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Abstract

Models of visual attention have been widely proposed over the last two

decades. Researchers in different disciplines, such as psychology and en-

gineering, are interested in these models in order to understand human per-

ceptual mechanisms and/or build algorithms which mimic the attentional

processes for some applications (e.g. robotics).

In this dissertation I modeled the effect of learning experiences on atten-

tional guidance. The presented model is an algorithmic-level model which

links display inputs to the participants’ reaction times. This dissertation

consists of three studies.

In the first study the role of selection history –as the effect of learning

from the practice phase of the experiment on the main phase– is investi-

gated. I also tested dimension-level (e.g. color and shape) and feature-level

(e.g. blue and red) selection histories. The results showed the version of the

model which includes selection history (on feature-level), beside stimulus-

driven (bottom-up) and goal-driven (top-down) control mechanisms, is best

suited for a quantitative description of the participants’ reaction times.

In the second study, I investigated the importance of intertrial priming

–the effect of a previous trial on the current one– as well as the importance

of each feature map (color, shape or orientation) in the model predictions. It

was shown that by including the effect of intertrial priming a better descrip-

tion of the behavioral database can be achieved. Additionally, excluding any

of the feature maps deteriorates the model predictions.

In the third study I proposed a model to decompose reaction times –into
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decision and sensorimotor components– as a prerequisite of RT modeling.

This study will help us introduce more accurate attention models. Fur-

thermore, it can support cognitive studies to better investigate the effect of

certain factors (e.g. age and mental disorders) on motor system vs. decision

making.

The proposed attention model (in the first and the second study) is one of

the first models that includes the selection history effect on guiding attention.

This model can capture the between-group differences where each group of

participants had a different learning experience. The model considers to-

tal reaction times of each participant. But attention can influence reaction

times by affecting different cognitive processes. The third study introduces

a method which helps us look at each process (and its relevant reaction time

component) independently.
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CHAPTER 1

INTRODUCTION

Attention is so present in any single moment of our daily life that it is hard

to imagine human beings without it. Visual attention, specifically, is one

of the most fundamentals of cognition for all creatures with vision as the

dominant sense (Moore & Zirnsak, 2017). Driving to a bakery, selective visual

attention helps us to navigate, drive safely and finally find our favorite bread

roll among many similar options. This ability to filter whatever is not needed

in order to pay attention to whatever is needed not only gives taste to our life

(selecting a yummy croissant) but also rescues us while driving. But how can

all these complicated processes work while facing a vast variety of sensory

inputs? This topic still has many open questions despite several decades

of experimental studies, theoretical ideation and computational modeling.

In most scenarios, we don’t know what the brain exactly does with these

sensory inputs but since these processes occur over time, one chance has been

measuring the time and analyzing reaction times. For over a century, time

1
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metric has been part of the psychophysical research (Luce, 1986). Naturally

the metric of reaction times has been used to study the topic of attention.

(Nobre & Coull, 2010).

The main motivation of this dissertation was modeling the connection

between sensory inputs and the output –in this case reaction time (RT)

probability distributions– for selective visual attention when different atten-

tional mechanisms are in the game. We successfully modeled this connection

by implementing some well-known attention theories and machine learning

methods. In this chapter, I review the concepts which help the reader to fol-

low the manuscripts and give a general understanding about the dissertation

topic.

1.1 Selective visual attention

Selective visual attention is an ability that allocates brain processing re-

sources to focus on important information of a scene (Zhang & Lin, 2013).

Some important views on how this process works are described in the follow-

ing sections.

1.1.1 Attentional mechanisms

Selective visual attention is defined as an ability to abandon whatever is ir-

relevant to catch the relevant items. Basically, this might happen due to

voluntary intentions (top-down) or uniqueness of a stimulus (bottom-up).

Bottom-up (stimulus-driven) and top-down (goal-driven) mechanisms and

their race for attention capturing have been widely studied. Later selection
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history was introduced as the third category of the attentional mechanisms.

Selection history (Awh, Belopolsky, & Theeuwes, 2012; Theeuwes & Failing,

2020) or prior history (Wolfe & Horowitz, 2017; Wolfe, 2019) is a type of at-

tentional control which comes from previous experience and can be organized

by time scale, from within a trial to lifetime learning (Wolfe, 2021).

In a study Feldmann-Wüstefeld, Uengoer, and Schubö (2015) investigated

selection history effect on attention deployment in four experiments. The re-

sult of this study proved the long term effect of selection history on attention

deployment and also its power to cancel the predominant top-down control.

In this study participants had to do a ‘learning’ task and a ‘search’ task (See

Fig. 1.1). These tasks were mixed in the same block in the first and second

experiment. They were performed in two consequent blocks within one day

in experiment three, and over two days in experiment four. In the learning

task (Fig. 1.1 a), participants categorized either color of the color singleton

(green vs. blue) or shape of the shape singleton (triangle vs. pentagon).

For half of the participants the color and for the other half the shape was

response-relevant. In the search task a new shape singleton (diamond) was

the target. In half of the search trial a color singleton (red) was present as

a distractor (Fig. 1.1 b). The result of the experiments showed the partic-

ipants’ learning experience influenced attention. So, the participants who

categorized color were more distracted by the red color singleton than the

other group of participants. The experiment was carried out in two phases,

a ‘practice’ and a ‘main’ phase. In the practice phase, participants had to

learn either the color or the shape was the response-relevant dimension by

responding to learning trials. In the main phase, search and learning trials
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(a) (b)

Figure 1.1: Experimental displays from (Feldmann-Wüstefeld et al., 2015).
See the text for more information.

were randomly mixed and participants had to respond to both tasks in one

experimental block.

Another well-known form of the history effect is intertrial priming

(Theeuwes & van der Burg, 2011): an attentional bias toward a target feature

which was selected in the very recent past (e.g. last trial). Theeuwes and

van der Burg (2011) indicated that intertrial priming affects the saliency of a

feature within the priority map and thus changes the selection priority. More-

over, Liesefeld, Liesefeld, Pollmann, and Müller (2019) claimed that inter-

trial priming effect is largely dimension-specific rather than feature-specific.

In other words, repeating a specific feature (e.g. blue) can not improve par-

ticipants’ performance beyond repeating the whole feature dimension (e.g.

color dimension) (Liesefeld et al., 2019).

It is commonly believed that the attentional mechanisms (top-down,

bottom-up and selection history) feed into an integrated priority map

(Theeuwes, Bogaerts, & van Moorselaar, 2022). Fig 1.2 depicts this pro-
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Figure 1.2: Schematic of the priority map, adapted from (Theeuwes, 2019).
See also (Klink et al., 2014) for the basic version. The figure depicts how three
maps (the goal-driven (top-up) map in frontal cortex, the stimulus-driven
saliency (bottom-up) map in visual cortex and the history-driven map in the
midbrain) are combined to highlight a stimuli and lead attention toward it.

cess and involved brain regions. A priority map is a winner-take-all neural

mechanism that guides the allocation of covert and overt attention (Awh et

al., 2012; Klink, Jentgens, & Lorteije, 2014). Within this map the mentioned

mechanisms are combined in a weighted manner which determines the selec-

tion priorities (Theeuwes, 2019). The priority map is continuously available

and updated during a task search (Wolfe, 2021).

1.1.2 Attention theories

Feature-based attention:

Feature integrated theory (FIT) is a two-stage, parallel-serial dichotomy on

visual selective attention (Treisman & Gelade, 1980). As one of the most suc-

cessful theories of attention, Treisman’s FIT has been applied in several dis-
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ciplines (e.g. psychology and neuroscience) for the last 40 years (Kristjánsson

& Egeth, 2020; Bichot, Heard, DeGennaro, & Desimone, 2015). In the preat-

tentive stage of FIT, stimulus features such as color, size and orientation

are encoded into feature maps in parallel (see Fig.1.3). In addition to fea-

ture maps, FIT has a master map of locations that indicates which features

are present at each spot of the display. At the second stage of attentive

processing a set of features which are located at a selected position on the

master map are integrated. This integration leads to recognition and local-

ization of the object (Sanders, 1998). The need to attend to objects in order

to recognize them, raises some problems: Firstly, in absence of attention

the features might be floating and then conjunct illusorily (Kristjánsson &

Egeth, 2020). Secondly, it is unclear how many items visual attention can

process in a given short time and how attention is deployed to a target in a

reasonable amount of time (Kristjánsson & Egeth, 2020; Wolfe & Horowitz,

2017). The answer might be that some guidance mechanisms e.g. bottom-up

and top-down combine and guide attention to a subset of available objects

(Wolfe & Horowitz, 2017).

Guided Search 2.0:

The human search engine has both serial and parallel search tasks. While

FIT proposed a dichotomy between parallel and serial search tasks, Wolfe

(1994) suggested that these tasks lie on a continuum with guided search

tasks in the middle. As an example (see Fig. 1.4), if your target is a red ‘T’

which is among some other red and black letters, there is no need to search

through all the letters and you just need to search through red ones. In
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Figure 1.3: Treisman’s feature integration theory. Figure from (Kristjánsson
& Egeth, 2020). See the text for description.

other words, you use the knowledge about the basic features of the target to

guide your attention toward items which have the chance of being the target.

This was called Guided Search (GS) (Wolfe, 2014, 1994). Guided Search 2.0

(Fig. 1.5), the most known version of GS, argued that bottom-up maps can

be modulated by top-down commands. These mechanisms combine –in a

weighted manner– in a priority map and attention is guided to the highest

peak of the priority map. In this process attention does not return to the

distractors by implementing ‘inhibition of return’.
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Figure 1.4: Search tasks (see the discussion in (Wolfe, 2015)). Parallel search
(a): the red item pops out. Serial search (b): if T is the target, a letter by
letter search is required to identify it. Guided search (c): if T is the target,
the search is accelerated if it is known that the target has the color red (a
similar example is depicted and discussed in (Wolfe, 2014)).

Guided search 6.0:

The current version of Guided Search (GS 6.0) is presented as a major update

of GS 2.0. In GS 6.0, Wolfe (2021) claimed that there are two pathways at

work when you guide your attention to your target. One of them is the non-

selective pathway (which brings information like gist and scene properties)

and the other is selective pathway which has a selective bottleneck. Access to

the bottleneck i.e. attentional selection is guided by a priority map (Wolfe,

2021). In GS 6.0 there are five types of guidance which combine preatten-

tively in the priority map: bottom-up, top-down, reward, history and scene

guidance.

1.1.3 Attention models

Bottom-up models of attention:

Bottom-up saliency is the most modeled aspect of visual guidance. A large

number of traditional saliency models (more than 70) are listed in (Koehler,

Guo, Zhang, & Eckstein, 2014) considering their task types (object selection,
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top-
down

bottom-up

Figure 1.5: A schematic representation of Guided Search 2.0 adapted from
(Wolfe, 2021).

free viewing and task-based viewing). In another review, Itti and Borji (2015)

classified many saliency models, based on their biological or mathematical

inspirations, into seven categories such as cognitive models (Itti, Koch, &

Niebur, 1998), information-theoretic models (Bruce & Tsotsos, 2009) and

graphical models (Zhang, Tong, Marks, Shan, & Cottrell, 2008).

Itti’s model (Itti et al., 1998; Itti & Koch, 2000) is one of the most

innovative models which implemented feature integration theory to predict

saliency. This model has three feature maps including color, intensity and

orientation. Within each map just locations, which stand out in their neigh-

borhood, persist. These locations are fed into a master saliency map which

codes the most noticeable locations over the whole visual scene. Finally the

most salient location is found in a winner-take-all manner while the inhibi-

tion of return mechanism guarantees attention going from each attended
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Figure 1.6: Saliency model architecture proposed by Itti and Koch (2000).

saliency to the next. Fig. 1.6 shows a schematic of this model. The model

has been successfully implemented (de Brecht & Saiki, 2006; Veale, Hafed, &

Yoshida, 2017), expanded (Tanner & Itti, 2019; Ramirez-Moreno, Schwartz,

& Ramirez-Villegas, 2013) and reviewed (Koehler et al., 2014) over the last

two decades.

Another state-of-the-art saliency model which is famously known as ‘At-

tention based on Information Maximization (AIM)’ was proposed by Bruce

and Tsotsos (2009). AIM consists of two major parts (Zhang & Lin, 2013).

First, the model is trained on a set of image patches using ICA (Independent

Component Analysis). The patches are randomly sampled from 3600 natu-
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ral images (Bruce, 2008). Second, the saliency at each point of an image is

measured by Shannon’s self-information of that location with respect to its

surrounding context (Kim & Milanfar, 2013).

Both Itti and AIM models are compared in (Koehler et al., 2014) to

discover in which type of tasks human behavior is best predicted by these

saliency models. The results show the models cannot predict human eye

movements in free viewing tasks although these models are successful in

predicting explicit saliency. It seems that even when there is no instruction

(such as free viewing tasks), observers make their own tasks allowing other

attentional controls to come into play (Wolfe & Horowitz, 2017).

Saliency models have made major progress in performance in last decade

thanks to utilizing deep learning algorithms and also the easier access to

large image databases (Borji, 2019). Many researchers believe that deep

neural networks might help us learn more about human visual search, espe-

cially where there is an ambiguity e.g. the role of shape in attention guidance

(Wolfe & Horowitz, 2017). Furthermore, most of the traditional models like

Itti’s model cannot extract higher level features or objects while deep models

have proved their ability in that (Borji, 2019). However, there is still a gap

between human performance and deep models. For instance the models can

not understand the high-level semantics such as action, text and unusuality

in rich scenes (Borji, 2019). Additionally, pre-trained deep neural networks

might not have an acceptable performance on laboratory search task images

(Li, 2022). Fig. 1.7 shows two examples when a trained network (SALICON)

neglects low-level image features although the network is successful in track-

ing high-level features, such as faces. More discussion around this topic can
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Figure 1.7: Deep neural network failure cases. These two examples show
that a deep neural network (in this case SALICON) does not perform well
in tracking local contrast. The bottom row shows predicted saliency maps
by SALICON. The right side and the left side examples are adapted from
(Huang et al., 2015) and (Rahman & Bruce, 2015), respectively.

be found in (Borji, 2019).

Integrated bottom-up and top-down models of attention:

Top-down attention is not modeled as extensively as bottom-up attention

due to its complex nature (Tanner & Itti, 2019) or limitations such as being

influenced by other mechanisms (e.g. intertrial priming (Theeuwes & van der

Burg, 2011)). Nevertheless, it is essential to propose models including more

mechanisms since attention deployment is the result of the competition be-

tween several factors. Consequently, in the last two decades, a vast amount of

presented models focused on including both bottom-up and top-down mech-

anisms (Itti & Borji, 2015). Itti’s bottom-up model was implemented in a

top-down model (Tanner & Itti, 2019) to represent the effect of goal-relevance

information on attention and eye-movement.
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Bayesian models of attention have shown how bottom-up noisy sensory in-

put and top-down priors can be hierarchically integrated by cortical neurons

to reduce uncertainty in guiding attention to a target (Rao, 2005). Under the

assumption that probabilities represent the neurons’ firing rates, Chikkerur,

Serre, Tan, and Poggio (2010) mapped a Bayesian network’s nodes to the

nodes of a biological model to show the role of attention –involving the cor-

tical ventral and dorsal pathways– in answering to ‘what is where’ questions.

Borji and Itti (2013) claimed that these Bayesian models can explain more

complex attention mechanisms over time which gives them good prediction

power. But their drawbacks lie in model complexity, especially when it comes

to training (Borji & Itti, 2013).

1.2 Reaction time

Since using mechanical machines such as Galton’s pendulum (Dodonova &

Dodonov, 2013) to this computer era, reaction time (RT) has been capti-

vating researchers in psychophysical studies. RTs can help us understand

cognitive processes although they need to be used with caution since they

might be influenced by many factors such as fatigue (van den Berg & Neely,

2006), age (Woods, Wyma, Yund, Herron, & Reed, 2015), gender (Dykiert,

Der, Starr, & Deary, 2012), physical activities (Jain, Bansal, Kumar, &

Singh, 2015) or computer hardware and software (Dodonova & Dodonov,

2013). Many ‘simple reaction time’ (SRT) studies have measured the effect

of these factors on observers’ response times. SRT is the time between the

appearance of a known stimulus and receiving the response (e.g. a pressed
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button).

1.2.1 Reaction time distributions

Psychophysical studies mostly only focus on the mean of RT, however the

advantages of analyzing the full distribution has been pointed out by many

researchers. Palmer, Horowitz, Torralba, and Wolfe (2011) mentioned that

mean analyzing –which comes from the assumption of RT normality– might

lead to imprecise conclusions. For example, excluding outliers based on their

distance from the mean in terms of standard deviations might mistakenly

cause the informative part of RTs being removed (RT distributions are not

normal and are skewed to the right side).

Using RT distributions can also be important for modeling purposes –as

it is in the models presented in this thesis. Many studies showed that distri-

butions which have an exponential component (e.g. ex-Gaussian) fit better

on RTs (Palmer et al., 2011). In our studies we tested several distributions

and found the best fit (ex-Gaussian followed by an inverse Gaussian) for our

data. See these two distributions in Fig. 1.8 and compare with Gaussian

distribution in the same figure. More examples can be found in the sec-

ond manuscript. We needed the distribution which best describes our data

because our model predicts the parameters of the data distribution as the

posterior. Below, I review ex-Gaussian and inverse Gaussian distributions.

The second one is also used in the third study to model the decision compo-

nent of RT.
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Figure 1.8: Reaction time distributions: ex-Gaussian (a), inverse Gaussian
(b) and Gaussian (c). These distributions are fitted on the data (from
(Feldmann-Wüstefeld et al., 2015)) by maximizing the log-likelihoods.

Ex-Gaussian distribution:

The ex-Gaussian distribution is a convolution of Gaussian and exponential

distributions, see e.g. (Luce, 1986). It has three parameters: µ, σ and τ

that are the mean and standard deviation of the Gaussian component and

the mean of the exponential component, respectively. The mean and the

variance of this distribution are µ+τ and σ2 + τ 2. Equation (1.1) shows the

probability density function (Moret-Tatay, Gamermann, Navarro-Pardo, &

Castellá, 2018) where erfc is the complementary error function:

f(t) =
1

2τ
e

1
2τ

(2µ+σ2

τ
−2t)erfc(

µ+ σ2

τ
− t√

2σ
) (1.1)
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Figure 1.9: Graphical example of an evidence accumulation model for a two-
alternative forced choice task. It is proven that the first passage time has an
inverse Gaussian distribution (see the text).

Inverse Gaussian distribution:

If RT is the time needed for an evidence accumulation to reach to a fixed

boundary, it is distributed as an inverse Gaussian. See Fig. 1.9.

The first passage time distribution can be obtained by supposing W (t)

is a Wiener process in one dimension with positive drift ν and variance σ2,

and that W (0) = 0. Then T, the time required for W (t) to reach the value

a for the first time, is a random variable with a density function (Folks &

Chhikara, 1978) which is an inverse Gaussian distribution:

f(t;µ, λ) =

√
λ

2πt3
exp

(
−λ(t− µ)2

2µ2t

)
, λ =

a2

σ2
, µ =

a

ν
(1.2)

1.2.2 Reaction time components

It is believed that the total observed reaction time (RT) is the sum of different

time components, e.g. sensory delays, decision making and motor execution
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(S)

Motor component 
(M)

Decision component    
(D)

Total RT = S + D + M

Time

Response

Figure 1.10: Components of reaction time (RT). Total RT is the sum of these
components. The components can still be subdivided into smaller parts. The
components may be overlapped at some points which is not considered in this
figure. This figure is adapted from (Mental chronometry , n.d.).

(see Fig. 1.10). Any of these components can be subdivided further (Luce,

1986). In mental chronometry there have been many efforts to measure each

process separately (Posner, 2005). The assumption that these processes occur

in serial is not convincing because some components may be overlapping

(Luce, 1986). For instance it is conceivable that decision process and motor

components are intertwined (Evans & Wagenmakers, 2020). However, in the

absence of enough evidence most researchers assumed the total RT is the

sum of serial stages. In Ratcliff and Childers (2015)’s drift-diffusion model

the non-decision component –the time that is spent on processes other than

the decision making– happens before and after the decision part. Generally,

how these components combine to yield final RTs’ distributions, has been a

matter of question for several decades. In some older research (Christie &

Luce, 1956; McGill, 1963; Hohle, 1965) it is reported that RT is a convolution

of a Gaussian and an exponentially distributed component (which results

an ex-Gaussian distribution), where one represents the decision time and
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another represents the motor component. The above mentioned authors had

opposite believes about the source of this exponential component: Christie

and Luce (1956) mentioned that decision time is exponentially distributed,

but in contrast McGill (1963) related that to motor response. Schwarz (2001)

proposed that total RT is a convolution of inverse Gaussian (Wald) and an

exponentially distributed component (which results an ex-Wald distribution).

His motivation to use inverse Gaussian was that it models the first passage

time distribution of a random walk (Folks & Chhikara, 1978). Nevertheless,

it has been doubted if an exponential distribution can be applied to either

the decision or the motor component (Palmer et al., 2011).

Dissecting total observed RT into sub-stages enables to determine at

which stage(s) a new factor (e.g., nicotine, sleep deprivation, or Parkinson’s

disease) had its influence (Posner, 2005). Another advantage can be mod-

elling purposes e.g. attention models proposed in the first and the second

study of this dissertation. This was my motivation to perform the third study

when we decomposed RTs into decision and sensorimotor components. For

the details see next chapter and also the manuscripts in appendixes.



CHAPTER 2

SUMMARY OF MANUSCRIPTS

In this chapter I summarize the manuscripts. The complete versions of the

manuscripts are attached to this dissertation in the appendix.

2.1 First Manuscript

Neda Meibodi, Hossein Abbasi, Anna Schubö, & Dominik Endres (2021).

A model of selection history in visual attention. Proceedings of

the Annual Meeting of the Cognitive Science Society, 43. Retrieved from

https://escholarship.org/uc/item/3m33h9h7

In this study I have modeled selective visual attention in presence of

three attentional mechanisms, namely stimulus-driven (bottom-up), goal-

driven (top-down) and selection history. The model links the sensory inputs

to participants’ reaction times. Fig. 2.1 illustrates how the model works.

First, display inputs are encoded into the feature maps at the preattentive

stage. Subsequently, the self-information of each feature map (−log(p(f))

19
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Figure 2.1: Schematic of the model published in the first manuscript
(Meibodi et al., 2021). The blue arrows show the data flow direction. The
grey arrows show the feedback from goal-relevant information and RTs to
the machine learning part of the model (the grey box). Goal-relevant infor-
mation helps the model to guide attention to the target location. ws is the
saliency weight with three elements for color, shape and orientation. wh is
the history map weight. wd is the distribution parameters weight and has
three elements for µ, σ and τ (ex-Gaussian distribution parameters). Bd is
distribution parameters’ prior containing Bµ, Bσ and Bτ .

is computed and yields a saliency map. This method was applied by Bruce

and Tsotsos (2009) in a saliency model. Self-information maximization mea-

sures the local contrast and finds the most informative parts of the input i.e.

surprise. Beside saliency maps, the effect of learning experience is also mod-

elled by creating a ‘history map’ (more information can be found in the next

paragraphs). These maps are integrated into a priority map in a weighted

manner. The weights consist of wh (history weight) and ws (saliency weight)
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as depicted in Fig. 2.1. Attention is guided to a location which has the

highest activation in the priority map. The activation of each map equals

the value of the map multiplied by the weight of the map.

In a Bayesian framework, we assumed that there is a linear mapping

from the integrated priority map to the RT distributions. By means of this

linear mapping the model machine-learns to predict the weights (wh and

ws) and also the RT distribution parameters (Bd) for each participant. We

visualized and quantified the closeness of the model-predicted distribution to

the best-fit distribution for each participants’ RTs. These results prove that

the model predicts the RT distributions parameters (Bd) very accurately.

Importantly, the maps weights (wh and ws) analysis confirmed the history

effect on attention guidance.

The RT database of the first experiment proposed by Feldmann-Wüstefeld

et al. (2015) is used in this study. See the experiment displays in Fig.1.1 and

the text related to that in the previous chapter. The behavioural data of

the main phase is modelled in this study. The model addresses the selection

history as the influence of the practice-phase learning on the main phase of

the experiment. We tested three versions of the model: the first one with

feature-level selection history, the second one with dimensional-level selec-

tion history and the last one without history map. The result of the model

comparison showed that the first model with feature-level selection history

is the best suited one. In this version of the model, history map contains

the response-relevant features in the practice phase (blue and green for the

color group, triangle and pentagon for the shape group). In the second ver-

sion of the model, it is assumed that the participants had learned to predict
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Figure 2.2: Saliency and history maps weights for both the color and shape
groups (Meibodi et al., 2021). These weights are shown with ws and wh in
Fig. 2.1. Note that ws has three elements for color, shape and orientation.
The error bars show the standard errors.

responses on the dimensional level (color or shape) and not on the level of

single features (e.g. green or blue). Consequently, red (for color group par-

ticipants) and diamond (for shape group participants) are also included in

the history map.

The model captures between-group differences by giving different weights

to the maps of the color and shape group participants. See these weights

in Fig. 2.2 of the best version of the model (feature-level selection history).

This figure shows that the ‘history map’ weight is higher in the color group

than in the shape group. This shows that the color group participants had

to rely more on their learning experience to solve the tasks. These partici-

pants learned about colors (blue and green) during the practice phase of the

experiment which is seen (in the model) in the large weight of the history

map. Although these colors are in the ‘color map’ too, there is another color

(red) in this map which needs to be suppressed because it is a task-irrelevant
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feature. This results in a smaller weight of the color map in comparison to

the weight of the history map. In shape group, the color map is close to zero

since this group had to ignore the color singletons in both tasks. Instead,

the shape group focused on the ‘shape map’ which is response-relevant in

both tasks. The weight of the ‘orientation map’ is larger in the color group

than in the shape group, indicating that the color group relied on orientation

saliency to respond to the search task.

The uniqueness of this model is its ability to process three attentional

mechanisms: stimulus-driven, goal-driven and especially selection history

which has not been modelled extensively in previous studies. However, the

intertrial priming effect is not captured in the presented model. Exploring its

influence on the created model was the main motivation of my second study.
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2.2 Second Manuscript

Neda Meibodi, Hossein Abbasi, Anna Schubö, & Dominik Endres (submitted,

2022). Distracted by Previous Experience: Integrating Selection

History, Current Task Demands and Saliency in an Algorithmic

Model.

The motivation of this study was to expand the visual attention model

presented in the first manuscript. Fundamentals of the model, created in

the first study, were not altered. Please see Fig. 2.3 and compare with Fig.

2.1. In this study, the intertrial priming effect (as another form of selection

history) (Theeuwes & van der Burg, 2011) is added to the existing model.

We claim that intertrial priming emphasizes the response-relevant feature

dimension of the last trial on the current one (Theeuwes & Failing, 2020).

For instance, if a blue color singleton is response-relevant in trial (n-1), this

can bias attention toward a different color singleton (e.g. green) in trial (n).

We tested different versions of the model to better understand the influ-

ence of each saliency map on the model. Each version excludes either one

of the color, shape or orientation maps. In order to compare all versions

of the model, we computed a Laplace-approximation (Bishop, 2006) to the

Bayesian model evidence across all participants. The results are shown in

Fig. 2.4. The model comparison results indicated that all maps including

history, color, shape and orientation, as well as the intertrial priming effect

are necessary to reach the best approximation of the RT database.

For the best version of the model (which is called M1 in Fig. 2.4), the map
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Figure 2.3: Schematic of the model published in the second manuscript
(Meibodi et al., 2022). Intertrial priming is added to the model (right side).
wt is the intertrial priming weight and has three elements for color, shape
and orientation.

weights are plotted to show the influence of intertrial priming on the weights.

See these weights in Fig. 2.5 and compare with Fig. 2.2. Two points are very

noticeable on this figure. Firstly, the high reliance of shape group participants

on the shape priming which is explicit since the shape was response-relevant

in both tasks for this group of participants. Secondly, in the color group, the

intertrial priming effect increases the ‘orientation map’ weight and decreases

the ‘shape map’ weight. This might indicate that switching from the search

task (reporting orientation embedded in a shape singleton target) to the

learning task (reporting colors and not shape singletons) is best managed by

lowering the shape feature’s weight and boosting the orientation weight.
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Figure 2.5: Map weights of both the color and the shape groups (Meibodi et
al., 2022). The hatched parts are the intertrial priming weights. Note that
the final weight of each saliency map is a sum of the saliency map weight
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2.3 Third Manuscript

Neda Meibodi, Anna Schubö, & Dominik Endres (2022). Sensorimotor

processes are not a source of much noise: sensorimotor and decision

components of reaction times. Proceedings of the Annual Meeting of the

Cognitive Science Society, 44. Retrieved from https://escholarship.org/

uc/item/1nj6m2n7

The presented model disentangles RT distributions into two main com-

ponents, ‘decision time’ and ‘sensorimotor time’, by using machine learning

methods.

We assumed that the decision component can be viewed as the first pas-

sage time in a Wiener diffusion process. Thus, the distribution of the decision

component is an inverse Gaussian (Schwarz, 2001). The distribution of the

sensorimotor component has no strong theoretical evidence. We therefore

tested Gaussian, gamma or Laplace distributions, mainly because of their

popularity in the literature (Christie & Luce, 1956; Hohle, 1965; Ratcliff &

Tuerlinckx, 2002) and their special shape (i.e. gamma distribution has a

positive support or Laplace has heavier tails). We evaluated which model

assumptions maximize approximate Bayesian model evidence (free energy

(Friston, Kilner, & Harrison, 2006) or evidence lower bound (Bishop, 2006)).

The results show that the version of the model which has Gaussian distri-

bution as a sensorimotor component scores the best. For this version of the

model, Fig. 2.6 visualizes how the subtraction of the sensorimotor compo-

nent from the total RTs can improve the data-fitting of the inverse Gaussian

distribution.

We also modeled the outliers. An outlier is either a very fast or a very

https://escholarship.org/uc/item/1nj6m2n7
https://escholarship.org/uc/item/1nj6m2n7
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Figure 2.6: Inverse Gaussian distributions of a participant’s RTs. The orange
histogram contains the total RTs, red curve is fitted by maximizing log-
likelihood. The green histogram shows the expected decision components
(DC) after subtracting the sensorimotor component (SM). The parameters
of the green distribution are predicted by the model. More examples can be
found in (Meibodi et al., 2021).

slow response. The model assumption is that the outliers are uniformly dis-

tributed. All versions of the model label a very similar proportion of the trials

as outliers, independent of the choice of sensorimotor distribution. More im-

portantly, this outlier labeling is driven by the model assumption and does

not need any additional criteria. Fig. 2.7 illustrates which part of a RT

distribution (for one of the participants) is marked by the model as outliers.

The predicted mean of sensorimotor distribution is in the range of 199.58±

0.37 (ms) which is comparable to the reported mean in several ‘simple reac-

tion time’ experiments (Amini Vishteh, Mirzajani, Jafarzadehpour, & Darvish-

pour, 2019; Jain et al., 2015). Note that the model predicted distributions

are very narrow which was also assumed in (Ratcliff & Childers, 2015).

Identically to the first and second manuscript the RT database of (Feldmann-
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Figure 2.7: Outliers predicted by the model. These outliers are marked in
red. More examples can be found in (Meibodi et al., 2021).

Wüstefeld et al., 2015) was used in this manuscript to optimize our model.



CHAPTER 3

DISCUSSION

Models of visual attention attempt to mimic, explain or predict parts or all

of human visual attentive behavior (Tsotsos & Rothenstein, 2011). These

models can be roughly classified into descriptive (Wolfe, 2021; Treisman &

Gelade, 1980), neurobiological (Parr & Friston, 2017), computational (Bruce

& Tsotsos, 2009) and algorithmic (Koch & Ullman, 1985) models. In gen-

eral, visual attention modeling may have various purposes, such as image

classification (Mnih, Heess, Graves, & Kavukcuoglu, 2014), computer vision

and robotics (Hiruma, Mori, Ito, & Ogata, 2022; Frintrop, 2006) or studying

a specific experimental observation (Meibodi et al., 2021). Consequently,

comparing models does not seem straightforward, fair, or useful so it might

be better to compare some parts of the models which have relevant function-

alities (Tsotsos & Rothenstein, 2011).

In the first and the second studies of this dissertation, I presented an

‘algorithmic model’ of visual attention. According to Tsotsos and Rothen-

30
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stein (2011)’s definition, algorithmic models “provide mathematics and al-

gorithms that govern their performance and as a result present a process by

which attention might be computed and deployed”. In other words, they are

a combination of ‘descriptive’ models and ‘data fitting’. Data fitting models

capture parameter variations in experimental data and show how well the

models fit to the experimental data (Tsotsos & Rothenstein, 2011).

The presented model shows how several attention theories, such as fea-

ture integration theory, work in a united framework to link sensory inputs to

behavioral outputs. The model considers three different attentional factors

–bottom-up (stimulus-driven), top-down (goal-driven) and selection history–

which makes this model more comprehensive than previously reported atten-

tion models. The model successfully predicts the RT distribution parameters

for each participant while weighting the saliency and history maps. The value

of these weights differ based on the participants’ learning history and targets.

Our model is similar to GS 2.0 (Wolfe, 1994) in the way that it describes

attention as a result of bottom-up and top-down activation in the priority

map. Unlike our model, GS is a descriptive presentation of attention and has

not been implemented on an experimental dataset. In the current version

of this model, GS 6.0 (Wolfe, 2021), more attentional factors (reward, scene

information and prior history) are taken into consideration. Clearly, a model

with more mechanisms will give a better chance to move toward future natu-

ralistic models since attention in the real world is influenced by many factors

and not just saliency. We have already built the model composing three fac-

tors. Including more mechanisms in this model requires future experimental

and modeling plans.
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From the model’s limitations to future plans:

1. Although we have learned a lot from lab-designed experiments, this is

the time to move toward semi-naturalistic and naturalistic experiments

and models. To accomplish this, the model must be able to handle the

information which is expected in real –non lab– environments. Firstly,

the model already extracts simple features (color, shape and orienta-

tion) at the preattentive stage which may not be sufficient to cope

with more complex inputs. Secondly, although the proposed model in-

tegrates three attentional factors, a naturalistic model might need to

incorporate more factors, such as the scene structure.

2. One of the model’s assumptions is that the participants’ selection his-

tory comes from a learning-practice phase. Our model captures partic-

ipants’ behavior after this reinforcement learning phase is completed.

Therefore, our model does not include an explicit reinforcement learn-

ing component. This could be an intriguing aspect to further investi-

gate and incorporate into the model.

3. The model is one of the first selection history models, and needs to

be extended in the future by adding more attentional dynamics as-

pects. We need to progress toward a dynamic model in which both the

selection history and the dynamic priority map are updated over time.

4. In this study (see the first and the second manuscript), I modeled total

RT. The relativity of different RT components to different cognitive

processes was not considered. To resolve this shortcoming, we pro-

posed a model (see the third manuscript) which decomposes the total
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observed RT into decision and sensorimotor components. My model

will be useful, not only in updating our attention models, but also

whenever RT components need to be extracted in cognitive RT mod-

eling. This model should be tested on another dataset to see the effect

of the stimuli features (e.g. color or intensity) on the reported mean

and on the shape of the sensorimotor component. As a possible future

plan I am interested in applying the model on datasets from differ-

ent psychophysical studies to see the effect of certain parameters such

as age or disorders e.g. ADHD (Pedersen, Frank, & Biele, 2017) and

Parkinson (Herz, Bogacz, & Brown, 2016; Low, Miller, & Vierck, 2002)

on different RT components.
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Abstract

Attention can be biased by the previous learning and experi-
ence. We present an algorithmic-level model of this bias in vi-
sual attention that predicts quantitatively how bottom-up, top-
down and selection history compete to control attention. In
the model, the output of saliency maps as bottom-up guidance
interacts with a history map that encodes learning effects and
a top-down task control to prioritize visual features. We test
the model on a reaction-time (RT) data set from the experi-
ment presented in (Feldmann-Wüstefeld, Uengoer, & Schubö,
2015). The model accurately predicts parameters of reaction
time distributions from an integrated priority map that is com-
prised of an optimal, weighted combination of separate maps.
Analysis of the weights confirms learning history effects on
attention guidance.
Keywords: Visual attention; Selection history; Integrated pri-
ority map; Self information maximization; Feature integrated
theory; Ex-Gaussian distribution

Introduction
Selective visual attention is a brain function that filters irrel-
evant sensory inputs to facilitate focusing on relevant items.
Bottom-up and top-down mechanisms have traditionally been
proposed to control the process of attention guidance. Object
saliency and environment features shape the attentional pro-
cess in a bottom-up manner while the top-down process is
mostly controlled by observer intentions and preferences.

In addition to top-down and bottom-up contributions also
‘selection history’ can play a significant role in guiding at-
tention toward a specific target (Theeuwes, 2019). Selection
history (as a third category of attentional deployment) comes
into play when an object is emphasized just because of pre-
vious attendance in the same context (Awh, Belopolsky, &
Theeuwes, 2012). To clarify the distinction between top-
down guidance and selection history, Theeuwes argued that
selection history is a fast, effortless, and automatic version of
attention control while top-down selection is slow, effortful,
and controlled (Theeuwes, 2018).

One special form of selection history has been investi-
gated in (Feldmann-Wüstefeld et al., 2015; Kadel, Feldmann-
Wüstefeld, & Schubö, 2017; Henare, Kadel, & Schubö,
2020). These studies combined an associative learning task
with a visual search task. The result showed that observers at-
tend more to a stimulus which was predictive in the preceding
feature discrimination task. Considering to what extent selec-
tion history can be suppressed by top-down process, Kadel et
al. (2017) tested three different top-down-influenced modes

of task preparations such as pretrial task cuing. As their re-
sults showed, attentional biases induced by selection history
persisted despite the task preparation.

An integrated priority map was proposed by Awh et al. as
a theoretical framework to explain how selection history and
other factors of attention guidance interact (Awh et al., 2012;
Theeuwes, 2019). Priority maps have been successfully em-
ployed by many authors (Fecteau & Munoz, 2006; Zelinsky
& Bisley, 2015; Klink, Jentgens, & Lorteije, 2014; Todd &
Manaligod, 2017; Veale, Hafed, & Yoshida, 2017; Chelazzi
et al., 2014) to explain the result of the processes which shape
attention. In a review, Klink et al. (2014) summarized how
goal-driven and stimulus-driven maps in cortex combine with
a value-based map in midbrain. This combination results in a
priority map for the frontal eye fields.

Stimulus-driven (bottom-up) models of attention were de-
veloped early on (Itti, Koch, & Niebur, 1998). These models
tend to ignore the effects of selection history, task or training
(Itti & Borji, 2015). Itti et al. (1998) implemented feature in-
tegration theory (three feature maps including color, intensity
and orientation), winner-take-all, inhibition of return and a
normalization method to model visual attention in a bottom-
up manner. Veale et al. (2017) validated a neural implemen-
tation of Itti’s model. In another bottom-up model, Bruce
and Tsotsos (2006, 2009) –using self information maximiza-
tion (− log(p(x))), where x is a feature – proposed a com-
putational model of saliency that is called ‘Attention based
on Information Maximization (AIM)’, because attention is
attracted by surprising, i.e. potentially informative, regions
of an image. Furthermore, thanks to deep learning advances,
there has been recent progress in deep visual saliency models
(Borji, 2019).

Beside above mentioned models, Itti and Borji (2015) re-
viewed more than 50 computational bottom-up models. They
also reviewed some computational top-down models. Such
models (Navalpakkam & Itti, 2005; Hwang, Higgins, & Pom-
plun, 2009; Borji, Sihite, & Itti, 2014) are less well re-
searched than saliency models, which might be due to the fact
that they require information not available from the stimulus.
There are also some models on how bottom-up and top-down
work together in attentional guidance (Chikkerur, Serre, Tan,
& Poggio, 2010; Kimura et al., 2008). Chikkerur et al. (2010)
used a Bayesian framework to explain how a combination of
bottom-up and top-down attentional guidance work together
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in cortex.
Despite substantial progress in building models of atten-

tion, there are still many open questions. Selection history has
hardly been modeled. One exception is Tseng et al.’s model
of the influence of inter-trial priming – a type of selection his-
tory effect – on attention guidance (Tseng, Glaser, Caddigan,
& Lleras, 2014). They implemented a Ratcliff-type diffusion
model (Ratcliff, 1978) for a 2-forced-choice task and showed
that the history can affect Ratcliff diffusion model parame-
ters.

In this paper we introduce an algorithmic-level model (in
the sense of Marr (1982)) to show how bottom-up, top-down
and selection history compete against each other to guide vi-
sual attention toward a specific target. By selection history
here we mean the effect of learning from previous experi-
ence on the current task (see (Feldmann-Wüstefeld et al.,
2015; Kadel et al., 2017; Henare et al., 2020)). The model
comprises priority maps to integrate goal-driven, saliency-
based and history-related biases in a winner-take-all man-
ner. Bottom-up guidance, feature maps and subsequently
saliency maps are made based on ‘feature integration the-
ory’ (Treisman & Gelade, 1980) and ‘self information max-
imization’ (AIM) (Bruce & Tsotsos, 2009). To reflect the
effect of selection history and learning in the model, a history
map contributes to the integrated priority map. Finally, task-
relevant information controls the map integration weights that
generate predictions for responses and response times. These
integration weights are our model for the top-down influ-
ences. We test this model on a behavioral database from an
experiment by Feldmann-Wüstefeld et al. (2015). The model
can predict the reaction time distribution parameters for each
participant and also across the experimental groups. To find
the best distribution of reaction times, several probability den-
sity functions are compared maximizing log-likelihood and
the best fitting one – an ex-Gaussian distribution (Matzke &
Wagenmakers, 2009)– is used in the model.

Materials and methods
Experiment
The data used in this study comes from the first experiment of
Feldmann-Wüstefeld et al. (2015). They investigated the im-
pact of associative learning on covert selective visual atten-
tion. The experiment consisted of a ‘practice’ and a ‘main’
phase, in which two types of tasks (learning and search)
were performed. A central fixation cross was presented on
the screen, which was then surrounded by eight different el-
ements on an imaginary circle (Figure 1). 28 participants
were divided randomly into 2 different groups, namely ‘color
group’ and ‘shape group’. They were first naive about their
group membership, but had to learn it on a trial and error basis
in the practice phase.

In the ‘practice phase’, participants had to learn that either
color or shape was the response relevant dimension in this
learning task (see Figure 1A). Members of the color group
had to report the color of the color singleton (blue or green),

whereas members of the shape group had to respond to the
shape of the shape singleton (triangle or pentagon). They had
to use their left hands to press one of two buttons that were
placed on the left side of the response pad. Auditory feedback
indicated whether they pressed the incorrect key.

In the ‘main phase’ a second visual search task was added,
and participants performed both tasks in random order. In
the search task (Figure 1B), all participants had to report the
orientation of a line presented inside a diamond shape target.
In half of the trials, a response-irrelevant red circle was pre-
sented as distractor. Participants used their right hand to press
one of two buttons on the right side of the pad to indicate the
line orientation (horizontal versus vertical).

The results of this study showed that the history of selec-
tion acquired in the learning task affected the participants’
performance in the search task. Stimuli that were predictive
of the relevant dimension in the learning task biased atten-
tion in the visual search task. The authors suggested that the
participants’ history of either shape or color selection in the
practice phase had resulted in a selection history bias.

We presented a model of this selection history bias in the
current study based on the behavioral data from the main
phase, which comprises at total of 28672 trials across all par-
ticipants. More details about the experiment can be found in
(Feldmann-Wüstefeld et al., 2015).

The Algorithmic Model
Based on the theoretical considerations outlined in the in-
troduction and a preliminary data analysis, we assembled
an algorithmic-level model to explain how top-down and
bottom-up influences competitively interact with visual se-
lection history to guide attention toward a specific stimulus.
The results of this preliminary analysis, that was aimed at
determining experimental factors influencing responses and
reaction times, are not shown here for space constraints. In-
spired by the integrated priority maps in (Awh et al., 2012),
we used a ‘history map’ reflecting the influence of selection
history on current attention deployment, see Figure 2. Addi-
tionally, there is an overall saliency map for bottom-up influ-
ences. How these maps combine into an integrated priority
map is controlled by the task in a top-down fashion. Fig-

BA

Figure 1: Learning task (A): Participants in the color group
had to respond to the color (green vs. blue) and participants
in the shape group had to respond to the shape (pentagon vs.
triangle). Search task (B): The orientation (horizontal vs. ver-
tical) of the line embedded in the diamond had to be reported.
Distractor-absent trial (left). Distractor-present trial (right).
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ure 2 also shows how the output of the integrated priority map
feeds into a two-part neural network that predicts ex-Gaussian
distribution parameters (Luce, 2008) of reaction times (left
exit path in the figure) and response likelihoods (the right exit
path).

The input stage of the model is based on feature-integration
theory (Treisman & Gelade, 1980). The model extracts three
types of features (color, shape and orientation) and feature
maps –as shown in Figure 2– are computed. In the next pro-
cessing step, saliency maps that model the effect of bottom-
up control on visual attention (Koch & Ullman, 1985) are
formed from the feature maps. Shannon’s measure of Self-
Information is applied, similar to Attention Based on Infor-
mation Maximization (Bruce & Tsotsos, 2009), to compute
saliency maps. Eq (1) and Eq (2) show the actual calcula-
tions behind map computation. Feature maps are M×N×K
vectors where M is the number of trials, N is the number
of objects in each trial and K is the number of distinct val-
ues that each feature can take on, i.e. we are using 1-out-
of-K encoding for the features, with the value 1 indicat-
ing which feature value is present. In the current experi-
ment M = 1024 (for each participants), N = 8 and K = 4.
Figure 3 illustrates the method of building feature maps for
some example trials. For all trials, we take the feature maps
fi for i ∈ {color,shape,orientation} and compute the self-
information Xi:

∀k : Xi[k] =−log
( N

∑
n=1

fi[n][k]/N
)

(1)

which yields the saliency of all trials si[n]:

∀n : si[n] = Xi

[
argmax

k
( fi[n][k])

]
(2)

where, due to the 1-of-K feature encoding, we can use
argmax to pick the self-information corresponding to the cur-
rent feature value.

Saliency maps si are fed into the integrated priority map
along with history information (h) to compete in a soft
winner-take-all model (Theeuwes, 2019) for the predicted re-
sponse target. Selection history, the third category of atten-
tional guidance (Awh et al., 2012), carries the effect of learn-
ing (participants learned about color or shape in our experi-
ment) into the priority map (p):

∀m,n : p[m][n] = softmax
n

(
∑

i

(
wsi ∗ si[m][n]

)

+wh ∗h[m][n]
)

(3)

The weights (wh for history and wsi for i ∈
{color,shape,orientation}) are used to combine the
history map and the saliency maps and reflect the effect of
the task in a top-down manner. The softmax function is
used to ensure that the winning location receives the most

attention while keeping the map interpretable as a probability
distribution. In our model, Eq 3 can be interpreted as the first
layer of a (two-layer) neural network. The second layer is a
(linear) mapping from the integrated priority map to reaction
time distribution parameters:

∀m : d =
N

∑
n=1

(p[m][n]∗wd)+Bd (4)

When w and B are weights and biases of ex-Gaussian distri-
bution parameters’ for d[m] ∈ (µ[m],σ[m],τ[m]).

We also compute a 1-out-of-K representation of the target
information (g[m][n] in Eq 5, see also Figure 3) which is used
for machine-learning the weights with which the history map
and the saliency maps are combined. The weights (wh, wsi

and wd) for a task are determined by maximizing the log of
the joint distribution of the reaction times (RT), the target g
under the distribution predicted by the integrated priority map
and the prior distributions over the model parameters δ:

L =
M

∑
m=1

log
(
ExG

(
RT [m] |µ[m],σ[m],τ[m]

))

+
( M

∑
m=1

N

∑
n=1

log(p[m][n])∗g[m][n]
)
+δ (5)

where ExG is ex-Gaussian distribution function. δ is com-
puted as the sum of the logs of the following prior distribu-
tions:

w∼N (0.0,1.0)
Bµ ∼N (600.0,100.0)

Bσ2 ∼N (75.0,4.0) (6)
Bτ ∼N (200.0,20.0)

Mean and standard deviation of these distributions are se-
lected in a way that matches results from similar experiments
(Feldmann-Wüstefeld et al., 2015; Kadel et al., 2017). To
find the weights and biases that maximize the joint proba-
bility (Eq 5), we draw random initial values from these dis-
tributions and then optimize using Python 3.7.6, PyTorch
1.6.0 and Adam optimizer with learning rate 0.2. Code and
training data for the models can be found here: http://
dx.doi.org/10.17192/fdr/64.2

Results and Discussion
To investigate how selection history quantitatively influences
attentional guidance, three versions of the model with dif-
ferent history maps are tested. In the first version, the his-
tory map contains the response-relevant features in the learn-
ing phase (blue and green for the color group, triangle and
pentagon for the shape group). In the second version of the
model, the history map includes all color singletons (for par-
ticipants in the color group) and all shape singletons (for par-
ticipants in the shape group). The assumption is that the par-
ticipants have learned response-predictiveness on the dimen-
sional level (color or shape), not on the level of single features
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Figure 2: An overview of the algorithmic model. The blue arrows show the direction of data flow from visual input to response
and gray arrows show the direction of feedback. ws,wh and wd are map weights. ws has three elements for color, shape and
orientation. wd has also three elements for distribution parameters(µ,σ,τ). Bd is distribution parameters’ bias containing Bµ,
Bσ and Bτ.

(such as green or blue). So not only blue, green, triangle and
pentagon but also red and diamond are included. In the third
version we exclude the history map from the model testing
the assumption that only top-down and bottom-up guidance
direct attention. To compare these versions of the model,
we use a Laplace-approximation. We compute a second-
order approximation of the marginal log-probability of the
data given the different models’ assumptions. We employ
these log-probabilites for two Bayesian model comparisons
(Bishop, 2006; Barber, 2012; Endres, Chiovetto, & Giese,
2013): fitting one model per participant, and one model per
group. In both cases, a model that includes a history map and
maps for those features that were predictive during the learn-
ing phase is at least 1020 as probable as the alternatives. For
more details about the model evidences see Figure 4.

Under the assumption that there is a linear mapping from
the priority map to the reaction time distribution parameters,
the model machine-learns to predict the history map weight
(wh), saliency map weights (ws) and also the distribution pa-
rameters weights and biases (wd , Bd) (see Figure 2). To com-
pare the weights and also to see how they vary between the
color and the shape group see Figure 5, which shows the
weights for model version one.

As can be seen in Figure 5, the ‘history map’ has a higher
weight in the color group than in the shape group: to solve the
learning task, the color group model has to rely on its learning

history features (blue and green) in half of the trials, i.e. in
the learning task. Although these colors could be found in
the ‘color map’ as well, there is another color (red) in this
map which is task-irrelevant and has to be suppressed. This
may be the reason for the increased attention capture by the
red distractor in color group members which is reported in
(Feldmann-Wüstefeld et al., 2015).

For the search task, a high orientation weight is employed
by the color group model, since this task can be solved by
spotting an orientation singleton, cf. Figure 1, B.

In contrast, the shape group model can afford to rely less
on its ‘history map’ because the items in its history (triangle
and pentagon) exist in the ‘shape map’ too (triangle, pentagon
and diamond), and there is no shape distractor. Therefore, by
using a high shape map weight, both the learning task can
be solved, and attention can be guided to the shape singleton
containing the target in the search task (diamond).

To summarize, the weight of the ‘orientation map’ is larger
in the color group than in the shape group, indicating that the
color group model employs orientation saliency in the search
task. Using orientation saliency, it does not need to attend to
the shape singleton in the search task. However, the shape
group model focuses on the ‘shape map’ which is response-
relevant in both tasks.

Also, the weight of the ‘color map’ was higher in the color
group than in the shape group model, since the latter can ig-
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Figure 3: Feature maps, history map and goal-driven infor-
mation for two random trials. We use 1-out-of-K encoding
for the feature vectors, i.e. all components but one are zero.
The nonzero component indicates the feature value (see the
green box). In each row of history map the location of learned
feature is marked. In the target (goal-driven) information the
location of response-relevant feature is marked.

nore color altogether.
The model approximates the reaction time distribution pa-

rameters (µ,σ,τ) very well (as can be seen in Figure 6). To
quantify how close the model-predicted distributions are to
the best fit to the data, we evaluate an approximation to the
KullbackLeibler (KL) divergence (Bishop, 2006):

KL(p||q) =
∫

p(RT ) log
( p(RT )

q(RT )

)
dRT (7)

≈ 1
M

M

∑
m=1

log p(RTm)−
1
M

M

∑
m=1

logq(RTm)

where RTm is the reaction time in trial m, p(RT) and q(RT) are
model-predicted and best-fit distributions respectively. For
both color and shape group RTs, we find KL(p||q) ≤ 10−4

which is very close to the minimal possible value.

Conclusion
We presented a model of selection history in visual atten-
tion. The model implements the idea that selection history
has a role in attention guidance as claimed by Feldmann-
Wüstefeld et al. (2015). We compared different versions of
the model and the results show that the one which includes
selection history, beside bottom-up and top-down control, is
best suited for a quantitative description of the behavioral
(RT) results. Our model successfully implements an inte-
grated priority map as proposed by Awh et al. (2012). To
determine if this integrated priority map approach is indeed
the best description of human behavior, future research needs
to investigate non-integrated alternatives. Furthermore, as hu-
mans use their attention system in a large variety of situa-
tions, a model of task switching needs to be added, rather

600 500 400 300 200 100 0
model evidence+ 157e+3

Model 3

Model 2

Model 1

Figure 4: Model comparison. We computed a Laplace-
approximation to the Bayesian model evidence across partic-
ipants. Bigger evidence is better. Model version one, whose
history map contains relevant features, scores best. For model
descriptions, see text.
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Figure 5: Map weights. For both color group and shape
group, optimal map weights for model one are shown. A
higher weight means a stronger influence of the correspond-
ing map onto the response and reaction time. The error bars
represent the standard deviations of the posterior, i.e. stan-
dard errors.

than training one model per task. The search for such alter-
natives might be facilitated if we knew what the attentional
system is actually trying to achieve on a quantitative level.
This is a question situated on the ‘computational level’ (Marr,
1982). Therefore, we intend to build a computational model
in a Bayesian/optimal feedback control framework for both
ideal and non-ideal observer-actors. Stochastic evidence ac-
cumulation approaches – that have been applied in some other
models such as Race Models (Mordkoff & Yantis, 1991) and
Drift Diffusion models (Luce, 2008) – might be useful to
this end. Another interesting avenue of investigation, which
would help in constraining the model, would be the addition
of physiological variables. For example, adding EEG sig-
nals to disentangle target and related sub-processes (such as
enhanced target processing or distractor suppression) would
shed further light on attentional guidance processes.
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ange) for participants in (A): color group (CG). (B): shape
group (SG).
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Distracted by Previous Experience:
Integrating Selection History,

Current Task Demands and Saliency
in an Algorithmic Model

Neda Meibodi, Hossein Abbasi, Anna Schubö, and Dominik Endres

Abstract—Attention can be biased by previous learning and
experience. We present an algorithmic-level model of this selec-
tion history bias in visual attention that predicts quantitatively
how stimulus-driven processes, goal-driven control and selection
history compete to control attention. In the model, the output
of saliency maps as stimulus-driven guidance interacts with a
history map that encodes learning effects and a goal-driven
task control to prioritize visual features. We test the model on
a reaction-time (RT) data from a psychophysical experiment.
The model accurately predicts parameters of reaction time
distributions from an integrated priority map that is comprised
of an optimal, weighted combination of separate maps. Analysis
of the weights confirms selection history effects on attention
guidance. The model is able to capture individual differences
between participants. Moreover, we demonstrate that a model
with a reduced set of maps performs worse, indicating that
integrating history, saliency and task information are required for
a quantitative description of human attention. Besides, we show
that adding intertrial priming effect to the model (as another
lingering bias) improves the model’s predictive performance.

Index Terms— Ex-Gaussian distribution, Feature integrated
theory, Integrated priority map, Selection history, Self informa-
tion maximization, Visual attention

I. INTRODUCTION AND RELATED WORK

SELECTIVE visual attention is a brain function that filters
irrelevant sensory inputs to facilitate focusing on relevant

items. Stimulus-driven and goal-driven mechanisms have tra-
ditionally been proposed to control the process of attention
guidance. Object saliency and environment features shape the
attentional process in a stimulus-driven manner while the goal-
driven process is mostly controlled by observer intentions and
preferences.

In addition to goal-driven and stimulus-driven contributions
also ‘selection history’ can play a significant role in guid-
ing attention toward a specific target [1]. Selection history
(as a third mechanism of attentional guidance) comes into
play when an object is emphasized just because of previous
attendance in the same context [2]. To clarify the distinction
between goal-driven guidance and selection history, Theeuwes

Manuscript submitted December 1, 2022. This work was supported by the
DFG SFB-TRR 135 ‘Cardinal Mechanisms of Perception’, project C6 and B3,
and ‘The Adaptive Mind’, funded by the Excellence Program of the Hessian
Ministry for Science and the Arts.
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burg, Gutenbergstraße 18, 35032 Marburg, Germany.
E-mails: {neda.meibodi, hossein.abbasi, anna.schuboe, dominik.endres}@uni-
marburg.de

argued that selection history is a fast, effortless, and automatic
version of attention control while goal-driven selection is slow
and effortful [3]. The term ‘selection history’ includes several
phenomena that can neither be considered as goal-driven nor
as stimulus-driven control, such as lingering effects, statistical
learning, emotional and also reward-based biases [4].

One special form of selection history has been investigated
in [5]–[7]. These studies combined an associative learning task
with a visual search task. The results showed that observers
attended more to a stimulus they experienced as response-
predictive in the preceding feature discrimination task. To
examine to what extent selection history can be suppressed
by goal-driven process, Kadel et al. [6] tested different goal-
driven-influenced modes of task preparations such as pretrial
task cuing. As their results showed, attentional biases induced
by selection history persisted despite task preparation. Their
results show that even with these preparations, selection his-
tory still plays a noticeable role in biasing attention towards
a formerly experienced target. Wolfe and Horowitz [8] men-
tioned that not only the three aforementioned contributions but
also the scene structure and the relative value of the targets
and distractors must be considered in modern visual guidance
theories. In Guided Search 6.0 [9] –the latest version of the
Guided Search model on visual search and selective attention–
these five factors are integrated in a spatial priority map to
guide attention.

An integrated priority map was also proposed by Awh et
al. as a theoretical framework for explaining how selection
history and other factors of attention guidance interact [1],
[2]. Priority map have been successfully employed by many
authors [10]–[15] to explain the result of the processes which
shape attention. In a review, Klink et al. [12] summarized how
goal-driven and stimulus-driven maps in cortex combine with
a value-based map in midbrain. This combination results in a
priority map for the frontal eye fields. Zelinsky and Bisley [11]
speculate about the importance of priority map in relationship
with visual working memory and also with the motor system.
They also higlighted this map as an appropriate construct for
predicting behavior.

Stimulus-driven models of attention were developed early
on [16]. These models tend to ignore the effects of selection
history, task or training [17]. Itti et al. [16] implemented
feature integration theory (three feature maps including color,
intensity and orientation), winner-take-all, inhibition of return
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2

and a normalization method to model visual attention in a
stimulus-driven manner. This model (or its elaborated version
[18]) was subsequently expanded [19], [20]. De Brecht and
Saiki [21] showed how Itti and Koch’s model [18] can be
implemented by neural networks with biologically realistic
dynamics based on data from electrophysiology experiments.
This model was also expanded later by integrating motion
saliency computation [19]. Itti’s stimulus-driven model was
also combined in a goal-driven model [20] to represent the
effect of goal-relevance information on attention or eye-
movement. Veale et al. [14] validated a neural implemen-
tation of Itti’s model. In another stimulus-driven model,
Bruce and Tsotsos [22] – using self information maximization
(− log(p(x))), where x is a feature – proposed a computational
model of saliency that is called ‘Attention based on Informa-
tion Maximization (AIM)’, because attention is attracted by
surprising, i.e. potentially informative, regions of an image.

Most of the models reviewed so far were developed to
explain data from highly controlled experiments with im-
poverished artificial stimuli. However, humans deploy their
attention in uncontrolled natural settings replete with complex
stimuli. Thanks to deep learning advances, there has been
recent progress in deep visual saliency models that can process
complex natural images [23]. DeepGaze II is a saliency model
that predicts where people look using features from a pre-
trained convolutional neural network (VGG-19) and a few lay-
ers on top that are trained to read out saliency [24]. While these
models have near-human performance compared to observers
in front of a screen, they mostly explain saliency effects at
their current state of development. It will be interesting to
include other attentional guidance mechanisms in them, which
go beyond the currently presented scene.

Itti and Borji reviewed more than 50 computational
stimulus-driven models [17]. Computational models that in-
tegrate goal-driven control [25]–[27] are less well researched
than saliency models, likely because they require information
not available in the stimulus. Some models integrate stimulus-
driven and goal-driven signals in attentional guidance [28].
Chikkerur et al. [29] used a Bayesian framework to explain
how a combination of stimulus-driven and goal-driven atten-
tional guidance work together in cortex.

Previous studies showed that attention can be biased more
toward a target feature which was selected in the last trial ( [6],
[30]–[32]). This effect, known as intertrial priming, is one of
the lingering biases attributed to selection history [3]. Selection
history has hardly been modelled despite being a well-known
phenomenon. Tseng et al. [33] implemented a Ratcliff-type
diffusion model [34] for a 2-forced-choice task and showed
that intertrial priming can affect diffusion model parameters.

In this paper we introduce an algorithmic-level or ‘mecha-
nistic’ model (in the sense of Marr [35]) to show how stimulus-
driven processes, goal-driven control and selection history
compete to guide visual attention toward a specific target1. We
operationalize selection history as the effect of training-phase
learning on the test phase (see [5]–[7]). The model comprises

1A preliminary version of this modeling study has been presented at
COGSCI 2021 https://cognitivesciencesociety.org/cogsci-2021/.

a priority map to integrate goal-driven, saliency-based and
history-related biases in a winner-take-all manner. Stimulus-
driven guidance, feature maps and saliency maps are made
based on feature integration theory [36] and self information
maximization [22]. Feature-integration theory, developed by
Treisman and Gelade [36], posits that separable dimensions
(such as shape and color) are processed separately before being
integrated on-demand. Using this theory, the proposed model,
codes the input into three types of features (color, shape and
orientation) and computes a saliency map for each feature
dimension with AIM [22]. The model also incorporates the
effect of intertrial priming which emphasises the response-
relevant feature dimension of the last trial in the current one
[37]. Additionally, a history map contributes to the integrated
priority map to reflect the effect of selection history and
learning in the model. Finally, task-relevant information con-
trols the map integration weights that generate predictions for
responses and response times. These integration weights are
our model for the goal-driven influences. We test this model
on a behavioral database from an experiment by Feldmann-
Wüstefeld et al. [5]. The model can predict the reaction time
distribution parameters for each participant and also across
the experimental groups. To find the best fitted distribution
on reaction times, several probability density functions are
compared minimizing negative log likelihood and the best
fitting one –an ex-Gaussian distribution [38]– is used in the
model.

The rest of the paper is organized as follows: we review
the experiment and explain its details required for a full
understanding of the model. We then compare models that
differ in the information that enters into the integrated priority
map and show that a model with selection history information
–on feature level– performs best. We also show that the
inclusion of intertrial priming variables lead to an increase of
the (approximate) Bayesian model evidence. More information
about data analysis and reaction time distributions can be
found in Appendix A and B.

II. EXPERIMENTAL DATA

The data used in this study comes from the first experiment
of Feldmann-Wüstefeld et al. [5]. They investigated the impact
of associative learning on covert selective visual attention
to examine whether selection history effects generalize from
particular features (e.g., ’blue’ or ’green’) to the entire color
dimension. The experiment consisted of a ‘practice’ and a
‘main’ phase, in which two types of tasks (learning and search)
were performed. A central fixation cross was presented on the
screen, which was then surrounded by eight different elements
on an imaginary circle (Fig. 1). 28 participants were divided
randomly into two different groups, namely ‘color group’
and ‘shape group’. They were first naive about their group
membership, but had to learn it on a trial and error basis in
the practice phase.

In the ‘practice phase’, participants had to learn that either
color or shape was the response-relevant dimension in this
learning task (see Fig. 1.a). Members of the color group had to
report the color of the color singleton (blue or green), whereas
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members of the shape group had to respond to the shape of
the shape singleton (triangle or pentagon). They had to use
their left hand to press one of two buttons that were placed on
the left side of the response pad. Auditory feedback indicated
whether they pressed the incorrect key.

In the ‘main phase’ a second visual search task was added,
and participants performed both tasks in random order. In the
search task (Fig. 1.b), all participants had to search for a shape
target and report the orientation of a line presented inside
the diamond shaped target. In half of the trials, a response-
irrelevant red circle was presented as distractor. Participants
used their right hand to press one of two buttons on the right
side of the pad to indicate the line orientation (horizontal
versus vertical).

The results of this study showed that the history of selection
acquired in the learning task affected the participants’ per-
formance in the search task. Reaction time analysis showed
that responses in distractor-present trials were slower than
in distractor-absent trials, and the distractor cost was larger
in color group participants than in participants in the shape
group. Concurrently recorded EEG signals also suggested that
participants in the color group deployed attention towards the
red color distractor, this was not the case for participants
in the shape group. Accordingly, the authors suggested that
the participants’ history of either shape or color selection
in the practice phase had resulted in a selection history
bias. Feldmann-Wüstefeld et al. had done their study in 4
experiments to examine the influence of task switching. In the
first and the second experiments, learning and search trials
were intermixed. In experiment three, the tasks were presented
block-wise and in the forth one, the tasks were performed on
separate days. The results of all experiments demonstrated the
presence of selection history effect on attention deployment
even when the tasks were done on different days [5]. We
decided to use the intermixed presentation trials to model
the effect of repeating the response-relevant feature dimension
from trial n-1 to trial n along with goal-driven, stimulus-driven
and selection history influences on attentional control.

We developed a model of this selection history bias in the
current study based on the behavioral data from the main
phase, which comprises at total of 28672 trials across all
participants. More details about the experiment can be found
in [5].

(b)(a)

Fig. 1. Experiment displays. Learning task (a): Participants in the color group
had to respond to the color (green vs. blue) and participants in the shape
group had to respond to the shape (pentagon vs. triangle). Search task (b):
The orientation (horizontal vs. vertical) of the line embedded in the diamond
had to be reported in distractor-absent (left) and distractor-present trial (right).

III. THE ALGORITHMIC MODEL

We first determined which trial parameters affect partici-
pants’ RTs by reanalyzing the data from [5]. This served two

purposes: replicated the reported selection history effects with
a different analysis method, and determined relevant variables
for the more detailed model presented later on. The results of
this analysis showed that the group membership – which we
modeled as a history map– and also trial types – which were
coded into saliency maps– both influence RTs. By ‘trial type’
we mean if the trial is either a learning or a search (distractor-
absent, distractor-present) type. For more information about
this analysis, see Appendix A. The analysis also showed that
switching from one task type to another can affect participants’
RTs and that this effect differs between experimental groups
(see Fig. 10). Since the model employs the ex-Gaussian as an
RT distribution, we detail in Appendix B how this distribution
was chosen based on a model comparison.

We assembled an algorithmic-level model to explain how
goal-driven and stimulus-driven influences competitively in-
teract with visual selection history to guide attention toward
a specific stimulus. Inspired by the integrated priority map
in [2], we used a ‘history map’ reflecting the influence of
selection history on current attention deployment, see Fig. 2.
Additionally, there is an overall saliency map for stimulus-
driven influences. How these maps combine into an integrated
priority map is determined by task-dependent weights. Fig.
2 also shows how the output of the integrated priority map
is used to predict ex-Gaussian distribution [39] parameters
of reaction times (left exit path in the figure) and response
likelihoods (the right exit path). Evaluating these response
likelihoods and reaction times against participants’ reaction
times allows us to fit the model to the experimental data, see
(5) below.

The input stage of the model is based on assumptions made
by visual search theories such as feature-integration [36] and
guided search [9]. The model extracts three types of features
(color, shape and orientation) and feature maps –as shown
in Fig. 2– are computed. In the next processing step, saliency
maps that model the effect of stimulus-driven control on visual
attention [40] are formed from the feature maps. Shannon’s
measure of Self-Information is applied, similar to Attention
Based on Information Maximization [22], to compute saliency
maps. Equations (1) and (2) show the actual calculations
behind map computation. Feature maps are M × N × K
vectors where M is the number of trials, N is the number
of objects in each trial and K is the number of distinct
values that each feature can take on, i.e. we are using 1-out-
of-K encoding for the features, with the value 1 indicating
which feature value is present. In the current experiment
M = 1024 (for each participants), N = 8 and K = 4. Fig.
3 illustrates the method of building feature maps for some
example trials. For all trials, we take the feature maps fi
for i ∈ {color, shape, orientation} and compute the self-
information Xi:

∀k : Xi[k] = −log
( N∑

n=1

fi[n][k]/N

)
(1)

which yields the saliency of all trials si[n]:

∀n : si[n] = Xi

[
argmax

k
(fi[n][k])

]
(2)
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Fig. 2. An overview of the algorithmic model. The blue arrows show the direction of data flow from visual input to response and gray arrows show the
direction of feedback.ws, wh, wt and wd are model parameters that weigh how strongly different maps enter into the integrated priority map or the RT
prediction. ws is saliency weight with three elements for color, shape and orientation. wt is intertrial priming weight and also has three elements for color,
shape and orientation. wh is history map weight. wd is distribution parameters weight and has three elements for µ, σ and τ . Bd is distribution parameters’
bias containing Bµ, Bσ and Bτ . The goal-relevant information (on the right side of the figure) helps the model to guide attention to the target location.

where, due to the 1-of-K feature encoding, we can use
argmax to pick the self-information corresponding to the
current feature value.

Saliency maps si are fed into the integrated priority map
along with history information (h) to compete in a soft winner-
take-all model [1] for the predicted response target. Selection
history, the third category of attentional guidance [2], carries
the effect of learning (participants learned about color or
shape in our experiment) into the priority map (p). To model
the priming effect of the last trial on participant’ RT, we
added another parameter (wt) to the model. The parameter wt
includes a weight for each feature dimension and it modulates
the saliency weights when the maps are combined into the
priority map:

∀m,n : p[m][n] = softmax
n

(∑

i

(
(wsi + wti ∗ ti[m])

∗si[m][n]
)
+ wh ∗ h[m][n]

)
(3)

The weights (wh for history and wsi for i ∈
{color, shape, orientation}) are used to combine the history
map and the saliency maps computed from from color, shape
and orientation. These weights reflect the influence of the
content of the respective map on the integrated priority map
for the tasks that the model will be optimized for. In (3) t
is a M × i matrix which carries information from the last
trial: in each row of t, a ‘1’ indicates the feature dimension
which had to be selected by the participants in the last trial

(see Fig. 4). The softmax function is used to ensure that the
winning location receives the most attention while keeping
the map interpretable as a probability distribution.

In our model, (3) can be interpreted as the first layer of
a (two-layer) neural network. The second layer is a (linear)
mapping from the integrated priority map to reaction time
distribution parameters:

∀m : d[m] =
N∑

n=1

(p[m][n] ∗ wd) +Bd (4)

Where w and B are weights and biases of ex-Gaussian
distribution parameters’ d[m] ∈ (µ[m], σ[m], τ [m]) for each
trial m.

We also compute a 1-out-of-K representation of the goal-
relevant information (g in (5)) (see Fig. 3) which is used
for machine-learning the weights with which the history map
and the saliency maps are combined in the priority map.
Psychologically, we can interpret the role of this as combined
guidance of stimulus-driven and history toward the location of
the target.

The weights (wh, ws, wt and wd) for both tasks are
determined by maximizing the log of the joint distribution
of the reaction times (RT), the goal-relevant information (g)
under the distribution predicted by the integrated priority
map (p) and eventually the prior distributions over the model
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Features:

C4 = [1,0,0,0]

S4 = [1,0,0,0]

O4 = [0,1,0,0]

Features:

C3 = [1,0,0,0]

S3 = [0,0,0,1]

O3 = [0,0,0,1]

Color Map: [C1 … C8]

Shape Map: [S1 … S8]

Orientation Map: [O1…O8]

Feature Maps

History Map

0 0 0 0 0 0 1 0
.
.
.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
.
.
.

0 0 1 0 0 0 0 0

History Map

0 0 0 0 1 0 0 0
.
.
.

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0
.
.
.

0 0 0 0 0 0 0 0

Color Group Shape Group

Goal-relevant 

Information

Goal-relevant 

Information

Fig. 3. Feature maps, history map and goal-relevant information for two
random trials. We use 1-out-of-K encoding for the feature vectors, i.e. all
components but one are zero. The nonzero component indicates the feature
value (see the green box). In each row of history map the location of learned
feature is marked. In goal-relevant information the location of response-
relevant feature is marked.

Trial (n)Trial (n – 1)

Shape group                  Color group
Color and shape group

Trial (n – 2)Trial (n – 3)Trial (n – 4)

Fig. 4. Intertrial priming. The priming effect in our model is depicted by solid
lines for shape, and dashed lines for color. Attending a particular feature (e.g.
triangle shape in trial n-4) primes shape dimension attention in the next trial,
here: pentagon in trial n-3. Likewise for color dimension. Line orientation
priming is possible too, shown for trial n-2→ trial n-1 (upper orange arrow).
Note that shape priming is possible in the color group too if two search trials
follow each other (lower orange arrow).

parameters δ:

L =

M∑

m=1

log
(
ExG

(
RT [m] |µ[m], σ[m], τ [m]

))

+
M∑

m=1

N∑

n=1

(
log p[m][n] ∗ g[m][n]

)
+ δ

where ExG is the ex-Gaussian density function. δ is computed
as the sum of the logs of the following prior distributions on
the parameters:

w ∼ N (0.0, 1.0)

Bµ ∼ N (600.0, 100.0)

Bσ2 ∼ N (75.0, 4.0) (5)
Bτ ∼ N (200.0, 20.0)

Mean and standard deviation of the last three distributions are
selected in a way that matches results from similar experiments
[5], [6]. To find the weights and biases that maximize the
joint probability (5), we draw random initial values from these
distributions and then optimize using Python 3.8.8, PyTorch
1.8.1 and Adam optimizer with learning rate 0.1.

IV. RESULTS AND DISCUSSION

To investigate how selection history and saliency maps
quantitatively predict attentional guidance, we tested seven
versions of the model. In the first model (M1 in Fig. 5),
the history map contains the response-relevant features of the
learning phase (blue and green for the color group, triangle
and pentagon for the shape group). This model is used as
the basis for models M2 to M7, which are altered versions
thereof. In M2 the history map includes all color singletons
(for participants in the color group) and all shape singletons
(for participants in the shape group). Here, the assumption
is that the participants have learned response-predictiveness
on the dimensional level (color or shape), not on the level
of single features (such as green or blue). So not only blue,
green, triangle and pentagon but also red and diamond are
included. In M3, priming information from previous trials is
removed from the model. In M4, we exclude the history map
from the model testing the assumption that only goal-driven
and stimulus-driven guidance direct attention. In M5, M6 and
M7, shape, color and orientation maps are removed to see if
all saliency maps are needed to explain the experimental data.
To compare these versions of the model, we use a Laplace-
approximation to the Bayesian model evidence. We compute a
second-order approximation of the marginal log-probability of
the data given the different models’ assumptions. We employ
these log-probabilities for two sets of model comparisons
[41]–[43]: fitting one model per participant, and one model
per group. In both cases, comparison shows M1 being the
most probable, which includes saliency maps, a history map
with the features that were predictable during learning and
also the effect of the last trial on the current one (as the
intertrial priming effect). This model is at least 1020 times
more probable than the alternatives. For more details about
the model evidences see Fig. 5.

Under the assumption that there is at least an approximately
linear mapping from the priority map to the reaction time
distribution parameters, the model machine-learns to predict
the history map weight (wh), saliency map weights (ws), inter-
trial priming weights (wt) and also the distribution parameters
weights and biases (wd, Bd) (see Fig. 2). A comparison of the
learned weights and their differences between the color group
and the shape group is shown in Fig. 6. As one might expect,
the color weight is higher in the color group, whereas the shape
weight dominates in the shape group. This leads to a stronger
influence of the respective saliency map on the contents of
the integrated priority map, which is shown in Fig. 7 for a
distractor-present trial. In other words, while we assume that
saliency is a property of the physical stimulus statistics, the
weight with which saliency enters into the integrated priority
map can be varied by (learnable) task demands. In Fig. 7 the
individual map acivations and their weighted combinations are
shown in color coding. The color group model’s attention is
strongly drawn towards the (red) color distractor. In contrast,
the shape group model prioritizes the correct target location.

As Fig. 6 shows, the ‘history map’ has a higher weight
(wh) in the color group than in the shape group: to solve the
learning task, the color group model has to rely on the colors
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Fig. 5. Model comparison. We computed a Laplace-approximation to the
Bayesian model evidence across all participants. The evidences are plotted
relative to M7 (the least probable model). Bigger evidence is better. M1,
which is called the main model, contains the saliency maps, intertrial priming
effect and the history map on response-relevant features. This model scores
best. For models descriptions, see the text.
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Fig. 6. Map weights. For both color group and shape group, optimal map
weights for the first model are shown. A higher weight means a stronger
influence of the corresponding map onto the response and reaction time. The
hatched parts are the weights modulations by the intertrial priming. Note that
the final weight of each saliency map is a sum over the map weight and the
priming weight, see (3) and also Fig. 2. Priming modulations on color maps
are very small (close to zero) and can be hardly seen. Priming modulation on
shape map in color group is negative. The error bars represent the standard
deviations of the posterior, i.e. standard errors.

(blue and green) encountered during the practice phase which
is reflected in the large weight of the history map. Although
these colors could be found in the ‘color map’ as well, there
is another color (red) in this map which is task-irrelevant and
has to be suppressed, hence the smaller weight of the color
map. This is the reason for the increased attention capture by
the red distractor in color group members which is reported in
[5]. In other words, the presence of a color distractor leads to
a down-weighting of dimensional color saliency in favor of a
feature-level color representation. For the search task, a high
orientation weight is employed by the color group model, since
this task can be solved by spotting an orientation singleton.

In contrast, the shape group model can afford to rely mostly
on the ‘shape map’, because the items in its history (triangle
and pentagon) exist in the ‘shape map’ too (triangle, pentagon
and diamond), and there is no shape distractor. Therefore, by
using a high shape map weight, both the learning task can
be solved and attention can be guided to the shape singleton
containing the target in the search task (diamond).

To summarize, the weight of the ‘orientation map’ is larger
in the color group than in the shape group, indicating that the

color group model relies on orientation saliency in the search
task. However, the shape group model focuses on the ‘shape
map’ which is response-relevant in both tasks. Also, the weight
of the ‘color map’ was higher in the color group than in the
shape group model, since the latter group can ignore color
altogether.

All versions of the model except M3 can capture intertrial
priming. To see how intertrial priming effect is defined in
our model please see Fig.4. Our assumption is that intertrial
priming is dimension-specific rather than feature-specific. This
is also claimed by Liesefeld et al. [44]. In our model, intertrial
priming has three weights (wt) for color, shape and orientation
priming. See also (3) and the hatched parts in Fig.6. In the
color group the modulatory effect of intertrial priming causes
an increased orientation map weight and also a reduction of
the shape map weight. The former indicates that the generally
high reliance of a color group model on orientation during a
search task is amplified during repetition of search task trials.
The latter might represent task switching: switching from the
search task (reporting orientation embedded in a shape single-
ton target) to the learning task (reporting colors and not shape
singletons) is best accomplished by down-weighting shape
features temporarily. Interestingly, for color group participants,
there is no priming-driven weight modulation of color map.
Irrespective of the previous trial’s type, a color group model
relies more on the history map than on the color map to
ignore the red distractor. In our opinion, this rules out the
alternative hypothesis that longer response times in the color
group are induced by task switching efforts only, and not by
selection history and the need to suppress the red distractor.
This is in agreement with the results of experiments 3 and 4
reported in [5]. In both of these task variants, learning and
search task were separated, either block-wise, or by asking
participants to perform the tasks on separate days. Search
performance of the color group, however, was still affected
by their prior selections in the learning task, even though
participants now performed only search tasks trials, and task
switching no longer occurred.

The model approximates the reaction time distribution pa-
rameters (µ, σ, τ ) very well (as can be seen in Fig. 8). To
quantify how close the model-predicted distributions are to
the best fit to the data, we evaluate an approximation to the
Kullback–Leibler (KL) divergence [41]:

KL(p||q) =
∫
p(RT ) log

(p(RT )
q(RT )

)
dRT (6)

≈ 1

M

M∑

m=1

log p(RTm)− 1

M

M∑

m=1

log q(RTm)

where RTm is the reaction time in trial m, p(RT) and q(RT)
are model-predicted and best-fit distributions respectively. For
both color and shape group RTs, we find KL(p||q) ≤ 10−4

which is very close to the minimal possible value of zero.

V. CONCLUSION

The presented model shows how saliency, selection history
and goal-driven demands collaborate in guiding visual atten-
tion. The model implements the idea that selection history
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Fig. 7. Map activations in distractor-present search task trials for a color group (a) and a shape group (b) participant model. To visualize these activations
the weighted value of each map is used as a color code: ((wsi +wti ) ∗ si) for each saliency map (i) and (wh ∗ h) for history map. See Fig. 2 for variable
names. Warmer colors indicate higher activations. Individual weighted map activations are integrated in the final priority map and attention is guided to the
location with the highest feature activity. See (3) for a computational description.

(a)

(b)

Fig. 8. Ex-Gaussian distributions of reaction times. Best fits to the data (red)
and model predicted distributions (green) for participants in the color group.
Shape group model predictions fit comparably well.

plays an important role in attention guidance as claimed
in [5]. We compared different versions of the model and
the results show that the one which includes selection his-
tory (long–learned selection preferences and also intertrial
priming), beside stimulus-driven and goal-driven control, is
best suited for a quantitative description of the behavioral
(RT) results. This paper is our first effort to model selection
history as an attentional mechanism. To make the model
more comprehensive, we plan the following future steps: since
previous experiments on selection history effects were done
with impoverished stimuli and simple participant responses,
we planned to run an experiment in natural or semi-natural
(virtual reality) environments. The data obtained in richer
environments will likely require an extension of the model, in
particular with respect to stimulus representation and response
capability. Second, our model successfully implements an
integrated priority map [2], [45]. To determine if this integrated
priority map approach is indeed the best description of human
behaviour, future research needs to investigate non-integrated
alternatives. The search for such alternatives might be facili-
tated if we knew what the attentional system is actually trying
to achieve on a quantitative level. This is a question situated
on the ‘computational level’ [35]. Therefore, we intend to
build a computational model in a Bayesian/optimal feedback
control framework for both ideal and non-ideal observer-
actors. Stochastic evidence accumulation approaches – that

have been applied in some other models such as Race Models
[46] and Drift Diffusion models [39] – might be useful to
this end. Besides, to have dynamical version of the model, we
are building a dynamical priority map which is updating over
time. Importantly, our model does not yet include an explicit
reinforcement learning component. Participants did learn the
tasks from negative reinforcement only. Our model captures
participants’ behaviour after this reinforcement learning phase
is completed, which was determined by a high enough perfor-
mance level (see [5]). We agree that it would be interesting to
model this first phase in future work, too. Another interesting
avenue of investigation, which would help in constraining the
model, would be the addition of physiological variables. For
example, adding EEG signals to disentangle processes of target
selection and distractor suppression would shed further light
on attentional guidance processes.

APPENDIX A
STATISTICAL ANALYSIS OF REACTION TIMES

We analyzed reaction times (RT) binarized at their grand
(population) mean across all trial types and participants. While
this is a fairly coarse analysis, it should reveal strong effects of
experimental manipulations. Thus, we model the probabilistic
dependence of these binarized times on different variables
with Bayesian networks. The variables we consider are group
membership, trial type or both. By group membership we
mean either ‘color group (CG)’ or ‘shape group (SG)’, i.e.
whether participants had to categorize either color or shape
singletons in the practice phase of the experiment.

Evaluating a network with both trial type and group mem-
bership as conditioners of reaction time, one can see the
joint effect, (see Fig. 9.a and 9.b). Although both groups are
slower in distractor-present trials, color group participants are
less probable to have reaction times smaller than the grand
mean. This may be a selection history effect: these participants
learned to respond to color, and they are consequently more
distracted by a color distractor.

To see how ‘intertrial priming effect’ is reflected in behav-
ioral data, we conducted another analysis (see Fig. 10). Here,
we wanted to know if switching from one trial to another
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Fig. 9. Reaction time analysis. The Bayesian network shows the tested
dependencies between experimental variables (group membership and trial
types) and reaction times. The bar chart shows the probability of having a
reaction time less than the grand mean. Error bars represent the standard
error of the mean. Trial type has a strong effect on reaction time. Color
group participants are more distracted by a color singleton than shape group
members.

impacts the probability of having RT less than mean and
additionally if this impact differs between groups. As the bar
charts in (Fig. 10.b) show, participants are faster when the trial
type is duplicated (i.e., the current trial (trial n) is the same as
the last one (trial n-1)). Switching between learning and search
trials always causes delays in responding and it is especially
noticeable in distractor-present trials when the last trial is a
learning trial. Considering the group membership as another
RT conditioner, we see that the above mentioned observation is
more pronounced in color group (see bar charts in Fig. 10.b):

P (RT ≤ mean| Tn = distr. pres., Tn−1 = learn., (7)
| group memb. = CG) = 0.29

where N is the number of trials in these condition and T is trial
type. This probability is 0.35 for shape group. These reduced
probabilities might be due to attending the distractor in both
groups. However, the reduction is stronger in the color group,
where the (color) selection history is activated by the previous
(Tn−1) learning trial. In other words, responding to the color
in a learning trial increases the chance of being distracted
by the red distractor in the subsequent search trial, and thus
responding to a shape singleton takes longer.

APPENDIX B
REACTION TIME DISTRIBUTION

Reaction time measurements have been widely employed
in psychological experiments to analyze behavioral responses
to well-defined tasks. Psychologists agree that there are three
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Trial Type
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Trial Type 
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Group 
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(b)
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distractor-absent                 

CG SG
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learning                

Group Membership / Current Trial(trial n)
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Fig. 10. Reaction time analysis after adding intertrial priming variables : a) the
network models dependencies between RT, trial types and group membership.
N is the number of trials, trial n is the current trial and trial n-1 is the previous
trial. b) the probability of having RT less than or equal to the grand mean is
shown on the bar-charts based on the group membership, current trial type
and last trial type. RT probability reduction (mean RT increase) is particularly
strong for color group members when a learning trial is followed by a
distractor-present trial, possibly because their selection history is activated.
Error bars represent the standard error of the mean.

main types of reaction times: simple reaction times, recogni-
tion reaction times, choice reaction times and also some more
forms such as discrimination reaction times and decision reac-
tion times that come from combining varieties of experimental
tasks [47].
Many distributions have been used to describe RT in neu-
rocognitive and psychological research. In [48], the Gamma
distribution is used to model PEBL (Psychology Experiment
Building Language) Go/No-Go tests, with the primary moti-
vation that RTs can be modeled better with a right-skewed
distribution. In another study, inverse Gaussian (Wald) is used
in a theoretical analysis of psychophysical parameters in a
2AFC design [49] with the assumption that if RT is the time
needed for an evidence accumulation to reach a fixed boundary
–similar to Brownian diffusion process– it is distributed as an
inverse Gaussian. Another popular distribution is the Recinor-
mal [50] which is introduced in LATER model to describe
psychological decision making processes [51], [52].

We tried to find the best fitting distribution model for the
reaction times in our data by testing the following distribution
types against each other by approximate Bayesian model
comparison: Gaussian, Gamma, inverse Gamma, inverse Gaus-
sian, Recinormal and exponential Gaussian(ex-Gaussian). We
fitted the distributions on each participant’s RT and also on
aggregates defined by group memberships and trial types. We
then compared the negative log likelihoods, which showed that
the best fit is achieved with an ex-Gaussian. For illustration,
Fig. 11 shows the different densities (red lines) fitted to one
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Fig. 11. Distribution functions fitted on RT datasets for a random participant.
Ex-Gaussian fits best.
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Fig. 12. Distribution comparison using -log likelihood score, lower is better.
Distributions are fitted on individual participants data and on group-based
data (all color group participants and all shape group participants). The best
distribution is Ex-Gaussian, followed by inverse Gaussian.

of the participant’s RT data (histograms) . Visual inspection
indicates that the ex-Gaussian provides the best fit. For a
quantitative comparison we computed each distribution’s pa-
rameters that minimized the sum of negative log likelihood
scores (participants-based and also group-based). These scores
are depicted in Fig. 12 , lower is better. The best fits are ex-
Gaussian and inverse Gaussian models respectively. To fit the
distributions on data we used Python 3.8.8 and PyTorch 1.8.1.

The ex-Gaussian distribution is a convolution of Gaussian
and exponential distributions, see e.g. [39]. It has three pa-
rameters: µ, σ and τ that are the mean and standard deviation
of the Gaussian component and the mean of the exponential
component, respectively. The mean and the variance of this
distribution are µ+τ and σ2 + τ2.

Response times are not distributed normally [53]. Because
of their long tail on the right, RT distributions might have
an exponential component. Christie and Luce [54] and also
McGill [55] therefore proposed that RT distributions are a con-
volution of two components. For an ex-Gaussian distribution
to arise, one of them has to have an exponential distribution.
The above mentioned authors had opposite believes about
the source of this exponential component: Christie and Luce
mentioned that decision time is exponentially distributed but
McGill related that to movement response. Hohle [56] also

tried to show that the RT distribution is a convolution of a
normal and exponential components by auditory RT experi-
ments.
The ex-Gaussian has been popular recently in psychological
research. In [57] several distributions are fitted on behavioral
data of three visual search tasks. The best fits all have an
exponential component and the ex-Gaussian is one of those.
Ex-Gaussian parameters can even be useful in evaluating
attention disorders [58], [59]. More research on ex-Gaussian
parameters analysis can be found in [60], [61].
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Abstract

Statistical descriptions of reaction times are central compo-
nents of quantitative attention models. It is often assumed
that total reaction time is comprised of various components,
e.g. sensory delays, decision making and motor execution con-
tributions. We use machine learning to decompose observed
total reaction times into sensorimotor and decision compo-
nents, and evaluate which model assumptions maximize ap-
proximate Bayesian model evidence (free energy or evidence
lower bound). We find that an inverse Gaussian decision time
distribution combined with a very narrow Gaussian sensorimo-
tor distribution can best explain human reaction time data. We
also model outliers explicitly by a uniform background dis-
tribution. We find that the model assigns a small fraction of
datapoints to this outlier distribution.

Keywords: Decision component; Expectation maximization;
Free energy; Inverse Gaussian; Mixture models; Reaction
time; Sensorimotor component; Visual attention.

Introduction
Reaction time has been widely used as a measure of cognitive
processes, e.g. in attention research. It is believed that total
observed reaction time (RT) is a sum of different time compo-
nents. As Luce (1986) mentioned at least five processes may
contribute to a total reaction time: physical input transduction
into neural spikes, spike transmission to the brain, signal pro-
cessing and motor programming for the target muscle group
(we call this part decision time), signal transmission to the
muscles and eventually muscle contraction. As it is hard to
observe all these components separately, we stack them all –
except decision time – and call them the sensorimotor com-
ponent of reaction time. This component is commonly called
residual latency (Luce, 1986) or non-decision time (Ratcliff
& Tuerlinckx, 2002). During the last decades, there have been
many proposals and investigations on how these components
combine to yield the final RT distributions.

In some older research (Christie & Luce, 1956; Hohle,
1965), it is reported that RT is a sum of a Gaussian and a ex-
ponentially distributed component, where one represents the
decision time and another represents the motor component.
Consequently, the Ex-Gaussian distribution, which results
from convolving these two distributions has been used for
modelling RT distributions and cognitive processes (Ratcliff,
1978; Hohle, 1965; Fitousi, 2020; Meibodi, Abbasi, Schubö,
& Endres, 2021b) and also psychological disorders (Hwang-
Gu et al., 2019). Meibodi et al. (2021b) proposed a model

of visual attention which predicts parameters of RT distri-
butions. In that study, an analysis of RTs showed that the
ex-Gaussian is a better descriptor than other commonly used
distributions, followed by an inverse Gaussian (Meibodi, Ab-
basi, Schubö, & Endres, 2021a). The authors of that study
modelled total RTs without considering a decomposition into
separate components, we would like to remedy this shortcom-
ing here. However, the ex-Gaussian has several features that
are theoretically not convincing (Schwarz, 2001): first, the
Gaussian component has been linked to either the decision or
the motor process. Since both processes must take a positive
amount of time, a (wide) Gaussian is not a plausible distribu-
tion. Second, there is no compelling connection between the
distribution parameters and theoretical accounts of the ori-
gin of reaction times. Third, the hazard function of the ex-
Gaussian is increasing although the best descriptive RT dis-
tributions have been reported to have peaked hazard functions
(Maddox, Ashby, & Gottlob, 1998).

To address these issues, Schwarz (2001) proposed the ex-
Wald distribution for RTs, which is a convolution of an in-
verse Gaussian with an exponential. Here, the inverse Gaus-
sian describes the decision time, whereas the non-decision
component is distributed exponentially (Palmer, Horowitz,
Torralba, & Wolfe, 2011). One appealing feature of the
ex-Wald is the inverse Gaussian component which models
the first passage time distribution of a random walk (Folks
& Chhikara, 1978). Such random walks describe quasi-
Bayesian sensory evidence accumulation, or drift-diffusion
processes. On the other hand, the claim that non-decision
time has an exponential distribution seems unjustified. Al-
though the exponential component is commonly interpreted
as the effect of a residual process, there are some controver-
sial opinions mentioning that the exponential effect on RT
distribution just reflects the search process in visual search
tasks (Horowitz & Wolfe, 2003; Palmer et al., 2011).

In (Ratcliff & Tuerlinckx, 2002)’s drift diffusion model
(DDM), the parameter Ter denotes the time that is spent on
processes other than the decision making – such as stim-
ulus encoding, response output and memory access. The
parameter has variability to correct the model fits on dif-
ferent data sets under variety of conditions. In this model
non-decision time is uniformly distributed (Ratcliff & Tuer-
linckx, 2002; Hawkins, Forstmann, Wagenmakers, Ratcliff,
& Brown, 2015) although it is mentioned that the true dis-
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tribution might be normal (Wiecki, Sofer, & Frank, 2013) or
skewed. Ratcliff claimed that the shape of the reaction time
distribution is primarily determined by the shape of the de-
cision component and the precise shape of the non-decision
distribution has a small effect on that as the former has a
very large standard deviation (Ratcliff & Tuerlinckx, 2002;
Ratcliff & Smith, 2004; Ratcliff, 2006; Ratcliff & McK-
oon, 2008; Ratcliff & Childers, 2015). One drawback of that
model is that the non-decision component happens before and
after decision part (Ratcliff & McKoon, 2008) although the
result of some studies indicated that these component are in-
tertwined (Evans & Wagenmakers, 2020).

The mean of the non-decision time reported in DDM is
about 300 ms with a standard deviation in range 3 to 10
(Ratcliff & Tuerlinckx, 2002). The reported range of non-
decision time might differ in other studies based on the ex-
periment, apparatus or participants’ attributes. Using sim-
ple reaction time (SRT) experiments, previous research has
tried to determine how response delay is influenced by fea-
tures such as: colour of stimuli (Amini Vishteh, Mirzajani, Ja-
farzadehpour, & Darvishpour, 2019), participants’ age (Jain,
Bansal, Kumar, & Singh, 2015; Woods, Wyma, Yund, Her-
ron, & Reed, 2015), gender (Dykiert, Der, Starr, & Deary,
2012; Jain et al., 2015), physical activities (Jain et al., 2015)
or computer hardware and software (Dodonova & Dodonov,
2013). In a typical SRT study, participants have to press a
key as soon as they see the stimulus on the screen (Ulrich &
Stapf, 1984). We therefore assume that a SRT contains only a
very short decision component and that it is dominated by the
sensory and motor processing times. Hence, a SRT approxi-
mates the part of a RT which we call the SM component. See
Table 1 for an overview of the reported results.

The importance of good RT distribution models is their ap-
plicability to statistical analysis and to the modelling of cog-
nitive psychological processes. Most psychologists are in-
terested in decision component of RT and look at the rest
of it (commonly called residual latency) as a nuisance vari-
able that should be subtracted from RT (Luce, 1986). How-
ever, in addition to decision component analysis, looking at
residual latency is also informative. For instance the result of
Pedersen, Frank, and Biele (2017) showed that longer RTs in
medicated ADHD participants arose because of a strong in-
crease in their non-decision (residual latency) time. Ratcliff,
Thapar, and McKoon (2001) found that in some tasks, slower
responses of older participants can also be the effect of longer
non-decision time.

In this paper we try to disentangle the components of RTs
and to recognize outlier responses using a machine learn-
ing approach derived from free energy minimization (Friston,
Kilner, & Harrison, 2006). We do this with the aim of mak-
ing attention models, e.g. the one presented by Meibodi et al.
(2021b) more interpretable in terms of the underlying psy-
chological processes. We investigate several proposals for
the distribution of the SM component: Gaussian, gamma and
Laplace. Our motivation for testing the Gaussian distribu-

tion is its popularity in previous research, e.g. Christie and
Luce (1956); Hohle (1965); Ratcliff and Tuerlinckx (2002)
as discussed above. The Laplace distribution has heavier tails
rather than the Gaussian and might therefore be less sensitive
to extreme SM variations. Both distributions are supported
on R and assign non-zero probability to negative SM compo-
nents, which is implausible. We therefore experimented with
the gamma distribution that has a positive support. Further-
more, since motor output is driven by neuronal spiking ac-
tivity, its timing would be determined by spike arrival at the
neuromuscular synapses. The gamma distribution has been
used before to model inter-spike intervals (Ostojic, 2011). In
the next section, we will describe the models, followed by a
short description of the database used for learning. We then
present model comparison results, which indicate that an in-
verse Gaussian decision time distribution combined with a
very narrow Gaussian sensorimotor distribution can best ex-
plain human reaction time data. We also model outliers ex-
plicitly by a uniform background distribution. We find that
the model assigns only a small fraction of datapoints to this
outlier distribution. Finally, we discuss the implications of
our findings.

Methods
We model an RTs as mixtures of two models (M = 0 and
M = 1) as shown in Figure 1. If M = 1 (the response model),
then an RT has two components, namely ‘decision’ and ‘sen-
sorimotor (SM)’. If M = 0, then the RT is assumed to be an
outlier which is drawn from a uniform distribution in range
(0, tmax), i.e. an outlier response has no relationship to the
task other than its occurrence before the trial’s end at tmax. In
this case, all we know about the response is that it may hap-
pen at any time point in [tmin, tmax], which is captured by the
uniform distribution. For M = 1, we assume that the decision
component can be viewed as the first passage time in a Wiener
diffusion process, which is a model of Bayesian evidence ac-
cumulation. Thus, the distribution of the decision component
is an inverse Gaussian (Folks & Chhikara, 1978; Schwarz,
2001). The SM component’s distribution precise shape has
no clear theoretical motivation, hence we try to determine it

Table 1: Mean and standard deviation (SD) of some SRT ex-
periments. The smallest and largest reported mean can be
seen in the table for each study. The reported means vary
based on between-group differences such as participants’
age/gender or stimuli features.

Study Mean ±SD (ms)
Amini Vishteh et al. (2019) 207.88 ±7.14

224.39 ±15.62
Jain et al. (2015) 217.13 ±12.60

256.36 ±20.34
Woods et al. (2015) 217.9 ±19.5

239.1 ±28.1
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Figure 1: Mixture model of inverse Gaussian and uniform
distributions. The blue and red boxes represent participants
and trials respectively. P is the number of participants and N
is the number of trials for each participant. Each trial’s re-
action time (ri) can follow one of the models (M=0 or M=1).
When M=0, ri is a sample of uniform distribution (0, tmax) and
tmax is maximum time window that participants had for each
trial. In that case, the assumption is that RT can not be decom-
posed into SM and decision components and it is considered
as an outlier. When M=1 then each ri has 2 main components
–decision component (rd

i ) and SM component (rs
i )– and also

noise (ηi) which is normally distributed. The assumption is
that (rs

i ) can be a sample from a distribution (X) with param-
eters a and b. Here, X is either Gaussian, gamma or Laplace
which we determine by model comparison.

by model comparison between a Gaussian, a Laplacian and
a Gamma distribution. Note that the Gaussian can only be a
suitable candidate if it is so narrow that the probability for a
negative RT is virtually zero.

We assume that there is one SM distribution per partici-
pant, as shown in Figure 1, Thus, each reaction time (ri) is a
sum of a decision component (rd

i ) , SM component (rs
i ) and

measurement noise (ηi)

ri = rs
i + rd

i +ηi

ηi ∼N (0.0,σ)
rs

i ∼ X(a,b)

rd
i ∼ IG(µ,λ)

(1)

where IG is inv-Gaussian (inverse Gaussian) distribution and
X is the SM distribution. We tested the model with gamma,
Gaussian and Laplace as the X distribution (see the models
comparison in result section). Normally distributed noise (ηi)
describes the random effects on the measurement process.

Since exact inference is intractable in this model, we are
instead maximizing a lower bound on the expected log likeli-
hood, or evidence lower bound (ELBO) (Bishop, 2006) a.k.a.

free energy (Friston, 2003). The ELBO of our model is

L =
∫

drs
i

∫
drd

i

1

∑
Mi=0

N

∑
i=1

[
Mi

[
log p(ri|rs

i ,r
d
i ,σ)+

− log
(
q(rd

i |θ̈d
i )/p(rd

i |θd)
)
− log

(
q(rs

i |θ̈s
i )/p(rs

i |θs)
)]

+(1−Mi) log p(ri)− log
(
q(Mi)/p(Mi)

)
]

q(Mi)
(
q(rs

i |θ̈s
i ) q(rd

i |θ̈d
i )
)Mi

(2)

where N is the number of trials for each participant, M is the
model type, q is the variational posterior distribution and θ
includes inv-Gaussian parameters for each ri when Mi = 1. θs

and θd are prior parameters on the decision component (µ,λ)
and SM component (a,b) and θ̈s

i , θ̈d
i are posterior parameters

on the same components for each trial (i). When M = 0, the
RT can not be decomposed, which is modelled by the uniform
distribution p(ri) (see Figure 1).

Using the usual definition of the Kullback-Leibler diver-
gence (KL) between distributions q and p

KL(q(x)|p(x)) =
∫

dxq(x)
[

log(q(x)/p(x))
]

(3)

we can rewrite Eq 2 as

L =
N

∑
i=1

[
q(Mi = 1)

[
〈log p(ri|rs

i ,r
d
i ,σ)〉q(rs

i |θ̈s
i ) q(rd

i |θ̈d
i )

−KL(q(rs
i |θ̈s

i )|p(rs
i |θs))−KL(q(rd

i |θ̈d
i )|p(rd

i |θd))]

+q(Mi = 0) log p(ri)−KL(q(Mi)|p(Mi))

]
(4)

where 〈p(ri|rs
i ,r

d
i ,σ)〉q(rs

i |θ̈s
i ) q(rd

i |θ̈d
i )

is the expectation of the
conditional probability with respect to q(rs

i |θ̈s
i ) and q(rd

i |θ̈d
i ).

See Appendix for the derivations of this term. We assume that
the variational posteriors are from the same family of distri-
butions as the respective prior.

We then optimize the bound with respect to q parame-
ters: θ̈d

i and θ̈s
i . These optimizations, which we carry out

in an alternating fashion, can be viewed as the E and M
steps of a variational expectation maximization (EM) algo-
rithm (Barber, 2012). In each E-step, for fixed parameters
(θ̈s

i , θ̈d
i ) we find the distribution q(M) which maximizes Eq 4

and in each M-step, we find θ̈d and θ̈s that maximize Eq 4
while q(M) is fixed. Additionally, we also update the prior
parameters at the end of each M-step. We did not choose to
equip the prior parameters with a hyperprior, because we ex-
pect them to be well determined by the data (N > 1000 trials
per participant). Figure 2 shows a flow chart of the optimiza-
tion steps. We implemented the model with Pytorch (1.10.1)
in Python (3.9.7) using the Adam optimizer. For more infor-
mation about learning rates and iteration steps, see the code
at: http://dx.doi.org/10.17192/fdr/88.
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Predicted parameters
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Parameter initialization
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M-step
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Prior updating

(𝜃𝑠 , 𝜃𝑑)
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𝑖 < 𝐼𝑟4

𝑖 > 𝐼𝑟4

Figure 2: Flowchart of the variational E-M algorithm used
for model optimization. θs, θd and σ are the parameters of
SM component, decision component and the standard devia-
tion of the noise, respectively (see Eq 4). Each blue box is
an optimization step and blue arrows indicate that the parts
are iterated to converge – with negative ELBO as the loss
functions. Ir is iteration rate and its value differs among op-
timization parts (Ir1 · · · Ir4). The whole green box is also iter-
ated to converge. Additionally, after each σ updating (to seek
the smallest possible standard deviation for the noise func-
tion) the whole green box is iterated again. θ̈s, θ̈d and σ are
predicted posterior parameters for SM component, decision
component and standard deviation of the noise function, re-
spectively. In the first M-step (the one out of the green box)
we assume that all data points belong to M = 1 (the response
model), to obtain initial parameter estimates, since we expect
a only a small fraction of outliers.

Database
We optimized the model on a RT database of a visual attention
experiment from (Feldmann-Wüstefeld, Uengoer, & Schubö,
2015) (the first experiment out of four) which includes two
different types of intermixed tasks. Participants were pre-
sented with eight elements on an imaginary circle around the
fixation point. In one task, they had to responded to either the
shape or the colour singleton based on their group member-
ship. In the other task , both groups of participants responded
to the orientation of a line embedded in the shape singleton
while they had to ignore a color distractor in half of the tri-
als. The target of the experiment was investigating the role
of selection history (Awh, Belopolsky, & Theeuwes, 2012)
on selective visual attention. The participants (11 males and
17 females) were in 18-32 age range and all but two were
right handed. Each participant responded to 1024 trials. For
more information about the experiment, see the main ref-
erence (Feldmann-Wüstefeld et al., 2015). Meibodi et al.
(2021b) proposed a model for these data which assumes an
ex-Gaussian RT distribution, we aim to replace this model
assumption by a more theoretically motivated one.

Results and discussion
As mentioned in previous section, we tested three versions of
the model with different X distributions (Gaussian, gamma
or Laplace) (see Eq 1 and Figure 1). We selected the prior

on these distributions’ parameters in a way that matches the
reported means and standard deviations in other SRT stud-
ies(see Table 1). We chose the prior on inv-Gaussian pa-
rameters based on a preliminary analysis of the data which
assumed that the SM component is a constant. More specifi-
cally, priors parameter values are

rd ∼ IG(µ = 500.0,λ = 10000.0)
η∼N (0.0,σ = 12.0)
rs ∼ Laplace(m = 200.0, std = 9.8) or

Gaussian(m = 200.0, std = 10.0) or

Gamma(m = 200.0, std = 10.0).

(5)

The model was then fitted to the data of each of the 28 partic-
ipants. The number of participants is within the range typ-
ically used in mixed model repeated measurement designs
(Feldmann-Wüstefeld et al., 2015). For each participant the
final free energy is computed (the results are plotted in Fig-
ure 3a for all models) and the sum over all participants is used
for model comparison (see Table 2). Smaller free energy val-
ues indicate better fits (higher ELBO). Thus, the best model
is the one with Gaussian SM distribution. The results of the
Laplace model are very close to the Gaussian. The mean
of outliers over all participants is also shown in Table 2. The
models label a very similar proportion of trials as outliers, in-
dependent of the choice of SM distribution, as can be seen in
Figure 3b. This closeness might be due to having similar de-
cision components in all versions of the model. The decision
component (inv-Gaussian) has a much bigger variance than
the narrow SM components– and it is therefore driving the
outlier determination. As explained in the methods section,
outliers are RTs which can not be separated to decision and
SM components by the model. So they are sampled from a
uniform distribution (M=0). Thus, an outlier is either a very
fast or a very slow response. For two example participants,
Figure 4 illustrates that which part of the data is considered
as an outlier by our model. The criterion in these plots is

Table 2: Model comparison results for different SM distribu-
tions. ‘FE’ is free energy (sum over all participants for each
model), smaller values indicate a better RT database fit. ‘Out-
liers’ shows the mean fraction of outliers over all participants.
For each participant the amount of outliers is the sum over the
outlier posterior distribution (q(M = 0)). ‘θs’ includes the up-
dated prior parameters (mean and standard deviation) of the
SM distribution which are optimized by the model. The re-
ported values are the grand means of the means and standard
deviations over all participants.

SM distribution FE Outliers θs (mean, std)
Gaussian 187387.66 1.52% 199.58, 0.37
Laplace 187685.74 1.53% 199.59, 0.40
Gamma 191684.43 1.68% 199.50, 0.52
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Figure 3: Results per participants. For 28 participants see
the free energy values (a) and the percentage of outliers (b)
resulting from the optimization of three different SM distri-
bution models.

qi(M = 0)> 0.6 which means ri is labelled as an outlier if it
belongs to M = 0 with a probability of more than 0.6.

For each trial, the model predicts posterior parameters on
both decision and SM components through minimizing free
energy and afterwards priors are updated (these steps are
shown in Figure 2). The final prior parameters of SM com-
ponent (θs) for each version of the model can also be seen in
Table 2. These predicted parameters are close in mean and all
are very narrow distributions (see Figure 5).

Subtracting both the expected SM component (rs
i ) and the

noise component (ηi) from the RTs (rd
i = ri − rs

i − ηi), we
obtain the expected decision component. The inverse Gaus-
sian distribution fits better on this component rather than on
the total RT data, indicating that the Wiener process assump-
tion might be justified. However, this assumption should be
investigated more in future studies. For an illustration, see
Figure 6: here, the inverse-Gaussian fits to the total RT data
(orange histograms) are worse than the fits to the expected
decision components only (in green) for two participants (6th
and 18th). These participants have the smallest and the largest
numbers of outliers (see and compare their outliers in Fig-
ure 3 b). The plots (Figure 6) show that the model works well
in either case. In addition, the best distribution for the mea-
surement noise is N (0.0,2.0) which is obtained by updating
σ at the end of the optimization iterations as shown in Fig-
ure 2. Finally, for each participant is possible to reverse the
process and reconstruct the RTs from the posteriors. In this
case, the mean of reconstruction error for each participant is

250 500 750 1000 1250 1500 1750 2000

reaction times

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

fr
eq

ue
nc

y

Histogram of reaction times

outliers

(a)

250 500 750 1000 1250 1500 1750 2000

reaction times

0.0000

0.0005

0.0010

0.0015

0.0020

fr
eq

ue
nc

y

Histogram of reaction times

outliers

(b)

Figure 4: Outliers. Histograms of RTs with predicted outliers
(marked in red) by the model for the 18th and the 3rd partici-
pant. These participants have relatively: the highest numbers
of outliers (a) and an average numbers of outliers –with very
short and long RTs (b).

less than 8.5 ms.

Conclusion
The role and importance of different RT components in shap-
ing the total RT distribution has long been a matter of ques-
tion in cognitive modelling. Quantitative models, such as
the ones proposed in this paper, can be helpful in comparing
the predictions of different theoretical accounts of RTs objec-
tively and disentangling the components. Moreover, differ-
ent lines of research might be interested in different compo-
nents such as the effect of brain disorders on decision mak-
ing (Herz, Bogacz, & Brown, 2016) versus motor responses
(Low, Miller, & Vierck, 2002).

The purpose of the modelling reported in this paper was to
investigate if machine learning methods can help to disentan-
gle a RT distribution into two main components of decision
time and sensorimotor time. The motivation for our research
was a previous study by Meibodi et al. (2021b) which pre-
sented an algorithmic model of selection history effects with-
out a solid theoretical foundation for the chosen RT distri-
bution. We are now in a position to remedy this issue. We
expect that our proposed model will be useful whenever RT
components need to be extracted in cognitive RT modeling.

The results showed that the final predicted SM distributions
are very narrow which is comparable with the assumption in
Ratcliff diffusion model: non-decision component might be
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Figure 5: Posterior sensorimotor (SM) components in three
versions of the model for a random participant. In these mod-
els, it was assumed that SM distributions might be Gaussian,
gamma or Laplace. The results show very narrow distribu-
tions under all assumptions. Gaussian fits best, see also table
2.

sampled from any distribution and the shape of it can not in-
fluence the final RT distribution as the decision part has a
very large standard deviation and the other one has a small
one (Ratcliff & Childers, 2015). The predicted mean of this
distribution is in range of 199.58± 0.37 by the best fitted
model. The best fitted model is the version which assumes
the SM component is Gaussian. The predicted mean has a
close range to some simple reaction time experiments results
(see Table 1).

The model can successfully label an acceptable number of
extreme-valued RTs as outliers. Importantly, in our approach
this labelling is driven by the model assumptions and the la-
bels will therefore be internally consistent with the model’s
predictions, unlike more traditional methods for outlier labels
based e.g. on standard deviation measurements. This prop-
erty might be useful for the principled detection of inattentive
participants, e.g. in ADHD or autism studies, where a larger
proportion of outliers is to be expected.

Appendix
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Figure 6: Inverse Gaussian distributions for the 6th partici-
pant (a) and the 18th participant (b). The orange histograms
contain the total RTs (r), red curves fitted by maximizing log-
likelihood. The green histograms show the expected deci-
sion components (rd) after subtracting the SM components
(rs) and noises (η) and also discarding the outliers (q(M =
0) > 0.6). Parameters of the green densities are updated pri-
ors which are predicted by the model for each participant.

above equation can be rearranged

〈log p(ri|rs
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d
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i ) q(rd

i |θ̈d
i )
=

− 1
2

log2πσ2− 1
2σ2

[
(ri−〈rd

i 〉−〈rs
i 〉)

2

+ var(rd
i )+ var(rs

i )

]
(7)
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APPENDIX F

ZUSAMMENFASSUNG IN DEUTSCHER

SPRACHE

In den letzten zwei Jahrzehnten wurden zahlreiche Modelle der visuellen

Aufmerksamkeit vorgeschlagen. Forscher in verschiedenen Disziplinen, wie

der Psychologie und Ingenieurswissenschaften sind daran interessiert, die

menschlichen Wahrnehmungsmechanismen zu verstehen und/oder Algorith-

men zu entwickeln, welche die Aufmerksamkeitsprozesse für bestimmte An-

wendungen (z.B. Robotik) nachahmen.

In dieser Dissertation habe ich den Einfluss von Lernerfahrungen auf die

Aufmerksamkeitssteuerung modelliert. Das vorgestellte algorithmische Mod-

ell verknüpft visuelle Reize mit den Reaktionszeiten von Versuchspersonen

in einem Aufmerksamkeitsexperiment. Diese Dissertation besteht aus drei

Studien.

In der ersten Studie wurde die Rolle der Selektionshistorie –als der Ef-

fekt des Lernens aus der Übungsphase des Experiments auf die Hauptphase–

untersucht. Ich habe auch auf Dimensionsebene (z.B. Farbe und Form) und

auf Merkmalsebene (z.B. blau und rot) getestet. Die Ergebnisse zeigten, dass

die Version des Modells, die neben Stimulus-getriebenen (bottom-up) und

zielgetriebenen (top-down) Kontrollmechanismen die Auswahlhistorie (auf

Merkmalsebene) beinhaltet, am besten für eine quantitative Beschreibung
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der Reaktionszeiten der Versuchspersonen geeignet ist.

In der zweiten Studie untersuchte ich die Bedeutung des Intertrial

Priming –die Auswirkung eines früheren Trials auf die aktuelle– sowie die

Bedeutung der Merkmale (Farbe, Form oder Ausrichtung) in den Model-

lvorhersagen. Es konnte gezeigt werden, dass durch die Einbeziehung des

Effekts des Intertrial Priming eine bessere Beschreibung des Verhaltens er-

reicht werden kann. Außerdem verschlechtert das Ausschließen eines der

Merkmale die Modellvorhersagen.

In der dritten Studie schlug ich ein Modell zur Aufteilung von Reak-

tionszeiten –in Entscheidungs und sensomotorische Komponenten– als Vo-

raussetzung für die RT-Modellierung vor. Diese Studie wird uns helfen,

genauere Aufmerksamkeitsmodelle einzuführen. Darüber hinaus kann es kog-

nitive Studien unterstützen, um die Wirkung bestimmter Faktoren (z.B. Al-

ter und psychische Störungen) auf entweder dem motorischen System oder

der Entscheidungsfindung besser zu verstehen.

Das vorgeschlagene Aufmerksamkeitsmodell (in der ersten und zweiten

Studie) ist eines der ersten Modelle, das den Effekt der Selektionsgeschichte

auf die Lenkung der Aufmerksamkeit beinhaltet. Dieses Modell kann die

Unterschiede zwischen den Gruppen erfassen, bei denen jede Gruppe von

Teilnehmern eine andere Lernerfahrung hatte. Das Modell berücksichtigt

die Gesamtreaktionszeiten jedes Teilnehmers. Aber Aufmerksamkeit kann

Reaktionszeiten beeinflussen, indem sie verschiedene kognitive Prozesse bee-

influsst. Die dritte Studie führt daher eine Methode ein, die uns hilft,

jeden Prozess (und seine relevante Reaktionszeitkomponente) unabhängig

voneinander zu betrachten.
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EIGENSTÄNDIGKEITSERKLÄRUNG
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angegebenen Hilfsmittel nicht benutzt habe. Alle Stellen, die wörtlich oder
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materiellen Erstellung der Dissertation nicht beteiligt; insbesondere habe
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men. Kein Teil dieser Arbeit ist in einem anderen Promotions- oder Ha-

bilitationsverfahren verwendet worden. Mit dem Einsatz von Software zur
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