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Abstract 

II Abstract 

Microbial metabolism is feedback regulated on many layers. Feedback control can be 

executed by metabolite-protein interactions to allosterically control enzyme activity, 

and to transcriptionally control enzyme abundance, providing cells with robustness to 

withstand, and adapt to perturbations. However, these interactions contribute to the 

complexity of metabolism and prohibit an intuitive understanding. To gain a deeper 

understanding of metabolism, mechanistic mathematical models are useful tools to 

simplify complex interrelationships. In this thesis, we developed mathematical models 

to study allosteric feedback, transcriptional feedback, and the interplay of both 

mechanisms. Then, we used this knowledge to develop a method to map feedback 

regulation between metabolism and transcription in E. coli metabolism. Since high-

quality metabolite data are crucial to study metabolism, we finish this thesis with two 

chapters on mass spectrometry-based metabolomics. 

After providing a general introduction in Chapter 1, we develop a mathematical model 

of amino acid biosynthesis in Chapter 2 to study the interplay between allosteric 

feedback and transcriptional feedback. We showed that both feedbacks act in concert 

to balance robustness and efficiency. In Chapter 3, we developed a mathematical model 

of glycolysis that is transcriptionally regulated by the transcription factor Cra, to study 

metabolic burden in glycerol-producing E. coli. A robustness analysis revealed that Cra 

regulation causes growth defects and low glycerol titers in E. coli, and that this burden 

can be solved by engineering Cra regulation into the glycerol pathway. In Chapter 4, we 

developed a mathematical model to understand the implications of an ornithine-based 

allosteric activation at the branch point between arginine and pyrimidine biosynthesis. 

We showed that the feedback activation buffers upstream perturbations and thereby 

stabilizes pathway end products. In Chapter 5 we investigated causes for periodic 

pyruvate oscillations using a mathematical model of glycolysis. We show that feed 

forward activation of the pyruvate kinase and high saturation of the pyruvate 

dehydrogenase contribute to pyruvate oscillations. In Chapter 6 we performed 

knockdowns of 283 genes of E. coli metabolism and measured proteome and 

metabolome of the perturbed strains. A pathway-based analysis allowed us to map 

feedback regulation between metabolism and transcription using proteome and 
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metabolome data. In Chapter 7 we analysed and validated the mass spectrometry-

based flow-injection metabolomics approach with 160 spike-in samples. We showed 

that flow-injection causes complex MS1 spectra that can lead to false positive peak 

annotations. Finally, we concluded this thesis in Chapter 8 by developing an approach 

to generate reference fragments for low-abundant, or commercially unavailable 

metabolites to complement reference databases. We showed a proof of principal for 

two metabolites.  
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III Zusammenfassung 

Der mikrobielle Stoffwechsel ist komplex und wird durch Feedback Regulation auf vielen 

Ebenen reguliert. Feedback Regulation kann durch Metabolit-Protein Interaktionen 

ausgeführt werden, die allosterisch Enzymaktivität, oder transkriptionell Enzymmengen 

regulieren. Diese Regulationsmechanismen erlauben es den Zellen Störeinflüssen zu 

widerstehen und sich an die neuen Gegebenheiten anzupassen. Jedoch tragen diese 

Interaktionen zur Komplexität des Stoffwechsels bei, was ein Intuitives Verständnis 

erschwert. Um ein tieferes Verständnis des Stoffwechsels zu erreichen können 

mathematische Modelle genutzt werden, um komplexe Sachverhalte zu vereinfachen. 

In dieser Arbeit entwickeln wir mathematische Modelle um allosterische Feedback 

Regulation, transkriptionelle Feedback Regulation und das Zusammenspiel beider 

Mechanismen zu verstehen. Darüber hinaus nutzen wir dieses Wissen, um Feedack 

Mechanismen zwischen Metabolismus und Transkription zu kartieren. Da hochwertige 

Metabolit Daten für diese Aufgaben erforderlich sind, beschäftigen wir uns zum Schluss 

mit Massenspektrometrie-basierter Metabolomik. 

Nach einer allgemeinen Einleitung in Kapitel 1 entwickeln wir in Kapitel 2 ein 

mathematisches Modell des Aminosäurestoffwechsels, um das Zusammenspiel 

zwischen allosterischer Regulation und transkriptioneller Regulation besser zu 

verstehen. Wir zeigen, dass beide Feedback Mechanismen benötigt werden um ein 

Gleichgewicht zwischen Robustheit und Effizienz einzustellen. In Kapitel 3 entwickeln 

wir ein transkriptionell reguliertes mathematisches Modell der Glykolyse, um die 

metabolische Belastung von Glycerol produzierenden E. coli zu verstehen. Wir zeigen, 

dass transkriptionelle Regulation durch Cra in Glycerol produzierenden E. coli zu 

niedrigen Wachstumsraten und Glycerol Titern führt und dass konstruierte Cra 

Regulation der Glycerol Synthese die Wachstumsrate stabilisiert und Glycerol Titer 

erhöht. In Kapitel 4 entwickeln wir ein mathematisches Model, um den Einfluss einer 

Ornithin-basierten allosterischen Feedback Aktivierung auf den Knotenpunkt der 

Arginin- und Pyrimidin Biosynthese zu charakterisieren. Wir zeigen, dass die Feedback 

Aktivierung Perturbationen stromaufwärts kompensiert und dadurch die Endprodukte 

der Arginine und Pyrimidin Biosynthese stabilisiert. Anschließend entwickeln wir in 

Kapitel 5 ein mathematisches Modell der Glykolyse und untersuchen dieses auf die 
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Ursachen von Pyruvat Oszillationen. Wir zeigen, dass die Feedforward Regulation der 

Pyruvatkinase, sowie das Sättigungsverhalten der Pyruvat Dehydrogenase entscheidend 

sind für die Entstehung von Pyruvat Oszillationen. 

In Kapitel 6 regulieren wir 283 metabolische Gene im Stoffwechsel von E. coli genetisch 

herunter und messen anschließend Protein- und Metabolitänderungen. Mit Hilfe dieser 

Daten kartieren wir dann Feedback Regulation zwischen Metabolismus und 

Transkription in E. Coli. 

In Kapitel 7 analysieren und validieren wir die Massenspektrometrie-basierte 

Fließeinspritzung, indem wir E. coli Extrakte mit 160 individuellen Metabolit Standards 

versetzen. Wir zeigen, dass die Methode komplexe Spektren erzeugt, die zu falsch-

positiven Peak Annotierungen führen können. 

In Kapitel 8 beenden wir diese Arbeit mit der Entwicklung einer Methode zur 

Generierung von Referenz Fragmenten für niedrig abundante, oder kommerziell nicht 

verfügbare Metabolite, um Referenzdatenbanken zu komplementieren. Wir zeigen das 

Prinzip der Methode für zwei Metabolite. 
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Chapter 1  General introduction 

1.1 Structure and function of the metabolic network of Escherichia 

coli 

1.1.1 Structure and function of the metabolic network 

Metabolism is executed by a network of biochemical reactions that convert nutrients 

via various intermediary metabolites into energy and building blocks that are required 

for cell growth. Despite 3.7 billion years of divergent evolution, the basic structure of 

metabolic networks is highly conserved across the tree of life, and basically all life forms 

rely on a similar set of metabolites1. Metabolites allow the cell to sense environmental 

changes, provide a means for cell-to-cell communication, and can act as defense 

mechanism2. For all living organism, the structure of the metabolic network is encoded 

on their genomes. According to the central dogma of molecular biology, genes are 

transcribed into mRNA, which are then translated into enzymes that catalyzes chemical 

reactions with high selectivity3. Together, multiple enzymatic reactions are organized in 

modular, yet densely connected metabolic pathways2. The pathways can be broadly 

grouped into catabolism and anabolism4,5 (Figure 1). Catabolism breaks down nutrients 

to produce anabolic building blocks and energy in the form of adenosine triphosphate 

(ATP). For example, glycolysis is an important catabolic pathway that converts glucose 

to pyruvate and energy. Anabolism uses intermediates and energy to produce building 

blocks required for cell growth. An example for anabolism is amino acid biosynthesis. 

For each of the 20 proteinogenic amino acids, precursors from central metabolism are 

converted into the final amino acids by multiple enzyme-catalyzed reaction steps. 

For the well-studied model organism Escherichia coli (E. coli) the structure and 

stoichiometry of the metabolic network is assumed to be largely complete6,7. Despite 

that, we know little about how E. coli maintains and adapts its metabolism dynamically 

in changing environments. Filling this knowledge gap is important to design better 

production strains in biotechnology8, to help in understanding microbial communities9, 

and to help in understanding diseases with metabolic phenotypes10. 
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Figure 1. Central dogmatic flow of information, catabolism, and anabolism. Genes are pointed boxes. 
Enzymes are blue squares. Metabolites are orange spheres. Black arrows are metabolic reactions. Grey 
arrows indicate the information flow as defined in the central dogma of molecular biology. Genes are 
transcribed into mRNA. mRNA is translated into enzymes. Enzymes catalyse biochemical reactions. In 
catabolism, the enzymes convert nutrients into ATP and precursor metabolites. In anabolism, enzymes 
produce biosynthetic precursors (amino acids, nucleotides, lipids) from precursors and ATP. The 
biosynthetic precursors are required for transcription and translation. 

 

1.1.2 Robustness of metabolism 

Cells constantly encounter internal and external perturbations, such as temperature 

gradients and changes of nutrient availability. To survive, grow, and evolve, they need 

to be robust enough to cope with these perturbations. Robustness is an emergent 

property of biological systems that allows them to maintain function amidst various 

perturbations11,12. 

To understand metabolism, it is crucial to understand the mechanisms that ensure 

robustness. Although there is no unifying way to describe robustness theoretically or 

experimentally yet13, there are simple mechanisms that enable metabolic robustness. 

These general mechanisms are based on system control, modularity, and 

redundancy11,12 (Figure 2a). System control uses negative and positive metabolic 

feedback to adjust metabolic rates and metabolite levels to new conditions.  
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Figure 2. Principles of biological robustness. a) Examples of system control, modularity, and redundancy 
in metabolic networks. Spheres are metabolites and solid arrows are metabolic reactions. (Left) System 
control is achieved by negative feedback (blunt dashed arrow) and positive feedback (pointed dashed 
arrow). (Middle) Modularity is achieved by spatial and functional separation of metabolic pathways. 
Different pathway modules are coloured. (Right) Redundancy is achieved by different enzymes that 
catalyse the same reaction, for example PfkA and PfkB in glycolysis. b) Example of how a perturbation 
affects a cellular state. (1) The system returns immediately to the same steady state. (2) The system loses 
stability transiently (State 1), and transitions to a new steady state (State 2). (3) the system loses stability 
and becomes unstable.  

 

One common way metabolism executes feedback control is via metabolite-protein 

interactions, in which binding of a metabolite modulates protein activity7. While 

negative feedback enables robust adaptation14, positive feedback enhances sensitivity, 

allowing the system to switch between different states11. 

Redundancy is based on alternative paths that can carry out the same function. For 

example, ATP can be produced via oxidative phosphorylation and by glycolysis. While 

oxidative phosphorylation requires oxygen, glycolysis can still produce ATP under 

anaerobic conditions, albeit less efficiently12. Another way to achieve metabolic 

redundancy is by gene duplications. For example, the genes pfkA and pfkB produce two 

isoforms of the phosphofructokinase (PFK) that have overlapping functions and catalyze 

the same reaction in glycolysis15. 
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Modularity means that metabolism is composed of a diverse set of functional units. Due 

to functional and spatial separation, perturbations are kept local, which prevents system 

failure and cell death16. Moreover, modularity enables evolution by creating a robust 

core that is then augmented by additional modules, which often share a set of recurring 

network motifs17,18. 

Although these mechanisms are crucial for surviving, the cell faces hard trade-offs to 

achieve robustness19. Complex systems evolved robustness to handle certain conditions 

or perturbations. However, the same mechanisms that allow the systems to be robust 

against known perturbations render them fragile against unknown or rare 

perturbations, as defined by the theory of highly optimized tolerance19ς21. 

For example, feedback regulation enhances robustness of a system in a common 

environment. However, when faced with unknown perturbations, the same feedback 

mechanisms can induce fragilities in the form of sustained oscillations, causing system 

failure22. Metabolic redundancy provides robustness via fail safe mechanisms, but 

maintaining redundancy requires resources. While redundancy protects the cell in 

certain environments, it also causes a fitness disadvantage in environments in which 

that specific type of redundance is not needed23. 

Robustness needs to be clearly distinguished from stability. While stability defines a 

certain state the system operates in, robustness is defined by functionality, irrespective 

of the state of the system. When a stable system is perturbed, there are basically three 

possible outcomes. First, the system returns to the original state. Second, the system 

loses stability, but transitions towards a new stable steady state. Third, the system 

becomes unstable. The first and second cases are examples of robust behavior, even 

though stability is transiently lost in the second case12,13 (Figure 2b). 

In conclusion, biological systems are robust, and this robustness is achieved by feedback 

control, modularity, and redundancy11,12 22. However, the more a system is optimized to 

withstand known perturbations, the more fragile it becomes against other 

perturbations20. Thus, understanding metabolic robustness and its trade-offs is key to 

understanding how cells adapt dynamically to changing environments, or perturbations 

in general.  
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1.1.3 Dynamic control of metabolism 

One of the most prevalent mechanisms for cells to achieve robustness is feedback 

control11,12. Feedback control is how a cell manages all steps between gene expression 

and metabolism. Most commonly, feedback is executed via metabolite-protein 

interactions7. Briefly, metabolites can transiently bind to certain proteins. If a 

perturbation changes the concentration of that metabolite, saturation of the target 

protein changes, often inducing structural change that increases or decreases its 

activity24. 

Biochemical reactions are carried out by enzymes, and their reaction rate depends on 

enzyme specific parameters like the turnover number, and binding constants, and 

enzyme abundance. The rate at which one metabolite is converted to another 

metabolite defines the metabolic flux of a metabolic reaction25. It is generally assumed 

that metabolic networks of exponentially growing cells operate in a steady state, in 

which the concentration of each metabolite is time invariant26. For example, in linear 

metabolic pathways subsequent reactions must share the same metabolic flux. 

Perturbations, however, can cause a loss of a steady state, leading to metabolite 

accumulations or depletions, and a change in metabolic flux27 (Figure 2). Since metabolic 

flux depends on enzyme abundance and enzyme activity, the cell can regulate flux by 

using feedback control to change enzyme activity, or enzyme abundance, or both28. 

One of the most important mechanisms to control enzymatic activity by metabolites is 

allosteric feedback regulation7. A different metabolite than the substrate or the product 

of the enzyme binds to a binding pocket of the same enzyme that is not the catalytic 

center. This metabolite-enzyme interaction induces a conformational change of the 

enzyme structure, affecting enzyme activity within seconds of the interaction24. Thus, 

allosteric feedback regulation allows the cell to modulate metabolic flux by changing 

enzyme activity in response to changes in metabolite levels (Figure 3a). Besides 

allosteric regulation, the activity of many enzymes is inhibited by metabolites that 

compete with the substrate for a place in the active site. These metabolites often 

structurally resemble the substrates29. Other mechanisms to control protein activity 

include acetylation, phosphorylation, and methylation. In contrast to transient 
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metabolite-protein interactions, these mechanisms can be either reversible or 

irreversible30. 

 

Figure 3. Allosteric feedback and transcriptional feedback. Orange spheres are metabolites (m1 is the 
substrate, m2 is the product). Solid arrows are metabolic reactions. Squares are enzymes that catalyse the 
reactions. Dashed arrows are allosteric or transcriptional feedback regulations. Square and Sphere size 
corresponds to the enzyme amount and metabolite amount. The amount of fill corresponds to the activity 
of the enzyme. The thickness of the arrow corresponds to the magnitude of the reaction flux a) Allosteric 
feedback inhibition. An increase of m2 causes a decrease of the enzyme activity and a decrease of the 
reaction flux. b) Transcriptional feedback inhibition. An increase of m2 causes a decrease of the enzyme 
amount, and a decrease of the reaction flux. 

 

The metabolic flux of an enzyme-catalyzed reaction can also be modulated by changing 

enzyme abundance (Figure 3b). Enzyme abundance can be regulated transcriptionally 

by transcription factors (TFs)31, transcriptional attenuation32, or riboswitches33, but also 

by changing the number of active ribosomes34. Transcription factors are organized 

hierarchically in the transcription regulation network (TRN)35. In the TRN there are local 

transcription factors, which control enzyme abundance of specific metabolic modules, 

and there are global transcription factors that control genes of many different 

modules36. Controlling enzyme abundance allows the cell to control its resources, and 

similarly to allosteric regulation, some transcription factors can sense changes in 

metabolite concentrations36,37. Binding of a metabolite modulates the activity of the TF 
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and thereby gene expression is controlled. For example, it was shown that the 

transcription factor Cra can sense glycolytic flux by interacting with the metabolite 

fructose-6-phosphate37. Other examples can be found in amino acid metabolism, in 

which the amino acid of a pathway controls enzyme levels of that pathway by interacting 

with a local transcription factor36. Besides activation of transcription factors by 

metabolite binding, transcription factors can also sense a change of the pH, or oxidative 

stress38. 

Thus, to quickly adapt to new internal or external cues, the cell can adjust metabolic flux 

by means of allosteric regulation,24 and enzyme abundance by means of transcriptional 

regulation39. Both mechanisms have in common that metabolites are the key signaling 

molecules. Although allosteric and transcriptional regulation have been studied for a 

long time, many aspects of the dynamic control of metabolism remain elusive7. 

Especially the interplay between both mechanisms has not been thoroughly 

investigated yet28. 

1.1.4 Identification of metabolite-protein interactions 

The interaction between metabolites and proteins causes a change in the 

physicochemical properties of the interactors, and approaches to try to identify 

interactions are usually based on changes in these properties. These approaches focus 

either on the protein or the metabolite40. 

Historically, in vitro binding assays, combining a single enzyme with a single metabolite, 

were carried out to identify binding constants from changes in protein properties41,42. 

Mass spectrometry-based proteomics and metabolomics approaches have been 

developed to study metabolite-protein interactions systematically at a higher 

throughput. For example, mass spectrometry-based proteomics was used to 

systematically identify structural protein changes upon metabolite bindings in cell 

lysates43. More recently, an approach based on limited proteolysis was used to identify 

a hitherto unprecedented number of metabolite-protein interactions in E. coli44. 

However, while many metabolite-protein interactions were discovered this way, the 

data are based on cell lysates, which may not be relevant in vivo. In contrast, mass 

spectrometry-based proteomics was used to measure temperature-based changes of 

protein stability in intact cells. This approach enabled the detection of multiple 
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metabolite-protein interactions that caused a change in protein stability45,46. Other 

approaches focus more on metabolite changes upon protein binding. For example, NMR 

was used to identify metabolites that interact with single proteins47. 

While these approaches identified metabolite-protein interactions, an interaction alone 

does not imply an underlying function. Functional interactions cause physiological 

changes in the cell. The function of an interaction can then be inferred by analyzing 

multi-omics data. A recent approach used a comprehensive multi-omics data set 

comprising 25 growth conditions in yeast and prior knowledge in form of simple 

mathematical models to identify functional metabolite-protein interactions48. 

To understand regulation, cells are perturbed, and the function of the regulation is then 

inferred from the differences between the original and the perturbed state. Common 

perturbations are changes of carbon sources49, abiotic stresses, but also gene 

knockouts50. Systematic analyses to assign function to metabolite-protein interactions 

use multi-omics data. For example, correlating promoter activity with metabolomics 

data showed that only a few metabolites regulate up to 90 % of experimentally 

measured transcription changes51. In another study, allosteric regulators driving the 

transition between different carbon sources were identified from correlating flux, 

metabolome, and transcriptome data49. 

In conclusion, there are many approaches that allow for the identification of metabolite-

protein interactions. However, to determine their relevance in vivo, information from 

multiple omics sources is required, and sometimes even prior knowledge in the form of 

kinetic enzyme parameters is needed48. Moreover, knockouts and environmental 

perturbations cause very strong, and often global cellular responses, which may prohibit 

the identification of subtle regulations49. Thus, to find subtle regulations, knockdowns 

may be more suitable perturbations. This could be achieved by CRISPR interference, 

which blocks transcription of a target gene, causing its dilution by growth52. Finally, 

mathematical models provide additional evidence that can be used in conjunction with 

data, or independently, to identify and study functional metabolite-protein interactions. 
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1.2 Systems biology of metabolism and mathematical modelling  

1.2.1 Systems biology 

Years of progress in molecular biology have greatly increased the coverage of all layers 

of cellular organization. Moreover, technological advances in genome editing53, 

sequencing54, and mass spectrometry55 have enabled the research of complex biological 

interactions that surpass the function of individual components. To achieve a system-

level understanding, it is crucial to understand the design principles of biological 

networks, and how these networks are controlled dynamically56. However, even though 

it is now possible to measure system-level data, the non-linear relationships between 

different components prohibits an intuitive understanding and poses an obstacle during 

data interpretation. 

 

Figure 4. Model-experimentation cycle. In the beginning there is a conceptual hypothesis or a model 
prediction about a process (purple). This hypothesis can be validated experimentally (blue). If the 
experiment shows a different behaviour, the model needs to be adjusted (green). Then predictions are 
made with the new model structure. 

 

To understand complex interactions, and to organize disparate information, 

mathematical models are invaluable tools57. Mathematical models are reduced, or 

abstracted simplifications of the real systems, and focus on the essential components 
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and interactions. As such, they allow us to contextualize data, to provide a means to 

test, to verify, and to generate new hypotheses (Figure 4)58. They allow insights into 

emergent system properties that are difficult to assess experimentally, like stability14 

and robustness13. Especially in the field of metabolism, mathematical models already 

had a huge impact on our system understanding. These models can take on various 

complexities, ranging from linear models to coarse grained, or mechanistic kinetic 

models4,27,59ς61. 

1.2.2 From stoichiometric to mechanistic models 

Stoichiometric models. A simple way to model metabolic networks are stoichiometric 

models. These models employ the metabolite-reaction stoichiometry that is based on 

genome-scale metabolic reconstructions6,62. The latest metabolic reconstruction of E. 

coli contains 1,515 metabolic genes, 1,192 unique metabolites and 2,719 metabolic 

reactions6. A modelling approach that employs network stoichiometry to calculate 

metabolic fluxes is Flux Balance Analysis (FBA)61. FBA assumes a steady state in which all 

metabolic concentrations and reaction fluxes are time invariant. Linear programming is 

then used to find a flux distribution that optimizes a biologically relevant objective 

function (e.g. maximizing the growth rate)63. FBA has been successfully used to 

quantitatively predict growth rates64, gene essentiality,65 and production rates/yields of 

commercially valuable metabolites66. Although FBA predicts metabolic fluxes with high 

accuracy, it does not allow to study system dynamics. Therefore, FBA is unsuitable to 

answer how fluxes are achieved60, nor is it suited to study dynamic control of 

metabolism. 

To study the dynamics of metabolism, kinetic models based on ordinary differential 

equations (ODEs) can be used. There are coarse-grained kinetic models that describe 

dynamic systems phenomenologically, and there are mechanistic kinetic models that try 

to describe the molecular interactions in detail60. Recently, coarse grained models have 

described fundamental principles of bacterial physiology4,67,67,68. For example, a simple 

model with feedback inhibition and feed-forward activation predicted that keto acid 

abundance controls the cAMP-dependent catabolite repression in E. coli4. Although 

coarse-grained models provide a basic understanding of metabolism, they are 

unsuitable to study detailed molecular mechanisms60. 
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Mechanistic models. Mechanistic models are the most detailed mathematical 

representations of metabolism. For example, mechanistic models of metabolic 

pathways employ network stoichiometry, and detailed kinetic rate-laws for each 

enzymatic reaction step. As such, they allow to study dynamic interactions like allosteric 

regulation69ς71. Over the years, rate laws of various complexities have emerged to model 

enzymatic reaction rates69,70,72. 

 

Figure 5. Michaelis-Menten equation. a) Reaction scheme of the Michaelis-Menten equation. S is the 
substrate of the enzyme E. ES is the enzyme substrate complex. P is the product of the reaction. k are mass 
action reaction constants. Assumptions lead to the simplified irreversible Michaelis-Menten equation with 
the parameters Vmax and Km. Vmax is the product of the turnover number k2 and the enzyme amount E. 
b) Michaelis-Menten plot. The reaction rate V is plotted against the substrate concentration S. The curve 
asymptotically approaches Vmax. At Vmax/2 the substrate concentration equals Km. 

 

One of the best-known mechanistic rate laws is the Michaelis-Menten equation (Figure 

5a), which describes a hyperbolic relationship between substrate concentration and 

reaction rate (Figure 5b)73. The conversion of the substrate requires several elemental 

steps, which are modelled as a system of ODEs using mass-action kinetics72. To allow for 

a tractable model analysis, the model is simplified by making assumptions74. The 

simplifications assume a steady state, excess of substrate and an irreversible product 

formation rate. These assumptions yield a simplified kinetic model with two lumped 

kinetic parameters (Km, Vmax), which can be determined in vitro (Figure 5a). Because of 

its simplicity and practical relevance, Michaelis-Menten kinetics have been used 

frequently to model metabolic reactions. For example, the kinetic model k-ecoli457 was 
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modelled using mainly Michaelis-Menten kinetics75. Here, the predicted Michaelis-

Menten constants matched experimentally determined parameters75. However, for 

many enzymes the rate laws and kinetic parameters remain unknown and in vitro data 

may not be appropriate to study in vivo systems76. This lack of knowledge makes it 

difficult to build accurate mathematical models. 

1.2.3 Addressing model uncertainties with ensemble modelling 

Mathematical models of metabolism suffer from epistemic uncertainty, that is the lack 

of knowledge about interactions, rate-laws, and kinetic parameters77. Even though, 

recent studies suggested that kinetic parameters may be less important than model 

structure, these uncertainties still prohibit the design of accurate mechanistic 

models78,79. 

Ensemble modelling has been used to identify model parameters, and to find new 

physical interactions. The common denominator of all ensemble modelling approaches 

is the formulation of multiple alternative models that represent different 

hypotheses71,80,81. The idea is that an ensemble of multiple models is more accurate than 

only a single model. For example, the models of an ensemble can all differ in their kinetic 

parameters (Figure 6a), or they can differ in their physical interactions (Figure 6b). 

 

Figure 6. Ensemble modelling. a) Ensemble of a kinetic metabolic model with two metabolites (orange 
spheres), three reactions (solid arrows) and allosteric feedback (dashed arrow). Blue boxes are models of 
the ensemble with the same model structure but different kinetic parameters. The graph shows the 
metabolic flux time course of the ensemble. All models reach the same steady state flux, but they have 
different time courses. b) Ensemble of structural models. Grey spheres are known components of the 
system and solid lines are known interactions between the known components (core model). Orange 
spheres are components for which there are no known interactions. Enumerated dashed arrows are 
potential interactions. Each model in the ensemble contains the core model and one additional new 
interaction. 
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To identify kinetic parameters of a mechanistic model, a metabolic ensemble modelling 

approach constructs several models (an ensemble of models) that share the same 

structure and stoichiometry. Then, all models of the ensemble are constrained to the 

same steady state flux27,71. Free parameters are then calculated by random sampling 

from biologically relevant intervals, and the remaining parameters are calculated. Thus, 

all models in the ensemble reach the same steady state flux, but because each model 

has a unique set of kinetic parameters, the respective dynamics are different (Figure 6a). 

By constraining all fluxes to the same steady state flux, the number of feasible kinetic 

parameters is reduced to biologically relevant parameters71. In the original study, the 

models were then tested against experimental data by simulating gene expression 

changes. Only 1/1010 parameter correctly predicted the experimental data, and the 

single model was then selected to make further predictions71. In a different application, 

metabolic ensemble modelling has been used to study robustness of (engineered) 

metabolic networks against strong changes in enzyme concentrations.82 

Besides knowledge-gaps in kinetic parameters and rate laws, basic physical interactions 

may be unknown. To identify unknown interactions in the mTOR pathway of 

Saccharomyces cerevisiae (S. cerevisiae), a core model based on current knowledge was 

built. The core model was then extended by single additional interactions (Figure 6b). 

That resulted in an ensemble of 18 models that shared the same model core and differed 

only in a single interaction. Comparing the model simulations to experimental data then 

revealed the interaction that best explained the data81. 

Moreover, ensemble modelling was used to identify functional allosteric regulations. In 

this study, glycolysis was modelled with an ensemble of 126 different combinations of 

allosteric feedback regulations. Together with experimental data, the approach revealed 

that pyruvate allosterically activates the fructose-1,6-bisphosphatase, and that this 

interaction is crucial for E. coli to reversibly switch between gluconeogenesis and 

glycolysis83. 

In conclusion, mechanistic models of biological processes suffer from uncertainties in 

model parameters and in model structures. These uncertainties can be addressed by 

ensemble modelling techniques. Ensemble modelling uses multiple models with 

different kinetic parameters, or different model structures to make predictions, which 
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acknowledges uncertainty, and allows for more general predictions than using only a 

single model71,81,84. 

1.2.4 Stability and robustness of dynamic systems 

As already discussed in Chapter 1.1.2, stability and robustness are emergent properties 

of biological systems that are crucial for the cell to survive and adapt11,12. However, while 

stability and robustness are difficult to assess experimentally, mathematics provide the 

means to define and analyse these emergent system properties57.  

Stability. The linear stability of a system of ODEs is defined at a fixed point or steady 

state, in which all relevant system variables are time invariant. Then, a variable of the 

system is perturbed by a small amount. If the system returns to the same state, the 

system is linear stable, otherwise the system is linear unstable. This behaviour is 

illustrated in Figure 7a. The function has two steady states (blue and orange sphere). 

The arrows indicate the velocity (dX/dt) of X when the steady state is perturbed slightly. 

The blue sphere always returns to the steady state (stable) and the orange sphere moves 

away from the steady state (unstable). 

Mathematically, stability can be assessed by approximating the system at the fixed point 

by a Taylor series. The Taylor series is then cut after the linear term, and the eigenvalue 

of that term defines if the system is linear stable or unstable. For ODEs of order two or 

higher, the Jacobian matrix, a system-wide linearization, is calculated. Consider a system 

with two coupled equations (f1, f2), two variables (x1, x2), and kinetic parameters (p) 

that is in steady state: 

Ὠὼ

Ὠὸ
 Ὂὼ ȟὼ ȟὴ  

Ὢὼȟȟὼȟ
Ὢὼȟȟὼȟ

 
π
π

 (1.1) 

The system is linearized around the steady state by calculating the partial derivatives 

with respect to the variables x1 and x2. This is the Jacobian matrix, J: 
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Figure 7. Stability and Robustness. a) Graphical description of linear stability. The first temporal derivative 
of X (dX/dt) is plotted against X. The function has two steady states (dX/dt = 0, blue and orange sphere). 
The arrows denote the direction the sphere moves when X is perturbed slightly. The blue steady state is 
stable, because the sphere moves back to the steady state after it is perturbed. The orange steady state is 
unstable, because the orange sphere moves away from the steady state after a perturbation. b) Bifurcation 
analysis. XSS is the state variable X in steady state. The blue sphere is the starting steady state of the 
analysis. Each point of the black line contains stable steady states for different values of the parameter P. 
The red sphere indicates a bifurcation point at which the system becomes unstable (red area).  

 

The linear stability of the system is then determined by the eigenvalues of the Jacobian 

matrix. The system is linear stable if all eigenvalues are negative. The system is linear 

unstable, if at least one eigenvalue is positive85.  

Robustness. Robustness is a property that preserves functionality despite 

perturbations11,12. In mathematical models, perturbations can be simulated by varying 

a kinetic parameter. In a bifurcation analysis, the system is initially in a stable steady 

state. Then, as a parameter p is varied, the system moves along a plane of stable steady 

states. The system becomes unstable at the bifurcation point that defines the boundary 

between a stable and unstable parameter space (Figure 7b). Robustness can then be 

defined as the degree of the perturbation that can be tolerated until the system 

becomes unstable82. For example, consider an ODE in steady state, in which xSS are the 

variables in steady state and p is a kinetic parameter that is varied iteratively. 

Ὠὼ

Ὠὸ
Ὂὼ ȟὴ π (1.3) 

In steady state, the derivative of F(xSS,p) with respect to the parameters is also zero: 
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Rearranging the equation yields an expression that describes changes in a steady state 

as a parameter p is varied iteratively. 
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This expression contains the inverse of the Jacobian Matrix. If the Jacobian matrix has 

full rank, matrix inversion is possible. A bifurcation point is reached when the Jacobian 

matrix becomes singular. At this point, matrix inversion is no longer possible, and the 

system becomes unstable. In conclusion, stability and robustness of mathematical 

models can be analysed by linear stability analysis and bifurcation analysis82. 

Linearization of a model at a steady state resembles weak perturbations, and parameter 

continuation by bifurcation analysis resembles strong perturbations. These concepts 

have been used to study dynamic systems. For example, Metabolic Control Analysis 

(MCA) studies the global consequences of small local perturbations86. Additionally, 

parameter continuation methods have been used to simulate gene overexpression in 

the context of metabolic engineering82. 

1.3 Modelling metabolism and transcriptional regulation 

Metabolic networks consist of multiple enzyme-catalysed reactions that all have a 

specific metabolic flux that is balanced throughout the network during exponential 

growth61. The metabolic flux of a metabolic reaction depends on specific kinetic enzyme 

parameters (e.g. Km, and the turnover number) and enzyme abundance70,73,74. When 

metabolism is perturbed by internal or external cues, the flux often needs to be adjusted 

by the cell to avoid accumulation or depletion of metabolites82. The flux of single 

enzymatic reactions can then be modulated by allosteric feedback control, and by 

changing enzyme abundance via transcriptional regulation7 (Figure 8). However, 

although both mechanisms are mediated by metabolite-protein interactions, it is still 

unclear how they work together28. For example, it was shown that changes of 

transcriptional rates are bad predictors of metabolic flux87, and the reason for this 
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behaviour is likely that enzymes are overabundant and usually not saturated by their 

substrates88ς90. 

 

Figure 8. Allosteric regulation and transcriptional regulation. Orange spheres are metabolites. The 
horizontal arrow is reaction 1 (r1) that is catalyzed by the enzyme E (blue square). The fill of E indicates 
the enzyme activity (high fill: high activity, low fill: low activity). The TF is a blue box and the fill of the box 
indicates TF activity (high fill: high activity, low fill: low activity). The dashed blunt arrows indicate negative 
allosteric and negative transcriptional feedback. The vertical pointed arrow indicates positive regulation 
of gene expression by the TF. Metabolite abundance affects enzyme and TF activity by allosteric and 
transcriptional feedback. The TF activity influences the enzyme abundance. 

 

To better understand crosstalk between metabolism and transcription, mechanistic 

mathematical models are required that integrate both layers. There are many 

mathematical models that either describe metabolism or the transcription regulation 

network. However, there are only few mathematical models that mechanistically link 

both layers36,79,91.  

Early models that combined metabolism and transcriptional regulation were developed 

based on the biochemical systems theory approach that uses the S-system formalism to 

approximate mechanistic rate laws69. For example, the autogenous regulation of a gene 

expression operon was compared to the inducible regulation approach regarding 

stability, robustness, and substrate overshoot. The model consisted of three layers and 

there was feedback between metabolism and transcription, and feedback between 

translation and transcription. The model predicted that the autogenous mechanism 

scores better when the system is controlled by a repressor. The opposite was predicted 

when the system is controlled by an activator92. 


























































































































































































































































































































