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S U M M A RY

Spatio-temporal organisation plays a critical role in all life. More specifically in biological
cells, the spatial organisation of key proteins and the chromosome is essential for their func-
tion, segregation and faithful inheritance. Within bacterial cells pattern formation appears to
play an essential role at different levels. Examples of pattern formation in proteins include
pole-to-pole oscillations, self-positioning clusters and protein gradients. Chromosomes on
the other hand display an ordered structure with individual domains exhibiting specific
spatio-temporal organisation. This work examines the processes determining dynamics and
organisation within bacterial cells by combining analytical, computational and experimental
approaches. The thesis is split into two distinct parts, one providing new physical insights
into pattern formation in general and the other detailing the dynamics of chromosomes.

Reaction-diffusion systems are helpful models in order to study pattern formation in
chemical, physical and biological systems. A pattern or Turing state emerges when the
spatially homogeneous state becomes unstable to small perturbations. While initially
intended for describing pattern formation in biological systems (for example embryogenesis,
scale patterning etc.), their practical application has been notoriously difficult. The biggest
challenge is our inability to predict in general the steady-state patterns obtained from
a given set of parameters. While much is known near the onset (when the system is
marginally unstable) of the spatial instability, the mechanisms underlying pattern selection
and dynamics away from the onset are much less understood. In the first part of this thesis,
we provide physical insight into the dynamics of these patterns and their selection at steady
state. We find that peaks in a Turing pattern behave as point sinks, the dynamics of which
are determined by the diffusive fluxes into them. As a result, peaks move toward a periodic
steady-state configuration that minimizes the mass of the diffusive species. Importantly, we
also show that the preferred number of peaks at the final steady state is such that this mass is
minimized. Our work presents mass minimization as a general principle for understanding
pattern formation in reaction-diffusion systems.

In the second part, we discuss a more biological problem that involves the study of bacterial
DNA loci dynamics at short time scales, where we perform polymer simulations, modelling
and fluorescent tracking experiments in conjunction. Chromosomal loci in bacterial cells
show a robust sub-diffusive scaling of the mean square displacement, MSD(τ) ∼ τα, with
α < 0.5. This is in contrast to scaling predictions from simple polymer models (α ≥ 0.5).
While the motion of the chromosome in a viscoelastic cytoplasm has been proposed as a
possible explanation for the difference, recent experiments in compressed cells question
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viii Summary

this hypothesis. On the other hand, recent experiments have shown that DNA-bridging
Nucleoid Associated Proteins (NAPs) play an important role in chromosome organisation
and compaction. Here, using polymer simulations we investigate the role of DNA bridging
in determining the dynamics of chromosomal loci. We find that bridging compacts the
polymer and reproduces the sub-diffusive elastic dynamics of monomers at timescales
shorter than the bridge lifetime. Consistent with this prediction, we measure a higher
exponent in a NAP mutant (∆H-NS) compared to wild-type E. coli. Furthermore, bridging
can reproduce the rare but ubiquitous rapid movements of chromosomal loci that have
been observed in experiments. In our model, the scaling exponent defines a relationship
between the abundance of bridges and their lifetime. Using this and the observed mobility
of chromosomal loci, we predict a lower bound on the average bridge lifetime of around
5 seconds. We hope that this framework will help guide future model development and
understanding of chromosome dynamics.
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Z U S S A M E N FA S U N G

Die Spatio-temporal Organstation ist ein wichtiger Bestandteil alles Lebens. Besonders in
biologischen Zellen ist die Organisation essentieller Komponenten wie zum Beispiel von
Proteinen und Chromosomen ein wesentlicher Bestandteil jedes lebensfähigen und autonom
teilenden Organismus. In Bakterien geschieht dies auf verschiedenen Levels. Beispiele
hierfür sind Proteine, die kollektiv von einem Pol der Zelle zum anderen oszillieren oder
selbstorganisierende Protein Cluster/Gradienten. Namentlich zeigen Chromosome eine
höchst organisierte Struktur, in der verschiedene Domains verschiedene spatio-temporal
Charakteristiken besitzen. Diese Dissertation befasst sich mit Prozessen der Organisation
in bakteriellen Zellen mit einer Kombination aus analytischer Mathematik, Computer-
Simulationen und Experimenten. Diese Dissertation besteht aus zwei Teilen: (1) Neuartige
Erkenntnisse im Bereich der Musterformation, (2) Experimentelle Beeinflussung der Dy-
namik des Chromosoms.

Der erste Teil beschreibt neue Erkenntnisse im Bereich der Musterbildung. Reaktions-
Diffusions-Modelle, auch bekannt unter dem Namen Turing-Mechanismus, sind hilfreiche
Werkzeuge, um die Formation von Mustern in chemischen, physikalischen oder biologis-
chen Systemen zu erforschen. Muster oder strukturierte Zustände entstehen dann, wenn
der räumlich-homogene Zustand eines Systems instabil und anfällig für Störungen wird.
In der Vergangenheit wurden diese Modelle genutzt, um biologische Systeme wie zum
Beispiel die Embryogenese oder die Formation von Schuppenmuster zu beschreiben, ihre
Anwendung blieb jedoch notorisch schwer. Eine der größten Herausforderungen ist es unter
verschiedenen Ausgangsbedingungen Stabilitätsmuster vorherzusagen. Über ihre Forma-
tion, kurz bevor ein System instabil wird, ist vieles bekannt, doch unser Wissen über die
Musterfindung ist stark begrenzt, wenn das System nur geringfügig instabil wird. In diesem
Teil der Dissertation geben wir Einblicke in die Formation von diesen Stabilitätsmustern
und darüber, wie man sie vorherbestimmen kann. Wir haben herausgefunden, dass Spitzen
in Tuning-Mustern sich wie Point-Sinks verhalten, deren Dynamik durch den Strom der
diffundierenden Spezies in sie beschrieben werden kann. Dadurch positionieren sich die
Spitzen der Stabilitätsmuster an periodischen Positionen, sodass die Masse der diffundieren-
den Spezies minimiert wird. Darüber hinaus zeigen wir, dass die bevorzugte Anzahl an
Spitzen im finalen Stabilitätsmuster diese Masse minimiert. Diese Dissertation präsentiert
die Minimierung von Masse als allgemeines Prinzip, um Musterformation in Reaktions-
Diffusions-Systemen zu verstehen.
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x zusammenfassung

Im zweiten Teil diskutieren wir ein mehr biologisches Problem, welches die Studie der
Bewegung von Genlokusse in kurzen Zeitintervallen thematisiert. Wir nutzen dafür Polymer-
Simulationen in Kombination mit fluoreszenten Tracking-Experimenten. In bakteriellen
Zellen lässt sich Subdiffusion bei der Bewegung von Genlokusse beobachten. Die mittlere
quadratische Verschiebung MSD(τ) ∼ τα in lebenden Bakterien wächst langsamer, mit einem
von α < 0.5, als die Vorhersage von Polymersimulationen (mit einem α ≥ 0.5). Eine mögliche
Erklärung bieten brücken-bauende und nucleoid-assoziierte Proteine (NAP), welche eine
wichtige Rolle in der Organisation des Chromosoms spielen. In dieser Arbeit studieren
wir, mit Hilfe von Polymersimulationen, welche Rolle die NAP in der subdiffusiven Natur
der Genlokusse spielen. Wir haben herausgefunden, dass brücken-bauende NAP den
Raum verkleinern, den das Chromosome einnimmt und somit die mittlere quadratische
Abweichung reproduzieren, welche wir experimentell beobachtet haben. Wir zeigen, dass ein
NAP-Mutant ein höheres α besitzt, was mit unseren Simulationen übereinstimmt. Darüber
hinaus kann die Brückenbildung seltene rapide Bewegungen der Genlokusse reproduzieren,
die experimentell beobachtet wurden. Mit Hilfe des Parameters, welcher das Verhältnis
zwischen der Anzahl von Brücken und ihrer Lebensdauer, in unseren Model, definiert,
sind wir in der Lage eine untere Grenze der durchschnittlichen Brückenlebensdauer von 5
Sekunden vorherzusagen.

x



C O N T E N T S

Acknowledgements v

Summary vii

i pattern selection in reaction-diffusion systems

1 introduction to pattern formation 3

1.1 Reaction-diffusion systems 4

1.2 Amplitude equations 10

1.3 Limitations of existing methods 11

1.4 Illustrative reaction-diffusion model 13

1.5 Linear stability analysis 14

2 effects of turnover on peak movement 19

2.1 Peak movement rate depends linearly on turnover 20

2.2 Absence of turnover leads to complete coarsening 21

3 movement and regular positioning of point sinks 23

3.1 Fluxes balance at regular positions 24

3.2 Mass minimisation at regular positions 27

3.3 Moving point sinks 30

4 movement of turing peaks 35

4.1 The singular limit - Spike approximation 36

4.2 Spike dynamics 38

4.3 Comparison to Numerical simulations 40

4.4 Summary 42

5 mass minimisation and pattern selection 45

5.1 Minimal mass and peak number selection in our model 47

5.2 Mass minimisation in other RD models 50

6 mass minimisation captures the finite size effects far from on-
set 53

6.1 Effects of changing domain size on steady state 53

6.2 Coarsening on Growing domains 54

7 discussion and future directions 59

ii effects of dna bridging on bacterial chromoso-
mal dynamics and organisation

8 introduction to bridging dynamics 65

xi



xii contents

8.1 Physics of polymers 67

8.2 Polymer dynamics 70

8.3 Polymer simulations 72

8.4 Bridging reproduces sub-diffusive scaling exponent 75

9 bridging compacts the polymer 79

9.1 Polymer size 79

9.2 Remapped Phase diagram 84

10 nap mutant has a higher exponent 85

10.1 Loci tracking experiments 85

10.2 ∆H-NS has a higher scaling exponent 87

10.3 Intensity of spots does not explain differences in scaling exponents 88

11 bridging reproduces rapid chromosomal movements 89

11.1 Presence of RCMs in our experimental data 89

11.2 Bridging reproduces RCMs 92

12 estimating bridge lifetimes 95

13 effect of bridging on macrodomain positioning and organisa-
tion 99

13.1 ori positioning and dynamics 99

13.2 Effect of bridging on chromosome organisation 102

13.3 ter organisation and dynamics 105

14 discussion and future directions 109

a mass minimisation and pattern selection in the brusselator model 111

a.1 Spike limit in the Brusselator model 112

a.2 Peak movement and comparison to point sinks 115

a.3 Mass minimisation predicts the pattern obtained after coarsening 116

b mass minimisation and pattern selection in schnakenberg model 119

Bibliography 123

Abbreviations 133

List of Figures 135

xii



Part I

PAT T E R N S E L E C T I O N I N R E A C T I O N - D I F F U S I O N
S Y S T E M S





1

I N T R O D U C T I O N T O PAT T E R N F O R M AT I O N

“... the totality is not, as it were, a mere heap, but
the whole is something besides the parts.”

— Aristotle

While the question of the existence of the universe and matter is of interest to philosophers
and physicists alike, a more tangible ancillary question of structure is also interesting and
fundamental. In other words: why does matter have an interesting structure? [1]. It is
not clear yet how fundamental equations that determine the behaviour of matter generate
the higher-order complex structures that we observe. This is sometimes referred to as an
emergent phenomenon where the properties of a system are not a simple combination of
the properties of its components i.e the whole is more than the sum of its parts. These
phenomena are observed at length and time scales of the universe down to the scales of
humans and microorganisms. At the astronomical scale, observations show that galaxies
do not fill up space uniformly like freely diffusing gas molecules but instead are clustered
in sheets and lines and leave large voids in between them. This pattern though not a
regular structure is a deviation or a statistical anomaly from the naive expectation of
randomly distributed points in space. Similarly, on a smaller scale, we observe interesting
yet complicated dynamics of weather, oceanic currents and tectonic structures on earth.
Furthermore, the diverse forms of self-organised matter and life on earth are also rather
surprising. While the exact explanation for this structure is unclear, evidence points to the
fact that we inhabit a non-equilibrium universe.

While it is important to explore the diverse landscape of emergent phenomena, the
above-described crude description is unsatisfactory. The appearance of such emergent
structures becomes apparent on different levels of description or coarse-graining. In this
work, we discuss a specific example of emergent phenomena of pattern formation in reaction-
diffusion systems. Pattern formation occurs in a huge variety of natural and living systems,
from chemical reactions involving cells to environmental patterns. In systems described
by reaction-diffusion (RD) equations, the formation of spatially periodic patterns can be
explained by the Turing instability, in which patterns emerge due to the presence of two
or more interacting components that diffuse (or are transported) at different rates. In his
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4 1. Introduction to Pattern formation

seminal work ”The chemical basis of morphogenesis” in 1952, A.M.Turing proposed a theory
based on the observation that, while diffusion itself has a homogenizing effect, coupled with
chemical reactions it could lead to the formation of patterns [2]. He speculated that the
patterns generated by these systems might suffice to explain biological morphogenesis i.e the
emergence of a structure during the growth of an organism. His examples included stripes
or spots on animal skin including zebra, tiger, cheetah, giraffe, and fish and the question
of morphogenesis of a spherically symmetric zygote into different cells. This proposed
mechanism of pattern formation was eventually confirmed through experiments in chemical
systems [3,4], while biological systems have been more difficult to understand than originally
envisioned.

In the subsequent chapters, we tackle a fundamental question in pattern formation, that
of pattern selection. Application of reaction-diffusion or Turing models in biology has been
hindered by our inability to predict in general the final pattern obtained at a steady state.
Since the equations are highly non-linear, analytical solutions are in general unlikely. While
much is known near the onset of spatial instability, the mechanisms underlying pattern
selection and dynamics away from the onset are much less understood. Also, most model
systems are in general multi-stable, in that more than one pattern is likely at steady state for
the same parameters. The mechanism that drives the dynamics and selects the final pattern
(the most likely pattern) remains elusive. Hence, a physical understanding of these systems
is of critical importance.

We find that peaks in a Turing pattern behave as point sinks, the dynamics of which are
determined by the diffusive fluxes into them. As a result, peaks move toward a periodic
steady-state configuration that minimizes the mass of the diffusive species. Interestingly,
the simpler point sink model was developed initially to model the positioning of plasmids
in bacteria. We also show that the preferred number of peaks at the final steady state is
such that the mass of the fast-diffusing species is minimized. Our work presents mass
minimization as a potential generalisable principle for understanding pattern formation
in reaction-diffusion systems far from the onset. This will likely help guide future model
creation and curation to describe biological processes.

Publication: Subramanian, S., Murray, S. M. (2021). Pattern selection in reaction diffusion

systems. Physical Review E, 103(1), 1–12. https://doi.org/10.1103/PhysRevE.103.012215

1.1 reaction-diffusion systems

In this section, we wish to understand Spatio-temporal pattern formation using a simple
mathematical framework of reaction-diffusion models as described by Turing. In equilibrium
systems, if external conditions are kept constant, we expect them to relax to a spatially
uniform homogeneous state. However, we can tune some parameters or external cues in

4
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1.1 Reaction-diffusion systems 5

small steps until a point when suddenly a non-uniform spatial structure appears. In many
examples of pattern formation, the structured state emerges when the spatially homogeneous
state becomes unstable to small perturbations.

While multi-component reaction-diffusion systems are also of interest, for much of this
work we focus on the simpler case of two-component reaction-diffusion systems. The general
equations describing two-component reaction-diffusion systems are given by,

ut = Γ f (u, v) + d∇2u,

vt = Γg(u, v) +∇2u,
(1.1)

where u and v are two interacting species on a spatially extended system. The relative
diffusion co-efficient d = Du

Dv
, where DuDv are the diffusion constants for each species.

The boundary conditions and initial conditions are given by,

(n.∇)
[

u
v

]
= 0; r on ∂B; given u(r,0), v(r, 0), (1.2)

where ∂B is the closed boundary of the RD domain B and n is the unit outward normal to
∂B. We choose the zero flux condition or Neumann boundary condition as we are interested
in spatial patterns with no external input.

Linear stability analysis

Linear stability analysis is a valuable mathematical tool that helps us understand how a
non-equilibrium system depends on its parameters. It also enables us to make easily testable
predictions and classify these systems based on emergent structures. We first study the
stability conditions in the absence of diffusion.

du
dt

= Γ f (u, v),

dv
dt

= Γg(u, v).
(1.3)

The homogeneous steady state (u0, v0) is the solution of,

f (u, v) = 0, g(u, v) = 0. (1.4)

5



6 1. Introduction to Pattern formation

To study the stability of the fixed points, we perform small perturbations of the homogeneous
steady state, u = u0 + ε1, v = v0 + ε2 where ε1, ε2 << 1. The growth of these perturbations
that determine the stability of the fixed points is given by

dε

dt
= Γ

[
fu fv

gu gv

]
(u0,v0)

; ε =

[
ε1

ε2

]
. (1.5)

where J =

[
fu fv

gu gv

]
(u0,v0)

is the Jacobian evaluated at the fixed point (u0, v0). The solution

to the above first-order Ordinary Differential Equation (ODE) is given by

ε = aeλ+t + beλ−t. (1.6)

λ+, λ− are distinct eigenvalues of the Jacobian J. To ensure stability, it is necessary that the
perturbations do not grow in time. Thus, we have Re(λ+), Re(λ−) < 0. The eigenvalues of a
2× 2 matrix can be explicitly written in terms of its trace (TrJ) and determinant (DetJ). The
eigenvalue equation is given by,

| ΓJ − λI | = 0, (1.7)

and the eigenvalues are,

λ± =
Γ
2
(TrJ ±

√
TrJ2 − 4DetJ). (1.8)

The conditions for stability of the non-linear ODEs then become,

TrJ < 0 =⇒ fu + gv < 0. (1.9)

DetJ > 0 =⇒ fugv − fvgu > 0. (1.10)

In the presence of diffusion, we study the stability conditions with

∂ε

∂t
=
(

D∇2 + ΓJ
)

ε, (1.11)

where D =

[
d 0
0 1

]
and J =

[
fu fv

gu gv

]
. The time-independent solution of the spatial

eigenvalue problem is defined by,

∇2ε + λε = 0, (n.∇)ε = 0 for r on ∂B, (1.12)

where the eigenvalue is denoted by λ. The eigenfunctions of the Laplacian, for any boundary
condition on a general, bounded domain B ⊂ Rn, form a countable orthonormal basis for

6



1.1 Reaction-diffusion systems 7

DetJ

TrJ

∆ = TrJ2 - 4DetJ

Poincaré Stability Diagram

Figure 1: Poincaré diagram for classification of fixed points using Linear Stability Analysis.

the Hilbert space L2(B). Thus we can express the solution as a linear combination of these
eigenfunctions. For example, on a finite 1-D domain say x ∈ [0, L], and λ > 0 the solution
that satisfies the no flux boundary conditions is, ε ∝ cos(nπx/L), where n is an integer. The
eigenvalue k = nπ

L (the wavenumber), can take a set of discrete values on a finite domain.
Note that on an infinite domain n would change continuously.

Thus we can express the solution of Eq. (1.11) as a linear combination of these eigenfunc-
tions,

ε(r, t) = ∑
k

ckeλtεk(r), (1.13)

where the constants ck are determined by a Fourier expansion of the initial conditions in
terms of εk(r). λ is the eigenvalue that determines the temporal growth. Substituting this
expression in Eq. (1.11) we get,

λεk = ΓJεk + D∇2εk

= ΓJεk − Dk2εk
(1.14)

The characteristic eigenvalue equation in λ is given by,

| λI − ΓJ + Dk2 | = 0. (1.15)

7



8 1. Introduction to Pattern formation

Figure 2: Dispersion relation. Left.Plot of h(k2) defined by eq Eq. (1.16). When d increases beyond
the critical value dc, h(k2) < 0 for a finite k2 > 0, a critical mode kc is unstable to spatial
perturbations. Right. The plot of the largest eigenvalue of λ(k2) as a function of k2. When
d > dc there is a range of k such that k2

1 < k2 < k2
2 which are linearly unstable as given by

Eq. (1.25).

λ2 + λ
[
k2(d + 1)− Γ( fu + gv)

]
+ h(k2) = 0

h(k2) = dk4 − Γ( fu + dgv)k2 + Γ2 | J |
(1.16)

The steady-state (u0, v0) is linearly stable if both solutions of Eq. (1.16) have Reλ(k2 = 0) <
0 (where Re represents the real part of the solution). For the steady state to be unstable to
spatial disturbances we require Reλ(k) > 0 for some k 6= 0. Since TrJ < 0 and k2(1 + d) > 0
for all k 6= 0 the coefficient of λ, namely,

[k2(1 + d)− Γ( fu + gv)] > 0 (1.17)

for Reλ(k2) can be positive is if h(k2) < 0 for some k. Hence, we require,

fu + dgv > 0 =⇒ d > 1 (1.18)

since fu + gv < 0. The min of h(k2) in k2,

k2 = k2
min = Γ

fu + dgv

2d
(1.19)

8



1.1 Reaction-diffusion systems 9

h(k2
min) gives the marginal instability curve. We can also tune d and arrive at a critically

unstable h(k2). This defines a critical diffusion coefficient dc, and critical wavenumber kc

given by,

k2
c = Γ

fu + dcgv

2dc
(1.20)

Noting that h(k2) < 0 for the system to be unstable w.r.t spatial effects results in,

( fu + dgv)
2 − 4d( fugv − fvgu) > 0 (1.21)

Adding on to the conditions from (1.10), the final set of necessary and sufficient conditions
for Turing pattern formation then becomes,

fu + dgv > 0 =⇒ d > 1, (1.22)

( fu + dgv)
2 − 4d( fugv − fvgu) > 0. (1.23)

Solving Eq. (1.16) for λ we get,

2λ =
[
k2(1 + d)− Γ( fu + gv)

]
± {
[
k2(1 + d)− Γ( fu + gv)

]2 − 4h(k2)} (1.24)

To destabilize the steady state w.r.t spatial disturbances we require Reλ(k2) > 0. This implies
that h(k2) < 0 for some k 6= 0. Now when h(k2) < 0, Eq. (1.24) has solution λ which is
positive for the same range of wave numbers that make h < 0. With d > dc the range of
unstable wavenumbers k2

1 < k2 < k2
2 is obtained from solving h(k2) = 0,

k2
1 =

Γ
2d

[
( fu + dgv)− {( fu + dgv)

2 − 4d | J |}1/2
]
< k2

<
Γ
2d

[
( fu + dgv) + {( fu + dgv)

2 − 4d | J |}1/2
]
< k2

2

(1.25)

Now, we can find the relation for the fastest growing mode k2
m, by setting dλ

dk2 |k2=k2
m
= 0.

Differentiating Eq. (1.16) w.r.t k2 we get,

2λλ′ + λ′
[
k2(d + 1)− Γ( fu + gv)

]
+ λ(d + 1) + 2dk2 − Γ( fu + dgv) = 0 (1.26)

as λ′ = 0,

λ(k2
m) =

1
d + 1

[
Γ( fu + dgv)− 2dk2

m
]

(1.27)

Plugging this back in Eq. (1.16) we find the fastest growing mode,

k2
m =

Γ
d− 1

{
(d + 1)

[
− fvgu

d

]1/2

− fu + gv

}
(1.28)

9



10 1. Introduction to Pattern formation

Now consider the solution ε given by (Eq. (1.13)), the dominant contributions at long t are
those modes with Reλ(k2) and all other modes decay exponentially to zero. From Eq. (1.25)
the solution can now be written as,

ε(r, t) ∼
k2

∑
k1

ckeλ(k2)tεk(t) for large t. (1.29)

These linearly unstable eigenfunctions which are growing exponentially with time will
eventually be bounded by the non-linear terms in the reaction-diffusion equations and an
ultimate steady-state inhomogeneous solution will emerge. While singular perturbation
analyses can be done near a bifurcation, a general principle of nonlinear evolution for the
finite amplitude steady-state spatial patterns is still an open problem and is of relevance to
our work discussed in the later chapters.

1.2 amplitude equations

As discussed above, it is in general unclear how the linearly unstable modes saturate due to
nonlinear reaction terms and produce stable inhomogeneous spatial patterns at steady state.
In this context, we discuss the amplitude equations which is a useful tool to study spatial
and temporal distortions of ideal patterns (stripes, spots, hexagons etc) close to onset and
can explain the non-trivial shapes of steady state patterns. This technique employs a slowly
varying amplitude function that modulates some stationary periodic pattern of interest. Let
us assume a simple case of one-component solution with a spatially dependent complex
amplitude A(x, t) in terms of a perturbation as discussed in the previous section ε = u− u0

of the uniform base state u0,

ε(x, t) = A(x, t)εc(x)eikcx + higher order terms, (1.30)

where we choose our expansion around the critical mode of onset kc. We present the
one-dimensional amplitude equation for type I-s instability without derivation here [5],

τ0
∂A
∂t

(x, t) = εA + ξ2
0

∂2A
∂x
− g0 | A |2 A. (1.31)

Note that the form of the above equation emerges from the underlying translation and
parity symmetry and the expansion around the base state kc and not from the details of the
physical system. ε is a perturbation parameter around the base state, while the constants
τ0, ξ2

0, g0 depend on the details of the physical system. The suppressing effect of boundary
conditions on patterns at steady state can be hence understood by solving the amplitude
equation in Eq. (1.31) at steady state.

10



1.3 Limitations of existing methods 11

As an example, we consider a finite domain with x ∈ [0, 1] with boundary conditions
A(0) = A(L) = 0. An approximation of the amplitude equation yields the following linear
onset solution,

A(x) = aeiφ sin(
ε1/2

ξ0
x) (1.32)

where a is an unknown constant and φ is an arbitrary phase. We can determine a by
substituting the solution Eq. (1.32) in Eq. (1.31) and collecting terms of order sin x and
ignoring higher order harmonics. In a finite domain, solutions satisfy boundary conditions
if L = nπ with n = 1, 2, .... We re-write L in terms of a re-scaled system size l, L = ε1/2 l

ξ0
.

For a periodic domain, we find that critical onset appears shifted from ε = 0 to

εc = π2
(

ξ0

l

)2

. (1.33)

The above equation is an explicit general calculation of the suppression of onset by finite-size
effects.

While amplitude equations provide an interesting general way to address the question of
pattern saturation it is important to understand its limitations. These equations are valid
only close to the onset of patterning, i.e when only a narrow range of wavenumbers are
unstable. Also, it relies on perturbations which serve only as a good approximation of a
range of parameters and slow modulation of an ideal sinusoidal pattern.

1.3 limitations of existing methods

Weakly non-linear approaches like amplitude equations and external constraints like fixed
boundary conditions, parameter ramps, template patterns, system geometry and deformable
boundaries have been useful in understanding the selection and stability of different fun-
damental modes in a variety of systems [7–12]. However, these are valid only close to
onset (in the vicinity of a bifurcation). Far from the onset, where several modes are lin-
early unstable, pattern-forming reaction-diffusion systems typically produce patterns with a
well-defined periodicity, corresponding to a particular mode number n and its harmonics
2n, 3n, .... Fourier decomposition of the observed final pattern clearly shows this underlying
periodicity of the final pattern (Fig. 3B and 3C). This is quite unintuitive, as the neighbouring
modes n ± 1 have a similar growth rate, which would be expected to lead to aperiodic
patterns (Fig. 3A). We will discuss the model used in Fig. 3 in more detail below. This
regime is quite relevant as most systems in nature cannot be expected to be close to onset.

We also see that if a system initialized with a mispositioned pattern (and therefore far
outside the linear regime), then the peaks in the pattern subsequently move towards an

11



12 1. Introduction to Pattern formation
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Figure 3: The Turing instability of reaction-diffusion systems [6]. (A) The growth rate of different
modes for the model in Eq. (1.36) with default parameters and L = 4. Note that the growth
rate at n = 0 is negative – the system is not generically mass-conserving.(B) Example of a
two-peak steady state pattern. (C) The Fourier decomposition of the obtained two-peak
pattern shows that it is composed of modes n = 4, 8, 12, .... (D) An example kymograph
showing pattern development starting from a random perturbation of the uniform state.
While the pattern with mode n = 7 (3.5 peaks) dominates initially, the pattern coarsens
down to two peaks, dominated by mode n = 4.

equally separated configuration. This is also clear in models that exhibit coarsening, which
we define here as the preference for a steady-state pattern that appears to be lower than
that predicted by linear stability. In Fig. 3D we see that a four-peak pattern breaks down
and the remaining peaks move to the regularly spaced positions on the domain. From these
observations, we conclude that the periodic positioning of peaks is an inherently non-linear
effect and not a remnant or a direct consequence of the dominating linear mode of the base
state perturbations. While a decomposition to fundamental modes is useful to understand
the initial formation of the pattern (starting from a homogeneous steady state), once they
saturate into peaks, a different description is required. In this sense, we think of the peaks
rather than modes as a more fundamental unit of pattern formation.

12



1.4 Illustrative reaction-diffusion model 13

In the following work [6], we show that Turing peaks behave like point sinks that move
with a velocity proportional to the diffusive flux through them. We find that mass flow
through the system is responsible for the regular positioning of the peaks. Diffusion
and turnover of the interacting species taken together explain the regular positioning of
peaks due to the concept of flux balance [13–15]. The peaks in a mass-conserved reaction-
diffusion system do not move, further confirming the link between flux balance and peak
movement. Using singular perturbation methods, we solve the system analytically for
solutions consisting of well-separated spikes, a regime that occurs in the singular limit
Dv → 0 of reaction-diffusion systems [16]. Finally, we find that the regularly positioned
configuration minimizes the total mass of the fast diffusing species, i.e the substrate. We
then empirically find that this ”minimisation principle” can be extended to predict not just the
positions of the peaks, but also the final number of peaks, even in the presence of coarsening.
This is quite important as the amplitude equations and other weakly non-linear approaches
are not applicable far from the onset. For the special case of two-component mass-conserved
models, Lyapunov functions can be constructed to show that the only non-trivial steady-
state solutions consist of a peak or half-peak [17–20]. We show that mass-minimisation also
predicts accurately the coarsening down to a single peak in the case of mass-conserved
two systems. By comparing the predicted peak number and numerics we uncover the
origin of finite size effects observed in reaction-diffusion systems far from the onset. Mass
minimisation of the fast diffusing species, therefore, has the potential to be a simple and
powerful concept for understanding the pattering in reaction-diffusion systems.

1.4 illustrative reaction-diffusion model

We introduce an illustrative one-dimensional system, inspired by a recent model of bacterial
condensin [21],

∂tu = Du∂2
xu− βu(u + v)2 + γv + cδ− δu (1.34a)

∂tv = Dv∂2
xv + βu(u + v)2 − γv− δv , (1.34b)

defined over the domain [−L/2, L/2], with reflective boundary conditions, β, γ, c > 0 and
δ ≥ 0 and diffusion constant Dv < Du. The model has the form of a mass conserved system
with additional terms: a global feed term cδ and two decay terms δu and δv. This model
while structurally similar to some of the classic Turing models such as Brusselator [22] and
Schnakenberg [23] models, has some notable properties that we will discuss below. The
model does not exhibit oscillatory dynamics.

By writing the source term as cδ, we can change δ, the turnover rate, while leaving the
total steady-state concentration c fixed. When δ = 0 and the limit δ → 0 is well defined

13



14 1. Introduction to Pattern formation

as long as the total initial mass is constrained to be the same as the steady-state mass i.e.,
C(0) = c.

From the above equations, we can easily see that the total mass at steady state is the same
for any set of initial conditions i.e.,

∫ L
2

− L
2

ū + v̄ dx = c, (1.35)

where ū and v̄ are the steady-state concentrations.
We implement the following non-dimensionalisation:

u→ u
c

, v→ v
c

, x → x
L

, t→ Dv

L2 t,

to obtain

∂u
∂t

= d
∂2u
∂x2 + Γ

(
−au(u + v)2 + v + b(1− u)

)
(1.36a)

∂v
∂t

=
∂2v
∂x2 + Γ

(
au(u + v)2 − (1 + b)v

)
, (1.36b)

in terms of the dimensionless variables,

a =
βc2

γ
, b =

δ

γ
, Γ =

γL2

Dv
, d =

Du

Dv
. (1.37)

1.5 linear stability analysis

Let us perform a linear stability analysis on the system. In the absence of diffusion, there is
a single fixed point

u0 =
b + 1

a + b + 1
, v0 =

a
a + b + 1

. (1.38)

The Jacobian at this point is given by

J =Γ

[
fu fv

gu gv

]
(u0,v0)

(1.39)

=Γ

[
−a− 2au0 − b 1− 2au0

a + 2au0 2au0 − 1− b

]
. (1.40)

14



1.5 Linear stability analysis 15
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Figure 4: Regions of instability. (A,B). We find that a broad range of modes is unstable for different
parameters. Plotted is the region of instability (see also Fig 1D in the main text) as a function
of b with a = 3.75. k1 and k2 are the bounds of instability as defined by Eq. (1.45). The
horizontal dashed lines indicate the discrete modes that fit in the range. The vertical green
line represents our default value of b = 0.0039. L = 2 and L = 4 in (A) and (B) respectively.

where f and g are the reaction terms in Eq. (1.36a) and Eq. (1.36b) respectively. The trace
and determinant of the Jacobian are easily found to be

TrJ = Γ(−a− 1− 2b)

DetJ = Γ2(b (a + b + 1)).

Since, TrJ < 0 and DetJ > 0, the homogeneous fixed point is always stable in the absence
of diffusion for any set of parameters a, b, Γ > 0. For the mass-conserved case b = 0, the
determinant vanishes. This is due to a zero eigenvalue, the eigenvector of which does not
obey the conservation condition. The other eigenvector corresponds to the mass-conserving
direction (1,−1)T and has eigenvalue fu − fv = −a < 0. Hence, the base state is stable for
perturbations preserving mass conservation.

Following the standard approach [24], we now consider a spatial perturbation around
the uniform state u = u0 + δu, v = v0 + δv in presence of diffusion. The evolution of this

perturbation w =

(
δu
δv

)
can be written as

w(x, t) = ∑
k

ck expλkt εk(x) ,

where the εk are the eigenfunctions of the Laplacian

∇2εk(x) = −k2εk(x) (1.41)
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16 1. Introduction to Pattern formation

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25
n=1
n=2
n=3
n=4
n=5
n=6
n=7
Turing Space

Mode

a

b

Figure 5: The Turing space of our reaction-diffusion system. The regions of instability of each mode
on a domain of length L = 2 (the region bounded by the y-axis and the corresponding
coloured curve). The blue-shaded region shows the Turing space for an infinite domain.

subject to the given boundary conditions. Inserting this into the equation Eq. (1.36) and
linearizing around the homogeneous steady state we obtain the eigenvalue problem

∣∣J − k2D− λkI
∣∣ = 0 where D =

(
Du 0
0 Dv

)
. (1.42)

The conditions for the growth rate λk to be positive for some range of wave numbers
k2

1 < k2 < k2
2 is given by [24]

fu + dgv > 2
√

d( fugv − fvgu) (1.43)

which we evaluate to find

d
b + 1

a + b + 1
(a− b− 1)− a2 + b2 + 4ab + 3a + b

a + b + 1
− 2
√

db(a + b + 1) > 0. (1.44)

The inequality Eq. (1.44) relating a, b and d determines the parameter values for which
there exists a band of unstable wave numbers i.e. the Turing space. As discussed in section
1.1, for a finite domain the eigenvalues of the Laplacian are discrete. In particular, for the
domain [0, L] with reflective boundary conditions, the wave number k = nπ

L for integer
n and the eigenfunctions are, labelling now by n, εn = cos( nπx

L ). Since k is discrete the
condition Eq. (1.44) is necessary but not sufficient for instability. A discrete mode n with
corresponding wave number k = nπ

L must exist within the range of instability [k1, k2]. Note

16



1.5 Linear stability analysis 17

that while Γ does not enter into the condition Eq. (1.44), which, if any, discrete modes fall
into the range [k1, k2] does depend on Γ. By a straightforward calculation, we find

k2
1 =

Γ
2d

[
(−a− 2au0 − b + d(2a− 1− b))−

(
(−a− 2au0 − b + d(2a− 1− b))2 − 4db(a + b + 1)

)1/2
]

k2
2 =

Γ
2d

[
(−a− 2au0 − b + d(2a− 1− b)) +

(
(−a− 2au0 − b + d(2a− 1− b))2 − 4db(a + b + 1)

)1/2
]

.

(1.45)

In Fig. 5, we show that region defined by Eq. (1.44) as well as the parameter regions in
which each mode is unstable. Using Eq. (1.28) we can evaluate the fastest growing mode on
an infinite domain,

k2
m =

Γ
d− 1

[
a + (d + 1)

√
a (a + 3 b + 3) (a− b + 2 a b− 1)

d (a + b + 1)2 +
4 a (b + 1)
a + b + 1

− 1

]
. (1.46)

From the above analysis, the fastest growing mode from linear stability predicts the wave-
length of the final pattern at steady state. In the following chapter, we compare the results
from the numerical simulations of the toy model Eq. (1.34) with predictions from linear
stability.

17
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E F F E C T S O F T U R N O V E R O N P E A K M O V E M E N T

In this chapter, we discuss the preliminary investigations of our model Eq. (1.34) introduced
in the previous chapter using numerical simulations. Upon simulating the system, we
observed that peaks are initially formed as dictated by linear stability and then coarsening
occurs in which peaks break down and the remaining mispositioned peaks subsequently
move to regularly positioned configurations (Fig. 3D). This phenomenon has also been
observed in the model it is based on [21], and other reaction-diffusion systems and is dubbed
competition instability [25–27] (also referred to as interrupted coarsening [28]) in that the
final dominant mode has a longer wavelength (lower number of peaks) than predicted by
linear stability analysis. It is not evident in models/parameter sets for which the linear
prediction holds as in that case, the peaks are created at their steady-state positions. For
our default parameter set with L = 4 (Γ = 4800), linear stability predicts (Fig. 3A) that the
pattern consists of four peaks (or valleys) (mode n = 8) whereas the obtained steady-state
pattern most frequently consists of two peaks (mode n = 4) (Fig. 3B, 6B). In this study, we
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Figure 6: Dominant phase of the steady state pattern (A,B). The system was solved for 200 different
initial random perturbations of the uniform base state with L = 2 (A) and L = 4 (B). The
phase of the pattern (the sign of the amplitude of the dominant mode) is indicated by a
minus or plus sign. The steady-state pattern is dominated by a mode lower (n = 2 and
n = 4) than what is predicted by the linear stability analysis (n = 4 and n = 8 respectively).
The growth rate of each mode for L = 4 is shown in Fig. 3D. In (A) and (B) we use our
default parameter set state in default parameters.
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Figure 7: Peak movement and regular positioning depend on flux through the system. (A) The
system is initialised with a peak away from the mid-domain. The peak subsequently moves
to the mid-domain. (B) The centroid of the peak (blue line) is plotted as a function of
simulation time. The orange dashed line is an exponential fit. (C) The rate of movement
obtained from fitting the centroid to an exponential as in (B) shows a linear dependence on
the turnover rate δ. (D) Peak velocity is linear in peak position. Default parameters.

mainly focus on the interior peaks on the domain, as the peaks on the boundary do not
move (positive amplitudes, Fig. 6A, B).

2.1 peak movement rate depends linearly on turnover

To examine the movement of peaks in more detail, we focused on the case of a single peak
(n = 2), typically obtained for L = 2 (Γ = 1200). Examining the movement of the peak (Fig.
7A) for our default parameters, we found that it moves to the mid-domain exponentially in
time (Fig. 7B). We found that the peak velocity is linearly proportional to its displacement
from the mid-domain (Fig. 7B). This was the case whether the system was initialised
with a random perturbation to the homogeneous state or with a single peak pre-formed
somewhere on the domain. While peaks moving to respect the symmetry of the system is

20



2.2 Absence of turnover leads to complete coarsening 21

perhaps not surprising, it is underappreciated and is relevant for understanding the periodic
appearance and positioning of peaks. Indeed, we found that the rate of movement is directly
proportional to the turnover rate δ (Fig. 7C) (or equivalently cδ the flux through the system
per unit length) so that in the mass-conserved limit of δ→ 0, peaks do not move (Fig. 8A,
B).

Numerical Methods

The simulations were performed on a spatial lattice x ∈ [− L
2 , L

2 ] and time domain
t ∈ [0, T], where L is the length of the spatial domain and T, the total time. The
MATLAB solver pdepe was used to solve the time-dependent equation Eq. (1.34). The
simulations were performed with the following default parameters (unless explicitly
stated otherwise):

Du = 0.3, Dv = 0.012, L = 2, c = 300,

β = 1.5× 10−4, γ = 3.6, δ = 0.014.

the equivalent dimensionless parameters are

d = 25, a = 3.75, b = 0.0039, Γ = 1200.

The simulations were run long enough to obtain the true steady state. The relative and
absolute tolerances in the difference between two values of iteration were set to 10−6 and
10−12 respectively. We used reflective boundary conditions

∂u
∂x

∣∣∣
x=−L/2,L/2

=
∂v
∂x

∣∣∣
x=−L/2,L/2

= 0.

The simulations were initialised with small perturbations from a homogeneous steady
state. The results are based on simulations that were run for very long times with very
low error tolerances.

2.2 absence of turnover leads to complete coarsening

Mass-conserving RD models exhibit a complete coarsening process in that the final steady-
state pattern is either mono-modal (periodic or reflective) or monotonic (reflective only)
depending on the boundary conditions, as has been proved explicitly for several models
[17–20]. We find the same coarsening behaviour here (Fig. 7D). In our simulations, we only
obtain the half-peak solution for very short domains i.e. when the width of the interface is
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Figure 8: Absence of turnover leads to coarsening.(A) A single peak in the mass conserved limit
δ = 0 can be positioned anywhere on the domain. No peak movement is observed (B) The
mass-conserved system exhibits complete coarsening. Irrespective of how many peaks there
are initially, the pattern eventually coarsens to a single peak, the position of which depends
on which peak of the initial pattern has not coarsened. In (B) Γ = 19200 (L = 10).

comparable to the domain length. If the domain length or other parameters are chosen such
that there is initially more than one peak then the coarsening process results (eventually) in a
single interior peak (Fig. 8A). In this limit, since peaks do not move, the position of this final
peak is purely determined by whichever peak of the transient state remains after coarsening
i.e. the steady state peak does not respect the symmetry of the system (reflective). We tested
these conclusions by initialising the system with a single preformed peak (constructed as
a translation of the non-mass conserved steady-state solution). We found that pre-formed
peaks are indeed stable solutions that do not move (Fig. 8A). Thus, the mass-conserved case
b = 0 with reflective boundary conditions has a continuum of single-peak states across the
domain, whereas there is at most one unique single-peak solution (regularly positioned)
for b > 0. This implies that regular positioning is not an intrinsic property of the system
determined by its symmetry but rather depends on the parameter b. In the next chapter,
we show an analogous simpler system of point sinks exhibiting similar dynamics. These
results demonstrate a connection between peak movement towards the regular positioned
configuration and the flux of mass through the system. In the successive chapters, we study
a simpler system of moving point sinks. We prove analytically that the regular positions
balance the flux across the sinks and minimise the mass of the diffusive species. We discuss
the similarity of this simpler system to moving Turing peaks and show that they are identical
in the regime of low mass flow.
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M O V E M E N T A N D R E G U L A R P O S I T I O N I N G O F P O I N T S I N K S

In this chapter, we discuss an illustrative toy model involving diffusion and moving point
sinks. We will see that this is a simpler and more tractable model to understand the
movement of peaks in the more complicated Turing system. We consider the steady-state
diffusion equation for a substrate variable A = A(x) over a 1D domain x ∈ [−L/2, L/2]
in the presence of global source and decay terms. There exist n localised point sinks at
positions x = (x1, · · · , xn) (each with rate µ):

D
d2A
dx2 + cδ− δA−

n

∑
i=1

µLδ(x− xi)A = 0 . (3.1)

We impose zero-flux boundary conditions. As before Eq. (1.36a), we write the global
source term in terms of the decay rate δ and a concentration c, which is the steady-state
concentration in the absence of the point sinks. A simpler system without the decay term and
with perfect points sinks (i.e. µ→ ∞) was used by Ietswaart et al. to model the positioning
of plasmids within rod-shaped bacterial cells [14]. They found that the flux (gradient
differential) across each sink vanishes if and only if the sinks are regularly positioned and,
therefore, if sinks were to move up the concentration gradient, they would be regularly
positioned. We extend this result to the more complicated case of equation Eq. (3.1) in the
presence of decay terms. The decay term introduces an additional diffusive length scale√

D/δ, which is the distance that a molecule of A would diffuse (if it does not encounter
any point sinks) before it decays. It is small when either diffusion is slow or the decay rate δ

is fast.
We can write the solution to Eq. (3.1) as

A(x) = c−∑
i

µ′iG(x; xi) , (3.2)
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24 3. Movement and regular positioning of point sinks

where G(x; xi) is the modified Green’s function defined by

−L2

κ2 Gxx(x; xi) + G(x; xi) = Lδ(x− xi)

Gx(±
L
2

; xi) = 0,
1
L

∫ L
2

− L
2

G(x; xi)dx = 1 ,
(3.3)

where the dimensionless parameter κ = L
√

δ
D is the ratio of the length of the domain to the

length-scale of diffusion. The coefficients µ′i = µ′i(x) are determined by the linear algebraic
conditions

µ′i = λA(xi) i = 1, . . . , n

= λ

(
c−∑

j
µ′jG(xi; xj)

)
,

(3.4)

where we define a second dimensionless parameter λ = µ
δ , the ratio of the sink and

background decay rates. The quantities µ′i are directly related to the flux Ji leaving the
system via the imperfect sinks,

Ji = Ji+ + Ji−

= −D ∑
j

µ′j
[
Gx(x+i ; xj)− Gx(x−i ; xj)

]
,

where Ji = |D dA
dx | and the − and + subscripts refer to the diffusive flux from the left and

right respectively. We also define the flux differential across each sink as

∆Ji =
1
2
(Ji+ − Ji−) (3.5)

= −D
2 ∑

j
µ′j
[
Gx(x+i ; xj) + Gx(x−i ; xj)

]
. (3.6)

3.1 fluxes balance at regular positions

To evaluate flux across the sinks we have to solve the coupled Green’s function equation
Eq. (3.3) and the algebraic equation Eq. (3.2). The explicit form of Green’s function is

G(x; xi) =
κ

2
cosh (κ x+xi

L ) + cosh (κ |x−xi |−L
L )

sinh (κ)
. (3.7)
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3.1 Fluxes balance at regular positions 25

where the second term describes the effect of the point sinks. The derivative G(x; xi) with
respect to x is discontinuous at x = xi

Gx(x; xi) =


κ2

2L
sinh(κ x+xi

L )−sinh(κ xi−x−L
L )

sinh(κ) − L
2 ≤ x < xi

κ2

2L
sinh(κ x+xi

L )+sinh(κ x−xi−L
L )

sinh(κ) xi < x ≤ L
2 .

Note the following property

Gx(x+i ; xj)− Gx(x−i ; xj) = −
κ2

L
δij . (3.8)

Using this, the flux differential ∆Ji defined in Eq. (3.5) can be written as

∆Ji = −D ∑
j

µ′j

[
Gx(x+i ; xj) +

κ2

2L
δij

]
. (3.9)

We define the regular position x̄ as the equally spaced configuration across the domain,

x̄i =
L
n

i− L
2
(

1
n
+ 1), (3.10)

Property I

To evaluate the flux differential at regular positions we note the following properties of
the Greens functions. Summing over the Gij = G(x̄i, x̄j),

∑
j

Gij =
κ

2
coth(

κ

2n
) ∀ i, (3.11)

where we have used the expression for regular positions x̄ from Eq. (3.10) and the
identity,

n

∑
j=1

cosh(
κ

n
(j + m)) = csch(

κ

2n
) sinh(

κ

2
) cosh(

κ

2n
(2m + n + 1)).

Property II

Since the summation of the Greens Function G over any of its rows or columns is the
same Eq. (3.11), the vector of ê = (1, 1, ....1)n, is an eigenvector of G. The defining
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26 3. Movement and regular positioning of point sinks

equations for the µ′ Eq. (3.4), at regular positioning x = x̄, we obtain the matrix equation

(λG + 1)µ′(x̄) = λcê . (3.12)

Since ê is an eigenvector of λG + 1, we must have that

µ′(x̄) = C1ê ,

i.e. all the µ′i are necessarily identical at regular positions or equivalently, the profile of
A is symmetric. We can sum over any row and use Eq. (3.11) to find

µ′i(x̄) =
λc

1 + λ κ
2 coth ( κ

2n )
. (3.13)

Property III

We can similarly define a matrix G+
x by evaluating the derivative of the Green’s function

at regular positioning (G+
x )ij = Gx(x̄+i ; x̄j). Summing over the j th column we find

∑
j
(G+

x )ij = −
κ2

2L
(3.14)

in this case by using the identity,

n

∑
j=1

sinh(a(j + m)) = csch(
κ

2n
) sinh(

κ

2
) sinh(

κ

2n
(2m + n + 1)).

As in Ietwaart et al., we can determine the configurations for which the flux differentials
are all zero. The flux differential across each sink is given by Eq. (3.6). We evaluate this
expression for regularly positioned sinks x = x̄. Using the fact that all µ′j are identical for
regularly positioned sinks Eq. (3.13) and equation Eq. (3.14), it follows immediately that the
flux differentials vanish at regular positions

∆J(xi) = 0 ∀xi Result I (3.15)

While we have shown above that regular positions balance flux differentials across the
sinks we need to show that it is indeed a unique configuration. We perform a power series
expansion of ∆Ji in κ and assuming that the configurations are κ-independent (we find no
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3.2 Mass minimisation at regular positions 27

evidence for the existence of such κ dependent states from numerically solving the system)
we have,

µ′i = µ0i + µ2iκ
2 + ...

G(xi; xj) = G0(xi; xj) + G2(xi; xj)κ
2 + ... ,

We first expand µ′i and G′(xi; xj). For the lowest order terms, we find first that G0(xi; xj) = 1.
Inserting this into the defining equation for the µ′i (Eq. (3.4)), we have

µ′0i = (c−∑
j

µ′0j)λ ∀ i

which has solution,

µ′0i = µ′0 =
λc

1 + nλ
. (3.16)

We then have

∆Ji

δL
= − D

δL ∑
j

µ′j

[
Gx(x+i ; xj) +

κ2

2L
δij

]

= −1
2

[
n

∑
j=1

µ′j
sinh(κ xi+xj

L )

sinh(κ)
+

i

∑
j=1

µ′j
sinh(κ xi−xj−L

L )

sinh(κ)
−

n

∑
j=i+1

µ′j
sinh(κ xj−xi−L

L )

sinh(κ)
+ µ′i

]

= − µ′0
2L

[
n

∑
j=1

(xi + xj) +
i−1

∑
j=1

(xi − xj − L)−
n

∑
j=i+1

(xj − xi − L)

]
+ O(κ2)

= −nµ′0
L

[
xi −

L
n

i +
L
2
(

1
n
+ 1)

]
+ O(κ2) . (3.17)

Hence, all the flux differentials ∆Ji vanish for regularly positioned sinks xi = x̄i =
L
n i− L

2 (
1
n +

1). Since for any zero of ∆Ji(x), all terms in the κ expansion must vanish independently
and as we have shown previously that x̄ is a solution to the full equation, it suffices to show
uniqueness for the κ0 term.

3.2 mass minimisation at regular positions

The total mass (concentration) of A(x) is readily given by integrating equation Eq. (3.2)

M(x) =
1
L

∫ L
2

− L
2

A(x)dx = c−
n

∑
i=1

µi . (3.18)
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28 3. Movement and regular positioning of point sinks

We would like to show that the regularly positioned configuration is the unique κ-independent
stationary point of M. Hence, we calculate the derivative of M,

∂

∂xm
M
∣∣∣∣

x=x̄
= − ∂

∂xm
∑

i
µ′i

∣∣∣∣∣
x=x̄

.

Using Eq. (3.4) (µ′i = λ(c − ∑j µ′jG(xi; xj))), we can evaluate the derivative of ∑i µ′i with
respect to an arbitrary sink position xm,

∂

∂xm
∑

i
µ′i = −λ ∑

i,j
µ′jGxm(xi; xj)− λ ∑

i,j
G(xi; xj)

∂

∂xm
µ′j,

Evaluating this expression at regular positioning, and defining C := ∑j G(x̄i; x̄j) =
κ
2 coth( κ

2n )

from equation Eq. (3.11), we obtain

(
1
λ
+ C)

∂

∂xm
∑

i
µ′i

∣∣∣∣∣
x=x̄

= −∑
i,j

µ′jGxm(xi; xj)

∣∣∣∣∣
x=x̄

.

From Eq. (3.13) we know that all the µ′j are identical at regular positions. Hence, we just need

to evaluate the derivative of the Green function ∑i,j Gxm(xi; xj)
∣∣∣

x=x̄
. Inserting the definition

of G(xi; xj) from equation Eq. (3.7) we have

∑
i,j

Gxm(xi; xj)

∣∣∣∣∣
x=x̄

=
κ

2 sinh(κ) ∑
i,j

∂

∂xm

[
cosh(κ

xi + xj

L
) + cosh(κ

|xi − xj| − L
L

)

]∣∣∣∣∣
x=x̄

=
κ2

2L sinh(κ) ∑
i,j

[
δmi

(
sinh(κ

xi + xj

L
) + sgn(xi − xj) sinh(κ

|xi − xj| − L
L

)

)

+ δmj

(
sinh(κ

xi + xj

L
)− sgn(xi − xj) sinh(κ

|xi − xj| − L
L

)

)]∣∣∣∣
x=x̄

=
κ2

L sinh(κ) ∑
i

[
sinh(κ

xm + xi

L
) + sgn(xm − xi) sinh(κ

|xm − xi| − L
L

)

]∣∣∣∣∣
x=x̄

=
κ2

L sinh(κ)
[− sinh(κ)− sinh(−κ)] = 0

where the last line follows from noting that the summations are the same as in equation
Eq. (3.14) but without the i = m term. Hence, we have shown that regular positioning is a
stationary configuration of the total mass

∂

∂xm
M
∣∣∣∣

x=x̄
= 0 .
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3.2 Mass minimisation at regular positions 29

To show that regular positioning is the (κ-independent) unique stationary point, we proceed
as in the previous section and perform a power series expansion of M,

M = M0 + M2κ2 + · · · (3.19)

It then suffices to show uniqueness for the first non-trivial order in the expansion. For the
Green’s function, we have

G0(xi; xj) = 1, G2(xi; xj) =
x2

i + x2
j − L|xi − xj|

2L2 +
1

12
.

We already saw that µ′0i = µ′0 = λc
1+nλ and hence M0 is a constant. Inserting these into the

equation for µ′2i using Eq. (3.4),

µ′2i = −λ ∑
j
(µ′2j + µ′0jG2(xi; xj)), (3.20)

we obtain

M2 = −∑
i

µ′2i

=
λ

1 + nλ
µ′0 ∑

i
∑

j

(
x2

i + x2
j − L|xi − xj|

2L2 +
1
12

)
. (3.21)

The derivative of M2 is then proportional to

∂

∂xm
∑

i
∑

j

[
x2

i + x2
j − L|xi − xj|

]
=

∂

∂xm

[
2n ∑

i
x2

i −∑
i

∑
j≤i

(xi − xj)L−∑
i

∑
j>i

(xj − xi)L

]

=
∂

∂xm

[
2n ∑

i
x2

i − L(∑
i

ixi −∑
i
(n− i)xi −∑

i
∑
j≤i

xj + ∑
i

∑
j>i

xj)

]
= [4nxm − L(m− (n−m)− (n−m + 1) + m− 1)]

= 4n
[

xm −
L
n

m +
L
2
+

L
2n

)

]
(3.22)

which vanishes only for the regularly positioned configuration

xm = x̄ =
L
n

m− L
2
(

1
n
+ 1). (3.23)
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30 3. Movement and regular positioning of point sinks

Hence, we have shown that regularly positioned sinks are the unique κ-independent con-
figuration for which the total mass, M, is stationary. Based on our numerical results, we
assume that this configuration is generically a minimum.

Hence we have shown that the regular positioned configuration x̄ is al a stationary point
of the mass M, i.e.

∂

∂xi
M(x)

∣∣∣∣
x=x̄

= 0 ∀ i. Result II (3.24)

Based on our numerical observations, we conclude that this stationary point is generically a
minimum.

3.3 moving point sinks

Therefore, if we add time dependence to the system by specifying the sink velocities as
being proportional to their flux differential. We can make sink movement explicit and
given our results above, two natural choices are to take the sink velocities as either directly
proportional to the flux differentials ∆Ji,

dxi

dt
= ν∆Ji(x) Result III (3.25)

or to the derivative of the mass M(x) with respect to the sink positions

dxi

dt
= −n

2
νD

∂

∂xi
M(x) , Result IV (3.26)

where ν is some parameter and the choice of pre-factor is for later convenience (see box
below). For the latter choice, the system is analogous to that of n over-damped particles
moving in a potential U(x)/kBT = nν

2 M(x). Importantly note that while the velocities in
equation Eq. (3.25) are specified in terms of local quantities, in Eq. (3.26), they are specified
in terms of the global quantity, M(x). Thus if sinks move up the concentration gradient (in
the direction of greatest flux) or along the ”mass potential”, they will be regularly positioned.

Furthermore, the connection between regular positioning and mass minimisation appears
to be generalisable and we have observed numerically that it holds for spatial sinks i.e.
if the delta function in Eq. (3.1) is replaced by a peak-shaped spatial function such as a
Gaussian function or sech2(x), then the total mass is minimised when the sink is centred
at mid-domain. In either case, the steady-state solution consists of regularly positioned
sinks as this is the only configuration for which the fluxes balance and for which the mass
is at its unique minimum. This holds as long as δ > 0. For δ = 0, all the velocities vanish
identically and the sinks don’t move. Hence all sink positions are stable in that limit. This is
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3.3 Moving point sinks 31
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Figure 9: Moving point sinks are regularly positioned and their movement depends on the diffusive
length-scale. (A) Flux differential across a point sink is calculated analytically as a function
of sink position x1 for two values of κ. (B) When ∆J is linear in x1 the sink moves
exponentially to mid-domain. The flux differential across a point sink is linear in sink
position for κ � 1. It vanishes in the middle of the domain. (C) Mass M in the system
as a function of sink position for a single-point sink is plotted in blue. The Mass is
minimal as the sink approaches the middle of the domain. (D) Sample trajectories of the
two-sink system. White lines are sample trajectories obtained using Eq. (3.25), while the
overlaid red dashed lines are trajectories obtained using Eq. (3.26). The coloured contour
shows the total mass M as a shown as a function of the sink positions. The minimum
occurs at the steady-state configuration (sinks at opposite quarter positions). Parameters:
D = 0.3, λ = 166.1, c = 1, L = 1, ν = 1. κ = 0.21 in (B) and (C). In (D) L = 2.

reminiscent of the behaviour that we found in the previous section for the mass-conserved
Turing system.
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32 3. Movement and regular positioning of point sinks
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Figure 10: Point sink movement under changes in δ and D. (A). Figure 9B reproduced for comparison.
(B). With all other parameters remaining the same as in (A) κ is increased by changing δ.
The sink moves faster to the middle of the domain. This is because the flux through the
system is increased. (C) Same as (B) but κ is changed via D instead of the delta. In this
case, the higher value of κ leads to slower movement. This is because the lower diffusive
length scale means that there is less flux exiting the system through the sink (and the total
flux through the system (cδL) is unchanged). (D). A sample trajectory of the sink (with
parameters of A) is plotted in blue using Eq. (3.25) (dynamics due to the flux-differential).
Overlaid dashed lines are the result of dynamics using Eq. (3.26) in the main text, with the
sink moving on a mass potential. Parameters: µ = 1, c = 1, ν = 1 across all panels. κ and
corresponding changes in δ and D are indicated on top of each panel.

Dynamics of n sinks

We consider again the limit κ � 1. Then, the flux differential up to lowest order in κ is
given by Eq. (3.17),

∆Ji

cδL
= −n

L
λ

1 + nλ

[
xi −

L
n

i +
L
2
(

1
n
+ 1)

]
+ O(k2), (3.27)
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3.3 Moving point sinks 33

where we have used the expression for the lowest order term of µ′ from Eq. (3.16),

µ′0 =
λc

1 + nλ
.

The derivative of M up to second order in κ from Eq. (3.22),

D
cδL

∂M
∂xi

=

(
λ

1 + nλ

)2 ∂

∂xi
∑
i,j

G2(xi; xj) + O(k4),

=
2n
L

(
λ

1 + nλ

)2 [
xi −

L
n

i +
L
2
(

1
n
+ 1)

]
+ O(k4)

(3.28)

where we have used the second order expansion of G(xi; xj) in κ (Eq. (3.22)). Taken
together, the above equations imply that in the low mass flow limit δ → 0 (κ → 0,
λ→ ∞)

∆Ji = −
1
2

nD
∂M
∂xi

. (3.29)

Therefore in that limit, the dynamics of the point sinks are equivalently specified by

dx1

dt
= −ν

n
2

D
∂M
∂xi

. (3.30)

Geometry sensing

Let us consider the case of a single sink, n = 1, in more detail. We focus on the regime κ � 1
in which the diffusive length-scale is much longer than the domain size. We expand in κ to
find first

µ′1
c
≈ λ

λ + 1
− λ2

λ + 1

(
x2

1
L2 +

1
12

)
κ2 + O(κ4)

and then

∆J1

cδL
= −1

2
µ′1
c

sinh(2κ x1
L )

sinh(κ)

≈ − λ

λ + 1
x1

L
+ O(κ2) . (3.31)

If κ � 1, then the flux differential across the sink depends linearly on its relative displace-
ment from the mid-domain. For sufficiently strong sinks (λ� 1), the proportionality factor
is linear in δ, just as we observed for the Turing system (Fig. 3B). As κ increases, the flux
differential becomes inflected about x1 = 0 (Fig. 9A). Heuristically, if the diffusive length
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34 3. Movement and regular positioning of point sinks

scale is much shorter than the domain size (κ � 1), then only particles initially created
near the sink will fall into it. Therefore the flux differential is only non-zero close to the
boundaries (or another sink) resulting in the breakdown of geometry sense. On the other
hand, when the diffusive length scale is much longer than the domain size (κ � 1), particles
can explore the entire domain before decaying and so the flux differential across the sink
reflects its position on the domain, with the fluxes into the sink from either side balancing at
mid-domain. The relevance of this interesting aspect of geometry sensing to Turing systems
will be made clear later.

If we consider sinks moving on a much slower timescale than that of diffusion, we can use
the steady-state solution for A(x) given in equation Eq. (3.2) to solve the dynamic system
Eq. (3.25). We find, as expected, that a single sink moves exponentially to the mid-domain
(Fig. 9B). We also find that increasing δ, which increases the flux through the system, leads
to faster sink movement (Fig. 10) reminiscent of the Turing system (Fig. 7B). On the other
hand, if we decrease D, which decreases the diffusive length-scale without affecting the flux
through the system, the sink moves more slowly towards the mid-domain (Fig. 10). We also
considered the system with two sinks and confirmed that the steady-state solution consists
of quarter-positioned sinks, the configuration that minimizes the total mass of A (Fig. 9D).

We can also use the steady-state solution of A(x) to make explicit a correspondence
between the two choices for the sink velocities. While the steady states of the two systems
are identical, their dynamics are not in general the same. However, we found that when δ

is small (or in terms of the dimensionless parameters: λ� 1, κ � 1), the two expressions
become equivalent. This equivalence was apparent even for our default parameter set - the
sink trajectories arising for either choice were almost identical (Fig. 9D).
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4

M O V E M E N T O F T U R I N G P E A K S

In the previous chapter, we noticed a striking similarity between moving point-sinks (Fig.
9) and the movement of peaks in a Turing pattern (Fig. 3 and 7). It suggests that the
movement and resultant steady-state positions of peaks in a Turing pattern may be due to a
dependence of the peak velocity on the flux differential (of the fast species across a peak
of the slow species) or due to the total mass of the fast species acting (approximately) as a
potential energy surface. Note that we restrict ourselves to Turing patterns consisting only
of interior peaks, as boundary peaks are not amenable to a point sink approximation. First,
we introduce the following definition of the flux differential into the peak of a single-peak
Turing pattern:

∆Js(t) = Du

∫ L/2
−L/2

∂u(x,t)
∂x v(x, t)dx∫ L/2

−L/2 v(x, t)dx
. (4.1)

If v is proportional to a Dirac delta function with the property limε→0+
∫

δε(x) f (x)dx = f (0),
an approximation we will use below, this expression reduces to the flux differential of u,
defined similarly to Eq. (3.5). We note that a similar expression has already been used to
describe the flux into a spatial sink in the context of plasmid positioning [29]. We initialised
the system with a single peak and monitored ∆Js as a function of the peak position and
velocity. We found that similar to the point sinks (Fig. 9C), the flux differential is, away from
the domain boundaries, directly proportional to the displacement from the mid-domain
position (Fig. 11A). Thus, the peaks move with a velocity proportional to the flux differential.

However, it is not obvious how to extend the definition of the flux differential to patterns
with multiple peaks as well as to higher dimensions in which Turing patterns can consist of
complex structures such as stripes, spirals and hexagons. The concept of mass minimisation
on the other hand is more tractable. To make an analytical comparison of the moving peaks
to moving sinks we study the singular spike limit in the Turing system.
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36 4. Movement of Turing peaks

4.1 the singular limit - spike approximation

In the singular limit Dv � Du, the peaks in v take the form of narrow spikes or pulses of
width ε = O(

√
Dv/γ) (Fig. S3). This limit allows the use of non-linear analysis methods to

study the existence, stability and dynamics of Turing patterns (see [16] for a review). Away
from the spike, v is approximately constant with a value vout that is much smaller than u.
Here, our goal is simply to derive an approximation for u in this limit by treating the spikes
of v as Dirac delta functions as described below.

We look for steady-state solutions consisting of n spikes at positions x1, · · · , xn. We assume
that the substrate species u changes slowly within each spike and so can be approximated by
a constant ui and within each spike ui � v. First, we introduce the inner coordinate (within
each spike), yi = (x− xi)/ε. We then have the following system for the inner variable vi(y)

Dv

ε2
d2vi

dy2
i
+ βuiv2

i − (γ + δ)vi = 0

vi → 0 as yi → ±∞ ,

which gives

vi =
3
2

γ + δ

βui
sech2(

√
γ + δ

Dv

εyi

2
) . (4.2)

In the outer region, each spike is approximated by a weighted Dirac delta function and we,
therefore, replace the v and uv2 terms with Dirac delta functions with weights w1 and w2

given by

wi,1 = ε
∫ ∞

−∞
vi(yi)dyi = 6

√
Dv(γ + δ)

βui

wi,2 = εui

∫ ∞

−∞
v2

i (yi)dyi = 6
√

Dv(γ + δ)3/2

β2ui

respectively, where we have use the expression for vi(yi) from Eq. (4.2). Note that since
O(wi,1) = 1 (each spike must have finite weight), we find that O(ui) = ε and therefore
O(vi) = ε−1. Away from the spikes, v is taken to be a constant vout. Therefore from
Eq. (1.34b) we have

βu(u + vout)
2 − (γ + δ)vout = 0 (4.3)

in the outer region. Given that u and vout must both scale to leading order with a positive
power of ε (due to the condition 1

L

∫ L/2
−L/2(u + v)dx = c), this equation implies that O(u3) =

O(vout), i.e. in the spike limit vout � u in the outer region.
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4.1 The singular limit - Spike approximation 37

We obtain the outer equation for u by replacing the v terms at the spike with weighted
delta functions:

Du
d2u
dx2 −

n

∑
i=1

[
β(2u2

i wi,1 + wi,2)− γwi,1
]

δ(x− xi)

−δvout + cδ− δu = 0 , (4.4)

where we used Eq. (4.3) to simplify the outer contribution. We can neglect the u2
i term since

O(u2
i ) = ε2 and the vout term since O(vout) < O(u) to arrive at

Du
d2u
dx2 +cδ− δu−

n

∑
i=1

ρ

u
Lδ(x− xi) = 0 (4.5)

with ρ = 6
√

Dv
L

δ
√

γ+δ
β . Note the inverse dependence on u in the point sink term (which

we call an inverted sink). This form is also obtained for other Turing systems with a uv2

non-linearity, such as the Schnakenberg and Brusselator models [25, 30] as we show in the
next chapter and appendix respectively.

Following the approach of the previous section, the solution to Eq. (4.5) is given by

u(x) = c−∑
i

ρ′iG(x; xi) , (4.6)

where the Green’s function is defined as for point sinks Eq. (3.7) but in terms of the

corresponding dimensionless parameter κ = L
√

δ
Du

, the ratio of the length of the domain to
the diffusive length scale of u (henceforth κ replaces b in the set of dimensionless parameters
of the system). The coefficients ρ′i = ρ′i(x) are now determined by the non-linear algebraic
system

ρ′i = σ
c2

u(xi)
i = 1, . . . , n . (4.7)

where σ = ρ
c2δ

= 6
√

b+1
a
√

Γ
is the second dimensionless parameter of Eq. (4.5). The inverse

dependence on u(xi) makes solving this algebraic system challenging. For a general choice
of sink positions xi, there are n coupled quadratic equations in ρ′i, and therefore up to 2n

real solutions. However remarkably, this multiplicity of solutions collapses in the spike limit
σ→ 0, in which the only physical solution is

ρ′ = c G−1ê Result V (4.8)

where Gij = G(xi; xj) and ê is the column vector with all unit entries as taking the limit
σ→ 0, equation Eq. (4.7) becomes ρ′i(c−∑j ρ′jG(xi; xj)) = 0. Since taking any ρ′i = 0 gives a
solution of the system without the ith spike, these are unphysical solutions.
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38 4. Movement of Turing peaks

This is precisely the same solution obtained in the perfect sink limit λ → ∞ of the point
sink system Eq. (3.2). Thus, in the singular spike limit, steady-state solutions of the Turing
system are equivalent to that of a system of perfect sinks, a surprising equivalence is given
the inverted pre-factor in Eq. (4.5).

4.2 spike dynamics

We consider the case of a single arbitrarily positioned spike. From Eq. (4.6) the solution is
given by

u(x) = c− ρ′1G(x; x1). (4.9)

where, for a given spike position x1, from Eq. (4.7) there are two solutions for ρ′1

ρ′1± =
c

2G(x1; x1)

(
1±

√
1− 4σG(x1; x1)

)
(4.10)

with

G(x1; x1) =
κ

2

[
cosh( 2κx1

L )

sinh(κ)
+ coth(κ)

]
(4.11)

The flux differential across the spike is given by,

∆J1± = −D
2

ρ′1±
[
Gx(x−1 ; x1) + Gx(x+1 ; x1)

]
= −1

2
δL

sinh(2κx1/L)
sinh(κ)

ρ′1± .
(4.12)

Non-dimensionalising and Taylor expanding around κ = 0 we obtain,

∆J1±
cδL

= −
(
1±
√

1− 4σ
)

2
x1

L
+O(κ2) . (4.13)

Hence, in the limit κ � 1 we find a similar linear dependence of the flux-differential on the
sink position x1 as for the ’non-inverted’ case discussed earlier.
In the limit σ→ 0, the non-trivial solution of ρ′1 is

ρ′1 =
c

G(x1; x1)
. (4.14)
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4.2 Spike dynamics 39

The derivative of the mass with respect to the spike position x1 is,

∂M
∂x1

=
∂

∂x1
(c− ρ′1) =

c
G(x1; x1)2

∂G(x1; x1)

∂x1

=⇒ ∂M
∂x1

=
c

G(x1; x1)2
sinh(2κx1/L)

sinh(κ)
.

Then, in the limit σ→ 0 and κ � 1 the flux differential and mass derivative become,

∆J1

cδL
= −1

2
sinh(2κx1/L)

sinh(κ)
,

D
cδL

∂M
∂x1

=
sinh(2κx1/L)

sinh(κ)
.

Therefore, just like for point sinks, in this limit, the velocity ansatz for a single spike can be
expressed equivalently as,

dx1

dt
= ν∆J1 = −ν

1
2

D
∂M
∂x1

(4.15)

Note that σ→ 0 for spikes (inverted sinks) corresponds to λ→ ∞ for point sinks.

Dynamics of n spikes

Let us consider a solution to the Turing system consisting of n arbitrarily positioned
spikes. From Eq. (4.6) and Eq. (4.7) we have,

ρ′i = σ
c2

c−∑j ρ′jG(xi; xj)
, (4.16)

which form a set of n algebraic equations dependent on the peak positions. As σ→ 0,
the condition becomes

ρ′i(c−∑
j

ρ′jG(xi; xj)) = 0, ∀i .

Since ρ′i = 0 is a trivial solution (it corresponds to removing one spike from the system),
we must have

c−∑
j

ρ′jG(xi; xj) = 0, ∀i .

Now taking κ � 1 we expand the above equation in powers of κ and collect terms of the
lowest order. We have,

ρ′0j =
c
n

, (4.17)
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40 4. Movement of Turing peaks

where ρ′j = ρ′0j + ρ′2jκ
2 + O(κ4) and G(xi; xj) = G0(xi; xj) + G2(xi; xj)κ

2 + O(κ4). Next
collecting terms of order κ2 we have,

c−∑
j

ρ′0jG2(xi; xj)−∑
j

ρ′2jG0(xi; xj) = 0. (4.18)

We see that the above equation is similar to the case of point sinks in the limit λ � 1
and κ � 1. Following similar arguments to that case (with M = c−∑j ρ′j and expansion
of M in powers of κ, M = M0 + M2κ2 + ...) we find that the derivative of the mass with
respect to xi is given by

D
cδL

∂M
∂xi

=
2
n

∂

∂xi
∑
i,j

G2(xi; xj) + O(κ4), (4.19)

=
2

nL

[
xi −

L
n

i +
L
2
(

1
n
+ 1)

]
+ O(κ4). (4.20)

The flux differential across a spike is given by

∆Ji = −
D
δL ∑

j
ρ′j

[
Gx(x+i ; xj) +

κ2

2L
δij

]
.

Expanding the above expression lowest order in κ and following the same steps as for
point sinks, we find

∆Ji

cδL
= − 1

L

[
xi −

L
n

i +
L
2
(

1
n
+ 1)

]
+ O(κ2) (4.21)

Hence, in the limit σ→ 0 and κ → 0 the spike velocity can be written as,

dxi

dt
= ν∆Ji = −ν

n
2

D
∂M
∂xi

. (4.22)

We conclude that while the two definitions for the spike velocity (flux differential and
mass potential) are different in general, they become identical in the limit σ→ 0, κ → 0.

4.3 comparison to numerical simulations

To compare the movement of peaks in the simulations with the analytical calculations above,
we initialise the peaks at different positions (by translation of the steady state pattern) and
monitor the evolution of the system. In Fig. 11A (single peak), we calculate the mass of the
fast species, M(t) =

∫ L/2
−L/2 u(x, t)dx, and the flux on the peak ∆Js Eq. (4.1) at each time step
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Figure 11: The mass of u is minimised at regular positions. (A) Flux differential measured numerically
using equation Eq. (4.1) for a single spike (orange) is a linear function of the peak position.
The mass of the fast species M (blue) is minimised at the mid-domain. See also Fig.
S3 (B) The same quantities as in (A) but for the analytical expressions from the spike
approximation (Eq. (4.13) and M = c − ρ̂′1+). (D) Mass minimisation for two peaks.
Trajectories of two peaks as they move towards opposite quarter positions (white lines).
The contours and colour bar represent the mass M interpolated from trajectories. The
mass is minimised for regular positioning. (D) Same as (C) but trajectories obtained from
the approximation of peaks as spikes using equation Eq. (4.23). Parameters: L = 2 in (A)
and (B), L = 4 in (C) and (D); Dv = 0.0012, otherwise default. This gives σ = 0.0146 in (B)
and σ = 0.0073 in (D)

as the peak approaches mid-domain. We find that the flux across a single peak is consistent
with our numerical observations (Fig. 11B) and just as we found for the non-inverted sinks
in the previous section (Fig. 9C). Furthermore in the spike limit, from Eq. (4.13) we find that
σ → 0, ∆J1 = cδx1 is linear in δ, consistent with our numerical observations (Fig. 7B). We
also find that M1 = c− ρ′+, the total mass of u, is minimised at mid-domain (Fig. 11B). Note
that we only ever observe spikes with large amplitudes, i.e. patterns in which almost all
the mass of the system is contained within spikes. So we assume that the low amplitude
solution is unphysical for finite σ and not just in the spike limit σ→ 0 (or possibly unstable
in the context of the time-dependent system). However, while the mass and flux differential
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42 4. Movement of Turing peaks

displayed very similar qualitative profiles (Fig. 11B), the agreement was not quantitative. In
particular, the flux differentials disagree by an order of magnitude. This is likely because
the analytic flux differential is defined at the interface region between the inner and outer
solutions, which is the precise location where the approximation is not accurate.

To understand the dynamics of two peaks, we generated the contours of M by simulating
the Turing system with 200 different initial peak positions (x1, x2) (some of which are
overlayed in white) and interpolated the mass of u from the trajectories (Fig. 11C). It is
important to note that it is not clear how to define the flux differential across each peak
in the case of multiple peaks. Similarly, in Fig. 11D, we solved the nonlinear algebraic
system in Eq. (4.7) for different sink positions (x1, x2). Of the 4 different solutions, we obtain
we choose the one with the lowest total mass M. The similarity between the numerical
observation (Fig. 11C), the spike approximation in Fig. 11D and the system of point sinks in
the previous section (Fig. 9D) is apparent. In all cases, the steady-state solution consists of
quarter position peaks/spikes that minimise the mass of u.

Hence, the observation that peaks in a Turing pattern move with a velocity proportional
to the flux differential across them (Fig. 7A, B, Fig. 11A, Fig. S3) suggest that the spike
approximation can be extended to account for spike movement by specifying the spike
velocities as

dxi

dt
= ν∆Ji(x) , (4.23)

where ν is some unknown parameter. By the correspondence with point sinks, this expression
becomes mathematically equivalent in the spike limit σ → 0 and low mass-flow regime
κ → 0 (or equivalently δ → 0) to a description in which the mass M acts as potential
and the sinks as over-damped particles as in Eq. (3.26). Together with Eq. (4.7), Eq. (4.23)
defines a differential-algebraic system for the dynamics of n spikes. However, not all spike
configurations are stable. Based on our numerical simulations, stable solutions consist only
of regularly positioned symmetric spike solutions with peaks of the height (ρ′i = ρ′), just as
observed for the full Turing system itself. Consistent with this, the flux differentials of these
solutions vanish, ∆Ji(x̄) = 0, via the properties of the Green’s function, just as for the points
sinks of the previous section.

4.4 summary

To summarise the results so far, we have shown that the movement and positioning of peaks
in a Turing pattern are akin to that of a system of moving point sinks. Firstly, the regular,
periodic steady-state positions are a result of the flow (creation, diffusion, decay) of mass
through the system, and not by some dominant linear mode. The steady-state configuration
is the one for which all the flux differentials balance and this is also the configuration that
minimises the total mass of the fast species. We found empirically that the movement of
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4.4 Summary 43

peaks (in the slow species) is well described by the peak velocity being proportional to the
flux differential of the fast species across it. Furthermore, in the spike limit, this is equivalent
to the total mass of the fast species acting as a potential through which the peaks move as
over-damped particles. While this does not imply that the mass or some other function acts
as a potential away from this limit (i.e. that ∆J is a conservative vector field in general), and
indeed the trajectories specified by such a relationship are less consistent with the numerical
results, the mass is nonetheless minimal at the steady-state configurations (Fig. 4A, C). In
the next section, we will see that we can use the steady-state mass to compare the ‘energy’
of patterns with different numbers of peaks and in this way predict the preferred number of
peaks at steady state, and not just their positions.
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M A S S M I N I M I S AT I O N A N D PAT T E R N S E L E C T I O N

In this chapter, we address the question of pattern selection in two-component reaction-
diffusion systems, i.e starting from homogeneous initial conditions which select the number
of peaks (in 1-D) in the final steady state pattern. We have seen that in the mass-conserved
limit δ → 0, the model exhibits a complete coarsening effect in which the only stable
patterns consist of a single peak positioned somewhere in the interior of the domain (Fig.
7D) or, on a shorter domain, an interface. As previously observed, the model exhibits
incomplete coarsening for small δ . With our default parameters (with L = 4, δ = 0.014),
linear stability predicts that mode n = 8 (a pattern with four peaks) will dominate (Fig. 3A).
While this is true initially, as the pattern evolves, it subsequently coarsens so that we most
frequently obtain two peaks (dominated by mode n = 4)(Fig. 3B, C, 4D). We never observe
a pattern with four peaks as expected by linear stability analysis. This coarsening effect is
also referred to as competition instability and has previously been studied in the context of
spike solutions [25–27]. To our knowledge, there is currently no general guiding principle to
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Figure 12: Numerical simulations are inconsistent with linear stability analysis. (A) The number of
peaks in the most frequent steady-state pattern is plotted as a function of a and κ. Each
point represents the most frequent pattern steady-state pattern from 5 simulations. (B)
The number of peaks in the fastest-growing mode predicted by linear stability analysis is
plotted as a function of a and κ.
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Figure 13: Mass minimisation predicts peak number in the illustrative model. (A) An example steady
state solution in the spike limit. (B) Normalised total mass M/c = 1− nρ′+/c plotted as a
function of n. There exists a critical n for which the mass is minimal.(C) Normalised total
mass M/c = 1− nρ′+/c plotted as a function of κ. As κ increases patterns with a higher
number of peaks have a lower mass. (D) The numerically obtained distribution of peak
number at steady state for different values of κ (colour scale) overlaid with the prediction
of the dominant pattern from linear stability (green triangles) and the prediction from
mass minimisation (red circles). Mass minimisation correctly predicts the number of peaks
at a steady state. Data from 50 simulations for each parameter set. Parameters: Default
values as in Figure 3 with L = 4 except (C)-(E) which use Dv = 0.006 (to make peaks
narrower).

determine which pattern is finally obtained at a steady state (especially in the presence of
coarsening). It is important to note that this is a much narrower question than asking which
patterns are stable (tells you which patterns are allowed for a particular set of parameters)
since Turing systems like our model are generally multi-stable.

It is clear that flow rate δ plays a role in coarsening. We measured the distribution of
steady-state patterns obtained for different values of δ (through the dimensionless parameter

κ = L
√

δ
Du

) and compared against the prediction of linear instability (Fig 12A, B). We used
periodic boundary conditions to avoid peaks on the boundary that are not amenable to the
spike approximation. We found that for κ & 1 linearly stability analysis correctly predicts
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5.1 Minimal mass and peak number selection in our model 47

the dominant mode at steady-state. However, for κ . 1, a coarsening process occurs and
the steady-state pattern is dominated by a lower mode than that predicted. Our previous
observations on the role of the diffusive length scale κ can help explain this disagreement.
When the diffusive length scale is longer than the domain size κ . 1, all peaks v compete
for u molecules created across the domain (the peaks feel each other). Whereas, when the
length-scale is short κ & 1, peaks only absorb molecules of u created within a distance given
by the diffusive length-scale and therefore compete less or not at all. Also important to note
that decreasing δ also decreases the total flux through the system (cδL) resulting in more
competition.

5.1 minimal mass and peak number selection in our model

We next studied our illustrative model in the spike limit developed in the previous chapter
4.1. We decreased Dv from the default value so that the obtained pattern was reasonably
spike-like (Fig. 13A) while at the same time not resulting in a very much enlarged Turing
space (since we want to sweep over different values of δ). We considered only symmetric,
regularly positioned spike solutions, which are the only observed steady-state solutions
numerically. This implies,

u(xi) = c−∑
j

ρ′jG(xi; xj) = c− ρ′∑
j

G(xi; xj).

We showed in Eq. (3.11) that

∑
j

G(xi; xj) =
κ

2
coth(

κ

2n
).

As in the case of the point sinks the flux differential across the spikes vanishes for the
regularly positioned configuration ∆Ji(x̄) = 0. We then have

ρ′ =
σc2

(c− ρ′ κ2 coth κ
2n )

. (5.1)

Solving for ρ′, we find two solutions

ρ′± =
c

κ coth ( κ
2n )

[
1±

√
1− 2σκ coth (

κ

2n
)

]
(5.2)

with corresponding total masses

M± =
1
L

∫ L
2

− L
2

udx = c− nρ′±. (5.3)
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Figure 14: Mass minimisation is surprisingly accurate in the non-spiky regime. (A). Figure 12A
is reproduced with a changed colorbar for comparison with the predictions from mass
minimisation. (B). The number of peaks in the pattern with the lowest the total mass
M is plotted as a function of a and κ. (C). We perform a direct comparison of results
between numerical simulations in (A) and predictions in (B). The prediction is surprisingly
accurate (beige dots) for large regions of the Turing space. Though, it is inaccurate (black
dots) when κ � 1 or a� 1, as patterns have a baseline and peaks are now much broader
respectively (see inset). (D). Same as Figure 13D in the main text but for default parameters
(peak like solutions). Mass minimisation correctly predicts the number of peaks at steady
state, even though it is less accurate than the spike case. Data from 50 simulations with
random perturbations from the homogeneous state for each parameter set. Parameters:
Default with L = 4. For (D) we sweep across κ (black line in (A) and (B)) for the default
value of a = 3.75.

As previously discussed, for n spikes, we obtain two possible values of ρ′, of which we take
the larger, ρ′+ (the other corresponds to extremely weak spikes i.e. ρ′− ≈ 0). This gives a
solution u(x) = c− ρ′+ ∑i G(x; x̄i) with mass

M/c = 1− n
1 +

√
1− 2κσ coth( κ

2n )

κ coth( κ
2n )

. (5.4)
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5.1 Minimal mass and peak number selection in our model 49

Note that for a real solution we must have 1 > 2κσ coth( κ
2n ). Therefore, for a given choice

of parameters, there is an upper bound on the number of spikes that a solution can contain.
In general, a solution exists for multiple values of n. However, numerically, we observe a
very narrow distribution of the number of peaks (Fig. 4, Fig. 13D). We hypothesised that
mass minimisation might play a role. Indeed, when we examined the mass M of solutions
consisting of different numbers of spikes at their respective steady-state positions, we found
that the mass is minimal for a specific number of spikes (Fig. 13D). This could also be easily
seen by plotting the mass as a function of κ for different values of n (Fig. 13C). The value of
n at the minimum decreases with κ, with a single spike being minimal at κ → 0. The curves
invert so that as κ is increased multiple spikes produce the lowest mass. Given that we have
already shown that the mass of u(x) is minimal at the steady state, we hypothesised that
it could also be used to compare solutions with different numbers of peaks and therefore
identify a preferred ‘minimum energy state.

We compared the number of spikes predicted by this mass minimisation principle (the n
that minimises the mass in Eq. (5.4)) against the distribution of patterns obtained numerically
(starting from a small random perturbation around the uniform state). We found remarkable
agreement (Fig. 13D, red circles). Mass minimisation correctly predicts the most frequent
pattern obtained over the entire range of κ, including, most importantly, the regime in which
coarsening occurs. There is deviation only at the transition points and close to exiting the
Turing regime at high κ. In contrast, as expected, the linear prediction only agrees for the
highest values of κ, i.e. close to onset (Fig. 13D, green triangles). Remarkably, the prediction
was also reasonably accurate even when the solution is much broader and not spike-like, as
for our default parameter set (Fig. 14). Thus, mass minimisation not only explains where
the peaks of a Turing pattern are positioned but also how many peaks there will be at a
steady state after any coarsening has taken place. Importantly, it does so far from the onset
and hence outside the region where weakly non-linear approaches such as the amplitude
equations are valid.

Numerics with periodic boundary conditions

where we use periodic boundary conditions,

u|x=−L/2 = u|x=L/2, u′|x=−L/2 = u′|x=L/2,

v|x=−L/2 = v|x=L/2, v′|x=−L/2 = v′|x=L/2.

As the pdepe does not support such boundary conditions, we used the package Periodic
Reaction-Diffusion PDE solver 1. The initial conditions were taken to be random perturba-
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Figure 15: Peak movement in other reaction-diffusion system.
(A). Brusselator model. Kymograph of a single peak pattern moving exponentially to the
mid-domain. Parameters: a = 2, b = 0.001, Γ = 1500, d = 100. (B). Kymograph of a single
peak pattern in Schnakenberg model.

tions around the homogeneous steady state (drawn from a normal distribution with a
standard deviation of 1%).

5.2 mass minimisation in other rd models

To investigate the generality of these results, we performed a similar analysis of the Brus-
selator and the Schnakenberg model. Upon numerically simulating these systems with
reflective boundary conditions, we also observed a similar movement of peaks to regular
positions as was observed in our model (15 A, B). This indicated that turnover might affect
peak movement in these systems as well.

The Brusselator model also has the form of a mass-conserved model with additional
production and decay terms and a dimensionless parameter b characterising the mass flow
through the system (with b = 0 being the mass-conserved limit) Eq. (A.1). Following the
same approach as above, we derived an expression for the total mass, M, of the fast species
of symmetric n-spike solutions

M =
6n(b + 1)3/2

a
√

Γ
+

Γb
12d(b + 1)n2 . (5.5)

This mass is again minimised for a particular number n = nc of spikes and we found this
minimum to be an excellent predictor of the final pattern obtained after coarsening (Fig.
17A). Note that the lack of the background decay term in Eq. (A.7) and Eq. (A.14) means
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5.2 Mass minimisation in other RD models 51

that unlike for Eq. (4.5) and Eq. (3.1), there is no concept of a diffusive length-scale in the
Brusselator, or rather, the diffusive length-scale is infinite as decay occurs only through the
point sinks.

In our illustrative model Eq. (1.34), the parameter δ (or the dimensionless parameter
κ) controlled both the flow of mass through the systems (the limit to a mass conserved
model) and the diffusive length-scale. While coarsening increases as the system approach
the mass-conserved limit, it only occurs when the diffusion length-scale is longer (κ smaller)
than some critical threshold, as this is the point at which peaks begin to compete with each
other for the substrate i.e. u. In the Brusselator, since the diffusive length-scale is infinite,
peaks always compete and as a result coarsening is observed at all values of δ (compare to
Fig. 17A with Figure 13D).

Finally, we performed a similar analysis on the Schnakenberg model. Unlike the previous
two, this model does not have a mass-conserved Turing system as a limit. Likely as a
result of this, we find no evidence of dynamic coarsening instability. Nevertheless, the
final steady-state pattern is often not precisely predicted by linear stability. Applying
the spike approximation, we found that the outer equation of this model, and hence
the expression for the mass of the fast species, has the same form as for the Brusselator
(Eq. (A.20)). On comparing the number of peaks predicted by minimizing the mass and by
linear stability analysis, we found that while the two approaches were in broad agreement,
mass-minimisation was the better predictor of the obtained pattern.
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Figure 16: Turing space of Brusselator model. (A). The number of peaks in the most frequent steady-
state pattern of the Brusselator model is plotted as a function of model parameters a
and
√

b (see Appendix A, B). For each set of parameters, the most frequent pattern was
obtained from 10 simulations each initialised with a different random perturbation from
the uniform state. The simulations were run for long enough to ensure the steady-state
pattern was reached. (B). The number of peaks in the mode with the greatest growth rate
as predicted by linear stability analysis is plotted as a function of a and

√
b. Coarsening

was observed over much of the range of
√

b and the disparity with the linear stability
prediction increase as b→ 0. Parameters: d = 100 with Du = 1, Dv = 0.01 and Γ = 15000.
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Figure 17: Mass minimisation is good predictor of the final steady state pattern in other models. (A)
As in Fig. 13D but for the Brusselator model. The numerically obtained distribution of
the number of peaks at steady state for different values of

√
b (colour scale) is overlaid

with the prediction of the dominant pattern from linear stability (green triangles) and
the prediction from minimisation of the mass of the fast species Eq. (5.5) (red circles).
Mass minimisation again correctly predicts the number of peaks at a steady state. Data
from 500 simulations for each parameter set. Black line in Figure 16(A) and (B) shows the
range of

√
b values used within the (a,

√
b) Turing space. Parameters: d = 100, a = 3.75,

Γ = 15000. (B) Mass minimisation in the Schnakenberg model. Same as A and 13D but for
the Schnakenberg model. We see that in the limit of well-separated spikes (d→ ∞) mass
minimization (red circles) is a better predictor of the number of peaks in the final steady
state pattern than linear stability analysis (green triangles). Parameters. a = 1.1, Γ = 9000.
Data from 50 simulations with random perturbations from the homogeneous state for
each parameter set.

While we can not exclude the possibility that mass-minimization is only predictive for
patterns consisting of well-separated peaks as studied here, the consistency of the results over
three different systems and surprising agreement even in the non-spiky regime nonetheless
hints at a fundamental property of Turing systems and warrants further study.
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M A S S M I N I M I S AT I O N C A P T U R E S T H E F I N I T E S I Z E E F F E C T S FA R
F R O M O N S E T

In this chapter, we briefly discuss the effect of changing domain size on the selection
of patterns. As discussed previously, the wavelength of Turing patterns depends on the
boundary conditions and the domain size. Below we discuss the appearance of Finite-size
effects in our reaction-diffusion system for small values of δ. We show that at low flow, mass
minimisation predicts the number of peaks in the final pattern, even in the presence of Finite
size effects. Note that this regime is far from the onset, so linear stability analysis fails to
predict the steady state. This provides further credence to mass minimisation as a general
principle guiding pattern formation in reaction-diffusion systems.

6.1 effects of changing domain size on steady state

In a reaction-diffusion, we expect the number of peaks in a pattern to scale linearly with
the domain size (the number of peaks doubles with domain length doubling) [1]. At small
length-scales, where the wavelength of the pattern is smaller than the size of the domain,
this linear scaling breaks down. The effect of discreteness of the lattice is called Finite size
effects. In the simulations of our Turing model Eq. (1.34), we find that for high values of δ

we have a clear linearity between increasing domain length L and the number of peaks in
the most frequent final pattern (Fig. 30A, purple line). Interestingly, the domain length Ln at
which a 1 peak pattern transitions to a 2 peak pattern increases with decreasing δ. Note that
the further transition in peak numbers (2− 3, 3− 4, ...) scale linearly with increasing L. We
wondered if this effect is captured by mass minimisation.

In agreement with the numerical simulations, we find that for the smallest value of
δ = 0.005 in Figure 18A, mass minimisation predicts that the number of peaks in the
minimal pattern does not double with domain size doubling (Fig. 18B). The mass of the
fast species as a function n has a minima at a value much smaller than an integer (Fig.
18B). Hence, the pattern with the minimal mass is predicted to have a single peak. As we
double the domain size (from L = 2 to L = 4) we find that the minima is still below n = 1
resulting in a single peak prediction for the steady state pattern. Finally, we found good
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54 6. Mass minimisation captures the finite size effects far from onset

agreement between the transition lengths Ln observed in the numerical simulations starting
from homogeneous conditions and Lm predicted by mass minimisation for different values
of δ (Fig. 18C (blue and red dots), D).

A B

C D

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

1

L n/L
m

δ
0 0.01 0.02 0.03 0.04 0.05 0.06

0

1

2

3

4

5

6

7

8

Tr
an

si
tio

n 
Le

ng
th

 (L
n)

Random initial conditions (Ln)

Mass minimisation prediction (Lm)

Growing domain

δ

0 1 2 3 4 5 6 7 8
n (Number of Peaks)

0

40

80

120

160

200

M
 (M

as
s 

of
 u

)

L= 2
L= 4δ = 0.005

0 2 4 6 8 10
L

0

1

2

3

4

5

M
os

t f
re

qu
en

t n
um

be
r o

f P
ea

ks

δ = 0.005
δ = 0.011
δ = 0.022
δ = 0.044

transition length (Ln)

Figure 18: Mass minimisation measures the finite size effects far from the onset. (A) The number of
peaks in the most frequent final pattern is plotted as function domain length L. As an
indication transition from 1 peak to 2 peaks does not scale with domain doubling. As δ
is decreased, a single peak doubles at longer lengths (transition length Ln). (B) Mass of
fast species u plotted as a function of peak number n. For small values of δ� 1 doubling
the domain size, L does not double the number of peaks nc due to finite size effects. (C)
Transition length (Ln) from different methods plotted as function of flow rate δ. Transition
length decreases with increasing δ and asymptotically approaches L = 2 as expected in
the absence of Finite size effects. Also, predictions of transition length from 1 to 2 peaks
from mass minimisation Lm match reasonably well with numerical simulations starting
from random initial conditions Lm and with on growing domain Lg. (D) The ratio of data
from (C) Ln/Lm shows that mass minimisation is accurate for finite δ. Parameters: Default
parameters other than Du = 1, Dv = 0.01.

6.2 coarsening on growing domains

In Turing’s original hypothesis he envisioned that morphogenesis could occur via two
independent processes where reaction-diffusion equations establish spatial patterns on a fast
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6.2 Coarsening on Growing domains 55

timescale, while the developmental fate of these patterns is cued by the growth of the cell.
This decoupling of timescales allowed us to study pattern formation independently of cell
growth. Here, we discuss pattern formation in our RD system Eq. (1.34) on a slowly growing
domain [31] to illustrate the effect of coarsening in pattern selection. Here we show that
mass minimisation also captures the finite size effect in the presence of a growing domain.

To numerically simulate the reaction-diffusion equations on a growing domain, we use
the following conservation equation for the evolution of the spatial pattern on Ωt,

d
dt

∫
Ωt

c(x, t)dx =
∫

Ωt

[
∂c
∂t

+
d

dx
(pc)

]
dx (6.1)

where c =

[
u
v

]
,p(x, t) is an velocity associated with volumetric growth. Hence, evolution

equations for the components in 1-D become,

∂c
∂t

+
d

dx
(pc) = D

∂2c
∂x2 + R(c) (6.2)

where R(c) =

[
f (u, v)
g(u, v)

]
and D =

[
d
1

]
. The velocity is determined by the local rate of

growth,

p(x, t) =
∂x
∂t

(6.3)

Consider isotropic growth of a 1-D domain is given by,

x(t) = Xr(t), r(0) = 1,

where X is an initial position marker on the domain, and r(t) is the growth function. The
flow is then determined by,

p(x, t) = Xṙ = x
ṙ
r

.

Hence, Eq. (6.2) becomes,

∂c
∂t

+
ṙ
r

[
x

∂c
∂x

+ c
]
= D

∂2c
∂x2 + R(c)

We transform our system to the unit domain,

x′ =
x

L(t)
, t′ = t, (6.4)
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Figure 19: Scaling in a growing domain. A slowly growing domain with a growth rate of g = 0.05
is simulated. (A) In presence of high flow we are close to onset (δ = 1.019) the patterns
double with domain doubling. (B) In the presence of low flow (δ = 0.014), the pattern
splits eventually. We see that the time for a single peak to split (t1) is greater than for 2
peaks to split into 4 (t2), indicating finite size effects for small domain sizes. We call this
the quasi-scale invariant regime. (C) A single peak is inserted with no flow (δ = 0). The
pattern width scales with domain size and does not split as t→ ∞.

where the domain length is L(t) = L0r(t). We note that,

∂c
∂t′

=
∂c
∂t

+ x
ṙ
r

∂c
∂x

. (6.5)

Since r is independent of position the transformation eliminates the advection term. Drop-
ping the primes leads to the transformed equation,

∂c
∂t

=
1

L(t)2 D
∂2c
∂x2 + R(c). (6.6)

where we have neglected the decay term as for small ṙ, c ṙ
r is much smaller than the linear

terms in R(c).
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6.2 Coarsening on Growing domains 57

To study the effect of coarsening on a growing domain, we simulated the RD system
from our model equations using an exponentially growing domain with L(t) = L0 exp (gt)
(from Eq. (1.34) and Eq. (6.6)) where we set g = 0.05 as the growth rate (we use reflective
boundary conditions). Hence, the domain length doubles every td = ln(2)

g = 13.86. In the
presence of high flow δ = 1.109 (close to the bifurcation point), we find that the number of
peaks double exactly with domain size doubling tsplit ≈ 13.8 (Fig. 19A). In the absence of
flow δ = 0, we find that the initial pattern with a single peak stays locked in its position and
its width scales with the length of the domain, resulting in a broad mesa peak at steady
state (Fig. 19C). This is also referred to as scale invariance [32], which is observed in many
biological systems [33–35]. Our model, offers a simple way of generating scale invariance
which has wider consequences in modelling biological systems.

Finally, for our default value of δ = 0.014, we find that the pattern splits as the domain
grows and the peaks are at regular positions. We observe finite size effects for smaller
domain sizes as the peak doubling from 1 to 2 takes much longer t1 = 29 than the successive
doubling from 2 to 4 peaks with t2 = 13.8 (Fig. 19B). Note that doubling time t2 ≈ td � t1.
Similar to the comparisons in the previous section, we wondered whether these Finite size
effects observed in the low flow δ� 1 regime are explained by mass minimisation. Hence,
we performed the growth simulations with periodic boundary conditions. Indeed, we find
a striking agreement between the split length Lm predicted by mass minimisation and the
split length Lg from the growth simulations (Fig. 19C). This agreement was even better
as compared to the numerical simulations starting from random initial conditions. We
speculate that mass minimisation might capture the depth of the basin of attraction of the
final steady state pattern better as compared to its width.
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D I S C U S S I O N A N D F U T U R E D I R E C T I O N S

“A pattern exists in some data is real, if there is a
description of the data that is more efficient than
the bit map, whether or not anyone can concoct
it.”

— Daniel Dennett, Real Patterns (The Journal of
Philosophy, 1991)

One of the main challenges in understanding pattern-forming Turing systems is the
prediction of which pattern will be obtained, not only at onset, i.e. at entry into the parameter
space giving patterns but generically for any parameter values. While the dominant mode
from linear stability analysis is a good predictor in some regimes, non-linear effects mean
that it can be inaccurate on the entire parameter space. Furthermore, as we have argued,
linear stability analysis alone cannot explain the periodic nature of final patterns nor the
regular positioning of peaks within the domain (with reflective boundary conditions), which
occurs dynamically in several settings that are outside of the linear regime (e.g. domain
growth, coarsening, initialised peaks). Weakly non-linear approaches, such as the method of
amplitude equations, do exist but they are much less useful far from the onset where we
still lack a general theory of pattern dynamics and selection.

Here, we have presented evidence that the flow of mass through the system is responsible
for the movement and regular positioning of peaks in a Turing pattern. We also showed
that the number and positions of peaks at a steady state are such that the mass of the fast
species is minimised. This simple principle correctly predicted the preferred steady-state
pattern for both our model and the Brusselator even far from the onset and in the presence
of coarsening and for the Schnakenberg model, in the well-separated spike limit. We expect
that this will guide the development of new non-linear approaches for the study of pattern
selection, far from the onset.

The insight came from analysing the behaviour of a diffusive system consisting of point
sinks that move with a velocity proportional to the gradient. We showed that the flow of
mass through such a system leads to sinks being positioned symmetrically and evenly across
the domain (regularly positioned), as this is the unique configuration for which the gradient
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60 7. Discussion and Future directions

across each sink vanishes. We also showed that this configuration uniquely minimises the
total mass of the fast species in the system. Consistent with this, we showed that in the low
mass-flow regime, the total mass acts as a potential and the sinks as over-damped particles.

We found that the peaks of the Turing system also move toward the regularly positioned
configuration with the same dynamics as the moving point sinks and at a rate directly
proportional to the rate of mass flow through the system. In doing so, the system minimises
the total mass of the fast species u. In the singular limit Dv → 0, in which the peaks of the
Turing pattern become narrow point-like spikes [16], an analytical approximation showed
that u is indeed described by diffusion in the presence of point sinks but where the Dirac
delta function terms have a 1/u pre-factor. Nevertheless, in the singular limit, solutions are
that of a system of perfect sinks Eq. (4.8). However, for Dv > 0 the ‘inverted’ sink term (1/u
coefficient) leads to the total mass of u having a non-trivial dependence on the number of
spikes and the rate of mass flow through the system. As a result, there is a critical number
of spikes (and hence wavelength) that minimises the mass of u. We, therefore, hypothesised
that the mass of u, the fast species, could act, at least approximately, as a multi-well potential
i.e. that it could be used to assign, energy to patterns with different numbers of peaks and
thereby identify the preferred steady state. In particular, we asked whether it could predict
the steady-state pattern selected after the coarsening that occurs in our model. We found
that this ‘mass minimisation’ principle could indeed predict, almost perfectly, the obtained
patterns (Fig. 13D) and we confirmed this for another Turing system, the Brusselator (Fig.
17A). It also gave a better prediction of the dominant pattern for the Schnakenberg model,
which does not exhibit coarsening (Fig. 17B). Importantly, we are predicting which pattern
is selected (most frequently observed) at a steady state and not which patterns are stable.
While the latter has already been studied for spike and mesa solutions in the Brusselator
(see [16] for a review), to our knowledge much less is known about the former.

The two models with coarsening studied here have a parameter δ controlling the flow of
mass through the system and the degree of coarsening. In the mass-conserved limit δ = 0,
they display complete coarsening down to a single peak, a seemingly generic property of
two-component mass-conserved reaction-diffusion systems that have been proved explicitly
for several systems [17–20, 36–38]. This complete coarsening is correctly predicted by mass
minimisation in both models for δ = 0 with the mass of the fast species being minimal for
only a single peak.

We speculate that complete coarsening (the only solution is a single or a half peak on the
domain) is due to the absence of mass flow through the system rather than mass-conservation
per se. Consistent with this, the feed and decay terms in our model and the Brusselator
can be replaced with linear couplings to a sufficiently well-mixed third species, i.e. we can
embed the open system inside a larger closed system. The result is a three-component mass-
conserved model with the same pattern-forming behaviour, including partial (incomplete)
coarsening. Indeed, this was the precise form of the previously investigated model [21].
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While the entire three-component system is mass-conserved, there is still mass flow through
the ‘subsystem’ of the original two variables (u and v), the rate of which controls the degree
of coarsening.

Finally, we have shown that mass minimisation captures the Finite-size effects in reaction-
diffusion systems far from the onset. For small values of flow δ, the linearity between domain
length doubling and peak doubling break down due to the discreteness of the patterns. We
find that the mass minimisation captures the length at which the peaks split both starting
from random initial conditions and for patterns on a growing domain.

generality of results

We have shown analytically (in the spiking regime) and numerically that mass minimisation
of the fast species predicts the preferred steady state patterns for our illustrative model, the
Brusselator and Schnakenberg model. The outer equation for u obtained in the singular limit
Dv � Du Eq. (4.5), has the same form in all of the substrate-depletion type models such as
the Brusselator (Appendix A), Schnakenberg (Appendix B) and the Gray-Scott model [26,39].
Indeed all these models exhibit the same peak movement towards the regularly positioned
configuration (Fig. 15). Substrate-inhibition models that have peaks of the two species
overlapping, such as that of Gierer and Meinhardt [40], also exhibit peak movement towards
regular positions. However, the outer equation of these models has a point source term
rather than a point sink (positive δ-term) [41]. The validity of mass minimisation in such
systems remains to be tested.

Do our results hold for regimes outside the well-separated spike limit? While it is
currently unclear and testing it would require an analytical description of other solution
types (mesas, spots, stripes etc). This is beyond the scope of the current work. However, the
following observation suggests to us that mass minimisation of the fast species may have
some deeper connection to pattern formation. If we assume the final pattern is selected
according to minimising the mass of the fast species, then that mass of the fast species must
be minimisable. We can therefore ask what would happen in a model in which the mass of
the fast species is a fixed constant at a steady state.

Consider the following class of systems:

∂tu = Du∂2
xu− f (u, v) + a− g(u)

∂tv = Dv∂2
xv + f (u, v) + b (7.1)

with Dv < Du and reflective or periodic boundary conditions. Note that at steady state the
mass of u is fixed by a measure g(u). We denote the stable fixed point of the homogeneous
system by (u0, v0). The functions f (u, v) and g(u) are arbitrary apart from the constraint
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that g′(u0) > 0. The integral
∫

g(·)dx then acts as a measure for u and all steady-state
solutions (ū, v̄) must have the same mass of u using this measure.

1
L

∫ L/2

−L/2
g(ū)dx = a + b.

The Jacobian at the homogeneous fixed point is given by,

J =

[
− fu − gu − fv

fu fv

]
, (7.2)

where fu, fv and gu are evaluated at the (u0, v0). If the fixed point is stable we must have

TrJ = − fu − gu + fv < 0

DetJ = −gu fv > 0 .

The latter relation implies that fv < 0. A necessary condition for Turing instability is that

−Dv

Du
( fu + gu) + fv > 0. (7.3)

However, since Dv < Du, this condition can never be satisfied. Hence, the general system
Eq. (7.1) does not admit a Turing instability, consistent with a general role for minimisation
of the fast species in Turing pattern formation. Note that there is no such restriction if
the decay term is placed only in the equation for v (like for the Brusselator Eq. (A.1) and
Schnakenberg models Eq. (B.1)) or in both equations (as in Eq. (1.34) and the Gray-Scott
model). Thus, for this general class of models, a Turing instability requires that the mass
of the fast species must not be generically a fixed constant at a steady state. Equivalently
stated, systems in which mass leaves the system through only the fast species cannot exhibit
a Turing instability. While u being minimisable is a fundamental requirement to apply
the mass minimisation principle its connection to the existence of patterns is unclear. We
speculate that for some classes of models spatial instability of homogeneous state is related
to the existence of a stable spatial solution for which the mass of the fast species is lower.
As expected by the mass minimisation principle, we numerically find that the steady-state
mass of the fast species u both in our model and the Brusselator is lower than its initial
mass (u0). Importantly, this does not depend on a specific parameter regime or solution
type. This is an interesting insight that deserves further investigation as it might mean that
mass minimisation is not just a useful tool to study pattern selection but is fundamental to
pattern formation in reaction-diffusion systems.
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I N T R O D U C T I O N T O B R I D G I N G D Y N A M I C S

“It can scarcely be denied that the supreme goal
of all theory is to make the irreducible basic
elements as simple and as few as possible without
having to surrender the adequate representation
of a single datum of experience.”

— Albert Einstein (On the Method of Theoretical
Physics lecture, 1933)

Chromosomes in all organisms are compacted nearly a 1000 times over to fit within
cells [42]. Importantly, the chromosome must be packaged in a specific way to be consistent
with DNA-related processes like replication, transcription, repair and segregation. Particu-
larly, this problem becomes more complicated inside bacterial cells where replication and
segregation occur concomitantly, rather than being temporally separated like in eukaryotes.
Recently, microscopy-based approaches have provided greater insight into the temporal
dynamics and spatial organisation of the bacterial chromosome. In concert with traditional
genetics and biophysical modelling new techniques continue to reveal remarkable insights
into the mechanisms involved in chromosome organisation and dynamics.

Time-lapse microscopy has provided insights into the temporal dynamics of chromosomal
loci. In slow growing E. coli the ori (origin of replication) resides near the mid-cell with
two chromosomal arms on either side and the ter (terminus) localised around the mid-cell
in a so-called left-ori-right-ter configuration [43]. Upon DNA replication and segregation,
the ori’s move to the quarter positions in the cell and ter moves from the poles to mid-cell.
The structural maintenance of chromosomes (SMC) complex, MukBEF in E. coli, is required
to maintain the mid-cell positioning of ori, while cells lacking mukB adopt a more polar
ori-ter configuration [44]. It is not clear whether MukB anchors ori proximal regions to
mid-cell or the non-polar regions. There is evidence however that MukBEF does indeed
associate with ori-proximal regions on the chromosome [44, 45], while there is no clear
evidence to suggest that SMC associates with the cell membrane. Recent experiments and
modelling seem to suggest that SMC promotes a traverse left-ori-right pattern by anchoring
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66 8. Introduction to bridging dynamics

origin-proximal regions to mid-cell [46]. While MukBEF is implicated in ori positioning, the
mechanism of MukBEF positioning was previously unknown. Recently, it was hypothesized
that MukBEF forms self-organised clusters positioned at quarter positions of a replicating
cell [21]. MukBEF also seems to play a role in the organisation of ter macrodomain, as it is
excluded at ter due to the presence of a protein MatP [47].

On shorter time scales, the diffusive dynamics of chromosomal loci have also been
characterised in vivo by measuring the scaling exponent α of the mean square displacement
MSD(τ) = 〈(r(t+ τ)− r(t))2〉 ∼ τα. However, while polymer theory predicts a sub-diffusive
scaling exponent of α = 2ν/(2ν + 1) ≈ 0.54 for a self-avoiding Rouse polymer (ν ≈ 0.588),
and α = 2/3 for a Zimm polymer in a good or theta solvent, irrespective of chain length
and topology [48, 49], values measured by tracking experiments are consistently less than
these estimates across different species, strains and conditions [50–55]. Fractional Brownian
motion (fBm) of chromosomal loci due to the viscoelastic nature of the cytoplasm has been
proposed as a possible explanation for this deviation [50, 56]. However, this model cannot
reproduce the rare but ubiquitous rapid chromosomal movements (RCMs) made by loci [57]
and its predictions are inconsistent with a recent study in which compression of the cell was
found to only affect the exponent of chromosomal loci and not cytosolic particles [53]. Other
mechanisms are therefore required to explain the observed low sub-diffusive exponent.

In this work, we focus on the role of Nucleoid Associated Proteins (NAPs) in determining
the chromosomal loci dynamics. NAPs are DNA-binding proteins that condense and
organise the bacterial nucleoid through bridging, bending and stiffening the DNA [58–60].
Imaging of fluorescently tagged NAPs which bind the DNA non-specifically, has revealed
an interesting twisty longitudinal structure of the nucleoid [61]. Recent work using high-
throughput chromosome conformation capture (HiC) has investigated how these proteins
affect the contact probability between any two chromosomal loci, with different NAPs
found to promote either short or long-range contacts [62]. The obtained two-point contact
probabilities have also been used in polymer models to specify an attractive potential
between monomers and thereby make predictions about the organisation of the chromosome
within the cell [63–66]. However, a bottom-up study of the effect of DNA bridging on
bacterial chromosome organisation and dynamics has yet to be performed.

Previous theoretical studies of bridging-like behaviour have been mostly in the context of
the networks and gels formed by associative polymers [67–69]. More recently, at the other
extreme of high bridge density, computational models have explored how the resulting
globular state can explain the organisation of eukaryotic chromatin [70–77]. However, there
has been no detailed study of the dynamics induced by bridging in the context of the coiled
(non-globular) bacterial chromosome.

Here, in the absence of a dynamical theory, we use polymer simulations to investigate
how DNA bridging affects the organisation and dynamics (scaling exponent) of the bacterial
chromosome [78]. We confirm that bridging can reduce the scaling exponent of individual
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monomers below the classic prediction of polymer theory and we characterise the depen-
dence on both the number of bridges and their lifetime, observing a linear relationship
between the number of bridges and the compaction of the polymer. Consistent with these
results, we show experimentally in E. coli that deleting the NAP H-NS results in an increase
in the scaling exponent compared to the wild type. We also find that bridging produces
monomer dynamics that display the same rare, rapid movements (RCMs) as have been
observed experimentally, i.e. movements inconsistent with fBm. Finally, we use the experi-
mentally observed mobility of loci to fix an internal timescale in our simulations and thereby
predict a lower bound for the average bridge lifetime.

Publication: Subramanian, S., Murray, S.M. (2022). DNA bridging explains sub-diffusive move-

ment of chromosomal loci in bacteria. bioRxiv. https://doi.org/10.1101/2022.11.18.517049

8.1 physics of polymers

In this chapter, we focus on the underlying theory of polymer dynamics and the implemen-
tation of bridging in our simulations. We model a segment of DNA as a self-avoiding linear
chain on a periodic cubic lattice (Fig. 20). Before we discuss our simulation framework, we
describe a few simple illustrative polymer models in brief. Polymers are random fractals
that display self-similar structures at finite length scales [48, 49, 79, 80]. Let us consider a
polymer chain made of N + 1 beads, with no interactions between distant beads (ideal chain).
The bond vector ri connects bead ai−1 to bead ai. The end-to-end vector is then the sum of all
N bond vectors on the chain,

RN =
N

∑
i=1

ri (8.1)

For an ideal chain, it can be shown that the average end-to-end vector is zero,

〈RN〉 = 0, (8.2)

where the angled brackets denote the ensemble average across different conformations of the
polymer. Since there is no preferred direction of bond orientation in this model, the average
end-to-end vector is zero. The more interesting, simplest non-zero and often measured
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A B
Polymers are Fractals

i

j

ri

rj

Rg

Figure 20: (A) Sketch of single polymer. Zoom-in shows the self-similar fractal structure at finite
length scales. (B) Bead on string model of a polymer, where monomers are represented by
blue spheres. Rg represents the radius of gyration of the polymer defined in Eq. (8.5).

quantity to characterize the size of the polymer chain is the mean-squared end-to-end
distance,

〈R2〉 ≡ 〈R2
N〉 = 〈RN · RN〉 =

〈(
N

∑
i=1

ri

)
·
(

N

∑
j=1

ri

)〉

=
N

∑
i=1

N

∑
j=1
〈ri · rj〉.

If we consider bonds of equal length b =| ri |, the dot product can be written as,

ri · rj = b2 cos θij.

Hence, the above quantity becomes,

〈R2〉 = b2
N

∑
i=1

N

∑
j=1
〈cos θij〉.

We now consider the freely jointed chain approximation, where the polymer has no correla-
tions between different bond vectors with 〈cos θij〉 = 0 for i 6= j and the non-zero terms in
the double sum for i = j is cos θij = 1. Hence, we get,

〈R2〉 = Nb2. (8.3)
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Ideal chains

We present a few important results without derivation [80]. A more general measure of
the size to characterize sizes of all kinds of polymers (branched or rings) is the square
radius of gyration defined as the averaged squared distance between monomers in a given
conformation,

R2
g ≡

1
N

N

∑
i=1

(Ri − Rcm)
2, (8.4)

where Rcm is the position vector of the centre of mass,

Rcm ≡
1
N

N

∑
j=1

Rj. (8.5)

For an ideal linear chain, we can show that the radius of gyration is related to end-to-end
distance as,

〈R2
g〉 =

Nl2

6
=
〈R2〉

6
. (8.6)

The probability distribution of the end-to-end vector of an ideal chain is described by a
Gaussian:

P3D(N, R) =

(
3

2πNb2

)
exp

(
− 3R2

2Nb2

)
. (8.7)

The free energy of an ideal chain is purely entropic and changes quadratically with the
end-to-end vector:

F =
3
2

kBT
R2

Nb2 . (8.8)

Real polymers

In a real polymer, we cannot ignore the interactions between different monomers along the
chain. The conformations of a real polymer with repulsive self-interaction are modelled by
Flory theory [48]. The extent to which a real chain swells up is the balance between energetic
and entropic contributions to free energy.
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70 8. Introduction to bridging dynamics

A polymer with N monomers, swollen to size R > R0 = bN1/2, we assume that the
monomers are uniformly distributed within the volume R3. The probability of finding
another monomer in the excluded volume v of a given monomer is v N

R3 . The energy of
exclusion per monomer then is kBTv N

R3 . For the entire chain,

Fint ≈ kBTv
N2

R3 . (8.9)

The Flory estimate of the entropic cost is given in Eq. (8.8),

Fent ≈ kBT
R2

Nb2 . (8.10)

The total free energy of a real chain then is,

F = Fint + Fent ≈ kBT
(

v
N2

R3 +
R2

Nb2

)
. (8.11)

Hence, the minimum of free energy gives the optimum size of a real polymer,

∂F
∂R

= 0 = kBT
(
−3v

N2

R4
F
+ 2

RF

Nb2

)
RF ≈ v1/5b2/5N3/5. (8.12)

The size of the real polymers is much larger than ideal chains with a similar number of
monomers. While the exponent 3/5 scaling obtained from Flory theory happens to be close
to the actual value of ≈ 0.588 obtained from more accurate methods (re-normalization theory,
Monte Carlo simulations), it is serendipitous as the overestimation of repulsive energy is
cancelled by not accounting for correlations along the chain. Finally, it is interesting to note
that Flory’s theory predicts a universal power scaling for polymer size:

R ∼ Nν. (8.13)

8.2 polymer dynamics

The random fluctuating motion of small particles in a liquid was observed by Robert Brown
and is often dubbed as Brownian motion. The displacement in 3D is proportional to the time
t, with the coefficient of proportionality being related to diffusion constant D,

〈[r(t)− r(0)]2〉 = 6Dt. (8.14)
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Figure 21: (A) Sketch of Rouse polymer made from beads connected by springs. (b) MSD scaling
with delay time τ is plotted. We find MSD ∼ τ0.5 and τ0.54 on short timescales τ < τR for
an ideal, self-avoiding chain respectively.

The Fluctuation dissipation theorem connects the random Brownian diffusion of particles with
the frictional force they experience due to viscosity,

D =
kBT

ζ
. (8.15)

Rouse Model

We now consider a model of the polymer that is made up of beads connected via springs.
Each bead has its own effective independent friction coefficient ζ. The total friction coefficient
is given by ζR = Nζ. The diffusion constant of the Rouse polymer is obtained from the
Einstein relation,

DR =
kBT
Nζ

(8.16)

The Rouse relaxation time τR, is the time it takes the polymer to diffuse a distance of the order
of its size,

τR ≈
R2

DR
=

ζ

kBT
NR2. (8.17)

We know from Flory’s theory that polymers are fractions with end-to-end distance R ∼ Nν.
We define a monomer relaxation time as τ0 ≈ ζb2

kBT , and a power law in the number of
monomers in the chain,

τR ≈ τ0N1+2ν. (8.18)
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72 8. Introduction to bridging dynamics

For an ideal linear chain, we have ν = 1/2 and the Rouse relaxation time is proportional to
the number of monomers in the chain,

τR ≈ τ0N2. (8.19)

Rouse modes

Let us consider the modes of the Rouse model. We know that the longest relaxation
mode is that of the entire polymer. Relaxation of the pth mode involves the relaxation of
N/p monomers on the polymer and from Eq. (8.18) has the scaling form,

τp ≈ τ0

(
N
p

)1+2ν

. (8.20)

where p = 1, 2, ..., N. Segments of the chain move a distance of the order of their size
b(N/p)2ν during the mode relaxation time τp. The mean squared displacement (MSD)
of monomer j during a time lag τp is given by,

〈[rj(τp)− rj(0)]2〉 ≈ b2
(

N
p

)2ν

≈ b2
(

τp

τ0

) 2ν
2ν+1

. (8.21)

Thus on intermediate timescales lower than the Rouse relaxation time τR the MSD scales
as,

〈[rj(τ)− rj(0)]2〉 ≈ b2
(

τ

τ0

) 2ν
2ν+1

for τ0 < τ < τR (8.22)

At time scales longer than the Rouse time the dynamics of the chain are diffusive. Hence
the MSD scales as,

MSD ∼ τ0.5 for a free Rouse polymer (8.23)

∼ τ0.54 for a self-avoiding polymer. (8.24)

8.3 polymer simulations

We used the Bond Fluctuation Method (BFM) [81, 82] to model the polymer dynamics
(Fig. 22A). This model is ergodic, allows a large set of bond angles and reproduces the
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Figure 22: (A) Representation of a Bond fluctuation Polymer. (B) Snapshot of the simulated polymer
(N = 400). Bridges form between spatially proximal monomers with a probability p and
have a mean lifetime λ.

Rouse polymer dynamics discussed above. This polymer moves only via local jumps of the
monomers. The moves do not conserve bond length but preserve the number of bonds. In
3D the monomer is represented by a unit cube and occupies eight lattice sites. Each cube
can only host a single monomer to model excluded volume. The bond vectors are typically
taken from a set of 108 vectors. The resulting allowed bond lengths are 2,

√
5,
√

6, 3,
√

10.
Furthermore, since bond vector lengths can have any of five values, the volume occupied by
the polymer depends on its conformation and, as we will discuss in the next chapter, on the
presence of bridges. We simulate a polymer of length N = 400, as it is computationally costly
to simulate longer polymers. We use a modified version of the open-source LeMonADE
software to simulate the BFM polymer and custom-add bridging functionality to it.

Volume Occupied. As each monomer is represented by a cube exclusively occupying
8 vertices, the set of lattice sites occupied by the polymer is the union of 3× 3× 3 cubes
around the monomers. We define this as the Voccupied by the polymer in the box. Based
on this measure, we find that our polymer of the length of 400 approximately occupies a
total of 8678 lattice sites. Hence, each monomer occupies 21.69 lattice sites on average. We
fix the lattice dimension L by using this volume measure to match the volume density of
chromosome in the cell (∼ 1%)

ρ =
Voccupied

L3 =
8678

L3 = 1%. (8.25)

This fixes the dimension of the lattice L = 95 lattice units. To compare the simulated
MSD data with experiments at short time lags we require sufficient spatial resolution at
∼ 0.004µm2, the MSD of chromosomal loci at 1 s lag [50, 52] (This will be made clear in later
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74 8. Introduction to bridging dynamics

chapters). We, therefore, fix the lattice spacing to be h = 0.0056µm. The number of base
pairs corresponding to a monomer in our simulations is given by,

base pair
monomer

=
Lg

Vc

Vb

N
(8.26)

where Vc ≈ 0.88µm3 is the volume of the cell, Lg = 4.5 Mbp the length of E. coli genome,
Vb = L3h3 the volume of the box. Hence, we simulate an 800 kb segment (approximately the
size of a macrodomain) of the chromosome with each monomer representing a 2kb segment
of the chromosome. We use periodic boundary conditions in our simulations.

Monte Carlo procedure

Each simulation is started from a random conformation of the polymer. Monomer
diffusion and bridging are implemented in the following manner,

1. Select a monomer at random and attempt a diffusive move (BFM algorithm).

2. Select a random monomer and if co-localised with another free monomer (distance
< 3 lattice units) attempt a bridge with probability p.

3. An un-bridging move is attempted on a random monomer with a probability 1
λ .

4. Repeat.

A set of N moves is defined as a single MCS and we sample every 500 MCS. Note that a
bridged monomer can still diffuse as long as the bridge partner is less than 3 lattice units
away. We start the Monte Carlo sampling after 5λ MCS to ensure sufficient equilibration
of the polymer.

Mean squared displacement

The ensemble-averaged MSD is defined in the following manner,

〈r2(τ)〉 = 1
N

1
T − τ

N

∑
n=1

T−τ

∑
t=1

[rn(t + τ)− rn(t)]
2 . (8.27)

We perform a linear fit to the logarithm of the MSD curves,

log(〈r2(τ)〉) = αlog(τ) + Dapparent (8.28)
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Figure 23: (A) The mean squared displacement (MSD) as a function of time lag τ with (orange) and
without bridging (blue). Bridging reduces the scaling exponent from α ≈ 0.56 to α ≈ 0.4.
Bridging parameters: p = 1.5× 10−3, λ = 4× 104 MCS. Standard error bars are smaller
than the thickness of the lines. (B) Velocity auto-correlation function (VAC) is negative at
short lags and collapses for different windows of τ/δ indicative of a sub-diffusive process.

up to a delay of 20000 MCS and obtain ensemble averaged α. The data in Fig. 24A are
obtained from 50 (λ ≤ 105), 30 (λ > 105) independent simulations for each parameter.
The ensemble-averaged MSD curves are calculated from tracks of every 20th monomer
on the polymer (600− 1000 tracks per parameter).

8.4 bridging reproduces sub-diffusive scaling exponent

We implement bridging between monomers using the Dynamic Loop model [46,70]. Any two
non-neighbouring monomers that are a distance of less than 3 lattice units apart can form
a bridge between each other with a probability p (Fig. 22B). Bridges dissociate randomly
with probability 1/λ, i.e. they have an average lifetime of λ in units of Monte Carlo Steps
(MCS). While bridged, monomers can still diffuse on the lattice subject to maintaining a
bridge length of less than 3 lattice units. Importantly, each monomer can only form one
bridge at a time.

We first confirmed that bridging reduces the scaling exponent of the mean square displace-
ment of a single monomer (23A), as has been previously shown using a similar model in the
context of looping of eukaryotic chromatin [70]. We found that bridging indeed lowers the
exponent: with a level of bridging that results in 28% of monomers bridged, the exponent
decreased from α ≈ 0.56 (close to the scaling theory prediction of 0.54 Eq. (8.24)) to α ≈ 0.4,
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Figure 24: (A) Phase diagram of the dynamic bridging model in the µ = pλ and λ space. Note that µ
is positively related to the percentage of monomers bridged. Contours indicate a fixed
exponent α. (B) Percentage of monomers bridged increases with µ and is independent of
bridge lifetime.

a value in line with experimental measurements [50]. To examine the dynamics further, we
measured the Velocity Auto-Correlation (VAC) function

VACδ(τ) =
1
δ2 〈(r(τ + δ)− r(τ)) · (r(δ)− r(0))〉 (8.29)

of individual monomers (with the velocity measured over time points δ MCS apart). We
found that bridging did not change the nature of the VAC (Fig. 23B), which remained
negative at short time lags with the lowest value at a lag equal to δ. This is indicative
of elastic or sub-diffusive dynamics and is consistent with experimental measurements of
chromosomal loci [83]. The VAC has previously been used to distinguish between different
models of sub-diffusivity like Fractional Brownian Motion (fBm) and Continuous Time
Random Walk (CTRW) [50, 56]. However, it is important to note that this nature of the
velocity auto-correlation function is true for any dynamics process that has an MSD that
scales as a power law (see below).

Velocity auto-correlation function

The velocity auto-correlation function Eq. (8.29) can be expanded as,

VACδ(τ) =
1
δ2

〈
r(τ + δ) · r(δ)− r(τ + δ) · r(0)− r(τ) · r(0) + r(τ) · r(0)

〉
. (8.30)
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we know that,

〈r(τ + δ) · r(δ)〉 = 〈r(τ + δ)2〉+ 〈r(δ)2〉 − 〈(r(τ + δ)− r(δ))2〉.

Hence we can re-write the VAC as,

VACδ(τ) = −〈(r(τ + δ)− r(δ))2〉+ 〈(r(τ + δ)

− r(0))2〉+ 〈(r(τ)− r(δ))2〉 − 〈0(r(τ)− r(0))2〉
= Dapp (| τ − δ |α + | τ + δ |α −2 | τ |α) . (8.31)

where we have assumed that the underlying process has an MSD that scales as a power
law in time lags. Hence, we find that the normalised VAC has the form,

VACδ(τ)

VACδ(0)
=
| τ − δ |α + | τ + δ |α −2 | τ |α

2δα
. (8.32)

This results in a negative peak for all values of δ, indicating a sub-diffusive process.
Furthermore, the negative peak is observed at τ = δ. We find that normalizing time by δ

results in a universal curve for all values of δ plotted (Fig. 23B).

Phase diagram of bridging

To systematically examine the effect of bridging, we varied the bridging probability p and
average bridge lifetime λ, and measured the percentage of monomers bridged and the
resultant scaling exponent α. We found that the percentage of bridged monomers does
not depend on the bridge lifetime individually but only on the product µ = pλ (Fig. 24A,
B). However, as a dynamical measure, the scaling exponent depends on both µ and λ; the
more bridges and the longer their lifetime, the greater the reduction of the scaling exponent.
However, short-lived bridges (λ . 104 MCS) have little effect on the exponent irrespective of
their number.
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B R I D G I N G C O M PA C T S T H E P O LY M E R

In this chapter, we study the effects of bridging on polymer conformations. We find that
bridging does indeed affect the polymer geometry by compacting it.

9.1 polymer size

Examining the effect of bridging on the organization of the polymer, we found a clear effect
of compaction (Fig. 25A). This could be quantified using the radius of gyration 〈R2

g〉 defined
as in Eq. (8.5) which measures the average size of the polymer. However, we found 〈R2

g〉 to be
a relatively noisy measure of polymer size (Fig. 25B), motivating us to look for an alternative.
The volume occupied by the polymer (V) as defined in section 8.3 was found to be a much
more robust measure (Fig. 25D). In Fig. 25C we plot ∆V ≡ Voccupied−Vno bridging

Vno bridging
as a function

of bridges and observe a linear decrease and a collapse across bridge lifetimes. The latter
confirms results from previous Brownian dynamics simulations that the polymer relaxation
time can be controlled (through the bridge lifetime) independently of the equilibrium
structure [84].

Bridging decreases the mesh size of the polymer

The compaction could also be seen by the reduction in the mesh size (from 120 nm without
bridging to 85 nm with bridging) (Fig. 26A). Here, we calculate the mesh size ξ from our
simulations. The probability of finding a monomer at a distance r and r + dr from another
randomly chosen monomer is given by 4πρr2g(r) dr, where ρ = 0.01 is the density of the
polymer and g(r) is a radial density function. For a semi dilute polymer with r � ξc, g(r) is
expected to have the form,

g(r) = 1 +
A
r

exp(−r/ξc) (9.1)

where A > 0 and ξc > 0. ξc is the correlation length of the polymer which is approximately
the same as the mesh size ξ for a semi-dilute polymer [85]. We calculate g(r) from our
simulations and fit to Eq. (9.1) and find the mesh size (ξ) for different parameters.
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Figure 25: (A) Example polymer conformations with and without bridging. (B) Radius of Gyration
〈R2

g/N〉 as function of Percentage Bridged. It is a noisy measure of the polymer size. (C)
The change in volume occupied relative to the non-bridging polymer ∆V decreases linearly
with bridging. (Inset) The relationship between ∆V and the model parameter µ. The
black line indicates the average across bridge lifetimes. (D) Distributions of 〈R2

g/N〉 are
overlapping for different levels of bridging while, distributions of Voccupied are significantly
separated.

Effects of confinement

Thus far, our simulation parameters were chosen to match the density of DNA within an E.
coli cell rather than the effect of confinement due to the cell boundaries (average diameter of
the polymer relative to the dimension of the box 2Rg

L ) since the former quantity is likely to
more strongly affect the probability of bridge formation. The density d scales linearly with
number of monomers N, while confinement scales as Rg ∼ Nν, where ν = 0.588. If we fix
the confinement of the chromosome instead of its density, the general results in the previous
chapters remain unaffected, albeit changing the exact values of α for different parameters.
As confinement increases, density increases and α decreases even in the absence of bridging
up to α ≈ 0.5 at which point confinement screens the effect of self-avoidance (Fig. 27B) [86].
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Figure 26: (A) Mesh size (ξ) decreases with increasing bridges. (B) Confinement affects the scaling
exponent of MSD even in the absence of bridging. Parameters.Lattice size L = 35, Mesh
size ξ = 50nm, Polymer length N = 400.

Density is the limiting factor for bridging, as a change in density affects the probability
of co-localisation for any two monomers. As matching confinement will lead to a higher
density of the polymer in the box, we matched the density of the chromosome to model the
realistic effects of bridging by NAPs. Recently, it was observed that the unconstrained E.
coli chromosome is approximately 2.35 times longer than the cell length [54]. By decreasing
the lattice size to match the confinement of the E. coli chromosome instead of its density
we further decrease mesh size and can match the experimental value of 50nm [87] (Fig.
26B). Note that increasing confinement increases the number of bridges and consequently
decreases the scaling exponent for the same set of parameters µ, λ.

End-to-end scaling

A swollen or ideal polymer is a fractal in that the end-to-end distance of the sub-segments
also scales with the length of the segments as,

r(s) ∼ sν. (9.2)

On the other hand, if we consider an equilibrium globule formed by a collapsed linear chain
we expect different scaling relations on different length scales. The relation in the above
equation is limited by the size of the globule in the following manner [88],

r(s) ∼

s1/2 for s < s∗ ∼ N2/3

N1/3 for s > s∗ ∼ N2/3
. (9.3)
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Figure 27: A circular polymer in a cuboid with hard walls matching the confinement of E.coli cell. In
the presence of bridging the polymer is compacted and has a density that decreases across
the cross-section. Lattice dimensions 88× 22× 22.

In our simulations, even for the highest values of bridging in our simulations, the polymer
does not transition to the globule regime as evidenced in Fig. 28A.

Two-point contact probability or loop factor

For any fractal conformation, we know from the above equations that r(s) ∼ sν. The other
end of a segment is at about a distance of r(s) and dispersed over a volume r3(s) in 3D.
Therefore the probability P(s) to a find another point on the segment is,

P(s) ∼ r−3(s) ∼ s−3ν. (9.4)

This for a Gaussian or ideal coil with ν = 1/2 gives P(s) ∼ s−3/2 and for a self-avoiding
polymer (ν = 0.588) P(s) ∼ s−1.76 [89]. For a crumpled fractal globule we have ν = 1/3
and hence P(s) ∼ s−1. While this scaling relation of two-point contact probability shows
good agreement with experimental HiC data, for both human and mouse chromosomes it is
unfortunately not accurate. The sum ∑s P(s), which measures the number of neighbours of
any given monomer diverges as P(s) ∼ 1/s. For a N monomer long chain, this would imply
that the mean number of spatial neighbours is of O(lnN) (diverges as N to infinity). Hence,
from a logical standpoint, the assumption of statistical independence of sub-chains cannot
be accurate for interacting chains. The exact scaling for an interacting polymer is given by,

P(s) ∼ s−3ν−γ, (9.5)
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Figure 28: (A) End to end distance scales as 〈R〉 ∼ Nν. We observe an exponent ν = 0.59 in
the absence of bridging as expected for a self-avoiding polymer. The scaling exponent
decreases with increasing bridging. But, we observe that scaling exponent ν > 0.5 for
all levels of bridging. (B) The contact probability P(s) between monomers is plotted
as a function of monomer distance (s). In the absence of bridging the exponent is
P(s) ∼ sdν+γ ≈ s2.1 as expected for a self-avoiding chain. With increasing bridging the
exponent increases, but for our level of bridging we never stay below the compact globule
regime.

where γ is an independent exponent arising from the accounting of interactions between
segments. The theoretical scaling relation for a swollen or self-avoiding chain is given by
P(s) ∼ s−2.18 [90, 91]. We find the exact scaling in our numerical simulations of the polymer
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Figure 29: Phase diagram from Figure 24A with µ remapped to the percentage of monomers bridged.
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84 9. Bridging compacts the polymer

with P(s) ∼ s−2.17 for a self-avoiding polymer with no bridges (Fig. 28B). As we increase
bridging the slope increases but stays below the globule regime P(s) ∼ s−1.2 for the simulated
levels of bridging. The compact globule regime has been studied elsewhere [70, 76, 84].

9.2 remapped phase diagram

To obtain more meaningful physical insights we remapped the phase diagram in terms of
the average number (percentage) of monomers bridged rather than the parameter µ (Fig.
29). This makes it clear that, for sufficiently long bridge lifetimes, an increase (decrease)
in the number of bridges formed is concomitant with a decrease (increase) of the scaling
exponent. As discussed in the previous chapters, Nucleoid Associated Proteins (NAPs)
bridge and compact the chromosome. In the next chapter, we present short-timescale loci
tracking experiments performed in E. coli to verify this hypothesis.
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N A P M U TA N T H A S A H I G H E R E X P O N E N T

As discussed in the previous chapter, according to our model for sufficiently long bridge
lifetimes, an increase or decrease in the average number of bridges on the chromosome is
concomitant with a decrease or increase of the scaling exponent α. To test this hypothesis,
we perform loci tracking experiments in E. coli cells. We measured the MSD scaling exponent
of a chromosomal locus in a strain lacking the NAP H-NS. We choose this protein as its
deletion has a very mild phenotypic effect compared to other NAPs like HU or MukBEF [62].
Following previous work [52], we used fluorescence microscopy and a GFP-ParB/parS
labelling system to track the ori locus of E. coli on short timescales.

10.1 loci tracking experiments

Strains

The parS/P1 site from E.coli strain RM29 obtained from [92] (originally from [93]) was
transduced near the ori region into MG1655 WT and ∆H-NS strains, the latter obtained
from the Keio collection of the Sourjik lab (MPI Terrestrial Microbiology). GFP-ParB was
expressed from the plasmid pALA2705 with no IPTG induction [43, 93, 94]. The strains were
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Figure 30: (A) Snapshot of microscopy experiment of GFP-ParB/parS labelled ori loci in E.coli. (B)
Sample MSD curves of individual foci obtained from WT strain (set 1). (C) Sample MSD
curves of mutant ∆H-NS (set 1). Ensemble averaged MSD is represented by the black lines
(B, C).
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86 10. NAP mutant has a higher exponent
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Figure 31: (A) Loci tracking experiments. Ensemble averaged MSD curves of wild-type E.coli and
a strain deleted of the NAP H-NS. The deletion strain has a higher scaling exponent
(α ∼ 0.38) compared to the WT (α ∼ 0.32). MSD curves are fitted up to a 2 s delay. ∆H-NS:
18089 tracks, WT: 6717 tracks. (B) Exponent α from individual replicates.

grown overnight at 30◦C in LB medium with appropriate antibiotics (100µg/mL ampicillin).
The overnight culture was diluted into media made of M9–Glucose–Casamino acids (as
in [52]) and grown to an optical density of 0.1− 0.2.

We chose the P1 labelling system in order to compare our results with previous studies
[50, 52, 57, 95]. We note that while some differences in the dynamics of the ter locus between
the ParB labelling systems we use (P1) compared to that of pMT1 have been observed, no
substantial differences have been reported for the ori locus [43, 55, 94, 96]. This agrees with
experiments in our lab studying origin positioning and segregation across many thousands
of cell cycles.

Microscopy

1µL of the sample was placed on 1.5% agarose pads (made of the same media as the day
culture) and imaged under a Nikon Ti microscope with a 60x/1.4 NA oil objective. The
strains were imaged at a constant 30◦C. Images were captured on a Hamamatsu CCD
camera using NIS-Elements software. Movies were 450 frames long, with 0.1s interval and
an exposure time of 100ms (Fig. 30A).

Analysis

We process the raw microscopy images following the procedure and analysis in [52]. Briefly,
foci positions were located via two-dimensional fitting of a Gaussian function to the intensity
distributions of individual loci. The ensemble-averaged MSD was calculated from pooled
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10.2 ∆H-NS has a higher scaling exponent 87

Figure 32: (A) Mean intensity of WT tracks plotted versus scaling exponent α fitted to the entire track
length. Shows a weak positive correlation. (B) Same as in (A) but for the mutant ∆H-NS.
(C) Intensity distributions of WT and ∆H-NS is plotted. WT distribution has a broader
tail. (D) Ensemble averaged MSD of WT plotted for two difference sub-populations with
intensity I > median(I) and I < median(I). Scaling exponent α shows marginal change
while Dapp decreases with higher intensities [52]. (E) Same as in (D) but for the mutant.
The sub-populations overlap. (F) Intensity of loci in the WT at an MSD of 10s. We find a
very weak positive correlation.

trajectories using Eq. (8.27) (Fig. 30B, C). The scaling exponent α was calculated for ensemble-
averaged MSD curves by fitting a power law up to 2 s delays. The codes from Javier et.al
were used to track the foci, and are available at bacteria-loci-tracker. Custom MATLAB
scripts were written to analyse the data.

10.2 ∆h-ns has a higher scaling exponent

The ensemble-averaged MSD of both the wild type and the ∆H-NS strain are shown in
Figure 31A. Consistent with our model, we found that the scaling exponent α for the ∆H-NS
(α ∼ 0.38) is greater than that of the wild type α ∼ 0.32, consistent with a decrease in
the number of DNA bridges. While, we observe some variability in the exact value of the
exponents between biological replicates (Fig. 31B), the exponent of ∆H-NS is consistently
higher than the wild type (see also Table1). We conclude that the bridging of chromosomal
DNA by nucleoid-associated proteins affects the nature of chromosome dynamics and can
explain why the scaling exponent of chromosomal loci is more sub-diffusive than expected
from polymer dynamics alone.
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88 10. NAP mutant has a higher exponent

Scaling exponent α

Strain set 1 Tracks set 2 Tracks set 3 Tracks set 4 Tracks set 5 Tracks set 6 Tracks All
WT 0.31 3952 0.32 525 0.32 1193 0.34 477 0.33 506 — — 0.32 ± 0.01

∆H-NS 0.36 12121 0.36 827 0.42 1647 0.41 1682 0.38 1062 0.36 750 0.38 ± 0.02

Table 1: Scaling exponents α observed in experiments from different sessions.

10.3 intensity of spots does not explain differences in scaling exponents

We wondered if the difference in MSD scaling exponents between the WT and mutant could
be related to the intensity, as it was previously shown that the mobility of loci depends
inversely on their intensity [52]. In our experimental data, we find that the WT and mutant
have comparable intensity distributions and show a very weak correlation between the
loci intensity and the scaling exponent α (Fig. 32A, B). We also found that the intensity
distributions of the strains were comparable, while the WT had a slightly fatter tail (Fig.
32C). Comparing the ensemble-averaged MSD of tracks with lower and higher intensity, we
found that while intensity affects the apparent diffusion constant Dapp, it has a marginal
effect on the scaling exponent α (Fig. 32D, E). The intensity of loci also shows a very weak
correlation with the MSD at 10s (Fig. 32F). Hence, we conclude that the intensity of loci
does not explain the differences between the ensemble-averaged MSD exponents of wild
type and ∆H-NS.
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B R I D G I N G R E P R O D U C E S R A P I D C H R O M O S O M A L M O V E M E N T S

In the previous chapters, we discussed how chromosomal loci move sub-diffusively at
short timescales with an MSD scaling exponent consistently less than 0.5. A previous
study performing tracking measurements of ori loci revealed that a small number of tracks
50− 350 out of 3000− 7000 tracks were abnormally elongated and faster [57]. They further
identified that the sub-population of fast-moving trajectories could not be explained by the
null phenomenological model of fractional Brownian motion. Instead, these outliers, termed
Rapid chromosomal movements (RCMs), were speculated to be due to an active machinery
or some stress-relaxation mechanism [57,97]. To determine if RCMs were also present in our
data, we followed the same procedure as Javer et al. to identify them.

11.1 presence of rcms in our experimental data

We fit the wild-type ensemble-averaged MSD curves (Fig. 31) to a power law Dappτα to
determine the two parameters of the fBm model [98], namely the apparent diffusion constant
Dapp and the exponent α (Fig. 33A). These parameters were then used to simulate fBm using
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Figure 34: (A) Ensemble averaged MSD from FBM simulations overlaid with ∆H-NS data (Fit,
0.0009τ0.38). (B) Drift velocity distributions vd from FBM simulations have a smaller tail
than ∆H-NS data. (C) ∆H-NS has a slightly higher number of faster tracks than the wild
type.

the same number and track lengths as the experimental data. We then calculated the drift
velocity vd for each track, defined as the magnitude of the displacement along the major axis
between two time points divided by the elapsed time. Similar to Javer et al., we found that
the distribution of drift velocities of the experimental data displayed a fatter tail than that of
the fBm simulations (Fig. 33B).

Fractional Brownian Motion (fBm)

Fractional Brownian motion is a generalisation of Brownian motion [99]. Unlike classical
Brownian motion, the increments of fBm are not constrained to be independent. Let B(t)
represent ordinary Brownian motion and H be a parameter satisfying 0 < H < 1,

BH(t) = BH(0) +
1

Γ(H + 1/2)

∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dB(s)

+
∫ t

0
(t− s)H−1/2dB(s).

(11.1)

The fBm exponent H is called the Hurst index and describes the raggedness of the
Brownian paths. Importantly, the process has expectation zero for all t in [0, T] and has
the covariance,

E[BH(t)BH(s)] =
1
2

(
| t2H | + | s |2H − | t− s |2H

)
. (11.2)

where we recover Brownian motion if H = 1/2. We simulate this process using Lowen’s
method [100] which is not only fast O(NlogN) but also yields exact statistics that
precisely match those of fBm.
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Figure 35: (A) Ensemble averaged MSD from polymer simulations fitted with fBm simulations
(orange squares, µ = 80, τ = 105 MCS, Fit 0.0009τ0.39µm2, 5200 tracks). (B) Drift velocity
distributions vd of fBm (orange square) have a smaller distribution than bridging tracks
(blue circles). (C) Same as (A, B) but to polymers with no bridging. (D) The distributions
of vd overlap.

Similar to the case of the wild type, parameter matching the mutant ∆H-NS MSD to fBm
simulations (Fig. 34A) we find that it fails to capture the faster outlier tracks (Fig. 34B). Note
that the mismatch in vd distribution is not dependent on the power law nature of the mutant
MSD curve leading to a better fit. This disparity was not dependent on the precise elapsed
time used nor on the deviation of the MSD curve from a perfect power law (or the range
over which the parameter fitting was performed) as we note that ∆H-NS strain, displays a
near-perfect power-law behaviour (Fig. 34A, B). Importantly as predicted by our bridging
hypothesis, we find that the mutant has a slightly broader vd distribution due to the absence
of H-NS (Fig. 34C).

91



92 11. Bridging reproduces Rapid Chromosomal Movements

CA

B D

0 1 2 3 4 5 6

N
or

m
al

iz
ed

 o
cc

ur
en

ce

10-3

10-2

10-1

100

Drift velocity vd (10-7μm/MCS)

Bridging

fBm

Elapsed time = 5 x 105 MCS

vd > 3 x 10-7 μm/MCS, tracks = 117

vd < 3 x 10-7 μm/MCS, tracks = 5083

10-2

10-3

M
S

D
 (μ

m
2 )

103 104 105 106

Time (MCS)

τ0
.38

τ0
.86

EXPERIMENTS SIMULATIONS

Time (s)
10-1 100 101

M
S

D
 (μ

m
2 )

10-2

10-3

10-1

τ0.32

τ0
.94

vd > 0.012 μm/s, tracks = 39

vd < 0.012 μm/s, tracks = 6678

0 0.5 1 1.5 2
Drift velocity vd (10-2μm/s)

10-3

10-2

10-1

100

N
or

m
al

iz
ed

 o
cc

ur
en

ce

WT

fBm

Elapsed time = 28 s

Figure 36: (A) Drift velocity distribution comparisons between WT data and fBm measured over
28s (entire track length). (B) Ensemble averaged MSD of the wild type strain with tracks
selected based on drift velocity vd (grey dashed line in (A) shows the vd threshold). Tracks
with vd greater than fBm distribution have a transition to higher exponent at longer time
lags. (C) Same as in (A) for the bridging simulations with vd defined over the entire
track length of 5× 105 MCS. (D) We find a similar subset of tracks (split based vd, grey
dashed line in (C)) which transition to higher exponent at longer time lags. Parameters
µ = 80, λ = 105 MCS.

11.2 bridging reproduces rcms

Following the same procedure, we then parameter-matched the fBm model using the
ensemble-averaged MSD curves of our simulated monomer trajectories (Fig. 35A). Sur-
prisingly, we found that the bridging simulations produced trajectories with a similar
over-representation of high drift velocities compared to the fBm model as seen for the
experimental data (Fig. 35B). We could directly attribute this disparity to the effect of
bridging since simulations without bridging showed no such disagreement (Fig. 35C, D).
Again, these results persisted irrespective of the precise fitting to the MSD curves and the
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Figure 37: (A) Drift velocity distribution comparisons as in Fig. 35, but at shorter elapsed time of
5000 MCS. The differences between bridging simulations and the fBm model are amplified.
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The overall tails get smaller and the difference between fBm and bridging simulations
increases as compared to Fig. 35B. Parameters. µ = 120, λ = 80000 MCS.

elapsed time used (Fig. 33,34). Note that, while bridging produces these outlier movements,
overall it slows the dynamics of the polymer and therefore results in lower drift velocities.
Consistent with this, the MSD and drift velocities of ∆H-NS were slightly greater than WT
(Fig. 31A,34C). In our experimental data, we select a subset of outlier trajectories (39 of 6717
tracks) with drift velocity vd > 0.012µms−1 (Fig. 36A). The ensemble-averaged MSD curves
show a transition to faster dynamics at longer timescales (Fig. 36B) indicating the presence
of RCMs [57]. Strikingly, selecting a similar subset of faster tracks (117 of 5083 tracks) with
vd > 3× 10−7µmMCS−1 not captured by fBm (Fig. 36C) in our bridging simulations, we
find similar MSD curves. The tracks with faster vd transition to a higher exponent at longer
time lags (Fig. 36D).

We explain the presence of RCMs in our simulations as being due to the heterogeneity
in the bridging state of the tracked monomers. On timescales much longer than the mean
bridge lifetime, each segment of the polymer is likely to be bridged for the same percentage
of time and the dynamics are therefore relatively homogeneous. However on timescales less
than the bridge lifetime, there is greater heterogeneity - some segments will remain bridged
throughout, and others will remain unbridged. This results in a corresponding variation in
the observed dynamics, with more strongly bridged segments displaying more restricted
movements and shifting a proportion (the majority at high bridging) of the drift velocity
distribution to lower values, leaving the unbridged segments as outliers. This heterogeneity
cannot be captured by the fBm model, which models a single population. This interpretation
is consistent with our finding that the fraction of RCMs increases with the degree of bridging
and as the drift velocity is measured over shorter elapsed times (Fig. 37).
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94 11. Bridging reproduces Rapid Chromosomal Movements

While we have not been able to quantitatively fit our polymer simulations to the experi-
mental MSD curve and drift velocity distribution due to the increasingly computationally
challenging of simulating longer bridge lifetimes and the higher number of simulations
required to obtain accurate statistics of the RCMs, we nevertheless conclude that bridging by
NAPs provides a potential explanation for both the sub-diffusive scaling of chromosomal
loci as well the observed rare rapid chromosomal movements.
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E S T I M AT I N G B R I D G E L I F E T I M E S

In our simulations of bridging, we observed that the MSD curve transitions at a longer
time lag to the exponent expected in the absence of bridging (≈ 0.56 in our model, lower if
we were to account for viscoelasticity) (Fig. 38). Interestingly, we found a similar upward
transition in the experimental MSD curve of ori (Fig. 31A). This was also observed in
previous studies performed at the same (0.1 s) and longer time resolutions (1 s) and was
associated with the RCMs discussed in the previous chapter [52, 53, 57]. While the cause of
this transition is unclear and confounding effects of photobleaching and statistics cannot
be completely discounted, this transition is most apparent for the terminus (ter) region
in other studies [52, 53, 57]. Since the ter macrodomain is affected by NAPs (MukBEF in
particular) differently than the rest of chromosome (resulting in a bias towards short-range
genomic contacts) [62], this is consistent with the idea that bridging by NAPs is ultimately
responsible.

In our simulations, the transition is clearly due to bridging not having an effect on the
monomer dynamics at timescales much longer than the bridge lifetime. Indeed, we observe
a linear relationship between the transition location (kink) and the bridge lifetime λ (Fig.
38B). We also note that while the transition was visible in the wild-type MSD curve it was
invisible in the MSD curve of ∆H-NS strain (at least within the measured range) (Fig. 31A),
which could be explained by this strain having a longer average bridge lifetime.

We next wondered whether the location of the transition could be used to infer a bound on
the effective bridge lifetime. In this direction, we set the internal timescale of our simulations
by matching the MSD of ori at a lag of 1 s. In particular, we found an MSD at 1 s of ≈
0.004 µm2 (Fig. 31A), consistent with previous measurements [52]. With a lattice spacing
of 0.0056 µm, this MSD was reached at a lag of ≈ 105 MCS (Fig. 31A). We choose this
lattice spacing to have a sufficient spatial resolution at this displacement. By assigning
105 MCS ≈ 1 s, we can then convert our simulation results from MCS to seconds.

Doing this for all points in the phase diagram we obtain a relationship between two
physical measures, the equilibrium percentage of monomers bridged and the bridge lifetime
λ in seconds for different values of the scaling exponent (Fig. 38C). We have extended
the contours of the fixed exponent to longer lifetimes by hand as it becomes increasingly
computationally challenging to access longer bridge lifetimes (in seconds), especially for
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96 12. Estimating bridge lifetimes
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the lowest exponents, due to the slow dynamics of the polymer (each second corresponds
to an increasingly large number of MCS) (Fig. 40A, B). While the scaling exponent can be
measured experimentally, the degree of bridging and the effective bridge lifetime are more
challenging to quantify. Nevertheless, the relationship between these variables that we have
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uncovered here, should be useful in interpreting future experimental results and contributes
to our understanding of chromosome dynamics.

Returning to the transition in the MSD curve, we can use the linear relationship to the
bridge lifetime (Fig. 38B) and the conversion from MCS to seconds described above to obtain
the location of the transition in seconds at each point in the phase diagram. In particular, we
can identify the region of the phase diagram in which the transition occurs beyond a delay
of 1 s, as seen in our data and other measurements. This results in the shaded region in
Figure 39 and provides a lower bound for the bridge lifetime. For α ∼ 0.32, as observed for
the WT in our experiments, we find a lower bound on the effective bridge lifetime of around
5 s, a reasonable estimate given the relatively slow dynamics of chromosomal loci. While
measurements of bridge lifetimes of the various NAPs are lacking, estimates for H-NS and
HU can be taken from the timescale of their recovery after photobleaching (FRAP) which
gave 50 s [101] and 1 s [102] respectively.
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E F F E C T O F B R I D G I N G O N M A C R O D O M A I N P O S I T I O N I N G A N D
O R G A N I S AT I O N

In this chapter we discuss how bridging could affect the spatial-temporal organisation of the
chromosome within the cell. As discussed in previous chapters, NAPs are highly abundant
proteins that play diverse roles as chromosome organisers, transcription factors, and, more
generally, involved in DNA mechanisms. A key player in chromosome organisation in E.
Coli is the SMC complex, MukBEF also found in other gamma-proteobacteria. The absence
of MukBEF leads to an increase in the number of anucleate cells and incorrect chromosome
organisation. MukBEF appears to co-localize with ori at the middle or quarter positions (pre-
division) on a cell. A Turing-type mechanism has been proposed [21] to explain MukBEF
foci formation and positioning. The model predicts that MukBEF self-organises into foci
at regular positions along the long axis of the cell. It was then hypothesized that MukBEF
might play a role in ori (origin of replication) positioning, resulting in its faithful segregation.
From the step-wise velocity of ori as a function of its position, it was observed that ori moves
towards the mid-cell in a directed fashion [15]. Stochastic simulations of the ori and polymer
simulations of the entire chromosome reveal further insights into ori’s movement to mid-cell
and its unique relationship with MukBEF.

From Hi-C experiments [62], we find that ter (terminus of replication) is relatively de-
condensed compared to other chromosomal regions. This relative decompaction is hypoth-
esized to arise from the absence of MukBEF at ter (which is unloaded by a protein MatP),
resulting in a lack of long-range contacts. The emergence of this Hi-C picture is also of
interest. Also, at the start of the cell cycle, ter moves from the new pole to the middle
of the cell albeit for poorly understood reasons. A complete picture of the organisation
of chromosomal domains (ori, left, ter, right) as a function of cell cycle progression is still
elusive.

13.1 ori positioning and dynamics

We performed explicit polymer simulations to see how bridging affects the positioning of
ori (Fig. 41A). One can see that pure elastic fluctuations in combination with bridging of
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Figure 41: (A) Snapshot of polymer conformation with N = 440 monomers. The red dot represents
the ori. (B) Probability density of relative ori position (from the mid-cell) along the long
axis of the cuboid.

monomers due to spatially varying MukBEF concentration, results in a directed motion
of ori towards mid-cell. We find that the probability density of ori is a function of its
relative position to the mid-cell (Fig. 41B). As expected, the probability of finding the ori
at mid-cell is maximal. Next, we ask whether the spatially-varying bridging probability
p(x) = pmax exp(−x2) results in the directed movement of ori. We examine the step-wise
velocity of ori as a function of its position (Fig. 42A) and find that the ori indeed experiences a
restoring velocity towards mid-cell, i.e., directed movement. We visualize this as follows, on
a short timescale, the ori fluctuates about its current home position. These fluctuations enable
the ori to locally sample the spatially-varying bridging probability. It is then most likely to
form a bridge with another monomer in the position in which the bridging probability is
the greatest. The polymer then relaxes, the ori is released at a new home position and the
cycle repeats. Here, we have a model in which the elastic fluctuations of the polymer power
the movement of ori up the gradient.

The dynamics of ori approximated to that of a particle diffusing in a harmonic potential
centered at mid-cell. Let the strength of the potential be f with diffusion constant D. Let
us consider a harmonic potential U = 1

2 f x2 over an infinite 1D domain. Given a particle at
position x0, the probability density that it is at position x at time ∆t later is [49],

p(x, ∆t | x0) =

√
f /kBT
2πS

exp
[
− f /kBT

2S

(
x− x0e−∆t/τ

)2
]

, (13.1)
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Figure 42: (A) The step-wise velocity of ori plotted as a function of position, shows that ori moves
in a directed fashion towards the middle of the cell. Linear fit (orange line) calculates
the timescale τ. (B) Variance of relative ori positions. Linear fit (orange line) defines the
diffusion constant D.

where S = 1− e−2∆t/τ and τ = kBT
f D . We can calculate the expected value and variance of the

step-wise position (x− x0):

E[x− x0] =
e−

∆t
τ − 1
∆t

x0 ≈ −
x0

τ
. (13.2)

V[x− x0] =
Dτ

∆t2 (1− e−
2∆t

τ ) ≈ 2D
∆t

, (13.3)

where the above inequality holds for 2∆t
τ � 1. Importantly, the expected value of step-wise

velocity depends linearly on position, while the variance is independent of it. This is
observed in our polymer simulations as we find a linear dependence of step-wise velocity in
Figure 42A and variance in Figure 42B.

Simulations

Unlike in the previous chapters, in order to understand the positioning of the
macrodomains we have to simulate a polymer to represent the entire chromosome
rather than a cross-section. Following Hoffmann et.al, we model the E. coli chromosome
as a polymer and simulate it using the Bond Fluctuation Monte-Carlo method. We
consider a polymer of length N = 440, with each monomer representing around 10 kb
region of the chromosome. This is confined to a cuboid of dimensions 88× 22× 22 (this
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Figure 43: (A) HiC maps from experiments comparing mutant ∆H-NS and WT strain [62]. (B)
HiC maps from simulations comparing contacts of a circular polymer in the absence of
bridging and in presence of it. Parameters. Threshold on HiC contacts = 8 lattice units,
µ = 20, 60 with ∼ 15, 30% of monomers bridged respectively, bridge lifetime λ = 80000
MCS. (C) Ratio plot of the mutant ∆H-NS and WT contact signals for each 5kb bin along
the chromosome. The x-axis indicates the genomic coordinate and the y-axis indicates
the genomic distance from the bin. A decrease or increase in contacts in the mutant
cells compared with the WT is represented with a blue or red colour, respectively. White
indicates no differences between the two conditions.(D) Same plot as (C) but for the
simulated polymers in (B) with two levels of bridging.

leads to a system density of about 10%). To this, we add a spatially varying bridging
probability (along the long axis) based on a Gaussian centred at mid-cell. Only a single
monomer (ori) in our polymer is allowed to form bridges with other monomers.

13.2 effect of bridging on chromosome organisation

Recently, the higher-order organisation of E. coli chromosome was explored and revealed
several factors affecting its compaction [62]. The analysis using high resolution (5kb)
chromosome capture (3C) contact maps of the E. coli chromosome reveals an interesting
structure. The NAPs HU and MukBEF are observed to promote long-range contacts while
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Figure 44: (A) Absolute average contacts for each monomer at different levels of bridging (43B). (B)
Average contacts for different monomer distances (scales) shows that contacts decrease
across all scales with bridging.(C) Contact probability is plotted for different levels of
bridging in 43B. There is relative enrichment of short-range contacts in the low bridging
case and hence a relative decrease in long-range contacts.

H-NS acts locally. We attempt to qualitatively compare the contact maps from our polymer
simulations with that of the experiments. The experimental HiC maps display enrichment
of contacts across nearest neighbours in agreement with the transverse alignment of the E.
coli chromosome 43A (Lower triangle). The absence of the secondary diagonal reflects the
lack of contacts between different chromosomal arms as is observed in B. subtilis [103].

Long-range contacts decrease in the absence of bridging

In the absence of a NAP H-NS, which is expected to bridge the DNA uniformly (refer
to previous chapters), the Hi-C map superficially appears similar to that of the wild type
43A. We perform polymer simulations of a circular polymer as discussed in the previous
section, but now with uniform bridging probability for all monomers. We generate Hi-C
maps from simulations with different levels of bridging and find that the overall contact
maps remain conserved as in the experiments 43B. Any two monomers are considered to
be in contact if their spatial distance is less than an arbitrary threshold of 8 lattice units.
We notice that while the threshold affects the exact scales of contacts it does not change
the qualitative results. To further investigate the contact maps, we employ a visualization
tool called the scalogram which represents, for each bin (monomer in the simulations), the
cumulative contact frequencies as a function of the genomic distance. A scalogram, therefore,
displays the average distribution of contacts for each bin (monomer) with its flanking regions.
Performing a ratio of the scalograms or contact signals between the mutant ∆H-NS and
WT and taking the logarithm we find significant enrichment in short-range contacts of
H-NS binding regions 43C, where blue or red represent a decrease or increase in contacts,
while white represents no change. Interestingly, calculating the ratio of contacts in our
simulations we find a striking qualitative agreement with experiments. We also find a
relative enrichment of short-range contacts and a decrease in long-range contacts. This is
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104 13. Effect of bridging on macrodomain positioning and organisation

consistent with previous experiments arguing that NAPs promote long-range contacts. This
trend was also observed in ratio plots of other NAPs like Fis and HU [62].

SCN Normalisation

Sequential Component Normalization (SCN) is a simple normalization procedure to
process the data and allow the generation of a normalized, highly contrasted, chromoso-
mal contact map [104]. This technique corrects for various experimental biases that lead
to the over-representation of certain genomic contacts. The normalization gives equal
weight to each fragment in the contact map and hence before performing it we remove
the low-probability contacts (tails of the Gaussian). The technique belongs to a class of
approaches based on the Sinkhorn-Knopp balancing algorithm [105]. We transform a
symmetric non-negative matrix of raw contacts C = (cij), C → Rn×n

+ , into a stochastic
matrix S = (sij), whose rows and columns are alternatively divided by the euclidean
norm to sum to 1 i.e., ∑i sij = ∑j sij = 1. It is an iterative process, that consists of solving,

S = D1CD2, (13.4)

where D1 and D2 are unique up to a scalar factor diagonal matrices obtained from alter-
natively normalizing columns and rows to 1. The whole process is repeated sequentially
until the contact map converges into a symmetric matrix. Usually, a couple of iterations
are sufficient to ensure convergence.

While scalograms are very useful in visualizing chromosome organisation, one has to be
careful in interpreting the results. To be able to compare the experimental data with each
other we have to employ a normalization procedure. Following Lioy et.al, we use the SCN
method to generate our HiC maps. Hence, we only capture the relative increase or decrease
in chromosomal contacts and not the absolute change.

Experimental ratio plots in ∆H-NS 43C and for similar plots of other NAPs in Lioy et.al,
we find a relative enrichment of short-range contacts and a relative decrease in long-range
contacts. It is important to remember that in the absence of NAPs bridging, chromosomal
contacts are expected to decrease across the chromosome leading to an overall decompaction.
We see this clearly in our simulations where the average number of contacts decreases for
lower levels of bridging for all monomers and across different scales (44A, B). The relative
contacts visualized by the contact probability show that for a polymer with low levels of
bridging there is a relative increase at short polymeric scales and a relative decrease at longer
scales(44C). This is consistent with the experimental scalogram in Figure 43B.
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Figure 45: (A) Snapshot of polymer simulations with ter region labelled in blue. The ter region is
110 monomers long. (B) Average contacts across monomers for a polymer with uniform
bridging and with lower levels bridging at ter. Parameters. µ = 60 everywhere, µt = 20
at ter. λ = λt = 80000 MCS everywhere. (C) Ratio plot between mutant ∆MatP and
wild type as in 43C [62]. (D) Ratio plot from polymer simulations between the case of
uniform bridging (WT) and lower bridging at ter as in (B). Shows qualitative agreement
with experiments in (C).

13.3 ter organisation and dynamics

Experiments reveal that ter macrodomain in E. coli exhibits different dynamics and organ-
isation relative to other chromosomal regions. The SMC complex MukBEF is kicked off
from ter by a protein MatP which binds to specific matS sites in ter [47]. HiC experiments
reveal interesting structures in the absence of MatP where the structure of chromosome
contacts was conserved across all genomic regions, except in ter, which now appears similar
to the rest of the genome 45C [62]. An enrichment in long-range contacts within ter (beyond
280 kb) and its flanking regions appeared, in conjunction with a compensatory decrease in
contacts under ∼ 280kb within ter. These results are consistent with recombination assays
that show enrichment of long-range contacts at ter in the absence of MatP [92].

We wondered if our simple bridging model could capture the interesting structure of
the ratio plot between ∆MatP and wild type in Figure 45C. We know that bridging and
compaction at ter is suppressed by the presence of MatP. Hence, we simulate a polymer with
uniform bridging everywhere other than at a subset of monomers (1/4N = 110 monomers)
(Fig. 45A, B). These monomers represent the ter macrodomain which is around 1000 kb long,
which is ∼ 1/4 the size of the E. coli chromosome.
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Figure 46: MSD curves, comparing ter with rest of the chromosome. ter appears more mobile than
the rest of the chromosome due to lower bridging than the rest of the chromosome.
µ = 60, µter = 20, λ = λt = 20000 MCS.

As expected, unlike the case of uniform bridging, we find a reduction in contacts in the
ter region (between monomers 165 and 275) of the polymer (Fig. 45B). Interestingly, this
was sufficient to reproduce the ratio plots from experiments in Figure 45C, as the MatP
mutant shows a relative enrichment only at longer length scales in the ter region. Note that
in the experimental ratio plot, there exists a diagonal around the ter, indicating enrichment
of interactions between ter and its flanking regions. This was also observed in our polymer
simulations with similar diagonal indicating contact with flanking regions around the ter
(Fig. 45D).

We next wondered how lower levels of bridging affect ter dynamics. Absence of bridging
results in increased ter mobility as seen in the MSD curves in Figure 46. We immediately
notice that at short time lags ter has a higher scaling exponent ∼ 0.44 as compared to other
loci with α ∼ 0.39. This is in contrast to experimental data from Javier et.al, where it was
observed that while the scaling exponents don’t change significantly between different
loci, ter has a lower apparent diffusion constant Dapp than ori (MSD curve of ter lies below
ori). While this difference between simulations and experiments could be simply due
to the failure of our coarse-grained model to capture E. coli chromosome dynamics and
organisation simultaneously, other biological effects might be in play. In a temperature-
sensitive non-replicating strain, ter (α ∼ 0.33) appears more mobile than ori (α ∼ 0.31) [54].
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The post-replicative pairing of sister chromosomes has also been suggested as a possible
explanation for the differences in mobility between ori and ter [55].

The qualitative comparisons in this chapter are crucial first steps to developing a unifying
framework to understand chromosome dynamics and organisation in conjunction. In future,
we wish to perform more detailed simulations with appropriate coarse-graining to perform
quantitative comparisons to experimental data.
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D I S C U S S I O N A N D F U T U R E D I R E C T I O N S

Our results provide insight into the role of DNA bridging by NAPs in determining chro-
mosome dynamics and compaction within bacterial cells. We have shown that bridging,
at realistic levels and lifetimes, can explain the sub-diffusive scaling exponent of bacterial
chromosomal loci. In particular, our model predicts that a decrease in bridging leads to an
increase in the sub-diffusive exponent α and we confirmed this by tracking the ori locus of E.
coli in a strain deleted of the NAP H-NS. We also addressed the upturn in the ensemble-
averaged MSD curve seen at long-time lags. Our model displays a similar transition at a
timescale of the order of the average bridge lifetime and we obtained a lower bound on
the effective bridge lifetime of the ori locus of about 5 s. We also show that bridging can
qualitatively explain the nature and corresponding changes in chromosomal contact maps in
the presence and absence of NAPs. Interestingly, we could reproduce qualitatively the ratio
plot of the MatP mutant and the WT.

Bridging can also qualitatively reproduce the rare but ubiquitous rapid chromosomal
movements (RCMs) that are observed within experimental trajectories, in contrast to the
null phenomenological model of fractional Brownian motion (fBm). The RCMs in our model
are due to the rare event of a DNA segment being unbridged by NAPs for long enough
that it exhibits an unusually large movement compared to the rest of the slower-moving
bridged polymer. This is consistent with the proposal by Javer et al. that RCMs arise due to
the relaxation of stress caused by the action of bridging proteins and condensins [57, 106].
Therefore, our model explains both the sub-diffusive scaling exponent of chromosomal loci
and the observation of RCMs. Furthermore, in contrast to the hypothesis of a viscoelastic
cytoplasm [50], bridging is consistent with recent work showing that cell compression lowers
the exponent of chromosomal loci but not that of diffusive particles [53]. A lower cell
volume increases the density of DNA and therefore increases the rate of bridge formation,
lowering the exponent (Fig. 26B). Bridging can also qualitatively reproduce the organisational
features of chromosome. In agreement with experiments, in the absence of the uniformly
bridging NAP H-NS we find a relative enrichment of chromosomal contacts at short genomic
scales and a corresponding decrease at longer scales. Interestingly, we can also reproduce
the profile of the contact ratio plot between MatP mutant and WT that only affects the
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Figure 47: A schematic representation of MSD scaling with delay in the presence of bridging. Unlike

a simple rouse polymer, there exists an additional sub-diffusive timescale τS at short time
lags determined by bridge lifetime.

relative levels bridging at the ter macrodomain. More broadly, by characterising the relation
between an equilibrium quantity, the number of bridges, and a dynamic quantity, the mean
bridge lifetime (λ), our framework provides an intuitive parameter landscape for bacterial
chromosome dynamics that will help guide future studies.

We summarize our inference of the empirical scaling behaviour of loci dynamics in Figure
47. At time lags shorter than the average bridge lifetime λ, we find that the scaling exponent
depends on the parameters µ and λ (Fig. 47). At intermediate time lags (λ < τ < τ′R) in
our polymer simulations, we find the typical rouse scaling of α ∼ 0.56 for a monomer on a
self-avoiding polymer. We know from polymer theory that τ′R is the timescale in which the
polymer moves a distance R (the end-to-end distance of the entire polymer). The scaling
R ∼ Nν and hence, the corresponding MSD at this displacement is ∼ N2ν. We know from
Eq. (8.18) that τ′R ∼ N1+2ν. Hence, the slope of the MSD curve for times. At time lags longer
than the modified relaxation time τ′R (discussed below), one expects a scaling exponent
α = 1, indicative of purely diffusive motion. Finally, we conclude that a new theoretical
model describing the interesting scaling dynamics of the bridging polymer is of interest.
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M A S S M I N I M I S AT I O N A N D PAT T E R N S E L E C T I O N I N T H E
B R U S S E L AT O R M O D E L

We present an analysis of the Brusselator model and show numerically and analytically that
most of the features of the exploratory model in Eq. (1.34) still hold. The general spatial
version of the Brusselator [22] is described by the following equations,

∂u
∂t

= Du
∂2u
∂x2 − βuv2 + γv (A.1a)

∂v
∂t

= Dv
∂2v
∂x2 + βuv2 − γv + cδ− δv . (A.1b)

We use reflective boundary conditions at x = ± L
2 and as in Eq. (1.34) write the production

term in terms of the degradation rate δ. While the Brusselator also has the form of a
mass-conserving Turing system with additional linear terms, here it is the mass of v that is
fixed at the steady state,

1
L

∫
v̄ dx = c , (A.2)

rather than the total mass. As before, we can change the turnover δ without affecting the
steady-state concentration of v. We non-dimensionalise the system by

x → x
L

, t→ Dvt
L2 , u→ u

c
, v→ v

c

to obtain

∂u
∂t

= d
∂2u
∂x2 + Γ

(
− auv2 + v

)
(A.3a)

∂v
∂t

=
∂2v
∂x2 + Γ

(
auv2 − v + b(1− v)

)
(A.3b)

where

Γ =
γL2

Dv
, d =

Du

Dv
, a =

βc2

γ
, b =

δ

γ
.
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There is a single fixed point

u0 =
1
a

, v0 = 1 .

The Jacobian is given by,

J(u0,v0) = Γ

[
−av2

0 −2au0v0 + 1
av2

0 2au0v0 − 1− b

]
= Γ

[
−a −1
a 1− b

]
.

The Jacobian (and hence the dispersion relation) becomes independent of b for b� 1, which
is when the flow of mass through the system is low, close to the mass-conserved limit b = 0.
Hence, we can change b without significantly affecting the linear behaviour of the model.
The trace and determinant of the Jacobian are easily found to be

TrJ = Γ(1− a− b)

DetJ = Γ2ab .

For the homogeneous fixed point to be stable in the absence of diffusion we must have
TrJ < 0 and DetJ > 0. Hence, we require a + b > 1. The Turing condition is given by,

d(1− b)− a− 2
√

dab > 0.

We numerically solve this system, using reflective boundary conditions, by perturbing the
homogeneous state as described in numerical methods. Like our illustrative model Eq. (1.36),
and every Turing model we are aware of, the peaks of a pattern are periodic and regularly
positioned. Furthermore, consistent with our results, a single peak moves exponentially to
the mid-domain (Figure S6A). The rate of movement was found to be proportional to b, or
equivalently, δ, the turnover rate and at the mass-conserved limit b = 0 no peak movement
is observed (as was the case for our model).

a.1 spike limit in the brusselator model

In this section, we develop the spike limit of the Brusselator model [25, 107]. Let us consider
the dimensional form in Eq. (A.1). As in the case of our toy model, we consider the
limit Dv � Du, where solutions of v consist of narrow large-amplitude spikes of width
ε = O(

√
Dv/γ). Away from the spikes, v is a spatial constant vout. Since

∫ L/2
−L/2 vdx = c,

inside the spikes we have v � c within a spike and v = vout � c outside. We search for
steady-state solutions consisting of n spikes at positions x1, x2, ..., xn and assume that u
changes slowly within each spike and can be approximated by a constant ui. We introduce
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an inner coordinate y = ε−1(x− xi), within each spike. The equation for the inner variable
vi(y) becomes,

Dv

ε2
d2vi

dy2
i
+ βuiv2

i − (γ + δ)vi = 0

vi → 0 as yi → ±∞ ,

where we have neglected the constant term since vi � c. The solution to this equation is

vi =
3
2

γ + δ

βui
sech2(

√
γ + δ

Dv

εyi

2
) .

In the outer region, the equation of each spike is approximated by a Dirac delta function

v = vout + ∑
i

wi,1δ(x− xi) , (A.4)

where wi,1 is the weight

wi,1 = ε
∫ ∞

−∞
vi(yi)dyi = 6

√
Dv(γ + δ)

βui

The ε pre-factor is the spike width. To write the outer equation for u, we also need the
weight of the uv2 term

wi,2 = εui

∫ ∞

−∞
v2

i (yi)dyi = 6
√

Dv(γ + δ)3/2

β2ui

Since, O(wi,1) = 1 (spikes have finite weight), we find O(uin) = ε and O(vin) = ε−1. Away
from the spikes, v is a constant vout. Therefore from Eq. (A.1b) we have,

βuv2
out − γvout + cδ− δvout = 0 (A.5)

in the outer region. Balance this equation while requiring u and vout not to diverge requires
that O(u) < O(vout). Therefore we can neglect the cubic term in the above equation to
obtain

vout =
cδ

γ + δ
.
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We obtain the outer equation for u by replacing v with weighted delta functions,

Du
d2u
dx2 −

n

∑
i=1

[βwi,2 − γ + wi,1]δ(x− xi)

+ cδ− δvout (A.6)

− L
2 < x < L

2 , ux(± L
2 ) = 0,

where we used Eq. (A.5) to simplify contributions from the outer region. Inserting the
expressions for each term we arrive at,

Du
d2u
dx2 −

cγδ

γ + δ
−

n

∑
i=1

ρ

ui
Lδ(x− xi) = 0 ,

− L
2 < x < L

2 , ux(± L
2 ) = 0 . (A.7)

where ρ = 6
√

Dv
L

δ
√

γ+δ
β . Note the above expression for vout is consistent with the condition

for the integral of v, Lvout + ∑i wi,1 = cL and the integral of the outer equation.
The solution to the outer equation is

u(x) = ū−
n

∑
j=1

ρ̂′iĜ(x; xj), (A.8)

where ū is a constant and the Green’s function Ĝ(x; xj) is the solution to

−L2Ĝxx(x; xj) + 1 = Lδ(x− xj), − L
2 < x < L

2 ,

Ĝx(± L
2 ) = 0,

1
L

∫ L
2

− L
2

Ĝ(x; xj)dx = 0 (A.9)

given by

Ĝ(x; xj) =
1

2L2 (x2 + x2
j )− 1

2L |x− xj|+ 1
12 (A.10)

We use hats to distinguish these quantities from those of the model in Eq. (1.36). The
coefficients ρ̂′i = ρ̂′i(x) and the constant ū are determined by the non-linear algebraic system

ρ̂′i = σ̂
c2

u(xi)
i = 1, ...., n (A.11)

where σ̂ = ρL2

c2Du
is a dimensionless parameter and the consistency condition (obtained by

integrating equation Eq. (A.7)),

∑
i

ρ̂′i = cη. (A.12)
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where η = δ
γ+δ

γL2

Du
is a second dimensionless parameter.

We next consider the spike limit σ̂→ 0 (Dv → 0). From equation Eq. (A.11) we have

ρ̂′i(ū−
n

∑
j=1

ρ̂′iĜ(xi; xj)) = 0 ∀ i.

As in the model of the main text, if any ρ̂′i = 0, then the result is a solution to the system
with one fewer spike. Hence the only physical n-spike solution is

ρ̂′ = ūĜ
−1

ê (A.13)

where Ĝij = Ĝ(xi; xj) and ê is the column vector with all unit entries. The constant ū is
determined from equation Eq. (A.12).

a.2 peak movement and comparison to point sinks

Just as for the model of the main text, the solution obtained above is identical to that of a
model of perfect point sinks. Consider the following system of (imperfect) point sinks

D
d2A(x)

dx2 + ĉ−
n

∑
i=1

µLδ(x− xi)A(xi) = 0 (A.14)

with reflective boundary conditions at x = ± L
2 . This is similar to that of equation Eq. (3.1)

but without the background decay (δu term). Indeed it can be obtained from that equation
by replacing c by ĉ/δ and taking the limit δ→ 0. The solution to this equation is

A(x) = Ā−
n

∑
i=1

µ̂′iĜ(x; xi). (A.15)

where Ā is a constant and the Green’s function Ĝ(x; xi) is the same as that of the Brusselator
Eq. (A.10). The coefficients µ̂′i = µ̂′i(x) are determined by the linear algebraic conditions

µ̂′i = λ̂A(xi) i = 1, ..., n (A.16)

where we have introduced the dimensionless parameter λ̂ = µL2

D . In the perfect sink limit
λ̂→ ∞ the condition for the µ̂′i’s reduces to

µ̂′ = ĀĜ
−1

ê (A.17)
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which is precisely what we obtained for the Brusselator model in the spike limit. Thus,
steady-state spike solutions of the Brusselator are identical to solutions of a model of perfect
point sinks.

In the main text, for the point sink model with background decay (δu), we showed a
connection (Eq. (3.29)) between the flux differentials into each sink and the derivative of
the total mass M = 1

L

∫
A(x)dx. It is easily seen that the same relation holds for the model

without background decay. Replacing c by ĉ/δ and taking the limit δ→ 0, the flux differential
across each sink is found from Eq. (3.27) to be

∆Ji

ĉL
= − 1

L

[
xi −

L
n

i +
L
2
(

1
n
+ 1)

]
.

Similarly, the derivative of M from Eq. (3.28) is

D
ĉL

∂M
∂xi

=
2

nL

[
xi −

L
n

i +
L
2
(

1
n
+ 1)

]
Thus

∆Ji = −
1
2

nD
∂M
∂xi

. (A.18)

Therefore, the dynamics of sinks moving with velocities proportional to the flux differential
across them is equivalent to a system of n over-damped particles with the mass M acting as
a potential.

a.3 mass minimisation predicts the pattern obtained after coarsening

In Figure 17, we examine coarsening in the Brusselator model. We use Γ, d, a and b as
dimensionless parameters and use periodic boundary conditions to avoid patterns with
peaks on the boundary (which are not compatible with the spike approximation). In panels
A and B, we compare the number of peaks in the dominant mode as predicted by the linear
dispersion relation and the number of peaks in the most frequent pattern as obtained from
the numerical simulations. We observe a similar coarsening behaviour as b (or equivalently
the turnover rate δ) is decreased, similar to the model of the main text.

To apply our analytical approximation, we consider the situation where spikes are sym-
metric (ρ̂′i = ρ̂′c) and regularly positioned,

x̄i =
L
n i− L

2 (
1
n + 1)
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as they are observed to be in a steady state. From Eq. (A.12), we then have

ρ̂′c =
c
n

η . (A.19)

We determine the constant ū by evaluating the solution Eq. (A.8) at each spike position ūi

u(x̄i) =
nσ̂

η
c = ū− cη

n

n

∑
j=1

Ĝ(x̄i; x̄j).

The sum in the above equation is independent of i since

n

∑
j=1

Ĝ(x̄i; x̄j) =
1

12n
.

Thus, we find that the total mass M of the fast species is

M/c =
1

cL

∫ L
2

− L
2

u(x)dx =
1

cL

∫ L
2

− L
2

ū dx

=
nσ̂

η
+

η

12n2 , (A.20)

where we have used the Green’s function property
∫ L

2
− L

2
Ĝ(x; xj) = 0. In terms of the

dimensionless parameters set of the first section, the expression for the mass is M =
6n(b+1)3/2

a
√

Γ
+ Γb

12d(b+1)n2 . Note that just as for the model in the main text, the mass M is minimal
for a critical number of peaks n = nc. In Fig. 17C, we compare the distribution of peaks of
the final pattern obtained after coarsening with nc and the linear prediction. We find that,
like in the model of the main text, nc is an excellent predictor of the number of peaks in the
steady-state pattern.
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M A S S M I N I M I S AT I O N A N D PAT T E R N S E L E C T I O N I N
S C H N A K E N B E R G M O D E L

The Schnakenberg reaction-diffusion systems are described by the following equations [23]
in 1D,

∂u
∂t

= Du
∂2u
∂x2 + cδ− βuv2, (B.1a)

∂v
∂t

= Dv
∂2v
∂x2 + c1 − δv + βuv2. (B.1b)

We set the second feed term c1 = 0, to simplify our parameter space. We perform the
following re-scaling of the variables:

x → x
L

, t→ Dvt
L2 , u→ u

c
, v→ v

c
,

Γ =
δL2

Dv
, a =

βc2

δ
, d =

Du

Dv
.

The resulting dimensionless form of the equations is:

∂u
∂t

= d
∂2u
∂x2 + Γ(1− auv2), (B.2)

∂v
∂t

=
∂2v
∂x2 + Γ(−v + auv2). (B.3)

The fixed points are,

u0 =
1
a

, v0 = 1. (B.4)

The Jacobian (J(u0,v0)) is given by,

J(u0,v0) = Γ

[
−av2

0 −2au0v0

av2
0 −1 + 2au0v0

]
= Γ

[
−a −2
a 1

]
(B.5)
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The conditions for stability of the base state,

TrJ = Γ(−a + 1) < 0 =⇒ a > 1

DetJ = Γ2a > 0 .

whereas the additional condition for spatial instability is

fu + dgv − 2
√

dDetJ = d− a− 2
√

da > 0 (B.6)

The spike limit approximation can be applied to the Schnakenberg model and follows in
a very similar way to the Brusselator model described above. We search for steady-state
spike solutions consisting of n spikes at xi = x1, ..., xn and assume that u changes slowly
within each spike and can be approximated by a constant ui. We shift to an inner coordinate
y = ε−1(x− xi), within each spike. The equation for the inner variable vi(y) becomes,

Dv

ε2
d2vi

dy2
i
+ βuiv2

i − δvi = 0

vi → 0 as yi → ±∞ ,

The solution to this equation is

vi =
3
2

δ

βui
sech2(

√
δ

Dv

εyi

2
) .

In the outer region, the spike is approximated by a Dirac delta function with weight

wi = ε
∫ ∞

−∞
v(yi)

2dyi = 6
√

Dvδ3/2

β2ui
.

We follow the same arguments for the outer equations of u and v as in Appendix C of the
main text for the Brusselator model. The outer equation for the fast species u has the form

Du
d2u
dx2 + cδ−

n

∑
i=1

ρs

ui
Lδ(x− xi) = 0 ,

−L/2 < x < L/2, ux(±L/2) = 0 , (B.7)

where ρs = 6
√

Dv
L

δ3/2

β . We note that this is just Eq. (A.7) in the main text with the term cδγ
γ+δ

replaced by cδ and ρ by ρs. The solution to the above equation is again given by Eq. (A.8)
written in terms of the Green’s functions defined in Eq. (A.10). Thus, all the comparisons to
point sinks hold (namely Eq. (A.17) and Eq. (A.18)).
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In the symmetric spike limit (spikes of height and regularly positioned) we find an
expression for the mass of the fast species

M/c =
nσs

ηs
+

ηs

12n2 (B.8)

where σs =
ρs L2

c2Du
and ηs = L2 δ

Du
.

In Figure 17D, we compare the number of peaks in the final pattern obtained at steady
state with the predictions from linear stability analysis and the minimum (in n) of the above
mass. Note that unlike the models in the main text, the Schnakenberg model does not have
a mass-conserved limit and does not exhibit a dynamic coarsening process. Nonetheless,
we find that, like the models in the main text, nc (the number of peaks for which the mass
is minimal) is a better predictor of steady state pattern than linear stability analysis in the
well-separated spike limit.
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