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Il Abstract

Microbial metabolism i$eedbackregulatedon many layersFeedback controtan be
executed by metabolitgrotein interactions toallostericallycontrol enzyme activity
andto transcriptionally controenzyme abundanceoroviding cells witlrobustnessto
withstand, and adapt toperturbations.However, heseinteractionscontribute to the
complexity ofmetabolismand prohibit an intuitive understandingTo gain a deeper
understanding of metabolismrmechanisticmathematicalmodelsare useful toolsto
simplify complexinterrelationships In this thesis, weleveloped mathematical models
to study allosteric feedback, transcriptional feedba@nd the interplay of both
mechanismsThen, we usé this knowledge todevelop a methodo map feedback
regulation between metabolism and transcription i colimetabolism Sincehigh-
quality metabolite dataare crucialto study metabolismwe finish this thesis with two

chapters ormass spectrometrspasedmetabolomics.

After providinga general introduction it€hapter 1 we develop a mathematical model
of amino acid biosynthesign Chapter 2to study the interplay betweenrallosteric
feedback and transcriptional feedbadke shoved that both feedbacks act in concert
to baance robustness and efficiendg.Chapter 3we developed a mathematical model
of glycolysighat istranscriptionallyregulatedby the transcription factor Créao study
metabolic burden in glycergiroducingE. coli A robustness analysis revedithat Cra
regulation causes growth defecésd low glycerol titersn E. coliand that this burden
can be solved by engineering Cra regulatido the glycerol pathwayin Chapter 4 we
developed a mathematical model tanderstandthe implications of arrnithine-based
allosteric activation athe branch point between arginine and pyrimidine biosyegls
We shoved that the feedback activatiobuffers upstream perturbatios and thereby
stabilizes pathway end productén Chapter 5we investigatel causes for periodic
pyruvate oscillationaisinga mathematical model of glycolysi¢/e show that feed
forward activation of the pyruvate kinase angigh saturation of the pyruvate
dehydrogenasecontribute to pyruvate oscillationsin Chapter 6 we performed
knockdowrs of 283 genes ofE. coli metabolism and measurd proteome and
metabolomeof the perturbed strainsA pathwaybasedanalysisallowed us to map

feedback regulation between metabolism and transcription using proteocamsl
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metabolomedata. In Chapter 7we analysel and validatel the mass spectrometry
based flowinjection metabolomics approactith 160 spikein samples We shoved
that flow-injection causesomplex MS1 spectra that can lead to false positive peak
annotations.Finally, ve conclude this thesis inChapter 8by developing an approach
to generate reference fragments for low-abundant or commercially unavailable
metabolitesto complementreferencedatabasesWe shoved a proof of principal for

two metabolites.
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[l Zusammenfassung

Der mikrobielleStoffwechsel istémplexund wird durchFeedback Regulaticuf vielen
Ebenenreguliert. Feedbak Regulationkann durch Metabol#Protein Interaktionen
ausgefuhrt werden, diellosterischEnzymaktivitdtoder transkriptionell Enzymmenge
regulieen. Diese Regulationsmechanismen erlauben es den Z&tareinflissenzu
widerstehenund sichan die neuen GegebenheiteanzupassenJedochtragen diese
Interaktionen zur Komplexitat des Stoffwechsels vedis ein Intuitives Verstandnis
erschwert. Um ein tideres Verstandnis des Stoffwechsels etreichen kénnen
mathematische Modelle genutzterden,um komplexe Sachverhalte zereinfachen.
In dieser Arbeitentwickeln wir mathematische Modelleum allosterischeFeedback
Regulation, transkriptionelld~eedbackRegulation und das Zusammenspiel beider
Mechanismenzu verstehenDartber hinausutzen wir dieses Wissemm Feedack
Mechanismen zwischen Metabolismus und Transkriptiokatieren Da hochwertige
Metabolit Datenfir diese Aufgaben erforderlich sindeschéaftigen wir uns zum Schluss

mit Massenspektrometridasierter Metabolomik.

Nach einerallgemeinen Einleitung irKapitel 1 entwickeln wir in Kapitel 2 ein
mathematisches Modell des Aminosaurestoffwechsels, um dasammespiel
zwischen allosterischer Regulation und transkriptioneller Regulation besser zu
verstehen.Wir zeigen, dass beide Feedback Mechanisrhendtigt werden umein
Gleichgewicht zwischeRobustheit und Effizienginzustellen In Kapitel 3entwickeln
wir ein transkriptionell reguliertesmathematisches Modelder Glykolyse um die
metabolische Belastung von GlycerobguzierendenE. colizu verstehenWir zeigen
dass transkriptionelle Regulatiodurch Crain Glycerol produzierenderk. colizu
niedrigen Wachstumsraten undlycerol Titernfihrt und dasskonstruierte Cra
Regulation derGlycerol Syntheselie Wachstumsrate stabilisiert und Glycerol Titer
erhoht. In Kapitel 4entwickeln wirein mathematisches Model,na den Einfluss einer
Ornithin-basierten allosterischerFeedback Aktivierung af den Knotenpunkt der
Arginin- und Pyrimidin Biosyntheseu charakterisierenWir zeigen, dasdie Feedback
Aktivierung Perturbationestromaufwartskompensiert und dadurch die Endprodukte
der Arginine und Pyrimidin Biosynthese stabilisieknschliel3endentwickeln wir in

Kapitel 5ein mathematisches Modell der Glykolysad untersuchendieses auf die

Zusammenfassung
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Ursachen von Pyruvat Oszillation8iir zeigen, dass dieeedforwardRegulationder
Pyruvatkinase, sowie das Sattigungsverhalten der Pyruvat Dehydrogamtaskeidend

sindflr die Entstehung von Pyruvat Oszillationen.

In Kapitel 6regulierenwir 283 metabolische Gene im Stoffwechsel ¥rcoligenetisch
herunterund messeranschlie@nd Protein und Metabolitdnderungen Mit Hilfe diese
Daten kartieren wir dann Feedback Regulation zwischen Metabolismus und

Transkriptionm E. Coli

In Kapitel 7 analysieren und validieren widie Massenspektrometridasierte
FlieReinspritzungindem wirE. coli Extrakte mit 160ndividuellenMetabolit Standards
versetzen Wir zeigen, dasslie Methode komplexe Spektren erzeugt, die zu falsch

positiven Peak Annotierungen fiihren kénnen.

In Kapitel 8 beenden wir diese Arbeit mit der Entwicklung einer Methode zur
Generierung von Refeng Fragmenen fur niedrig abundante, oder kommerziell nicht
verfugbare Metabolite, uniReferenzdatenbanken Zwomplementieren Wir zeigen das

Prinzip der Methode flr zwéiletabolite.
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Chapter 1Generalntroduction

1.1Structure and function of the metabolic netwbischerichia

coli

1.1.1Structure and function of theetabolic network

Metabolism is executed by a network of biochemical reactions that convert nutrients
via various intermediary metabolites into energy and building blocks that are required
for cell growth. Despite 3.7 billion years of divergent evolutitwe, basic structure of
metabolic networks is highly conserved across the tree of life, and basically all life forms
rely on asimilarset of metabolite$. Metabolites allow the cell to sense environmental
changes, provide a means for ewlicell communiction, and can act as defense
mechanism. For all living organism, the structure of the metabolic network is encoded
on their genomes. According to the central dogma of molecular biology, genes are
transcribed into mMRNA, which are then translated into enggitinat catalyzes chemical
reactions with high selectivity Together, multiple enzymatic reactions are organized in
modular, yet densely connected metabolic pathwayEhe pathways can be broadly
grouped into catabolism and anaboli$A{Figurel). Catabolism breaks down nutrients

to produce anabolic building blocks and energy in the form of adenosine triphosphate
(ATP). For example, glycolysis is an importatabolic pathway that converts glucose

to pyruvate and energy. Anabolism uses intermediates and energy to produce building
blocks required for cell growth. An example for anabolism is amino acid biosynthesis.
For each of the 20 proteinogenic amino acipiecursors from central metabolism are

converted into the final amino acids by multiple enzyosalyzed reaction steps.

For the wellstudied model organisnEscherichia col(E. coli the structure and
stoichiometry of the metabolic network is assumed te largely completg’. Despite
that, we know little about hovE. colimaintains and adapts its metabolism dynamically
in changing environments. Filling this knowledge gap is important to design better
production strains in biotechnolo§yto help in undermanding microbial communitiés

and to help in understanding diseases with metabolic phenotifpes

Chapter 1
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Catabolism Anabolism

DNA genes ) genes )

Transcription

mRNA /™ /T /MM

Translation

Provide building blocks

Enzymes
Nutrients Precursors Amino acids

Generation of N_Upleotides
building blocks  Lipids

Precursor and

ATP generation ATP

Figurel. Central dogméc flow of information, catabolism, and anabolismGenes are pointed boxes
Enzymes are blue squares. Meddites are orange sphereBlack arrows are metabolic reactions. Grey
arrows indicate the information flow as defined in the central dogma of molecular biolbgyes are
transcribed into mMRNA. mRNA is translated into enzyfBagsyme<atalysebiochemicalreactions.In
catabolism, the enzymes convert nutrieiigo ATP and precursor metabolites. In anabolism, enzymes
produce biosynthetic precursors (amino acids, nucleotides, lipids) from precursors andh&TP.
biosynthetic precursors are required for transcription and translation.

1.1.2Robustness of metabolism

Cells constantly encounter internal and external perturbations, such as temperature
gradients and changes of nutrient availability. To survive, grow.eant/e, they need

to be robust enough to cope with these perturbations. Robustness is an emergent
property of biological systems that allows them to maintain function amidst various

perturbationgt12

To understand metabolism, it is crucial to understahé mechanisms that ensure
robustness. Although there is no unifying way to describe robustness theoretically or
experimentally yet®, there are simple mechanisms that enable metabolic robustness.
These general mechanisms are based epystem contro] modularity, and
redundancyt? (Figure 2a). System controluses negative and positive metabolic

feedback to adjust metabolic rates and metabolite levels to new conditions

Chapter 1
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a
dul tla
moaule;
Pfka () PkB
o
l
System control Redundancy
b
State 1 ,
serturbation (1) retain stability ~ State
D)
N
(3) loss of stability (2) stable transition

Figure2. Principles of biological robustnesa) Examples of system control, modularity, and redundancy

in metabolic networks. Spheres are metabolites and solid arrows are metabolic reactions. (Left) System
control is achieved by negative feedback (blunt dashed arrow) and positive feedback (pointed dash
arrow). (Middle) Modularity is achieved by spatial and functional separation of metabolic pathways.
Different pathway modules are coloured. (Right) Redundancy is achieved by different enzymes that
catalyse the same reaction, for example PfkA and Pflgdyoolysisb) Example of how a perturbation

affects a cellular state. (1) The system returns immediately to the same steady state. (2) The system loses
stability transiently (State 1), and transitions to a nhew steady state (State 2). (3) the systesidbdig

and becomes unstable.

One common way metabolism executésedback controlis via metaboliteprotein
interactions, in which binding of a metabolite modulates protein activityhile
negative feedback enables robust adaptafifyrpositive feedback enhances sensitivity,

allowing the system to switch between different states

Readundancyis based on alternative paths that can carry out the same function. For
example, ATP can be produced via oxidative phosphorylation and by glycolysis. While
oxidative phosphorylation requires oxygen, glycolysis can still produce ATP under
anaerobic conditions, albeit less efficiently?. Another way to achieve metabolic
redundancy is by gene duplications. For example, the gpfi@sand pfkBproduce two
isoforms of the phosphofructokinase (PFK) that have overlapping functions and catalyze

the same raction in glycolysis.

Chapter 1
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Modularity means that metabolism is composed of a diverse set of functional units. Due
to functional and spatial separation, perturbations are kept local, which prevents system
failure and cell deatl. Moreover, modularity enablesvolution by creating a robust

core that is then augmented by additional modules, which often share a set of recurring

network motifg’-18

Although these mechanisms are crucial for surviving, the cell faces harddffsdt
achieve robustnes8 Complexsystems evolved robustness to handle certain conditions
or perturbations. However, the same mechanisms that allow the systems to be robust
against known perturbations render them fragile against unknown or rare

perturbations, as defined by the theory bighly optimized tolerancé<.

For example, feedback regulation enhances robustness of a system in a common
environment. However, when faced with unknown perturbations, the same feedback
mechanisms can induce fragilities in the form of sustaiasdillations, causing system
failure??. Metabolic redundancy provides robustness via fail safe mechanisms, but
maintaining redundancy requires resources. While redundancy protects the cell in
certain environments, it also causes a fitness disadvantageviraaments in which

that specific type of redundance is not needéd

Robustness needs to be clearly distinguished from stability. While stability defines a
certain state the system operates in, robustness is defined by functionality, irrespective
of the state of the system. When a stable system is perturbed, there are basically three
possible outcomes. First, the system returns to the original state. Second, the system
loses stability, but transitions towards a new stable steady state. Third, the system
becomes unstable. The first and second cases are examples of robust behavior, even

though stability is transiently lost in the second c&sé(Figure2b).

In conclugn, biological systems are robust, and this robustness is achieved by feedback
control, modularity, and redundan&y*?22. However, the more a system is optimized
withstand known perturbations, the more fragile it becomes against other
perturbationg®. Thus, understanding metabolic robustness and its traffe is key to
understanding how cells adapt dynamically to changing environments, or perturbations

in general.
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1.1.3Dynamic control of metabolism

One of the most prevalent mechanisms for cells to aahiesbustness is feedback
control*'2 Feedback control is how a cell manages all steps between gene expression
and metabolism. Most commonly, feedback is executed via metabpfdein
interactions. Briefly, metabolites can transiently bind to certaimoins. If a
perturbation changes the concentration of that metabolite, saturation of the target
protein changes, often inducing structural change that increases or decreases its

activity?4,

Biochemical reactions are carried out by enzymes, and tieeiction rate depends on
enzyme specific parameters like the turnover number, and binding constants, and
enzyme abundance. The rate at which one metabolite is converted to another
metabolite defines the metabolic flux of a metabolic reactiorit is geneally assumed

that metabolic networks of exponentially growing cells operate in a steady state, in
which the concentration of each metabolite is time invarf&nfor example, in linear
metabolic pathways subsequent reactions must share the same metaldakc f
Perturbations, however, can cause a loss of a steady state, leading to metabolite
accumulations or depletions, and a change in metaboliéflgure2). Sincenetabolic

flux depends on enzyme abundance and enzyme activity, the cell can regulate flux by

using feedback control to change enzyme actj\atyenzyme abundance, or bath

One of the most important mechanisms to control enzymatic activity by metasoist
allosteric feedback regulatidnA different metabolite than the substrate or the product

of the enzyme binds to a binding pocket of the same enzyme that is not the catalytic
center. This metabolitenzyme interaction induces a conformational charajethe
enzyme structure, affecting enzyme activity within seconds of the interattidrus,
allosteric feedback regulation allows the cell to modulate metabolic flux by changing
enzyme activity in response to changes in metabolite levElgufe 3a). Besides
allosteric regulation, the activity of many enzymes is inhibited by metabolites that
compete with the substrate for a place in the active site. These metabadities
structurally resemblethe substrate®®. Other mechanisms to control protein activity

include acetylation, phosphorylation, and methylation. In contrast to transient
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metabolite-protein interactions, these mechanisms can be either reversible or

irreversible®,

a sllegizye iz e b G e paElnae

m1 reaction reaction
aIIostenc feedback trans_criptional feedback

o— — o—m O
_

m1  reaction m?2 m1 reaction

Figure 3. Allosteric feedback and transcriptional feedbac®range spheres are metabolites (m1 is the
substrate, m2 is the product). Solid arrows are metabolic reactions. Squares are enzymes that catalyse the
reactions. Dashed arrows are allosteric or transcriptional feedback regulations. Square and Sphere size
corresponds to the enzyme amount and metabolite amount. The amount of fill corresponds to the activity
of the enzyme. The thickness of the arrow corresponds to the magnitude of the reactiayAllosteric
feedback inhibition. An increase of m2 causetearease of the enzyme activity and a decrease of the
reaction flux.b) Transcriptional feedback inhibition. An increase of m2 causes a decrease of the enzyme
amount, and a decrease of the reaction flux.

The metabolic flux of an enzynroatalyzed reactioman also be modulated by changing
enzyme abundance~{gure3b). Enzyme abundance can be regulated transcriptionally
by transcription factors (TF3) transcriptionakttenuatior®?, or riboswitche®, but also

by changing the number of active ribosorffesTranscription factors are organized
hierarchically in the transcription regulation network (TRNIn the TRN there are local
transcription factors, which control epyme abundance of specific metabolic modules,
and there are global transcription factors that control genes of many different
modules®. Controlling enzyme abundance allows the cell to control its resources, and
similarly to allosteric regulation, some traeription factors can sense changes in

metabolite concentration®¥-3". Binding of a metabolite modulates the activity of the TF
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and thereby gene expression is controlled. For example, it was shown that the
transcription factor Cra can sense glycolytic fhy interacting with the metabolite
fructose-6-phosphaté’. Other examples can be found in amino acid metabolism, in
which the amino acid of a pathway controls enzyme levels of that pathway by interacting
with a local transcription factéf. Besides actitin of transcription factors by
metabolite binding, transcription factors can also sense a change of the pH, or oxidative

stresss,

Thus, to quickly adapt to new internal or external cues, the cell can adjust metabolic flux
by means of allosteric regulati,>* and enzyme abundance by means of transcriptional
regulatior?®. Both mechanisms have in common that metabolites are the key signaling
molecules. Although allosteric and transcriptional regulation have been studied for a
long time, many aspects of thdynamic control of metabolism remain elusive
Especially the interplay between both mechanisms has not been thoroughly

investigated ye¥.

1.1.4dentifcation of metaboliprotein interactions

The interaction between metabolites and proteins causesclange in the
physicochemical properties of the interactors, and approaches to try to identify
interactions are usually based on changes in these properties. These approaches focus

either on the protein or the metabolit€.

Historically,n vitro binding asays, combining a single enzyme with a single metabolite,
were carried out to identify binding constants from changes in protein propétfés
Mass spectrometrnpased proteomics and metabolomics approaches have been
developed to study metabolitprotein interactions systematically at a higher
throughput. For example, mass spectromebgsed proteomics was used to
systematically identify structural protein changes upon metabolite bindings in cell
lysateg®. More recently, an approach based on limited t@alysis was used to identify

ahitherto unprecedented number of metabolitprotein interactions irE. colt“.

However, while many metabolitprotein interactions were discovered this way, the
data are based on cell lysates, which may not be relewanivo. In contrast, mass
spectrometrybased proteomics was used to measure temperatbased changes of

protein stability in intact cells. This approach enabled the detection of multiple
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metabolite-protein interactions that caused a change in protein stadflit® Other
approaches focus more on metabolite changes upon protein binding. For example, NMR

was used to identify metabolites that interact with single protéins

While these approaches identified metabokpeotein interactions, an interaction alone
does not imply an underlying function. Functional interactions cause physiological
changes in the cell. The function of an interaction can then be inferred by analyzing
multi-omics data. A recent approach used a comprehensive jomiics data set
comprisirg 25 growth conditions in yeast and prior knowledge in form of simple

mathematical models to identify functional metabolipgotein interactiong®.

To understand regulation, cells are perturbed, and the function of the regulation is then
inferred from thedifferences between the original and the perturbed state. Common
perturbations are changes of carbon sourfesabiotic stresses, but also gene
knockout§®. Systematic analyses to assign function to metabdgiitatein interactions

use multtomics data. Foexample, correlating promoter activity with metabolomics
data showed that only a few metabolites regulate up to 90 % of experimentally
measured transcription chang®s In another study, allosteric regulators driving the
transition between different carbo sources were identified from correlating flux,

metabolome, and transcriptome data

In conclusion, there are many approaches that allow for the identification of metabolite
protein interactions. However, to determine their relevancevivg information from
multiple omics sources is required, and sometimes even prior knowledge in the form of
kinetic enzyme parameters is need@d Moreover, knockouts and environmental
perturbations cause very strong, and often global cellular responses, wigglprohibit

the identification of subtle regulatiori¥ Thus, to find subtle regulations, knockdowns
may be more suitable perturbations. This could be achieved by CRISPR interference,
which blocks transcription of a target gene, causing its dilution loytip®2. Finally,
mathematical models provide additional evidence that can be used in conjunction with

data, or independently, to identify and study functional metabefpi®tein interactions.
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1.2Systems biologgf metabolisnand nathematicainodelling

1.2.1Systems biology

Years of progress in molecular bioldigvegreatly increased the coverage of all layers
of cellular organization. Moreover, technological advances in genome etdjting
sequencingt, and mass spectromettyhave enabled the reseeh of complex biological
interactions that surpass the function of individual components. To achieve a system
level understanding, it is crucial to understand the design principles of biological
networks, and how these networks are controlled dynamié&alljowever, even though

it is now possible to measure systdavel data, the nodinear relationships between
different components prohibits an intuitive understanding and poses an obstacle during

data interpretation.
AQ—>Os

B] B[

[A] [A]
Model prediction Model validation

AQ—Os

Model adjustment

Figure 4. Modelexperimentation cycle In the beginning there is a conceptual hypothesis or a model
prediction about a process (purple). This hypothesis can be validated experimentally (blue). If the
experiment shows a different behaviour, the model needs to be tadjgreen). Then predictions are
made with the new model structure.

To understand complex interactions, and to organize disparate information,
mathematical models are invaluable tovlsMathematical models are reduced, or

abstracted simplifications oht real systems, and focus on the essential components
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and interactions As such, they allow us to contextualize data, to provide a means to
test, to verify and to generate new hypotheseBigure4)®8. They allow insights into
emergent system properties that are difficult to assess experimentally, like st&bility
and robustnes®. Especially in the field of metabolism, mathematical elsdalready

had a huge impact on our system understanding. These models can take on various

complexities, ranging from linear models to coarse grained, or mechanistic kinetic

modelgH27.5%61

1.2.2From stoichiometric tmechanisticnodels

Stoichiometric models A simple way to model metabolic networks are stoichiometric
models. These models employ the metabaligaction stoichiometry that is based on
genomescale metabolic reconstructioh®. The latest metabolic reconstruction &f

coli contains 1,515 metatlic genes, 1,192 unique metabolites and 2,719 metabolic
reaction§. A modelling approach tha¢mploys network stoichiometry to calculate
metabolic fluxes is Flux Balance Analysis (®BABA assumes a steady state in which all
metabolic concentrations ahreaction fluxes are time invariant. Linear programming is
then used to find a flux distribution that optimizes a biologically relevant objective
function (e.g. maximizing the growth raf) FBA has been successfully used to
quantitatively predict growthrates®, gene essentialit§; and production rates/yields of
commercially valuable metabolités Although FBA predicts metabolic fluxes with high
accuracy, it does not allow to study system dynamics. Therefore, FBA is unsuitable to
answer how fluxes areachieved®, nor is it suited to studydynamic controlof

metabolism.

To study the dynamics of metabolism, kinetic models based on ordinary differential
equations (ODEs) can be used. There are cegnaeed kinetic models that describe
dynamic systems ph@menologically, and there are mechanistic kinetic models that try
to describe the molecular interactions in deféilRecently, coarse grained models have
described fundamental principles of bacterial physiofdgy”:5¢ For example, a simple
model with feedback inhibition and feetbrward activation predicted that keto acid
abundance controls the cAMtRependent catabolite repression i. coft. Although
coarsegrained models provide a basic understanding of metabolism, they are

unsuitable to studyletailed molecular mechanisitts
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Mechanistic models Mechanistic models are the most detailed mathematical
representations of metabolism. For example, mechanistic models of metabolic
pathways employ network stoichiometry, and detailed kinetic #aes for each
enzymatic reaction step. As such, they allow to study dynamic interactions like allosteric
regulatiorf%"1, Over the years, rate laws of various complexities have emerged to model

enzymatic reaction ratég70.72
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"%' (&
(O]
(]
& €
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(D
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V=V —— ,
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S+K_ ’
V. =k-E . o
max 2 Substrate concentration, S

Figure 5. MichaelisMenten equation.a) Reaction scheme of the Michadlitenten equation. S is the
substrate of the enzyme E. ES is the enzyme substrate complex. P is the product of thekeaetinass

action reaction constants. Assumptions lead to the simeglifreversible Michaelislenten equation with

the parameters Vmax and Km. Vmax is the product of the turnover number k2 and the enzyme amount E.
b) MichaelisMenten plot. The reaction rate V is plotted against the substrate concentration S. The curve
asymptoticallyapproached/max. At Vmax/2 the substrate concentration equals Km.

One of the besknown mechanistic rate laws is the Michaédenten equation Figure

5a), which describes a hyperbolic relationship between substrate concentration and
reaction rate Figure5b)’3. The conversion of the substrate requires several elemental
steps, which are modelled as a systenO&fEsising massaction kineticg. To allow for

a tractable model analysis, the model is simplified by making assumftiofke
simplifications assume a steady state, excess of substrate ammuearrsible product
formation rate. These assumptions yield a simplified kinetic model with two lumped
kinetic parameters (& Vimax), Which can be determineith vitro (Figure5a). Because of

its simplicity and practical relevance, Michaéllenten kinetics have been used

frequently to model metabolic reactions. For example, the kinetic moesdti457 was
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modelled using mainly Michaeldenten kineticg®. Here, the pedicted Michaelis
Menten constants matched experimentally determined paramefersiowever, for
many enzymes the rate laws and kinetic parameters remain unknownnantto data
may not be appropriate to studin vivo systems®. This lack of knowledge mexk it

difficult to build accurate mathematical models.

1.2.3Addressing model uncertaintiwghensemble modelling

Mathematical models of metabolism suffer from epistemic uncertainty, that is the lack
of knowledge about interactions, rafaws, andkinetic parameter§. Even though,
recent studies suggested that kinetic parameters may be less important than model
structure, these uncertainties still prohibit the design of accurate mechanistic

modelg87°,

Ensemble modelling has been usedidentify model parameters, and to find new
physical interactions. The common denominator of all ensemble modelling approaches
is the formulation of multiple alternative models that represent different
hypothese$!8%81 The idea is that an ensemble of tiyple models is more accurate than
only a single model. For example, the models of an ensemble can all differ in their kinetic

parameters Figure6a), or they can difr in their physical interaction$-{gure6b).
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Figure6. Ensemble modellinga) Ensemble of a kinetic metabolic model with two metabolitear{ge
spheres), three reactions (solid arrows) and allosteric feedback (dashed arrow). Blue boxes are models of
the ensemble with the same model structure but different kinetic parameters. The graph shows the
metabolic flux time course of the ensembld.Abdels reach the same steady state flux, but they have
different time coursesb) Ensemble of structural models. Grey spheres are known components of the
system and solid lines are known interactions between the known components (core model). Orange
sphees are components for which there are no known interactions. Enumerated dashed arrows are
potential interactions. Each model in the ensemble contains the core model and one additional new
interaction.
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To identify kinetic parameters of a mechanistic modemetabolic ensemble modelling
approach constructs several models (an ensemble of models) that share the same
structure and stoichiometry. Then, all models of the ensemble are constrained to the
same steady state fld%’L Free parameters are then calated by random sampling
from biologically relevant intervals, and the remaining parameters are calculated. Thus,
all models in the ensemble reach the same steady state flux, but because each model
has a unique set of kinetic parameters, the respectiveattyics are differentigure6a).

By constraining all fluxes to the same steady state flux, the number of feasible kinetic
parameters is reduced to biologically relevgarameterg®. In the original study, the
models were then tested against experimental data by simulating gene expression
changes. Only 1/1010 parameter correctly predicted the experimental data, and the
single model was then selected to make further potidns’®. In a different application,
metabolic ensemble modelling has been used to study robustness of (engineered)

metabolic networks against strong changes in enzyme concentratfons.

Besides knowledggaps in kinetic parameters and rate laws, basic physical interactions
may be unknown. To identify unknown interactions in the mTOR pathway of
SaccharomyceserevisiadS. cerevisiaga core model based on current knowledge was
built. Thecore model was then extended by single additional interactiéfiguie6b).

That resulted in an ensemble of 18 models that shared the same model core and differed
only in a single interaction. Comparing the model simulations to experimental data then

revealed the interaction that best explained the d&ta

Moreover, ensemble modelling was used to identify functional allosteric regulations. In
this study, glycolysis wasodelled with an ensemble of 126 different combinations of
allosteric feedback regulations. Together with experimental data, the approach revealed
that pyruvate allosterically activates the fructedegs-bisphosphatase, and that this
interaction is cruciafor E. colito reversibly switch between gluconeogenesis and

glycolysi&.

In conclusion, mechanistic models of biological processes suffer from uncertainties in
model parameters and in model structures. These uncertainties can be addressed by
ensemble mdelling techniques. Ensemble modelling uses multiple models with

different kinetic parameters, or different model structures to make predictions, which
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acknowledges uncertainty, and allows for more general predictions than using only a

single model-8.84

1.2.4Stability and robustness @ynamic systems

As already discussed Chapter 1.1.2stability and robustness are emergent properties
of biological systems that are crucial for the cell to survive and a&pHowever, while
stability and robustness amifficult to assess experimentally, mathematics provide the

means to define and analyse these emergent system propé&fties

Stability. The linear stability of a system @DESs defined at a fixed point or steady
state, in which all relevant system valies are time invariant. Then, a variable of the
system is perturbed by a small amount. If the system returns to the same state, the
system is linear stable, otherwise the system is linear unstable. This behaviour is
illustrated inFigure7a. The function has two steady states (blue and orange sphere).
The arrows indicate the velocity (dX/dt) of X when the steady state is perturbed slightly.
The bluesphere always returns to the steady state (stable) and the orange sphere moves

away from the steady state (unstable).

Mathematically, stability can be assessed by approximating the system at the fixed point
by a Taylor series. The Taylor series is theraftat the linear term, and the eigenvalue
of that term defines if the system is linear stable or unstable. For ODEs of order two or
higher, the Jacobian matrix, a systewde linearization, is calculated. Consider a system
with two coupled equations (fIf2), two variables (x %), and kinetic parameters (p)
that is in steady state:

Qw . "Q oy hop i

T~ O(JL) hJL) m “Q(‘A)F] F(bﬁ T

o 1.1)

The system is linearized around the steady state by calculating the pdetiahtives

with respect to the variables x1 and x2. This is the Jacobian matrix, J:

7 Q j—Ql’l

‘® M g0 o, 1.2)
1 ® Q1 Qu
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Figure7. Stability and Robustnesa) Graphical description of linear stability. The first temporal derivative

of X (dX/dt) is plotted against X. The function has two steady states (dX/dt = 0, blue and orange sphere).
The arrows denote the direction the sphere moves when X is perturbedysligig blue steady state is
stable, because the sphere moves back to the steady state after it is perturbed. The orange steady state is
unstable, because the orange sphere moves away from the steady state after a perturbeBidncation
analysis. ¥sis the state variable X in steady state. The blue sphere is the starting steady state of the
analysis. Each point of the black line contains stable steady states for different values of the parameter P.
The red sphere indicates a bifurcation point at White system becomes unstable (red area).

The linear stability of the system is then determined by the eigenvalues of the Jacobian
matrix. The system is linear stable if all eigenvalues are negative. The system is linear

unstable, if at least one eigeniu is positive®.

Robustness Robustness is a property that preserves functionality despite
perturbations*2 In mathematical models, perturbations can be simulated by varying
a kinetic parameter. In a bifurcation analysis, the system is initiallystalzde steady
state. Then, as a parametpiis varied, the system moves along a plane of stable steady
states. The system becomes unstable at the bifurcation point that defines the boundary
between a stable and unstable parameter spa€gre7b). Robustness can then be
defined as the degree of the perturbation that can be tolerated until the system
becomes unstabf. For example, consider an ODEBtieady state, in whichsxare the

variables in steady state and p is a kinetic parameter that is varied iteratively.

20 0w 1.3
X whm T 1.3)

In steady state, the derivative of E§p) with respect to the parameters is also zero:
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Q@ ] 0w 10
Qn 76O TQR 1N

(1.4)

Rearranging the equation yields an expression that describes changes in a steady state

as a parameter p is varied iteratively.

@ 10° %L"O (15)
Qn 1w n

This expression contains the inverse of the Jacobian Matrix. If the Jacobian matrix has
full rank, matrix inversion is possible. A bifurcation point is reached when the Jacobian
matrix becomes singular. At this point, matrix inversion is no longer possibtethe
system becomes unstablén conclusion, stability and robustness of mathematical

models can be analysed by linear stability analysis and bifurcation afalysis

Linearization of a model at a steady state resembles weak perturbations, and paramete
continuation by bifurcation analysis resembles strong perturbations. These concepts
have been used to study dynamic systems. For example, Metabolic Control Analysis
(MCA) studies the global consequences of small local perturb&fioAsiditionally,
parameter continuation methods have been used to simulate gene overexpression in

the context of metabolic engineerifi§

1.3Modellingnetabolism and transcriptional regulation

Metabolic networks consist of multiple enzyratalysed reactions that all have a
specific metabolic flux that is balanced throughout the network during exponential
growth®l, The metabolic flux of a metabolic reaction depends on specific kinetic enzyme
parameters (e.g. Km, and the turnover number) and enzyme abundaffcé When
metabolism is perturbed by internal or external cues, the flux often needs to be adjusted
by the cell to avoid accumulation or depletion of metabofitesThe flux of single
enzymatic reactions can then be modulateg allosteric feedback control, and by
chandng enzyme abundance via transcriptional regulatiqfigure 8). However,
although both mechanisms are mediated by metabejitetein interactions, it is still
unclea how they work togethe®. For example, it was shown that changes of

transcriptional rates are bad predictors of metabolic #fijxand the reason for this
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behaviour is likely that enzymes are overabundant and usually not saturated by their

substrate$§80,

Figure 8. Allosteric regulation and transcriptional regulatianOrange spheres are metabolites. The
horizontal arrow is reaction 1 (rl) that is catalyzed by the enzyme E (blue square). The fill of E indicates
the enzymenctivity (high fill: high activity, low fill: low activity). The TF is a blue box and the fill of the box
indicates TF activity (high fill: high activity, low fill: low activity). The dashed blunt arrows indicate negative
allosteric and negative transcripnhal feedback. The vertical pointed arrow indicates positive regulation

of gene expression by the TF. Metabolite abundance affects enzyme and TF activity by allosteric and
transcriptional feedback. The TF activity influences the enzyme abundance.

To better understand crosstalk between metabolism and transcription, mechanistic
mathematical models are required that integrate both layers. There are many
mathematical models that either describe metabolism or the transcription regulation
network. Howeverthere are only few mathematical models that mechanistically link

both layerg®. 7991

Early models that combined metabolism and transcriptional regulation were developed
based on the biochemical systems theory approach that uses-iyst8m formalism to
approximate mechanistic rate laf’s For example, the autogenous regulation of a gene
expression operon was compared to the inducible regulation approach regarding
stability, robustness, and substrate overshoot. The model consisted of three layers and
there was feedback between metabolism and transcription, and feedback between
translation and transcription. The model predicted that the autogenous mechanism
scores better when the system is controlled by a repressor. The opposite was predicted

when the systen is controlled by an activat®t
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