially harmonic and Ric? = Ric. Furthermore basic
harmonic and transverse parallel vector fields are nothing else than ordinary harmonic

and parallel vector fields in this case.

Corollary 4.33. If (M, F,g) are as in Theorem 4.31 and Ric? is positive semi-definite
everywhere, then by(F) < q = codim F. If additionally RicT is positive definite at one
point, then by (F) = 0.

Proof. Theorem 4.23 states that by (F) = dim H%(F). Fix a point & € M and consider
the linear map ’H}B(]—") — T,E+, wx — X,. By virtue of Lemma 4.29 and Theorem 4.31
this map is injective, meaning b (F) < dim T, E+ = ¢. If additionally Ric’ is positive
definite at one point, then Theorem 4.31 even yields by (F) = 0. O

We conclude this section by deriving Corollary 4.9, for which we first need the following

Definition 4.34. A transverse vector field X € tvans(F) is transverse Killing if Lx g = 0.
We denote the vector space of all transverse Killing fields of (F, g) by iso(F).
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Again a transverse vector field X € tvans(F) which is Killing in the usual sense that
Lxg = 0 is also transverse Killing, but the converse is not true. The same argument as
in the proof of Lemma 4.24 shows that X € trans(F) is transverse Killing if and only if
VT X is gp-skew-symmetric. This also demonstrates that every transverse parallel vector

field is transverse Killing. Combining Theorems 4.5 and 4.31 yields the following

Corollary 4.35. If (M, F,g) are as in Theorem 4.31 and RicT vanishes everywhere,
then dimiso(F) = b1 (F).

4.4 Applications to Inhomogeneity

We conclude this thesis by applying Corollary 4.35 to two classes of spaces which natu-
rally satisfy all of the required conditions, namely degenerate 3-(a, 0)-Sasaki and certain

Sasaki-n-Einstein manifolds.

Definition 4.36. A Sasaki manifold M with contact form 7 is called n-FEinstein if its

Ricci curvature tensor satisfies Ric = ag 4 bn ® n for some constants a,b € R.

In order to apply Corollary 4.35 we limit ourselves to those Sasaki manifolds where the
transverse Kihler structure of the characteristic foliation is Ricci-flat, i.e. Calabi-Yau.
In this case the Sasaki manifold is not Einstein in the ordinary sense that Ric = ag
but instead n-Einstein with b # 0 [BG, Theorem 11.1.3]. Examples of Sasaki-n-Einstein
manifolds can be constructed as Boothby-Wang bundles over Calabi-Yau manifolds with

integral K&hler class.

As outlined in Chapter 1, Sasaki and 3-(«, §)-Sasaki manifolds are orientable and their
characteristic foliation is transversely orientable and harmonic ([BG, Proposition 6.3.5],
[AD, Corollary 2.3.1]). Hence Corollary 4.35 takes on the following form:

Corollary 4.37. Let M be a connected closed degenerate 3-(a,0)-Sasaki manifold or
Sasaki-n-Finstein manifold with transverse Calabi- Yau structure. Then the characteristic
foliation F satisfies dimiso(F) = by (F).

Finally we want to make this result more intelligible by clarifying the relationship be-
tween transverse Killing fields and infinitesimal automorphisms: Let M be a connected
closed degenerate 3-(«, d)-Sasaki manifold or Sasaki-n-Einstein manifold with transverse
Calabi-Yau structure, let £ be the integrable distribution spanned by the Reeb vector
field(s) and F the characteristic foliation.

Lemma 4.38. The orthogonal projection of any infinitesimal automorphism to E+ is a

transverse Killing field.

Proof. Let X € aut(M) be an infinitesimal automorphism and let X T, X~ denote its

orthogonal projections to E, E*, respectively. Because X commutes with the Reeb
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vector field(s) it follows that X € fol(F). Since X ' is trivially foliate, we obtain that
X+ =X — XT € fol(F). This implies that (Ly197)(Y,Z) = 0if Y or Z lies in Ty(E).
Furthermore Lxg = 0, since X is Killing and LyxTgr = 0 because gr is a transverse
metric. Hence if both Y, Z € I'y(E1):

(Lxrgr)(Y,Z) = (Lxgr)(Y, Z)
=X(9r(Y,2)) — gr([X,Y], Z) — gr(Y,[X, Z])
=X(9(Y,2)) —9([X,Y],Z2) — g(Y,[X, Z])
= (Lxg)(Y,Z) =0.

O

Therefore 7 : aut(M) — iso(F), X + X' is a well-defined linear map. The kernel of
7 is given by aut(M) N T'(E) which is comprised of all the linear combinations of the
Reeb vector field(s) with constant coefficients (cf. Lemma 3.2). Hence the rank-nullity

theorem and Corollary 4.37 yield:
dim aut(M) = dimim 7 + dimker 7 < dimiso(F) +rk £ = by (F) + rk E.
We have thus arrived at our final two theorems:

Theorem 4.39. Let M be a connected closed degenerate 3-(a,d)-Sasaki manifold with
characteristic foliation F. Then the dimension of the automorphism group Aut(M) is
at most by (F) + 3.

In particular if M arises via Theorem 3.1} as the 3-Boothby-Wang bundle over a compact
hyperkihler manifold N with integral Kihler classes, then dim Aut(M) < b;(N) + 3.

Theorem 4.40. Let M be a connected closed Sasaki-n-Einstein manifold with transverse
Calabi- Yau structure and characteristic foliation F. Then the dimension of the automor-
phism group Aut(M) is at most by (F) + 1.

In particular if M arises as the Boothby- Wang bundle over a compact Calabi- Yau mani-
fold N with integral Kdhler class, then dim Aut(M) < by (V) + 1.

Remark 4.41. Consequently the 3-Boothby-Wang bundle M over a simply connected
compact hyperkihler manifolds with integral Kéhler classes is not only inhomogeneous

but “as far from homogeneous as possible” in the sense that dim Aut(M) = 3.

One might ask if there is even equality dim Aut(M) = by(F) + rk F in the above theo-
rems. This is equivalent to the question if 7 : aut(M) — iso(F) is surjective or if every
transverse Killing field can be extended to an infinitesimal automorphism. In the context
of Sasaki manifolds this problem was further rephrased in [BG, Theorem 8.1.8], where
they obtain that a transverse Killing field X € iso(F) extends to an infinitesimal auto-
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morphism if and only if the basic cohomology class [txdn] € H(F) vanishes. The same
holds for degenerate 3-(«, §)-Sasaki manifolds if the classes [txdn;] vanish for i = 1,2, 3.

In the special case by (F) = 0 this leads to alternative proofs of the above theorems.
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