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Abstract 

II Abstract 

Microbial metabolism is feedback regulated on many layers. Feedback control can be 

executed by metabolite-protein interactions to allosterically control enzyme activity, 

and to transcriptionally control enzyme abundance, providing cells with robustness to 

withstand, and adapt to perturbations. However, these interactions contribute to the 

complexity of metabolism and prohibit an intuitive understanding. To gain a deeper 

understanding of metabolism, mechanistic mathematical models are useful tools to 

simplify complex interrelationships. In this thesis, we developed mathematical models 

to study allosteric feedback, transcriptional feedback, and the interplay of both 

mechanisms. Then, we used this knowledge to develop a method to map feedback 

regulation between metabolism and transcription in E. coli metabolism. Since high-

quality metabolite data are crucial to study metabolism, we finish this thesis with two 

chapters on mass spectrometry-based metabolomics. 

After providing a general introduction in Chapter 1, we develop a mathematical model 

of amino acid biosynthesis in Chapter 2 to study the interplay between allosteric 

feedback and transcriptional feedback. We showed that both feedbacks act in concert 

to balance robustness and efficiency. In Chapter 3, we developed a mathematical model 

of glycolysis that is transcriptionally regulated by the transcription factor Cra, to study 

metabolic burden in glycerol-producing E. coli. A robustness analysis revealed that Cra 

regulation causes growth defects and low glycerol titers in E. coli, and that this burden 

can be solved by engineering Cra regulation into the glycerol pathway. In Chapter 4, we 

developed a mathematical model to understand the implications of an ornithine-based 

allosteric activation at the branch point between arginine and pyrimidine biosynthesis. 

We showed that the feedback activation buffers upstream perturbations and thereby 

stabilizes pathway end products. In Chapter 5 we investigated causes for periodic 

pyruvate oscillations using a mathematical model of glycolysis. We show that feed 

forward activation of the pyruvate kinase and high saturation of the pyruvate 

dehydrogenase contribute to pyruvate oscillations. In Chapter 6 we performed 

knockdowns of 283 genes of E. coli metabolism and measured proteome and 

metabolome of the perturbed strains. A pathway-based analysis allowed us to map 

feedback regulation between metabolism and transcription using proteome and 
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metabolome data. In Chapter 7 we analysed and validated the mass spectrometry-

based flow-injection metabolomics approach with 160 spike-in samples. We showed 

that flow-injection causes complex MS1 spectra that can lead to false positive peak 

annotations. Finally, we concluded this thesis in Chapter 8 by developing an approach 

to generate reference fragments for low-abundant, or commercially unavailable 

metabolites to complement reference databases. We showed a proof of principal for 

two metabolites.  
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III Zusammenfassung 

Der mikrobielle Stoffwechsel ist komplex und wird durch Feedback Regulation auf vielen 

Ebenen reguliert. Feedback Regulation kann durch Metabolit-Protein Interaktionen 

ausgeführt werden, die allosterisch Enzymaktivität, oder transkriptionell Enzymmengen 

regulieren. Diese Regulationsmechanismen erlauben es den Zellen Störeinflüssen zu 

widerstehen und sich an die neuen Gegebenheiten anzupassen. Jedoch tragen diese 

Interaktionen zur Komplexität des Stoffwechsels bei, was ein Intuitives Verständnis 

erschwert. Um ein tieferes Verständnis des Stoffwechsels zu erreichen können 

mathematische Modelle genutzt werden, um komplexe Sachverhalte zu vereinfachen. 

In dieser Arbeit entwickeln wir mathematische Modelle um allosterische Feedback 

Regulation, transkriptionelle Feedback Regulation und das Zusammenspiel beider 

Mechanismen zu verstehen. Darüber hinaus nutzen wir dieses Wissen, um Feedack 

Mechanismen zwischen Metabolismus und Transkription zu kartieren. Da hochwertige 

Metabolit Daten für diese Aufgaben erforderlich sind, beschäftigen wir uns zum Schluss 

mit Massenspektrometrie-basierter Metabolomik. 

Nach einer allgemeinen Einleitung in Kapitel 1 entwickeln wir in Kapitel 2 ein 

mathematisches Modell des Aminosäurestoffwechsels, um das Zusammenspiel 

zwischen allosterischer Regulation und transkriptioneller Regulation besser zu 

verstehen. Wir zeigen, dass beide Feedback Mechanismen benötigt werden um ein 

Gleichgewicht zwischen Robustheit und Effizienz einzustellen. In Kapitel 3 entwickeln 

wir ein transkriptionell reguliertes mathematisches Modell der Glykolyse, um die 

metabolische Belastung von Glycerol produzierenden E. coli zu verstehen. Wir zeigen, 

dass transkriptionelle Regulation durch Cra in Glycerol produzierenden E. coli zu 

niedrigen Wachstumsraten und Glycerol Titern führt und dass konstruierte Cra 

Regulation der Glycerol Synthese die Wachstumsrate stabilisiert und Glycerol Titer 

erhöht. In Kapitel 4 entwickeln wir ein mathematisches Model, um den Einfluss einer 

Ornithin-basierten allosterischen Feedback Aktivierung auf den Knotenpunkt der 

Arginin- und Pyrimidin Biosynthese zu charakterisieren. Wir zeigen, dass die Feedback 

Aktivierung Perturbationen stromaufwärts kompensiert und dadurch die Endprodukte 

der Arginine und Pyrimidin Biosynthese stabilisiert. Anschließend entwickeln wir in 

Kapitel 5 ein mathematisches Modell der Glykolyse und untersuchen dieses auf die 
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Ursachen von Pyruvat Oszillationen. Wir zeigen, dass die Feedforward Regulation der 

Pyruvatkinase, sowie das Sättigungsverhalten der Pyruvat Dehydrogenase entscheidend 

sind für die Entstehung von Pyruvat Oszillationen. 

In Kapitel 6 regulieren wir 283 metabolische Gene im Stoffwechsel von E. coli genetisch 

herunter und messen anschließend Protein- und Metabolitänderungen. Mit Hilfe dieser 

Daten kartieren wir dann Feedback Regulation zwischen Metabolismus und 

Transkription in E. Coli. 

In Kapitel 7 analysieren und validieren wir die Massenspektrometrie-basierte 

Fließeinspritzung, indem wir E. coli Extrakte mit 160 individuellen Metabolit Standards 

versetzen. Wir zeigen, dass die Methode komplexe Spektren erzeugt, die zu falsch-

positiven Peak Annotierungen führen können. 

In Kapitel 8 beenden wir diese Arbeit mit der Entwicklung einer Methode zur 

Generierung von Referenz Fragmenten für niedrig abundante, oder kommerziell nicht 

verfügbare Metabolite, um Referenzdatenbanken zu komplementieren. Wir zeigen das 

Prinzip der Methode für zwei Metabolite. 
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Chapter 1  General introduction 

1.1 Structure and function of the metabolic network of Escherichia 

coli 

1.1.1 Structure and function of the metabolic network 

Metabolism is executed by a network of biochemical reactions that convert nutrients 

via various intermediary metabolites into energy and building blocks that are required 

for cell growth. Despite 3.7 billion years of divergent evolution, the basic structure of 

metabolic networks is highly conserved across the tree of life, and basically all life forms 

rely on a similar set of metabolites1. Metabolites allow the cell to sense environmental 

changes, provide a means for cell-to-cell communication, and can act as defense 

mechanism2. For all living organism, the structure of the metabolic network is encoded 

on their genomes. According to the central dogma of molecular biology, genes are 

transcribed into mRNA, which are then translated into enzymes that catalyzes chemical 

reactions with high selectivity3. Together, multiple enzymatic reactions are organized in 

modular, yet densely connected metabolic pathways2. The pathways can be broadly 

grouped into catabolism and anabolism4,5 (Figure 1). Catabolism breaks down nutrients 

to produce anabolic building blocks and energy in the form of adenosine triphosphate 

(ATP). For example, glycolysis is an important catabolic pathway that converts glucose 

to pyruvate and energy. Anabolism uses intermediates and energy to produce building 

blocks required for cell growth. An example for anabolism is amino acid biosynthesis. 

For each of the 20 proteinogenic amino acids, precursors from central metabolism are 

converted into the final amino acids by multiple enzyme-catalyzed reaction steps. 

For the well-studied model organism Escherichia coli (E. coli) the structure and 

stoichiometry of the metabolic network is assumed to be largely complete6,7. Despite 

that, we know little about how E. coli maintains and adapts its metabolism dynamically 

in changing environments. Filling this knowledge gap is important to design better 

production strains in biotechnology8, to help in understanding microbial communities9, 

and to help in understanding diseases with metabolic phenotypes10. 
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Figure 1. Central dogmatic flow of information, catabolism, and anabolism. Genes are pointed boxes. 
Enzymes are blue squares. Metabolites are orange spheres. Black arrows are metabolic reactions. Grey 
arrows indicate the information flow as defined in the central dogma of molecular biology. Genes are 
transcribed into mRNA. mRNA is translated into enzymes. Enzymes catalyse biochemical reactions. In 
catabolism, the enzymes convert nutrients into ATP and precursor metabolites. In anabolism, enzymes 
produce biosynthetic precursors (amino acids, nucleotides, lipids) from precursors and ATP. The 
biosynthetic precursors are required for transcription and translation. 

 

1.1.2 Robustness of metabolism 

Cells constantly encounter internal and external perturbations, such as temperature 

gradients and changes of nutrient availability. To survive, grow, and evolve, they need 

to be robust enough to cope with these perturbations. Robustness is an emergent 

property of biological systems that allows them to maintain function amidst various 

perturbations11,12. 

To understand metabolism, it is crucial to understand the mechanisms that ensure 

robustness. Although there is no unifying way to describe robustness theoretically or 

experimentally yet13, there are simple mechanisms that enable metabolic robustness. 

These general mechanisms are based on system control, modularity, and 

redundancy11,12 (Figure 2a). System control uses negative and positive metabolic 

feedback to adjust metabolic rates and metabolite levels to new conditions.  
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Figure 2. Principles of biological robustness. a) Examples of system control, modularity, and redundancy 
in metabolic networks. Spheres are metabolites and solid arrows are metabolic reactions. (Left) System 
control is achieved by negative feedback (blunt dashed arrow) and positive feedback (pointed dashed 
arrow). (Middle) Modularity is achieved by spatial and functional separation of metabolic pathways. 
Different pathway modules are coloured. (Right) Redundancy is achieved by different enzymes that 
catalyse the same reaction, for example PfkA and PfkB in glycolysis. b) Example of how a perturbation 
affects a cellular state. (1) The system returns immediately to the same steady state. (2) The system loses 
stability transiently (State 1), and transitions to a new steady state (State 2). (3) the system loses stability 
and becomes unstable.  

 

One common way metabolism executes feedback control is via metabolite-protein 

interactions, in which binding of a metabolite modulates protein activity7. While 

negative feedback enables robust adaptation14, positive feedback enhances sensitivity, 

allowing the system to switch between different states11. 

Redundancy is based on alternative paths that can carry out the same function. For 

example, ATP can be produced via oxidative phosphorylation and by glycolysis. While 

oxidative phosphorylation requires oxygen, glycolysis can still produce ATP under 

anaerobic conditions, albeit less efficiently12. Another way to achieve metabolic 

redundancy is by gene duplications. For example, the genes pfkA and pfkB produce two 

isoforms of the phosphofructokinase (PFK) that have overlapping functions and catalyze 

the same reaction in glycolysis15. 
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Modularity means that metabolism is composed of a diverse set of functional units. Due 

to functional and spatial separation, perturbations are kept local, which prevents system 

failure and cell death16. Moreover, modularity enables evolution by creating a robust 

core that is then augmented by additional modules, which often share a set of recurring 

network motifs17,18. 

Although these mechanisms are crucial for surviving, the cell faces hard trade-offs to 

achieve robustness19. Complex systems evolved robustness to handle certain conditions 

or perturbations. However, the same mechanisms that allow the systems to be robust 

against known perturbations render them fragile against unknown or rare 

perturbations, as defined by the theory of highly optimized tolerance19–21. 

For example, feedback regulation enhances robustness of a system in a common 

environment. However, when faced with unknown perturbations, the same feedback 

mechanisms can induce fragilities in the form of sustained oscillations, causing system 

failure22. Metabolic redundancy provides robustness via fail safe mechanisms, but 

maintaining redundancy requires resources. While redundancy protects the cell in 

certain environments, it also causes a fitness disadvantage in environments in which 

that specific type of redundance is not needed23. 

Robustness needs to be clearly distinguished from stability. While stability defines a 

certain state the system operates in, robustness is defined by functionality, irrespective 

of the state of the system. When a stable system is perturbed, there are basically three 

possible outcomes. First, the system returns to the original state. Second, the system 

loses stability, but transitions towards a new stable steady state. Third, the system 

becomes unstable. The first and second cases are examples of robust behavior, even 

though stability is transiently lost in the second case12,13 (Figure 2b). 

In conclusion, biological systems are robust, and this robustness is achieved by feedback 

control, modularity, and redundancy11,12 22. However, the more a system is optimized to 

withstand known perturbations, the more fragile it becomes against other 

perturbations20. Thus, understanding metabolic robustness and its trade-offs is key to 

understanding how cells adapt dynamically to changing environments, or perturbations 

in general.  
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1.1.3 Dynamic control of metabolism 

One of the most prevalent mechanisms for cells to achieve robustness is feedback 

control11,12. Feedback control is how a cell manages all steps between gene expression 

and metabolism. Most commonly, feedback is executed via metabolite-protein 

interactions7. Briefly, metabolites can transiently bind to certain proteins. If a 

perturbation changes the concentration of that metabolite, saturation of the target 

protein changes, often inducing structural change that increases or decreases its 

activity24. 

Biochemical reactions are carried out by enzymes, and their reaction rate depends on 

enzyme specific parameters like the turnover number, and binding constants, and 

enzyme abundance. The rate at which one metabolite is converted to another 

metabolite defines the metabolic flux of a metabolic reaction25. It is generally assumed 

that metabolic networks of exponentially growing cells operate in a steady state, in 

which the concentration of each metabolite is time invariant26. For example, in linear 

metabolic pathways subsequent reactions must share the same metabolic flux. 

Perturbations, however, can cause a loss of a steady state, leading to metabolite 

accumulations or depletions, and a change in metabolic flux27 (Figure 2). Since metabolic 

flux depends on enzyme abundance and enzyme activity, the cell can regulate flux by 

using feedback control to change enzyme activity, or enzyme abundance, or both28. 

One of the most important mechanisms to control enzymatic activity by metabolites is 

allosteric feedback regulation7. A different metabolite than the substrate or the product 

of the enzyme binds to a binding pocket of the same enzyme that is not the catalytic 

center. This metabolite-enzyme interaction induces a conformational change of the 

enzyme structure, affecting enzyme activity within seconds of the interaction24. Thus, 

allosteric feedback regulation allows the cell to modulate metabolic flux by changing 

enzyme activity in response to changes in metabolite levels (Figure 3a). Besides 

allosteric regulation, the activity of many enzymes is inhibited by metabolites that 

compete with the substrate for a place in the active site. These metabolites often 

structurally resemble the substrates29. Other mechanisms to control protein activity 

include acetylation, phosphorylation, and methylation. In contrast to transient 
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metabolite-protein interactions, these mechanisms can be either reversible or 

irreversible30. 

 

Figure 3. Allosteric feedback and transcriptional feedback. Orange spheres are metabolites (m1 is the 
substrate, m2 is the product). Solid arrows are metabolic reactions. Squares are enzymes that catalyse the 
reactions. Dashed arrows are allosteric or transcriptional feedback regulations. Square and Sphere size 
corresponds to the enzyme amount and metabolite amount. The amount of fill corresponds to the activity 
of the enzyme. The thickness of the arrow corresponds to the magnitude of the reaction flux a) Allosteric 
feedback inhibition. An increase of m2 causes a decrease of the enzyme activity and a decrease of the 
reaction flux. b) Transcriptional feedback inhibition. An increase of m2 causes a decrease of the enzyme 
amount, and a decrease of the reaction flux. 

 

The metabolic flux of an enzyme-catalyzed reaction can also be modulated by changing 

enzyme abundance (Figure 3b). Enzyme abundance can be regulated transcriptionally 

by transcription factors (TFs)31, transcriptional attenuation32, or riboswitches33, but also 

by changing the number of active ribosomes34. Transcription factors are organized 

hierarchically in the transcription regulation network (TRN)35. In the TRN there are local 

transcription factors, which control enzyme abundance of specific metabolic modules, 

and there are global transcription factors that control genes of many different 

modules36. Controlling enzyme abundance allows the cell to control its resources, and 

similarly to allosteric regulation, some transcription factors can sense changes in 

metabolite concentrations36,37. Binding of a metabolite modulates the activity of the TF 
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and thereby gene expression is controlled. For example, it was shown that the 

transcription factor Cra can sense glycolytic flux by interacting with the metabolite 

fructose-6-phosphate37. Other examples can be found in amino acid metabolism, in 

which the amino acid of a pathway controls enzyme levels of that pathway by interacting 

with a local transcription factor36. Besides activation of transcription factors by 

metabolite binding, transcription factors can also sense a change of the pH, or oxidative 

stress38. 

Thus, to quickly adapt to new internal or external cues, the cell can adjust metabolic flux 

by means of allosteric regulation,24 and enzyme abundance by means of transcriptional 

regulation39. Both mechanisms have in common that metabolites are the key signaling 

molecules. Although allosteric and transcriptional regulation have been studied for a 

long time, many aspects of the dynamic control of metabolism remain elusive7. 

Especially the interplay between both mechanisms has not been thoroughly 

investigated yet28. 

1.1.4 Identification of metabolite-protein interactions 

The interaction between metabolites and proteins causes a change in the 

physicochemical properties of the interactors, and approaches to try to identify 

interactions are usually based on changes in these properties. These approaches focus 

either on the protein or the metabolite40. 

Historically, in vitro binding assays, combining a single enzyme with a single metabolite, 

were carried out to identify binding constants from changes in protein properties41,42. 

Mass spectrometry-based proteomics and metabolomics approaches have been 

developed to study metabolite-protein interactions systematically at a higher 

throughput. For example, mass spectrometry-based proteomics was used to 

systematically identify structural protein changes upon metabolite bindings in cell 

lysates43. More recently, an approach based on limited proteolysis was used to identify 

a hitherto unprecedented number of metabolite-protein interactions in E. coli44. 

However, while many metabolite-protein interactions were discovered this way, the 

data are based on cell lysates, which may not be relevant in vivo. In contrast, mass 

spectrometry-based proteomics was used to measure temperature-based changes of 

protein stability in intact cells. This approach enabled the detection of multiple 
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metabolite-protein interactions that caused a change in protein stability45,46. Other 

approaches focus more on metabolite changes upon protein binding. For example, NMR 

was used to identify metabolites that interact with single proteins47. 

While these approaches identified metabolite-protein interactions, an interaction alone 

does not imply an underlying function. Functional interactions cause physiological 

changes in the cell. The function of an interaction can then be inferred by analyzing 

multi-omics data. A recent approach used a comprehensive multi-omics data set 

comprising 25 growth conditions in yeast and prior knowledge in form of simple 

mathematical models to identify functional metabolite-protein interactions48. 

To understand regulation, cells are perturbed, and the function of the regulation is then 

inferred from the differences between the original and the perturbed state. Common 

perturbations are changes of carbon sources49, abiotic stresses, but also gene 

knockouts50. Systematic analyses to assign function to metabolite-protein interactions 

use multi-omics data. For example, correlating promoter activity with metabolomics 

data showed that only a few metabolites regulate up to 90 % of experimentally 

measured transcription changes51. In another study, allosteric regulators driving the 

transition between different carbon sources were identified from correlating flux, 

metabolome, and transcriptome data49. 

In conclusion, there are many approaches that allow for the identification of metabolite-

protein interactions. However, to determine their relevance in vivo, information from 

multiple omics sources is required, and sometimes even prior knowledge in the form of 

kinetic enzyme parameters is needed48. Moreover, knockouts and environmental 

perturbations cause very strong, and often global cellular responses, which may prohibit 

the identification of subtle regulations49. Thus, to find subtle regulations, knockdowns 

may be more suitable perturbations. This could be achieved by CRISPR interference, 

which blocks transcription of a target gene, causing its dilution by growth52. Finally, 

mathematical models provide additional evidence that can be used in conjunction with 

data, or independently, to identify and study functional metabolite-protein interactions. 
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1.2 Systems biology of metabolism and mathematical modelling  

1.2.1 Systems biology 

Years of progress in molecular biology have greatly increased the coverage of all layers 

of cellular organization. Moreover, technological advances in genome editing53, 

sequencing54, and mass spectrometry55 have enabled the research of complex biological 

interactions that surpass the function of individual components. To achieve a system-

level understanding, it is crucial to understand the design principles of biological 

networks, and how these networks are controlled dynamically56. However, even though 

it is now possible to measure system-level data, the non-linear relationships between 

different components prohibits an intuitive understanding and poses an obstacle during 

data interpretation. 

 

Figure 4. Model-experimentation cycle. In the beginning there is a conceptual hypothesis or a model 
prediction about a process (purple). This hypothesis can be validated experimentally (blue). If the 
experiment shows a different behaviour, the model needs to be adjusted (green). Then predictions are 
made with the new model structure. 

 

To understand complex interactions, and to organize disparate information, 

mathematical models are invaluable tools57. Mathematical models are reduced, or 

abstracted simplifications of the real systems, and focus on the essential components 
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and interactions. As such, they allow us to contextualize data, to provide a means to 

test, to verify, and to generate new hypotheses (Figure 4)58. They allow insights into 

emergent system properties that are difficult to assess experimentally, like stability14 

and robustness13. Especially in the field of metabolism, mathematical models already 

had a huge impact on our system understanding. These models can take on various 

complexities, ranging from linear models to coarse grained, or mechanistic kinetic 

models4,27,59–61. 

1.2.2 From stoichiometric to mechanistic models 

Stoichiometric models. A simple way to model metabolic networks are stoichiometric 

models. These models employ the metabolite-reaction stoichiometry that is based on 

genome-scale metabolic reconstructions6,62. The latest metabolic reconstruction of E. 

coli contains 1,515 metabolic genes, 1,192 unique metabolites and 2,719 metabolic 

reactions6. A modelling approach that employs network stoichiometry to calculate 

metabolic fluxes is Flux Balance Analysis (FBA)61. FBA assumes a steady state in which all 

metabolic concentrations and reaction fluxes are time invariant. Linear programming is 

then used to find a flux distribution that optimizes a biologically relevant objective 

function (e.g. maximizing the growth rate)63. FBA has been successfully used to 

quantitatively predict growth rates64, gene essentiality,65 and production rates/yields of 

commercially valuable metabolites66. Although FBA predicts metabolic fluxes with high 

accuracy, it does not allow to study system dynamics. Therefore, FBA is unsuitable to 

answer how fluxes are achieved60, nor is it suited to study dynamic control of 

metabolism. 

To study the dynamics of metabolism, kinetic models based on ordinary differential 

equations (ODEs) can be used. There are coarse-grained kinetic models that describe 

dynamic systems phenomenologically, and there are mechanistic kinetic models that try 

to describe the molecular interactions in detail60. Recently, coarse grained models have 

described fundamental principles of bacterial physiology4,67,67,68. For example, a simple 

model with feedback inhibition and feed-forward activation predicted that keto acid 

abundance controls the cAMP-dependent catabolite repression in E. coli4. Although 

coarse-grained models provide a basic understanding of metabolism, they are 

unsuitable to study detailed molecular mechanisms60. 
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Mechanistic models. Mechanistic models are the most detailed mathematical 

representations of metabolism. For example, mechanistic models of metabolic 

pathways employ network stoichiometry, and detailed kinetic rate-laws for each 

enzymatic reaction step. As such, they allow to study dynamic interactions like allosteric 

regulation69–71. Over the years, rate laws of various complexities have emerged to model 

enzymatic reaction rates69,70,72. 

 

Figure 5. Michaelis-Menten equation. a) Reaction scheme of the Michaelis-Menten equation. S is the 
substrate of the enzyme E. ES is the enzyme substrate complex. P is the product of the reaction. k are mass 
action reaction constants. Assumptions lead to the simplified irreversible Michaelis-Menten equation with 
the parameters Vmax and Km. Vmax is the product of the turnover number k2 and the enzyme amount E. 
b) Michaelis-Menten plot. The reaction rate V is plotted against the substrate concentration S. The curve 
asymptotically approaches Vmax. At Vmax/2 the substrate concentration equals Km. 

 

One of the best-known mechanistic rate laws is the Michaelis-Menten equation (Figure 

5a), which describes a hyperbolic relationship between substrate concentration and 

reaction rate (Figure 5b)73. The conversion of the substrate requires several elemental 

steps, which are modelled as a system of ODEs using mass-action kinetics72. To allow for 

a tractable model analysis, the model is simplified by making assumptions74. The 

simplifications assume a steady state, excess of substrate and an irreversible product 

formation rate. These assumptions yield a simplified kinetic model with two lumped 

kinetic parameters (Km, Vmax), which can be determined in vitro (Figure 5a). Because of 

its simplicity and practical relevance, Michaelis-Menten kinetics have been used 

frequently to model metabolic reactions. For example, the kinetic model k-ecoli457 was 
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modelled using mainly Michaelis-Menten kinetics75. Here, the predicted Michaelis-

Menten constants matched experimentally determined parameters75. However, for 

many enzymes the rate laws and kinetic parameters remain unknown and in vitro data 

may not be appropriate to study in vivo systems76. This lack of knowledge makes it 

difficult to build accurate mathematical models. 

1.2.3 Addressing model uncertainties with ensemble modelling 

Mathematical models of metabolism suffer from epistemic uncertainty, that is the lack 

of knowledge about interactions, rate-laws, and kinetic parameters77. Even though, 

recent studies suggested that kinetic parameters may be less important than model 

structure, these uncertainties still prohibit the design of accurate mechanistic 

models78,79. 

Ensemble modelling has been used to identify model parameters, and to find new 

physical interactions. The common denominator of all ensemble modelling approaches 

is the formulation of multiple alternative models that represent different 

hypotheses71,80,81. The idea is that an ensemble of multiple models is more accurate than 

only a single model. For example, the models of an ensemble can all differ in their kinetic 

parameters (Figure 6a), or they can differ in their physical interactions (Figure 6b). 

 

Figure 6. Ensemble modelling. a) Ensemble of a kinetic metabolic model with two metabolites (orange 
spheres), three reactions (solid arrows) and allosteric feedback (dashed arrow). Blue boxes are models of 
the ensemble with the same model structure but different kinetic parameters. The graph shows the 
metabolic flux time course of the ensemble. All models reach the same steady state flux, but they have 
different time courses. b) Ensemble of structural models. Grey spheres are known components of the 
system and solid lines are known interactions between the known components (core model). Orange 
spheres are components for which there are no known interactions. Enumerated dashed arrows are 
potential interactions. Each model in the ensemble contains the core model and one additional new 
interaction. 

 



  26 

Chapter 1  

To identify kinetic parameters of a mechanistic model, a metabolic ensemble modelling 

approach constructs several models (an ensemble of models) that share the same 

structure and stoichiometry. Then, all models of the ensemble are constrained to the 

same steady state flux27,71. Free parameters are then calculated by random sampling 

from biologically relevant intervals, and the remaining parameters are calculated. Thus, 

all models in the ensemble reach the same steady state flux, but because each model 

has a unique set of kinetic parameters, the respective dynamics are different (Figure 6a). 

By constraining all fluxes to the same steady state flux, the number of feasible kinetic 

parameters is reduced to biologically relevant parameters71. In the original study, the 

models were then tested against experimental data by simulating gene expression 

changes. Only 1/1010 parameter correctly predicted the experimental data, and the 

single model was then selected to make further predictions71. In a different application, 

metabolic ensemble modelling has been used to study robustness of (engineered) 

metabolic networks against strong changes in enzyme concentrations.82 

Besides knowledge-gaps in kinetic parameters and rate laws, basic physical interactions 

may be unknown. To identify unknown interactions in the mTOR pathway of 

Saccharomyces cerevisiae (S. cerevisiae), a core model based on current knowledge was 

built. The core model was then extended by single additional interactions (Figure 6b). 

That resulted in an ensemble of 18 models that shared the same model core and differed 

only in a single interaction. Comparing the model simulations to experimental data then 

revealed the interaction that best explained the data81. 

Moreover, ensemble modelling was used to identify functional allosteric regulations. In 

this study, glycolysis was modelled with an ensemble of 126 different combinations of 

allosteric feedback regulations. Together with experimental data, the approach revealed 

that pyruvate allosterically activates the fructose-1,6-bisphosphatase, and that this 

interaction is crucial for E. coli to reversibly switch between gluconeogenesis and 

glycolysis83. 

In conclusion, mechanistic models of biological processes suffer from uncertainties in 

model parameters and in model structures. These uncertainties can be addressed by 

ensemble modelling techniques. Ensemble modelling uses multiple models with 

different kinetic parameters, or different model structures to make predictions, which 
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acknowledges uncertainty, and allows for more general predictions than using only a 

single model71,81,84. 

1.2.4 Stability and robustness of dynamic systems 

As already discussed in Chapter 1.1.2, stability and robustness are emergent properties 

of biological systems that are crucial for the cell to survive and adapt11,12. However, while 

stability and robustness are difficult to assess experimentally, mathematics provide the 

means to define and analyse these emergent system properties57.  

Stability. The linear stability of a system of ODEs is defined at a fixed point or steady 

state, in which all relevant system variables are time invariant. Then, a variable of the 

system is perturbed by a small amount. If the system returns to the same state, the 

system is linear stable, otherwise the system is linear unstable. This behaviour is 

illustrated in Figure 7a. The function has two steady states (blue and orange sphere). 

The arrows indicate the velocity (dX/dt) of X when the steady state is perturbed slightly. 

The blue sphere always returns to the steady state (stable) and the orange sphere moves 

away from the steady state (unstable). 

Mathematically, stability can be assessed by approximating the system at the fixed point 

by a Taylor series. The Taylor series is then cut after the linear term, and the eigenvalue 

of that term defines if the system is linear stable or unstable. For ODEs of order two or 

higher, the Jacobian matrix, a system-wide linearization, is calculated. Consider a system 

with two coupled equations (f1, f2), two variables (x1, x2), and kinetic parameters (p) 

that is in steady state: 

𝑑𝑥

𝑑𝑡
=  𝐹(𝑥1𝑆𝑆 , 𝑥2𝑆𝑆 , 𝑝) =  

𝑓1(𝑥1,𝑆𝑆, 𝑥2,𝑆𝑆)

𝑓2(𝑥1,𝑆𝑆, 𝑥2,𝑆𝑆)
=  [

0
0
] (1.1) 

The system is linearized around the steady state by calculating the partial derivatives 

with respect to the variables x1 and x2. This is the Jacobian matrix, J: 

𝐽 =
𝜕𝐹(𝑥𝑆𝑆, 𝑝)

𝛿𝑥
=  

[
 
 
 
𝛿𝑓1
𝛿𝑥1

𝛿𝑓1
𝛿𝑥2

𝛿𝑓2
𝛿𝑥1

𝛿𝑓2
𝛿𝑥2]

 
 
 

 (1.2) 
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Figure 7. Stability and Robustness. a) Graphical description of linear stability. The first temporal derivative 
of X (dX/dt) is plotted against X. The function has two steady states (dX/dt = 0, blue and orange sphere). 
The arrows denote the direction the sphere moves when X is perturbed slightly. The blue steady state is 
stable, because the sphere moves back to the steady state after it is perturbed. The orange steady state is 
unstable, because the orange sphere moves away from the steady state after a perturbation. b) Bifurcation 
analysis. XSS is the state variable X in steady state. The blue sphere is the starting steady state of the 
analysis. Each point of the black line contains stable steady states for different values of the parameter P. 
The red sphere indicates a bifurcation point at which the system becomes unstable (red area).  

 

The linear stability of the system is then determined by the eigenvalues of the Jacobian 

matrix. The system is linear stable if all eigenvalues are negative. The system is linear 

unstable, if at least one eigenvalue is positive85.  

Robustness. Robustness is a property that preserves functionality despite 

perturbations11,12. In mathematical models, perturbations can be simulated by varying 

a kinetic parameter. In a bifurcation analysis, the system is initially in a stable steady 

state. Then, as a parameter p is varied, the system moves along a plane of stable steady 

states. The system becomes unstable at the bifurcation point that defines the boundary 

between a stable and unstable parameter space (Figure 7b). Robustness can then be 

defined as the degree of the perturbation that can be tolerated until the system 

becomes unstable82. For example, consider an ODE in steady state, in which xSS are the 

variables in steady state and p is a kinetic parameter that is varied iteratively. 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥𝑆𝑆, 𝑝) = 0 (1.3) 

In steady state, the derivative of F(xSS,p) with respect to the parameters is also zero: 
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𝑑𝐹(𝑥𝑆𝑆, 𝑝)

𝑑𝑝
=  

𝛿𝐹

𝛿𝑥𝑆𝑆
∙
𝑑𝑥𝑆𝑆
𝑑𝑝

+
𝛿𝐹

𝛿𝑝
= 0 (1.4) 

Rearranging the equation yields an expression that describes changes in a steady state 

as a parameter p is varied iteratively. 

𝑑𝑥𝑆𝑆
𝑑𝑝

= −(
𝛿𝐹

𝛿𝑥𝑆𝑆
)
−1

∙
𝛿𝐹

𝛿𝑝
 (1.5) 

This expression contains the inverse of the Jacobian Matrix. If the Jacobian matrix has 

full rank, matrix inversion is possible. A bifurcation point is reached when the Jacobian 

matrix becomes singular. At this point, matrix inversion is no longer possible, and the 

system becomes unstable. In conclusion, stability and robustness of mathematical 

models can be analysed by linear stability analysis and bifurcation analysis82. 

Linearization of a model at a steady state resembles weak perturbations, and parameter 

continuation by bifurcation analysis resembles strong perturbations. These concepts 

have been used to study dynamic systems. For example, Metabolic Control Analysis 

(MCA) studies the global consequences of small local perturbations86. Additionally, 

parameter continuation methods have been used to simulate gene overexpression in 

the context of metabolic engineering82. 

1.3 Modelling metabolism and transcriptional regulation 

Metabolic networks consist of multiple enzyme-catalysed reactions that all have a 

specific metabolic flux that is balanced throughout the network during exponential 

growth61. The metabolic flux of a metabolic reaction depends on specific kinetic enzyme 

parameters (e.g. Km, and the turnover number) and enzyme abundance70,73,74. When 

metabolism is perturbed by internal or external cues, the flux often needs to be adjusted 

by the cell to avoid accumulation or depletion of metabolites82. The flux of single 

enzymatic reactions can then be modulated by allosteric feedback control, and by 

changing enzyme abundance via transcriptional regulation7 (Figure 8). However, 

although both mechanisms are mediated by metabolite-protein interactions, it is still 

unclear how they work together28. For example, it was shown that changes of 

transcriptional rates are bad predictors of metabolic flux87, and the reason for this 
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behaviour is likely that enzymes are overabundant and usually not saturated by their 

substrates88–90. 

 

Figure 8. Allosteric regulation and transcriptional regulation. Orange spheres are metabolites. The 
horizontal arrow is reaction 1 (r1) that is catalyzed by the enzyme E (blue square). The fill of E indicates 
the enzyme activity (high fill: high activity, low fill: low activity). The TF is a blue box and the fill of the box 
indicates TF activity (high fill: high activity, low fill: low activity). The dashed blunt arrows indicate negative 
allosteric and negative transcriptional feedback. The vertical pointed arrow indicates positive regulation 
of gene expression by the TF. Metabolite abundance affects enzyme and TF activity by allosteric and 
transcriptional feedback. The TF activity influences the enzyme abundance. 

 

To better understand crosstalk between metabolism and transcription, mechanistic 

mathematical models are required that integrate both layers. There are many 

mathematical models that either describe metabolism or the transcription regulation 

network. However, there are only few mathematical models that mechanistically link 

both layers36,79,91.  

Early models that combined metabolism and transcriptional regulation were developed 

based on the biochemical systems theory approach that uses the S-system formalism to 

approximate mechanistic rate laws69. For example, the autogenous regulation of a gene 

expression operon was compared to the inducible regulation approach regarding 

stability, robustness, and substrate overshoot. The model consisted of three layers and 

there was feedback between metabolism and transcription, and feedback between 

translation and transcription. The model predicted that the autogenous mechanism 

scores better when the system is controlled by a repressor. The opposite was predicted 

when the system is controlled by an activator92. 
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A model that combined metabolism and transcription was used to study the temporal 

order of enzyme expression in unbranched pathways. Here, Michaelis-Menten kinetics74 

were used to model metabolic reactions and enzyme production rates. Enzyme 

production rates were balanced by dilution by growth. By optimizing enzyme production 

cost against the time to reach a target flux, the study concluded that sequential 

activation of transcription is optimal under these conditions in a linear pathway91. 

More recently, a mechanistic model of central carbon metabolism was built that 

combined metabolism and transcriptional regulation. Besides common metabolic 

reactions, it included known metabolite-TF interactions in central carbon metabolism. 

The transcription factors were assumed to directly modulate enzyme production rates. 

The model could reproduce the physiological behaviour of E. coli, including the 

metabolic adaptation from changing the carbon source from glucose to lactose. The 

study concluded that this was only possible due to metabolite-TF interactions that  sense 

metabolic fluxes79. 

These results make clear that to understand metabolism, it is important to look at 

metabolism and enzyme-level regulation together. Modelling both layers may allow us 

to better understand properties and trade-offs that emerge from the interactions 

between metabolism and transcription. For example, it is still unclear how crosstalk 

between metabolism and transcription precisely determines enzyme abundances28. 

These models may help to identify unknown functional metabolite-TF interactions and 

elucidate their functional relevance at a genome scale, for example by using an 

ensemble modelling strategy83. 
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1.4 Mass spectrometry-based metabolomics 

1.4.1 Basics of mass spectrometry 

The metabolome comprises all metabolites of E. coli. To understand metabolism, it is 

therefore necessary to measure all metabolites. Mass spectrometry-based 

metabolomics allows this by making snapshots of metabolite concentrations93. 

However, due to fast metabolite turnovers, low metabolite concentrations, and the 

condition dependent nature of metabolism, this is a challenging task94,95. Breakthroughs 

in mass spectrometry during the last decades have increased throughput and coverage 

of mass spectrometry-based metabolomics, allowing to rapidly probe large portions of 

the metabolome. Basically, a mass spectrometer is a balance that allows to determine 

the weights of ionized molecules. Conventional mass spectrometers consist of an ion 

source, a mass analyzer, and a detector96. 

Ion Source. In the ion source, sample molecules are electrically charged, allowing to 

measure their mass-to-charge ratio (m/z) in the mass spectrometer. One of the most 

frequently used ionization techniques is electrospray ionization97 (ESI). ESI is a soft 

ionization technique that allows for the ionization of intact molecules. During ESI, the 

molecules are accumulating in small droplets on the tip of a heated capillary, and an 

electric field is applied. High temperatures cause droplets evaporation, which leads to 

the accumulation of charged molecules. When the Rayleigh limit is reached, the droplet 

becomes unstable, and the ions are dispersed into the vacuum of the mass analyzer98. 

Although ESI is considered a soft ionization technique, high temperatures and high 

voltages can cause undesired chemical reactions and fragmentations99. Moreover, ion 

suppression can be a problem in modern ESI sources. Ion suppression is a phenomenon 

in which compounds interfere with droplet formation in the ESI, affecting the number 

of charged molecules in the mass spectrometer100. 

Mass Analyzers. In the mass analyzer, the m/z is determined for each ion. The most 

frequently used mass analyzers are the Time-of-Flight101 (ToF), the quadrupole99, the 

orbitrap102, and combinations thereof. In a ToF, ions are pulsed into the vacuum of a 

flight tube, in which they get accelerated by applying a voltage. The m/z of the ions can 

then be calculated from the time needed to reach the detector. Small molecules travel 

faster than large molecules. ToF mass analyzer offer a high mass resolution, and a mass 
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scale that is not limited by large masses103. ToF mass analyzer are often combined with 

quadrupole mass analyzers104. The quadrupole mass analyzer consists of four parallel 

metal rods. One pair of opposite rods uses radio frequency voltage, and the other pair 

of rods is applied with a direct current voltage. By modulating the ratio between radio 

frequency voltage and direct current voltage, only ions of a certain m/z are allowed to 

pass through the quadrupole. The other ions collide with the metal rods and are 

destroyed in the process. The quadrupole can act as an ion-guide, and as a mass filter, 

and often multiple quadrupoles are used105. 

Mass spectrometry-based metabolomics can be categorized into flow-injection mass 

spectrometry (FI-MS), in which the samples are directly injected into the mass 

spectrometer, and liquid chromatography-based tandem mass spectrometry (LC-

MS/MS) that relies on an additional separation by liquid chromatography, and optional 

molecule fragmentation. Both types of MS analysis can be further categorized into 

targeted and untargeted analyses. In a targeted MS approach, only ion peaks 

corresponding to known metabolites are considered for peak annotation, whereas 

untargeted metabolomics considers all measured ion peaks106. 

1.4.2 Flow-injection mass spectrometry 

In FI-MS, the samples are injected into the mobile phase that directly enters the mass 

spectrometer. Metabolites are then ionized in the ESI and distinguished solely by their 

m/z in the mass spectrum (Figure 9a). For peak annotation, m/z values of ion peaks are 

usually compared to reference databases like genome scale metabolic 

reconstructions6,62. FI-MS is faster than methods that use liquid chromatography, and it 

is therefore the method of choice to measure large amounts of samples in a short 

amount of time. FI-MS has been applied to measure thousands of strains or conditions 

in various organisms, ranging from E. coli to human cell lines50,107–111. While the speed 

of FI-MS is its biggest advantage, ion suppression and confidence in the annotated ion 

peaks can be problematic. Ion suppression is often caused by salt in the sample medium, 

and it is especially prominent in FI-MS, because the sample molecules enter the ion 

source at the same time100,110. 

Annotation confidence is limited by several effects. First, FI-MS does not allow us to 

distinguish between isomers and isobars in the MS1 spectrum. Therefore, single peaks 

are sometimes caused by multiple ions. Second, the number of ion peaks in the MS1 
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spectrum usually outweighs the number of known annotated metabolites. This means 

that there are either many unknown metabolites or that metabolites can produce 

multiple ion peaks. Thus, the origin of many ion peaks in the MS1 spectrum is still 

unclear, and it is also not clear, how these additional peaks affect peak annotation. 

Despite these shortcomings, FI-MS is a useful tool for screening large amounts of 

biological samples in a short amount of time. 

 

Figure 9. Principles of flow-injection metabolomics and liquid chromatography-based tandem mass 
spectrometry. a) Flow-injection metabolomics (FI-MS). The samples enter the mass spectrometer directly 
with the mobile phase. Molecules of different masses have different sizes and colours. The molecules are 
separated in the Time-of-Flight tube based on their m/z. Light molecules are faster than heavy molecules. 
Peaks in the MS1 spectrum are then annotated by matching the m/z value to corresponding m/z values in 
a database. b) Liquid chromatography-based tandem mass spectrometry (LC-MS/MS). The metabolites 
in the sample are injected into the LC, in which they are separated by physicochemical properties. The 
molecules (blue spheres) enter the triple-quadrupole mass spectrometer, consisting of three quadrupoles 
(Q1-Q3). Q1 is a mass filter, which filters out ions with specific masses (precursor mass). These ions enter 
Q2, in which they are fragmented by collision-induced dissociation (CID). The fragment masses of a chosen 
precursor mass are then filtered in Q3. For annotation, retention times from the LC, precursor masses, and 
fragment masses are usually matched with a spectral database containing such information (black 
spectrum). Credit to Martin Lempp for designing the mass spectrometers. 
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1.4.3 Liquid chromatography-based tandem mass spectrometry 

In liquid chromatography-based tandem mass spectrometry (LC-MS/MS), a liquid 

chromatography is used to first separate sample molecules according to their 

physicochemical properties. The molecules enter the ion source at different retention 

times. In the ion source, molecules are charged and dispersed into the vacuum of the 

mass analyzer. In targeted LC-MS/MS studies the mass analyzer often consists of three 

successive quadrupoles. In the first quadrupole (Q1), only ions with a defined m/z value 

(precursor mass) are retained. These ions enter the second quadrupole (Q2), in which 

they get fragmented by collision-induced dissociation (CID). During CID, inert gas 

(usually N2) is pulsed into the Q2 with a defined velocity (collision energy). Collision of 

the inert gas with sample ions causes fragmentation of ions112. The third quadrupole 

(Q3) can then filter for specific fragment masses. Sample metabolites can then be 

annotated based on their retention times, their precursor masses, and their fragment 

masses. Their identities are verified by matching the experimental spectra to compound 

specific information in databases (Figure 9b). For example, reference databases like the 

Metabolite and Chemical Entity Database (METLIN)113, or the Human Metabolome 

Database114 (HMDB) contain MS2 spectra for millions of compounds. 

However, while these targeted approaches allow to annotate metabolites with high 

confidence, they depend on the completeness of the reference databases. For example, 

the METLIN database contains only 1 % of all the compounds listed in the PubChem 

database113, and many other metabolites may be unknown, and not commercially 

available. Thus, increasing the metabolite coverage of these libraries will increase the 

scope of metabolites that can be confidently annotated. Moreover, in-source 

fragmentation is frequently observed in LC-MS/MS approaches, causing a much higher 

number of peaks than there are annotated metabolites99,115,116. Effective annotation of 

these peaks often requires a combination of chromatographic peak shape correlation 

analysis93,117, MS2 information93,117,118, and stable isotope labeled samples or 

standards119,120. In contrast to FI-MS, ion suppression is mitigated in LC-MS/MS 

approaches, since an LC separates many salt ions from the sample metabolites. At the 

same time, metabolites are also more likely to get lost during LC, making it more difficult 

to identify low abundant metabolites. 
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In conclusion, the metabolome can be measured by two complementary mass 

spectrometry-based methods, FI-MS and LC-MS/MS. FI-MS is fast and the method of 

choice for the screening of large numbers of samples. However, to obtain peak 

annotations with high confidence, an LC-MS/MS-based approach is more suitable. Both 

approaches suffer from high number of unknown peaks in the MS1 spectrum that can 

cause false-positive annotations. To obtain metabolite data of the necessary quality to 

answer biological questions, it is therefore crucial to understand the origins of these 

peaks. 

1.5 Goal of this thesis 

Metabolism of E. coli is complex, and to achieve a deeper understanding of metabolism, 

it is necessary to study systems behaviour and design principles of metabolism that go 

beyond single physical interactions. One of the most important design principles that 

governs molecular processes is robustness. Robustness allows cells to function despite 

perturbations, and one means to achieve robustness is feedback control executed by 

functional metabolite-protein interactions. These interactions allow the cell to modulate 

enzyme activity, and enzyme abundance. Since the complexity of these interactions 

prohibits an intuitive understanding of metabolism, high-quality multi-omics data need 

to be interpreted with the help of mechanistic mathematical models. However, most 

mechanistic mathematical models focus either on metabolism or transcription, and only 

few mechanistic models that combine both layers exist. 

In the first part of this thesis (Chapter 2 – Chapter 5, Figure 10 yellow), we developed 

mechanistic mathematical models that are regulated by either allosteric regulation, 

transcriptional regulation, or both mechanisms. Subsequently, we functionally 

characterize the impact of the regulations on the robustness of the systems, and 

potential trade-offs between different feedback mechanisms. 

Besides a limited understanding of the crosstalk between metabolism and 

transcriptional regulation, recent studies suggest that there are likely many more 

unknown metabolite-TF interactions. Thus, in the second part of this thesis (Chapter 6, 

Figure 10, purple), we employ proteomics and metabolomics data from 283 genetic 
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knockdowns, corresponding to metabolic genes from a genome-scale model of E. coli, 

to map feedback regulation in E. coli metabolism.  

Finally, a deep understanding of metabolism can only be achieved if the underlying 

metabolite data are reliable and comprehensive. Therefore, we analyse the flow-

injection mass spectrometry approach in Chapter 7 (Figure 10, blue), and we develop a 

method that is based on genetic knockdowns to measure low abundant metabolites in 

Chapter 8. 

 

Figure 10. Thesis goals. Spheres are metabolites. Solid lines indicate stoichiometric connections. Dashed 
arrows are regulatory interactions. (Blue) spheres are metabolites. Transparent spheres are metabolites 
whose identities are not certain. Small spheres are low abundant metabolites. The peak corresponds to a 
metabolite that can be measured. (Orange) Metabolites are connected by network stoichiometry and 
feedback regulation. Feedback regulation are dashed arrows. The dashed box shows a feedback regulated 
reaction that stabilizes into steady state. (Purple) New dashed arrows are new feedback regulations. 
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2.1 Abstract 

Microbes regularly face fluctuating environments and to ensure stable growth, they 

require a constant supply of amino acids. One means to achieve robustness is allosteric 

feedback control. In amino acid biosynthesis, the amino acid usually feedback inhibits 

the first committed step of its own biosynthesis. This way, the amino acid supply can be 

adjusted to the requirements of the cell. At the same time, amino acids can interact with 

transcription factors to control the abundance of pathway enzymes. This mechanism is 

crucial to ensure efficient use of resources. Although allosteric feedback and 

transcriptional feedback have been known for a long time, it is still unclear how they act 

in concert. In this chapter, we developed a mathematical model of amino acid 

biosynthesis that combines allosteric feedback inhibition and transcriptional feedback 

inhibition. The model showed that allosteric feedback increases robustness by 

increasing enzyme levels, and that transcriptional feedback increases efficiency by 

reducing enzyme levels, and that both mechanisms work together to solve a robustness-

efficiency trade-off in amino acid biosynthesis. Moreover, model, and experimental data 

showed that wild type E. coli occupies the middle of a trade-off where both objectives 

are balanced. Thus, the model showed that both feedback mechanisms work together 

to finely tune enzyme levels to ensure robust, yet efficient amino acid biosynthesis in 

E. coli. 

2.2 Introduction 

Metabolism is regulated by many different mechanisms, and on several layers1. While 

allosteric feedback regulation controls enzyme activity, transcriptional regulation 

controls enzyme abundance. However, because the metabolic flux of reaction depends 

on enzyme activity and enzyme abundance, it becomes difficult to disentangle the 

contributions of both regulation mechanisms on individual reactions2,3. To study the 

interplay between allosteric feedback and transcriptional feedback, amino acid 

biosynthesis pathways are suitable model pathways since they are regulated by both 

mechanisms (Figure 11).  
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Figure 11. Metabolic network and architecture of amino acid biosynthesis in E. coli. Simplified metabolic 
map of central carbon metabolism. Metabolites are spheres (black in catabolic pathways and coloured in 
amino acid biosynthesis pathways). Amino acids are squares. Metabolites and amino acids are connected 
by metabolic reactions (straight lines). The principle of feedback regulation (inhibition) is shown by dashed, 
blunt arrows. Tryptophan, arginine and histidine pathways are highlighted by grey boxes. 

 

16/20 amino acids allosterically inhibit the committed step of their own biosynthesis. 

This feedback inhibition ensures homeostasis of end products4. Removing allosteric 

feedback regulation was mainly studied in-vitro5 and for the purpose of improving 

industrial production strains6. In nucleotide metabolism of E. coli, removing the 

allosteric feedback had no apparent effect on nucleotide levels7. In this case, other 

mechanisms ensured channelling excess of nucleotides into degradation pathways, 

showing how redundancy enables robust metabolism. Conversely, theoretical studies 

have shown that allosteric feedback inhibition is crucial to ensure end-product 

homeostasis8, metabolic robustness9, control of metabolic flux10 and optimal 

growth11,12. 

Enzyme levels of amino acid biosynthesis are controlled via transcription factors (TFs) 

and transcriptional attenuation. Overall, four TFs (ArgR, TrpR, TyrR, Lrp) control enzyme 

levels in 19/20 amino acid pathways, ensuring that enzymes are only produced when 

they are needed13,14. However, recent data suggests that enzymes are often more 

abundant than necessary, and that such enzyme overabundance conveys robustness 

against internal and external perturbations15,16. 
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Mathematical models have been used to study metabolism or transcriptional regulation. 

However, there are only few cases where mathematical models have been developed 

that employ both layers14,17,18. 

To study the interplay between allosteric feedback of enzyme activity and 

transcriptional feedback of enzyme abundance, we developed a mechanistic 

mathematical model of amino acid biosynthesis. Dysregulation of the model showed 

that allosteric feedback increases enzyme levels, and that transcriptional feedback 

decreases enzyme levels. To validate the model, we measured protein, metabolite and 

flux changes in mutants of the arginine, histidine, and tryptophan pathways lacking 

allosteric feedback and transcriptional feedback, respectively. The model predicted that 

allosteric feedback and transcriptional feedback solve a trade-off between robustness 

and efficiency, and that wild type E. coli occupies the middle of the trade-off, where both 

objectives are balanced. Thus, the model showed that both feedback mechanisms work 

together to finely tune enzyme levels to ensure robust, yet efficient amino acid 

biosynthesis in E. coli12. 

2.3 Allosteric feedback inhibition causes enzyme overabundance in 

amino acid biosynthesis 

To understand the interplay between allosteric regulation of enzyme activity and 

transcriptional regulation of enzyme abundance, we created E. coli mutants lacking 

allosteric feedback (point mutation in the allosteric site of the enzyme) or transcriptional 

feedback (deletion of the respective transcription factor/attenuation leader peptide) in 

histidine, tryptophan and arginine biosynthesis pathways. This resulted in three E. coli 

mutants without allosteric feedback regulation (argA*, trpE*, hisG*) and three E. coli 

mutants without transcriptional feedback regulation (argR, trpR, hisL). 

First, we measured metabolites, proteins and metabolic fluxes of the allosterically 

dysregulated strains (argA*, trpE*, hisG*), and compared them to the corresponding 

wild-type strain. The amino acids of the respective dysregulated strains showed the 

strongest change in all three strains. For example, arginine accumulated in the argA* 

strain, while the concentrations of the other amino acids remained stable (Figure 12a). 
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Thus, removing the allosteric feedback resulted in a local upregulation of the respective 

amino acid, indicating that allosteric feedback inhibition maintains low amino acid 

concentrations in amino acid biosynthesis. 

 

Figure 12. Metabolome, Proteome and fluxes of allosterically dysregulated arginine, tryptophan and 
histidine strains. a) Relative concentrations of intracellular amino acids in wild type E. coli and the seven 
dysregulated mutants, including argA*, trpE*, hisG*. Bar plots show absolute concentrations of the amino 
acid in the dysregulated pathways. Data are represented as mean, and error bars are ± SD (n = 3). b) 
Abundance of 173 enzymes in amino acid metabolism (out of 204 enzymes in total), relative to the level 
in the wild type. Data are represented as mean (n = 3). For each strain the enzymes in the dysregulated 
pathway are shown as colored dots. Enzymes in degradation pathways of arginine and tryptophan are 
indicated by their names. c) Decay of unlabeled amino acids in the wild-type E. coli (black) and the three 
dysregulated mutants. The measured amino acid is indicated above each graph. Cells were loaded from 
shake flasks onto filters and perfused with 15N-medium for different lengths of time (0, 30, 60, 120, and 
180 seconds). Dots are means of n = 2 samples for each time point. Lines are means of 1,000 fits of decay 
rates based on equations for kinetic flux profiling. Box plots show fluxes based on the 1,000 fits, relative 
to the median flux estimate in the wild-type. Boxes contain 50% and whiskers 99% of the flux estimates. 
Parts of this figure are published in Cell Systems 2019, 8 (1), 66-75. e8. 

 

We next inspected the proteome changes in the amino acid pathways and observed 

reduced enzyme levels in all three allosteric mutants compared to the wild-type strain 

(Figure 12b). This is likely because elevated amino acid levels activate the corresponding 

transcription factors, which downregulate the pathway enzymes. Thus, if the amino acid 

concentration is higher than needed, the cell reduces enzyme levels in the respective 

pathways. However, the reduction of enzyme levels did not cause a limitation in amino 
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acid flux (Figure 12c), suggesting that enzymes are not operating at their full capacity in 

wild type E. coli during growth on glucose, as indicated by previous studies16,19,20. 

We then hypothesized that allosteric feedback inhibition enables enzyme 

overabundance in amino acid biosynthesis by maintaining low levels of amino acids that 

cause a de-repression of pathway enzymes. To disentangle the mechanisms that cause 

enzyme overabundance, we next developed a mathematical model to study the 

interplay between allosteric feedback and transcriptional feedback (enzyme-level 

regulation). 

2.4 Interplay of allosteric feedback inhibition and enzyme-level 

regulation 

To better understand the interplay between allosteric feedback inhibition and 

transcriptional feedback inhibition, we developed a mechanistic mathematical model of 

amino acid metabolism that combines metabolism and enzyme-level regulation. The 

minimal model describes a two-step pathway that includes two enzymes (e1 and e2), 

and two metabolites (m1 and m2). The end-product m2 is an amino acid that is 

consumed in a third metabolic reaction for growth. Each enzyme (e1 and 2) is produced 

by a constant production rate and is consumed via dilution by growth. 

 

Figure 13. Stoichiometry and structure of the kinetic model. m1 and m2 are metabolites, e1 and e2 are 
enzymes. Kinetics of the enzyme catalysed reactions r1 and r2, as well as kinetics of enzyme expression 
rates β1 and β2, are sampled in the indicated intervals. Blunt arrows are allosteric feedback inhibition or 
enzyme level regulation (transcriptional regulation). This figure is published in Cell Systems 2019, 8 (1), 66-
75. e8. 
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The amino acid m2 feedback inhibits the activity of the first enzyme in the pathway, as 

well as the production rates of e1 and e2. The enzyme production rates, and the first 

reaction follow simple inhibition kinetics. The second reaction follows Michaelis-Menten 

kinetics (Figure 13). Thus, this model is a simplified representation of amino acid 

metabolism that is controlled by allosteric feedback inhibition and by transcriptional 

feedback inhibition (enzyme-level regulation). 

To analyse the model, we used an ensemble modelling approach. Therefore, we fixed 

the flux in the pathway to the amino acid requirement that corresponds to the growth 

rate of E. coli on glucose. We then created an ensemble of models by sampling seven 

kinetic parameters 5,000 times from physiologically relevant intervals based on 

literature values. For each of the 5,000 parameter sets, we calculated the steady state 

enzyme and metabolite concentrations for a complete model with allosteric feedback 

on enzyme activity and transcriptional feedback on enzyme abundance (complete 

model, gray in Figure 14a), for a model including only feedback on enzyme abundance 

(only transcriptional feedback model, blue in Figure 14a), and for a model including only 

feedback on enzyme activity (only allosteric feedback model, orange in Figure 14a). 

The simulated concentrations of e1, e2, m1, and m2 qualitatively matched the measured 

protein and metabolite data (shown for the argR, and argA* strain in Figure 14b): the 

two enzymes decreased in the only-transcriptional feedback model, whereas the end-

product m2 increased. Moreover, the simulated concentration of the intermediate m1 

matched the measured increase of intermediates in amino acid pathways. In the only-

allosteric feedback model, the enzyme levels and the end-product m2 increased while 

the intermediate metabolite m1 decreased, matching the data obtained for the argR 

strain (Figure 14b). 
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Figure 14. Simulated metabolite and enzyme changes match experimental changes. a) Steady state 
concentrations of e1, e2, m1 and m2 calculated with 5000 random parameter sets for the complete model 
(grey), the model with only transcriptional regulation (blue) and the model with only allosteric regulation 
(orange). Boxes contain 50% and whiskers 99% of the simulated concentrations. All concentrations are 
normalized to the median concentrations of the complete model. b) Enzyme and metabolite changes for 

the argA* strain and the argR strain. Pathway enzymes are e, pathway metabolites are m1 and arginine 

is m2. The argA* strain is blue, the argR strain is orange. Boxes contain 50% and whiskers 99% of the 
data points. Black dots are experimental values of the pathway metabolites (mean, n=3). Arginine levels 
are shown as sphere (mean, n = 3). Parts of this figure are published in Cell Systems 2019, 8 (1), 66-75. e8 

 

Thus, a simple mechanistic model of amino acid biosynthesis confirmed our hypothesis 

that allosteric feedback inhibition causes enzyme overabundance by increasing enzyme 

levels, and that transcriptional regulation reduces enzyme levels. We then explored if 

other types of enzyme inhibition could cause a similar increase in enzyme expression by 

replacing the allosteric feedback in the model with competitive product inhibition of the 

second reaction (Figure 15a). However, removing competitive product inhibition was 

compensated by lower substrate concentrations (m1) and not by lower enzyme levels 

(Figure 15b). This indicated that enzyme overabundance does not emerge from all types 

of enzyme inhibition12. 
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Figure 15. Mechanistic model with product inhibition (a) Model Structure. Metabolite 2 inhibits reaction 
2 and competes with Metabolite 1 for the active site of enzyme 2. Product inhibition was modelled using 

the following equation:  𝑟2 = 𝛽12 ∙ 𝑒2 ∙
𝑚1

𝑚1+𝐾𝑚∙(1+
𝑚2

𝐾1
)
   . b) Steady state concentrations of e1, e2 m1 and m2 

calculated with 5000 simulations for the complete model (grey), and the single feedback model (blue). 
Boxes contain 50% and whiskers 99% of the simulated concentrations. All concentrations are normalized 
to the median concentrations of the complete model. This figure is published in Cell Systems 2019, 8 (1), 
66-75. e8. 

2.5 Allosteric feedback and transcriptional feedback balance 

robustness and efficiency in amino acid biosynthesis 

Next, we investigated the function that emerges from the interplay between allosteric 

feedback inhibition of enzyme activity and transcriptional feedback inhibition of enzyme 

production rates. While keeping low enzyme levels is more efficient due to high enzyme 

cost, high enzyme levels could provide a cellular benefit by providing robustness against 

perturbations in enzyme expression. To test this with the mechanistic model, we 

employed a numerical parameter continuation method to quantify robustness21. This 

method iteratively varies a model parameter until a bifurcation point is reached (the 

model becomes unstable). Robustness can then be defined as the percentage change of 

this parameter that is tolerated. Using this method, we calculated robustness against 

perturbations of the maximal expression rate of the second enzyme (2,max) in the 

complete model with 5,000 randomly sampled parameter sets (Figure 16). Changing 

2,max reflects genetic or environmental perturbations of gene expression that can cause 

a bottleneck in the pathway. In agreement with our expectations, models with high 

enzyme  
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Figure 16. Robustness-Efficiency trade-off. Enzyme levels (sum of e1 and e2) and robustness against 

perturbations of 2,max, for 5000 simulations of the complete model (dots). The color of each dot shows the 
ratio of allosteric inhibition constant (K1) and transcriptional inhibition constant (K2) in the respective 

model. 100% robustness corresponds to the maximal possible downregulation of 2,max. 100% enzyme 
abundance corresponds to the maximum theoretical enzyme concentration in the model. This figure is 
published in Cell Systems 2019, 8 (1), 66-75. e8. 

 

levels showed increased robustness, while models with lower enzyme levels were more 

sensitive to perturbations of enzyme expression (Figure 16). However, robustness was 

not proportional to the enzyme level: a relatively small increase of enzyme levels already 

conferred a large robustness benefit. Very high enzyme levels, in comparison, did not 

increase robustness substantially over more subtle changes in enzyme abundance. Our 

model thus reveals a trade-off between protein costs (efficiency) and robustness, which 

can be solved by sensitively balancing enzyme levels. The optimal balance of enzyme 

levels occurs in models occupying the middle of the trade-off. Here, the models have 

similarly strong feedback on enzyme activity and on enzyme abundance (indicated by 

similar inhibition constants Ki, black dots in Figure 16). This model result is supported by 

our experimental data of the argA*, trpE* and hisG* mutants (Figure 12), which 

demonstrate that wild-type E. coli does not operate with minimal enzyme levels in these 

pathways (blue dots in Figure 16). 
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Figure 17. Enzyme levels of transcriptionally dysregulated strains. Abundance of enzymes in amino acid 
metabolism of the ∆argR, ∆trpR and ∆hisL mutants relative to the wild-type. Data are represented as mean 
(n = 3). For each strain the enzymes in the dysregulated pathway are shown as orange dots. This figure is 
published in Cell Systems 2019, 8 (1), 66-75. e8. 

 

In conclusion, analysis of the mathematical models and the dysregulated mutants 

allowed us to disentangle the regulatory interplay between regulation of enzyme 

activity (allosteric feedback) and regulation of enzyme abundance (transcriptional 

feedback) in the arginine, tryptophan, and histidine pathways. Removing transcriptional 

feedback regulation increased enzyme levels (Figure 17) and removing allosteric 

feedback regulation decreased enzyme levels (Figure 12). The model predicted that 

inhibition constants of the two feedback regulations must have similar magnitudes, if 

feedback on enzyme activity and enzyme abundance are simultaneously active (black 

dots in Figure 16). In the literature, binding constants for allosteric and transcriptional 

feedback have similar magnitudes, supporting the existence of a two-pronged 

regulation strategy. (Appendix, Table 2). 

2.6 Oscillations in amino acid biosynthesis as by-product of robust 

efficiency 

Thus, allosteric feedback and transcription feedback balance two conflicting objectives: 

robustness and efficiency. However, oscillations are often undesired by-products of the 
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hard trade-offs between robustness and efficiency22. To test if oscillations are also 

apparent in amino acid metabolism, we designed a smaller model with only one  

 

Figure 18. Oscillations in amino acid biosynthesis. Scatterplot showing a trade-off between binding 
constants of allosteric feedback inhibition (K1) and transcriptional feedback inhibition (K2). A dot was 
made when the eigenvalues of the Jacobian matrix of the system in steady state had an imaginary part. 
Yellow dots are strong (damped) oscillations. Purple dots are overdamped oscillations. The time course 
simulation of m1 in the yellow box corresponds to a yellow dot at the indicated position. The time course 
simulation of m1 in the purple box corresponds to a purple dot at the indicated position. The enzyme 

expression rate 1 was reduced 20-fold at t = 30 min. 

 

metabolite (amino acid m1) and one enzyme. We simulated 5,000 parameter sets from 

physiologically relevant ranges and ensured that all models converged to stable steady 

states. We then wondered if the interplay between allosteric feedback and 

transcriptional feedback causes the model to produce oscillations of amino acids levels. 

To analyse if a system in steady state can produce oscillations upon perturbation, we 

inspected the eigenvalues of the Jacobian matrix. Eigenvalues consist of a real part and 

an imaginary part. A non-zero imaginary part indicates that the system can produce 

oscillations, while the magnitude of a negative real part indicates how strongly the 

system is damped. Thus, to identify oscillations, we looked at the ratio between the 

imaginary part and the real part of the eigenvalues of 5,000 models. For many 

combinations of allosteric feedback and transcriptional feedback, the model predicted 
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no oscillations (Figure 18, white space). However, when allosteric feedback was weak 

and transcriptional feedback was strong, the system showed damped oscillations 

(Figure 18, yellow dots, and yellow box with time course of the amino acid m1). This 

agrees with our observation that allosteric feedback increases robustness of the system. 

At weaker transcriptional feedback, the oscillations were overdamped (Figure 18, purple 

dots and purple box with time course of the amino acid m1). However, oscillations only 

occurred when both feedback regulations were equally weak (similar K-value). These 

results indicate that oscillations in amino acid biosynthesis are a by-product of robust 

efficiency, as was already shown for glycolysis22. 

2.7 Enzyme overabundance provides robustness against genetic 

perturbations 

The model predicted that the allosterically dysregulated strains (ArgA*, hisG*, trpE*) are 

more susceptible against genetic perturbations than the wild-type strain. To test this 

experimentally, we used CRISPR interference (CRISPRi) to knockdown target genes in 

the respective amino acid biosynthesis pathways (argE, hisB, trpA). This experiment 

resembled the numerical reduction of the parameter 2,max in the model analysis. 

Perturbation of 2,max resulted in e2 being diluted by growth, causing a bottleneck in the 

pathway. Similarly, CRISPRi blocks the transcription of the target enzyme, leading to 

enzyme dilution by growth and consequently to a bottleneck in the pathway. We then 

perturbed all pairwise combinations of CRISPRi targets and dysregulated strains, and 

measured growth rates in all strains (Figure 19). We observed the largest growth defects 

(more than 50% reduction of the growth rate) when CRISPRi was used in the pathways 

of the corresponding dysregulated strains (i.e. argE in argA*, hisB in hisG* and trpA in 

trpE*). These data confirm that the dysregulated mutants are more sensitive to genetic 

perturbations in the dysregulated pathways, and the reason is likely that they had lower 

enzyme levels. Thus, removing allosteric feedback inhibition in the arginine, histidine 

and tryptophan biosynthesis pathways renders these pathways more sensitive against 

perturbations of gene expression, which may arise in nature due to the stochasticity of 

gene expression. 
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Figure 19. Enzyme overabundance achieves robustness against perturbations of gene expression by 
CRISPR interference. Growth of wild-type (WT), argA∗, hisG∗, and trpE∗ with sgRNAs targeting argE, hisB, 
and trpA. dCas9 expression was induced with 100 μM IPTG. Growth curves are means of n=3 cultures; two 
curves per graph show experiments that were performed at different days. Numbers and colors indicate 
specific growth rates (in h−1), which were estimated by linear regression between 5 and 15 hr. All axes have 
ranges shown in the lower left graph. This figure is published in Cell Systems 2019, 8 (1), 66-75. e8. 

2.8 Discussion 

In this chapter, we studied the interplay between allosteric and transcriptional feedback 

regulation in amino acid biosynthesis with a mechanistic mathematical model, and 

multi-omics data of feedback dysregulated E. coli mutants. The mechanistic model 

predicted that allosteric feedback causes higher enzyme levels, and that transcriptional 

feedback causes lower enzyme levels, while maintaining the same metabolic flux. 

Experimental data of the dysregulated arginine, histidine and tryptophan strains 

matched simulated metabolome and proteome changes. This indicated that enzyme 

levels in amino acid biosynthesis are overabundant, and that the degree of 

overabundance is balanced by the interplay between allosteric and transcriptional 

feedback regulation. These results agree with earlier indications that enzymes rarely 

work at maximum capacity16,19,20. Moreover, the model showed that both feedback 

mechanisms are required to optimize enzyme abundance for two conflicting objectives: 

robustness and efficiency. To achieve an optimal balance between both objectives, and 
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to minimize oscillations in amino acid levels, both feedback mechanisms must be equally 

strong. 

A genetic knockdown of metabolic enzymes in the arginine, histidine, and tryptophan 

pathways by CRISPRi delivered further evidence that allosteric feedback inhibition 

provides robustness against perturbations of gene expression. While such robustness 

effects were attributed to allosteric feedback by previous modelling approaches9,22, we 

verified our model with in vivo data using feedback dysregulated E. coli mutants. 

Here, we showed the existence of a trade-off between robustness and efficiency in 

amino acid biosynthesis that emerges from the interplay between allosteric feedback 

inhibition and transcriptional feedback inhibition. We demonstrated that regulation of 

enzyme activity and enzyme abundance are not isolated from each other but act in 

concert to control arginine, histidine, and tryptophan biosynthesis. Together, allosteric 

feedback and transcriptional feedback set amino acid concentrations, which are signals 

for enzyme level regulation. Considering that both feedback mechanisms are abundant 

in metabolic networks, it seems likely that the proposed regulatory principle goes 

beyond E. coli amino acid metabolism12. Thus, mathematical models that combine both 

layers are required to study the interplay between metabolism and enzyme-level 

regulation in other pathways, or even at a genome scale. 
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2.9 Methods 

Mechanistic model 

The stoichiometry of the mechanistic model is shown in Figure 13. Mass balancing 

results in the system of ordinary differential equations (ODEs), F, that is a temporal 

function of the state variables x (m1, m2, e1, e2) and the kinetic parameters p (kcat1, kcat2, 

β1,max, β2,max, K1, K2, Km, α): 

𝐹(𝑥, 𝑝) =
𝑑𝑥

𝑑𝑡
=

{
 
 
 

 
 
 
𝑑𝑚1

𝑑𝑡
= 𝑟1 − 𝑟2

𝑑𝑚2

𝑑𝑡
= 𝑟2 − 𝛼 µ

𝑑𝑒1
𝑑𝑡

= 𝛽1 − 𝑒1 µ

𝑑𝑒2
𝑑𝑡

= 𝛽2 − 𝑒2 µ

 

 

 

(2.1) 

The five reactions (r1, r2, β1, β2, µ) are described by the following kinetic equations: 

Reaction 1 is feedback inhibited by m2 according to normal inhibition kinetics: 

𝑟1 = 𝑘𝑐𝑎𝑡,1 𝑒1  
𝐾1

𝐾1 +𝑚2
 (2.2) 

In the model without allosteric regulation the equation reduces to: 

𝑟1 = 𝑘𝑐𝑎𝑡,1 𝑒1 (2.3) 

Reaction 2 follows Michaelis-Menten kinetics: 

𝑟2 = 𝑘𝑐𝑎𝑡,2 𝑒2  
𝑚1

𝑚1 + 𝐾𝑚
 (2.4) 

Expression rates of enzyme 1 and enzyme 2 follow inhibition kinetics  

𝛽1 = 𝛽1,max  
𝐾2

𝐾2 +𝑚2
 (2.5) 

 

𝛽2 = 𝛽2,max   
𝐾2

𝐾2 +𝑚2
 (2.6) 

In the model without transcriptional feedback regulation the equations reduce to: 

𝛽1 = 𝛽1,𝑚𝑎𝑥  (2.7) 
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𝛽2 = 𝛽2,𝑚𝑎𝑥  (2.8) 

The growth rate depends on availability of the amino acid: 

µ = µ𝑚𝑎𝑥  
𝑚2

𝑚2 + 𝐾µ
 (2.9) 

Together, the kinetic equations include eight kinetic parameters kcat1, kcat2, β1,max, β2,max, 

K1, K2, Km and α. The physiological ranges for these parameters were derived from 

literature values. The boundaries of enzyme turnover number (kcat,1 and kcat,2) are based 

on in vitro measured kcat values of enzymes in amino acid biosynthesis (Appendix, Error! R

eference source not found.) and have values between 930 min-1 and 4140 min-1. The 

maximal enzyme expression rates (β1,max and β2,max) are defined by the translation rate 

of ribosomes according to Equation 2.10. The equation considers the following 

parameters that were derived from the Bionumbers Database23: average translation 

rate (rT = 8.4 amino acids s-1), the median and abundance weighted protein length 

(L = 209 amino acids), the fraction of active ribosomes (fR = 0.8), the cellular volume 

(Vc,0.6 = 3 x 10-15 L) and mass (mc,0.6 = 9.5 x 10-16 kg) at a growth rate of µ = 0.6 h-1, the 

Avogadro number (NA = 6.02 x 1023 mol-1), the amount of ribosomes per cell at that 

growth rate (R0.6 = 8,000 ribosomes cell-1) and the fraction of ribosomes (p) that 

synthesize the enzyme: 

𝛽𝑘,𝑚𝑎𝑥 = 
𝑟𝑡 ∙ 𝑅0.6 ∙ 𝑓𝑅
𝐿 ∙ 𝑁𝐴 ∙ 𝑉𝑐

∙ 𝑝 (2.10) 

The limits of βk,max  are then derived by varying the fraction of ribosomes (p) that 

synthesize the enzymes in the pathway. According to the literature, the maximal 

number for a single enzyme is 7 %24, therefore we set the boundaries to 1 % and 10 % 

(p = 0.01 - 0.1). The parameter limits for the Ki and Km values were set to 0.01 mM and 

1 mM. The amino acid requirement (α = 86.6 mM) was a fixed parameter based on the 

average amino acid requirement of an E. coli cell (Appendix, Table 3). We assumed that 

the amino acid limits the growth rate reaction only at very low concentrations. This 

reflects the low Km values of tRNA ligases. Therefor we fixed Kµ at a low value of 10-5 

mM and set µmax to the measured growth rate on glucose of 0.6 h-1. 
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Steady State and Robustness Analysis 

For steady state analysis, each parameter set was randomly sampled from a log-uniform 

distribution within the respective parameter intervals shown above. For each parameter 

set, the steady state concentrations of e1, e2, m1 and m2 were calculated numerically 

for each of the three models (complete model, only-transcriptional feedback model and 

only-allosteric feedback model). Starting values of the numerical solver were 0.01 mM 

for m1 and m2, and 10-5 mM for e1 and e2. The convergence criterion was defined as 

<10-8 change in all variables. To test stability of the steady state we calculated 

eigenvalues of the Jacobian matrix and tested if all eigenvalues are negative (λ < -10-5). 

Unless all three models satisfied the stability and convergence criteria, the parameter 

set was discarded. This procedure was repeated until 5,000 steady states (with different 

parameter sets) were achieved. Note that all models share the same parameter sets and 

reach the same steady state flux. 

In order to estimate robustness of the model against perturbations of the maximal 

enzyme expression rate 𝛽2,𝑚𝑎𝑥, we used a numerical parameter continuation method. 

The method is based on finding a connected path of steady state concentrations (xSS: 

steady state concentration vector containing e1,ss, e2,ss, m1,ss, m2,ss), as a parameter, p, is 

varied. At the beginning of the analysis our system is in a temporal steady state: 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥𝑆𝑆, 𝑝) = 0 (2.11) 

It follows, that the total derivative of 𝐹(𝑥𝑆𝑆, 𝑝) with respect to the parameters is also 

zero: 

𝑑𝐹(𝑥𝑆𝑆, 𝑝)

𝑑𝑝
=  

𝛿𝐹

𝛿𝑥𝑆𝑆
∙
𝑑𝑥𝑆𝑆
𝑑𝑝

+
𝛿𝐹

𝛿𝑝
= 0 (2.12) 

After rearranging Equation 2.12, Equation 2.13 is obtained: 

𝑑𝑥𝑆𝑆
𝑑𝑝

= −(
𝛿𝐹

𝛿𝑥𝑆𝑆
)
−1

∙
𝛿𝐹

𝛿𝑝
 (2.13) 

which describes the changes in the steady-state concentrations as a kinetic parameter 

is varied iteratively. The iteration stops when one of the following two stability criteria 

is no longer fulfilled. 1st criterion: all real parts of the eigenvalues of the system’s 

Jacobian need to be negative. This implies stability of a steady state. Furthermore, in 
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Equation 2.13 the inverse of the Jacobian matrix is required. The inversion is only 

possible if the matrix is regular. Once an eigenvalue reaches zero, the Jacobian becomes 

singular and matrix inversion is no longer possible. This bifurcation point defines the 

boundary between the stable and unstable parameter space. In other words: after this 

point is passed, the system can no longer return to a stable steady state. By checking 

the eigenvalues of the Jacobian at each step, we make sure that the iteration is 

terminated when one eigenvalue becomes bigger than λ = -10-5. 2nd criterion: all 

variables are required to be positive. The maximum theoretical enzyme amount in the 

model was calculated as: 

0 = 𝛽𝑖,𝑚𝑎𝑥 − 𝑒𝑖,𝑚𝑎𝑥 µ (2.14) 

After rearranging Equation 2.14 and substituting the upper parameter bound of the 

maximum protein translation rate (βi,max
ub ) an expression for the maximum theoretical 

enzyme amount of each enzyme is obtained in Equation 2.15. 

𝑒𝑖,𝑚𝑎𝑥 =
𝛽𝑖,𝑚𝑎𝑥
𝑢𝑏

µ
=
8.5 ∙ 10−4 𝑚𝑀 𝑚𝑖𝑛−1

0.01 𝑚𝑖𝑛−1
=  0.085 𝑚𝑀 (2.15) 

Considering that the model includes two enzymes, the maximum amount of total 

enzyme is 0.17 mM, which was defined as the maximal enzyme level (100%). 
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3.1 Abstract 

Synthetic metabolic pathways are a burden for engineered bacteria, but the underlying 

mechanisms often remain elusive. In this chapter, we developed a mechanistic 

mathematical model of glycolysis and glycerol pathway that combines metabolism and 

transcriptional regulation to study metabolic burden in engineered glycerol-producing 

E. coli. The model showed that transcriptional regulation of glycolysis causes system 

failure when flux is drained from glycolysis to produce glycerol. Draining flux from 

glycolysis for glycerol production depletes fructose-1,6-bisphosphate (FBP) levels. Low 

FBP levels activate Cra, causing downregulation of glycolytic enzymes and upregulation 

of gluconeogenesis enzymes, impairing E. coli’s ability to grow on glucose. The model 

predicted that engineering Cra regulation into the glycerol pathway leads to a more 

robust glycerol production strain, solving the regulatory problem. Finally, we verified the 

model predictions by experimentally creating a robust glycerol-producing E. coli strain. 

3.2 Introduction 

Expanding the metabolic network with synthetic metabolic pathways enables the 

production of valuable metabolites or allows cells to gain access to new feedstocks like 

CO2
1,2. However, modifying or extending endogenous metabolism can negatively affect 

fitness and cellular growth of the host. For example, overproduction of certain chemicals 

depletes metabolites which are then no longer available for growth. This competition 

between endogenous and synthetic metabolism causes metabolic burden that leads to 

stress responses and physiological changes of the host3. Therefore, a current challenge 

is to minimize metabolic burden, while optimizing resource allocation, i.e. metabolic 

flux, through the synthetic pathways. 

Most theoretical approaches that are concerned with optimizing yield and productivity 

of microbes use flux balance analysis (FBA)2,4, or similar stoichiometric approaches5. 

However, these approaches don’t consider how synthetic metabolic pathways interfere 

with a native network that has optimized its structure and kinetic parameters for 

growth6,7. Hence, enzyme levels or kinetic parameters of the native system may simply 

not tolerate such interferences. To assess the viability of engineered pathways, 
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theoretical approaches use sensitivity analyses8 and robustness analyses9 to test if 

metabolic pathways and their kinetic parameters are robust6,9,10. For example, the 

ensemble modelling for robustness analysis (EMRA)9 method uses a numerical 

continuation method to perturb parameters in metabolic models until instabilities 

occur. This method was used to assess the robustness of native and non-native 

metabolic pathways,7,11 as well as synthetic gene-metabolic oscillators12. 

To achieve viable and robust synthetic pathways, dynamic control of the enzyme 

expression levels needs to be engineered. While models have shown the benefits of 

adding synthetic regulation to pathways10, engineering allosteric regulation 

experimentally is a challenging task, because protein structures need to be altered13. 

Conversely, it is more feasible to engineer control of gene expression in synthetic 

pathways. This is commonly done by engineering protomers to allow binding of certain 

transcription factors (TFs). Conventionally, the TF activity is then controlled by 

metabolites of the synthetic pathway. The resulting interplay between gene expression 

and metabolism has improved production rates of lycopene14, fatty acids15, and 

precursors of isoprenoids16. 

Here, we developed a mechanistic mathematical model of glycolysis that combines 

metabolism and transcriptional regulation to study metabolic burden in an E. coli strain 

that was engineered to overproduce glycerol. Induction of the synthetic glycerol 

pathway caused growth burden and lower glycerol titers. The mechanistic model 

predicted that transcriptional misregulation by Cra is the reason for this behaviour: 

Induction of the glycerol pathway depletes FBP, which activates Cra. Subsequently, Cra 

inhibits glycolysis and activates gluconeogenesis, causing lower growth rates and lower 

glycerol titers. To solve the regulatory problem, the mechanistic model predicted that 

controlling the glycerol pathway with Cra increases robustness of the production strain. 

Finally, we engineered Cra regulation in the glycerol pathway. This way, we validated 

the model predictions by achieving higher growth rates and higher glycerol production 

rates. Thus, a mechanistic model that combines metabolism and transcriptional 

regulation, enabled the engineering of a robust glycerol production strain. 
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3.3 Glycerol overproduction in E. coli causes growth burden 

To study how a synthetic pathway impacts metabolism, we engineered the glycerol 

biosynthesis pathway from Saccharomyces cerevisiae (S. cerevisiae) in E. coli (Figure 

20a). The synthetic glycerol pathway takes dihydroxyacetone phosphate (DHAP) and 

converts it via the enzyme glycerol-3-phosphate dehydrogenase 1 (GPD1) to glycerol 

phosphate. In a final step, glycerol phosphate is converted to glycerol via the enzyme 

glycerol-3-phosphate phosphohyrolase 2 (GPP2). To control glycerol production, we 

used an arabinose inducible pBAD promoter. We induced the glycerol pathway at 

different arabinose concentrations and measured growth rate and glycerol titers. 

However, we already observed growth defects at low arabinose levels (Figure 20b). 

Glycerol titers increased at low arabinose levels but decreased at higher arabinose levels 

(Figure 20c), thus indicating metabolic burden caused by induction of the glycerol 

pathway. 

 

Figure 20. Glycolysis and an engineered glycerol pathway a) Metabolic network of glycolysis in E. coli and 
the synthetic glycerol pathway from yeast (grey box). The synthetic pathway consists of two enzymes from 
S. cerevisiae: glycerol-3-phosphate dehydrogenase 1 (GPD1) and glycerol-3-phosphate phosphohydrolase 
2(GPP2). b) Growth was measured in a plate reader at different induction levels of GPD1 (0, 0.1, 0.3, 0.5, 
1, and 2% ara). Glycerol in the medium was measured after 24 h. Grwoth rates were determined by 
regression analysis between 5 and 10 h. Growth curves and dots show the means of n = 2 plate reader 
cultures. Parts of this figure are published in Nature Communications 2021, 12, 4929. 
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We then sought to understand the mechanisms that caused the growth burden. One 

possible reason for the burden is the competition between glycolysis flux and glycerol 

flux. Flux that is channelled through the glycerol pathway is no longer available for 

growth. To test this, we used flux balance analysis (FBA) with a genome-scale model of 

E. coli and showed that growth rate and glycerol flux follow a theoretical trade-off. To 

test if the strain followed this theoretical trade-off, we measured glycerol production 

rates and growth rates at three induction levels (arabinose): 0, 0.1, and 0.5 % arabinose 

(Figure 21). However, the experimental trade-off and the theoretical trade-off did not 

match. At 0.5 % arabinose, the measured growth rates were below the theoretical line, 

indicating that flux alone is insufficient to explain the phenotypes. Therefore, we next 

developed a small mechanistic model of glycolysis and glycerol production that includes 

transcriptional regulation (enzyme-level regulation). 

 

Figure 21. Theoretical and experimental relationships between the glycerol production rate and the 
growth rate of E. coli. The line is achieved via flux balance analysis with a genome-scale model of E. coli 
metabolism (iML1515). Dots are growth rates and glycerol production rates measured in shake flask 
cultures of the base strain at 0, 0.1, and 0.5% arabinose. The figure is published in Nature Communications 
2021, 12, 4929. 
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3.4 A mechanistic model predicts robust transcriptional regulation 

for glycerol producing E. coli 

To better understand the mechanisms that cause the growth defects, we developed a 

small mechanistic model that combines metabolism and enzyme-level regulation 

(Figure 22). The model included one metabolite (FBP) and two enzymes e1 and e2. 

Enzyme e1 corresponds to glyceraldehyde-3-phosphate dehydrogenase (GapA) in lower 

glycolysis and e2 is GPD1 in the glycerol pathway. FBP is the central metabolite that is 

consumed by lower glycolysis (rlower_glycolysis) and by the glycerol pathway (rglycerol). Both 

reactions follow Michaelis-Menten kinetics, which are a well-established kinetic format 

for enzymatic reactions17. Like flux balance analysis (Figure 21), we assumed constant 

influx in the model and fixed the reaction rate in upper glycolysis to 4.9 mmol g-1 h-1. 

This means that FBP is produced at a constant rate and is either used for glycerol 

production, or for growth according to the mass balance in Equation 3.1. 

 

Figure 22. Stoichiometry and structure of the kinetic model. The dashed box is the model boundary. FBP 
is a metabolite in glycolysis, and e1 and e2 are enzymes. Solid, gray arrows are metabolic reactions. The 
input reaction in upper glycolysis is fixed to 4.9 mmol g−1 h−1. The reaction in lower glycolysis and the 
glycerol pathway depends on FBP levels and enzyme levels, according to Michaelis–Menten kinetics. The 

dashed arrow is FBP-activation of 1 (the expression rate of e1) and represents the net effect of Cra 

regulation: FBP inhibits Cra; Cra inhibits 1. Gradual increases of 2 (the expression rate of e2) simulate 
induction with arabinose. The figure is published in Nature Communications 2021, 12, 4929 
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In total, we analysed three models with different feedback regulation (Figure 23a). In 

the base model, FBP only activates the expression of enzyme e1. This interaction 

resembled transcriptional regulation of lower glycolysis by Cra. The second model is the 

cra model of the Cra strain, which has no feedback regulation. In a third model (2x 

Cra model), expression of both enzymes e1 and e2 is feedback regulated by FBP levels. 

To simulate Cra regulation, we used a power-law term that affects the maximal enzyme 

production rate. Since the power-law term equals one in the un-induced state, all 

models share the same parameter set. Consequently, all models are at the same steady 

state at the beginning of the simulations, which allows for an easier comparison of the 

simulation results. 

 

Figure 23. Robustness analysis of three models. a) A model of the base strain (black), a model of the cra 
strain (blue), and a model with additional Cra regulation of e2 expression (orange). b) The three models in 
b were simulated with the same 5,000 parameter sets that were obtained by random sampling (Table 1). 

For each parameter set, 2 (the synthesis rate of e2) was increased until the model became unstable or 

until the expression rate of 2 reached the maximum. Shown is the maximal glycerol flux that was achieved 
with each model as a cumulative sum distribution. c) Robustness is shown as the percentage of the 5,000 
models that remain stable at a given induction level. This figure is published in Nature Communications 
2021, 12, 4929. 
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The three models were analysed with 5,000 parameter sets that were randomly sampled 

from physiologically meaningful ranges based on literature values (Table 1). We sampled 

the power-law exponent between 1 and 2, to ensure that Cra-regulation depends at 

least linearly on the concentration of FBP, and to avoid instabilities that can occur at 

exponents >2. For each of the 5,000 parameter sets, we calculated the maximal glycerol 

production rate (rglycerol,max) that can possibly be achieved given the specific set of 

parameters. To estimate rglycerol,max, we employed a numerical continuation method9, 

which iteratively increases the expression rate of enzyme e2 (2) and computes the new 

steady state for FBP, e1, and e2. After each iteration, the continuation method 

determines the stability of the model by inspecting the eigenvalues of the Jacobian 

matrix and terminates if instabilities occur in the model. If the model remains stable, the 

continuation method terminates at the maximal expression rate of e2 (2,max), which we 

defined as the rate in which 20 % of the ribosomes translate e2. Thus, rglycerol,max is the 

glycerol production rate at the termination point of the continuation method and we 

obtained 5,000 values of rglycerol,max for each of the three models. 

The distribution of the 5,000 rglycerol,MAX values showed that the Δcra model performed 

better than the base strain model, because more parameter sets achieved higher 

maximal glycerol production rates (rglycerol,MAX) with the Δcra model than with the base 

strain model (Figure 23b). The underlying assumption was: the more parameter sets 

achieve high glycerol fluxes, the higher the likelihood that the real system would achieve 

them too. The model of the base strain did not achieve high glycerol production rates, 

because the model was not stable at higher induction levels (Figure 23c). 

To better understand the origin of these instabilities, we performed time-course 

simulations with the three models using an average parameter set (Figure 24, Table 1). 

The time-course simulations matched the results obtained with the continuation 

method, thus confirming that both numerical approaches yield the same results. We 

simulated the models at different induction levels. 

The base model was not stable at higher induction, because enzyme e2 increased 

exponentially despite a linear increase of 2. Thus, there is a critical point at which the 

expression rate of e2 exceeds its dilution by growth. These imbalances are probably 

amplified by Cra-regulation, since Cra downregulates e1 and therefore also the growth 
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rate. In contrast, the Δcra model was stable at almost all induction levels. The best model 

in our analysis was the 2xcra model. With this model, the highest fraction of parameter 

sets achieved high glycerol fluxes (Figure 23b). 

 

Figure 24. Comparison time-course simulation and continuation method. Time-course simulation of the 
three models with an average parameter set and results with the parameter continuation method (green 

panel). Each of the three models (base model, 2xCra model, cra model) was simulated with the average 
parameter set (Table 1). Blue lines are different induction levels ranging from ind = 0 until 1 (for the 2xcra 

model,cra model), or until the calculated bifurcation point (for the base strain model). The red line for 
the base model is the time-course of an induction level that is 1% stronger than at the bifurcation point. 
The panels with green background show the steady states calculated by the continuation method. Black 
lines are stable steady states and a red line indicates a bifurcation point. The figure is published in Nature 
Communications 2021, 12, 4929 

 

Moreover, the robustness of the 2xcra model was comparable to the robustness of the 

Δcra model (Figure 23c). In conclusion, the model predicted that engineering Cra-

regulation into the glycerol pathway should lead to higher glycerol production rates, and 

we next tested this prediction experimentally. 
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3.5 A Cra-regulated pBAD promoter improves growth rate and 

glycerol titers 

Next, we sought to verify the model predictions experimentally. Therefore, we put the 

pBAD promoter under the control of Cra (pBAD-Cra strain) and created a Cra knock-out 

strain (cra strain). As predicted by the model, the pBAD-Cra strain had the highest 

growth rate of all three strains and even maintained growth at full induction with 2 % 

arabinose (Figure 25a). Moreover, the pBAD-Cra strain also achieved the highest 

glycerol titers at induction with 1 % arabinose (Figure 25b). In contrast, the cra strain 

could not tolerate high ara levels and achieved less than half glycerol titers compared to 

the pBAD-Cra strain at induction with 1 % arabinose. These data confirm the model 

prediction that a doubly Cra-regulated strain performs better than the base strain and 

the cra strain. 

 

 

Figure 25. Growth rates and glycerol titers. a) Growth rate. b) Glycerol titers. The pBAD-Cra strain 
(orange) was cultured in 96-well plates. Growth was measured in a plate reader at different induction 
levels of GPD1 (0, 0.1, 0.3, 0.5, 1, and 2% ara). Glycerol in the medium was measured after 24 h. Growth 
rates were determined by regression analysis between 5 and 10 h. Small dots show data from n = 2 plate 
reader cultures and big dots are the mean. Data of the base strain (black) and the Δcra strain (blue) are 
shown as a reference. The figure is published in Nature Communications 2021, 12, 4929. 
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3.6 Discussion 

Engineering of metabolic pathways often causes metabolic burden. However, the 

underlying reasons are often not well understood. Here, we developed a mathematical 

model of glycolysis that combines metabolism and enzyme-level regulation by the 

transcription factor Cra to study metabolic burden in glycerol-producing E. coli. 

Induction of the glycerol pathway impaired E. coli’s ability to grow and produce glycerol 

on glucose minimal medium. The mechanistic model predicted that these effects are 

caused by transcriptional misregulation. Draining flux from the glycolysis depletes FBP 

levels, which activates Cra. Cra reduces levels of glycolytic enzyme, amplifying the effect, 

and subsequently causing exponential changes of metabolite and enzyme levels. This 

resembles the inactivation of glycolysis and the concomitant activation of 

gluconeogenesis by Cra, causing slow growth rates and glycerol titers on glucose 

minimal medium. To solve this regulatory problem, the model suggested to put the 

glycerol pathway under transcriptional control of Cra. The 2xCra model achieved higher 

glycerol production rates and tolerated maximum induction of the glycerol pathway. We 

then engineered Cra regulation into the glycerol pathway (pBAD-Cra strain). The pBAD-

Cra strain achieved the highest growth rates and glycerol titers of all three strains, thus 

verifying the model predictions. 

Engineered metabolic pathways often lack regulatory circuits that maintain stable 

metabolite concentrations. These results emphasize the importance of maintaining 

regulatory metabolites above a critical threshold in engineered microbes. To identify the 

right regulatory mechanisms, mathematical models have been used to suggest 

stabilizing sites10,14, but also to understand the causes of these instabilities9. Commonly 

production strains in biotechnology are optimized with stoichiometric models4,5. Recent 

years, however, have seen a rise of kinetic models that use regulatory information and 

robustness analyses to optimize performance of production strains18–21. Yet, none of 

these approaches consider the interplay between metabolism and transcriptional 

regulation, and how this interaction affects metabolic burden. 

Here, we developed a small mechanistic model of the branch point between glycolysis 

and glycerol pathway that combines metabolism and transcriptional regulation. The 
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model revealed that transcriptional regulation of the base model is sub-optimal for 

glycerol production and that engineered Cra regulation of the glycerol pathway 

maintains regulatory metabolites above critical thresholds This supports the hypothesis 

that Cra-dependent regulation counteracts a decline in the concentration of FBP by 

downregulating the expression of the glycerol pathway in response to decreasing FBP 

levels. However, as it remains an open question whether this regulation is truly dynamic, 

we cannot rule out the possibility that, due to the constant inhibitory activity of Cra, the 

pBAD-Cra promoter simply functions as a weaker pBAD promoter. Future studies should 

clarify whether the pBAD-Cra promoter automatically adapts to new conditions, e.g., by 

shifting the glycerol producers between different environments. 
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3.7 Methods 

Mechanistic modelling and steady-state analysis 

The stoichiometry of the model is shown in Figure 22. Mass balancing yields a system of 

ordinary differential equations (ODEs), F, that is a temporal function of the state 

variables x and the kinetic parameters p: 

F(x, p) =
dx

dt
=

{
 
 

 
 
dFBP

dt
= rupper_glycolysis − rlower_glycoylsis − rglycerol − FBP ∙ µ

de1
dt

=       β1 − e1 ∙  μ                                                                      

de2
dt

=       β2 − e2  ∙ μ                                                                      

 

 

(3.1) 

The metabolite FBP is produced by 𝑟𝑢𝑝𝑝𝑒𝑟_𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 and consumed by 

𝑟𝑙𝑜𝑤𝑒𝑟_𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 and 𝑟𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙. Moreover, FBP is diluted by growth. The enzyme e1 is a 

lower glycolysis enzyme for which we used parameters of glyceraldehyde-3-phosphate 

dehydrogenase (GapA) and e2 is GPD1. Both enzymes are produced by a production 

term β and they are removed by dilution by growth. We assumed that enzyme 

degradation contributes little to the overall enzyme turnover and therefore can be 

neglected. 

An upper glycolytic flux of 4.904 mmol g-1h-1 was estimated with FBA using a glucose 

uptake rate of 8 mmol g-1 h-1. With the specific cell volume for E. coli (2 µl mg-1)22 the 

reaction rate 𝑟𝑢𝑝𝑝𝑒𝑟 𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 is: 

𝑟𝑢𝑝𝑝𝑒𝑟_𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 =
4.904 𝑚𝑚𝑜𝑙 𝑔−1ℎ−1

0.002 𝑙 𝑔−1
∗

ℎ

60 𝑚𝑖𝑛
= 40.87

𝑚𝑀

𝑚𝑖𝑛
  (3.2) 

The reactions rlower_glycolysis and rglycerol follow Michaelis-Menten kinetics: 

𝑟𝑙𝑜𝑤𝑒𝑟_𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 = 𝑘𝑐𝑎𝑡,1 ∙  𝑒1 ∙  
𝐹𝐵𝑃

𝐹𝐵𝑃 +  𝐾𝑚1
  (3.3) 

𝑟𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 = 𝑘𝑐𝑎𝑡,2 ∙  𝑒2 ∙  
𝐹𝐵𝑃

𝐹𝐵𝑃 + 𝐾𝑚2
  (3.4) 

The expression rates of enzyme 1 (GapA) and enzyme 2 (GPD1) are:  

𝛽1 = 𝛽1,𝑚𝑎𝑥  ∙  (
𝐹𝐵𝑃

𝐹𝐵𝑃𝑆𝑆
)
𝛼1

  (3.5) 

and 
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𝛽2 = 𝛽2,𝑚𝑎𝑥  ∙ 𝑖𝑛𝑑 ∙  (
𝐹𝐵𝑃

𝐹𝐵𝑃𝑆𝑆
)
𝛼2

  (3.6) 

Cra-regulation was simulated with a power law term  (
𝐹𝐵𝑃

𝐹𝐵𝑃𝑆𝑆
)
𝛼

 that affects the maximal 

enzyme expression rate. The power-law format has the advantage that the power-law 

term equals one in the un-induced state and therefore allows the same parameter 

values for the base model, the cra model and the 2x cra model. Further, setting α to 

zero removes the regulation. Therefore, 2 was zero in the base model, while 1 and 

2 were zero in the cra model.  

We assumed that the growth rate µ is proportional to rlower_glycolysis, because previous 13C-

labelling data showed a positive correlation between lower glycolytic flux and growth in 

E. coli23. With a growth rate of 0.01 min-1 in the un-induced state, the proportionality 

factor alpha follows as: 

𝑟𝑙𝑜𝑤𝑒𝑟 𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 = 𝑟𝑢𝑝𝑝𝑒𝑟 𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 − 𝐹𝐵𝑃 ∙ µ = 40.86 𝑚𝑀 𝑚𝑖𝑛−1  (3.7) 

 

𝛼𝑙𝑝ℎ𝑎 =
𝑟𝑙𝑜𝑤𝑒𝑟_𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠

µ
=  
40.86 𝑚𝑀 𝑚𝑖𝑛−1

0.01 𝑚𝑖𝑛−1
= 4086 𝑚𝑀 (3.8) 

 

𝜇 =   
𝑟𝑙𝑜𝑤𝑒𝑟_𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠

𝑎𝑙𝑝ℎ𝑎 
 (3.9) 

In total, the model includes eight kinetic parameters kcat,1, kcat,2, Km,1, Km,2, β1,max, β2,max, 

1, and 2. The parameters were either sampled 5000 times from a log-uniform 

distribution from predefined intervals or calculated based on steady state constraints. 

Km,1 and Km,2 were randomly sampled between 0.01 and 10 mM to account for high and 

low saturation of enzymes. The power-law exponents 1 and 2 were randomly 

sampled between 1 and 2. The lower bound was 1 to ensure that the expression rate is 

at least linearly dependent on the FBP concentration. The upper bound was 2 to avoid 

higher-order dynamics that can cause instabilities24. The kcat,2 value was based on the 

kinetic parameter of GPD1 (kcat,2 = 1705 min-1)25 and was sampled between 0.33-fold 

and 3-fold of this literature value. The parameter kcat,1 followed from the steady state 

constraint of the un-induced state where rglycerol = 0. β1,max was derived from the mass 

balances of e1, assuming steady state:  
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𝛽1,𝑚𝑎𝑥 = 𝑒1  ∙  𝜇 (3.10) 

The concentration of e1 was 0.0238 mM, based on quantitative proteome data for 

GapA14 resulting in β1,max = 0.000238 mM min-1. The maximal enzyme expression rate in 

the glycerol pathway (β2,max) was defined by the translation rate of ribosomes according 

to: 

𝛽2,𝑚𝑎𝑥 = 
𝑟𝑡 ∙ 𝑅0.6 ∙ 𝑓𝑅
𝐿 ∙ 𝑁𝐴 ∙ 𝑉𝑐

∙ 𝑝 = 0.0017 𝑚𝑀 𝑚𝑖𝑛−1  (3.11) 

Equation 3.11 considers the following parameters that were derived from the 

Bionumbers Database26: average translation rate (rt = 8.4 amino acids s-1), the median 

and abundance weighted protein length (L = 209 amino acids), the fraction of active 

ribosomes (fR = 0.8) and the cellular volume (Vc,0.6 = 3 x 10-15 L) and at a growth rate of 

µ = 0.6 h-1, the Avogadro number (NA = 6.02 x 1023 mol-1), the amount of ribosomes per 

cell at that growth rate (R0.6 = 8000 ribosomes cell-1). The fraction of ribosomes (p) that 

synthesize GPD1 at full induction was assumed to be 20%, because only 50% of the 

ribosomes can translate a heterologous protein and this is already associated with 

significant protein burden27.  

Table 1. Values and units of parameters and variables 

Parameter / Species Lower bound Upper bound Unit 

rupper_glycolysis 40.87 40.87 mM min-1 

kcat,1 calculated min-1 

Km,1 0.01 10 mM 

kcat,2 511.5 5115 min-1 

Km,2 0.01 10 mM 

β1,max calculated mM min-1 

β2,max 0.0017 0.0017 mM min-1 

ind 0 1 - 

α1 1 2 - 

α2 1 2 - 

µinitial 0.01 0.01 min-1 

FBP 1 1 mM 

e1(GapA) 0.0238 0.0238 mM 

e2(GPD1) 0 0 mM 
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Steady state and robustness analysis 

To obtain steady states of the un-induced system, β2,max and e2 were set to zero. Then 

six parameters were randomly sampled from intervals defined above. The two 

parameters (kcat1 and b1,max) were calculated to ensure steady state conditions. To test 

stability of the steady states, eigenvalues of the Jacobian matrix were calculated, and 

tested if all eigenvalues are negative (λ < -10-5). The procedure was repeated until 5,000 

stable steady states were achieved. Next, induction (ind in Equation 3.6) was iteratively 

increased from 0 to 1 using a numerical parameter continuation method. The method is 

based on finding a connected path of steady state concentrations (xss: steady state 

concentration vector containing e1ss, e2ss, FBPss) as a parameter p is varied. As the system 

is in steady state it follows that: 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥𝑠𝑠, 𝑝) = 0  (3.12) 

The derivative of F(xss,p) with respect to the parameters is also zero: 

𝑑𝐹(𝑥𝑠𝑠, 𝑝)

𝑑𝑝
=
𝛿𝐹

𝛿𝑥𝑠𝑠
∙
𝑑𝑥𝑠𝑠
𝑑𝑝

+
𝛿𝐹

𝛿𝑝
= 0  (3.13) 

After rearranging Equation 3.13, Equation 3.14 is obtained: 

𝑑𝑥𝑠𝑠
𝑑𝑝

=  −(
𝛿𝐹

𝛿𝑥𝑠𝑠
)
−1

∙  
𝛿𝐹

𝛿𝑝
  (3.14) 

which describes the changes in the steady-state concentrations as a kinetic parameter 

is varied iteratively. The iteration stops when one of the following two stability criteria 

is no longer fulfilled. 1st criterion: all real parts of the eigenvalues of the system’s 

Jacobian need to be negative. In Equation 3.14 the inverse of the Jacobian Matrix 

(𝛿𝐹/𝛿𝑥𝑆𝑆) is required. The inversion is only possible if the matrix is regular. Once an 

eigenvalue reaches zero, the Jacobian becomes singular and matrix inversion is no 

longer possible. This bifurcation point defines the boundary between the stable and 

unstable parameter space. In other words: after this point is passed, the system can’t 

return to a stable steady state (see Figure 24). Calculating the eigenvalues of the 

Jacobian at each step ensures that the iteration is terminated when one eigenvalue 

exceeds λ = -10-5. The 2nd criterion is that all variables are positive. 
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4.1 Abstract 

High enzyme levels are costly, but they enable robust metabolism. Conversely, low 

enzyme levels are more efficient but limit metabolic flux. To understand the 

consequences of reducing enzyme amounts below critical concentrations, we used 

CRISPR interference (CRISPRi) to knockdown gene expression of CarAB, an enzyme 

located upstream of the branch point between arginine biosynthesis and pyrimidine 

biosynthesis. Following the knockdown of CarAB, we observed a 512-fold accumulation 

of ornithine, which is an allosteric activator of CarAB. To understand the functional 

implications of ornithine accumulation, we developed a mechanistic mathematical 

model of the branch point between arginine biosynthesis and pyrimidine biosynthesis. 

Simulating the knock-down of CarAB for an allosterically regulated model, and a model 

without allosteric regulation revealed that ornithine buffers the perturbation of CarAB 

and confers robustness by stabilizing downstream metabolite levels in arginine and 

pyrimidine biosynthesis. 

4.2 Introduction 

Expression levels of enzymes influence cellular metabolism and fitness. Growth of E. coli, 

for example, is affected by the abundance of single enzymes1,2, as well as by the total 

mass of catabolic enzymes3. While studies using genetic knockouts in yeast and E. coli4,5 

have shown that the metabolome and transcriptome is perturbed locally6–8, knockouts 

are extreme cases that are not applicable for metabolic enzymes that are essential on 

carbon sources such as glucose. Moreover, knockouts are static and, thus, they may 

reflect metabolic states that have already adapted at the level of gene expression9. This 

makes it difficult to study the immediate dynamics leading to the adapted state. Gene 

expression noise or mutations of genes that encode enzymes can lead to small changes 

in enzyme levels. However, it is still unclear how metabolism adapts to small changes of 

single enzymes. Control theory, for example, suggests that small changes in enzyme 

levels only have small and local effects on metabolism and that these changes do not 

propagate globally10,11. While this robustness of metabolism is not surprising, mostly 

theoretical studies examined the mechanisms that enable metabolic robustness12,13. 
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Earlier studies that measured robustness against changes of enzyme abundance focused 

on specific pathways14,15. Recent approaches enabled robustness analyses by simulating 

strong genetic perturbations in large mechanistic models16,17. 

Strong perturbations resemble knockdowns by CRISPR interference (CRISPRi)18, which 

represses transcription of a target gene with a complex of deactivated Cas9 (dCas9) and 

a single guide RNA (sgRNA). Since CRISPRi is inducible, it allows for time-resolved19 

studies and functional analyses of genes that are essential and, therefore, not viable in 

knockout libraries20. Thus, together with multi-omics data and mathematical models, 

CRISPRi based knockdowns have the potential to explain how metabolism compensates 

changes in enzyme levels. Here, we used CRISPRi to knockdown CarAB, an enzyme at 

the branch point between arginine and pyrimidine biosynthesis. We measured the 

metabolome and observed that ornithine, a known allosteric activator of CarAB, 

accumulated 512-fold. To understand if ornithine accumulation is a direct cause of the 

CarAB knockdown, and its functional role at the branch point, we developed a 

mechanistic mathematical model of the branch point. A Robustness analysis and time-

course simulations of the CarAB knockdown revealed that ornithine accumulates in 

response to a downstream bottleneck. Allosteric activation of CarAB by ornithine 

alleviates the bottleneck, stabilizing pathway flux and causing end-product homeostasis. 

4.3 CRISPRi knockdown of CarAB causes ornithine accumulation 

To test how metabolism compensates genetic knockdowns, we used CRISPRi to perturb 

the carbamoyl-phosphate synthetase (CarAB) at the branch point between arginine 

biosynthesis and pyrimidine biosynthesis. We measured 119 intracellular metabolites 

by liquid chromatography tandem mass spectrometry (LC-MS/MS). Surprisingly, the 

substrate L-glutamine was not among the strongest changing metabolites. Instead, 

ornithine showed the strongest accumulation with a fold change > 500 compared to an 

uninduced control strain (Figure 26a). Ornithine is an allosteric activator of CarAB and 

ornithine levels in E. coli are 37-fold lower than the activation constant of CarAB21. 

Assuming a hyperbolic relationship between ornithine levels and CarAB activity, the 

initial activity of CarAB is at 3 % of its theoretical maximum activity. A 512-fold increase 

of ornithine should then cause a 91 % increase of activity of CarAB in vivo. Thus, allosteric 
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activation of CarAB by ornthine has the potential to buffer the CarAB knockdown (Figure 

26b). 

 

Figure 26. Knockdown of CarAB causes ornithine accumulation a) Intracellular concentration of 119 
metabolites in the 30 CRISPRi strains. Metabolite levels are shown as log2 fold-change between induced 
and uninduced cultures. Samples were collected after 4.5 h cultivation in 12-well plates. Data are 
represented as mean (n=2).b) Allosteric activation of CarAB by ornithine was modelled with a hyperbolic 
function and an activation constant (Ka) of 0.37 mM22. The wild-type concentration of ornithine is 0.01 
mM21 and shown as blue dot (3% activity). The concentration of ornithine increased 512-fold in the CarAB 
knockdown (orange dot, 94% activity). Parts of this figure are published in Cell Systems 2021, 12 (1), 56-
67.e6. 

 

In conclusion, we performed a knockdown of CarAB and measured metabolite changes 

of 119 metabolites with LC-MS/MS. Ornithine accumulated 512-fold and literature 

ornithine concentrations and activation constants of CarAB predicted that this 

accumulation should increase CarAB activity by 91 %. To provide further mechanistic 

insights, we next developed a small mechanistic model of the branch between arginine 

biosynthesis and pyrimidine biosynthesis. 

4.4 Feedback activation of CarAB by ornithine stabilizes pathway 

end-products in arginine and pyrimidine biosynthesis 

To study the role of the allosteric activation of CarAB by ornithine, we developed a small 

mechanistic model of the arginine and pyrimidine branch point. The model consists of 

six metabolic reactions (r1-r6) and four metabolites (orn: ornithine, cbp: carbamoyl 
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phosphate, arg: arginine, utp/ctp: uridine-triphosphate / cytidine-triphosphate). 

Reaction 2 includes an additional transcriptional layer in which we simulate production 

of CarAB and its dilution by growth. Moreover, reaction 2 is allosterically activated by 

ornithine, and we model the activation with a power-law term. The metabolic end 

products arginine and UTP/CTP are then consumed for growth and we assumed that 

both end products contribute equally to the growth rate. The model stoichiometry is 

shown in Figure 27a. We then set up an allosteric model (with ornithine feedback 

activation) and a dysregulated model (without ornithine feedback activation). Kinetic 

parameters of the model were randomly sampled 1,000 times from physiologically 

meaningful ranges based on in vitro parameters. Note that both models reach the same 

stable steady state flux and share the same kinetic parameters (except for the power-

law term). 

 

Figure 27. Model structure and robustness analysis a) Stoichiometry of the kinetic model of the branch 
point between arginine and pyrimidine biosynthesis. Reactions (r1-r6) are solid arrows. The allosteric 
ornithine activation of r2 is a dashed arrow. The perturbation of CarAB by CRISPRi is a red blunt arrow. b) 
Robustness analysis of an allosteric(blue) and a non-allosteric model(orange). Robustness is defined as the 
fraction of stable parameter sets at each perturbation step (1,000 parameter sets in total). Parts of this 
figure are published in Cell Systems 2021, 12 (1), 56-67.e6. 

 

Analysis of the literature parameters indicated that the allosteric activation of CarAB by 

ornithine should increase CarAB activity. An initial robustness analysis of the allosteric 

model and the non-allosteric model indicated that allosteric activation of CarAB is crucial 

for robustness of the branch point. To perform the robustness analysis, we reduced the 

production rate of CarAB in both models until instabilities occured. Repeating this  
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Figure 28. Time course simulation of the CarAB knockdown. Simulation results of the allosteric model and 
the non-allosteric model with 1,000 parameter sets (thin lines). Thick lines are the average of 1,000 
simulations. Shown are the simulated reaction rate of r2 and metabolite dynamics of ornithine (orn, black), 
carbamoyl phosphate (cbp, purple), arginine (arg, blue) and UTP/CTP (orange). CRISPRi was simulated by 
setting the expression rate of CarAB to zero at t = 0 min. The insert shows the full range average ornithine 
levels in the non-allosteric model. This figure is published in Cell Systems 2021, 12 (1), 56-67.e6 

 

process for all 1,000 parameter sets, we defined robustness as the fraction of stable 

parameter sets at each perturbation step. While the allosteric model maintained 

maximum robustness up to a 10-fold downregulation of CarAB, the non-allosteric model 

could not even tolerate a two-fold downregulation, indicating a severe lack of 

robustness (Figure 27). This analysis showed that the allosteric model is far more robust 

against a bottleneck in CarAB than the non-allosteric model.  

To better understand cause and effect of the CRISPRi knockdown of CarAB, we next 

simulated the time course of the knockdown for both models and all 1,000 parameter 

sets. Again, the allosteric model was more robust against the CarAB knockdown than 

the non-allosteric model (Figure 28). Especially fluxes remained relatively constant in 

the allosteric model: 796 of the 1,000 simulations maintained 95% of the initial steady-

state flux. In contrast, the flux in the non-allosteric model decreased continuously to 

about 50% of the initial steady state. Moreover, concentrations of the end products, 

arginine and UTP/CTP, were more stable in the allosteric model than in the non-

allosteric model. Out of all metabolites, the levels of carbamoyl phosphate drop first, 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/carbamoyl-phosphate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/crispr-interference
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followed by the accumulation of ornithine. This effect is stronger in the non-allosteric 

model, indicating that ornithine accumulates because of a bottleneck in reaction 3, and 

not as a direct response to buffer the knockdown of CarAB. 

The simulations indicate that ornithine does not accumulate because of the 

perturbation of CarAB, but due to the bottleneck in reaction 3. The allosteric activation 

of CarAB by ornithine then alleviates the bottleneck, thus minimizing perturbations to 

metabolic flux and end products in arginine and pyrimidine nucleotide biosynthesis. 

To validate the model predictions, we measured metabolites in the CarAB knockdown 

dynamically with LC-MS/MS (Figure 29). Consistent with the simulation results, 

ornithine already increased 40 min after induction of the CarAB knockdown, while the 

end products, arginine, CTP, and UTP remained relatively constant for at least 2 h 

(Carbamoyl phosphate is volatile and could not be measured): The fast response of 

ornithine shows that the CarAB knockdown perturbs the arginine-pyrimidine branch 

point early after induction of CRISPRi. However, the perturbation did not propagate into 

the end products of both pathways. Thus, the combination of a mechanistic model and 

dynamic metabolite data provided additional evidence that ornithine buffers the CarAB 

knockdown. 

 

Figure 29. Time course measurements of metabolite concentrations. Measured concentration of orn, arg, 
UTP, and CTP in the CarAB knockdown. Metabolite levels are normalized to the time point before induction. 
The culture was induced with aTc at t = 0 min. Small gray dots are measurements in n = 2 cultures and 
large colored dots are the mean. This figure is published in Cell Systems 2021, 12 (1), 56-67.e6 
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4.5 Discussion 

Robustness is an emergent property of metabolism and allows systems to evolve and 

maintain functionality in face of perturbations23,24. To achieve robustness, cells use 

feedback control to dynamically adapt their metabolism to changes in metabolite and 

enzyme levels23,24. However, due to lack of time-resolved multi-omics data and mild 

genetic perturbations, there is only little information on how exactly feedback 

mechanisms like allosteric regulation achieve robustness on a system level. To study 

how cells adapt to perturbations metabolically, mathematical models have been used 

extensively25–27. While metabolic control analysis has predicted that metabolism is 

insensitive to perturbations of enzyme levels10–12, analyses of mechanistic models have 

shown that metabolic networks, depending on the network motif, don’t necessarily 

tolerate such perturbations leading to system failure16,17. 

In this chapter, we used CRISPRi to knockdown the enzyme CarAB at the branch-point 

between arginine biosynthesis and pyrimidine biosynthesis. Analysis of metabolite data 

revealed that the CarAB knockdown caused 512-fold accumulation of ornithine, a known 

allosteric activator of CarAB. To simulate the knockdown of CarAB and to understand 

the compensatory response of the pathway, we developed a mechanistic model of the 

arginine-pyrimidine branch point. A robustness analysis and time-course simulations for 

an allosteric and non-allosteric model indicated that the knockdown leads to a 

downstream bottleneck that causes ornithine accumulation. Subsequent ornithine- 

activation of CarAB alleviates the bottleneck and stabilizes biosynthetic pathway end-

products.  

Here, we have demonstrated that allosteric activation plays a crucial role in buffering 

decreases of enzyme levels. It seems likely that structurally similar pathways share this 

regulatory motif to solve downstream bottlenecks. Moreover, this case study indicates 

that functional metabolite-protein interactions could be identified by systematically 

perturbating enzyme levels, since perturbations can cause strong accumulation or 

depletion of regulatory metabolites28. 
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4.6 Methods 

Structure of the mechanistic model and time course simulation 

The stoichiometry of the model is shown in Figure 27a. Mass balancing yields a system 

of ordinary differential equations (ODEs), F, that is a temporal function of the state 

variables x and the kinetic parameters p: 

𝐹(𝑥, 𝑝) =
𝑑𝑥

𝑑𝑡
=

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑜𝑟𝑛

𝑑𝑡
= 𝑟1 − 𝑟3         

𝑑𝑐𝑏𝑝

𝑑𝑡
= 𝑟2 − 𝑟3 − 𝑟4

𝑑𝑎𝑟𝑔

𝑑𝑡
= 𝑟3 − 𝛼1 µ    

𝑑𝑢𝑡𝑝

𝑑𝑡
= 𝑟4 − 𝛼2 µ    

𝑑𝑒2
𝑑𝑡

 =  −µ ∙ 𝑒2      

 

 

 

(4.1) 

The six reactions (r1, r2, r3, r4, μ1, μ2) are described by the following kinetic equations: 

The influx into the arginine pathway r1 is constant: 

𝑟1 = 𝑘𝑐𝑎𝑡1 ∙ 𝑒1  (4.2) 

Allosteric activation of reaction r2 by ornithine follows a power-law function: 

𝑟2 = 𝑘𝑐𝑎𝑡2 ∙ 𝑒2  ∙  (
𝑜𝑟𝑛

𝑜𝑟𝑛𝑆𝑆
)
𝐾2

  (4.3) 

where ornSS is the steady state ornithine concentration. Reaction r3 corresponds to the 

ornithine carbamoyl transferase, which was shown to follow an ordered bi-bi enzyme 

mechanism in which initial carbamoyl phosphate binding induces a conformational 

change that allows for binding of ornithine29. We assumed that the phosphate can be 

neglected and change the mechanism to an ordered Bi-Uni mechanism. Ordered and 

non-ordered bi-uni mechanisms cannot be distinguished in the absence of product 

inhibition30. Thus, reaction r3 follows a non-ordered bi-uni mechanism: 

𝑟3 = 𝑘𝑐𝑎𝑡3 ∙ 𝑒3  
1

(1 + 
𝐾𝑚,𝑜𝑟𝑛 ∙ 𝐾𝑚,𝑐𝑏𝑝
𝑜𝑟𝑛 ∙ 𝑐𝑏𝑝

+ 
𝐾𝑚,𝑜𝑟𝑛
𝑜𝑟𝑛 + 

𝐾𝑚,𝑐𝑏𝑝
𝑐𝑏𝑝

)

  (4.4) 

 

Reaction r4 follows Michaelis-Menten kinetics: 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stoichiometry
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/kinetic-parameter
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ornithine
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𝑟4 = 𝑘𝑐𝑎𝑡4 ∙ 𝑒4 ∙  
𝑐𝑏𝑝

𝑐𝑏𝑝 + 𝐾4
 

 (4.5) 

The growth rate μ depends on μ1 and μ2, which follow Michaelis-Menten kinetics: 

µ1 = µ1,𝑚𝑎𝑥 ∙  
𝑎𝑟𝑔

𝑎𝑟𝑔 + 𝐾µ1
  (4.6) 

µ2 = µ2,𝑚𝑎𝑥 ∙  
𝑢𝑡𝑝

𝑢𝑡𝑝 + 𝐾µ2
 

 (4.7) 

µ = 𝑚𝑒𝑎𝑛(µ1, µ2)  (4.8) 

In total, the model includes 14 kinetic parameters kcat1, kcat2, kcat3, kcat4, K2, Km,orn, Km,cbp, 

K4, Kμ1, Kμ2, μmax1, μmax2, α1 and α2. The ensemble modelling approach31 was used to 

account for uncertainties in kinetic parameters. 

First, a steady state flux distribution was calculated by FBA that is common for all 

subsequent parameter sets (r1 = 0.958 mM min-1, r2 = 1.425 mM min-1, r3 = 0.958 mM 

min-1, r4 = 0.467 mM min-1, μ1 = 0.958 mM min-1, μ2 = 0.467 mM min-1). Arginine and 

UTP efflux (μ1 and μ2) were calculated as the product of their biomass coefficients (α1 = 

95.8 mM, α2 = 46.7 mM) and the growth rate on glucose (μ = 0.01 min1). 

Binding constants (K-values) and metabolite concentrations (Ornithine = 0.01 mM, 

UMP = 0.50 mM, Arginine = 0.138 mM21) were obtained from literature and Cbp 

concentration was set to 1 mM. The enzyme concentrations were set to 1 mM. The 

binding constants were sampled 1,000 times from 10-fold intervals based on literature 

values (Km,orn = 0.32 mM (argF/I, Ecocyc32), Km,cbp = 0.36 mM (argF/I, Ecocyc), K4 = 

0.028 mM (Brenda33 ID: 696699), Kμ2 = 0.05 mM (pyrH, Ecocyc)). The power-law term K2 

was sampled between 1 and 4 in the regulated model25 and was set to zero in the 

dysregulated model. Kμ1 was fixed to 10-5 mM. 

With the ensemble modelling approach, the system is initially set into a steady state. To 

test stability of the steady states, eigenvalues of the Jacobian matrix were calculated, 

and tested if all eigenvalues are negative (λ < -10-5). The procedure was repeated until 

1,000 stable steady states were achieved. The perturbation by CRISPRi was then 

simulated for all stable models by setting the expression rate of e2 to zero: 

𝑑𝑒2
𝑑𝑡

= −𝑒2 µ  (4.9) 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/binding-affinity
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/uridine-monophosphate
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Robustness Analysis 

We first removed enzyme production and dilution from the model (Equation 4.9). To 

determine robustness, we used a numerical parameter continuation method to 

iteratively decreased e2 in both models until instabilities occured. The method is based 

on finding a connected path of steady state concentrations (xss: steady state 

concentration vector containing: orn, cbp, arg, utp/ctp) as a parameter p is varied. As 

the system is in steady state it follows that: 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥𝑠𝑠, 𝑝) = 0  (4.10) 

The derivative of F(xss,p) with respect to the parameters is also zero: 

𝑑𝐹(𝑥𝑠𝑠, 𝑝)

𝑑𝑝
=
𝛿𝐹

𝛿𝑥𝑠𝑠
∙
𝑑𝑥𝑠𝑠
𝑑𝑝

+
𝛿𝐹

𝛿𝑝
= 0  (4.11) 

After rearranging Equation 4.11, Equation 4.12 is obtained: 

𝑑𝑥𝑠𝑠
𝑑𝑝

=  −(
𝛿𝐹

𝛿𝑥𝑠𝑠
)
−1

∙  
𝛿𝐹

𝛿𝑝
  (4.12) 

which describes the changes in the steady-state concentrations as a kinetic parameter 

is varied iteratively. The iteration stops when one of the following two stability criteria 

is no longer fulfilled. 1st criterion: all real parts of the eigenvalues of the system’s 

Jacobian need to be negative. In Equation 4.12 the inverse of the Jacobian Matrix 

(𝛿𝐹/𝛿𝑥𝑆𝑆) is required. The inversion is only possible if the matrix is regular. Once an 

eigenvalue reaches zero, the Jacobian becomes singular and matrix inversion is no 

longer possible. This bifurcation point defines the boundary between the stable and 

unstable parameter space. In other words: after this point is passed, the system can’t 

return to a stable steady state. Calculating the eigenvalues of the Jacobian at each step 

ensures that the iteration is terminated when one eigenvalue exceeds λ = -10-5. The 2nd 

criterion is that all variables are positive. 
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Chapter 5  A mathematical model of glycolysis predicts 

sustained pyruvate oscillations 
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metabolic network” that is currently under revision in Nature Communications. My 

contribution to this work was the design of the mathematical models and the analysis 

of the mathematical models. 
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5.1 Abstract 

Modelling approaches based on network stoichiometry often assume that exponentially 

growing bacteria are in steady state. That means that metabolite concentrations are 

time invariant. Perturbations, however, can disturb this balance, causing metabolite 

accumulation or depletion. An intricate network of feedback regulations allows the cell 

to adapt to these changes by adjusting enzyme activity and enzyme abundance. This 

regulation network renders cells robust against certain perturbations. However, 

robustness against certain perturbations often causes fragility against other 

perturbations, for example leading to sustained oscillations of metabolite levels. Here, 

we developed a small mechanistic model of glycolysis that includes the 

phosphotransferase system and three of the most important allosteric regulations. The 

model indicated that feedback regulation and enzyme saturation are important factors 

that can cause sustained pyruvate oscillations with an average period of three minutes. 

5.2 Introduction 

Robustness of biological systems allows cells to maintain homeostasis of metabolite 

end-products, which are crucial for keeping stable growth rates1–3. A key assumption of 

most deterministic, stoichiometry-based modelling approaches is that input and output 

of a system are balanced and in steady state during exponential growth4–7. While 

metabolism is often assumed to be in homeostasis, cells frequently encounter 

perturbations, and it is not always clear how metabolism responds to these 

perturbations to achieve homeostasis. Allosteric regulation allows metabolism to sense 

changes in metabolite concentrations and adjust enzymatic reaction rates to direct the 

system back into a steady state8. Yet, there is little experimental information on how 

metabolite concentrations change dynamically between states. Although experimental 

methods like real-time metabolomics9 have shed light on metabolite dynamics, it is 

more common to use mathematical models to study these effects. 

Glycolysis is one of the most important and most studied catabolic pathways10–13. It is a 

tightly regulated autocatalytic pathway that provides metabolite precursors for many 

anabolic metabolic pathways. Due to its autocatalytic nature, glycolysis requires 
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phosphoenolpyruvate and ATP to produce a net gain of both metabolites. 

Phosphoenolpyruvate is required for uptake of glucose by the phosphotransferase 

system (PTS), and ATP is required for the phosphorylation of fructose-6-phosphate to 

fructose 1,6-bisphosphate. Moreover, feed forward activation of the pyruvate kinase by 

fructose 1,6-bisphosphate, and the feedback activation of the fructose-1,6-

bisphosphatase by pyruvate were shown to be instrumental for robustness of glycolysis, 

and to switch between gluconeogenesis and glycolysis9,14. The complex and intertwined 

structure of glycolysis prohibits an intuitive understanding of glycolysis, which is crucial 

for many applications, including metabolic engineering11. 

However, while its complex regulation enables robustness and flexibility, it also renders 

glycolysis more fragile against unexpected perturbations. For example, in Chapter 3 we 

showed that native transcriptional regulation of E. coli causes system failure when flux 

is drained from upper glycolysis to produce glycerol11. For other models it was even 

shown that glycolysis metabolites are susceptible to oscillations, and that these 

oscillations are a consequence of the many feedback regulations and autocatalytic 

cycles as part of the fundamental trade-off between robustness and efficiency in 

dynamic systems13,15,16. However, while these models predicted oscillations and system 

failure, the autocatalytic properties of the phosphotransferase system, as well as many 

allosteric regulations, were not considered. 

Here, we developed a mechanistic mathematical model of glycolysis to study how 

pyruvate, one of the end-products of glycolysi17, responds to perturbations of the 

glucose uptake rate. The model included the most important allosteric regulations of 

glycolysis and predicted that the interplay between allosteric inhibition, allosteric 

activation, and enzyme saturation of key enzymes can cause sustained pyruvate 

oscillations with an average period of three minutes. 

5.3 A mathematical model of E: coli glycolysis predicts sustained 

pyruvate oscillations 

To test the likelihood of oscillations in the levels of glycolysis metabolites, we developed 

a small mechanistic model of E. coli glycolysis (Figure 30). The model consists of four 
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metabolites and six metabolic reactions that were simulated with Michaelis-Menten and 

Hill kinetics. From a multitude of allosteric metabolite-enzyme interactions that regulate 

the activity of glycolysis enzymes, three of the most relevant ones were included in our 

model. The first interaction is the feedforward activation of pyruvate kinase (PYK) by 

fructose-1,6-biphosphate (FBP), which plays an important role for glycolysis flux 

regulation in E. coli18. The other two interactions represent negative feedbacks from the 

phosphoenolpyruvate (PEP) levels to the interconversion of hexose-phosphate and FBP, 

by respectively inhibiting phosphofructokinase (PFK) and activating fructose-1,6-

bisphosphatase (FBPase), which together regulate the PFK-FBPase cycle19. 

 

Figure 30. Structure and stoichiometry of a mechanistic model of glycolysis. The outer dotted line is the 
model boundary. Solid arrows are reactions and dotted arrows are allosteric interactions of metabolites 
with enzymes. G6P: glucose-6-phosphate, FBP: fructose-1,6-bisphosphate, PEP: phosphoenolpyruvate, 
PYR: pyruvate, PFK: phosphofructokinase, FBPase: fructose-1,6-bisphosphatase, PYK: pyruvate kinase, 
FBA: fructose-bisphosphate aldolase, PTS: phosphotransferase system, PDH: pyruvate dehydrogenase.  

 

As a starting point for analysis of the model, we fixed the glycolytic flux to a constant 

value and randomly sampled all model parameters (maximal rates and binding 

constants) 2,000 times from a log-uniform distribution such that the model was at 

steady state. In total, 50 % of the 2,000 parameter sets achieved a stable steady state, 

indicating that the structure alone does not guarantee stability and that parameter 

values of the correct magnitude are crucial. Next, we perturbed this steady state by 

decreasing the glucose uptake rate by 5 % and analysed changes in pyruvate levels 

(downshift, Figure 31a). A forward Fourier transformation of the time dependent 

pyruvate levels revealed sustained oscillations of pyruvate concentrations for 393 of the 

tested 2,000 parameter sets (20%). 
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Figure 31. Simulated Pyruvate oscillations. a) Two examples of simulated pyruvate concentrations with 
two different parameter sets that produce pyruvate oscillations. The model was initially at steady state 
and at t = 50 min the glucose uptake rate (Vmax of PTS) was decreased by 5 %. b) Boxplot showing the 
distribution of the periods of 393 simulations with oscillating pyruvate levels. Each black dot corresponds 
to a different parameter set. 

 

The typical period of oscillations across these 393 simulations was several minutes 

(three minutes on average), although some parameter sets caused faster or slower 

oscillations (Figure 31b). However, none of the parameter sets that led to oscillations 

had a stable steady state. To identify parameters that favour pyruvate oscillations, we 

compared the distribution of individual model parameters across all sets with those sets 

that yielded oscillations (Figure 32). This showed that oscillations are generally favoured 

by high affinity of pyruvate dehydrogenase (PDH) for pyruvate (low Km5) and by the 

positive allosteric regulation of PYK by FBP (a3). Lower cooperativity of PFK (n1) and 

negative regulation of its activity by PEP (a1) also promoted oscillations. 
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Figure 32. Analysis of model parameter sets for their propensity to produce pyruvate oscillations. 
Comparison of parameter values in 393 parameter sets that led to oscillations with all 2,000 parameter 
sets that were randomly sampled from a log-uniform distribution, with numbering of individual reactions 
as in the panel. Asterisks denote parameters that affect the model’s propensity to produce pyruvate 
oscillations (10-10 < p-value < 10-5, a = 0.01). Double asterisks denote parameters that strongly affect the 
model’s propensity to produce pyruvate oscillations (p-value < 10-10, a = 0.01). 

 

Finally, we wondered how the system would respond to a 10-fold upshift of a low 

glucose uptake rate that resembles the shift from glucose starvation to growth. In 

contrast to the 5 % downshift, pyruvate levels first showed a strong increase before 

stabilizing and oscillating around the new steady state (Figure 33b). In contrast to the 

small perturbation of the glucose uptake rate, a 10-fold upshift caused only oscillations 

in 226 out of 10,000 parameter sets (2 %), while the average period of the oscillations 

was comparable between both simulations (Figure 33c). Consistent with the 5 % 

downshift, the allosteric feedforward activation of PYK (a3), the cooperativity of PFK (n1) 

and the substrate affinity of PDH for pyruvate (Km5) were also causing oscillations in the 

10-fold upshift model (Figure 33d). Thus, the stoichiometry and the kinetics of glycolysis 

can produce oscillations of intracellular metabolites on the time scale of several minutes 

(three minutes on average) in a broad range of parameter values and for different initial 

perturbations (upshift and downshift of glycolytic flux). 
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Figure 33. Response of the metabolic model to a 10-fold upshift in glucose uptake rate. a) Five examples 
of simulated pyruvate concentrations with five different parameter sets (S1-S5) that produce oscillations. 
The model was initially at steady state and at t = 50 min with a flux of 6.66 mmol l-1min-1 when the glucose 
uptake rate (Vmax of PTS) was increased 10-fold. b) Boxplot showing the distribution of the periods of 226 
simulations with oscillating pyruvate levels. Each black dot corresponds to a different parameter set. c) 
Comparison of parameter values in 226 sets that led to oscillations with all 10,000 parameter sets that 
were random sampled, with numbering of individual reactions as in panel. Asterisks denote parameters 
that affect the model’s propensity to produce pyruvate oscillations (10-10 < p-value < 10-5, a = 0.01). Double 
asterisks denote parameters that strongly affect the model’s propensity to produce pyruvate oscillations 
(p-value < 10-10, a = 0.01). 

5.4 Discussion 

Glycolysis is one of the most important catabolic pathways and was subject to many 

experimental and theoretical studies9–12,19,20. Yet, recent studies have shown that 

glycolysis is far from solved, and that further knowledge will greatly aid metabolic 

engineering efforts11. Here, we developed a small mechanistic model of glycolysis, which 

showed that allosteric regulation and enzyme saturation can cause sustained 

oscillations of pyruvate levels. This result agrees with previous studies that highlighted 

the propensity of glycolysis to produce oscillations13,15,16. In contrast to those model 

analyses, we included the phosphotransferase system and the three major allosteric 

regulations under physiological conditions. Moreover, we did not consider feedback 

regulation by ATP, ADP, or AMP that were shown to cause oscillations in earlier 

models15,16. 

Our results indicated that high saturation and high cooperativity of PDH promoted 

pyruvate oscillations. If the enzyme is already saturated by its substrate, its buffering 

capacity is limited, and the reaction rate can no longer be sensitively modulated by its 

substrate concentration. Recent studies have shown that enzymes with saturation 

kinetics can buffer substrate concentration changes3,21,22. Moreover, it was reported 
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that reactions at branch points out of autocatalytic cycles, like PDH in this case, need to 

have weak substrate affinities (low saturation) to ensure stability of the autocatalytic 

cycle23. This is supported by literate binding constants and pyruvate levels that indicate 

overabundance of PDH24,25. Thus, in practice, other factors are presumably more likely 

to cause pyruvate oscillations. 

Positive feedforward regulations amplify signals and the feedforward activation of the 

PYK by FBP was shown to increase robustness of glycolysis14. Yet, our results indicated 

that, given the right circumstances, the feedforward activation can also promote 

sustained oscillations of pyruvate concentrations. This behaviour agrees with the theory 

of highly optimized tolerance, which states that robustness (tolerance) against general 

perturbations can be accompanied by fragilities against specific perturbations15,26. 

Here, we showed that regulation of glycolysis and enzyme saturation can cause 

sustained oscillations in pyruvate levels with an average period of three minutes. We 

show that oscillations can occur, even if feedback regulation by ATP, ADP, and AMP are 

not considered. It will be important to clarify the causes of the oscillations in more detail, 

for example by using a more comprehensive mechanistic model, and experimental time-

resolved measurements of pyruvate levels. 

5.5 Methods 

The stoichiometry of the model is shown in Figure 30. Mass balancing results in a system 

of ordinary differential equations (ODEs), F, which is a temporal function of the state 

variables x (G6P, FBP, PEP, PYR) and the kinetic parameters p. In total, the system 

comprises four variables and 21 kinetic parameters. Dilution of metabolites by growth 

was not considered due to large differences between growth dilution and glycolytic flux. 

𝐹(𝑥, 𝑝) =  
𝑑𝑥

𝑑𝑡
=  {

𝑃𝑇𝑆 + 𝐹𝐵𝑃𝑎𝑠𝑒 − 𝑃𝐹𝐾
𝑃𝐹𝐾 − 𝐹𝐵𝑃𝑎𝑠𝑒 − 𝐹𝐵𝐴
2 ∙ 𝐹𝐵𝐴 − 𝑃𝑌𝐾 − 𝑃𝑇𝑆
𝑃𝑇𝑆 + 𝑃𝑌𝐾 − 𝑃𝐷𝐻

 (5.1) 

The six reactions (PTS, PFK, FBPase, FBA, PYK, PDH) are described by the following kinetic 

equations: 
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The PTS reaction takes up glucose from outside the system boundary depending on the 

ratio of PYR/PEP. With an assumed glucose uptake rate of 8 mmol g-1 h-1 and the specific 

cell volume for E. coli (2 µl mg-1) the reaction rate for the PTS system is27: 

𝑟1 = 𝑃𝑇𝑆 =
𝑉𝑚𝑎𝑥

𝑘1 ∙
𝑃𝑌𝑅
𝑃𝐸𝑃

+ 𝑘2 + 𝑘3 ∙
𝑃𝑌𝑅
𝑃𝐸𝑃

+ 1
=
8 𝑚𝑚𝑜𝑙 𝑔−1ℎ−1

0.002 𝑙 𝑔−1
 ∙

1ℎ

60 𝑚𝑖𝑛
= 66.66

𝑚𝑀

𝑚𝑖𝑛
 (5.2) 

Reaction 5.2 (PFK) follows hill-type kinetics as it was shown that the enzyme exhibits 

cooperative kinetics towards its substrate28. The enzyme is allosterically inhibited by PEP 

which is modelled by a power-law where n1 is the hill-coefficient and a1 is the power-

law exponent. 

𝑟2 = 𝑃𝐹𝐾 =
𝑉𝑚𝑎𝑥2

(1 +
𝐾𝑚1
𝐺6𝑃)

𝑛1  ∙ 𝑃𝐸𝑃
−𝑎1  (5.3) 

Reaction 5.3 (FBPase) is modelled by a Michaelis-Menten type kinetic. The activation of 

FBPase by PEP is modelled by a power-law term. 

𝑟3 = 𝐹𝐵𝑃𝑎𝑠𝑒 = 𝑉𝑚𝑎𝑥3 ∙
𝐹𝐵𝑃

𝐹𝐵𝑃 + 𝐾𝑚2
 ∙ 𝑃𝐸𝑃𝑎2  (5.4) 

The flux ratio between PFK and FBP is randomly sampled between 0.01 and 1 and 

constraint to a net flux of 66.66 mmol l-1 min-1. Reaction 5.4 (FBA) is modelled by a 

Michaelis Menten type kinetic. Here, glycolysis is simplified by lumping four reactions 

into one reaction (FBA-ENO): 

𝑟4 = 𝐹𝐵𝐴 = 𝑉𝑚𝑎𝑥4  ∙
𝐹𝐵𝑃

𝐹𝐵𝑃 + 𝐾𝑚3
   (5.5) 

Reaction 5.5 (PYK) follows hill kinetics. The allosteric feed forward activation by FBP is 

modelled by a power-law9: 

𝑟5 = 𝑃𝑌𝐾 =
𝑉𝑚𝑎𝑥5

(1 +
𝐾𝑚4
𝑃𝐸𝑃)

𝑛2 ∙ 𝐹𝐵𝑃
𝑎3   (5.6) 

Reaction 5.6 (PDH) follows hill kinetics: 

𝑟6 = 𝑃𝐷𝐻 =
𝑉𝑚𝑎𝑥6

(1 +
𝐾𝑚5
𝑃𝑌𝑅)

𝑛3   (5.7) 

The 21 kinetic parameters were randomly sampled 2,000 times from a log-uniform 

distribution. All state variables were set to a concentration of 1 mM. The system was set 
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to a steady state by first setting the total reaction flux of all net reactions to the glucose 

uptake rate. Then, parameter values of binding constants (k1-k3, Km1-Km5), hill 

coefficients (n1-n3) and power-law exponents (exponents a1-a3) were inserted. Then 

the maximum velocities were calculated (Vmax1-Vmax6). Binding constants were sampled 

between 0.1 mM and 10 mM, hill-coefficients were sampled between 1 and 4, where a 

coefficient of 1 resembles a Michaelis-Menten type kinetic, and power-law exponents 

for allosteric regulations were sampled between 1 and 4 for allosteric activations and -

1 and -4 for feedback inhibitions. The perturbation of the glucose uptake rate was 

simulated by changing the uptake rate by 5% (or 10-fold) at 50 minutes simulation time. 

The resulting time-course data were then processed to identify parameter sets which 

led to oscillations. First, the time courses were fitted with a first order polynomial to 

remove trends and to align the time courses. Second, the data were Fourier transformed 

from time domain to frequency domain. The MATLAB function “findpeaks” was then 

used to find signals with amplitudes above 0.01. The corresponding time courses and 

parameter sets were then selected. 
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6.1 Abstract 

Cells must regulate enzyme levels because low amounts of enzymes limit metabolic flux 

and high amounts of enzymes are costly. Enzyme levels are regulated by transcriptional 

regulation, and metabolites are the key signalling molecules. Here, we used CRISPR 

interference (CRISPRi) to knockdown gene expression of 283 metabolic genes in E. coli. 

The measured proteome data showed compensatory changes to offset the knockdown 

and indicated transcriptional feedback loops in 24 metabolic pathways. Untargeted 

metabolomics showed that the perturbation offsets the metabolome, as indicated by 

substrate accumulations of 66 CRISPRi target genes. Integrating proteome and 

metabolome data then allowed us to recover known metabolite-TF interactions, as well 

as suggest nicotinate as a putative metabolite effector for the transcription factor NadR. 

In conclusion, by integrating proteomics and metabolomics data from 283 CRISPRi 

knockdowns, we could map feedback regulation in E. coli metabolism. 

6.2 Introduction 

Microbes constantly face internal and external perturbations. To withstand these 

perturbations, they have evolved mechanisms that ensure robustness1,2. One of the 

most important mechanisms that allows cells to adapt is dynamic feedback control that 

is executed via functional metabolite-protein interactions. This way, metabolites can 

allosterically regulate the activity of metabolic enzymes, and by means of metabolite-

transcription factor interactions they can control enzyme abundances3–5. To fully 

understand E. coli, we first need to identify all regulatory interactions. Although many 

allosteric interactions are known6, a recent study identified a hitherto unprecedented 

number of metabolite-protein interactions, indicating that we are still unaware of many 

functional interactions7. 

Historically, metabolite-protein interactions were identified by in-vitro assays that 

combined single proteins with single metabolites8,9. Recently systematic approaches 

based on mass spectrometry emerged to study these interactions at high throughput 

and at scale. Usually, they either focus on protein changes or on metabolite changes 

that occur during the interaction10. Mass spectrometry-based approaches that focus on 
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conformational protein changes during metabolite-protein interactions include for 

example approaches based on limited proteolysis, or thermal proteome profiling7,11,12. 

Conversely, a metabolite-centric approach used nuclear magnetic resonance 

spectroscopy to identify several metabolites that interact with specific proteins13. While 

these approaches enable to systematically identify metabolite-protein interactions, an 

interaction alone does not imply an underlying function. To infer interactions with 

physiological functions, multi-omics data are usually integrated. This was done using a 

multi-omics data set comprising 25 growth conditions in yeast. Paired with prior 

knowledge in form of simple mathematical models, functional allosteric interactions 

were identified14. Commonly, functional interactions are identified by observing 

metabolite or protein changes that compensate perturbations such as gene knockouts15. 

Gene knockouts, however, cause strong physiological changes and may hide subtle 

regulatory effects. To identify subtle regulation, knockdowns executed by CRISPR 

interference (CRISPRi) represent an alternative approach16. For example, CRISPRi has 

been used in E. coli to identify the mode of action of antimicrobial agents17. 

In this chapter, we set out to map functional metabolite-TF interactions in E. coli. 

Therefore, we used CRISPRi to knockdown gene expression of 283 metabolic genes that 

are essential for growth on glucose minimal medium18. The proteome data showed 

compensatory changes to offset the knockdowns, and a pathway analysis revealed 

transcriptional feedback loops in 24 metabolic KEGG pathways. Untargeted 

metabolomics showed substrate accumulations for 66 CRISPRi targets, indicating that 

the knockdowns offset the metabolome. Integrating proteome and metabolome data 

identified known metabolite-TF interactions in arginine and methionine biosynthesis, as 

well as a novel putative feedback loop between nicotinate and NadR in NAD de novo 

biosynthesis. In conclusion, we show that CRISPRi knockdowns of metabolic genes 

allows us to systematically map transcriptional feedback regulation in E. coli 

metabolism. 

6.3 CRISPRi knockdowns cause downregulation of target genes 

To identify feedback loops, we perturbed 283 genes in primary metabolism of E. coli 

with CRISPRi. Target genes with growth phenotypes were selected based on a previous 
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screen and were distributed across primary metabolism18. We measured the proteome 

and metabolome of each E. coli knockdown strain after inducing CRISPRi for 6.5 h. We 

first inspected the proteome data and observed that CRISPRi blocks transcription of 

target genes, causing dilution of the corresponding enzymes by growth. Therefore, we 

expected that the enzyme product of the targeted gene was downregulated. In 128/283 

(45 %) strains, we observed a significant perturbation of the target enzyme (z-score < -

3), indicating a functional knockdown (Figure 34a). 216/283 (76 %) of the target genes 

had at least a z-score < -1. The genes aroD, plsC, lptE, coaA, coaD, lpxK, dapE, dcd, bioB 

and ispU showed the strongest downregulation with an average z-score of -6.8. Against 

our expectations, two target genes were upregulated, which could be explained by 

transcriptional crosstalk, or a non-functional perturbation caused by errors in the sgRNA 

plasmid or dcas9 mutation. This is supported by an average of 40 significantly up- and 

downregulated genes for each knockdown (z-score < -3 or z-score > 3). The target genes 

spoT, cysD, cysN, murF, metE, accB, lpxC, cysU and cysJ had the highest number of 

proteome changes, indicating an influence of global, growth rate dependent 

regulation19–21 (Figure 34b). 

 

Figure 34. Knockdown of target genes causes proteome changes. a) Boxplot and overlayed scatter plot. 
Each column is a CRISPRi target gene. Boxplots are shown in blue and whiskers are black. Upper and lower 
box edges indicate the 25 % and 75 % percentiles. The whiskers indicate the furthest point, at which 
samples were not considered as outliers. The black line indicates the median. Black dots are outliers. 
Orange dots are the CRISPRi targets. b) Boxplot showing the number of significantly changed proteins (z-
score < -3 or z-score > 3) for each CRISPRi knockdown. Black dots are CRISPRi strains. Upper and lower box 
edges indicate the 25 % and 75 % percentiles. The whiskers indicate the furthest point, at which samples 
were not considered as outliers. The black line indicates the median. 
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6.4 Proteome changes reveal feedback loops in 24 metabolic 

pathways 

After having confirmed that the CRISPRi knockdowns offset the proteome, we next 

analysed the proteome data for compensatory feedback mechanisms. Since 

transcriptional feedback regulation is often pathway specific, we decided to take a 

pathway-based approach. Therefore, we assigned 43 KEGG (Kyoto Encyclopedia of 

Genes and Genomes)22 pathway identifier to the target genes and each measured 

protein. For 24 KEGG pathways, we found at least one compensatory upregulation of 

genes (z-score > 2) within the same KEGG pathway (Figure 35a), strongly indicating 

compensatory feedback regulation. This is supported by downregulation of the 

respective CRISPRi targets in those pathways (on average 3-fold), except for gpmA and 

ppc which were upregulated (Figure 35b). 

 

Figure 35. KEGG pathways with putative feedback circuits. a) Target genes were assigned to one KEGG 
pathway. A dot indicates that the knockdown of a target gene causes an upregulation of at least one other 
target gene within the same KEGG pathway. Dot size corresponds to the number of genes in the KEGG 
pathway that are upregulated above a z-score of two. b) z-scores of the proteins corresponding to the 
perturbed target genes. 
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We quantified the strength of the compensatory response by counting the number of 

pathway genes that were upregulated and had at least a z-score above two. The 

pathways with the strongest responses were arginine biosynthesis, histidine 

biosynthesis and sulfur metabolism. For arginine biosynthesis it is known that arginine 

levels control expression of the pathway genes by modulating the activity of the 

transcription factor ArgR. Sulfur metabolism is controlled via CysB that is regulated by 

O-acetyl-serine. Similarly, histidine controls expression of histidine genes via 

transcriptional attenuation. For example, the target genes hisA/B/C/D/F/H are all part 

of histidine biosynthesis and together with hisG/I were assigned to the histidine KEGG 

pathway. 

 

Figure 36. Histidine KEGG pathway. Dots are all measured proteins. Blue dots are measured genes in the 
histidine KEGG pathway. Orange dots are CRISPRi target genes. Above the scatter plot, the operon 
structure of the histidine pathway is shown. The loops indicate transcriptional attenuation of the pathway. 
On the right the metabolic histidine pathway is shown. Blue dots are metabolites. Arrows are metabolic 
reactions. 

 

Except for hisC, we observed a downregulation of the target genes. However, we also 

observed that genes downstream of the target gene were downregulated. For example, 
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perturbation of hisA causes downregulation of hisF and hisI. Similarly, a perturbation of 

hisD led to a downregulation of all genes except for hisG. This polar effect is caused by 

the operon structure. CRISPRi blocks transcription within the operon. Thus, all genes 

located upstream of the CRISPRi target are still getting transcribed by the RNA 

polymerase, while transcription of all downstream targets is blocked (Figure 36). While 

the genes downstream of the target gene were downregulation, genes upstream of the 

target gene were upregulated, indicating a compensatory feedback loop. Thus, we 

identified feedback regulation in 24 metabolic KEGG pathways. Besides identifying 

pathways that are feedback regulated, we also identified pathways that are likely not 

feedback regulated under these conditions. For example, we perturbed seven targets in 

the methylerythritol phosphate (MEP) pathway (Figure 37). In all cases, the target genes 

were downregulated, but none of the pathway enzymes were upregulated. In the 

knockdown of ispD, ispF was also downregulated because it is located downstream in 

the same operon. This indicated that the MEP pathway is not controlled by 

transcriptional regulation. 

 

Figure 37. Methylerythritol phosphate KEGG pathway. Dots are all measured proteins. Green dots are 
measured genes in the methylerythritol phosphate kegg pathway. Orange dots are CRISPRi target genes. 
On the right, the metabolic histidine pathway is shown. Green dots are metabolites. Arrows are metabolic 
reactions. 

 

Moreover, the pathway analysis indicated transcriptional regulation for several genes, 

although there is no transcriptional regulation known. For example, the perturbations 

of ubiC/E/G caused an upregulation of menH. However, the operon of menH is not 
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transcriptionally regulated. Likewise, knockdown of folB/C/E/K/P and nudB caused a 

clear accumulation of folM, and the operon of folM is not known to be transcriptionally 

regulated (ArgR was predicted to control the operon that contains folM, but it was not 

confirmed yet). Knockdown of folA caused a downregulation of folB although both genes 

are not located in the same operon, indicating that a metabolite close to folA could be 

the regulator. The genes folA and folM code for different hydrofolate reductases and 

are involved in the final step of the tetrahydrofolate biosynthesis. It is surprising that 

folM is downregulated when we perturb folA, since the data indicate a compensatory 

feedback mechanism. This indicates that a transcriptional feedback mechanism is 

unknown for the folM operon (Figure 38). 

 

Figure 38. Folate metabolism. Dots are all measured proteins. Blue dots are measured genes in the 
methylerythritol phosphate KEGG pathway. Orange dots are CRISPRi target genes shown on the x-axis. On 
top the operon structure of the folM gene is shown. 

 

In conclusion, a pathway-based approach identified feedback regulation in 24 KEGG 

pathways using proteome data from CRISPRi knockdowns. Moreover, we identified 

likely knowledge gaps in the TRN of E. coli in the operons of folM, and menH. We showed 

that polar effects make it more difficult to identify feedback circuits, because they cause 

additional downregulations, and likely also additional metabolite changes. While gene 
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knockdowns cause compensatory responses by gene upregulations, we can’t exclude 

the possibility that, in some rare cases, downregulations can also compensate the 

knockdowns by other mechanisms. Thus, it will be important to include operon structure 

in the systematic search for feedback circuits. Next, we went into literature to find 

known metabolite-TF interactions to guide our search for new functional metabolite-TF 

interactions. 

6.5 Transcriptional regulation in proximity of the effector metabolite 

 

Figure 39. Metabolite-TF interaction map. Metabolite-transcription factor interactions that are described 
in the literature and databases. Shown are 87 transcription factors (rows) and their respective effector 
metabolites (columns). Black boxes are known metabolite-transcription factors interactions. This figure is 
published in Nat Commun 2019, 10 (1), 446323. 

 

Next, we mapped 134 unique metabolite-TF interactions for E. coli (Figure 39) that 

involved 87 unique TFs based on entries in (RegulonDB24). 80 % of the interacting 

metabolites were unique, indicating specific metabolism-wide crosstalk between 

metabolism and transcription. The remaining metabolite were mostly promiscuous 

effectors, based on structural similarity to the main effector. For example, the tyrosine 

repressor TyrR has an affinity towards L-tyrosine, L-tryptophan, and L-phenylalanine, 

which is likely due the common aromatic structure. The metabolite effectors could be 
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classified into different chemical groups: amino acids, nucleobase derivatives, organic 

acids, sugars, and others. Out of those classes, organic acids were the most frequent 

effectors (Figure 40a). We then wondered if transcription factors are regulated by 

proximal metabolites, or by metabolites that are further away in the metabolic network. 

To calculate distances of metabolite-TF interactions, we used the iJO1366 genome scale 

model. First, we removed all cofactors and non-intracellular metabolites of the 

stoichiometric matrix of the mode. 

 

Figure 40. a) Classification of effector metabolites into chemical groups. b) Scheme explaining how the 
bipartite metabolite-gene network is obtained from the stoichiometric matrix and the reaction-gene 
matrix of the genome scale model iJO1366. c) Distance between a metabolite and the target ganes of the 
interacting transcription factor. The distance d was transformed by the following equation to account only 
for genes: Distance = (d+1)/2. Parts of this figure are published in Nat Commun 2019, 10 (1), 4463. 

 

Then, we created a metabolite-gene adjacency matrix, F, by calculating the inner 

product of the modified stoichiometric matrix, N, and the reaction gene matrix, G. Next, 

we calculated the Boolean of F, F’. We then transformed F’ into an undirected, bipartite 

graph, in which nodes are metabolites and genes. We then used the bipartite graph to 

calculate the metabolite-gene distances between all pairs of nodes and stored the 

information in the distance matrix, D (Figure 40b). For known metabolite-TF 

interactions, we calculated the distances between the regulating metabolite and each 

of the target genes of the respective TF. Then, we took the smallest distance. For 

metabolites that are not part of the model, we omitted the distance calculation, leaving 

84 metabolite-gene distances6. Strikingly, 80 % of the 84 metabolite-gene interactions 

were directly adjacent, indicating that regulatory metabolites modulate expression of 
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proximal genes (Figure 40c). Here, we showed that TFs are usually regulated by 

metabolites in proximity of target genes. Next, we sought to identify effector 

metabolites that modulate changes in TF activity. 

6.6 CRISPRi knockdowns cause substrate accumulations 

To screen for effector metabolites that cause the proteome changes in the targeted 

KEGG pathways, we first measured the metabolome of 283 CRISPRi knockdowns with 

flow-injection metabolomics (FI-MS) (n = 1). We annotated 370 and 528 ion peaks to 

metabolites in positive and negative mode, respectively. To test if the metabolome 

responds in a similar way as the proteome, we counted the number of strongly (z-score 

< -2 and z-score > 2) changed ion peaks that were annotated to single (de-)protonated 

metabolites. On average, six and seven metabolites changed per strain in negative and 

positive mode, respectively. Combining positive and negative ionization mode, 11.2 

metabolites changed on average (Figure 41), indicating that the CRISPRi knockdowns 

offset the metabolome. 

 

Figure 41. CRISPRi knockdowns offset the metabolome. Boxplot of metabolome changes in negative 
mode, positive mode, and in both modes combined. Upper and lower box edges indicate the 25 % and 
75 % percentiles. The whiskers indicate the furthest point, at which samples were not considered as 
outliers. The black line indicates the median. Black dots are CRISPRi strains. 
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Figure 42. CRISPRi knockdowns cause Substrate accumulations. Heatmap with CRISPRi target genes on 
the x-axis, and substrate metabolites on the y-axis. Target gene-substrate pairs are on the main diagonal. 
A purple square indicates a zscore > 2. Blue gene names were not measured in the proteome data. The bar 
plot shows the zscore of the corresponding target genes in the proteome data. 

 

Next, we looked for accumulations of the substrates of the target genes. Whether a 

reactant of an enzyme is a substrate or a product is determined by the direction of the 

metabolic flux of a reaction. To estimate flux directions, we performed Flux Balance 

Analysis (FBA)25 with the latest genome scale metabolic reconstruction iML151526,27. 

Assuming growth on glucose minimal medium, we identified 427 reactions with non-

zero flux. For reactions with negative flux, we exchanged substrates and products. For 

203/283 target genes, we annotated at least one substrate metabolite. For 39/80 target 

genes without annotated substrate, FBA predicted that the corresponding reaction had 
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no flux. In total, we found substrate accumulations in 66 CRISPRi target strains 

(zscore > 2). In 51/66 cases, the perturbed target enzyme was downregulated, as 

expected (zscore < -2). In 10/15 remaining cases, the target enzymes were only slightly 

downregulated, since zscores were in the range between -1 and -2, and in 2/15 cases 

between 0 and -1. In three cases the target proteins were not measured (Figure 42). 

In 83 cases, the CRISPRi targets were significantly downregulated, but the substrates did 

not accumulate. In 55/83 cases, the substrate had a small positive z-score (between 0 

and 2), while in the remaining 28 cases the substrate had a small negative z-score 

(between 0 and -2). This indicated that for the majority of significantly changed target 

genes metabolite levels increased as expected, albeit not always significantly. 

In conclusion, substrates accumulated in 66 CRISPRi target strains. While most target 

enzymes were strongly downregulated, in some cases substrates accumulated also for 

less downregulated target enzymes. A reason could be that the enzyme is fully saturated 

by its substrate and therefore cannot buffer the perturbation via enzyme activity. In 83 

cases, however, we did not observe a substrate accumulation despite a strong 

knockdown of the target enzyme. There are many potential reasons why substrates did 

not accumulate. For example, ATP and ADP are the substrates of 28/83 CRISPRi targets. 

However, there are many metabolic reactions that interconvert ATP and ADP. This 

redundancy confers robustness and likely buffers changes in ATP and ADP levels. 

Therefore it seems unlikely to observe accumulations in ATP and ADP levels that are 

caused by single gene knockdowns. 

6.7 Screening for metabolites that control gene expression using 

untargeted metabolomics 

We next sought to identify metabolites that cause changes in TF activity. Transcription 

factors can activate or repress transcription, and metabolite binding can increase 

(activator) or decrease (inhibitor) TF activity. Metabolites can accumulate or deplete, 

and together with the metabolite mode (activator, inhibitor) and the TF mode (activator, 

repressor), there are in total eight possible modes how gene expression can be 

modulated. 
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To identify putative metabolites that control TF activity, we calculated the z-score for all 

annotated ion peaks. First, we verified known metabolite-TF interactions in the data. 

Therefore, we investigated the regulons of ArgR and MetR since our proteomics 

pathway analysis showed active feedback regulation in both pathways (Figure 35). 

Arginine is a known inhibitor of ArgR, and ArgR is a repressor of the arginine pathway. 

An upregulation of the arginine pathway is therefore achieved by arginine depletion. We 

observed strong arginine depletions in the CRISPRi strains argA, argB, argG, and argH 

(zscore <-2) and the proteomics data showed that these targets caused an upregulation 

of the arginine KEGG pathway (Figure 43). Similarly, a knockdown of metE caused a 

response of the cysteine and methionine KEGG pathway. Homocysteine is an activator 

of MetR, and homocysteine was among the highest upregulated metabolites, thus 

validating the proteome data (Figure 43). Both cases indicate that it should be possible 

to identify metabolites that control transcription with this dataset. However, arginine 

and homocysteine were strongly changed in many target genes, indicating that false 

positives could be problematic for the inference of functional metabolite-transcription 

factor interactions. 

 

Figure 43. Arginine and Homocysteine changes in 283 CRISPRi knockdowns. a) Y-axis shows the z-score 
of the metabolite in the respective strain. X-axis are known metabolite-TF interactions. Dots are 283 
CRISPRi strains. Orange dots are CRISPRi strains with strong (zscore < -2, zscore > 2) changes in the 
respective metabolite (Arginine, Homocysteinel) that were likely to cause an upregulation of the 
corresponding KEGG pathway. CRISPRi strains with a zscore < -2 or a zscore > 2 are labelled. Orange dots 
are CRISPRi targets that caused an upregulation of the corresponding KEGG pathway. 
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We next inspected the knockdown of nadC that caused a compensatory response in the 

nicotinate and nicotine amid KEGG pathway. The knockdown of nadC caused an 

upregulation of nadA, and nadA is regulated by the TF NadR. For NadR, however, only 

ATP is currently known as an effector metabolite24 (Figure 39). The knockdown of nadC 

caused a strong and relatively specific (only the dapB, sucB, and adk knockdowns caused 

nicotinate accumulation (Figure 44)) accumulation of nicotinate (zscore > 5), which 

could modulate NadR activity. However, since NadR inhibits nadA expression, an 

upregulation could only be achieved if nicotinate also inhibits NadR activity. 

 

Figure 44. nadC and nicotinate. (Left) proteome data of the nadC knockdown. Grey dots are all measured 
proteins. Blue dots are proteins of the corresponding kegg pathway. The orange dot is the target gene 
nadC. (Middle) Metabolome data. Dots are the 283 CRISPRi strains. (Right). Metabolome data. Dots are 
annotated metabolites. 

 

In conclusion, untargeted metabolomics showed that the CRISPRi knockdowns offset the 

metabolome. We identified substrate accumulations for 66 target genes. We showed 

that we can recover known metabolite regulators for the transcription factors ArgR and 

MetR. Moreover, we identified a putative interaction between the metabolite nicotinate 

and the transcription factor NadR that could control the expression of the gene nadA in 

the nicotinate and nicotine amid KEGG pathway. Next, we will identify further putative 
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metabolite-TF interactions in this dataset and then verify the candidates by orthogonal 

approaches like in vitro binding assays. 

6.8 Discussion 

Here, we measured the proteome and the metabolome of 283 CRISPRi knockdowns. In 

total, 45 % of the target genes had a z-score < -3, and 74 % of the target genes had a z-

score <-1, indicating functional CRISPRi knockdowns. Besides the respective target 

genes, on average 40 other proteins showed strong changes. We hypothesized that 

some of these changes happen due to transcriptional feedback. Using a pathway-based 

approach we identified feedback regulation in 23 KEGG pathways. Our analysis showed 

that the genes menH and folM were upregulated although there was no known 

mechanism to cause an upregulation, indicating a knowledge gap in the TRN. In the 

literature we found 134 known metabolite-TF interactions and we used a distance 

analysis to show that effector metabolites are usually in proximity of the regulated 

genes. Untargeted metabolomics showed that the CRISPRi knockdowns offset the 

metabolome, as indicated by substrate accumulations of 66 CRISPRi targets. We showed 

for the transcription factors ArgR and MetR that it is possible to recover known 

metabolite regulators from the metabolomics data. Finally, the data suggested 

nicotinate as a candidate metabolite to control activity of the TF NadR. Thus, using a 

CRISPRi library to perturb 283 target genes in E. coli metabolism allowed us to map 

feedback regulation between metabolism and transcription. 

In this study we integrated proteome data in a pathway-based approach to map 

feedback regulation in E. coli. This approach allowed us to find feedback regulation in 23 

CRISPRi strains. Moreover, this approach indicated knowledge gaps in the TRN of E. coli, 

as indicated for the genes menH and folM. These results highlight the modular 

organisation of E. coli metabolism. Thus, a pathway-based approach enables the 

simultaneous identification of transcriptional feedback and knowledge gaps in the TRN. 

In the next steps, it will be important to assess the specificity of the proteome changes 

to ensure that changes are based on local responses and not global regulation.  
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To investigate the effects of the CRISPRi knockdowns on the metabolome, we measured 

the metabolome using FI-MS. We showed that on average twelve metabolites changed 

per CRISPRi strain and that for 66 CRISPRi strains the substrates accumulated. To 

distinguish between substrates and products we used FBA. We then showed for the 

transcription factors ArgR and MetR that it is possible to identify their metabolite 

effectors. Finally, we identified a putative feedback loop in the nicotinate and nicotine 

amid KEGG pathway. The knockdown of nadC caused accumulation of nadA that is 

regulated by NadR. NadR, however, is only known to be regulated by ATP and inspection 

of the metabolome data showed a specific nicotinate accumulation. To cause an 

upregulation of nadA, nicotinate needs to inhibit NadR activity. Next, it will be important 

to verify this interaction by orthogonal approaches, like in vitro binding assays. 

In conclusion, we mapped transcriptional feedback regulation in E. coli using a 

metabolism wide CRISPRi library. We demonstrated that this approach allows us to 

identify knowledge gaps in the TRN, as well as to identify putative metabolites that 

control TF activity, and thereby gene expression in vivo. 
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7.1 Abstract 

Flow-injection mass spectrometry (FI-MS) enables metabolomics studies with a very 

high sample-throughput. In most FI-MS methods, samples are directly injected into the 

electrospray ionization (ESI) source of a high-resolution mass spectrometer, and 

metabolites are annotated to ion peaks in the MS1 spectrum based on their exact mass 

over charge. Although ESI is considered a soft ionization technique, it can cause in-

source modifications of analytes that are then misannotated to metabolites. In-source 

modifications include adduct formation, fragmentation, and other chemical reactions of 

metabolites. These effects are especially prominent in FI-MS because all analytes and 

the sample matrix enter the ESI at the same time. Here, we spiked authentic standards 

of 160 primary metabolites individually into an Escherichia coli metabolite extract and 

measured the thus derived 160 spike-in samples by FI-MS. Out of the 160 metabolites, 

154 were annotated in their protonated or deprotonated form to ion peaks in the MS1 

spectrum, and 134 of these ion peaks increased in the respective spike-in the standard. 

These results demonstrated that FI-MS can capture a wide-range of chemically diverse 

analytes within 30 seconds measurement time. However, the data also revealed 

extensive in-source modifications: across all 160 spike-in samples, we identified 

significant increases of 11,013 ion peaks in positive and negative mode combined. To 

explain these unknown m/z features, we connected them to the m/z feature of the (de-

)protonated metabolite using information about mass differences and MS2 spectra. This 

resulted in networks that explained on average 49% of all significant m/z features. The 

networks showed that a single metabolite undergoes compound specific and often 

sequential in-source modifications like adductions, chemical reactions, and 

fragmentations. Taken together, our results show that FI-MS generates complex MS1 

spectra, which can lead to a 68-fold overestimation of significant features. Yet, known 

mass differences and MS2 level information can explain these features and can 

therefore avoid misannotation of metabolites in FI-MS analyses 
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7.2 Introduction 

Flow-injection mass spectrometry (FI-MS) does not rely on chromatographic separation 

of analytes1,2. Instead, samples are injected into the mobile phase that directly enters a 

mass spectrometer. Metabolites are then distinguished solely by their mass to charge 

ratio (m/z) in the MS1 spectrum. This makes FI-MS faster than methods with 

chromatographic separation3,4 and enables run times on the second-time scale or even 

real-time metabolomics with living cells5. 

FI-MS has been applied to measure the metabolome in various organisms including 

Escherichia coli, yeast, ruminants, and human cancer cell lines6–10. In these studies, 

hundreds or even thousands of strains or conditions could be analyzed due to the fast 

measurement time of FI-MS. Although FI-MS detects usually a very large number of m/z 

features (ion peaks in the MS1 spectrum), only a small fraction of m/z features can be 

annotated to metabolites. Thus, there is a large number of unexplained m/z features in 

FI-MS analyses, which could mean that either many metabolites are not known or that 

single metabolites produce multiple m/z features. Annotation of unknown m/z features 

is a general challenge in all untargeted metabolomics methods11–14. For example, an 

untargeted LC-MS analysis suggested that out of 25,000 measured m/z features less 

than 1,000 originated from unique metabolites15. The high number of m/z features in 

untargeted metabolomic methods is often attributed to contaminants, isotopes, 

modification of metabolites in the ion-source, and other mass spectrometry artifacts. 

In-source fragmentation is one example of such mass spectrometry artifacts that 

increase the number of m/z features per metabolite. The conditions in the ESI can lead 

to fragmentation because metabolites are subjected to high temperatures (150°C to 

400°C) and electric potentials between 2000 V and 4000 V. While ESI sources are usually 

designed to minimize in-source fragmentation, it is also possible to promote in-source 

fragmentation such that MS1 spectra resemble MS2 spectra that were obtained by 

collision induced dissociation16. Apart from in-source fragmentation, other 

modifications of metabolites in the ion-source includes the formation of adducts (e.g. 

with Na, K, ammonia, sulfate), gains or losses of functional groups by chemical reactions 
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(methylation, phosphorylation), or formation of homo- and heterodimers. Even self-

cyclization has been observed for glutamate and glutamine17. 

A common approach to identify in-source modifications and improve m/z feature 

annotation is based on chromatographic peak shape correlation analysis18–20. This 

approach considers that m/z features from the same metabolite must have the same 

elution profile21. Chromatographic peak shape correlation analysis is especially effective 

if it is combined with MS2 spectra19,22,23 or isotope labeled substrates11,21. Some recent 

molecular networking approaches19,23,24 combine similarities of elution profiles and MS2 

spectra to identify in-source modifications and to increase annotation confidence. In 

isotope labelling approaches, metabolites are labelled by feeding cells with 13C-carbon 

or 15N-nitrogen sources11,21, which changes the mass of all metabolites (N- or C- 

containing) but not their retention times. Analyzing the mass differences of m/z features 

with the same retention time can then improve annotation confidence and 

identification of in-source modifications or contaminants.  

Because FI-MS lacks a chromatographic separation, it is not possible to detect in-source 

effects by chromatographic peak shape correlation analysis. Therefore, approaches to 

consider in-source effects in FI-MS are limited and currently based on extending the list 

of reference masses1,25. This means that, instead of annotating m/z features only to (de-

)protonated metabolites, they are also annotated to the most prevalent adducts and 

neutral losses or gains. However, this approach cannot identify complex sequential in-

source modifications due to combinatorial explosion of the reference list. Moreover, it 

is difficult to unequivocally annotate m/z features to a single entry in a reference list, 

especially if they include a large number of metabolites and derivatives with the same 

mass. 

Here, we used an experimental approach to identify in-source modifications of 

metabolites in FI-MS. Therefore, we spiked 160 metabolite standards individually into 

an E. coli extract and measured MS1 spectra by FI-MS. We then searched for m/z 

features that increased in a spike-in sample relative to all other spike-in samples. On 

average 68 m/z features increased per spike-in standard suggesting extensive in-source 

modifications. While some spike-in standards showed hundreds of significant m/z 

features that should all originate from a single metabolite standard, others showed only 
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increases of the m/z feature that matched the (de-)protonated metabolite standard. We 

could explain 49% of the significant m/z features by connecting them in networks that 

represent known in-source reactions, adducts, isotope patterns, and in-source 

fragments.  

7.3 FI-MS with 160 authentic metabolite standards 

We prepared 160 authentic standards of primary metabolites and spiked them 

individually into a metabolite extract from glucose-fed E. coli cells (Supporting 

Information: Table A). The 160 standards fall into six functional categories: amino acid 

metabolism, nucleotide metabolism, central metabolism, cofactor metabolism, 

antioxidants, and others. Each metabolite standard was added to the E. coli metabolite 

extract at a final concentration of 1 µM and was measured by FI-MS in both positive and 

negative ionization mode (three analytical replicates) (Figure 45a). 

Out of 160 metabolite standards, 154 were annotated in their protonated or 

deprotonated form to an ion peak in the MS1 spectrum (Figure 45b). Six metabolites 

were not annotated, either due to low abundant ion peaks (< 1,000 counts: menadione, 

3,4-dihydroxy-L-phenylalanine, tetrahydrofolic acid, carbamoyl-P, and L-cysteine) or 

because the ion peak prominence was too low (< 1,000 counts: argininosuccinic acid). 

Next, we inspected if the addition of a metabolite standard led to increases of the 

respective ion peak. For example, spike-in samples with ATP, GTP, CTP, and UTP showed  

increases of ion peaks that matched the protonated and deprotonated form of these 

metabolites (Figure 45c). Notably, increases of all nucleotides were consistent between 

three analytical replicates, showing that FI-MS is reproducible. Ion peaks of ATP, GTP, 

CTP, and UTP were also present in the other spike-in samples (black spectra in Figure 

45c), but the corresponding ion intensities were often low and close to the baseline 

signal. These “near-baseline” ion peaks of ATP, GTP, CTP, and UTP were not present in a 

13C-labeled E. coli extract, thus confirming that these peaks originate from endogenous 

E. coli nucleotides (Appendix: Figure 54). In 134 spike-in samples, the ion peaks that 

matched the (de-)protonated metabolites were significantly increased in either 

ionization mode (z-score > 3, Figure 45d, Supporting Information: Table D). In 
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Figure 45. FI-MS with 160 authentic metabolite standards. a) 160 authentic metabolite standards were 

spiked into an E. coli metabolite extract at a final concentration of 1 µM. Spike-in samples were measured 

by FI-MS in analytical triplicates in positive and negative ionization mode. BioRender.com was used to 

create this figure b) Number of ion peaks (m/z features) that were annotated to the protonated (positive 

mode) and deprotonated (negative mode) form of the 160 metabolite standards. c) Ion peaks that are 

annotated to four nucleotides (ATP, CTP, GTP, UTP) in positive and negative ionization mode. The spike-in 

sample that contains the respective nucleotide is indicated in orange, the other 159 spike-in samples are 

black. Blue dots indicate m/z features in single samples, and vertical dotted lines are merged and 

centroided m/z features. Vertical solid lines indicate the monoisotopic masses of the nucleotides 

plus/minus the mass of a proton. d) The binary heatmap shows increases of m/z features that are 

annotated to metabolite standards in the spike-in samples. Significant increases of m/z features (z-score 

> 3) are shown in blue (negative mode) and purple (positive mode). Columns are the spike-in samples and 

rows the respective m/z features. e) Boxplots show the relative standard deviation (RSD) of metabolite 

standards. Black dots are the RSD for each spike-in metabolite (n = 3). Orange diamonds are the means. 

 

negative ionization mode, 120 spike-in samples showed increased signals as 

deprotonated metabolites ([Metabolite-H]-). In positive ionization mode, 105 peaks 

increased as protonated metabolites ([Metabolite+H]+). In the following, we will refer 

to significantly changed ion peaks with a z-score >3 as “significant features”. 26 spike-in 

standards did not show a significant feature at the (de-)protonated ion peak. One 

explanation for this is that the metabolites have already a high concentration in the E. 

coli metabolite extract and that an addition of 1 µM does not lead to a strong increase 

with a z-score > 3. For example, reduced glutathione is one of the most abundant 
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metabolites in E. coli28, and the addition of glutathione standard hardly increased its 

concentration in the spike-in sample (Appendix: Figure 55). 

FI-MS was reproducible because the median relative standard deviation (RSD) between 

the three analytical replicates was below 5 % for signals from metabolite standards in 

negative and positive ionization mode (Figure 45e). Signals from endogenous 

metabolites, had a median RSD of 12.4 % in positive and 19.4 % negative mode 

(Appendix: Figure 56).  

These results suggested that FI-MS can detect concentration changes of chemically 

diverse metabolites, which are in the physiological range of intracellular metabolites (1 

µM in the final sample corresponds to ca. 1 mM intracellularly). However, we noticed 

that many significant features did not match the (de-)protonated form of the metabolite 

in the spike-in sample (e.g. significant features that are off the diagonal in Figure 45d). 

Thus, we next investigated all significant features in all spike-in samples. 

7.4 Single metabolites can produce extensive in-source derivates  

Most spike-in samples showed significant features (ion peaks with a z-score > 3) that 

matched the protonated or deprotonated metabolite (Figure 45d). However, most 

spike-in samples had more significant features than only the (de-)protonated metabolite 

standard (Figure 46a). On average, we found 68 significant features per spike-in sample, 

and 11 spike-in samples showed more than 100 significant features. The glycerol 3-

phosphate(G3P) spike-in sample had the highest number of significant features  
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Figure 46. Systematic analysis of all m/z features that increase in spike-in samples. a) Number of m/z 
features with a z-score > 3 (significant m/z features) in each of the 160 spike-in samples (grey dots). The 
upper and lower edges of the box in the boxplot indicate the 25 % and 75 % percentiles, and the line is the 
median. b) Histogram showing the distribution of significant m/z features over the MS1 spectrum. c) 
Example of significant m/z features in the MS1 spectrum (100 mDa window) of the spike-in sample with 
glycerol 3-phosphate. Green lines are the glycerol 3-phosphate spike-in samples (n = 3), and black lines are 
the other spike-in samples. Rulers indicate the mass differences between two m/z features in the spectra. 
d) Δm/z spectrum based on the pairwise mass differences between all significant m/z features in all 160 
spike-in samples (shown is the Δm/z range between 0 Da and 110 Da). The peak height corresponds to the 
frequency of a Δm/z value. Arrows indicate Δm/z peaks that match mass differences of known isotopes, 
chemical reactions or adducts. e) Example of the Δm/z peak that matches the sodium adduct [Na-H]. f) 
Fraction of Δm/z peaks that match known isotopes, chemical reactions or adducts. g) The left pie chart 
shows the fraction of metabolite categories across the 160 standards. The right pie chart shows the 
fraction of annotated mass differences for each metabolite category. h) Stacked bar plot showing the 
relationship between the functional categories of the spiked-in metabolites and the annotated mass 
differences. The fraction indicates the ratio between the number of spike-in metabolites of a specific 
category, in which the mass difference occurred, and the total number of samples, in which the mass 
difference occured. The spike-in samples of glycerol 3-phosphate and fumarate were left out. 
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(5,464, Figure 46a). Across all 160 spike-in samples, FI-MS in positive mode showed 

10,206 significant features and 807 in negative mode. The significant features were 

distributed over the entire mass spectrum and occurred even in the higher mass range 

of 800 – 1,000 m/z (Figure 46b). To understand the origin of these significant features, 

we first calculated the mass differences (Δm/z) between all pairs of significant features 

in a single spike-in sample (Figure 46c). Several mass differences (Δm/z) occurred 

frequently across the 160 spike-in samples, thus indicating common in-source effects 

like neutral losses, adduct formation, and chemical reactions that are prevalent for many 

different compounds (Figure 46d and e). 51 mass differences that appeared more than 

ten times matched known in-source effects and isotope pattern reported in the 

literature23. Out of these 51 known mass differences, 23 were chemical reactions, 26 

were adducts, and 2 were natural isotopes (13C and 18O). The 23 chemical reactions 

account for 61.5 % of the frequent mass differences (>10 times in all samples), the 22 

adducts for 31.5%, and the isotopomers containing 13C or 18O for 7 % (Figure 46f). For 

example, the 21.982 Da mass difference of a Na-H neutral loss occurred in total 699 

times and was among the most frequent ones (Figure 46e). The ten most frequent mass 

differences occurred more than 1,000 times across all 160 spike-in samples, and eight 

of them could be explained with the mass differences in the literature (Figure 46d). We 

then wondered whether certain mass differences occurred more frequently for 

metabolites of a specific functional category than for metabolites of other categories. 

For example, only 21 % of the 160 standards were metabolites from nucleotide 

metabolism. Yet, they accounted for 45 % of all explainable mass differences (Figure 

46g). This indicated that metabolites from nucleotide metabolism were more 

susceptible to modifications than metabolites in other categories. In contrast, 35 % of 

the 160 metabolite standards were part of amino acid metabolism but they covered only 

23 % of the explainable mass differences indicating that metabolites from amino acid 

biosynthesis were less prone to modifications in our reference list of mass differences 

than the other metabolites. Metabolites from central metabolism as well as cofactor 

biosynthesis accounted for 19 % and 16 % of the standard library, respectively, and they 

explained a similar fraction of mass differences (15 % and 13 %). 
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Since some metabolite categories were more often modified than others, we looked 

into individual mass differences and examined whether certain mass differences 

occurred preferably for specific categories (Figure 46h). Indeed, the data indicated that 

individual mass differences were more frequent for some categories than for others. For 

example, the C6H8O6 neutral loss occurred exclusively in metabolites from nucleotide 

metabolism. Similarly, many other modifications, including modifications with O, HNO3, 

C2H4O2, or SO3, occurred more frequently with metabolites from nucleotide metabolism. 

7.5 A network approach explains significant m/z features in FI-MS 

spectra 

We expected that the significant features can be linked to the (de-)protonated spike-in 

metabolite by single and multiple modification steps. To test this, we created a network 

for each spike-in sample, in which nodes represent all significant features. Then, we 

drew an edge between two nodes if the mass difference m/z between them matched 

one of the 51 frequent mass differences (the mass differences identified above, see 

Figure 46h). Thus, edges represent in-source effects and nodes significant features (see 

schematic in Figure 47a). 

The thus derived networks connected on average 43 % of the significant features in a 

spike-in sample to the m/z feature of the respective (de-)protonated metabolite (Figure 

47a). Thus, 43 % of the significant features can be linked to a single metabolite and 

therefore, are explained by the 51 frequent mass differences. Only 20 % of the 

significant features were directly linked to the m/z feature of the (de-)protonated 

metabolite (Figure 47a). This shows that single in-source modifications account only for 

half of the significant features and that sequential modifications are frequent.  

For example, the glucosamine 6-phosphate (Ga6p) spike-in standard showed five 

significant features, which are all directly or indirectly connected to the m/z feature that 

matches protonated Ga6p (Figure 47b). Two significant features are directly connected  
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Figure 47. Networks of significant m/z features. a) Concept figure showing the structure of a m/z feature 
network: orange nodes are significant m/z features. The blue node is a significant m/z feature that is 
annotated to the (de-)protonated metabolite standard (reference m/z feature). Nodes are connected by 
edges that correspond to one of 51 known m/z differences. The grey circle indicates nodes that are directly 
connected to the reference m/z feature by a single m/z difference. The green box indicates a network, in 
which all nodes are connected with the reference node including multiple sequential combinations of m/z 
differences. Isolated sub-networks are not connected to the reference node (purple box). Isolated m/z 
features are not connected to any other node. The boxplots show the fraction of significant m/z features 
that are connected to the reference m/z feature by a single m/z difference or by multiple sequential 
combinations of m/z differences. b) Example of the feature network of the spike-in sample with D-
glucosamine 6-phosphate (Ga6p). c) Same as b) for the diaminopimelic acid (DAP) spike-in sample in 
positive ionization mode. 

 

to the protonated Ga6p mass, and they are likely a water loss (H2O) and a sodium adduct 

(Na-H). Two other significant features (m/z = 224.031 and m/z = 242.042) were two steps 

away from protonated Ga6P, and they were explained by a double loss of water and a 

NaH2PO4 adduction to the sodium adduct. Thus, drawing edges in an unbiased way 

between all pairs of nodes resulted in a network that explained all significant features 

of the Ga6p spike-in sample. 
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In many networks, the nodes (significant m/z features) were connected to the (de-

)protonated spike-in metabolite by different series of sequential modifications. One 

specific series of sequential modifications could be an initial modification by Na-K that 

is followed by a second modification like Na-H. In some cases, different series of 

sequential modifications have very similar net mass changes and can explain the same 

significant feature. One example that illustrates this phenomenon is the feature network 

of 2,6-diaminopimelic acid (DAP) in positive ionization mode. The DAP spike-in sample 

showed six significant features, which were all connected with the m/z feature of 

protonated DAP (Figure 47c). 

The network approach connected on average 43 % of all significant features of a spike-

in sample to the (de-)protonated metabolite standard. Yet, some significant features 

had no connection to others or they formed sub-networks with no connection to the 

(de-)protonated metabolite (see schematic in Figure 47a). Therefore, we next examined 

whether sub-networks and isolated features are caused by in-source fragmentation, 

which can lead to similar effects as collision induced dissociation in tandem mass 

spectrometry16. 

7.6 MS2 information identifies significant features that are in-source 

fragments 

To identify significant features that originate from in-source fragmentation of the 

metabolite standard, we used information about MS2 spectra in the human 

metabolome database (HMDB27). HMDB listed experimental MS2 spectra for 152 out of 

160 metabolite standards (Figure 48a). 103 standards had at least one significant feature 

that matched an ion peak in the MS2 spectrum). On average, each spike-in sample had 

3.4 in-source fragments indicating a substantial number of in-source fragmentation 

events during FI-MS (Figure 48a). In total, 551 MS2 features matched the significant m/z 

features. As expected, in-source fragments had masses in the lower m/z range, between 

50 and 500 m/z (Figure 48b). One example of an in-source fragment is hypoxanthine, 

which is formed by fragmenting inosine and inosine monophosphate (IMP). 

Consequently, the ion peak of hypoxanthine increased in the IMP and inosine spike-in 
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samples (Figure 48c). Then, we tested whether fragments were present in sub-networks 

without a link to the metabolite standard. For example, the L-citrulline spike-in sample 

showed 8 significant  

 

Figure 48. Identification of in-source fragments by MS2 spectra of metabolite standards. a) The pie chart 
shows the fraction of metabolite standards with MS2 information in the human metabolome database 
(HMDB). The bar plot shows the number of MS2 fragment masses that match the features of individual 
spike-in samples. b) Histogram showing the distribution of the m/z features. Blue are all significant m/z 
features from the spike-in samples. Grey are MS2 fragment masses. c) Example MS1 spectrum at the mass 
of hypoxanthine. The purple line is the IMP spike-in sample, the blue line is the hypoxanthine spike-in 
sample, and the green line is the inosine spike-in sample. d) Example network of L-citrulline. Nodes are 
features and edges are explained mass differences. Black nodes are features that matched MS2 fragment 
masses from HMDB. The blue node is the protonated mass of citrulline. The orange nodes are other 
features. For the features at m/z = 113.070 and m/z = 159.076, structures were predicted by CFM-ID. e) 
Boxplot showing the fraction of explained features for all spike-in samples. Each black point corresponds 
to a spike-in sample and shows the explained fraction of features. Upper and lower box edges indicate the 
25 % and 75 % percentiles. The whiskers indicate the furthest point, at which samples were not considered 
as outliers. The black line indicates the median. 

 

features, 6 of which were connected with the m/z feature of the (de-)protonated 

metabolite (Figure 48d). Two significant features were isolated nodes with no 

connection, but they were in the MS2 spectrum of citrulline (m/z = 177.111 and m/z = 

176.112). The MS2 spectrum included another two m/z features that were already 

linked to the metabolite standard (m/z = 113.070 and m/z = 159.076), thus indicating 
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that collision induced dissociation (CID) produces some of the 51 in-source 

modifications. In case of L-citrulline, these were a neutral loss of NH3 and a neutral loss 

of a HCOOH group. To confirm that these losses occur by CID, we predicted fragment 

structures of L-citrulline by CFM-ID29. Indeed, CFM-ID predicted the fragment structures 

that matched the masses of the two m/z features (113.070 and 159.076) and confirmed 

the neutral losses of NH3 and HCOOH (Figure 48d). In total, adding in source fragments 

to our networks explained another 6 % of significant m/z features. Thus, on average, 49 

% of all significantly changed m/z features were connected with the correct metabolite 

standard either by known in-source modifications or by in-source fragmentation (Figure 

48e). 

7.7 Misannotation of in-source derivates to metabolites 

A single metabolite can produce multiple significant features, and we wondered how 

many of these significant features were misannotated to a metabolite that was not 

spiked into the sample. To determine how many significant features were misannotated, 

we used a reference list of 961 E. coli metabolites from the genome-scale metabolic 

model iML151530. Since FI-MS cannot resolve isomers, they were considered as a single 

metabolite. 

 

Figure 49. Misannotation of significant features to metabolites. The histogram shows the number of 
significant features that are misannotated to a metabolite. The pie chart shows the fraction of 
misannotations for positive and negative ionization mode. 

 



  150 

Chapter 7  

In 54 % of our standards (87/160), at least one significant feature was falsely annotated 

to a metabolite (Figure 49). 18 standards had more than two misannotations. Overall, 

64 % of the misannotations were in positive ionization mode (131 in total) and 37 % 

were in negative ionization mode (75 in total) (Figure 49). This means that biological 

screens with FI-MS are prone to misannotations if only (de-)protonated masses are 

considered. Based on our results, an estimate is that one (true) increase of a single 

metabolite will cause one (false) increase of an ion peak that is misannotated to another 

metabolite. 

7.8 Discussion  

FI-MS methods have been used for metabolome analyses in various studies1,2,4–10. Their 

advantages are fast analysis times (10 to 30 seconds per sample) and a high coverage of 

metabolites (often more than 1,000 putatively annotated metabolites6,7). 

Disadvantages, however, are low confidence levels of metabolite annotation and a high 

susceptibility to matrix effects due to the lack of chromatographic separation. Here, we 

confirmed the broad metabolite coverage of FI-MS, which detected increases of 134 out 

of 160 metabolite standards based on (de-)protonated ion peaks in the MS1 spectrum. 

However, we also observed pervasive in-source modifications of metabolites. These in-

source modifications lead to multiple ion peaks per metabolite in the MS1 spectrum 

and, in the worst case, to false positive hits in FI-MS analyses of biological samples. By 

systematically analyzing FI-MS data from 160 spike-in standards, we found that a single 

metabolite produces on average 68 significant features and that, in extreme cases, more 

than 1,000 significant features originate from only one metabolite. This observation 

matches previous LC-MS based studies where the majority of m/z features were 

attributed to in-source modifications and only few (3 – 5 %) m/z features were unique 

metabolites11,12,15,31. 

Chromatographic peak shape correlation of m/z features can identify such confounding 

effects in LC-based methods19,21, but they are difficult to detect with FI-MS methods. 

Here, we used an experimental approach and examined significant m/z features in 

metabolite standards, which are most likely in-source derivates. Connecting these 

features via 51 mass differences of neutral losses, adducts, and isotopes described in 



151   

Chapter 7  

the literature23 resulted in networks that explained the origin of 43 % of the significant 

features. MS2 spectra of the metabolite standards provided additional information 

about in-source fragmentation and explained another 6 % of the significant features. 

Taken together, we found that FI-MS of single metabolites produces complex MS1 

spectra, but they are explainable by known in-source modifications. The jury is out if in-

source modifications are a bug or a feature for FI-MS data analysis: they may complicate 

or improve metabolite annotation. Therefore, the future challenge is to use FI-MS 

spectra of single metabolites to deconvolute FI-MS spectra from biological samples and, 

thereby, increase confidence of metabolite annotation. A first step is the construction 

of FI-MS databases with MS1 spectra of single metabolite standards to map in-source 

modifications across thousands of compounds. This is especially important since we 

found that the type of in-source modification depends on the metabolite classes (Figure 

48d). Here, we provided a starting point with in-source modifications of 160 metabolites 

and mining MS1 spectra in existing databases like GNPS32 and Metlin33 may provide 

additional reference data. 

7.9 Material and Methods 

Chemicals and materials 

Authentic metabolite standards were purchased from Merck KGaA (former Sigma-

Aldrich, Germany). The standards were dissolved in water to a concentration of 1 mM if 

not stated otherwise. Standards were then further diluted with acetonitrile and 

methanol to a final concentration of 10 µM in 40:40:20 acetonitrile:methanol:water. The 

10 µM metabolite standards were then added to an E. coli metabolite extract to yield a 

final concentration of 1 µM. E. coli cultures were in a M9 minimal medium, which 

contained: 22 mM KH2PO4, 42.2 mM Na2HPO4, 11.3 mM (NH4)2SO4, 8.56 mM NaCl, 100 

μM CaCl2 x 2 H2O, 1 mM MgSO4 x 7 H2O, 60 μM FeCl3, 6.3 μM ZnSO4 x 7 H2O, 7.6 μM 

CoCl2 x 6 H2O, 7.1 μM, 7 μM CuCl2 x 2 H2O, and MnSO4 x 2 H2O. 

Metabolite extracts from E. coli cultures 

5 mL LB medium was inoculated with E. coli MG1655 from a cryo stock. After 6 - 7 h of 

cultivation at 37°C, 10 µL of the culture was transferred to 5 mL M9 minimal medium 
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with 5 g/L glucose. For 13C-labelled extracts, uniformly labelled 13C-glucose was used 

(#CLM-1396, Cambridge Isotope Laboratories Inc., USA). The M9 precultures were 

grown overnight at 37°C and at 220 rpm shaking. 20 mL of M9 with 5 g/L 12C- or 13C-

glucose was inoculated with the overnight culture to an optical density at 600 nm (OD) 

of 0.05. At an OD of 1, aliquots of 4 mL of the culture were vacuum-filtrated using 0.45 

µm pore size filters (HVLP02500, Merck Millipore). The filters were transferred to -20°C 

cold 40:40:20 acetonitrile:methanol:water for metabolite extraction. After at least 30 

min at -20°C, the metabolite extracts were centrifuged for 30 min at -9°C and 4,000 rpm. 

The supernatant was stored at -80°C. 

Mass spectrometry 

Samples were analyzed by FI-MS on an Agilent 6546 Series quadrupole time-of-flight 

mass spectrometer (Agilent Technologies, USA). The electrospray source was operated 

in negative and positive ionization mode. The mobile phase was 60:40 

isopropanol:water buffered with 10 mM ammonium carbonate (NH4)2CO3 and 0.04 % 

(v/v) ammonium hydroxide for both ionization modes, and the flow rate was 0.15 

mL/min. For online mass axis correction, 2-propanol (in the mobile phase) and HP-921 

were used for negative mode and purine and HP-921 were used for positive mode. Mass 

spectra were recorded in profile mode from 50 to 1100 m/z with a frequency of 1.4 

spectra/s for 0.5 min using 10 Ghz resolving power. Source temperature was set to 225 

°C, with 1 L/min drying gas and a nebulizer pressure of 20 psi. Fragmentor, skimmer, and 

octupole voltages were set to 120 V, 65 V, and 650 V, respectively. 

Data preprocessing 

Raw files were converted into “mzXML” format by MSConvert26. Further data processing 

was performed using MATLAB version R2021a (The Mathworks, Inc., USA). For each 

sample, an average spectrum was calculated from the ten scans with the highest ion 

counts. The spectra were resampled to 106 data points to align m/z values of all samples. 

Ion peaks were picked with the “findpeaks” function of MATLAB, using a peak height 

and prominence cutoff of 1,000 units. Hierarchical clustering with a tolerance of 7.5 mDa 

was used to bin peaks. For each peak bin, we calculated a centroid m/z value from the 

individual peak m/z values. Peaks were annotated to metabolites using the centroid m/z 
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value with a tolerance of 3 mDa. Z-scores were calculated from logarithmic mean signal 

intensities (triplicates). Z-scores above three were considered significant. 

Calculation of mass differences 

Mass differences between all significant features were calculated and combined for 

positive and negative ionization mode. Using the MATLAB function “histcounts”, all 

mass differences were assigned to one of 5 x 105 bins, which accounted for a mass 

resolution of ca. 2 mDa. The total number of mass differences in each bin is the 

frequency of a mass difference. In the resulting neutral loss spectrum (x-axis is the mass 

difference and y-axis the frequency), peaks were picked with 3 mDa tolerance using the 

“findpeaks” function with prominence and height cutoffs of 10 units. 51 peaks that 

matched mass differences in the literature23 were then used for further analysis. 

Construction of feature networks 

Networks of significant m/z features were constructed for each spike-in sample in 

positive and negative ionization mode. Nodes are significant m/z features, and edges 

are putative modifications like adducts or chemical reactions, or isotopes. Edges are 

drawn between each pair of nodes if the mass difference between them matches the 

mass differences in the list of 51 explained mass differences. The fraction of explained 

features are calculated by counting all features that are either directly or indirectly 

connected to the (de-)protonated metabolite or fragment ion versus the total number 

of significant features for each spike-in standard. The feature networks were built with 

python v. 3.8.5 using the “networkx” toolbox. MS2 spectra were obtained from the 

Human Metabolome Database when experimental spectra were reported for a spike-in 

standard27. The experimental MS2 spectra from HMDB contained data that was 

acquired by high- and low-resolution mass spectrometers. Therefore, we matched our 

significant m/z features to the MS2 spectra with a tolerance of 100 mDa. 
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8.1 Abstract 

To identify metabolites, mass spectrometry-based metabolomics approaches rely on 

accurate spectral databases that contain fragment signatures of all metabolites. These 

signatures are achieved by fragmenting metabolites in the mass spectrometer by 

collision induced dissociation. The combination of retention time, precursor mass, 

fragment masses and their intensities are usually used for metabolite identification. 

However, while this is the standard approach for most metabolites, there are certain 

metabolites for which this information is not available, because they are too complex 

for chemical synthesis, or too low abundant to produce biologically. Consequently, these 

metabolites cannot be verified with MS2 information. This is the case for many 

metabolites in purine, histidine and isoprenoid metabolism in E. coli. Only 6/31 of the 

pathway intermediates were available on Sigma Aldrich and for only 7/31 metabolites 

there was experimental MS2 information available on the human metabolome 

database. Here, we used CRISPR interference to enrich low-abundant pathway 

intermediates in purine, histidine, and isoprenoid biosynthesis. First, we used FI-MS to 

measure the samples and we observed specific increases in 21/25 mass peaks. Finally, 

we used an LC-MS/MS approach to generate MS2 spectra for: adenylo succinate 

(DCAMP) and 2-(formamido)-N-(5-phospho--D-ribosyl)-acetamide (FGAM). 

8.2 Introduction 

In tandem mass spectrometry-based metabolomics, metabolites are first separated by 

liquid chromatography based on their physicochemical properties1–3. Metabolites are 

then ionized via electrospray ionization (ESI4) and fragmented in the mass spectrometer 

by collision induced dissociation (CID5). Metabolites are commonly identified by their 

retention times, precursor masses, and fragmentation patterns. Measured mass spectra 

are compared to spectral databases that contain MS2 information for a large variety of 

metabolites1–3,6. Common databases are the Metabolite and Chemical Entity Database 

(METLIN)7, and the Human Metabolome Database (HMDB8). For example, METLIN 

contains MS2 data for roughly 10 million compounds. However, this is only 1 % of the 
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93 million compounds listed in PubChem, posing the question why there is no MS2 

information for the remaining 99% of compounds7. 

Experimental approaches commonly use authentic metabolite standards to perform 

MS2 scans like multiple reaction monitoring to measure fragment ions3. Metabolite 

standards are either synthesized chemically or produced biotechnologically9. This can 

require complicated approaches to synthesize some metabolites, as shown for 

intermediates in the methylerythritol phosphate pathway10. Some metabolites, 

however, may be too complex to synthesize chemically or they are simply too low 

abundant in microbial metabolism, causing a knowledge gap in MS2 databases7. 

To understand metabolism in E. coli, it is crucial to measure all metabolites under various 

conditions. This information is then integrated with mathematical models or data driven 

approaches to infer biological mechanisms11–13. Incomplete databases prohibit 

confident annotation of these metabolites and while several prediction tools have been 

developed to work around these limitations, predictions may not always be accurate 

and need to be validated experimentally14–17. Histidine, purine and isoprenoid 

biosynthesis in E. coli are three pathways in E. coli primary metabolism in which many 

metabolites lack experimental MS2 information8. Consequently, confident annotation 

of several metabolites in these pathways is still problematic. 

Here, we used CRISPR interference (CRISPRi)18 to enrich low-abundant pathway 

intermediates in purine, histidine, and isoprenoid biosynthesis. First, we used flow-

injection mass spectrometry (FI-MS19,20) to measure specific increases in 21/25 mass 

peaks. Finally, we used an LC-MS/MS approach to generate MS2 spectra for two 

example metabolites: DCAMP (adenylo succinate) and FGAM (2-(formamido)-N-(5-

phospho--D-ribosyl)-acetamide). For FGAM, we discovered a novel MS2 fragment that, 

to our knowledge, was neither predicted, nor measured yet.  

8.3 FI-MS identifies significant metabolome changes of pathway 

intermediates in purine, histidine and isoprenoid biosynthesis 

Histidine biosynthesis, purine biosynthesis and the methylerythritol phosphate (MEP) 

pathway are important anabolic pathways in E. coli and essential for growth on glucose 
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minimal medium. Despite their importance, there is little MS2 information available for 

most metabolites because they are commercially not available. This is because they are 

low abundant and difficult to synthesize chemically. As a starting point of our analysis, 

we selected CRISPRi strains from our genome wide CRISPRi library (Chapter 6) to 

knockdown genes in these three pathways. All three pathways are linear, and histidine 

and purine biosynthesis are connected via the enzyme HisH/F that produces AICAR from 

PRLP (Figure 50). 

 

Figure 50. Histidine, Purine, and Isoprenoid metabolism. Metabolic map of histidine biosynthesis (blue), 
purine biosynthesis (orange), and the methylerythritol phosphate (MEP) pathway (green). Arrows are 
metabolic reactions and spheres are metabolites. Transparent metabolites were not considered in the 
analysis. 

 

In total, we targeted eight genes in histidine biosynthesis (hisA, hisB, hisC, hisD, hisF, 

hisG, hisH, hisI), twelve genes in purine biosynthesis (purA, purB, purC, purD, purE, purF, 

purH, purK, purl, purM, purN, purT), and five genes in the MEP pathway (ispD, ispE, ispF, 

ispG, ispH) (Appendix, Table 5). We then cultured these strains in LB medium, induced 
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CRISPRi with aTC, and then measured the metabolome of each strain with FI-MS (n = 1). 

To identify significant (z-score > 3) metabolome changes, we inspected the ion peaks of 

the (de-)protonated metabolites in the MS1 spectrum (Figure 51). We observed 

increases in 21/25 ion peaks (HISTDA, PRBATP, and FPRICA had no significantly changed 

ion peaks, and HISTD had a significantly changed ion peak which was below the intensity 

cutoff of 1000). Overall, each of the 21 metabolites accumulated in at least one 

condition (Figure 51).  

 

Figure 51. MS1 spectra for 21 metabolites in the purine(orange), histidine (blue), and MEP pathway 
(green). The bracket indicates if the MS1 spectrum was recorded in positive (+) or negative (-) ionization 
mode. The coloured spectra are CRISPRi strains of significantly changed ion peaks. The black spectra are 
CRISPRi strains that did not result in a significantly changed ion peak. 

 

For example, the substrate of ispH is H2MB4P. H2MB4P accumulated in the ispH strain 

(green), while the other samples only had a baseline signal at the same m/z value in the 

MS1 spectrum. Similarly, 5AIZC is the substrate of purC and accumulated only in the purC 

strain, while the other samples only had a baseline signal at the same m/z value. Next, 

we investigated the specificity of each CIRPSRi knockdown (Figure 52). 16/21 

metabolites accumulated as the substrate of a CRISPRi target. However, the specificity 

of the perturbation varied between the different pathways. For example, in the histidine 

pathway, many bottlenecks (hisD, hisC, hisB) seemed to cause a tailback leading to 

accumulation of upstream metabolites. To a lesser extent, we observed the same effect 

in the purine and MEP pathways. Moreover, a bottleneck in PurC caused the 

accumulation of AICAR, which is the product of the reaction. In this case, the bottleneck 

likely causes redirection of flux through the histidine pathway, bypassing the bottleneck 
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and leading to an accumulation of AICAR. However, control mechanisms behind this 

effect are unknown. 

 

Figure 52. Heatmap of CRISPRi knockdowns of targets in histidine, purine, and isoprenoid biosynthesis. 
Heatmap of all CRISPRi target genes and ion peaks that were annotated to metabolites in either positive 
or negative ionization mode. Z-scores are shown for all ion peaks of all CRISPRi strains. Orange indicates a 
z-score <= 0. A blue square indicates are z-score > 0. A blue box indicates genes and ion peaks in the 
histidine pathway, an orange box indicates genes and ion peaks in the purine pathway, and a green box 
indicates genes and ion peaks in the MEP pathway. 

 

In conclusion, we used CRISPRi to knockdown genes in purine, histidine, and MEP 

biosynthesis. We then used FI-MS to identify peaks of 21 metabolites, which otherwise 

would only show a baseline signal. In total, 16/21 metabolites were the substrates of 

the genes targeted by CRISPRi. Here, we used CRISPRi to specifically accumulate low 

abundant metabolites. In the next step, we sought to acquire MS2 fragments for some 

of these metabolites. 

8.4 Identification of MS2 fragments for metabolites in histidine, 

purine, and isoprenoid metabolism with an LC-MS/MS approach 

To measure MS2 spectra of the respective substrates of the CRISPRi strains, we used LC-

MS/MS with a triple quadrupole mass spectrometer. In contrast to FI-MS, metabolites 
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are first separated by liquid chromatography. The first quadrupole filters for specific 

precursor ions based on their m/z value. In the second quadrupole, selected ions are 

fragmented by CID. The third quadrupole then filters for fragment masses. Here, we 

used a product scan approach to record MS2 spectra for the substrates of the CRISPRi 

strains. In a product scan, pre-defined ion masses (here the substrates) are filtered out 

and fragmented. The result is a MS2 spectrum of all isolated ions in the defined m/z-

window. 

We tested this approach for purB and purM. The substrate of purB is DCAMP and the 

substrate of purM is FGAM. While there are experimental MS2 spectra available for 

DCAMP (adenylo-succinate), only theoretical MS2 spectra were available for FGAM (2-

(formamido)-N-(5-phospho--D-ribosyl)-acetamide). We used the induced CRISPRi 

strains, and the controls were the uninduced CRISPRi strains. While all uninduced 

CRISPRi strains also have a basal CRISPRi activity, we expected the difference between 

induced and uninduced to be significant. 

 

Figure 53. MS2 from product scans. MS2 spectra of a) DCAMP (purB CRISPRi strain) and b) FGAM (purM 
CRISPRi strain). Blue spectra are the induced strains and orange spectra are the uninduced strains. 
Numbers above selected peaks indicate the m/z of the peak. 

 

The recorded MS2 spectra showed a clear difference between induced CRISPRi strains 

and uninduced strains (Figure 53). In the MS2 spectrum of the purB strain (Figure 53a), 

we selected the five highest peaks and compared them against experimental MS2 

spectra of DCAMP on HMDB. In total, all selected fragment m/z matched reported peaks 
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on HMDB (LC-ESI, negative mode: m/z = 79, m/z = 97, m/z = 134, m/z = 266, m/z = 346), 

thus validating our approach. 

Next, we analyzed the purM strain to obtain MS2 spectra for FGAM. In the MS2 

spectrum of the purM strain, we selected three peaks (m/z = 79, m/z = 97, m/z = 184) 

(Figure 53b). While there were no experimental spectra available, we compared the 

selected peaks to predicted MS2 spectra of FGAM. In total, m/z = 79 and m/z = 97 

matched the predicted spectrum. However, the m/z = 184 fragment ion was not 

reported on HMDB. These results indicate that this approach can be used to acquire 

MS2 spectra of low abundant metabolites that were accumulated via CRISPRi. 

8.5 Discussion 

Databases with tandem mass spectral data are important to unequivocally identify 

metabolites in LC-MS/MS approaches. Commonly, authentic standards are measured 

and fragmented to record MS2 fragment ions. However, many metabolites are either 

too complex to synthesize or too low abundant to produce biotechnologically. Thus, this 

knowledge gap limits LC-MS/MS approaches to focus on available metabolites. 

Here, we used CRISPRi to enrich low-abundant metabolites in histine, purine, and 

isoprenoid biosynthesis. We showed that CRISPRi-based bottlenecks can cause 

accumulation of substrate metabolites and that these metabolites can then be 

measured by FI-MS. Using an LC-MS/MS product scan approach, we identified known 

MS2 fragment ions for DCAMP and an unknown fragment ion for FGAM. Our approach 

is easier compared to approaches that first have to purify metabolic enzymes for 

subsequent in-vitro synthesis of metabolites10. Moreover, CRISPRi can be easily applied 

to other organisms and therefore this approach has the potential to produce MS2 

fragments for metabolites of various chemical classes in many organisms. 

These results indicate the potential of CRISPRi screens to complement current MS2 

databases like METLIN7 or HMDB8. Although computational prediction tools have been 

successfully used to predict fragment spectra14,17, predicted spectra need to be 

validated by experimental data. MS2 spectra can be misannotated due to false positive 

MS1 ions, or due to isomers/isobars that share the same retention times. Thus, to 
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improve confidence in the MS2 spectra, an isotope ratio approach should be used to 

validate the MS2 information in the future. Moreover, high-resolution mass 

spectrometers should be used to achieve high resolution MS2 spectra. 

8.6 Methods 

Flow-injection metabolomics (FI-MS) and data processing 

Samples were analysed by FI-MS on an Agilent 6546 Series quadrupole time-of-flight 

mass spectrometer (Agilent Technologies, USA). The electrospray source was operated 

in negative and positive ionization mode. The mobile phase was 60:40 

isopropanol:water buffered with 10 mM ammonium carbonate (NH4)2CO3 and 0.04 % 

(v/v) ammonium hydroxide for both ionization modes, and the flow rate was 0.15 

mL/min. For online mass axis correction, 2-propnaol (in the mobile phase) and HP-921 

were used for negative mode and purine and HP-921 were used for positive mode. Mass 

spectra were recorded in profile mode from 50 to 1,100 m/z with a frequency of 1.4 

spectra/s for 0.5 min using 10 Ghz resolving power. Source temperature was set to 225 

°C, with 1 l/min drying gas and a nebulizer pressure of 20 psi. Fragmentor, skimmer, and 

octupole voltages were set to 120 V, 65 V, and 650 V, respectively. 

Raw files were converted into “mzXML” format by MSConvert. Further data processing 

was performed using MATLAB version R2021a (The Mathworks, Inc., USA). For each 

sample, an average spectrum was calculated from the ten scans with the highest ion 

counts. The spectra were resampled to 106 data points to align m/z values of all samples. 

Ion peaks were picked with the “findpeaks” function of MATLAB, using a peak height 

and prominence cutoff of 750 units. Hierarchical clustering with a tolerance of 7.5 mDa 

was used to bin peaks. For each peak bin, we calculated a centroid m/z value from the 

individual peak m/z values. Peaks were annotated to metabolites using the centroid m/z 

value with a tolerance of 3 mDa. 

LC-MS/MS with a triple quadrupole mass spectrometer and data processing 

An Agilent 1290 Infinity II UHPLC system (Agilent Technologies) was used for liquid 

chromatography. Temperature of the column oven was 30 °C. The injection volume was 

3 µl. LC solvent A was water with 10 mM ammonium formate and 0.1 % formic acid (v/v) 
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for acidic conditions ans water with 10 mM ammonium carbonate and 0.2 % ammonium 

hydroxide for basic conditions. LC solvents B were acetonitrile with 0.1 % formic acid 

(v/v) for acidic conditions and acetonitrile without additive for basic conditions.  

An Agilent 6495 triple quadrupole mass spectrometer (Agilent Technologies) was used 

for the product ion scans. Source gas temperature was set to 200 °C, with 14 L/min 

drying gas and a nebulizer pressure of 24 psi. Sheath gas temperature was set to 300 °C 

and flow to 11 l/min. Electrospray nozzle and capillary voltages were set to 500 and 2500 

V. Scan time was set to 500 ms, Fragmentor was set to 380 V, cell accelerator voltage 

was set to 5, and step size was 0.1. Product scans were made for collision energies of 10 

V, 25V, and 40 V. For the purB strain, masses were scanned from m/z = 50 to m/z = 464. 

Raw files were converted into “mzXML” format by MSConvert. Further data processing 

was performed using MATLAB version R2021a (The Mathworks, Inc., USA). For each 

sample, intensities were summed up over all retention times to achieve a 2-dimensional 

MS1 spectrum.  
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Chapter 9  Key findings 

To fully understand metabolism, comprehensive multi-omics data need to be 

interpreted with the help of mathematical models. In Chapter 2 – Chapter 5, we 

developed small mechanistic mathematical models of E. coli metabolism that are 

regulated allosterically, transcriptionally, or by both mechanisms. One of the key topics 

of this thesis was the interplay of metabolism and enzyme-level regulation. We 

demonstrated that considering both layers in mathematical models is crucial to achieve 

a profound understanding of metabolism, and that this knowledge can aid the design of 

better production strains in biotechnology. By combining ensemble modelling and 

robustness analysis techniques, we described the functional implications of feedback 

regulation on metabolism. We showed that feedback regulation can increase robustness 

of a system, but that it can also cause system failure under certain circumstances. 

Moreover, we focused on small mechanistic models because they are easier to analyse, 

and they enable qualitative predictions that are difficult to achieve with bigger models 

due to epistemic uncertainties. 

To overcome some of these uncertainties, we mapped transcriptional regulation of 

E. coli metabolism in Chapter 6. We used a metabolism wide CRISPRi library to perturb 

gene expression of 283 metabolic genes and measured the proteome and the 

metabolome in each condition. A pathway-based analysis of the proteome data then 

revealed transcriptional feedback regulation in 24 metabolic pathways. Moreover, we 

recovered known metabolite-TF interactions in arginine and methionine biosynthesis 

and suggested a putative metabolite-TF interaction in NAD de novo biosynthesis. 

Finally, a profound understanding of metabolism requires reliable multi-omics data to 

complement mathematical models, or to infer functional metabolite-protein 

interactions in a data-driven way. However, technological limitations and the complexity 

of the metabolome prohibits us from measuring the complete metabolome with 

confidence. To solve technological limitations, we first need to be aware of them. Thus, 

in Chapter 7, we evaluated the flow-injection mass spectrometry (FI-MS) approach. We 

showed that reactions taking place in the ion source cause FI-MS to produce complex 

MS1 spectra, leading to misannotations. To confirm metabolite identities, LC-MS/MS 
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approaches commonly rely on reference databases that contain metabolite fragment 

information. However, for many metabolites this information is currently unavailable 

because they are too low abundant to measure, or too complex to synthesize. In 

Chapter 8, we therefore developed an approach that uses CRISPRi to enrich low-

abundant metabolites and measure their MS2 fragments. This approach has the 

potential to complement MS2 databases. 

In the following, key findings of each chapter are highlighted in detail: 

In Chapter 2 we studied the interplay between allosteric regulation and transcriptional 

regulation in amino acid biosynthesis. We developed a mechanistic mathematical model 

of amino acid biosynthesis that combined allosteric regulation of enzyme activity and 

transcriptional regulation of enzyme abundance. The model showed that allosteric 

feedback and transcriptional feedback act in concert to finely tune amino acid 

concentrations to balance robustness and efficiency in amino acid biosynthesis. We 

showed that an optimal balance between both objectives is reached when both 

feedbacks are equally strong. Moreover, equally strong feedback reduces the likelihood 

of amino acid oscillations that can occur if allosteric feedback is weak. We verified the 

model predictions using multi-omics data of allosterically and transcriptionally 

dysregulated E. coli mutants. 

In Chapter 3, we studied metabolic burden of engineered glycerol-producing E. coli with 

a mathematical model of glycolysis that combined metabolism and transcriptional 

regulation via the transcription factor Cra. Induction of the glycerol pathway in E. coli 

caused growth defects and low glycerol titers. Analysis of the mathematical model 

suggested that the reason for this behaviour is transcriptional misregulation of glycolysis 

by the transcription factor Cra. Induction of glycerol production caused a depletion of 

fructose 1,6-bisphosphate, a lower glycolysis flux, and a low growth rate. Subsequently, 

fructose 1,6-bisphosphate activates the transcription factor Cra, which amplifies these 

effects and causes system failure. A robustness analysis of the model suggested that 

putting the glycerol pathway under transcriptional control of Cra achieves a more robust 

production strain with higher glycerol titers. We verified the model predictions 

experimentally by engineering Cra regulation in the glycerol pathway. This way, we 
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created a competitive glycerol production strain that maintained stable growth at high 

induction levels.  

In Chapter 4, we studied how allosteric activation of CarAB by ornithine confers 

robustness of the branch point between arginine and pyrimidine biosynthesis. A CRISPRi 

knockdown of CarAB caused ornithine to accumulate 512-fold. To study the implications 

of the allosteric activation on the branch point between arginine biosynthesis and 

pyrimidine biosynthesis, we developed a mechanistic mathematical model. The model 

showed that allosteric activation of CarAB by ornithine buffers the knockdown of CarAB, 

alleviating a downstream bottleneck at the branch point and, subsequently, stabilizing 

metabolite end products in arginine and pyrimidine biosynthesis. 

In Chapter 5, we developed a mechanistic mathematical model of glycolysis to study the 

causes of pyruvate oscillations. The model consisted of the phosphotransferase system 

and three of the most relevant allosteric regulations of glycolysis. We simulated 2,000 

parameter sets based on literature parameter values. Decreasing the glucose uptake 

rate of the model by 5 % caused sustained oscillations in 20 % of the parameter sets. 

Increasing the glucose uptake rate 10-fold caused oscillations in 2 % of the parameter 

sets. On average, the period of the oscillations was three minutes. The model predicted 

that high cooperativity and high saturation of the pyruvate dehydrogenase, as well as 

the feed forward activation of the pyruvate kinase by fructose 1,6-bisphosphate as the 

main causes for sustained oscillations of pyruvate levels. 

In Chapter 6, we performed CRISPRi knockdowns of 283 metabolic genes in E. coli and 

measured the proteome and metabolome in these strains to map transcriptional 

feedback regulation. The proteome data showed that 45 % of the target genes were 

significantly downregulated (z-score < -3) and that, on average, each knockdown caused 

40 other proteins to change significantly as part of a compensatory response. Analysis 

of the proteome data then revealed transcriptional feedback regulation in 24 metabolic 

pathways of E. coli, as well as potential unknown transcriptional regulation of the genes 

menH and folM. Using FI-MS, we identified accumulation of substrates in 66 CRISPRi 

strains. Using the metabolome data, we recovered known metabolite regulators of the 

transcription factors ArgR and MetR. Finally, we inferred a putative functional 

interaction between nicotinate and NadR. 



173   

Chapter 9  

Chapter 7. To evaluate FI-MS, we spiked 160 authentic standards of E. coli primary 

metabolism into E. coli metabolite extracts and measured the 160 spike-in samples by 

flow-injection metabolomics. We annotated 154/160 metabolites in their single 

protonated or single deprotonated form, and 134 of the ion peaks increased in the 

corresponding spike-in standard. Besides these expected increases of ion peaks, we 

identified significant increases of 11,013 ion peaks in positive and negative mode 

combined across all spike-in samples, which is on average 68 additional m/z features for 

each spike-in sample. We then used known mass differences and MS2 information to 

connect the m/z features with a network approach. This way, we could explain on 

average 49 % of all significantly changed ion peaks. Finally, our results indicated that on 

average one true increase of a single metabolite will cause one (false) increase of an ion 

peak that is misannotated to another metabolite. Thus, flow-injection metabolomics is 

prone to false positives. 

In Chapter 8, we developed an approach to generate MS2 fragments from low abundant 

and commercially unavailable, or expensive metabolites of E. coli metabolism. 

Therefore, we used CRISPRi to knockdown genes in histidine, purine, and isoprenoid 

biosynthesis pathways. This way, we systematically enriched the substrates of the 

CRISPRi target genes. Using flow-injection metabolomics we measured accumulations in 

21/25 pathway metabolites. We then used targeted liquid chromatography tandem 

mass spectrometry to generate MS2 spectra for DCAMP and FGAM. For DCAMP, we 

recovered known MS2 fragments and for FGAM, we discovered an unknown fragment, 

thus validating this approach. 

 

 

 



  174 

Chapter 10  

Chapter 10  Conclusions and Outlook 

In the first part of this thesis (Chapter 2 – Chapter 5), we developed small mechanistic 

mathematical models to study feedback control in metabolic networks. We observed 

that feedback control often renders the system robust against perturbations, but that 

under certain circumstances, the same regulation mechanisms can cause system failure. 

This was especially apparent in Chapter 3, where Cra regulation of glycolysis caused 

system failure after inducing an engineered glycerol pathway. Similarly, in Chapter 5 we 

showed that feed forward activation of the pyruvate kinase by fructose 1,6-

bisphosphate can cause sustained oscillations of pyruvate levels in glycolysis. In both 

cases, regulation mechanisms that are crucial for the switch between glycolysis and 

gluconeogenesis caused system failure. This agrees with earlier research on systems 

exhibiting highly optimized tolerance that were robust against a large range of 

perturbations, and yet fragile against rare perturbations1–3. 

A major part of this thesis was the development of a mathematical modelling framework 

to link metabolism and transcriptional regulation. This allowed us to study crosstalk 

between metabolism and enzyme-level regulation in amino acid metabolism in 

Chapter 2, to study the influence of transcriptional regulation on glycolysis in glycerol-

producing E. coli in Chapter 3, and to perform time-course simulations of genetic 

knockdowns in Chapter 4. Here, only small models have been used to investigate the 

interplay between metabolism and transcriptional regulation. Small models are 

advantageous over larger models because they require less (often unknown) kinetic 

parameters. However, small models can oversimplify complex networks and neglect 

important interactions. Thus, in the next steps these models should be carefully 

extended to a larger scale. This would allow us to include the hierarchical transcription 

regulation network, as well as known metabolite-TF interactions4. Simulating CRISPRi 

knockdowns could then resemble the dataset in Chapter 6 and help in developing 

approaches to identify new metabolite-TF interactions. 
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In Chapter 6, we used CRISPRi to knockdown 283 metabolic target genes in E. coli and 

measured proteome and metabolome in the perturbed strains. A pathway-based 

analysis of the proteome data then revealed transcriptional feedback regulation in 24 

metabolic pathways. To systematically identify the metabolites that cause these 

changes, machine learning could be used. Since biological networks resemble social 

networks in many ways, it could be possible to develop graph-based recommender 

systems to predict functional interactions between metabolites and genes or proteins5. 

In contrast to purely data-driven machine learning approaches, graph-based approaches 

use the known network structure as prior knowledge that improves predictions6. For 

example, a similar approach was recently developed to predict polypharmacy side 

effects from multi omics clinical data7. However, supervised machine learning relies on 

training data, and training data is scarce with only 134 known metabolite-TF 

interactions. Thus, an effective link prediction algorithm to identify functional 

metabolite-TF interactions should be unsupervised. Moreover, the 283 conditions used 

in Chapter 6 are likely not enough for machine learning applications. 

Recently, the metabolome was predicted from the proteome in Saccharomyces 

cerevisiae8. A big question is therefore if the proteome can be predicted from the 

metabolome. Metabolomics can be faster and cheaper than proteomics. Moreover, if 

predicting the proteome from the metabolome is possible, it could also be possible to 

infer metabolite-TF interactions solely from metabolomics data. 

Ensuring high quality metabolomics data is one of the most important prerequisites to 

enable data-driven inference approaches and machine learning based approaches. In 

the past, mass spectrometry-based proteomics has made huge progress after statistical 

methods, like target-decoy approaches, were developed to deal with false positive 

annotations9. Arguably, metabolomics is now at a similar stage as proteomics was back 

then. We showed in Chapter 7 that FI-MS is prone to false positive annotations. The 

simplest solution to avoid false positive annotations in FI-MS are MS1 databases that 

contain peak information for several pure standards, but also for spike-in samples over 

many different conditions. Like in proteomics, false positives could then be detected by 

using database search engines10–13. 
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In conclusion, understanding metabolism requires an interdisciplinary approach that 

combines mass spectrometry-based metabolomics, integration of multi-omics data, and 

mathematical modelling. Progress in these fields will enable a better understanding of 

E. coli metabolism that may even enable its rational engineering. In the future, all 

methods that have contributed to understanding E. coli could then be used to study 

other microbes, or even multicellular organisms. 
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XII Appendix 

Supplemental information related to Chapter 2 

Table 2. Related to Figure 4; Literature kcat values for enzymes in amino acid biosynthesis. The values 
were collected from the BRENDA database and from Davidi and Milo, 20171,2. - indicates that no value 
could be found in both sources. The 25th and 75th quartiles of these kcat values are 930 min-1 and 4140 min-

1, respectively. 

Name kcat, s-1 Name kcat, s-1 Name kcat, s-1 

argA 654.00 cysK 378.50 ilvN 40.00 

argB - cysM 24.00 leuA - 

argC - cysN - leuB 69.00 

argD - cysQ 11.00 leuC - 

argE 1800.00 dadX 33.66 leuD - 

argF - dapA 104.00 lysA 33.00 

argG - dapB 382.00 lysC 22.13 

argH - dapD 36.00 metA 22.00 

argI - dapE - metB 121.00 

aroA 32.00 dapF 84.00 metC 34.10 

aroB 14.00 gdhA 37.00 metE 3.50 

aroC 39.00 glnA 33.00 metH - 

aroD 75.00 gltB - metL - 

aroE 237.00 gltD - pheA 32.00 

aroF - glyA 10.00 proA 10.00 

aroG 4.20 hisA 7.20 proB 53.00 

aroH - hisB - proC 717.00 

aroK - hisC - prs - 

aroL - hisD 12.00 serA 29.00 

asd - hisF - serB - 

asnA - hisG - serC 1.80 

asnB 4.50 hisH - thrA - 

aspC - hisI - thrB 17.00 

avtA - ilvA - thrC - 

cysC 50.00 ilvB 38.50 trpA - 

cysD - ilvC 0.30 trpB - 

cysE 772.00 ilvD 69.00 trpC 18.77 

cysH - ilvE - trpE - 

cysI 47.00 ilvH - tyrA 71.00 

cysJ - ilvI - tyrB - 
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Table 3. Related to Figure 4; Amino acid requirements of E. coli (Monk et al., 2017)3. The mean of 86.6 mM 
was used as parameter α in the model. 

Amino 
Acid 

Coefficients, 
mmol gdw-1 

alpha, 
mM 

ala-L 0.499 166.4 

arg-L 0.287 95.8 

asn-L 0.234 78.1 

asp-L 0.234 78.1 

cys-L 0.089 29.7 

gln-L 0.256 85.2 

glu-L 0.256 85.2 

gly 0.595 198.4 

his-L 0.092 30.7 

ile-L 0.282 94.1 

leu-L 0.438 145.9 

lys-L 0.333 111.1 

met-L 0.149 49.8 

phe-L 0.180 60.0 

pro-L 0.215 71.6 

ser-L 0.210 69.9 

thr-L 0.247 82.2 

trp-L 0.055 18.4 

tyr-L 0.134 44.7 

val-L 0.411 137.1 

Mean 0.260 86.6 
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Table 4. Related to Figure 4; Inhibition constants of allosteric enzymes (Ki-value), transcriptional 
attenuation (tRNA-ligase Km-value) and metabolite-transcription factor interactions (Kd-value). Values 
were obtained from EcoCyc4, Brenda1 or RegulonDB5. When more than one value was available, an upper 
and a lower bound are given. The grey background indicates the seven pathways that were investigated 
during this work 

Biosynthesis 
pathway 

Allosteric Feedback 
Ki 

mM 
Transcriptional Feedback 

Km/d 
 mM 

Enzyme Metabolite LB UB Mechanism Protein Metabolite LB UB 

Arginine argA arg 0.15 (a) Repressor argR arg 0.28 

Asparagine asnA asn 0.12 Repressor asnC asn 1 

Cysteine cysE cys 0.001      

Histidine hisG his 0.012 0.1 Attenuation his-tRNA ligase his 0.008 0.03 

Isoleucine ilvA ile 0.06 Attenuation ile-tRNA ligase ile 0.0036 1.3 

Leucine leuA leu 0.28 Attenuation leu-tRNA ligase leu 0.0015 0.05 

Lysine dapA lys 0.21 3.9      

Methionine metA met 0.1 4 Repressor metJ sam 0.01 0.05 

Phenylalanine pheA phe 0.1 0.6  tyrR phe >0.18 

Proline proB pro 0.02      

Serine serA ser 0.005 0.37      

Threonine thrA thr 0.097 0.167 Attenuation thr-tRNA ligase thr 0.11 0.2 

Tryptophan trpE trp 0.17 Repressor trpR trp 0.16 

Tryptophan trpE trp 
 

0.17 Attenuation trp-tRNA ligase trp 0.017 

Tyrosine tyrA tyr 0.1 Repressor tyrR tyr 0.18 

Valine ilvB val 0.078 0.1 Attenuation val-tRNA ligase val 0.0043 0.1 
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Figure 54. Ion peaks that are annotated to four nucleotides (ATP, CTP, UTP, GTP) in negative ionization 
mode. 12C-labelled E. coli samples are blue lines measured in five technical replicates. 13C-labelled E. coli 
samples are orange lines measured in five technical replicates. ATP, adenosine triphosphate; CTP, cytidine 
triphosphate; UTP, uridine triphosphate; GTP, guanosine triphosphate. 

 

 
Figure 55. Ion peak of reduced glutathione (deprotonated) in negative ionization mode. The 
spike-in sample that contains reduced glutathione is indicated in orange, the other 159 spike-in 
samples are black. 
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Figure 56. Boxplot showing the relative standard deviation (RSD) of the endogenous metabolites 
measured by FI-MS in positive and negative ionization mode. Black dots are the RSD for each 
endogenous metabolite. Upper and lower box edges indicate the 25 % and 75 % percentiles. The 
whiskers indicate the furthest point, at which samples were not considered as outliers. The red 
line indicates the median. Orange diamonds are the means. 
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Table 5. CRISPRi strains and substrate metabolites and exact mass of each metabolite 

Pathway Gene 
Metabolite 
abbreviation 

Monoisotopic 
mass (Da) 

Histidine hisG PRPP 389.9518 

Histidine hisI PRBATP 719.0043 

Histidine hisI PRAMP 559.0717 

Histidine hisA PRFP 577.0822 

Histidine hisH PRLP 577.0822 

Histidine hisF PRLP 577.0822 

Histidine hisB EIG3P 238.0355 

Histidine hisB HISP 221.0565 

Histidine hisC IMACP 220.0249 

Histidine hisD HISTD 141.0902 

Histidine hisD HISTDA 139.0746 

Purine purF PRPP 389.9518 

Purine purD PRAM 229.0351 

Purine purN GAR 286.0566 

Purine purT GAR 286.0566 

Purine purL FGAR 314.0515 

Purine purM FGAM 313.0675 

Purine purK AIR 295.0569 

Purine purE N5-CAIR 339.0468 

Purine purC CAIR 339.0468 

Purine purB SAICAR 454.0737 

Purine purH AICAR 338.0627 

Purine purH FAICAR 366.0577 

Purine purA IMP 348.0471 

Purine purB DCAMP 463.074 

MEP dxr 1DXYL5P 214.0242 

MEP ispD MEP 216.0399 

MEP ispE CDP-ME 521.0811 

MEP ispF 2P4C2ME 601.0475 

MEP ispG 2MECDP 277.9957 

MEP ispH H2MB4P 262.0007 

 

  

http://bigg.ucsd.edu/universal/metabolites/eig3p
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