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Summary

Metabolic engineering enables the construction of microbial strains that can effectively

overproduce chemicals. However, overproduction strains use substrates not only for the

product formation but also for growth. Thus, there is a trade-off between product forma-

tion and cell growth that can result in sub-optimal production performance. A solution

is to decouple growth and overproduction in two-stage bioprocesses. After a first stage,

in which cells grow without product formation, growth is stopped in the second stage

while production is induced. There are two key challenges in the creation of two-stage

bioprocesses: (1) the microbial metabolism and cell growth needs to be dynamically

controlled to achieve a transition between the two stages, and (2) metabolic activity

and production rates are typically low in non-growing cells, which needs to be adjusted

by genetic engineering. For both challenges, precise knowledge about metabolite con-

centrations in the engineered strains is critical to guide the design efforts. Therefore,

quantitative and high-throughput mass spectrometry-based metabolomics methods are

developed that enable metabolite measurements in large numbers of engineered strains.

One of the fastest methods is flow-injection mass spectrometry.

In the here presented work, we study aspects of the dynamic control of metabolism

and growth, metabolic activity under growth arrest, and flow-injection mass spectrom-

etry. Studying all of these aspects is important to improve our understanding of how

to decouple growth and overproduction of chemicals. Chapter 1 provides a general in-

troduction to metabolic engineering, mass spectrometry-based metabolomics, and two-

stage bioprocesses. Chapter 2 is a short review of metabolic networks.

Flow-injection mass spectrometry (FI-MS) is a metabolomics method that can detect

hundreds of metabolites with measurement times in the second scale. However, FI-MS

does not rely on chromatographic separation of metabolites prior to analysis. Since all

metabolites arrive simultaneously at the mass spectrometer, this could lead to negative

effects like in-source modifications and false-positive annotations. With Chapter 3, we

provide a systematic study of in-source modifications during FI-MS. Key in our analysis

was the use of 160 authentic metabolite standards added to a metabolite extract sam-

1



Summary

ple. A network approach and information about metabolite fragmentation identified

abundant in-source modifications and showed that even sequential modification events

occur. Our analysis approach could explain a large fraction of these modifications. The

here presented data are a valuable resource and can be helpful to avoid false-positive

metabolite annotations.

Temperature-sensitive proteins carry amino acid substitutions rendering them active

at low temperatures. Yet, at higher temperatures, at which the wild type proteins are

still active, temperature-sensitive proteins are inactive. Here, we study temperature-

sensitive proteins as a tool for metabolic engineering to dynamically control cell growth

and metabolism. A goal was to use temperature-sensitive mutants to decouple growth

and overproduction of chemicals and create two-stage bioprocesses. Since the identi-

fication of temperature-sensitive mutants can be challenging, a focus of our work was

also on the development of high-throughput approaches to find temperature-sensitive

mutants.

With Chapter 4, we present a high-throughput method to enrich temperature-sensitive

mutants of a single essential gene in Escherichia coli. The method coupled a TIMER

protein-based single cell growth rate reporter with fluorescence activated cell sorting.

This allowed us to screen millions of cells and enrich temperature-sensitive mutants of

argininosuccinate synthetase ArgG. We showed that temperature-sensitive ArgG func-

tions as a metabolic valve that allows for gradual control of growth by temperature. At

the same time, it also allows for the overproduction of citrulline, which is the substrate

of the ArgG-catalysed reaction. Using temperature-sensitive ArgG, we achieved a two-

stage bioprocess that, within 45 h, produced 3 g/L citrulline on a 1 L-bioreactor scale.

We follow up on the study of temperature-sensitivity as tool for metabolic engineer-

ing and describe an approach to generate and identify temperature-sensitive mutants in

many different genes (Chapter 5). We adapted a barcoded CRISPR/Cas9 genome editing

method and used a custom design approach to create a pooled E. coli strain library with

15,120 members. Each strain carried a mutation causing a single amino acid substitu-

tions in one of 346 essential proteins. In competitive fitness assays at two temperatures,

we tracked the abundance of single strains in the pooled strain library by deep sequenc-

ing of plasmid-borne barcodes. This allowed us to identify 1,045 temperature-sensitive

candidate strains. After isolating a subset of 92 strains, we validated the function of 42

temperature-sensitive enzymes as metabolic valves by FI-MS. As final step, we applied

seven temperature-sensitive strains in the two-stage overproduction of chemicals.

A promising approach to achieve high metabolic activity under growth arrest is en-
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forced ATP wasting. With Chapter 6, we provide a study on enforced ATP wasting in

E. coli. Overexpression of ATPase resulted in strongly increased glucose uptake rates

in anaerobic conditions under nitrogen starvation. Fermentation products accumulated

rapidly until glucose was depleted from the medium.

Following up on our study on enforced ATP wasting, we analysed how different levels

of ATPase overexpression affected energy metabolism in E. coli (Chapter 7). Increasing

ATPase levels also increased glucose uptake rates up to a critical point. Increasing the

expression levels beyond this critical point resulted in a sharp decrease in the glucose

uptake rate below the rate of a wild type strain. We showed that this effect is caused by

an enzyme in upper glycolysis: phosphofructokinase, which has ATP as substrate and

is allosterically activated by ADP. These findings contribute to a better understanding

of E. coli energy metabolism. They also show how effective enforced ATP wasting is at

increasing metabolic activity in growth arrested cells making it a very powerful tool in

metabolic engineering.
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Zusammenfassung

Das Metablic Engineering ermöglicht es, mikrobielle Stämme zu konstruieren, die Chemi-

kalien effektiv überproduzieren. Allerdings nutzen die Produktionsstämme Substrate

nicht nur für die Überproduktion von Chemikalien sondern auch um zu wachsen. Also

besteht ein trade-off zwischen der Produktion und dem Wachstum, der zu sub-optimaler

Produktionsleistung führen kann. Eine Lösung dafür ist die Entkopplung des Zellwach-

stums von der Überproduktion mittels Zwei-Phasen-Bioprozessen. Nach einer ersten

Phase, in der Zellen wachsen ohne zu produzieren, wird das Wachstum in der zweiten

Phase gestoppt und die Produktion gestartet. Bei der Kreierung eines Zwei-Phasen-

Bioprozesses gibt es zwei zentrale Herausforderungen: (1) Der mikrobielle Stoffwech-

sel und das Zellwachstum müssen dynamisch kontrolliert werden, um einen Übergang

zwischen den beiden Prozess-Phasen zu erzielen. (2) Die Stoffwechselaktivität und Pro-

duktionsraten sind in nicht-wachsenden Zellen typischerweise niedrig, was durch genetis-

che Modifikationen korrigiert werden muss. Für beide Herausforderungen ist die genaue

Kenntnis über die Metabolitkonzentrationen in den modifizierten Stämmen kritisch, um

entscheiden zu können, welche genetischen Modifikationen zum Erfolg führen. Da-

her werden quantitative und Hochdurchsatz-Massenspektrometrie-Methoden entwick-

elt, die es ermöglichen Metabolitekonzentrationen in einer großen Anzahl an modi-

fizierten Stämmen in kurzer Zeit zu untersuchen. Eine der schnellsten Methoden ist

die flow-injection Massenspektrometrie.

In dieser Arbeit untersuchen wir Aspekte der dynamischen Kontrolle des Stoffwech-

sels und Wachstums, der metabolischen Aktivität in nicht-wachsenden Zellen und der

flow-injection Massenspektrometrie. Es ist wichtig all diese Aspekte zu untersuchen, um

besser zu verstehen, wie das Zellwachstum und die Überproduktion von Chemikalien en-

tkoppelt werden kann. Das Kapitel 1 dient als Einleitung in das Metabolic Engineering,

die Massenspektrometrie-basierte Metabolomik, und Zwei-Phasen-Bioprozessen. Das

Kapitel 2 ist ein kurze Abhandlung über metabolische Netzwerke.

Die flow-injection Massenspektrometrie (FI-MS) ist eine Metabolomik-Methode, die

hunderte Metabolite detektieren kann und Messzeiten im Sekundenbereich hat. Allerd-
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Zusammenfassung

ings werden Metabolite vor einer Messung mit FI-MS nicht durch chromatographische

Methoden aufgetrennt. Dadurch erreichen alle Metabolite das Massenspektrometer zur

gleichen Zeit. Das kann zu negativen Effekten führen, wie zum Beispiel Metabolit-

Modifikationen in der Ionenquelle und falschen Annotation. Mit dem Kapitel 3, stellen

wir eine systematische Untersuchung von Metabolit-Modifikationen in der Ionenquelle

während der Messungen mittels FI-MS vor. Dabei war die Nutzung von 160 authen-

tischen Metabolitstandards, die wir einer Metabolitextrakt-Probe hinzugegeben haben,

zentral für unsere Analyse. Mittels einer Netzwerk-Analyse und Informationen über

Metabolit-Fragmentierung konnten wir zeigen, dass Metabolit-Modifikationen in der Io-

nenquelle abundant sind und sogar sequentielle Mehrfachmodifikationen vorkommen.

Mit unserem Analyse-Ansatz konnten wir einen großen Anteil dieser Modifikationen

erklären. Die hier vorgestellten Daten sind eine wertvolle Ressource und sind hilfreich,

um falsche Annotationen zu vermeiden.

Temperatur-sensitive Proteine haben Aminosäure-Substitutionen, die eine Aktivität

bei niedrigen Temperaturen erlauben. Bei höheren Temperaturen, bei denen Wildtyp-

Proteine noch aktiv sind, sind Temperatur-sensitive Proteine hingegen inaktiv. Als Teil

dieser Arbeit haben wir untersucht, ob Temperatur-sensitive Proteine als Hilfsmittel für

das Metabolic Engineering nützlich sind und eine dynamische Kontrolle des Zellwachs-

tums und Stoffwechsels ermöglichen. Ein Ziel war es Temperatur-sensitive Proteine zu

nutzen, um Zwei-Phasen-Bioprozesse zu kreieren. Dadurch, dass es schwierig sein kann

Temperatur-sensitive Mutanten zu finden, lag ein Fokus unserer Arbeit auf der Entwick-

lung von Hochdurchsatzverfahren zur Erzeugung von Temperatur-sensitiven Mutanten.

Mit dem Kapitel 4, stellen wir eine Hochdurchsatz-Methode zur Anreicherung von

Temperatur-sensitiven Mutanten eines einzelnen essentiellen Genes in Escherichia coli
vor. Die Methode verbindet einen Einzelzell-Wachstumsraten-Sensor, der auf einem

TIMER-Protein basiert, mit Fluoreszens-aktivierter Zellsortierung. Dies hat es uns er-

möglicht, Millionen von Zellen zu screenen und Temperatur-sensitive Mutanten der

Argininosuccinat Synthetase ArgG anzureichern. Wir konnten zeigen, dass ArgG ähn-

lich wie ein Ventil für Stoffwechselwege funktionieren kann, und, dass es uns ermöglicht

das Wachstum graduell mittels der Temperatur zu steuern. Gleichzeitig erlaubt es auch

die Überproduktion von Citrullin, das das Substrat der ArgG-katalysierten Reaktion ist.

Mittels Temperatur-sensitivem ArgG, haben wir einen Zwei-Phasen-Bioprozess kreiert,

mit dem innerhalb von 45 Stunden 3 g/L Citrullin in 1 L-Bioreaktoren hergestellt werden

konnte.

Anschließend zu der Studie über Temperatur-Sensitivität als Hilfsmittel für das Metabo-
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lic Engineering, beschreiben wir in Kapitel 5 eine Methode, um Temperatur-sensitive

Mutanten in vielen unterschiedlichen Genen zu erzeugen und zu identifizieren. Wir

haben eine CRISPR/Cas9-basierte Methode zur Genomeditierung adaptiert und einen

angepassten Designansatz genutzt, um eine gepoolte Sammlung von 15.120 E. coli Stäm-

men zu erzeugen. Jeder dieser Stämme hat eine Mutation, die eine einzelne Amino-

säure-Substitution in einem von 346 essentiellen Proteinen hervorruft. In kompetitiven

Fitness-Untersuchungen bei zwei unterschiedlichen Temperaturen haben wir die Abun-

danz einzelner Stämme mit Hilfe von deep sequencing der Plasmid-basierten barcodes

verfolgt. Das hat es uns ermöglicht, 1.045 Temperatur-sensitive Kandidaten zu iden-

tifizieren. Nachdem wir 92 Stämme isoliert hatten, konnten wir die Funktion von 42

Temperatur-sensitiven Enzymen als metabolische Ventile mittels FI-MS bestätigen. Als

letzten Schritt haben wir sieben Temperatur-sensitive Stämme für die Überproduktion

von Chemikalien in Zwei-Phasen-Prozessen genutzt.

Das enforced ATP wasting (erzwungene ATP-Verschwendung) ist ein vielversprechen-

der Ansatz, um hohe metabolische Aktivitäten während des Wachstum-Stopps zu erzie-

len. Mit Kapitel 6 stellen wir eine Studie zu dem enforced ATP wasting in E. coli vor.

Die Überexpression von ATPase führte unter anaeroben Bedingungen und Stickstof-

flimitierung zu stark erhöhten Glukose-Aufnahmeraten. Fermentationsprodukte akku-

mulierten bis die Glukose im Medium erschöpft war.

Wir haben an der ersten Studie zum enforced ATP wasting angeknüpft und unter-

sucht, wie der Energiestoffwechsel durch unterschiedliche Expressionsstärken der AT-

Pase beeinflusst wird (Kapitel 7). Mit steigender ATPase-Expressionsstärke stieg auch

die Glukose-Aufnahmerate bis zu einem kritischen Punkt. Eine weitere Erhöhung der

Expressionsstärke über diesen kritischen Punkt hinweg führte zu einem rapiden Abfall

in der Glukose-Aufnahmerate, sogar unter das Niveau eines Wildtyp-Stamms. Wir kon-

nten zeigen, dass dieser Effekt auf ein Enzym in der oberen Glykolyse zurückzuführen

ist: die Phosphofructokinase, welche ATP als Substrat hat und die durch ADP allosterisch

aktiviert wird. Diese Ergebnisse tragen zu einem besseren Verständnis des Energiestof-

fwechsels in E. coli bei. Darüber hinaus zeigen unsere Ergebnisse auch, dass enforced ATP
wasting sehr effektiv ist, um die Glukose-Aufnahmeraten in nicht-wachsenden Zellen

deutlich zu steigern. Das macht enforced ATP wasting zu einem sehr nützlichen Mittel

für das Metabolic Engineering.
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Chapter 1

Introduction

Thorben Schramm
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Chapter 1

Background

Modern society relies on the constant production of chemicals that are used to pro-

duce plastics, pharmaceuticals, fuels, and many more. Vast quantities of these so-called

commodity chemicals are required at a low price. Still today, oil- or natural gas-based

chemical processes account for the major share of the global production of commodity

chemicals (Yadav et al., 2020). However, the use of fossil resources like crude oils pose

the serious threats of global climate change (Pörtner et al., 2022) and pollution (Kotcher

et al., 2019). Therefore, one of the great challenges of this century is the transition to

a sustainable bioeconomy with less or no environmental impact. Cornerstones for this

transition are bioprocesses that use renewable instead of fossil resources.

Looking at history, human relied on microbes for the production and preservation of

food since thousands of years. Nearly every human culture knows fermentation prod-

ucts as part of their diet (Tamang et al., 2020). In the ancient Egypt, bread and beer was

an integral part of the culture (Samuel, 1996), and, in Scandinavia, the fermentation of

fish can be traced back to 9000 years ago (Boethius, 2016). In the beginning of the 20th

century, the earliest industrial-scale bioprocesses were established that focussed also on

the production of non-food commodity chemicals. Especially, the first world war was a

major driver for the commercialization of the aceton-butanol-ethanol fermentation pro-

cess, whose products were in high demand in the explosive production (Fernbach and

Strange, 1912; Weizmann, 1919; Sauer, 2016). However, despite those early successes in

industrial bioprocessing, the fuel and chemical industry would strongly rely on crude

oils in the the 20th century and beyond. The reasons for this development are manifold

(S. J. Bennett and Pearson, 2009). Advances in chemical synthesis were made, and new

materials like plastic or pharmaceutics could be synthesized from oil-derived chemicals

( S. J. Bennett and Pearson, 2009). During the second world war, military aviation drove

the production of high-octane fuels (Yadav et al., 2020), and after the second world war,

the car industry, which then mainly used gasoline or diesel engines, thrived and ex-

panded largely in the private sector.

Since crude oils were very abundant throughout the 20th century, prices for oil-based

products remained low, and interest in the development of bioprocesses for fuel or chem-

ical production was low. Also, high development costs in the range between 10 and

50 Million $ for feasible bioprocesses (M. D. Lynch et al., 2016) and development times

between 6 and 8 years (Nielsen and Keasling, 2016) hamper a transition from fossil fu-

els to renewables. Only in the 70s, when oil-prices tripled or even quadrupled during
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an international political crisis, bioprocesses for the production of fuels were revisited.

Since then, a large ethanol economy emerged that focussed on the production of in-

dustrial ethanol by fermentation mainly from grains such as wheat and maize (Sheehan

and Himmel, 1999). This so-called bioethanol is an additive to conventional gasoline

lowering the environmental impact of the fuel. Despite these developments, crude oils

still remain the main raw material for fuel and chemical industry today, and it is unclear

how long global reserves will last (Bardi, 2019). However, fossil resources are fundamen-

tally limited by definition. Therefore, together with environmental concerns, this will

inevitable foster the development of new and economically competitive bioprocesses.

At the heart of every bioprocess are microbes that convert substrates like sugars into

biomass and other chemicals. With recent technological breakthroughs in genetic en-

gineering, DNA sequencing, mass spectrometry-based metabolomics, and many more,

we are currently facing great opportunities in the biological sciences. We can now study

and engineer microbial life at the molecular level better than ever before, and we are

using our insights to improve microbial strains to produce chemicals faster, to higher

concentrations, and with better yields. Key for the improvement of bioprocesses is the

metabolic engineering.
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1 Metabolic engineering

Metabolic engineering emerged as a distinctly recognized scientific field in the years

around 1990 (Bailey, 1991; Stephanopoulos and Vallino, 1991; Keasling, 2010; Woolston

et al., 2013). A goal of the field is to develop and improve genetically modified microbial

organism for biotechnological applications (Koffas et al., 1999; Becker and Wittmann,

2015; Liao et al., 2016). Main aspects in metabolic engineering are to understand the

function of microbial metabolic networks, to design new metabolic networks, and to

genetically encode the networks into microbes (Nielsen, 2001). Together, these aspects

can form a Metabolic Engineering Cycle (Bailey, 1991) or synonymously a Design-
Build-Test-Learn cycle (Gurdo et al., 2022; Carbonell et al., 2018; Opgenorth et al.,

2019) (Fig. 1.1). These cycles describe an iterative, practical approach, in which genetic

modifications are rationally designed first, then implemented, the performance of the

modifications like production rates measured, and finally the design adapted and im-

proved. A motivation for such extensive optimization cycles in metabolic engineering is

that the final microbial strains should allow for economically viable bioprocesses (Wool-

ston et al., 2013).

Although the Metabolic Engineering Cycle is meant literally to optimize a specific

system, each single step in the cycle can be the subject of dedicated studies that, for

example, focus on improving genetic engineering methods (Larson et al., 2013; Qi et

al., 2013; Garst et al., 2017; Na et al., 2013), investigating new bioprocessing concepts

(Boecker et al., 2019; Klamt et al., 2018), advance bioinformatic tools (Monk et al., 2017;

Norsigian et al., 2018; Xu et al., 2015; Nothias et al., 2020; Chambers et al., 2012), or

focus on the precise measurements of products (Fuhrer et al., 2011; Guder et al., 2017;

B. D. Bennett et al., 2009; L. Chen et al., 2021). However, as a starting point for most

design efforts in metabolic engineering, detailed knowledge about metabolic networks

is crucial.

1.1 Metabolic networks

Metabolism is a complex network of biochemical reactions, in which most of the reac-

tions are enzymatically catalysed (Monk et al., 2017; A. C. Guo et al., 2012; Orth et al.,

2011). For a single enzymatically-catalysed reaction, the reaction rates, at which the

products and substrates are converted, depend on the abundance of the enzyme, the

activity of the enzyme, and the concentrations of the substrates. The Michaelis-Menten-

equation describes this dependency for a very simple case without inhibition or other

12
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Figure 1.1: The Metabolic Engineering Cycle. Metabolic engineering often relies on
an iterative optimization approach that is called the Metabolic Engineering Cycle or also
Design-Build-Test-Learn cycle (Bailey, 1991; Gurdo et al., 2022; Carbonell et al., 2018;
Opgenorth et al., 2019). Initial modifications to metabolic networks (native or synthetic)
are rationally designed. After implementing these modification by genetic methods, the
resulting production strains are tested. Based on these results, initial designs are changed
and further improved.

effects (eq. 1.1, Michaelis et al., 2011; Rogers and Gibon, 2009). At low substrate concen-

trations [S], the reaction rate v is very sensitive to changes in the substrate concentration

(Fig. 1.2.a). However, with increasing substrate concentration, the reaction rate becomes

more and more insensitive to changes in the substrate concentration and converges to

a maximum reaction rate vmax. The maximum reaction rate also contains information

about the enzyme abundance and is the product of the turnover number kcat and the

enzyme concentration [E] (eq. 1.2). The Michaelis-Menten-constant Km is the substrate

concentration, at which the reaction rate is equal to half of vmax. Both, kcat and Km,

values are unique properties of an enzyme, and they can vary largely among different

enzymes. For example, fumarase can have a kcat value of 1,150 1/s, whereas rubisco has

a kcat of 2.5 1/s (Rogers and Gibon, 2009).

v = vmax ·
[S]

Km + [S]
(1.1)

vmax = kcat · [E] (1.2)

In a metabolic network, most biochemical reactions are only one element in chain of
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sequential reactions, in which the product of one reaction is the substrate of another

reaction. These sequential reactions are the metabolic pathways of a network, which

make metabolism highly structured. Within a metabolic pathway, the reaction rates are

usually in steady state (Fig. 1.2.b) and equal. Thus, the reaction rates in a pathway are

also called the metabolic flux. The slowest reaction in a pathway, which is the rate

limiting step, determines the flux. If the rate of a reaction drops below the otherwise

common metabolic flux in the pathway, the pathway has a metabolic bottleneck and is

not in steady state any more. Such a bottleneck is usually accompanied by the accu-

mulation of the reaction’s substrate (Donati et al., 2021, 2018, Chapter 4 and Chapter 5).

To avoid bottlenecks and ensure robust synthesis of the building blocks, metabolism is

often precisely adjusted and controlled by regulation mechanisms (Sander, Farke, et al.,

2019; Matsuoka and Shimizu, 2011; Alon, 2007; Metallo and Vander Heiden, 2013). In

E. coli, metabolite concentrations are kept relatively constant under different conditions

and growth rates (Radoš et al., 2022), and the metabolic regulation is so effective that

it requires major perturbations like starvation to cause metabolite levels to change sub-

stantially (Radoš et al., 2022). This is in stark contrast to protein concentrations that cor-

relate with growth rates and are adjusted strongly dependent on the condition (Schmidt

et al., 2016).

Regulation of metabolism occurs at the transcriptional, translational, or enzyme level

(Fig. 1.3) (Donati et al., 2018). Sigma factors are one example for regulatory proteins.

They are DNA-binding subunits of RNA polymerase and usually influence the transcrip-

tion of a large number of genes. Thus, they are part of so-called global regulation. Sigma

factors like σ70 (RpoD) of E. coli are even essential for cell function (Goodall et al., 2018;

Baba et al., 2006). However, non-essential sigma factors like σ38 (RpoS) are also involved

in large regulatory programs and often respond to major stresses to the cell (Schellhorn,

2020).

Alternatively, transcription factors are also DNA-binding proteins that can modulate

the transcription of a gene. Many transcription factors are sensitive to environmen-

tal cues or stresses including temperature (Weber, 2003), pH (Barda et al., 2020), salts

(Diray-Arce et al., 2019), light (E. M. Zhao et al., 2018), or nutrients (Kim et al., 2018) and

can thus alter metabolism for the adaption to a new environment. In some cases, tran-

scription factors influence the expression of other, subordinate transcription factors and

large parts of metabolism. These transcription factors are also called global regulators.

Examples for global regulators are the transcription factors Crp and Cra that are respon-

sible for coordinating carbon metabolism in E. coli (Matsuoka and Shimizu, 2011; Kim
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Figure 1.2: Michaelis-Menten-Theory in the context of metabolic pathways. (a)
The chart in the blue box shows the relationship between the rate of an enzymatically
catalysed reaction and the substrate concentration according to Michaelis et al., 2011.
vmax is the maximum reaction rate. Km is the Michaelis-Menten-constant and is the
substrate concentration, at which the reaction rate is 0.5·vmax. The chart in the grey box
illustrates how the reaction rate is affected by the enzyme concentration. In metabolic
pathways, the products of an enzyme reaction are usually the substrates for subsequent
reactions. Products and substrates are thus metabolites. (b) The charts show Michaelis-
Menten-kinetics similar to (a). The reaction rates in a metabolic pathway are usually
in steady state, equal, and called metabolic flux (red lines). An enzyme reaction with
a reaction rate below the usually common metabolic flux in a pathway is a metabolic
bottleneck (blue box). (adapted from Schramm and Link, 2021)
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Figure 1.3: Feedback regulation of metabolic pathways. Metabolic feedback regula-
tion is commonly observed in E. coli amino acid metabolism (Sander, Farke, et al., 2019).
The regulation occurs at the transcriptional level by transcription factors, translational
level by attenuation, or on enzyme level by direct allosteric interaction of metabolites.

et al., 2018; Perrenoud and Sauer, 2005). Other transcription factors operate on a much

smaller scale and affect only genes from a particular metabolic pathway. In general,

the regulation by transcription factors can be mapped by network approaches resulting

in transcription networks (Alon, 2007; Ament et al., 2018). By combining global and

local regulation, the allocation of resources in the metabolic network can be precisely

controlled.

Transcription factors often interact allosterically with metabolites (Lempp et al., 2019)

and thus are modulated in their activity. As described by the Michaelis-Menten-kinetic,

enzyme concentrations influence reactions rates and consequently metabolite levels.

By allosteric interactions with transcription factors, metabolites can in return influence

gene expression and enzyme concentrations. As consequence, there is a mutual influ-

ence between metabolism and gene expression. This effect is also called crosstalk (Donati

et al., 2018; Sander, Farke, et al., 2019; Grüning et al., 2010). Metabolites can not only

interact with transcription factors to control gene expression but also with certain mR-

NAs to influence translation rates (Gollnick and Babitzke, 2002). This type of regulation

is called attenuation.

In summary, metabolites can influence gene expression, and thus the concentration

of an enzyme, by transcription factor-mediated regulation or by attenuation. However,

allosteric interactions can occur also directly between metabolites and enzymes, which

means that the gene expression and thus enzyme levels are not affected. Instead, the

activity of an enzyme is modulated directly by the interaction with a metabolite.

Amino acid synthesis pathways in E. coli are well studied (Sander, Farke, et al., 2019)

and examples of metabolic feedback regulation that uses both, regulation of enzyme lev-
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els and regulation of enzyme activity (Fig. 1.3). In most amino acid synthesis pathways,

the first enzyme is allosterically regulated by the concentration of the pathway’s end

product, the amino acid. The enzyme levels in the pathway are also controlled by the

end product by transcriptional regulation. The interplay between both feedback mecha-

nism ensures that the enzyme levels in the pathway are actually higher than required at

the bare minimum to ensure the desired metabolic flux. Thus, enzymes in the pathway

are not operating at full capacity and vmax. This effect is called enzyme overabundance

and enables high robustness of the pathway against perturbations (Sander, Farke, et al.,

2019).

The metabolic pathways in a cell are highly connected to form a large network. In

literature, the network is often separated by two major functions, although a strict sep-

aration is not possible in reality (Russell and Cook, 1995). First, in catabolism, substrates

like sugars are broken down to generate energy equivalents and precursor metabolites.

These precursor metabolites are then used in anabolism for synthesis of a cell’s build-

ing blocks, which include amino acids, nucleotides, lipids, peptidoglycan precursors,

co-factors, and many more.

It was found that the core functions of metabolism including amino acid, energy, nu-

cleotide, and lipid metabolism are highly conserved among species (Peregrín-Alvarez et

al., 2009). This is astonishing, considering that demands on metabolism can vary greatly

and that life can thrive within a broad range of environmental conditions (Merino et al.,

2019) including pH values from at least -3.6 (Nordstrom et al., 2000) to 13 (Czop et al.,

2011) and temperatures from -20 °C (Rivkina et al., 2000) to 122 °C (Takai et al., 2008).

Since metabolism is highly conserved and genes that encode for enzymes are often ho-

mologous (Peregrín-Alvarez et al., 2009), genome sequencing and comparative genomics

can thus reveal the topologies of metabolic networks (Durot et al., 2009; Haggart et al.,

2011). In the short review Von der Stöchiometrie zur Kontrolle metabolischer Netzwerke
(Chapter 2), we also provided a brief overview of the current state and opportunities in

the study of bacterial metabolic networks and started with the topology.

In many cases, the topology of the metabolic network is so well understood that closed

mass balances can be formulated and so-called genome-scale metabolic models con-

structed (Durot et al., 2009; Haggart et al., 2011), which contain all metabolic reactions of

an organism. These models are available for a variety of organisms such as Escherichia
coli (Monk et al., 2017; Orth et al., 2011), Saccharomyces cerevisiae (Lopes and Rocha,

2017), human cells (Brunk et al., 2018; Masid et al., 2020), and many more (Norsigian et al.,

2018; H. Wang et al., 2021; Seif et al., 2018). As an example, the most recent genome-scale
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metabolic model of E. coli contains 1,515 genes, 1,515 proteins, 1,192 metabolites, and

2,719 biochemical reactions (Monk et al., 2017). In recent years, genome-scale metabolic

models were also created that cover multiple strains of a species and are mainly used

as highly curated reference model or to study inter-strain variations (Seif et al., 2018;

Norsigian et al., 2020; Monk et al., 2013).

In the context of metabolic engineering, genome-scale metabolic models are very im-

portant because they can be used to guide the design process in the Metabolic Engi-

neering Cycle (Curran and Alper, 2012). One method, which relies on genome-scale

metabolic models and is often used, is flux balance analysis (Schilling et al., 1999; Ed-

wards and Palsson, 2000; Edwards et al., 2002). This method enables the estimation of

fluxes in the network. A more experimental approach to determine fluxes in metabolism

is metabolic flux analysis (Antoniewicz, 2015; Zamboni et al., 2009; Wiechert, 2001).

It combines genome-scale metabolic models with isotope tracer experiments. Most of-

ten the stable 13C-isotope is used to label metabolites, and the labelling patterns and

dynamics can then be measured by mass spectrometry-based metabolomics and reveals

the carbon flow within the network.

1.2 Design strategies in metabolic engineering

By access to genome-scale metabolic models and estimation of flux distributions, the

design process in metabolic engineering can be guided. However, it is often useful to

start with a strain that can already overproduce the product metabolite and that is used

a basis for further optimization. To create such an initial overproduction strain, there

are some general design strategies in metabolic engineering (Fig. 1.4). Since microbial

metabolism is extensively regulated, and metabolite concentrations remain stable over

a broad range of conditions (Radoš et al., 2022), genetic modifications are required to

break metabolite homeostasis and to overproduce metabolites.

Pathway dysregulation In case of the feedback regulated arginine synthesis pathway

of E. coli, it was possible to remove both, allosteric and transcriptional regula-

tion, and overproduce arginine to high concentrations (1.4.a) (Sander, Wang, et

al., 2019). In this work, we also present two studies, in which pathway dysregu-

lation in the arginine pathway was pivotal for high level productions of citrulline

(Chapter 4) and arginine (Chapter 5). Removing the feedback regulation of path-

ways worked also in many other pathways (Lee and Wendisch, 2017). Notably, it

was also shown that it can be useful to not entirely remove feedback regulation by
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the transcriptional repressor ArgR but to reduce its level and only partially dys-

regulate the arginine pathway (Sander, Wang, et al., 2019). The reason for this was

that full dysregulation of the pathways drained carbamoyl phosphate and caused

a limitation in the pyrimidine pathway that also requires carbamoyl phosphate.

Due to this limitation, the production performance was sub-optimal.

Synthetic pathways Another design strategy is to create entirely new pathways (Fig.

Fig. 1.4.b): by expressing heterologous genes, the native metabolic network of a

strain can be extended. This enables the overproduction of foreign metabolites

such as opioids or cannabinoids in yeast (Galanie et al., 2015; Luo et al., 2019),

glycerol in E. coli (C.-Y. Wang et al., 2021), or the use of CO2 as carbon source in E.
coli (Gleizer et al., 2019). However, since the native metabolic network does often

not support the synthetic pathways, additional genetic modifications are required

to compensate detrimental effects of the synthetic pathway expression.

Removing competing pathways By adding a synthetic pathway, we often create a

new branching point in the metabolic pathway such that a substrate can be con-

verted further by two different routes. Many of these branching points exist also

natively in metabolic networks. Thus, the production pathways can perform be-

low full capacity because other pathways compete for the same substrates. By

removing such competing pathways, flux can be directed into the production path-

way (Fig. 1.4.c) (Koffas et al., 1999; Ma et al., 2017). It is not always trivial to identify

competing pathways and to optimize fluxes in the metabolic network, which is a

reason why flux balance analysis and metabolic flux analysis are very valuable

tools.

Blocking product degradation End products of metabolic pathways are usually used

as building blocks or substrates in other metabolic processes. In case of amino

acids, there are even additional pathways that are expressed upon high concen-

trations of the metabolite and that focus solely on their degradation (Zampieri et

al., 2019). Removing degradation pathways can thus improve the overproduction

(Fig. 1.4.d) (Ma et al., 2017).

Product export If the intracellular product concentration reaches very high levels, the

product can become toxic or inhibit the production pathway (Keasling, 2010). As

a solution, it is possible to engineer and overexpress transport systems that export

the product outside the cell (Fig. 1.4.e) (Ma et al., 2017). In a here presented study,
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we also applied this strategy (Chapter 5) and overexpressed the arginine exporter

ArgO in an arginine overproduction strain.

Cofactor engineering Many production pathways require an extensive amount of re-

ducing equivalents or other cofactors. Improving cofactor availability and engi-

neering the cofactor metabolism can thus enhance the production (Koffas et al.,

1999; Ma et al., 2017; Chemler et al., 2010). For example, by creating and using

a glycerol 3-phoshate dehydrogenase that can use both NADH and NADPH, ly-

sine production in Corynebacterium glutamicum could be improved by 60 % (Bom-

mareddy et al., 2014).

Alternative substrates Many microbial overproduction strains are developed that use

sugars like D-glucose, which can also be used as food or feed. On large scale, this

could lead to high substrate costs making the bioprocess economically infeasible.

Therefore, many metabolic engineering studies focus on the development of base

strains that can use cheap alternative substrates that do not compete with food or

feed industry (Ferreira et al., 2020). These substrates can be waste biomasses or

alternative sugars like arabinose and xylose that can be generated from cellulose

and hemicellulose (Ma et al., 2017).

1.3 Lambda Red recombineering and barcoded, multiplexed
CRISPR/Cas9 genome editing in E. coli

Having a set of design strategies and genome-scale metabolic models for further opti-

mization attempts, the next challenge is to physically encode any proposed modifications

into the genome of a microbial production strain. Here, we focus on two key approaches

in the genome editing of E. coli.

In many cases, it is useful to remove native genes encoding for transcription factors

or unwanted enzymes. To achieve targeted gene deletions (knockouts) in E. coli, homol-

ogous recombination is the most common approach and usually coupled to a selective

pressure to remove the gene. Since wild type E. coli is not proficient of homologous re-

combination, recombinases need to be heterologously expressed to achieve high cloning

efficiencies. The Red recombinase of the Escherichia virus Lambda proved to be very

useful (Y. Zhang et al., 2000; Datsenko and Wanner, 2000). Genome editing in E. coli that

relies on Lamdba Red is also referred to as Lamdba Red recombineering.

20



Chapter 1

Figure 1.4: Common design strategies in metabolic engineering. (a) Removing
native regulation can lead to overproduction of the pathway’s end product (Sander,
Farke, et al., 2019). (b) Heterologous gene expression enables the creation of synthetic
metabolic networks with new products (Galanie et al., 2015; Luo et al., 2019; C.-Y. Wang
et al., 2021; Gleizer et al., 2019). (c) To maximize flux in the production pathway, compet-
ing pathways can be removed at branching points (Koffas et al., 1999; Ma et al., 2017). (d)
Often, the product metabolites are degraded or further processed in the native metabolic
network. Removing subsequent reactions can improve the production (Ma et al., 2017).
(e) Intracellular product concentrations can reach toxic levels inhibiting the produc-
tion. Overexpression or engineering product export systems can help (Ma et al., 2017).
(f) Some pathways require extensive amounts of cofactors such that enhanced cofactor
synthesis can improve the production (Koffas et al., 1999; Chemler et al., 2010; Bom-
mareddy et al., 2014). (g) The economic feasibility can be enhanced by using alternative
and cheaper substrates for the bioprocess (Ma et al., 2017).
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The Lamdba Red recombineering method by Datsenko and Wanner was pivotal in the

creation of a large E. coli strain library bearing a gene knockout of every non-essential

gene (KEIO collection, Baba et al., 2006; Datsenko and Wanner, 2000). In this method, a

linear template DNA was created directly by PCR without further cloning that had an

antibiotic resistance gene and at each flanking ends two special sites: the inner regions

were flipase recognition sites, the outer were regions homologous to regions on the

E. coli genome (Fig. 1.5.a). Cells were then transformed with the template DNA and

subjected to the antibiotic according to the resistance gene on the DNA template. By

Lambda Red-mediated homologous recombination, a target gene was then replaced by

the template DNA. Optionally, the antibiotic gene could be removed using the FRT sites

and a flipase, which left a single FRT site as a scar on the genome. If the antibiotic gene is

not removed from the genome, it is very easy to propagate a gene knockout in one E. coli
strain to another one using P1 phage transduction (Thomason et al., 2007). The KEIO

collection has been a very important resource and contributed substantially to metabolic

engineering and systems biology. A major limitation of the KEIO collection is however

that essential genes are not covered because a deletion would be lethal to the organism.

In recent years, another powerful method was developed based on CRISPR/Cas9 by

many scientist around Virginijus Siksnys, Emmanuelle Charpentier, Jennifer A. Doudna,

Feng Zhang, Blake Wiedenheft, and George Church (Lander, 2016; Ledford, 2016). For

their discoveries, Charpentier and Doudna received the Nobel Prize in Chemistry 2020.

Originally, CRISPR/Cas9 is part of a bacterial defence system protecting cells from for-

eign DNA (Haurwitz et al., 2010). The single guide RNA (sgRNA) of the CRISPR/Cas9

system has a so-called protospacer, which is homologous to a target DNA, and a sec-

ondary structure interacting and binding to the endonuclease Cas9. By the protospacer,

the sgRNA-Cas9 complex is then guided to the target DNA site, where the Cas9 cuts the

DNA if a small DNA motif (protospacer adjacent motif: PAM) is present. However, the

CRISPR/Cas9 system can be repurposed for genetic engineering, for which it provides

selective pressure by double strand brakes to modify the target DNA. In most cases,

homologous recombination is used for introducing edits to the genome yet other mech-

anism exist, such as base-editing and prime-editing, that do not require Cas9-mediated

cutting of the DNA (Kantor et al., 2020).

In 2017, Garst et al. reported a barcoded, multiplexed CRISPR/Cas9 genome edit-
ing approach that aims at introducing thousands of different single codon mutations to

the genome of E. coli simultaneously (Fig. 1.5) (Garst et al., 2017). This approach can

make use of oligonucleotide pools and thus enables a high degree of multiplexing. In
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Figure 1.5: Two genome editing methods in E. coli. (a) The approach by Datsenko
and Wanner to delete a genomic gene in E. coli is based on homologous recombina-
tion by Lambda Red (Datsenko and Wanner, 2000). A template DNA is provided that
carries a gene encoding a selective marker and two flanking regions at each of the 5’-
and 3’-ends that are flipase recognition sites (FRT) and regions that are homologous to
a genomic target site. Upon applying selective pressure and by homologous recombi-
nation, the genomic target gene is replaced by the template DNA. Using the FRT sites
and flipase, the selective marker can be removed in a second step leaving a single FRT
site as scar on the genome. (b) By barcoded CRISPR/Cas9 genome editing, it is possible
to mutate thousands of single codons on the E. coli genome in one batch (Garst et al.,
2017). Homologous DNA with the desired mutation and a silent PAM mutation is pro-
vided on a plasmid. The plasmid also carries the sgRNA for the CRISPR/Cas9 system
in close proximity to the homologous DNA such that oligonucleotide pools can be used
for cloning. By expressing the CRISPR/Cas9 strain and Lambda Red, the mutations are
introduced to the genome by homologous recombination. Since the sgRNA-carrying
plasmid is maintained throughout the experiments, it can function as NGS-barcodes of
the mutant strains.
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the method, the template DNA is provided on a plasmid for Lambda Red recombineer-

ing. Since the plasmid is maintained throughout all further experiments, it can function

as a barcode for amplicon deep sequencing. The power of this method is that, due to

the deep sequencing of the barcodes, the abundance of single mutants in pooled strain

libraries can be measured. With this method, saturation mutagenesis of a gene can be

achieved and all possible single amino acid substitutions of a protein tested (Garst et al.,

2017). Several studies created large strain libraries by the method, and it was investi-

gated, which out of over 16,000 mutations in the E. coli lysine pathway can contribute

to resistance against the cell toxic L-lysine analog S-(2-aminoethyl)-L-cysteine (Bassalo

et al., 2018). In another study, 110,120 mutations in 82 regulators were created in E.
coli to study regulation on a global scale (R. Liu et al., 2020). Five strain libraries, with

each 5,260 to 7,340 mutations in different global regulators, were used to investigate an-

tibiotic resistance in E. coli (C. Chen et al., 2020). Additional two libraries with around

40,000 and 162,000 members were used in metabolic engineering attempts to improve 3-

hydroxypropionic acid production (R. Liu, Liang, Choudhury, et al., 2018; R. Liu, Liang,

Garst, et al., 2018). In the latter two studies, several iterative rounds of recombineer-

ing were applied. In one of the here presented studies, we adapted and improved the

barcoded, multiplexed CRISPR/Cas9 approach (Chapter 5).

2 Mass spectrometry-based metabolomics

The goal of metabolomics is to study and quantify small molecules up to circa 1500 Da

that are part of biological processes (Markley et al., 2017). The concentrations of metabo-

lites provide insights into the function of metabolic networks and can be biomarkers for

disease (Koulman et al., 2009). They can also contain information about many other

things like whether an athlete is doping (Keen et al., 2022), the composition of food

(Adebo et al., 2017), or whether environments are polluted (Bundy et al., 2009).

The number of unique metabolites on earth is unknown. According to the latest

genome-scale metabolic model, there are 1,192 metabolites in the bacterium E. coli (Monk

et al., 2017). This number is however dwarfed by the expected number of unique metabo-

lites in human, which are over 100,000 (Markley et al., 2017; Alseekh and Fernie, 2018).

It is estimated that between 100,000 and 1,000,000 metabolites are in the plant king-

dom (Alseekh and Fernie, 2018). Large databases like the Human Metabolome Database

(Wishart et al., 2022), the Global Natural Products Social Molecular Networking plat-

form (M. Wang et al., 2016), or METLIN (Guijas et al., 2018) collect information about
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measured metabolites and are valuable reference resources.

Metabolomics includes a wide range of analytical methods, and many different tech-

niques have been used over the past. Already in ancient Greek, India, and China, the

glucose levels in the urine of a patient were measured by the sweetness of the urine and

used to diagnose diabetes (Karamanou et al., 2016). Today’s methods are more selective

and quantitative. Mass spectrometry (MS) is currently the dominant analytical approach

in metabolomics followed by nuclear magnetic resonance (NMR) spectroscopy (Markley

et al., 2017; Raftery, 2014; A.-H. Emwas et al., 2019; A.-H. M. Emwas, 2015).

In brief, advantages of NMR over MS are that sample preparation is even simpler,

samples are not destroyed during the analysis, measurements are more quantitative and

reproducible, and isotopomers can be easily distinguished (Markley et al., 2017; A.-H.

Emwas et al., 2019). A crucial disadvantage is however that NMR is much less sensitive

than MS and often can only detect metabolites with concentrations greater than 1 µM

(A.-H. Emwas et al., 2019). Thus, sample volumes in NMR can be much larger than in

MS, and the number of quantified metabolites much smaller. At the same time, MS offers

high selectivity, especially if it is combined with chromatography.

The beginnings of MS can be traced back to the early 20th century when physicists

were studying electrons and the masses of atoms (Griffiths, 2008). The fundamental

principle of MS is to separate ions under vacuum by their mass to charge ratio (m/z)

using electromagnetic fields. Although MS is mainly used in analytics nowadays, it is

possible to use the principles of MS to enrich ions with a specific mass. This technique

is called preparative mass spectrometry and was used during the Manhattan project to

enrich the uranium isotope 235 (Griffiths, 2008; Yergey and Yergey, 1997). In modern MS

approaches, there are four major components that frequently differ between instruments

(Fig. 1.6): (1) separation by chromatography prior to analysis, (2) ion sources, (3) collision

induced dissociation, and (4) mass analyser.

(1) Chromatography coupled to MS In most cases, metabolites are separated by chro-

matography prior to analysis by MS (Fig. 1.6). This increases the selectivity but

can also decrease negative effects in the ion source like ion suppression and space

charge effects (Alseekh et al., 2021). High performance liquid chromatography

(HPLC) and gas chromatography (GC) are the dominant techniques, followed by

capillary electrophoresis (CE) (Alseekh et al., 2021), whereas supercritical fluid

chromatography (SFC) remained a niche application so far (van de Velde et al.,

2020). Capillary electrophoresis separates metabolites in a liquid phase and uses

an electric field to separate polar or charged compounds within a capillary (W.

25



Chapter 1

Figure 1.6: Technical configurations of mass spectrometers. This figure gives an
overview of different optional configurations of current mass spectrometers. (1) MS is
often coupled with chromatography for metabolite separation prior to analysis by MS
(Bjerrum, 2015). (2) The analyte molecules need to be ionized for MS analysis. Com-
mon ionization techniques of MS approaches for metabolomics are electron ionization
(Famiglini et al., 2021), matrix-assisted desorption ionizaton (Jurinke et al., 2004), and
electrospray ionization (Wilm, 2011). (3) Optionally, mass spectrometers have a colli-
sion cell, in which ions are accelerated, collide with an inert gas, and fragment. This
procedure is called collision induced dissociation (CID) (Martin Somer et al., 2020). Prior
to CID parent ions are usually selected by a quadrupole. (4) Three different mass anal-
yser types are commonly used in MS methods for metabolomics: time-of-flight mass
analyser (Boesl, 2017), quadrupoles (Glish and Vachet, 2003), and orbitraps (Zubarev
and Makarov, 2013).
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Zhang and Ramautar, 2021). Gas chromatography is used for separation of volatile

and low molecular weight molecules in a gas phase (Alseekh et al., 2021). GC

often requires derivatisation of non-volative compounds (Bjerrum, 2015; Gowda

and Djukovic, 2014). HPLC does not require derivatisation and can use a variety

of different mobile phases like water, isopropanol, methanol, or acetonitril. It has

access to a broad range of different chromatographic columns. This makes it pos-

sible to measure unpolar compounds, lipids, and small polar metabolites by HPLC.

Reverse phase columns are often C8- or C18-based and used for separation of un-

polar metabolites (Bjerrum, 2015), whereas polar metabolites can be separated by

normal phase columns, which can rely on hydrophilic interactions (Perez de Souza

et al., 2021).

(2) Ion sources Metabolites need to be ionized before they can enter the mass analyser.

Common ionization techniques include electron ionization (EI), matrix-assisted

laser desorption ionization (MALDI), and electrospray ionization (ESI) (Fig. 1.6)

(Famiglini et al., 2021; Jurinke et al., 2004; Wilm, 2011). EI was one of the earlier

developed ionization techniques and mainly used for small volatile compounds in

gas or liquid phases (Famiglini et al., 2021). EI uses electrons with ∼70 eV energy

to ionize the analyte. During EI, only positively charged ions of the analyte can

be generated, and metabolites are often fragmented due to the high energy of the

electrons. Thus, EI is considered a hard ionization technique. In contrast, MALDI

and ESI are considered soft ionization techniques since they mainly leave the an-

alytes intact (Jurinke et al., 2004; Steckel and Schlosser, 2019). The samples for

MALDI are usually embedded into a solid matrix of organic compounds (Jurinke

et al., 2004). Irradiating the matrix with laser beams leads to a desorption effect

and generates the sample ions. MALDI finds application in DNA analysis (Jurinke

et al., 2004), but it also enables spatial analyses of tissues, cells, bones, and more

(C. Zhao and Cai, 2022; Good et al., 2022). The two or three dimensional analysis

by mass spectrometry is also called imaging mass spectrometry (Good et al., 2022;

Schnackenberg et al., 2022). During ESI, a continuous flow of solvent that carries

the sample is dispersed into droplets by applying a high voltage of typically more

than 2000 V to the nozzle of the injection capillary and vaporized by heat (Wilm,

2011; Glish and Vachet, 2003; Fenn et al., 1989, 1990; Luedtke et al., 2008). ESI

can produce positively and negatively charged ions and is an ambient pressure

ionization technique.
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(3) Collision induced dissociation Some mass spectrometers can select specific ions

(parent ions) prior to detection and fragment them by collision induced dissocia-

tion (CID) (Fig. 1.6) (Martin Somer et al., 2020): the parent ions are accelerated to

energies in the range of 5 to 80 eV. By collision with an inert gas like nitrogen or

noble gases, the ions fragment into product ions, which are then analysed (Glish

and Vachet, 2003). The fragmentation pattern are highly specific and thus provide

a high degree of confidence that a certain metabolite is measured and not a false-

positive. Quadrupoles are typically used for the selection of parent ions. Since

both, the parent ion selection and the analysis of the product ions, are performed

by MS, this approach is also called tandem mass spectrometry, MS2, or MS/MS.

Using linear ion traps, it is even possible to fragment product ions further in se-

quential fragmentation steps (multistage MS, MSn) (Sun et al., 2018). Using CID, it

is possible to perform multiple reaction monitoring (MRM), in which, repeatedly,

a list of parent masses are sequentially selected, fragmented, and the product ions

measured. This enables the simultaneous measured of multiple metabolites with

high selectivity.

(4) Mass analyser Although all mass spectrometers have in common that they distin-

guish ions by their mass over charge, there are very different mass analyser de-

signs. Common analysers with different functional principles are quadrupoles,

time-of-flight analysers, and orbitraps (Fig. 1.6) (Glish and Vachet, 2003). Quadru-

pole mass analyser use four rods that have high electric currents alternating at

specific frequencies to deflect all ions with undesired m/z values (Glish and Va-

chet, 2003). Only ions within a selected m/z range have trajectories that can

pass the quadrupole. Quadrupoles are often used to select specific ions for CID

and can be coupled with other mass analysers. Quadrupole time-of-flight mass

spectrometers (QTOF) and quadrupole-orbitrap mass spectrometers are common.

Since collision cells for CID are typically also quadrupoles, tandem mass spec-

trometers with two quadrupole mass analyser and a quadrupole collision cell are

called triple quadrupole mass spectrometers (QQQ). Orbitraps are Fourier trans-

form type mass spectrometers, in which ions rotate within a radial electric field

around an inner spindle-like electrode (Zubarev and Makarov, 2013). Depending

on the m/z, ions show different oscillations axial to the inner electrode (Zubarev

and Makarov, 2013). Time-of-flight (TOF) mass analyser accelerate ions in batches

within an electric field (Boesl, 2017). Depending on their m/z, ions arrive at differ-

ent time points at the detector. Therefore, knowing the flight time of an ion reveals
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its m/z. TOF mass spectrometers can easily be recognized by their characteristic

flight tube. The most recent major development in MS is the trapped ion mobility

spectrometry (TIMS) that is usually coupled to a TOF mass analyser (TIMS-TOF)

(Jeanne Dit Fouque and Fernandez-Lima, 2019; Ridgeway et al., 2019). In TIMS,

ions are kept stationary in an linear ion trap, whereas a gas flows through the

trap (Jeanne Dit Fouque and Fernandez-Lima, 2019; Ridgeway et al., 2019). De-

pending on the molecule size and shape, ions are retained or washed out of the

trap towards the mass analyser. Thus, TIMS data provides a retention time, sim-

ilar to chromatography. The strength of this method is that many isomers can

be separated, which are difficult to resolve by chromatography. A current limita-

tion of TIMS in metabolomics is however its lower sensitivity compared to mass

spectrometers without TIMS. For all the different mass analysers, is is possible to

perform targeted or untargeted analyses. In targeted MS, prior knowledge about

the m/z values of a metabolite is required, whereas untargeted cover entire ranges

of m/z values. Targeted approaches can focus on quantitative measurements of

known metabolites (Guder et al., 2017; Ribbenstedt et al., 2018). Untargeted ap-

proaches are useful in the natural product discovery (Leao et al., 2021; Gauglitz

et al., 2022).

Metabolism can change within seconds (Link et al., 2013). Thus, sampling for meta-

bolomics has to be performed rapidly and usually involves quenching of metabolic reac-

tions. Common methods involve the quenching with -20 °C cold 40:40:20 acetonitrile:-

methanol:water (Harwood and Wipat, 2012) or 80 °C hot ethanol (van Gulik, 2010). It is

also possible to measure intracellular metabolites by (fast-)filtration methods (Harwood

and Wipat, 2012), extracellular metabolites by removing cells using centrifugation, or

metabolites in the whole culture broth (van Gulik, 2010).

Metabolomics plays an important role in metabolic engineering since it provides mea-

sures for the performance of a bioprocess. Production rates, substrate import rates, by-

product formation but also more intricate metabolite data and metabolic flux analysis

guide design efforts in metabolic engineering. With high-throughput cloning techniques

like pooled CRISPR/Cas9 genome editing or even error-prone-PCR, it is easily possible

to generate hundreds of thousands of strains (R. Liu, Liang, Choudhury, et al., 2018; R.

Liu, Liang, Garst, et al., 2018; Schramm et al., 2020). However, the analysis of only ten

thousand strains is already very difficult with current methods, and faster metabolomics

methods are required.

In 2017, we published a fast, quantitative metabolomics method that uses isotope ra-
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tios (Guder et al., 2017). In brief, 12C-metabolite samples are mixed with a fully labelled
13C internal standard sample before analysis by LC-MS/MS. Calibrating the 13C inter-

nal standard with authentic metabolite standards enabled the calculation of absolute

metabolite concentrations. Using the ratio between the 12C-signal and the 13C-signal

of a metabolite for quantification improves the linearity (Wu et al., 2005) and provided

additional confidence in the metabolite annotation. This allowed us to achieve run times

of 2 min per injection.

Another approach enables even faster measurements. Injecting samples without chro-

matographic separation into a continuous flow of a mobile phase and, subsequently, into

super-high-resolution TOF mass spectrometers achieves measurement times in the sec-

ond range (Fuhrer et al., 2011). This analysis approach is also called flow-injection mass

spectrometry (FI-MS). Although, ESI is considered a soft ionization method, in-source

fragmentation of metabolites is still a commonly observed phenomenon (Guder et al.,

2017; J. Guo et al., 2021; Senan et al., 2019). A sample arrives at the ESI in a single plug

during FI-MS. We thus were interested about in-source fragmentation during FI-MS and

whether it poses a risk for metabolite missannotations. In this work, we present a study

about the systematic identification of in-source modifications by a network approach

(Chapter 3).
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3 Decoupling of growth and overproduction

The performance of bioprocesses is mainly characterized by product Titers, production

Rates, and product Yields. Together, they are the TRY criterion (Nielsen and Keasling,

2016). In bioprocessing, microbial cells convert a substrate into the desired product.

However, the substrate is also consumed to generate microbial cells (biomass). We thus

face a trade-off between biomass and product formation (Klamt et al., 2018). This results

either in low product yields but high production rates or in high product yields but low

production rates (Fig. 1.7.a). One solution to this challenge is to dynamically control

microbial metabolism and to decouple the cell growth and the overproduction of chem-

icals (Lalwani et al., 2018). By switching between different metabolic states, two-stage

bioprocesses can be achieved (Fig. 1.7.b) (Hartline et al., 2021): in a first stage, biomass

accumulates by cell growth without product formation. In a second stage, growth is

arrested, and the production of the desired chemical induced. Using two-stage biopro-

cesses, titers, rates, and yields can be improved beyond what one-stage bioprocesses can

achieve (Klamt et al., 2018).

There are two major challenges in creating two-stage bioprocesses: one challenge

is to dynamically control cell growth and metabolism, and the second is to engineer

metabolism to be highly active under growth arrest.

3.1 Dynamic control of cell growth and metabolism

To create a transition between two bioprocess stages, cell growth and metabolism needs

to be dynamically controlled (Hartline et al., 2021; Brockman and Prather, 2015a; Ve-

nayak et al., 2015; Cress et al., 2015; Burg et al., 2016). Given the great innovations in

the genetic engineering during the last decade, we now have a plethora of options to

control cellular metabolism dynamically. Most genetic systems have in common that

they require an input signal for induction, and, in the context of metabolic engineering,

many different input signals have been studied: chemical inducers were used to control

expression of a single gene (Soma et al., 2014) or to control a CRISPR interference system

that subsequently controls the transcription of a target gene (S. Li et al., 2016). A quorum

sensing system allows for cell density dependent autoinduction of a two-stage process

(Gupta et al., 2017), and also light can be used to control a bioprocess (E. M. Zhao et al.,

2018). Some of the systems allow the process operator to actively control the bioprocess,

and others like the quorum-sensing based system are auto-regulated (Gupta et al., 2017;

Lo et al., 2016). Although these approaches enable the dynamic control of metabolism,
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Figure 1.7: Concept figure of one- and two-stage bioprocesses. (a) The upper
scheme shows a theoretical one-stage bioprocess, in which most of the substrate is con-
verted into biomass, and few substrate into the product. The biomass concentration
reaches high levels over the time, whereas the product concentrations remain low. The
substrate-specific product yield is low. In the lower scheme, a one-stage bioprocess is
depicted, in which most of the substrate is converted into the product, and not into the
biomass. The biomass, which functions as a catalyst and converts the substrate into
the product, remains low throughout the cultivation causing low volumetric production
rates. The substrate-specific product yield is high. (b) The chart shows the biomass
and product concentrations over time for a theoretical two-stage bioprocess. In the first
stage, only biomass accumulates. Then, by dynamically controlling the metabolism of
the overproduction strain, growth is arrested, and the production is induced in the sec-
ond stage of the bioprocess. Consequently, the product accumulates.
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a limitation of many of the genetic systems is that they cannot arrest cell growth fully,

which is desired in two-stage bioprocesses.

A stable growth arrest can be effectively achieved by nutrient limitations and star-

vation. For example, growth is arrested by omitting essential nutrients such as phos-

phorus, sulphur, magnesium, and nitrogen sources from the medium (Chubukov and

Sauer, 2014). Especially, nitrogen limitation was often used to stop growth in metabolic

engineering projects to study cells under growth arrest (Boecker et al., 2019; Chubukov

et al., 2017; Michalowski et al., 2017; Sonderegger et al., 2005). A practical limitation of

this approach is however that nutrients cannot be easily removed from the cultivation

medium and need to be diluted or depleted during the cultivation.

Another option to robustly arrest growth and create two-stage bioprocesses is to use

gene deletion strains that are auxotrophic for specific metabolites. Then, growth can

be controlled by supplementing or omitting these specific metabolites. In one of the

here presented studies (Chapter 4), we used this approach to investigate the citrulline

overproduction under growth arrest in E. coli strains with different feedback regulations

removed. Dependent on the price of the fed metabolites, this approach can however face

economic drawbacks. A solution to avoid supplementations with expensive metabolites

is to dynamically introduce auxotrophies during the fermentation (Gupta et al., 2017).

An important concept in metabolic engineering is the metabolic valve (Gupta et al.,

2017; Brockman and Prather, 2015b; Solomon et al., 2012; Venayak et al., 2018, Chapter 4

and Chapter 5). A metabolic valve is an enzyme reaction that can be dynamically tuned

during the bioprocess and that introduces a metabolic bottleneck on demand. This can be

achieved by modulating the enzyme abundance or the enzyme activity (also see Section

1.1). Blocking the metabolic flux at a specific location in the metabolic pathway can have

multiple benefits like shutting-off degradation or competing pathways (also see Section

1.2). Yet, it can also lead to the accumulation of the substrate of the perturbed enzyme

reaction (Donati et al., 2021, 2018; Gupta et al., 2017, Chapter 4 and Chapter 5) and to a

growth arrest if a downstream metabolite is essential (Harder et al., 2018; Cho et al., 2012,

Chapter 4 and Chapter 5). Thus, converting an essential enzyme into a metabolic valve

allows us to dynamically introduce auxotrophies and to control growth and metabolism.

However, there are also alternative approaches to arrest growth that do not rely on

nutrient limitations or metabolic bottlenecks. These approaches are especially interest-

ing for modifying conventional overproduction strain that usually operate in one-stage

bioprocesses and for making them applicable in two-stage bioprocesses. Cell growth can

be arrested by overexpressing the small RNA Rcd in an E. coli strain with a mutation in
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the global transcription factor H-NS (Rowe and Summers, 1999; Hommais et al., 2001).

This enables the overproduction of proteins under growth arrest. These metabolically

active but non-growing cells were called "quiescent" (Rowe and Summers, 1999). Further,

inducible RNA polymerase expression (rpoB and rpoC) can be used to control growth of

E. coli cells (Izard et al., 2015). This enabled the construction of a two-stage bioprocess

producing glycerol in E. coli that had improved glycerol yields (Izard et al., 2015). Tar-

geting genes related DNA replication (dnaA and oriC) by CRISPR intereference allowed

also for controlling growth of E. coli (S. Li et al., 2016).

3.2 Metabolic activity under growth arrest

Besides achieving tight control over metabolism and cell growth, there is another chal-

lenge during the development of two-stage bioprocesses: microbial cells in growth ar-

rest often show lower metabolic rates than growing cells (Chubukov and Sauer, 2014;

Chubukov et al., 2017; Sonderegger et al., 2005; Chesbro et al., 1990; Nyström, 1998; Ven-

turi, 2003). Low metabolic rates can cause low production rates and are thus undesired in

bioprocessing. In contrast, cells that are metabolically highly active under growth arrest

are sought-after and called quiescent (Sonderegger et al., 2005). The substrate uptake

rates are often used as a proxy for metabolic activity under growth arrest, and they can

vary greatly between different types of nutrient limitations (Chubukov et al., 2014). In

E. coli for example, nitrogen starvation resulted in the lowest glucose uptake rates com-

pared to phosphate, sulfur, magnesium, tryptophan, and leucine starvation (Chubukov

and Sauer, 2014). It was shown that E. coli can produce proteins under growth arrest at a

constant rate for multiple days (Gefen et al., 2014). This indicated that E. coli has princi-

pally the capacity for prolonged productions under growth arrest. However, regulatory

responses to the growth arrest, which, for example, reduce substrate import rates, can

explain low metabolic activities.

One of the responses to starvation in E. coli is the stringent response (Traxler et al.,

2008; Brown et al., 2014), in which RelA and SpoT generate the signal metabolite ppGpp

and trigger a global regulatory mechanism with broad implications for cell physiology.

In a metabolic engineering study, the stringent response was engineered in E. coli to

keep glucose uptake rates high under nitrogen limitation (Michalowski et al., 2017). To

achieve this, the relA gene was deleted from the genome, two point mutations leading

to Arg290Glu and Lys292Asp were introduced to spoT, and a point mutation leading to

Gly267Cys was introduced to aceE. The resulting engineered strain showed a specific

glucose uptake rate of 3.3mmolg−1
DWh−1 during nitrogen starvation, which is over 2-
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times higher than for the comparable wild-type strain (1.4mmolg−1
DWh−1). In other stud-

ies, mutants were identified that had also increased glucose uptake rates under nitrogen

starvation (Chubukov et al., 2017; Sonderegger et al., 2005). However, the mechanisms

by which the mutations achieved the increased uptake rate are not entirely clear.

In contrast to engineering substrate uptake rates directly, enforced ATP-wasting can

function as an indirect driver for metabolism (Hädicke et al., 2015; Jensen et al., 2003;

Semkiv et al., 2016; J. Liu et al., 2016; Holm et al., 2010; Koebmann et al., 2002; Chao and

Liao, 1994, Chapter 6 and Chapter 7). The idea is to include a futile cycle that converts

the main energy equivalent of microbial cells ATP into ADP, which stores less energy

than ATP. Often the ATP synthesis can also be coupled directly to the product formation.

Wasting ATP in E. coli increases glucose import and production rates even under growth

arrest (Chapter 6 and Chapter 7). In the here presented work, we studied the enforced
ATP-wasting concept further.
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4 Temperature-sensitive proteins

Environmental factors including the temperature, salt concentrations, pH, and pressure

affect the stability of a protein (Honig and Yang, 1995; Dill, 1990). Under certain con-

ditions, a protein can be destabilized, undergoes a conformational change, and unfolds.

This denaturation effect has practical applications and, for example, is needed in the

preparation of paneer, an Indian cottage cheese (Khan and Pal, 2011): whey proteins in

milk are denatured by heat and lowering the pH by citric acid or vinegar. Subsequently,

denatured proteins coagulate and form the curd that is separated from the whey by fil-

tration and, eventually, becomes the cheese.

The stability and the point, at which a protein unfolds, varies greatly among different

proteins but also different species (Jarzab et al., 2020). For example, in thermophilic or-

ganisms, enzymes have a higher overall enzyme rigidity (Radestock and Gohlke, 2011)

and increased numbers of β-sheets, higher lysine and arginine content, as well as lower

threonine, glutamine, and aspartate content compared to enzymes in mesophiles (Leuen-

berger et al., 2017; Mallik and Kundu, 2013). Despite high levels of thermal adaption,

thermozymes and proteins in mesophiles are very similar with sequence similarities in

the range of 40 to 85 % (Vieille and Zeikus, 2001).

One of the main contributing factors to the stability of a protein is hydrophobic inter-

actions between non-polar parts of the protein, buried within a protein’s three-dimen-

sional structure (Shriver, 2009). Other factors of protein stability are hydrogen bonding,

van der Waals interactions, and electrostatic effects (Shriver, 2009; Goldenzweig and

Fleishman, 2018; Shirley, 1995). To describe and quantify the stability of a protein with a

single folded state and an unfolded state, we can use following definition of the unfolding

free energy ∆Gunfolded (Shriver, 2009):

∆Gunfolded = −RT · ln(funfolded
ffolded

) (1.3)

, whereas R is the ideal gas constant, T the temperature and ffolded/unfolded the frac-

tions of folded or unfolded protein. Usually, the unfolding free energy is between 5 and

20 kcal/mol (Dill, 1990; Goldenzweig and Fleishman, 2018; Varadarajan et al., 1996). This

is comparably low considering that single hydrogen bonds in a protein are estimated to

have ∆G values between 1 to 12 kcal/mol (Honig and Yang, 1995; Goldenzweig and

Fleishman, 2018). At the so-called melting temperature Tm, half of the protein is un-

folded, which makes the Tm a good parameter to compare the temperature-sensitivity

of different proteins. The lower the Tm the higher the temperature-sensitivity.
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The Tm of a protein can be determined by thermal shift assays that often rely on

fluorescent dyes that can bind to denatured proteins (Huynh and Partch, 2015). With

thermal proteome profiling (TPP) (Franken et al., 2015), which is a mass spectrometry-

based proteomics method, it is possible to determine melting curves of proteins on a

large scale. TPP also measures precipitation and not only thermal unfolding. Thus, the

Tm values determined by TPP are not equal to the Tm values as defined only by thermal

unfolding of proteins. However, investigations of 13 species including psychrophilic,

mesophilic, and thermophilic oranisms as well as bacteria, one archaeon, and eukaryotes

by TPP revealed basic principles of thermal stability of proteins (Jarzab et al., 2020).

The optimal growth temperature was distinctly lower than the median Tm values for

eukaryotes, but, for bacteria, the Tm values and optimal growth temperatures could be

much closer (Jarzab et al., 2020). In case of E. coli, the median Tm was 50 °C and, thus,

13 °C higher than the optimal growth temperature (Jarzab et al., 2020). 90 % of the Tm

values determined for E. coli were within a 20 °C range (Jarzab et al., 2020). Five proteins

in E. coli had Tm values below 40 °C (DnaC, AroH, YraR, HisG, CsrD) (Jarzab et al., 2020).

Mutations can have a great impact on the stability of a protein. Changes in the un-

folding free energy (∆∆G) between a wild type and a mutant protein are calculated to

quantify the effect of a mutation (Sanavia et al., 2020; Pancotti et al., 2022):

∆∆Gunfolded = ∆Gmutant
unfolded −∆Gwildtype

unfolded (1.4)

On average, a single amino acid substitution in 22 enzymes caused a destabilization

with a ∆∆G value of 1.3 kcal/mol (Tokuriki and Tawfik, 2009). It is also estimated that

around 80 % of the deleterious mutations that cause monogenic diseases in human are

due to effects on protein stability (Tokuriki and Tawfik, 2009; Yue et al., 2005), and, on

average, mutations are in 36% of the cases deleterious (Tokuriki and Tawfik, 2009; Smith

and Raines, 2006; Bershtein et al., 2006; Camps et al., 2007). Since the design space

of proteins is incomprehensibly large and many mutations are deleterious, the fitness

landscape of a protein is thus characterized by island of high fitness (Smith and Raines,

2006; Romero and Arnold, 2009).

Knowing and engineering protein stability is crucial in the development of therapeu-

tic agents (Sanavia et al., 2020; Leader et al., 2008) and biotechnological applications like

biocatalysis (Walls and Loughran, 2011). Therefore, measured ∆∆G values are collected

in a large database (Xavier et al., 2021) and many mathematical models have been de-

veloped that predict ∆Gunfolded and ∆∆G values (Sanavia et al., 2020; Pancotti et al.,

2022; Guerois et al., 2002; Schymkowitz et al., 2005; Yang et al., 2019; Cao et al., 2019).
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The ∆∆G values can lead design efforts to create proteins with, typically, an increased

stability. Notably, increasing an enzyme’s thermal stability does not always imply that

the activity at low temperatures is reduced (Vieille and Zeikus, 2001). This effect can be

explained by local high flexibility in the catalytic center but an overall increased rigidity

(Radestock and Gohlke, 2011; Vieille and Zeikus, 2001). However, stability has an effect

on enzyme activity, especially if the enzyme unfolds at high temperatures.

There are different mathematical models that approximate the maximum reaction rate

vmax of an enzyme as a function of the temperature T (Daniel and Danson, 2013). One of

the simpler models considers two main factors (eq. 1.5) (Fig. 1.8.a) (Daniel and Danson,

2013). First, the turnover number kcat increases with increasing temperature as described

by the Arrhenius equation (eq. 1.6). Second, the fraction of active enzyme decreases over

time t and with increasing temperature (eq. 1.7), whereas thermal unfolding and other

temperature-dependent inactivation effects are not distinguished and considered as a

single effect.

vmax = kcat · [E0] · e−kinact·t (1.5)

kcat =
kB · T
h

· e−
∆G

‡
cat

RT (1.6)

kinact =
kB · T
h

· e−
∆G

‡
inact
RT (1.7)

In the model, [E0] is the initial concentration of the active enzyme, kB the Boltzmann

constant, h the Planck constant, R the ideal gas constant, ∆G‡
cat the activation energy of

the reaction, and ∆G‡
inact the activation energy of the thermal inactivation. To calculate

the reaction rates from the maximum reaction rate, other mathematical models like the

Michaelis-Menten kinetic can be used (Fig. 1.2).

Mutations change the stability of a protein and thus can change the relationship be-

tween the maximum reaction rate of an enzyme and the temperature. Theoretically, it

could be possible that mutations mainly influence the temperature, at which the vmax is

maximal (Fig. 1.8.b), or mutations could change only the maximum of the vmax. However,

realistically, we would expect a much complexer change in the temperature-dependency

that affects both, the maximum of vmax and Tmax, but also the slopes at which reaction

rates increase or decrease. Among the different possible changes of a protein’s thermal

property due to mutations, there is however a special type of mutation with a distinct

characteristic: In 1934, Timoféeff and Ressovsky were one of the first to report mu-
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Figure 1.8: Maximum reaction rates as a function of temperature. (a) The chart
shows the maximum reaction rate vmax of an enzyme reaction as a function of tem-
perature at a single time point. The mathematical model that is used for the function
considers increasing reaction rates according to Arrhenius and decreasing reaction rates
due to thermal inactivation of the enzyme (Daniel and Danson, 2013). Here, we define
Tmax as the temperature, at which vmax is maximal, and rmax as the maximal vmax. The
red line indicates the metabolic flux in a hypothetical metabolic pathway (b) Upon sub-
stituting amino acid residues in an enzyme, changes in the temperature dependency of
the maximum reaction rate can be caused. The here displayed charts are theoretical,
should only illustrate some of the possible outcomes, and thus are not exhaustive. A
mutation could cause a change in the Tmax (grey box) or in the rmax (green box). Most
likely, a mutation causes a much more complex change in the temperature dependency
of the maximum reaction rate and changes both, the Tmax and the rmax (yellow box). De-
pending on the mutations, the maximum reaction rate can be lower than the metabolic
flux in a pathway (red line). Then, a metabolic bottleneck is caused. Gain of function
mutations are not considered here.
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tants of Drosophila that had different viabilities as a function of temperature (Timoféeff-

Ressovsky, 1934). Dobzhansky and Spassky reported similar effects in 1943 (Dobzhansky

and Spassky, 1944). These observations describe what we now know as temperature-

sensitive mutants. Temperature-sensitive proteins maintain function at a low tempera-

ture, which is called the permissive temperature. However, at higher (non-permissive)

temperatures, the function of the protein is impaired causing a phenotype. In the context

of a metabolic pathway, temperature-sensitive enzymes maintain the metabolic flux in

a pathway at the permissive temperature but with increasing temperature they become

a metabolic bottleneck (1.8.b). The great advantage of temperature-sensitive mutants is

that they enable us to study the function of essential genes, which is usually not possible

by gene knockouts.

Already in 1952, Maas and Davis reported an E. coli mutant with a temperature-

sensitive enzyme in the pantothenate synthesis (Maas and Davis, 1952). To obtain the

temperature-sensitive mutant, they used a E. coli mutant that was auxotrophic for pan-

tothenate at any temperature. They plated a large number of cells of this mutant strain

onto minimal agar medium and isolated secondary mutants at 25 °C. One of these mutant

was then found to be temperature-sensitive.

In the following decades after discovery, temperature-sensitive mutants contributed

to major findings in biology: temperature-sensitive E. coli mutants helped in understand-

ing the cell cycle (Hansen and Atlung, 2018) and T4 phages with temperature-sensitive

ligase and DNA polymerase contributed to understanding DNA replication and Okazaki

fragments (Okazaki et al., 1968; Pauling and Hamm, 1969; Waard, 1965).

Finding temperature-sensitive mutants in DNA replication was possible by using 5-

bromouracil that, if incorporated into the DNA, makes cells much more sensitive to UV

light (Carl, 1970). Initially, E. coli cells were mutagenized by N-methyl-N-nitrosoguanidine.

The pooled strain library was then cultivated in the presence of 5-bromouracil. Strains

that were not temperature-sensitive in DNA replication incorporated the 5-bromouracil.

Treating the cells by UV light led to an enrichment of temperature-sensitive mutants,

which had not incorporated 5-bromouracil. After the enrichment, mutants still had to

be isolated and tested for temperature-sensitivity.

Over the years, many temperature-sensitive alleles in E. coli were found. Currently,

the E. coli Genetic Stock Centre at Yale Universitry (CGSC, https://cgsc.biology.yale.edu/,

accessed on 28.07.2022) collected 184 mutations in E. coli that are labelled as temperature-

sensitive. The mutations include 117 unique genes. However, most strains with a tem-

perature-sensitive mutation contain mutations in other genes, are not sequenced, or
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have multiple mutations in the gene encoding for the temperature-sensitive protein.

Many temperature-sensitive mutants without sequencing data were discovered before

DNA sequencing was broadly available during a time, in which P1 transduction mapping

(Bitner and Kuempel, 1982) or restriction endonuclease mapping (Yasuda and Hirota,

1977) was used to create maps of genomes.

In the years around 2010, large scale screenings identified hundreds of temperature-

sensitive mutants in yeast (Saccharomyces cerevisiae) (Ben-Aroya et al., 2008; Z. Li et al.,

2011; Kofoed et al., 2015). To create these strains, the diploid shuffling method was used

(Kofoed et al., 2015; Ben-Aroya et al., 2010) that is not accesible in E. coli. In brief, a

gene of interest is amplified and mutagenized by error-prone-PCR. The resulting frag-

ments are cloned in between two selective markers into a plasmid. After digestion, lin-

ear DNA fragments of the mutant gene of interest with the flanking markers are then

used to transform diploid yeast strains. These strains carry a wild type version of the

gene of interest on one genome copy and a knockout of the gene on the other genome

copy. Homologous regions to the linear DNA fragment are at the gene knockout site.

Thus, the mutant gene of interest is inserted into the genome at the knockout site. The

diploid strain is brought to sporulation. Using the second selective marker, only haploid

strains with the mutant gene survive. By replica plating and cultivations at different

temperatures, temperature-sensitive strains can be identified. Since the last steps of

the protocol are performed on agar plates, this method can make full use of multiplex-

ing and enables semi-automated high-throughput screenings. These large libraries of

temperature-sensitive mutants were combined with gene knockout libraries and enabled

the construction of gene-gene interaction networks (Costanzo et al., 2010; Costanzo et

al., 2016).

Although many bioinformatic tools were developed to predict the impact of muta-

tions on protein stability, only few were developed to predict mutations that induce

temperature-sensitivity (Varadarajan et al., 1996; Tan et al., 2014; Poultney et al., 2011).

These tools make use of buried sites of a protein that are amino acid sites within a pro-

tein with little access to solvent-accessible surface area (< than 10 % in Poultney et al.,

2011). After identifying the buried sites, putative mutations at the sites are then further

analysed and proposed as candidates depending on the algorithms.

In the context of metabolic engineering, using the temperature as signal to control

cell growth and metabolism is very attractive. It allows the operator to directly control

the bioprocess. No addition of chemicals is required, and the risk of contamination is

reduced. Also, every bioreactor is already equipped for tight control of the cultivation
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temperature. Thus, no additional control technology is required. Therefore, different

systems were studied to control metabolism by temperature. The temperature-sensitive

transcription factor CI857 of Escherichia virus Lambda was used to dynamically con-

trol the expression of the essential isocitrate dehydrogenase Icd in E. coli (Harder et al.,

2018). This enabled the two-stage overproduction of itaconic acid with a final product

concentration of 47 g/L (Harder et al., 2018). Other examples of temperature-sensitive

transcription factors are RheA of Streptomyces albus (Weber, 2003; Servant et al., 2000)

and temperature-sensitive mutants of TetR (Pearce et al., 2017).

Alternatively, temperature-sensitive enzymes can be used directly as metabolic valves

(also see Section 3.1) to control metabolism and cell growth (M. D. Lynch et al., 2016; Cho

et al., 2012; M. Lynch et al., 2019, Chapter 4 and Chapter 5). In the here presented work,

we further studied temperature-sensitive proteins for the use in metabolic engineering

(Chapter 4 and Chapter 5).
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5 Objectives of the thesis

With current genetic tools, it is possible to generate vast quantities of mutant strains.

In order to test large numbers of strain, high-throughput metabolomics methods like

flow-injection mass spectrometry (FI-MS) are required. Since FI-MS, does not use chro-

matographic separation of metabolites prior to analysis, samples arrive simultaneously

at the ion source. This could lead to in-source modifications and false-positive metabo-

lite annotations. One goal of the presented work is to study in-source modifications

during FI-MS. With Chapter 3, we present a network approach that allows us to iden-

tify in-source modifications and shows limitations but also opportunities of FI-MS.

During the overproduction of chemicals by engineered microbial strains, we face a

trade-off between biomass and product formation that results in suboptimal product

titers, rates, or yields. A solution to the trade-off is to decouple growth and overproduc-

tion and to establish two-stage bioprocesses. The metabolism of a microbial strain needs

to be dynamically controlled to enable a transition between the two stages. To achieve

the dynamic control of metabolism, overproduction of chemicals, and prolonged pro-

duction under growth arrest, genetic engineering of microbial strains is required.

Goals of this work are to study temperature-sensitivity as a tool to control metabolism

and to decouple growth and overproduction in two-stage bioprocesses. This includes the

development of new approaches to generate and identify temperature-sensitive mutants

in E. coli. With Chapter 4 and Chapter 5, we present two different approaches. The

goal of one of the approaches is to find many temperature-sensitive mutants of a single

gene (argG) to establish a two-stage bioprocess overproducing citrulline. The other ap-

proach aims at finding temperature-sensitive mutants in many different essential genes

in E. coli. Subsequently, the identified mutants should be tested for the dynamic con-

trol of metabolism. This includes overproducing chemicals in two-stage bioprocesses by

selected strains.

Microbial strains often show reduced metabolic activity and substrate uptake rates

during growth arrest. Enforced ATP-wasting is a promising concept to keep metabolic

activity at a high level. With Chapter 6 and Chapter 7, we provide studies on the

concept that rely on overexpression of ATPase. Open questions were how elevated levels

of ATPase influence the production rates under growth arrest but also how E. coli buffers

perturbations in ATP metabolism.
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6 Abbrevations

Table 1.1: Abbrevations.
ADP Adenosine diphosphate
ATP Adenosine triphosphate
CE Capillary electrophoresis
CID Collision induced dissociation
CRISPR Clustered regularly interspaced short palindromic repeats
∆∆G Change of unfolding free energy (kcal/mol)

∆G
mutant/wildtype
unfolded

Unfolding free energy in mutant or wildtype strains (kcal/mol)

∆G
‡
cat Activation energy of an enzyme reaction (kcal/mol)

∆G
‡
inact Activation energy of the thermal inactivation of an enzyme reaction (kcal/mol)

DNA Deoxyribonucleic acid
DW Dry weight (mg)
[E] Concentration of active enzyme (mM)
[E0] Concentration of the active enzyme at time point zero (mM)
EI Electron ionization
ESI Electrospray ionization
FI-MS Flow-injection mass spectrometry
FRT Flipase recognition site
ffolded/unfolded Fractions of folded or unfolded protein (-)
h Planck’s constant (6.6260701 · 10−34 J Hz−1)
HPLC High-performance liquid chromatography
kB Boltzmann constant (1.380649 · 10−23 J/K)
kcat Turnover number (1/s)
kinact Inactivation parameter
Km Michaelis-Menten-constant (mM)
LC Liquid chromatography
LC-MS/MS Liquid chromatography tandem mass spectrometry
MALDI Matrix-assisted laser desorption ionization
MRM Multiple reaction monitoring
mRNA Messenger RNA
MS Mass spectrometry
NADH Nicotinamide adenine dinucleotide
NADPH Nicotinamide adenine dinucleotide phosphate
NMR Nuclear magnetic resonance
PAM Protospacer adjacent motif
PCR Polymerase chain reaction
QQQ Triple quadruple mass spectrometer
QTOF Tandem mass spectrometer using a TOF mass analyser
rmax Maximal maximum reaction rate (mM/s)
R Ideal gas constant (8.31446261815324 J K−1 mol−1)
RNA Ribonucleic acid
[S] Substrate concentration (mM)
SFC Supercritical fluid chromatography
sgRNA single guide RNA
T Temperature (K or °C)
TIMS Trapped ion mobility spectrometry
TIMS-TOF Trapped ion mobility spectrometry coupled to a TOF mass analyser
Tm Melting temperature (K or °C)
Tmax Temperature, at which rmax is reached (K or °C)
TOF Time-of-flight mass analyser
TRY criterion A criterion to evaluated bioprocesses based on product titers, production rates, and product yields
UV Ultraviolet
v Reaction rate (mM/s)
vmax Maximum reaction rate (mM/s)
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Abstract

Cellular metabolism is very complex and extensively regulated. For many organ-

isms we know almost the complete set of biochemical reactions in their metabolic

network. However, it is not well understood how these reactions are regulated and

how they interact in order to enable cellular functions. In this review, we describe

recent methodological advances to study metabolic networks with a focus on bac-

terial metabolism.

Metabolische Netzwerke gehören zu den komplexesten und zugleich zu den am besten

untersuchten biologischen Netzwerken, die wir kennen. Zum Beispiel sind am metabolis-

chen Netzwerk von Escherichia coli 1.192 Metabolite, 1.515 Gene, 1.515 Proteine und

2.719 biochemische Reaktionen beteiligt (Monk et al., 2017). Für viele Organismen ist der

Aufbau des metabolischen Netzwerks ähnlich gut beschrieben. Allerdings ist unklar, wie

metabolische Netzwerke so genau reguliert werden, dass alle Zell- und Energiebausteine

kontinuierlich und in der erforderlichen Menge produziert werden. Um diese komplexe

Aufgabe zu meistern, haben Zellen Regulationsmechanismen entwickelt, die alle Reak-

tionen im Netzwerk präzise aufeinander abstimmen. Diese Regulationsmechanismen

zu finden und ihre Funktion im Netzwerk zu verstehen, ist ein aktuelles Ziel der Stof-

fwechselforschung. Ein umfassendes Verständnis metabolischer Netzwerke und deren

Regulation ist besonders für neue biotechnologische Anwendungen wichtig. Die syn-

thetische Biologie entwickelt z. B. bereits sehr effiziente und neuartige Stoffwechsel-

wege und ermöglicht damit komplexe Synthesen von Naturstoffen in Hefen (Galanie et

al., 2015) oder CO2-Fixierung in E. coli (Gleizer et al., 2019). Allerdings sind diese syn-

thetischen Stoffwechselwege oft sehr langsam, weil Regulationsmechanismen fehlen,

sodass der restliche Stoffwechsel überlastet wird. Doch bevor wir synthetische Regula-

tion entwickeln können, müssen wir das Zusammenspiel aller Reaktionen in natürlichen

metabolischen Netzwerken verstehen.

Modelle metabolischer Netzwerke aus Genomen

Die Stöchiometrie metabolischer Netzwerke ist der Ausgangspunkt für fast alle Anal-

ysen und Modelle des Stoffwechsels. Dank der biochemischen Erkenntnisse des 20.

Jahrhunderts sind die Reaktionen metabolischer Netzwerke und deren Stöchiometrie
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sehr gut verstanden. Zusammen mit der Sequenzierung ganzer Genome können so

großskalige Modelle metabolischer Netzwerke erstellt werden. Solche großen metabolis-

chen Modelle (oder genome-scale models) existieren inzwischen für viele Organismen,

von Bakterien bis hin zu menschlichen Zellen, und sie verbinden lückenlos alle metabolis-

chen Reaktionen miteinander. Dadurch können wir geschlossene Massenbilanzen auf-

stellen und theoretische Stoffflüsse berechnen, beispielsweise für maximales Wachstum

oder maximale Produktion eines gewünschten Stoffs (Monk et al., 2017). Allerdings sind

diese Vorhersagen statisch, und durch die Berechnungen kennen wir zwar die optimalen

Stoffflüsse im Netzwerk, leider jedoch nicht, wie diese erreicht und eingestellt werden.

Die dazu erforderlichen dynamischen Modelle, die die Regulation und Kinetik aller En-

zyme berücksichtigen, können aktuell nur für sehr kleine Netzwerke erstellt werden.

Hunderte Enzyme aufeinander abstimmen

Die Regulation metabolischer Netzwerke stellt sicher, dass die Raten aller Reaktionen

genau aufeinander abgestimmt sind. Denn nur, wenn sich alle Reaktionen in einem

Fließgleichgewicht befinden, entsteht ein kontinuierlicher Stofffluss durch das Netzw-

erk, der genau an den Bedarf der Zelle angepasst ist (Abb. 2.1.A). Weicht eine Reaktion

vom Fließgleichgewicht ab, könnte das zu einem Engpass führen, der schnell das ganze

Netzwerk stört. Ein Engpass im Biosyntheseweg einer einzelnen Aminosäure kann z. B.

innerhalb kürzester Zeit die gesamte Proteinbiosynthese und damit das Zellwachstum

stören. Da Bakterien aber sehr kontinuierlich und konstant wachsen (Wang et al., 2010),

können wir davon ausgehen, dass metabolische Netzwerke sehr gut eingestellt sind

und dass die Reaktionsraten aller Enzyme immer wieder in Echtzeit präzise aufeinan-

der abgestimmt werden. Aber wie gelingt die Abstimmung bei Hunderten von Enzy-

men? Im einfachsten Fall folgt ein Enzym einer Michaelis-Menten- Kinetik (Abb. 2.1.B)

und arbeitet mit maximaler Geschwindigkeit (vmax). Dann bestimmt nur die Konzentra-

tion des Enzyms die Reaktionsrate. Experimentell lässt sich aber zeigen, dass Enzyme

nicht nahe am vmax arbeiten, weil Enzymkonzentrationen relativ stark abfallen können,

bevor ein Wachstumsdefekt eintritt (Donati et al., 2021). Das deutet darauf hin, dass die

meisten Enzyme Überkapazitäten haben, die z. B. durch Änderung der Substratkonzen-

tration sofort abgerufen werden können. Allerdings ist die Expression von Enzymen

auch mit Kosten verbunden, weshalb Enzyme nicht zu weit weg vom vmax arbeiten soll-

ten. Die Konsequenz daraus ist, dass die Expression von Enzymen oft stark reguliert

ist. Allosterische Interaktionen zwischen Transkriptionsfaktoren und Metaboliten spie-
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Figure 2.1: Fließgleichgewicht in metabolischen Netzwerken. A, Metabolische Netzw-
erke bestehen aus Enzymen (Quadrate) und Metaboliten (Kreise), die durch biochemis-
che Reaktionen miteinander verbunden sind. Das aktuelle Modell des metabolischen
Netzwerks von Escherichia coli umfasst 1.192 Metabolite, 1.515 Gene, 1.515 Proteine
und 2.719 biochemische Reaktionen (Monk et al., 2017). B, Im Fließgleichgewicht ver-
laufen alle Reaktionen mit gleicher Rate, die dem Stofffluss durch das Netzwerk (gelb
gestrichelt) entspricht. Die Rate einer Reaktion folgt im einfachsten Fall einer Michaelis-
Menten-Kinetik und wird durch die Konzentrationen des Substrats und des Enzyms bee-
influsst. Die Konzentration des Enzyms entscheidet, ob der Stofffluss in dem Synthe-
seweg aufrechterhalten werden kann, ob an der Reaktion ein Engpass entsteht oder die
Reaktion Überkapazitäten hat. vmax gibt die maximale Reaktionsgeschwindigkeit bei
einer bestimmten Enzymkonzentration an.

len dabei eine wesentliche Rolle und erlauben komplexe Wechselwirkungen und Rück-

kopplungen zwischen metabolischen und genetischen Netzwerken. So konnten wir am

Beispiel der Aminosäuresynthese von E. coli zeigen, dass ein Zusammenspiel mehrerer

negativer Rückkopplungen zwischen Aminosäuren und Proteinen die Enzymkonzen-

trationen so präzise einstellt, dass dies gleichzeitig die Effizienz und die Robustheit der

Stoffwechselwege maximiert (Sander et al., 2019). Die Konzentrationen von Metaboliten

sind also Schlüsselsignale für die Regulation metabolischer Netzwerke.

Metabolite als Informationsträger

Auf das gesamte metabolische Netzwerk bezogen wissen wir nicht, welche Metabolite

Schlüsselsignale sind und welche Einfluss auf die Genexpression nehmen. Zurzeit gibt

es auch kaum Methoden, um Interaktionen zwischen Metaboliten und der Genexpres-

sion systematisch zu finden. Da unser Wissen hauptsächlich auf in vitro-Messungen
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basiert, kennen wir selbst in E. coli nur insgesamt 137 Interaktionen zwischen Metabo-

liten und Transkriptionsfaktoren (Lempp et al., 2019), obwohl tausende solcher Inter-

aktionen möglich wären. Um Metabolite mit regulatorischer Funktion zu finden, ist

es wichtig, intrazelluläre Metabolite mit größtmöglicher Abdeckung und Präzision zu

messen. Metabolomik- Methoden, die auf Massenspektrometrie basieren, ermöglichen

es heute, hunderte Metabolite in Zellextrakten zu messen, entweder durch ungezielte

Analysen (Fuhrer et al., 2011; Lu et al., 2020) oder gezielt (Guder et al., 2017). Aber selbst

mit modernen Massenspektrometrie-Methoden ist die Anzahl an messbaren Metaboliten

bisher limitiert, da die Metabolite einer Zelle chemisch zu divers sind, um sie alle mit

einer einzigen chromatographischen Methode aufzutrennen. Eine Lösung dafür könnte

die direkte Injektion der Proben in besonders hoch auflösende Massenspektrometer sein,

ohne eine chromatographische Auftrennung. Ein großer Vorteil dieser Massenspektro-

metrie- Methoden ist die Geschwindigkeit, mit der Proben prozessiert und gemessen

werden können, was es sogar ermöglicht, Metabolite in lebenden Zellen in Echtzeit zu

messen (Link et al., 2015). Da wir nun metabolische Netzwerke vermessen können,

stellt sich die Frage, welche Experimente geeignet sind, um Regulation nachzuweisen

und zu verstehen. Ein klassisches Vorgehen ist, das Netzwerk zu stören und von den

gemessenen Veränderungen auf Regulationsmechanismen rückzuschließen. In stimu-
lus-response-Experimenten wird ein äußerer Faktor wie die Kohlenstoffquelle verändert,

um dann zeitlich aufgelöst Metabolitkonzentrationen zu messen. Mit stimulus-response-

Experimenten wurden die ersten in vivo-Parameter von Enzymen abgeschätzt (Wu et al.,

2006), und vor kurzem konnten wir damit neue Metabolit-Transkriptionsfaktor-Interaktionen

identifizieren (Lempp et al., 2019). Man kann das metabolische Netzwerk aber auch

gezielter stören. Beispielsweise wurde in 4.913 Hefestämmen jeweils ein Gen aus dem

Genom entfernt und die intrazellulären Aminosäurekonzentrationen gemessen. Die Aminosäuren

zeigten Signaturen, die so spezifisch waren, dass sie Rückschlüsse auf die Funktion der

einzelnen Gene zuließen (Mülleder et al., 2016). Zum Beispiel hatten Gene mit ähn-

licher Funktion auch ähnliche Aminosäuresignaturen. Solche Experimente lassen er-

ahnen, wieviel Information die Konzentration der Metabolite des gesamten Netzwerks

enthalten. Um diese Informationen zu entschlüsseln, sind allerdings sehr große Daten-

sätze notwendig, die möglichst alle Metabolite und tausende Störungen des metabolis-

chen Netzwerks umfassen. Solche Störungen können mit CRISPR-basierten Methoden

präzise und mit massivem Durchsatz erzeugt werden, da Millionen von mit CRISPR

modifizierten Stämmen gebündelt in einem Reaktionsgefäß kloniert werden können.

Mit CRISPR-Interferenz (CRISPRi) konnten wir die Expression jedes Gens im metabolis-
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Figure 2.2: Mithilfe von CRISPR-Interferenz (CRISPRi) kann ganz gezielt die Konzentra-
tion eines Enzyms und somit auch der Stofffluss gestört werden. Häufig akkumuliert das
Substrat einer gestörten Reaktion. Im Biosyntheseweg von aromatischen Aminosäuren
konnte z. B. bei der Störung der von AroA-katalysierten Reaktion eine Akkumulation
von Shikimat-3-Phosphat gemessen werden (Donati et al., 2021). Zum Vergleich wurde
in Kontrollproben das CRISPRi-System nicht induziert. Die Messung der Metabolite er-
folgte mittels Hochdurchsatz-Flüssigkeitschromatographie gekoppelt an Massenspek-
trometrie (Guder et al., 2017).

chen Netzwerk von E. coli stören, was sehr spezifische und lokale Veränderungen von

Metaboliten erzeugte (Donati et al., 2021). Die stärksten Änderungen zeigten Metabo-

lite, die einen direkten Einfluss auf die Aktivität des gestörten Enzyms haben, z. B. Sub-

strate (Abb. 2.2), aber auch allosterische Effektoren. Mit CRISPR-Methoden können auch

Punktmutationen präzise erzeugt werden, um allosterische Rückkopplungen zu entfer-

nen und deren regulatorische Rolle zu untersuchen (Sander et al., 2019).

Design neuer Stoffwechsel-Netzwerke

Nachdem in der Vergangenheit ein Fokus auf der Kartierung von Genen, biochemis-

chen Reaktionen und Transkriptionsfaktoren lag, geht es heute darum, neue metabolis-

che Netzwerke zu designen. Die Erkenntnisse der letzten Jahre haben gezeigt, dass

metabolische Netzwerke durch Regulation sowohl effizienter als auch robuster gegenüber

Störungen werden. Metabolitkonzentrationen nehmen dabei als Signale eine zentrale

Rolle ein. Um in Zukunft neue und bessere metabolische Netzwerke für medizinische

und biotechnologische Anwendungen zu entwerfen, gilt es daher zu verstehen, welche

Metabolite regulatorische Aufgaben haben und wie wir diese Regulation nutzen und

gezielt verändern können.
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Abstract

Flow-injection mass spectrometry (FI-MS) enables metabolomics studies with a very

high sample-throughput. In most FI-MS methods, samples are directly injected into

the electrospray ionization (ESI) source of a high-resolution mass spectrometer, and

metabolites are annotated to ion peaks in the MS1 spectrum based on their exact

mass over charge. Although ESI is considered a soft ionization technique, it can

cause in-source modifications of analytes that are then misannotated to metabolites.

In-source modifications include adduct formation, fragmentation, and other chemi-

cal reactions of metabolites. These effects are especially prominent in FI-MS because

all analytes and the sample matrix enter the ESI at the same time. Here, we spiked

authentic standards of 160 primary metabolites individually into an Escherichia coli
metabolite extract and measured the thus derived 160 spike-in samples by FI-MS.

Out of the 160 metabolites, 154 were annotated in their protonated or deprotonated

form to ion peaks in the MS1 spectrum, and 134 of these ion peaks increased in the

respective spike-in the standard. These results demonstrated that FI-MS can capture

a wide-range of chemically diverse analytes within 30 seconds measurement time.

However, the data also revealed extensive in-source modifications: across all 160

spike-in samples, we identified significant increases of 11,013 ion peaks in positive

and negative mode combined. To explain these unknown m/z features, we con-

nected them to the m/z feature of the (de-)protonated metabolite using information

about mass differences and MS2 spectra. This resulted in networks that explained

on average 49% of all significant m/z features. The networks showed that a single

metabolite undergoes compound specific and often sequential in-source modifica-

tions like adductions, chemical reactions, and fragmentations. Taken together, our

results show that FI-MS generates complex MS1 spectra, which can lead to a 68-fold

overestimation of significant features. Yet, known mass differences and MS2 level

information can explain these features and can therefore avoid misannotation of

metabolites in FIMS analyses.
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1 Introduction

Flow-injection mass spectrometry (FI-MS) does not rely on chromatographic separation

of analytes (Fuhrer et al., 2011; Beckmann et al., 2008). Instead, samples are injected

into the mobile phase that directly enters a mass spectrometer. Metabolites are then

distinguished solely by their mass to charge ratio (m/z) in the MS1 spectrum. This makes

FI-MS faster than methods with chromatographic separation (Reiter et al., 2021; Sarvin et

al., 2020) and enables run times on the second time scale or even real-time metabolomics

with living cells (Link et al., 2015).

FI-MS has been applied to measure the metabolome in various organisms including Es-
cherichia coli, yeast, ruminants, and human cancer cell lines (Fuhrer et al., 2017; Anglada-

Girotto et al., 2022; Holbrook-Smith et al., 2022; Dubuis et al., 2018; Rathahao-Paris et

al., 2019). In these studies, hundreds or even thousands of strains or conditions could be

analyzed due to the fast measurement time of FI-MS. Although FI-MS detects usually a

very large number of m/z features (ion peaks in the MS1 spectrum), only a small fraction

of m/z features can be annotated to metabolites. Thus, there is a large number of unex-

plained m/z features in FI-MS analyses, which could mean that either many metabolites

are not known or that single metabolites produce multiple m/z features. Annotation of

unknown m/z features is a general challenge in all untargeted metabolomics methods

(Hartl et al., 2020; L. Wang et al., 2019; Kachman et al., 2020; Sindelar and Patti, 2020). For

example, an untargeted LC-MS analysis suggested that out of 25,000 measured m/z fea-

tures less than 1,000 originated from unique metabolites (Mahieu and Patti, 2017). The

high number of m/z features in untargeted metabolomic methods is often attributed to

contaminants, isotopes, modification of metabolites in the ion-source, and other mass

spectrometry artifacts.

In-source fragmentation is one example of such mass spectrometry artifacts that in-

crease the number of m/z features per metabolite. The conditions in the ESI can lead

to fragmentation because metabolites are subjected to high temperatures (150 °C to 400

°C) and electric potentials between 2000 V and 4000 V. While ESI sources are usually

designed to minimize in-source fragmentation, it is also possible to promote in-source

fragmentation such that MS1 spectra resemble MS2 spectra that were obtained by colli-

sion induced dissociation (Xue et al., 2020). Apart from in-source fragmentation, other

modifications of metabolites in the ion-source includes the formation of adducts (e.g.

with Na, K, ammonia, sulfate), gains or losses of functional groups by chemical reac-

tions (methylation, phosphorylation), or formation of homo- and heterodimers. Even
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self-cyclization has been observed for glutamate and glutamine (Purwaha et al., 2014).

A common approach to identify in-source modifications and improve m/z feature an-

notation is based on chromatographic peak shape correlation analysis (Guo et al., 2021;

Schmid et al., 2021; Senan et al., 2019). This approach considers that m/z features from

the same metabolite must have the same elution profile (Xu et al., 2015). Chromato-

graphic peak shape correlation analysis is especially effective if it is combined with MS2

spectra (Schmid et al., 2021; Dührkop et al., 2021; Chen et al., 2021) or isotope labelled

substrates (Hartl et al., 2020; Xu et al., 2015). Some recent molecular networking ap-

proaches (Schmid et al., 2021; Chen et al., 2021; Nothias et al., 2020) combine similarities

of elution profiles and MS2 spectra to identify in-source modifications and to increase an-

notation confidence. In isotope labelling approaches, metabolites are labelled by feeding

cells with 13C-carbon or 15N-nitrogen sources (Hartl et al., 2020; Xu et al., 2015), which

changes the mass of all metabolites (N- or C- containing) but not their retention times.

Analyzing the mass differences of m/z features with the same retention time can then

improve annotation confidence and identification of in-source modifications or contam-

inants.

Because FI-MS lacks a chromatographic separation, it is not possible to detect in-

source effects by chromatographic peak shape correlation analysis. Therefore, approaches

to consider in-source effects in FI-MS are limited and currently based on extending the

list of reference masses (Fuhrer et al., 2011; Stricker et al., 2021). This means that, instead

of annotating m/z features only to (de-)protonated metabolites, they are also annotated

to the most prevalent adducts and neutral losses or gains. However, this approach can-

not identify complex sequential in-source modifications due to combinatorial explosion

of the reference list. Moreover, it is difficult to unequivocally annotate m/z features to a

single entry in a reference list, especially if they include a large number of metabolites

and derivatives with the same mass.

Here, we used an experimental approach to identify in-source modifications of metabo-

lites in FI-MS. Therefore, we spiked 160 metabolite standards individually into an E. coli
extract and measured MS1 spectra by FI-MS. We then searched for m/z features that in-

creased in a spike-in sample relative to all other spike-in samples. On average 68 m/z
features increased per spike-in standard suggesting extensive in-source modifications.

While some spike-in standards showed hundreds of significant m/z features that should

all originate from a single metabolite standard, others showed only increases of the m/z
feature that matched the (de-)protonated metabolite standard. We could explain 49 %

of the significant m/z features by connecting them in networks that represent known
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in-source reactions, adducts, isotope patterns, and in-source fragments.

2 Materials and Methods

Authentic metabolite standards were purchased from Merck KGaA (former Sigma-Aldrich,

Germany). The standards were dissolved in water to a concentration of 1 mM if not

stated otherwise (Supporting Information: Table A). Standards were then further di-

luted with acetonitrile and methanol to a final concentration of 10 µM in 40:40:20 ace-

tonitrile:methanol:water. The 10 µM metabolite standards were then added to an E.
coli metabolite extract to yield a final concentration of 1 µM. E. coli cultures were in

a M9 minimal medium, which contained: 22 mM KH2PO4, 42.2 mM Na2HPO4, 11.3 mM

(NH4)2SO4, 8.56 mM NaCl, 100 µM CaCl2 x 2 H2O, 1 mM MgSO4 x 7 H2O, 60 µM FeCl3,

6.3 µM ZnSO4 x 7 H2O, 7.6 µM CoCl2 x 6 H2O, 7.1 µM, 7 µM CuCl2 x 2 H2O, and MnSO4

x 2 H2O.

2.1 Chemicals and materials

5 mL LB medium was inoculated with E. coli MG1655 from a cryo stock. After 6 - 7 h of

cultivation at 37 °C, 10 µL of the culture was transferred to 5 mL M9 minimal medium

with 5 g/L glucose. For 13C-labelled extracts, uniformly labelled 13C-glucose was used (#

CLM-1396, Cam-bridge Isotope Laboratories Inc., USA). The M9 precultures were grown

overnight at 37 °C and at 220 rpm shaking. 20 mL of M9 with 5 g/L 12C- or 13C-glucose

was inoculated with the overnight culture to an optical density at 600 nm (OD) of 0.05.

At an OD of 1, aliquots of 4 mL of the culture were vacuum-filtrated using 0.45 µm pore

size filters (HVLP02500, Merck Millipore). The filters were transferred to -20 °C cold

40:40:20 acetonitrile:methanol:water for metabolite extraction. After at least 30 min at

-20 °C, the metabolite extracts were centrifuged for 30 min at -9 °C and 4,000 rpm. The

supernatant was stored at -80 °C.

2.2 Mass spectrometry

Samples were analyzed by FI-MS on an Agilent 6546 Series quadrupole time-of-flight

mass spectrometer (Agilent Technologies, USA). The electrospray source was operated

in negative and positive ionization mode. The mobile phase was 60:40 isopropanol:water

buffered with 10 mM ammonium carbonate (NH4)2CO3 and 0.04 % (v/v) ammonium hy-

droxide for both ionization modes, and the flow rate was 0.15 mL/min. For online mass
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axis correction, 2-propanol (in the mobile phase) and HP-921 were used for negative

mode and purine and HP-921 were used for positive mode. Mass spectra were recorded

in profile mode from 50 to 1100 m/z with a frequency of 1.4 spectra/s for 0.5 min using

10 Ghz resolving power. Source temperature was set to 225 °C, with 1 L/min drying gas

and a nebulizer pressure of 20 psi. Fragmentor, skimmer, and octupole voltages were set

to 120 V, 65 V, and 650 V, respectively.

2.3 Data preprocessing

Raw files were converted into "mzXML" format by MSConvert (Chambers et al., 2012).

Further data processing was performed using MATLAB version R2021a (The Mathworks,

Inc., USA). For each sample, an average spectrum was calculated from the ten scans

with the highest ion counts. The spectra were resampled to 106 data points to align m/z
values of all samples. Ion peaks were picked with the "findpeaks" function of MATLAB,

using a peak height and prominence cutoff of 1,000 units. Hierarchical clustering with a

tolerance of 7.5 mDa was used to bin peaks. For each peak bin, we calculated a centroid

m/z value from the individual peak m/z values. Peaks were annotated to metabolites

using the centroid m/z value with a tolerance of 3 mDa. Z-scores were calculated from

logarithmic mean signal intensities (triplicates). Z-scores above three were considered

significant.

2.4 Calculation of mass differences

Mass differences between all significant features were calculated and combined for pos-

itive and negative ionization mode. Using the MATLAB function "histcounts", all mass

differences were assigned to one of 5 x 105 bins, which accounted for a mass resolution

of ca. 2 mDa. The total number of mass differences in each bin is the frequency of a

mass difference. In the resulting neutral loss spectrum (x-axis is the mass difference and

y-axis the frequency), peaks were picked with 3 mDa tolerance using the "findpeaks"

function with prominence and height cutoffs of 10 units. 51 peaks that matched mass

differences in the literature (Chen et al., 2021) were then used for further analysis (Sup-

porting Information: Table B).

2.5 Construction of feature networks

Networks of significant m/z features were constructed for each spike-in sample in pos-

itive and negative ionization mode. Nodes are significant m/z features, and edges are
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putative modifications like adducts or chemical reactions, or isotopes. Edges are drawn

between each pair of nodes if the mass difference between them matches the mass dif-

ferences in the list of 51 explained mass differences (Supporting Information: Table B).

The fraction of explained features are calculated by counting all features that are either

directly or indirectly connected to the (de-)protonated metabolite or fragment ion versus

the total number of significant features for each spike-in standard. The feature networks

were built with python v. 3.8.5 using the "networkx" toolbox. MS2 spectra were obtained

from the Human Metabolome Database when experimental spectra were reported for a

spike-in standard27 (Supporting Information: Table C). The experimental MS2 spectra

from HMDB contained data that was acquired by high- and low-resolution mass spec-

trometers. Therefore, we matched our significant m/z features to the MS2 spectra with

a tolerance of 100 mDa.

3 Results

3.1 FI-MS with 160 authentic metabolite standards

We prepared 160 authentic standards of primary metabolites and spiked them individ-

ually into a metabolite extract from glucose-fed E. coli cells (Supporting Information:

Table A). The 160 standards fall into six functional categories: amino acid metabolism,

nucleotide metabolism, central metabolism, cofactor metabolism, antioxidants, and oth-

ers. Each metabolite standard was added to the E. coli metabolite extract at a final con-

centration of 1 µM and was measured by FI-MS in both positive and negative ionization

mode (three analytical replicates) (Figure 3.1a).

Out of 160 metabolite standards, 154 were annotated in their protonated or depro-

tonated form to an ion peak in the MS1 spectrum (Figure 3.1b). Six metabolites were

not annotated, either due to low abundant ion peaks (< 1,000 counts: menadione, 3,4-

dihydroxy-L-phenylalanine, tetra-hydrofolic acid, carbamoyl-P, and L-cysteine) or be-

cause the ion peak prominence was too low (< 1,000 counts: argininosuccinic acid).

Next, we inspected if the addition of a metabolite standard led to increases of the re-

spective ion peak. For example, spike-in samples with ATP, GTP, CTP, and UTP showed

increases of ion peaks that matched the protonated and deprotonated form of these

metabolites (Figure 3.1c). Notably, increases of all nucleotides were consistent between

three analytical replicates, showing that FI-MS is reproducible. Ion peaks of ATP, GTP,

CTP, and UTP were also present in the other spike-in samples (black spectra in Figure
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3.1c), but the corresponding ion intensities were often low and close to the baseline sig-

nal. These "near-baseline" ion peaks of ATP, GTP, CTP, and UTP were not present in a
13C-labelled E. coli extract, thus confirming that these peaks originate from endogenous

E. coli nucleotides (Supporting Information: Figure 3.6).

In 134 spike-in samples, the ion peaks that matched the (de-)protonated metabolites

were significantly increased in either ionization mode (z-score > 3, Figure 3.1d, Support-

ing Information: Table D). In negative ionization mode, 120 spike-in samples showed

increased signals as deprotonated metabolites ([Metabolite-H]-). In positive ionization

mode, 105 peaks increased as protonated metabolites ([Metabolite+H]+). In the follow-

ing, we will refer to significantly changed ion peaks with a z-score > 3 as "significant

features". 26 spike-in standards did not show a significant feature at the (de-)protonated

ion peak. One explanation for this is that the metabolites have already a high concen-

tration in the E. coli metabolite extract and that an addition of 1 µM does not lead to a

strong increase with a z-score > 3. For example, reduced glutathione is one of the most

abundant metabolites in E. coli(Guder et al., 2017), and the addition of glutathione stan-

dard hardly increased its concentration in the spike-in sample (Supporting Information:

Figure 3.7).

FI-MS was reproducible because the median relative standard deviation (RSD) be-

tween the three analytical replicates was below 5 % for signals from metabolite stan-

dards in negative and positive ionization mode (Figure 3.1e). Signals from endogenous

metabolites, had a median RSD of 12.4 % in positive and 19.4 % negative mode (Support-

ing Information: Fig. 3.8).

These results suggested that FI-MS can detect concentration changes of chemically

diverse metabolites, which are in the physiological range of intracellular metabolites (1

µM in the final sample corresponds to ca. 1 mM intracellularly). However, we noticed

that many significant features did not match the (de-)protonated form of the metabolite

in the spike-in sample (e.g. significant features that are off the diagonal in Figure 3.1d).

Thus, we next investigated all significant features in all spike-in samples.

3.2 Single metabolites can produce extensive in-source derivates

Most spike-in samples showed significant features (ion peaks with a z-score > 3) that

matched the protonated or deprotonated metabolite (Figure 3.1d). However, most spike-

in samples had more significant features than only the (de-)protonated metabolite stan-

dard (Figure 3.2a). On average, we found 68 significant features per spike-in sample,

and 11 spike-in samples showed more than 100 significant features. The glycerol 3-
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Figure 3.1: FI-MS with 160 authentic metabolite standards. a) 160 authentic
metabolite standards were spiked into an E. coli metabolite extract at a final concen-
tration of 1 µM. Spike-in samples were measured by FI-MS in analytical triplicates in
positive and negative ionization mode. b) Number of ion peaks (m/z features) that were
annotated to the protonated (positive mode) and deprotonated (negative mode) form of
the 160 metabolite standards. c) Ion peaks that are annotated to four nucleotides (ATP,
CTP, GTP, UTP) in positive and negative ionization mode. The spike-in sample that
contains the respective nucleotide is indicated in orange, the other 159 spike-in samples
are black. Blue dots indicate m/z features in single samples, and vertical dotted lines
are merged and centroided m/z features. Vertical solid lines indicate the monoisotopic
masses of the nucleotides plus/minus the mass of a proton. d) The binary heatmap shows
increases of m/z features that are annotated to metabolite standards in the spike-in sam-
ples. Significant increases of m/z features (z-score> 3) are shown in blue (negative mode)
and purple (positive mode). Columns are the spike-in samples and rows the respective
m/z features. e) Boxplots show the relative standard deviation (RSD) of metabolite stan-
dards. Black dots are the RSD for each spike-in metabolite (n = 3). Orange diamonds
are the means.
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phosphate (G3P) spike-in sample had the highest number of significant features (5,464,

Figure 3.2a). Across all 160 spike-in samples, FI-MS in positive mode showed 10,206

significant features and 807 in negative mode (Supporting Information: Table E). The

significant features were distributed over the entire mass spectrum and occurred even

in the higher mass range of 800 – 1,000 m/z (Figure 3.2b).

To understand the origin of these significant features, we first calculated the mass dif-

ferences (∆m/z) between all pairs of significant features in a single spike-in sample (Fig-

ure 3.2c). Several mass differences (∆m/z) occurred frequently across the 160 spike-in

samples, thus indicating common in-source effects like neutral losses, adduct formation,

and chemical reactions that are prevalent for many different compounds (Figure 3.2d and

3.2e). 51 mass differences that appeared more than ten times matched known in-source

effects and isotope pattern reported in the literature (Chen et al., 2021, Supporting Infor-

mation: Table B). Out of these 51 known mass differences, 23 were chemical reactions,

26 were adducts, and 2 were natural isotopes (13C and 18CO). The 23 chemical reactions

account for 61.5 % of the frequent mass differences (> 10 times in all samples), the 22

adducts for 31.5 %, and the isotopomers containing 13C or 18CO for 7 % (Figure 3.2f).

For example, the 21.982 Da mass difference of a Na-H neutral loss occurred in total 699

times and was among the most frequent ones (Figure 3.2e). The ten most frequent mass

differences occurred more than 1,000 times across all 160 spike-in samples, and eight of

them could be explained with the mass differences in the literature (Figure 3.2d).

We then wondered whether certain mass differences occurred more frequently for

metabolites of a specific functional category than for metabolites of other categories. For

example, only 21 % of the 160 standards were metabolites from nucleotide metabolism.

Yet, they accounted for 45 % of all explainable mass differences (Figure 3.2g). This in-

dicated that metabolites from nucleotide metabolism were more susceptible to modi-

fications than metabolites in other categories. In contrast, 35 % of the 160 metabolite

standards were part of amino acid metabolism but they covered only 23 % of the explain-

able mass differences indicating that metabolites from amino acid biosynthesis were less

prone to modifications in our reference list of mass differences than the other metabo-

lites. Metabolites from central metabolism as well as co-factor biosynthesis accounted

for 19 % and 16 % of the standard library, respectively, and they explained a similar frac-

tion of mass differences (15 % and 13 %).

Since some metabolite categories were more often modified than others, we looked

into individual mass differences and examined whether certain mass differences oc-

curred preferably for specific categories (Figure 3.2h). Indeed, the data indicated that
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individual mass differences were more frequent for some categories than for others.

For example, the C6H8O6 neutral loss occurred exclusively in metabolites from nu-

cleotide metabolism. Similarly, many other modifications, including modifications with

O, HNO3, C2H4O2, or SO3, occurred more frequently with metabolites from nucleotide

metabolism (Supporting Information: Table F).

3.3 A network approach explains significant m/z features in
FI-MS spectra

We expected that the significant features can be linked to the (de-)protonated spike-in

metabolite by single and multiple modification steps. To test this, we created a network

for each spike-in sample, in which nodes represent all significant features. Then, we

drew an edge between two nodes if the mass difference ∆m/z between them matched

one of the 51 frequent mass differences (the mass differences identified above, see Fig-

ure 3.2h). Thus, edges represent in-source effects and nodes significant features (see

schematic in Figure 3.3a).

The thus derived networks connected on average 43 % of the significant features in a

spike-in sample to the m/z feature of the respective (de-)protonated metabolite (Figure

3.3a). Thus, 43 % of the significant features can be linked to a single metabolite and

therefore, are explained by the 51 frequent mass differences. Only 20 % of the significant

features were directly linked to the m/z feature of the (de-)protonated metabolite (Figure

3.3a, Supporting Information: Table G). This shows that single in-source modifications

account only for half of the significant features and that sequential modifications are

frequent.

For example, the glucosamine 6-phosphate (Ga6p) spike-in standard showed five sig-

nificant features, which are all directly or indirectly connected to the m/z feature that

matches protonated Ga6p (Figure 3.3b). Two significant features are directly connected

to the protonated Ga6p mass, and they are likely a water loss (H2O) and a sodium adduct

(Na-H). Two other significant features (m/z = 224.031 and m/z = 242.042) were two steps

away from protonated Ga6P, and they were explained by a double loss of water and a

NaH2PO4 adduction to the sodium adduct. Thus, drawing edges in an unbiased way

between all pairs of nodes resulted in a network that explained all significant features

of the Ga6p spike-in sample.

In many networks, the nodes (significant m/z features) were connected to the (de-

)protonated spike-in metabolite by different series of sequential modifications. One spe-

83



Chapter 3

Figure 3.2: The figure caption is on the next page.
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Figure 3.2: Systematic analysis of all m/z features that increase in spike-in sam-
ples. a) Number of m/z features with a z-score > 3 (significant m/z features) in each of
the 160 spike-in samples (grey dots). The upper and lower edges of the box in the boxplot
indicate the 25 % and 75 % percentiles, and the line is the median. b) Histogram showing
the distribution of significant m/z features over the MS1 spectrum. c) Example of signif-
icant m/z features in the MS1 spectrum (100 mDa window) of the spike-in sample with
glycerol 3-phosphate. Green lines are the glycerol 3-phosphate spike-in samples (n = 3),
and black lines are the other spike-in samples. Rulers indicate the mass differences be-
tween two m/z features in the spectra. d) ∆m/z spectrum based on the pairwise mass
differences between all significant m/z features in all 160 spike-in samples (shown is the
∆m/z range between 0 Da and 110 Da). The peak height corresponds to the frequency of
a ∆m/z value. Arrows indicate ∆m/z peaks that match mass differences of known iso-
topes, chemical reactions or adducts (Supporting Information: Table B). e) Example of
the ∆m/z peak that matches the sodium adduct [Na-H]. f) Fraction of ∆m/z peaks that
match known isotopes, chemical reactions or adducts. g) The left pie chart shows the
fraction of metabolite categories across the 160 standards. The right pie chart shows the
fraction of annotated mass differences for each metabolite category. h) Stacked bar plot
showing the relationship between the functional categories of the spiked-in metabolites
and the annotated mass differences. The fraction indicates the ratio between the number
of spike-in metabolites of a specific category, in which the mass difference occurred, and
the total number of samples, in which the mass difference occured. The spike-in samples
of glycerol 3-phosphate and fumarate were left out.
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cific series of sequential modifications could be an initial modification by Na-K that is

followed by a second modification like Na-H. In some cases, different series of sequen-

tial modifications have very similar net mass changes and can explain the same signif-

icant feature. One example that illustrates this phenomenon is the feature network of

2,6-diaminopimelic acid (DAP) in positive ionization mode. The DAP spike-in sample

showed six significant features, which were all connected with the m/z feature of pro-

tonated DAP (Figure 3.3c).

The network approach connected on average 43 % of all significant features of a

spike-in sample to the (de-)protonated metabolite standard. Yet, some significant fea-

tures had no connection to others or they formed sub-networks with no connection to

the (de-)protonated metabolite (see schematic in Figure 3.3a). Therefore, we next exam-

ined whether sub-networks and isolated features are caused by in-source fragmentation,

which can lead to similar effects as collision induced dissociation in tandem mass spec-

trometry (Xue et al., 2020).

3.4 MS2 information identifies significant features that are
in-source fragments

To identify significant features that originate from in-source fragmentation of the metabo-

lite standard, we used information about MS2 spectra in the human metabolome database

(HMDB, Wishart et al., 2022). HMDB listed experimental MS2 spectra for 152 out of 160

metabolite standards (Figure 3.4a, Supporting Information: Table C). 103 standards had

at least one significant feature that matched an ion peak in the MS2 spectrum (Support-

ing Information: Table H). On average, each spike-in sample had 3.4 in-source fragments

indicating a substantial number of in-source fragmentation events during FI-MS (Figure

3.4a). In total, 551 MS2 features matched the significant m/z features. As expected,

in-source fragments had masses in the lower m/z range, between 50 and 500 m/z (Fig-

ure 3.4b). One example of an in-source fragment is hypoxanthine, which is formed by

fragmenting inosine and inosine monophosphate (IMP). Consequently, the ion peak of

hypoxanthine increased in the IMP and inosine spike-in samples (Figure 3.4c).

Then, we tested whether fragments were present in sub-networks without a link to

the metabolite standard. For example, the L-citrulline spike-in sample showed 8 signif-

icant features, 6 of which were connected with the m/z feature of the (de-)protonated

metabolite (Figure 3.4d). Two significant features were isolated nodes with no connec-

tion, but they were in the MS2 spectrum of citrulline (m/z = 177.111 and m/z = 176.112).
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Figure 3.3: Networks of significant m/z features. a) Concept figure showing the
structure of a m/z feature network: orange nodes are significant m/z features. The blue
node is a significant m/z feature that is annotated to the (de-)protonated metabolite stan-
dard (reference m/z feature). Nodes are connected by edges that correspond to one of
51 known m/z differences. The grey circle indicates nodes that are directly connected to
the reference m/z feature by a single m/z difference. The green box indicates a network,
in which all nodes are connected with the reference node including multiple sequential
combinations of m/z differences. Isolated sub-networks are not connected to the refer-
ence node (purple box). Isolated m/z features are not connected to any other node. The
boxplots show the fraction of significant m/z features that are connected to the reference
m/z feature by a single m/z difference or by multiple sequential combinations of m/z dif-
ferences. b) Example of the feature network of the spike-in sample with D-glucosamine
6-phosphate (Ga6p). c) Same as b) for the diaminopimelic acid (DAP) spike-in sample in
positive ionization mode.
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The MS2 spectrum included another two m/z features that were already linked to the

metabolite standard (m/z = 113.070 and m/z = 159.076), thus indicating that collision

induced dissociation (CID) produces some of the 51 in-source modifications. In case of

L-citrulline, these were a neutral loss of NH3 and a neutral loss of a HCOOH group. To

confirm that these losses occur by CID, we predicted fragment structures of L-citrulline

by CFM-ID (F. Wang et al., 2021). Indeed, CFM-ID predicted the fragment structures

that matched the masses of the two m/z features (113.070 and 159.076) and confirmed

the neutral losses of NH3 and HCOOH (Figure 3.4d).

In total, adding in source fragments to our networks explained another 6 % of signifi-

cant m/z features. Thus, on average, 49 % of all significantly changed m/z features were

connected with the correct metabolite standard either by known in-source modifications

or by in-source fragmentation (Figure 3.4e, Supporting Information: Table G).

3.5 Misannotation of in-source derivates to metabolites

A single metabolite can produce multiple significant features, and we wondered how

many of these significant features were misannotated to a metabolite that was not spiked

into the sample. To determine how many significant features were misannotated, we

used a reference list of 961 E. coli metabolites from the genome-scale metabolic model

iML1515 (Monk et al., 2017). Since FI-MS cannot resolve isomers, they were considered

as a single metabolite.

In 54 % of our standards (87/160), at least one significant feature was falsely annotated

to a metabolite (Figure 3.5). 18 standards had more than two misannotations. Overall,

64 % of the misannotations were in positive ionization mode (131 in total) and 37 %

were in negative ionization mode (75 in total) (Figure 3.5, Supporting Information: Table

I). This means that biological screens with FI-MS are prone to misannotations if only

(de-)protonated masses are considered. Based on our results, an estimate is that one

(true) increase of a single metabolite will cause one (false) increase of an ion peak that

is misannotated to another metabolite.

4 Discussion

FI-MS methods have been used for metabolome analyses in various studies (Fuhrer et

al., 2011; Beckmann et al., 2008; Sarvin et al., 2020; Link et al., 2015; Fuhrer et al., 2017;

Anglada-Girotto et al., 2022; Holbrook-Smith et al., 2022; Dubuis et al., 2018; Rathahao-
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Figure 3.4: Identification of in-source fragments by MS2 spectra of metabolite
standards. a) The pie chart shows the fraction of metabolite standards with MS2 in-
formation in the human metabolome database (HMDB). The bar plot shows the number
of MS2 fragment masses that match the features of individual spike-in samples. b) His-
togram showing the distribution of the m/z features. Blue are all significant m/z features
from the spike-in samples. Grey are MS2 fragment masses. c) Example MS1 spectrum
at the mass of hypoxanthine. The purple line is the IMP spike-in sample, the blue line
is the hypoxanthine spike-in sample, and the green line is the inosine spike-in sample.
d) Example network of L-citrulline. Nodes are features and edges are explained mass
differences. Black nodes are features that matched MS2 fragment masses from HMDB.
The blue node is the protonated mass of citrulline. The orange nodes are other features.
For the features at m/z = 113.070 and m/z = 159.076, structures were predicted by CFM-
ID. e) Boxplot showing the fraction of explained features for all spike-in samples. Each
black point corresponds to a spike-in sample and shows the explained fraction of fea-
tures. Upper and lower box edges indicate the 25 % and 75 % percentiles. The whiskers
indicate the furthest point, at which samples were not considered as outliers. The black
line indicates the median.
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Figure 3.5: Misannotation of significant features to metabolites. The histogram
shows the number of significant features that are misannotated to a metabolite. The pie
chart shows the fraction of misannotations for positive and negative ionization mode.

Paris et al., 2019). Their advantages are fast analysis times (10 to 30 seconds per sample)

and a high coverage of metabolites (often more than 1,000 putatively annotated metabo-

lites (Fuhrer et al., 2017; Anglada-Girotto et al., 2022)). Disadvantages, however, are low

confidence levels of metabolite annotation and a high susceptibility to matrix effects

due to the lack of chromatographic separation. Here, we confirmed the broad metabo-

lite coverage of FI-MS, which detected increases of 134 out of 160 metabolite standards

based on (de-)protonated ion peaks in the MS1 spectrum. However, we also observed

pervasive in-source modifications of metabolites. These in-source modifications lead to

multiple ion peaks per metabolite in the MS1 spectrum and, in the worst case, to false

positive hits in FI-MS analyses of biological samples. By systematically analyzing FI-MS

data from 160 spike-in standards, we found that a single metabolite produces on average

68 significant features and that, in extreme cases, more than 1,000 significant features

originate from only one metabolite. This observation matches previous LC-MS based

studies where the majority of m/z features were attributed to in-source modifications

and only few (3 – 5 %) m/z features were unique metabolites (Hartl et al., 2020; L. Wang

et al., 2019; Mahieu and Patti, 2017; Mahieu et al., 2016).

Chromatographic peak shape correlation of m/z features can identify such confound-

ing effects in LC-based methods (Schmid et al., 2021; Xu et al., 2015), but they are dif-
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ficult to detect with FI-MS methods. Here, we used an experimental approach and ex-

amined significant m/z features in metabolite standards, which are most likely in-source

derivates. Connecting these features via 51 mass differences of neutral losses, adducts,

and isotopes described in the literature (Chen et al., 2021) resulted in networks that

explained the origin of 43 % of the significant features. MS2 spectra of the metabolite

standards provided additional information about in-source fragmentation and explained

another 6 % of the significant features.

Taken together, we found that FI-MS of single metabolites produces complex MS1

spectra, but they are explainable by known in-source modifications. The jury is out if

in-source modifications are a bug or a feature for FI-MS data analysis: they may compli-

cate or improve metabolite annotation. Therefore, the future challenge is to use FI-MS

spectra of single metabolites to deconvolute FI-MS spectra from biological samples and,

thereby, increase confidence of metabolite annotation. A first step is the construction of

FI-MS databases with MS1 spectra of single metabolite standards to map in-source mod-

ifications across thousands of compounds. This is especially important since we found

that the type of in-source modification depends on the metabolite classes (Figure 3.4d).

Here, we provided a starting point with in-source modifications of 160 metabolites (Sup-

porting Information: Table E) and mining MS1 spectra in existing databases like GNPS

(M. Wang et al., 2016) and Metlin (Guijas et al., 2018) may provide additional reference

data.

5 Supporting Information

Supporting Table (.xlsx) with additional information and data. Supporting Figures (.docx):

Figure S1: Ion peaks of nucleotides in negative ionization mode from fully labelled 12C- and
13C-labelled E. coli extracts.

Figure S2: Ion peak of reduced glutathione in negative ionization mode.

Figure S3: Boxplot showing the relative standard deviation (RSD) of the endogenous metabo-

lites measured by FI-MS in positive and negative ionization mode.
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Figure 3.6: (also Figure S1.) Ion peaks that are annotated to four nucleotides (ATP, CTP,
UTP, GTP) in negative ionization mode. 12C-labelled E. coli samples are blue lines mea-
sured in five technical replicates. 13C-labelled E. coli samples are orange lines measured
in five technical replicates. ATP, adenosine triphosphate; CTP, cytidine triphosphate;
UTP, uridine triphosphate; GTP, guanosine triphosphate.

Figure 3.7: (also Figure S2.) Ion peak of reduced glutathione (deprotonated) in negative
ionization mode. The spike-in sample that contains reduced glutathione is indicated in
orange, the other 159 spike-in samples are black.

93



Chapter 3

Figure 3.8: (also Figure S3.) Boxplot showing the relative standard deviation (RSD) of the
endogenous metabolites measured by FI-MS in positive and negative ionization mode.
Black dots are the RSD for each endogenous metabolite. Upper and lower box edges
indicate the 25 % and 75 % percentiles. The whiskers indicate the furthest point, at which
samples were not considered as outliers. The red line indicates the median. Orange
diamonds are the means.
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Abstract

Controlling metabolism of engineered microbes is important to modulate cell growth

and production during a bioprocess. For example, external parameters such as light,

chemical inducers, or temperature can act on metabolism of production strains by

changing the abundance or activity of enzymes. Here, we created temperature-

sensitive variants of an essential enzyme in arginine biosynthesis of Escherichia
coli (argininosuccinate synthetase, ArgG) and used them to dynamically control cit-

rulline overproduction and growth of E. coli. We show a method for high-throughput

enrichment of temperature-sensitive ArgG variants with a fluorescent TIMER pro-

tein and flow cytometry. With 90 of the thus derived ArgG variants, we comple-

mented an ArgG deletion strain showing that 90% of the strains exhibit temperature-

sensitive growth and 69% of the strains are auxotrophic for arginine at 42°C and

prototrophic at 30°C. The best temperature-sensitive ArgG variant enabled precise

and tunable control of cell growth by temperature changes. Expressing this variant

in a feedback-dysregulated E. coli strain allowed us to realize a two-stage biopro-

cess: a 33°C growth-phase for biomass accumulation and a 39°C stationary-phase

for citrulline production. With this two-stage strategy, we produced 3 g/L citrulline

during 45 h cultivation in a 1-L bioreactor. These results show that temperature-

sensitive enzymes can be created en masse and that they may function as metabolic

valves in engineered bacteria.

1 Introduction

The ability to switch overproduction strains between different physiological states en-

ables bioprocesses with separate phases of growth and production (Brockman and Prather,

2015; Burg et al., 2016; Klamt et al., 2018; Lalwani et al., 2018; S. Li et al., 2016). A com-

mon parameter to control growth and production is the concentration of nutrients in

bioreactors, which affects physiology and metabolism of production strains (Mears et

al., 2017; Michalowski et al., 2017; Tokuyama et al., 2019). Alternatively, it is also possi-

ble to control metabolism directly by engineering enzymes that act as metabolic valves.

To this end, either the abundance or activity of the respective enzyme responds to exter-

nal parameters, such as light (Zhao et al., 2018), chemicals/auto-inducers (Brockman and

Prather, 2015; Gupta et al., 2017; Soma et al., 2014), or temperature (B.-J. Harder et al.,

2018).

Temperature-responsive control of metabolism is economically advantageous since

most bioreactors are standardly equipped with temperature regulation. Another advan-
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tage is that temperature dependent control is abundant in nature and occurs at DNA,

RNA, and protein level (Klinkert and Narberhaus, 2009). As a consequence, many mu-

tants of different organisms are known that show temperature-sensitivity (Z. Li et al.,

2011; Lovato et al., 2009; Saluja and Godson, 1995). In yeast, collecting known and creat-

ing new temperature-sensitive mutants led to large strain libraries, which can be applied

to systematically investigate the function of essential genes (Z. Li et al., 2011; Ben-Aroya

et al., 2008; Kofoed et al., 2015).

Many temperature-responsive systems use transcription factors that show thermal

sensitivity. For example, the temperature-sensitive transcription factor RheA of Strep-
tomyces albus changes its activity reversibly upon temperature changes (Servant et al.,

2000) and was used to control gene expression in chicken embryo cells (Weber, 2003).

Temperature-sensitive variants of the transcription factor TetR were created to control

expression of a restriction endonuclease in E. coli, which is a toxic product (Pearce et al.,

2017). Another temperature-sensitive transcription factor is cI857 from Escherichia virus

Lambda, which has a mutation (A66T) that is thought to introduce thermal instability

(Nauta et al., 1997). This transcription factor was used in a biotechnological application

to control the TCA cycle in E. coli (B.-J. Harder et al., 2018). In this study, a temperature

downshift from 37°C to 28°C repressed expression of the TCA cycle enzyme isocitrate

dehydrogenase and redirected metabolic flux from biomass formation to production of

itaconic acid. As an alternative to temperature-sensitive control of transcription, RNA

thermometers control enzyme abundance at the level of translation in E. coli (Neupert

et al., 2008; Sen et al., 2017) and Thermus thermophilus (Verdú et al., 2019).

Apart from temperature-dependent control of transcription and translation, temperature-

sensitive enzymes allow a more direct control of metabolism. At the non-permissive tem-

perature, the enzyme is inactive, which can arrest growth if the enzyme is essential or it

redirects metabolic flux. A temperature-sensitive variant of the fatty acid biosynthesis

enzyme FabI was used to produce malonyl-CoA derived 3- hydroxypropionic acid (M. D.

Lynch et al., 2016), as well as temperature-sensitive variants of the enzymes FabI, FabB

and FabD for fatty acid production (M. Lynch et al., 2019). These temperature-sensitive

enzyme variants were obtained by nitrosoguanidine- or ethyl methane sulfonate- based

random mutagenesis techniques (Broekman and Steenbakkers, 1973; M. E. Harder et al.,

1974; Russell and Pittard, 1971). A temperature-sensitive variant of glyceraldehyde-3-

phosphate dehydrogenase (GapA) was used to control glycolysis (Cho et al., 2012). GapA

mutants were generated by error-prone PCR and used to complement a gapA deletion

strain. This made it possible to identify temperature- sensitive GapA variants by inspect-
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ing colony growth at 30°C and 37°C.

Here, we show a method for high-throughput enrichment of essential temperature-

sensitive enzyme variants with the single-cell growth rate reporter TIMER (Beuter et

al., 2018; Claudi et al., 2014). As a case study, we used argininosuccinate synthetase

(ArgG) in the arginine pathway and created ArgG variants by error-prone PCR. The

fluorescent TIMER protein allowed us to enrich temperature-sensitive variants from the

ArgG library, and we characterized 90 ArgG variants in more detail.

We then used one ArgG variant to dynamically control growth and production of cit-

rulline in E. coli. Citrulline is the substrate of ArgG and an essential intermediate in the

arginine biosynthesis pathway. Citrulline plays an important role in human metabolism

(Curis et al., 2005) and is used as a dietary supplement. Approaches to produce cit-

rulline include biocatalysis with purified enzymes or whole cell catalysis (Kakimoto et

al., 1971; Song et al., 2015; Yamamoto et al., 1974), as well as fermentation processes with

Corynebacterium glutamicum or Bacillus subtilis (Eberhardt et al., 2014; Hao et al., 2015;

Ikeda et al., 2009; Shinji et al., 1966). An engineered strain of C. glutamicum produced

the highest titers reported in the literature: 27 g/L citrulline at a final OD of ca. 70 (Ikeda

et al., 2009). To our knowledge, citrulline has not been overproduced with engineered

E. coli. Here, we produced 3 g/L citrulline in a 1-L bioreactor using a two-stage process

strategy, which had a growth phase at 33°C and a production phase at 39°C.
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2 Material and Methods

Chemicals were ordered from Merck KGaA or Carl Roth GmbH & Co. KG. MATLAB

R2017b (MathWorks, Inc.) and BD FACSDiva 8.0.1 (BD Biosciences) were used for data

analysis.

2.1 Construction of plasmids

Strains, plasmids, and oligonucleotides are listed in Suppl. Table 1. Q5 High-Fidelity

DNA polymerase (New England BioLabs Inc. (NEB)) was used in PCRs. Plasmids were

constructed using Gibson Assembly Master Mix (NEB). DNA fragments for Gibson as-

sembly were purified after agarose gel-electrophoresis (NucleoSpin Gel and PCR Clean-

up Kit, Macherey-Nagel GmbH & Co. KG). The DNA Clean & Concentrator Kit (Zymo

Research Europe GmbH) was used for DNA clean-up after PCRs or Gibson assemblies.

Plasmids were isolated from liquid cultures with the GeneJET Plasmid Miniprep Kit

(Thermo Fisher Scientific Inc.). Oligonucleotides were obtained from Eurofins Genomics

Germany GmbH. The wild-type argG gene from E. coli was expressed from a lowcopy

plasmid pTS036-argG with the pSC101 origin of replication (Suppl. Fig. 4.7) derived

from the plasmid pUA66-rrnBp (Zaslaver et al., 2006). The pTS036-argG plasmid carries

a chloramphenicol resistance cmR. The argG gene is under control of a tetR inducable

promoter (pLetO-1) (Lutz, 1997) and a strong RBS (Elowitz and Leibler, 2000). For overex-

pression of argG and argG-G9, pTS049 and pTS050 were constructed with the pCA24N

backbone from the ASKA library (Kitagawa et al., 2006). ArgG and ArgG-G9 had an

N-terminal His-tag.

2.2 Construction of strains

The ∆argG and ∆argR strains originated from the KEIO collection (Baba et al., 2006).

The kanamycin resistance was removed with FLP-recombinase on the pCP20 plasmid

(Datsenko and Wanner, 2000). Gene deletions were propagated from KEIO strains to

other strains by P1 phage transduction (Thomason et al., 2007). The argA-H15Y mutation

was introduced into the genome of the ∆argG ∆argR strain with a CRISPR-cas9 based

method (Reisch and Prather, 2015; Sander et al., 2019). All modifications of genomic

DNA were verified by sequencing.
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2.3 Cultivations

M9 minimal medium was used that contained 5 g/L glucose, 42.2 mM Na2HPO4, 22

mM KH2 PO4, 11.3 mM (NH4)2SO4, 8.56 mM NaCl, 1 mM MgSO4 x 7 H2O, 100 µM

CaCl2 x 2 H2O, 60 µM FeCl3, 7.6 µM CoCl2 x 6 H2O, 7.1 µM MnSO4 x 2 H2O, 7 µM

CuCl2 x 2 H2O, and 6.3 µM ZnSO4 x 7 H2O. When required, 50 µg/mL kanamycin,

100 µg/ mL carbenecillin, 30 µg/L chloramphenicol, 50 µg/mL spectinomycin, or 0.2 µM

anhydrotetracycline (aTc) were added to the medium. LB and M9 minimal medium plates

contained 1.5% agar. The conversion factor optical density (OD) to cell dry weight was

0.37 gDW OD−1 L−1. The OD was measured at 600 nm.

Growth characterization of 90 strain carrying ArgG variants

0.5 mL LB precultures were inoculated with 90 randomly picked strains carrying ArgG

variants from agar plate and incubated in a 2 mL deep-well plate, sealed with gas per-

meable foil (Diversified Biotech, Inc.), at 37°C for 6 h under shaking at 220 rpm. Glycerol

stocks were prepared from the LB precultures. 150 µL M9 cultures were inoculated 1:75

with the LB precultures and incubated in a transparent 96-well plate (Greiner Bio-One

GmbH) for 20 h at 30°C in a Biotek Epoch plate reader (BioTek Instruments, Inc.). The

M9 cultures were re-diluted 1:30 and incubated for another 20 h at 42°C.

Probing conditional arginine auxotrophy of nine strains carrying ArgG
variants

0.5 mL LB precultures were started from glycerol stocks and incubated in a 2 mL-deep

well plate, sealed with gas permeable foil, for 6 h at 37°C under shaking at 220 rpm.

0.5 mL M9 precultures were inoculated 1:75 with LB precultures and incubated in a 2

mL-deep well plate at 30°C for 16 h under shaking at 220 rpm. 150 µL M9 main cul-

tures, supplemented with and without 1 mM arginine, were inoculated 1:75 with the M9

precultures and incubated in a transparent 96-well plate at 42°C in a plate reader.

Citrulline production with argG deletion strains

5 mL LB precultures were inoculated from glycerol stocks and incubated for 6 h at 37°C

in a rotary shaker. 5 mL M9 precultures, supplemented with 1 mM arginine, were inoc-

ulated 1:500 with the LB precultures and incubated overnight at 37°C in a rotary shaker.

M9 precultures were washed twice by centrifugation (4000 rpm, 37°C, 5 min) with 5
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mL M9 medium and resuspended in 5 mL M9 medium. 40 mL M9 main cultures supple-

mented with 100 µM arginine were inoculated with the washed M9 precultures to a start

OD of 0.05 and incubated in 500 ml shake flasks at 37°C under shaking at 220 rpm. After

3 h, the M9 main cultures were washed twice with M9 medium to remove the arginine

from the medium. Subsequently, cells were resuspended in 30 mL of fresh M9 medium

to an OD of 0.05, and incubated at 220 rpm and 37°C.

Growth and citrulline production screening of nine engineered strains
carrying ArgG variants

5 mL LB precultures were inoculated from glycerol stocks and incubated for 6 h at 37°C

under shaking at 220 rpm. 5 mL M9 precultures were inoculated 1:100 with the LB

precultures and incubated for 16 h at 30°C under shaking of 220 rpm. 10 mL M9 main

cultures were inoculated with the M9 precultures to a start OD of 0.05. The 10 mL M9

main cultures were split up to four parts, each 2 mL, and transferred to 5 mL-culture

tubes that were incubated at different temperatures (30°C, 34°C, 37°C, and 42°C) for 7 h

under shaking at 220 rpm.

Growth characterization of strains carrying the ArgG variant G9 and the
wild-type ArgG

5 mL LB precultures were inoculated from glycerol stocks and incubated for 6 h at 37°C

in a rotary shaker. 40 mL M9 precultures were inoculated 1:200 and incubated in 500 mL

shake flasks for 16 h at 30°C and 220 rpm of shaking. The growing cultures were washed

twice with M9 medium by centrifugation, resuspended, and diluted to yield 45 mL M9

main cultures with a start OD of 0.05. The 45 mL M9 main cultures were split up to three

parts, each 14 mL, and transferred to 100 mL shake flasks that were incubated at three

different temperatures (30°C/ 35°C/39°C or 33°C/37°C/42°C) under shaking at 220 rpm.

Two-stage bioreactor cultivation

5 mL LB precultures were inoculated from glycerol stocks and incubated for 6 h at 37°C

in a rotary shaker. 40 mL M9 precultures were inoculated 1:500 with the LB precultures

and incubated in 500 mL shake flasks overnight at 33°C under shaking at 220 rpm. The

M9 precultures were diluted in 100 mL M9 to an OD of 0.15 and further cultivated in 1

L shake flasks at 33°C for 8 h under shaking at 220 rpm. Subsequently, 45 mL of the M9

precultures were washed twice with M9 medium by centrifugation, resuspended, and di-
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luted to yield 500 mL M9 main cultures with a start OD of 0.05, which were supplemented

with 12.5 g/L glucose and 4 g/L NH4Cl and incubated in bioreactors (BioFlo/CelliGen 115

and BioFlo 120, Eppendorf AG). After 13 h of incubation at 33°C, the temperature was

switched stepwise to 39°C (30 min 33°C – 36°C, 10 min 36°C – 38°C, 38°C – 39°C). After

20 h, 25 mL of a sterile 300 g/L glucose 30 g/L NH4Cl solution was fed to the M9 main

cultures.

2.4 Cultivation for proteome analysis at different temperatures

5 mL LB precultures were inoculated from glycerol stocks and incubated for 6 h at 37°C

in a rotary shaker. 50 mL M9 precultures were inoculated 1:200 and incubated in 500 mL

shake flasks overnight at 30°C and 220 rpm. The cultures were washed twice with M9

medium by centrifugation, resuspended, and diluted to yield 70 mL M9 main cultures

with a start OD of 0.2. The 70 mL M9 main cultures were divided into three volumes,

each 20 mL, and transferred to 100 mL shake flasks that were incubated at three different

temperatures (33°C/39°C/ 42°C) under shaking at 220 rpm.

2.5 Enrichment of the temperature-sensitive ArgG variants

The argG gene was mutagenized with error-prone PCR according to the manufactures

manual (Jena Bioscience GmbH, JBS Error-Prone Kit # PP-102). The template for the

error-prone PCR was linear argG DNA (final concentration in the PCR: 0.1 ng/µL), which

was amplified from the E. coli BW25113 genome and purified by agarose gel-eletrophoresis.

The mutagenized argG DNA was cleaned-up and inserted into the plasmid pTS036 with

Gibson assembly (NEBuilder HiFi DNA Assembly Master Mix (NEB)). After DNA clean-

up, electrocompetent cells (MegaX DH10β cells) were transformed with pTS036-argG(mu-

tant), and plated on two 150 mm petri-dishes with LB agar. After incubation overnight

at 37°C, colonies from two plates were collected in 20 mL LB medium and the plas-

mids were isolated, resulting in the final argG variant library pTS036-argG(mutant). E.
coli ∆argG carrying the TIMER plasmid (pBR322_ TIMER) was transformed with the

pTS036-argG(mutant) library by electroporation. After plating the cells, colonies were

collected from the plates with LB medium to prepare glycerol stocks. For the selective

enrichment of temperature-sensitive variants, 25 mL M9 cultures were inoculated from

glycerol stock, diluted at different ratios, and incubated for 36 h at 30°C under shaking

at 220 rpm. The culture with a final OD of 0.1 was re-diluted at different ratios and incu-

bated for 6 h at 42°C under shaking at 220 rpm. Then, slow growing cells were sorted with
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fluorescence-activated cell sorting (FACS) on a BD FACS Aria Fusion (BD Biosciences,

NJ, USA). 561-nm lasers, 600 long pass and 632/22 bandpass filters were used to detect

the red fraction of TIMER. 488-nm lasers, 500 long pass and a 520/30 band pass filters

were used for green fluorescence. To identify cells in the forward/side scatter plot, 488-

nm lasers were used. The sorted cells were plated on M9 agar medium (150 mm petri-

dishes) at different dilutions and incubated at 30°C. The growth of 90 randomly picked

strains was investigated in microtiter plates (Methods 2.3.1).

2.6 Protein purification and enzymatic characterization of E. coli
argininosuccinate synthetase ArgG

5 mL TB precultures were inoculated from glycerol stocks and incubated overnight at

37°C in a rotary shaker. 200 mL TB main cultures in 1 L shake flasks were inoculated to

a start OD of 0.04 with TB precultures and incubated at 37°C under shaking at 220 rpm.

At OD 0.6, 2 mL 0.1 M IPTG was added to the cultures. The cultures were incubated

overnight at 16°C under shaking at 220 rpm. Cells from 16°C overnight culture were

harvested by centrifugation (4000 rpm, 4°C, 30 min). Following work was conducted at

4°C. Cells were resuspended in 2.8 mL LEW (50 mM NaH2PO4 300 mM NaCl, pH 8.0),

and 100 µL protease inhibitor and DNase 1 was added to aliquots of 0.7 mL. Cells were

lysed by sonication (3 × 1 min, with 30 s of cooling breaks). After centrifugation (30

min, 4°C, 17.000 g), the supernatant was used for protein purification with Protino Ni-

TED 1000 Packed Columns (Macherey-Nagel). Proteins were eluted in the first elution

step. The protein concentration in the eluate was determined with the Pierce Microplate

BCA Protein Assay Kit (Thermo Fisher, # 23252). Stock solutions were prepared with

protein concentrations of 0.2 mg mL−1. ArgG enzyme assays were conducted in 1.5

mL reaction tubes. 10 µL of enzyme stock solution was added to 80 µL reaction buffer

that contained at final concentrations 10 mM ATP, 10 mM MgCl2, 10 mM L-aspartate,

and 20 mM HEPES (pH 7). To start the reaction, 10 µL of L-citrulline was added (final

concentration 10 mM). The formation of the reaction product, argininosuccinate, was

measured with LC-MS/MS.

2.7 Citrulline, argininosuccinate, and glucose measurements

Citrulline was measured in the whole cultivation broth. Therefore, 5 µL cultivation broth

was transferred to 495 µL 40:40:20 acetonitrile:methanol:H2O at -20°C in 1.5 mL reaction

tubes. Samples were centrifuged at -9°C and 17.000 g for 20 min, and the supernatant
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was stored at -80°C until analysis with LC-MS/MS. Citrulline concentrations were deter-

mined with an Agilent 1290 Infinity II UHPLC system coupled to an Agilent 6495 triple

quadrupole mass spectrometer (Agilent Technologies, Inc.) (Guder et al., 2017). The LC

column was an Acquity BEH Amide, 30 × 2.1 mm, 1.7 µm particle size, column (Waters

Corporation). The mobile phases were (A) water with 10 mM ammonium formate and

0.1 vol.-% formic acid and (B) acetonitrile with 0.1 vol.-% formic acid. The flow rate was

0.4 mL min−1 and the gradients were: 0 min 90% B; 1.3 min 40% B; 1.5 min 40% B; 1.7

min 90% B; 2 min 90% B. Citrulline was quantified with a 15N-internal standard. The 14N

parent mass for citrulline was 176 and the product mass was 70, at a collision energy of

25 eV in positive mode (179 and 71 for 15N citrulline).

Samples of ArgG enzyme assays were prepared by transferring 10 µL of the enzyme

assay reaction solution to 90 µL of 45:45:10 acetonitrile: methanol:water at -20°C. Sam-

ples were stored at -80°C until centrifugation (17.000 g, -9°C). Argininosuccinate concen-

trations in the supernatants were determined by LC-MS/MS (Guder et al., 2017). The LC

column was a HILICON iHILIC-Fusion(p), 50 × 2.1 mm, 5 µm particle size column. The

mobile phases were (A) aqueous 10 mM ammonium carbonate and 0.2% ammonium hy-

droxide and (B) acetonitrile. The flow rate and gradients were the same as for citrulline

quantification. Argininosuccinate was quantified with a 13C-internal standard. The 12C

parent mass for argininosuccinate was 291 and the product mass 70, at a collision energy

of 45 eV in positive mode (301 and 74 for 13C argininosuccinate).

Supernatant samples for glucose measurements were prepared by centrifugation of 1

ml of the culture broth for 1 min at 17.000 g at room temperature. The supernatant was

stored at -20°C. The glucose concentration in the supernatant was determined with an

assay kit (DGlucose Assay Kit, GOPOD Format, Megazyme Inc).

2.8 Proteomics

Samples were subjected to tryptic digest as described in detail in the Supplementary

Methods 4. 1 µg peptide was analyzed using liquid chromatography-mass spectrom-

etry (LC-MS/MS). The LC-MS/MS analysis including label-free quantification was car-

ried out as previously described in (Sander et al., 2019) with minor modifications. In

short, LC-MS/MS analysis of protein digests was performed on Q-Exactive Plus mass

spectrometer connected to an electrospray ion source (Thermo Fisher Scientific). Pep-

tide separation was carried out using Ultimate 3000 nanoLC-system (Thermo Fisher Sci-

entific), equipped with packed in-house C18 resin column (Magic C18 AQ 2.4 µm, Dr.

Maisch). The peptides were first loaded onto a C18 precolumn (preconcentration setup)
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and then eluted in backflush mode with a gradient from 98% solvent A (0.15% formic

acid) and 2% solvent B (99.85% acetonitrile, 0.15% formic acid) to 30% solvent B over 115

min. Label-free quantification was done using Progenesis QI software (Nonlinear Dy-

namics, v2.0), MS/MS search was performed in MASCOT (v2.5, Matrix Science) against

the Uniprot E. coli protein database. The following search parameters were used: full

tryptic search with two missed cleavage sites, 10 ppm MS1 and 0.02 Da fragment ion

tolerance. Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) as

variable modification. Progenesis outputs were further processed with SafeQuant (Glat-

ter et al., 2012).
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3 Results

3.1 Enrichment of temperature-sensitive ArgG variants with a
TIMER protein

Argininosuccinate synthetase (ArgG) catalyzes the seventh reaction in the arginine biosyn-

thesis pathway of E. coli, and converts citrulline into argininosuccinate (Fig. 4.1a). To

construct temperature-sensitive variants of ArgG, we used error-prone PCR for in vitro

mutagenesis of the argG gene (Fig. 4.1b). The resulting library of ArgG variants was

then used to complement an argG deletion strain (∆argG) (Baba et al., 2006). The ∆argG
strain is auxotrophic for arginine and does not grow on a minimal glucose medium with-

out arginine (Suppl. Fig. 4.8). Therefore, only cells with catalytically active ArgG vari-

ants would grow on glucose minimal medium, and we enriched these variants by cultur-

ing the library for 36 h at 30°C in shaking flasks. Then, we shifted the culture to 42°C and

expected a growth-arrest of cells expressing temperature-sensitive ArgG variants (vari-

ants that are inactivated at 42°C). The challenge was to isolate the fraction of growth-

arrested cells from the library, and for this purpose, we used the single-cell growth rate

reporter TIMER. The TIMER protein is a dsRed variant, which indicates slow- and non-

growing cells by a low ratio of green/red fluorescence (Beuter et al., 2018; Claudi et al.,

2014). After switching the ArgG library from 30°C to 42°C, we waited 6 h to allow mat-

uration of the TIMER protein and then isolated 81.000 cells with the lowest green/red

ratio with FACS (Fig. 4.1c). The entire ArgG library had a wide-range of green/red ratios

with a ratio median of 0.44, while the sorted fraction had a narrow green/red ratio with

a median of 0.14. This indicates that the majority of cells was growing at 42°C and did

not express temperature-sensitive ArgG variants.

To test if we enriched temperature-sensitive ArgG variants, we randomly selected

90 isolates from the sorted cells with low green/red ratios. The 90 isolates were then

cultured in microtiter plates at both 30°C and 42°C. At 30°C, all isolates grew similar to a

control strain that expressed the wild-type ArgG, thus indicating that all ArgG variants

are catalytically active at 30°C (Fig. 4.1d and Suppl. Fig. 4.9). At 42°C in contrast, the

majority of strains (90%) grew worse than the control strain, and 62 out of the 90 strains

did not reach a final OD of 0.5. Thus, the single cell growth rate reporter successfully

enriched temperature-sensitive ArgG variants. Moreover, the large variation of growth

characteristics at 42°C suggests that the enzymes respond differently to a temperature

increase.
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Figure 4.1: High-throughput enrichment of temperature-sensitive ArgG variants. (a)
ArgG catalyzes the seventh reaction in the arginine biosynthesis pathway and converts
citrulline into argininosuccinate (argsucc). asp, aspartate. (b) A plasmid library with mu-
tagenized argG was generated with error-prone-PCR and used to complement an argG
knockout strain of E. coli BW25113. The strain also carried a plasmid with the single-cell
growth rate reporter TIMER. The pooled strain library was first incubated at 30°C to en-
rich ArgG variants that are catalytically active and support growth. Subsequently, the
culture was shifted to 42°C to select non-growing cells with FACS based on the green/red
signal of the TIMER protein. (c) Red and green fluorescence (top) of cells after 6 h cul-
turing at 42°C. FACS was used to isolate the fraction with a low green/red ratio (shown
in blue). Histogram (bottom) showing the distribution of cells according to the green to
red ratio. (d) Growth at 30°C and 42°C of 90 single strains isolated from the fraction with
a low green/red ratio (blue fraction in Fig. 1c). Strains that did not reach an OD of 0.5 at
42°C are shown in blue. A control strain expressing wild-type ArgG is shown in red.
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Figure 4.2: Temperature-dependent arginine auxotrophy and mutations of nine ArgG
variants. (a) Growth of nine strains with ArgG variants at 42°C with supplementation
of arginine (black lines) and without (blue lines). Lines show means and shades the
standard deviation of n = 3 plate reader cultures. (b) Mutations of the nine ArgG variants.
Binding sites of ATP, citrulline, and aspartate are shown in green. Non-synonymous
mutations are red, synonymous are blue.

3.2 Characterization of nine temperature-sensitive ArgG variants

We selected nine ArgG variants that did not support growth at 42°C but achieved the

highest growth rates at 30°C (Suppl. Fig. 4.10). First, we confirmed that the nine strains

are indeed auxotrophic for arginine at 42°C by culturing them with and without supple-

mentation of arginine (Figure 4.2a). Addition of arginine could fully restore growth at

42°C, with maximum growth rates of 0.70 ± 0.02 h−1. Consequently, the temperature-

sensitivity of all nine strains results from an auxotrophy for arginine.

Sequencing of the nine ArgG variants revealed that each variant had between two

and eleven mutations (Fig. 4.2b and Suppl. Table 2). 69% of all mutations were non-
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synonymous and changed the amino acid sequence. All ArgG variants were unique, and

only a few ArgG variants had amino acid exchanges at the same position (G9 and A7

at position 29, E2 and G3 at position 235, and A5 and A7 at position 356). The E235D

mutation occurred twice in G3 and E2, and mutant A7 had a point mutation in the ri-

bosomal binding site of argG. The number of synonymous mutations per gene varied

between zero (variant A5) and six (variant G9). Because codon usage has an impact on

the translational efficiency (Plotkin and Kudla, 2011), we expect that these mutations

could play a role in tuning expression levels of ArgG. However, it seems unlikely that

ArgG expression levels play a role in temperature-sensitivity, because this would also

affect growth at 30°C. Mapping the mutations to the DNA sequence of argG revealed

that only one out of 55 mutations (F100Y of G3) occurred at a known binding site for

citrulline, ATP, or aspartate (Lemke and Howell, 2001, 2002) indicating conservation of

those critical residues.

To test if these mutations have the potential to reduce protein stability we obtained

∆∆G values with FoldX (Guerois et al., 2002; Schymkowitz et al., 2005). ∆∆G are

changes in Gibbs energy (∆G) relative to the wild-type ArgG sequence. The average

∆∆G for the nine mutants was 6.5 kcal mol−1 (Suppl. Table 2), which indicated strong

destabilizing effects. As a reference, previous studies showed that the average ∆∆G for

single amino acid substitution in 22 proteins was 1.3 kcal mol−1, and only 15% of these

mutations had a ∆∆G > 3 kcal mol−1 (Tokuriki et al., 2008). Next, we used the nine ArgG

variants to dynamically control the arginine pathway and to overproduce the substrate

of ArgG, citrulline.
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3.3 Citrulline overproduction in feedback-dysregulated E. coli
We expected that inactivation of ArgG blocks the arginine pathway and that this would

lead to an accumulation of the substrate of ArgG, citrulline (Fig. 4.3a). To test the con-

sequences of blocking arginine biosynthesis at the reaction catalyzed by ArgG (argini-

nosuccicante synthetase), we used an argG deletion strain (∆argG). First, the ∆argG
strain was grown in medium with externally supplemented arginine, which suppresses

the physiological consequences of the argG deletion. Then, we washed and diluted the

cells in medium without arginine so that cells would have to switch to de novo argi-

nine biosynthesis. After dilution, we measured the OD and citrulline concentration in

the whole cultivation broth for 54 h (Fig. 4.3b). As expected, cells did not grow after

removing arginine from the medium, and the OD remained constant at 0.05 (Suppl. Fig.

4.8). Citrulline, in contrast, increased to a final concentration of 20 mg/L, showing that

blocking ArgG results in accumulation of citrulline.

To improve citrulline production, we dysregulated the arginine pathway, which is

feedback regulated at the transcriptional and allosteric level by arginine (Fig. 4.3a).

Therefore, we deleted the transcriptional repressor of the arginine pathway (ArgR) and

removed allosteric feedback inhibition by a point mutation in the first enzyme in the

pathway (H15Y mutation of ArgA) (Rajagopal et al., 1998). Deletion of ArgR resulted

in a 2-fold higher citrulline concentration at the end of the experiment (40 mg/L) (Fig.

4.3b). A doubly dysregulated strain (∆argG ∆argR argA(H15Y)) achieved 3-fold higher

citrulline concentrations (60 mg/L). The specific citrulline production rates of the three

strains decreased over time. During the first 10 h, the doubly dysregulated strain had

a biomass-specific citrulline production rate of 0.73 mmol g−1
DW h−1, which decreased to

0.25 mmol g−1
DW h−1 between 20 and 32 h. Citrulline production stopped between 44 and

54 h.

These results show that blocking arginine biosynthesis at the ArgG reaction leads to

overproduction of citrulline, and that complete dysregulation of the arginine pathway

enhances production. Next, we combined the doubly dysregulated strain (∆argG ∆argR
argA(H15Y)) with temperature-sensitive ArgG to control citrulline production dynami-

cally.
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Figure 4.3: Overproduction of citrulline in an argG deletion strain. (a) Arginine biosyn-
thesis in E. coli is feedback regulated by arginine at the level of transcription (ArgR)
and allosteric control of the first enzyme (ArgA). The transcription factor ArgR regu-
lates the expression of all genes in the pathway. The activity of the protein ArgA, which
catalyzes the first reaction in the pathway, is directly regulated by allosteric interac-
tion with arginine. Engineering targets are shown in red: deletion of argG, deletion of
argR, H15Y mutation removes allosteric inhibition of ArgA. glu, L-glutamate; acglu, N-
acetyl-Lglutamate; acgluP, N-acetylglutamyl-phosphate; acglu5s, N-acetyl-L-glutamate
5-semialdehyde; acorn, N-acetyl-L-ornithine; orn, L-ornithine; argsucc, Larginino- suc-
cinate; acCoA, acetyl-coenzyme-A; (b) Citrulline concentration in the whole cultiva-
tion broth of three argG deletion strains after removing arginine from the cultivation
medium. Blue: a strain with only argG deletion, Orange: a strain with argG deletion and
additional deletion of the transcriptional repressor argR. Green: a strain with deletion
of argG, argR and a point mutation (H15Y) in argA that removes inhibition of ArgA by
arginine. Specific citrulline production rates were calculated by regression analysis in
the three time intervals.

115



Chapter 4

3.4 Growth and citrulline production screening of the
temperature-sensitive ArgG variants

To control growth and overproduction of citrulline dynamically, we expressed the nine

temperature-sensitive ArgG variants in the doubly dysregulated citrulline producer∆argG
∆argR argA(H15Y). As a control, we also expressed the wild-type ArgG enzyme in the

same strain. We expected that temperature-sensitive ArgG functions as a metabolic

valve that controls arginine biosynthesis flux in a temperature-dependent manner (Fig.

4.4a). At low temperatures, ArgG is active and sustains biosynthetic flux into arginine

and growth. At high temperatures, ArgG is inactive and blocks the arginine pathway,

resulting in overproduction of citrulline and a growth-arrest.

To test if the nine ArgG variants achieve this metabolic control in the citrulline pro-

ducer, we cultured the nine strains and the control (Fig. 4.4b). M9 precultures (30°C)

were used to inoculate 4 main cultures at OD 0.05, which were incubated at different

temperatures (30°C/34°C/37°C/42°C). OD and citrulline were measured after 7 h. At 30°C,

all strains with a temperature-sensitive ArgG variant grew to a similar OD, which was

even higher than the OD of the control strain (Fig. 4c). Citrulline production at 30°C was

similar in all strains, including the control (Fig. 4.4c). The basal production of citrulline

indicates that ArgG is limiting the flux in the arginine pathway already at 30°C. This

bottleneck at ArgG is probably caused by high abundances of the other enzymes in the

arginine pathway due to the ArgR deletion (Sander et al., 2019b).

When we cultured the strains at 42°C, the OD of all temperature-sensitive variants

increased just slightly (from 0.05 to an average of 0.08). Citrulline production of the

variants increased on average 2.2- fold at 42°C when compared to 30°C. In contrast, the

control strain reached almost the same OD and citrulline levels at 42°C and 30°C. This

shows that all ArgG variants enable temperature-dependent control of both growth and

citrulline production.

Notably, at intermediate temperatures (34°C and 37°C), the OD and citrulline levels

differed across the nine ArgG variants (Suppl. Fig. 4.11), suggesting that the variants

have different temperature dependencies. The ArgG variant G9 achieved the highest cit-

rulline levels, and we tested temperature-sensitivity of this variant with in vitro enzyme

assays. The results show that ArgG-G9 is indeed temperature-sensitive: the specific en-

zyme activity was 11.5µmol min−1 mg−1 at 30°C and 4.1µmol min−1 mg−1 at 42°C (Fig.

4.4d). In contrast, the activities of wildtype ArgG were 47.5µmol min−1 mg−1 at 30°C and

114.5µmol min−1 mg−1 at 42°C. The incubation time at 42°C did not affect activity of the
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Figure 4.4: Growth and citrulline production of the doubly dysregulated citrulline pro-
ducer in combination with the nine ArgG variants. (a) Schematic of a temperature-
sensitive metabolic valve at ArgG. (b) Schematic of the experimental setup to screen
citrulline production and growth of nine ArgG variants at different temperatures. (c)
The nine ArgG variants were expressed in the doubly dysregulated citrulline producer
(∆argG ∆argR argGA(H15Y)). Shown is the OD (top) after 7 h cultivation in minimal
medium at 30°C and 42°C. All cultures started at an OD of 0.05. Error bars show the
standard deviation of n = 3 cultures. Biomass specific citrulline concentration (bottom)
after 7 h cultivation in minimal medium at 30°C and 42°C. Error bars show the standard
deviation of n = 3 cultures. (d) In vitro enzymatic assays with purified ArgG variant
G9 (top) and wild-type ArgG (bottom) at different temperatures (n = 2 enzyme assays,
proteins purified 2 times). Shown is the formation of the reaction product (argininosuc-
cinate) after starting the reaction at t = 0 min. Specific enzyme activities were calculated
with linear regression. (e) Growth of the doubly dysregulated citrulline producer (∆argG
∆argR argA(H15Y)) expressing the ArgG variant G9 (top), and wild-type ArgG (bottom).
Colors indicate different temperatures. Dots are means, and error bars show the differ-
ence between n = 2 cultures.
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enzymes, because activities did not change when incubating the enzymes for 10 min

or 60 min at 42°C (wild type: 112.0µmol min−1 mg−1, variant G9: 4.0µmol min−1 mg−1)

(Suppl. Fig. 4.12). This data indicated that temperature-sensitivity of the ArgG-G9 vari-

ant occurred at faster time-scales.

Cultivating the doubly dysregulated strain with ArgG variant G9 at different temper-

atures (30, 33, 35, 37, 39, 42°C) revealed that the best growth occurred at 33°C and that

39°C was sufficient to stop growth (Fig. 4.4e). Between 33°C and 39°C, growth decreased

gradually, showing tunable growth control of this ArgG variant by temperature. The

control strain, which expressed the wild-type ArgG, grew at all temperatures and best

at 37°C (Fig. 4.4e).

Strains with ArgG-G9 grew faster than strains with wild-type ArgG at low tempera-

tures (Fig. 4.4e and Suppl. Fig. 4.10) although the specific enzyme activity of ArgG-G9

was lower compared to the wild-type ArgG (Fig. 4.4d). A potential explanation is that

the mutations (also synonymous) tuned and increased expression levels by codon usage

or mRNA stability resulting in faster growth.

Heat stress and the accompanying metabolic burden could potentially pose a ma-

jor challenge in temperature-controlled bioprocesses. Therefore, we measured the pro-

teome of our strains at different temperatures and investigated the abundance of heat-

shock related proteins (Fig. 4.5a). Heat-shock related proteins were stronger expressed

at 42°C than at 39°C, which suggested that switching to 39°C was less burdensome than

switching to 42°C.

We then inspected the abundance of the proteins in the arginine pathway. All argi-

nine enzymes increased in the doubly dysregulated strain (average 6.9-fold), which was

expected due to deletion of ArgR (Fig. 4.5b). The only exception was ArgG-G9, be-

cause this enzyme was expressed from a plasmid. ArgG-G9 levels were 5.9-fold below

wildtype levels during exponential growth at 33°C. At 39°Cand 42°C, ArgG-G9 levels de-

creased further, 6.3- and 7.4-fold, respectively. The lower abundance of ArgG-G9 at high

temperatures indicated degradation of either the enzyme or the mRNA. Thus, it seems

that high temperature affects ArgG-G9 two-fold: it reduces stability and abundance of

the protein.
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Figure 4.5: Proteome data of the doubly dysregulated citrulline producer
(∆argG ∆argR argA(H15Y)) expressing the ArgG variant G9 at different tempera-
tures (33°C, 39°C, 42°C). Data is normalized to the proteome of exponentially growing
wild-type cells at 37°C. Dots are the mean of independent replicates (n = 3). (a) Relative
abundance of heat-shock proteins: IbpB, IbpA, DnaJ, GroS, DnaK, FxsA, GroL, ClpB,
HtpX, HtpG, GrpE, Lon, YcjF, PrlC, HslV, MutM, HslU, YbbN, YbeZ, RpoD, YbeD, YcjX,
LdhA, ClpP, ClpX, HslJ. Red lines indicate the medians. Boxes indicate the 25th and 75th
percentiles. (b) Relative abundance of enzymes in the arginine biosynthesis pathway as
well as CarA and CarB.
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3.5 A temperature-controlled two-stage process for
overproduction of citrulline

We used the doubly dysregulated strain (∆argG ∆argR argA(H15Y)) with the temperature-

sensitive ArgG variant G9 to produce citrulline in a 1 L-bioreactor. This strain grew best

at 33°C and growth stopped already at 39°C. Therefore, we used these temperatures to

separate a growth phase (33°C) and a production phase (39°C). We cultivated the strain

in two independent bioreactors for 14 h at 33°C in minimal medium until the biomass

reached an OD of approximately 1. During this time, the cells grew exponentially with

growth rates of 0.31 h−1 and 0.35 h−1. Then, we slowly increased the temperature to 39°C

over a time of 1 h. The slow temperature increase was necessary to avoid a temperature

overshoot that may cause a heat shock. Growth stopped when both bioreactors reached

39°C, and cells entered a stationary phase (Fig. 4.6a).

Throughout the experiment, we measured glucose and citrulline concentrations to

quantify specific uptake and production rates. The glucose concentrations in the super-

natant decreased continuously (Fig. 4.6b), and during the first 5 h into the stationary

phase the specific glucose uptake rates were 4.2 mmol g−1
DW h−1 and 5.3 mmol g−1

DW h−1.

These rates correspond to 45% of the glucose uptake rate of glucose-fed wild-type E. coli
during exponential growth at 37°C (Long et al., 2018). Thus, despite the growth arrest,

cells remained a relatively high metabolic activity, which is about 45% of exponentially

growing cells.

Apart from arresting growth, the temperature shift from 33°C to 39°C induced pro-

duction of citrulline. During the 30 h stationary phase, specific citrulline production

was constant at 0.92 mmol g−1
DW h−1 (bioreactor 1) and 1.10 mmol g−1

DW h−1 (bioreactor 2).

These rates matched productions rates estimated from the initial screening (Fig. 4.4c) and

were 38% higher than for the doubly dysregulated strain with deletion of ArgG (Fig.4.3b).

The final concentrations of citrulline in the two bioreactors were 3.3 g/L and 2.9 g/L (Fig.

6c), and the final biomass- specific citrulline yields were 4.88 g/gDW and 6.07 g/gDW .

Titers, yields, and production rates of all experiments are listed in Suppl. Table 4.3.
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Figure 4.6: Two-stage production of citrulline with the ArgG variant G9. (a) The doubly
dysregulated citrulline producer (∆argG ∆argR argA(H15Y)) expressing the ArgG vari-
ant G9 was cultivated in two independent 1-L bioreactors. OD and the temperature are
shown for bioreactor 1 (orange) and bioreactor 2 (green). t1 and t2 indicate the time
window when temperature was increased from 33°C to 39°C. t3 indicates the time when
glucose and ammonium was fed. blue area: growth phase, red area: production phase.
(b) Glucose concentration in the supernatant of the two bioreactors. Dots are the mean,
and error bars are the standard deviation of n = 4 analytical replicates per bioreactor. (c)
Citrulline concentration in the whole cultivation broth of the two bioreactors.
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4 Discussion

We presented a method to enrich a large number of temperature-sensitive variants of an

essential enzyme. The single-cell growth rate reporter TIMER was key to enrich thou-

sands of potentially temperature- sensitive variants because it allowed us to isolate a

small fraction of slow- or non-growing cells (1.1%) from a population of mainly growing

cells. The ability to create temperature-sensitive enzymes en masse opens up opportu-

nities to comprehensively map mutations that confer thermal sensitivity, for example

by deep sequencing of all enzyme variants (Bassalo et al., 2018; Garst et al., 2017). Such

approaches would advance our understanding about principles that underlie thermal

sensitivity of enzymes (Leuenberger et al., 2017) and enable the prediction of tempera-

ture effects based on protein sequences (Chakshusmathi et al., 2004).

Apart from mapping mutations that confer thermal sensitivity, enriching a large num-

ber of temperature sensitive enzymes facilitates the identification of variants that are

optimal for a particular application. For example, it could be possible to find enzymes

that are partially inactive at a given temperature or enzymes that switch quickly forth

and back upon temperature changes. Such gradual and reversible control of an enzyme

by temperature would be an alternative to knockdown methods like CRISPR interfer-

ence (S. Li et al., 2016; Larson et al., 2013; Qi et al., 2013), which requires expression of

additional protein and RNA components in the host.

Our case study was the arginine biosynthesis enzyme argininosuccinate synthetase

(ArgG), and we applied it for the overproduction of citrulline. Our data suggested that

the ArgG variants have indeed different temperature-dependencies and that the tem-

perature affects the ArgG catalyzed reaction, and consequently arginine biosynthesis,

in a gradual and tunable way. This precise control of metabolic reactions and pathways

renders temperature-sensitive enzymes an effective tool to implement metabolic valves

in overproduction strains.

Recent computational studies identified targets that are particularly suited as metabolic

valves in two-stage bioprocesses (Venayak et al., 2018), and the methods presented in this

study can help implementing them in production strains. So far, the method is limited

to valves that are essential proteins because selection of temperature-sensitive variants

is dependent on growth. A solution to this problem is modifying strains such that non-

essential targets become essential, for example by deletion of isoenzymes.

Creating many protein variants with different temperature-characteristics is espe-

cially important because computational analysis suggested that multiple metabolic valves
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are necessary to achieve optimal dynamic metabolic control for certain products (Burg et

al., 2016; Venayak et al., 2018). A practical problem in implementing multiple metabolic

valves is probably to coordinate their switching behavior with a single input signal like

temperature. To this end, a large panel of temperature-sensitive enzymes, each with

different temperature dependencies, will help addressing this problem and finding the

optimal combination of valves.

We showed that temperature-sensitive ArgG functions as a metabolic valve and that

it switches the arginine pathway between synthesis of the amino acid end-product (argi-

nine) and synthesis of the intermediate (citrulline). The ArgG deletion strain revealed the

consequences of completely closing the metabolic valve: a growth arrest and production

of citrulline. Removing allosteric feedback inhibition and transcriptional regulation in

the arginine pathway increased citrulline production about 3-fold indicating that even in

the absence of arginine the pathway is feedback inhibited. This basal repression results

either from the remaining arginine levels (e.g. from protein degradation) or inhibitory

effects of other metabolites. For example, lysine has been shown to be an additional ac-

tivator of the arginine repressor ArgR (Lempp et al., 2019). Temperature-sensitive ArgG

allowed us to establish a two-stage bioprocess, in which the metabolic valve was open

at 33°C and closed at 39°C. In the future, it will be important to clarify if partially closing

the metabolic valve results in better overproduction and avoids premature decreases of

production rates (here after 44 h in the ArgG deletion strain). Another option to main-

tain a high productivity might be switching continuously between different tempera-

tures. Such an approach requires temperature-sensitive enzymes that switch reversibly

between an active and inactive state.

Temperature gradients and fluctuations in large-scale fermentations might be prob-

lematic if they cause an unintended growth arrest during the growth phase (e.g. if zones

with 42°C exist during the 33°C growth phase). Therefore, future studies could examine

the function of temperature-sensitive enzymes under fluctuating temperatures. Eco-

nomically feasible production of citrulline at an industrial-scale would require higher

titers of citrulline, which can be realized by prolonging both growth and production

phases. Further improvements can be achieved by genomic integration of temperature-

sensitive variants, expression of exporters, and elimination of competing pathways (e.g.

the putrescine pathway).

In conclusion, temperature-sensitive enzymes are a promising tool for metabolic en-

gineering that enable dynamic control of metabolism. In case of temperature-sensitive

ArgG, the biggest advantage is the ability to gradually switch the arginine biosynthetic
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pathway on and off. Thus, together with thermo-sensitive transcription or translation,

temperature-sensitive enzymes open up novel applications and process strategies in in-

dustrial biotechnology.
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Appendix B. Supplementary figures

Suppl. Fig. 4.7: Plasmid map of pTS036-argG. RBS# 1 and PproB=ribosomal binding
site and promoter of proB (Davis et al., 2011). RBS# 2=strong ribosomal binding site
(Elowitz and Leibler, 2000). PLtetO−1 = TetR inducable promoter (Lutz and Bujard, 1997).
Backbone derives from pUA66-rrnBp (Zaslaver et al., 2006). tetR and cmR derived from
pdCas9 (Addgene # 44249) (Qi et al., 2013).

Suppl. Fig. 4.8: Growth of argG deletion strains during arginine starvation. Cells were
first grown in minimal medium supplemented with arginine. Then, arginine was re-
moved by washing, and cells were resuspended in minimal medium without arginine.
The graph depicts the time course of the OD after the washing.
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Suppl. Fig. 4.9: Growth of 90 randomly selected strains from the enriched argG library.
Strains were cultivated in minimal medium for 20 h at 30°C, re-diluted by a factor of 30,
and further incubated for 20 h at 42°C. 62 strains (blue) did not reach an OD of 0.5 after
cultivation at 42°C. A control strain with wild-type ArgG is indicated in red.

Suppl. Fig. 4.10: Growth rates at 30°C of 90 randomly selected strains from the enriched
argG library. The nine fastest growing strains (green bars) were sequenced. A control
strain with wild-type ArgG is indicated with red bars.
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Suppl. Fig. 4.11: Growth and citrulline production of the doubly dysregulated citrulline
producer in combination with the nine ArgG variants at intermediate temperatures. (a)
Shown is the OD after 7 h of cultivation in minimal medium at 34°C and 37°C. Error bars
show the standard deviation of n=3 cultures. (b) Biomass specific citrulline concentra-
tions after 7 h of cultivation in minimal medium at 34°C and 37°C. Same strains as in (a).
Error bars show the standard deviation of n=3 cultures.

Suppl. Fig. 4.12: Specific enzyme activity of E. coli wildtype ArgG (WT) and ArgG
variant G9 at 42°C. Enzymes were incubated for 1 h at 42°C before starting the reaction.
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Suppl. Fig. 4.13: Growth of (a) wildtype E. coli and (b) the doubly dysregulated citrulline
overproducer strain with the ArgG variant G9. Dotted lines indicate the time, at which
samples for proteomics were taken. Dots are means, and error bars show the standard
deviation of n=3 cultures.
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Supplementary Methods

S1. Sample preparation for proteomics

Samples for proteomics were prepared by transferring 109 cells to a 15 mL reaction tube

and centrifugation (4°C, 4000 rpm, 10 min). The supernatant was removed, and the cell

pellet resuspended in 10 mL 4°C-cold phosphate buffered saline (PBS, 8 g/L NaCl, 0.2

g/L KCL, 0.2 g/L KH2PO4, 1.15 g/L Na2HPO4, pH 7.4). After centrifugation (4°C, 4000

rpm, 10 min), the cell pellet was resuspended in 1 mL 4°C-cold PBS and transferred to

2 mL reaction tubes. Cells were pelletized by centrifugation (4°C, 17.000 g, 5 min), the

supernatant removed, and the pellet stored at -80°C. 300 µL lysis buffer (2% Na-lauroyl

sarcosinate in 100 mM NH4HCO3) were added to the cell pellet, and incubated at 90°C

for 16 min under shaking at 1200 rpm. Remaining cell pellet was resuspended by 25 s of

sonication. Samples were centrifuged (15.000 rpm, 20°C, 5 min). The protein concentra-

tion in the supernatant was determined with a BCA Protein Assay Kit (Thermo Fisher, #

23252). 7.5 µL of 5 mM tris(2-carboxyethyl)phosphine (TCEP) were added to the samples

and incubated at 90°C for 10 min under shaking at 1200 rpm. After cooling of the sam-

ples, 10 µL of 10 mM iodacetamide were added and incubated at 25°C for 30 min under

shaking of 500 rpm. 50 µg of protein was transferred to new reaction tubes. 10 µL of 0.1

g/L trypsin were added and incubated overnight at 30°C under shaking of 750 rpm. 90

µL of 5% trifluoroacetic acid and 50 µL of 10% HCl were added and incubated for 10 min

at room temperature. Samples were centrifuged for (10 min, 15.000 rpm, 4°C). The su-

pernatant was transferred to CHROMABOND Spincolumns (Macherey-Nagel) that were

conditioned with 500 µL of acetonitrile and equilibrated with 500 µL and 150 µL 0.1% TFA.

After loading, the peptides were washed with 500 µL 0.1% TFA in 5:95 acetonitrile:water

and eluted with 400 µL 0.1% TFA in 50:50 acetonitrile:water. Peptides were concentrated

and dried under vacuum at 50°C. Peptides were dissolved in 100 µL 0.1% TFA by 25 s of

sonication and incubation at 22°C under shaking at 1200 rpm for 5 min.

Supplementary Tables
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Suppl.Table
1.b:O

ligonucleotides
used

in
this

study.
O

ligonucleotides
Identifier

U
se

A
TG

A
C

G
A

C
G

A
T

TC
T

C
A

A
G

C
A

T
C

TC
argG

-am
p-F

pT
S036-argG

,pT
S036-G

9
T

TA
C

TG
G

C
C

T
T

TG
T

T
T

T
C

C
A

G
A

T
T

C
argG

-am
p-R

pT
S036-argG

,pT
S049

A
A

TC
T

G
G

A
A

A
A

C
A

A
A

G
G

C
C

A
G

TA
A

A
T

G
T

G
G

A
T

C
C

C
C

A
G

A
C

C
T

G
C

A
G

G
C

A
T

G
argG

-pSC
101-F

pT
S036-argG

G
A

G
A

TG
C

T
T

G
A

G
A

A
T

C
G

T
C

G
T

C
A

TA
G

A
T

C
C

T
T

T
C

TC
C

TC
T

T
TA

G
A

T
C

T
T

T
T

G
A

A
T

T
C

T
T

G
G

TC
argG

-pSC
101-R

pT
S036-argG

T
TA

C
TG

G
C

C
T

T
TG

T
T

T
T

C
C

A
G

A
C

T
C

G
9-am

pR
pT

S036-G
9,pT

S050
G

C
C

T
T

C
TC

C
TG

C
T

C
TC

C
C

T
TA

A
G

C
G

C
argG

-F
sequencing

G
A

G
A

C
T

C
A

C
G

G
G

T
T

G
T

G
G

A
T

G
C

A
A

A
C

C
A

T
G

argG
-R

sequencing
G

A
TA

A
A

C
TA

A
G

A
TA

TG
T

T
G

C
T

C
C

G
C

T
G

C
C

G
argR-F

sequencing
G

TA
T

T
C

A
T

TG
TG

TG
A

A
TG

A
C

A
T

G
T

C
G

C
A

G
argR-R

sequencing
G

TG
G

TA
A

A
G

G
A

A
C

G
TA

A
A

A
C

C
G

A
G

T
T

G
argA

-F
sequencing

T
TA

C
C

C
TA

A
A

T
C

C
G

C
C

A
T

C
A

A
C

A
C

argA
-R

sequencing
G

T
G

G
TA

A
A

G
G

A
A

C
G

TA
A

A
A

C
C

G
A

G
T

TG
G

T
C

G
A

G
G

G
A

T
T

C
C

G
C

TA
T

T
C

C
G

T
T

C
C

C
TA

TA
TC

A
A

TA
C

C
C

A
C

C
G

G
G

G
A

A
argA

_
H

15Y_
rec2

noSC
A

R
argA

(H
15Y)(Sander

etal.,2019)
A

C
G

A
C

G
A

T
T

C
T

C
A

A
G

C
A

T
C

T
C

C
C

G
argG

-noA
TG

-F
pT

S049,pT
S050

TC
T

G
G

A
A

A
A

C
A

A
A

G
G

C
C

A
G

TA
A

G
G

C
C

TA
T

G
C

G
G

C
C

G
C

TA
A

G
G

G
T

C
G

A
C

C
T

G
A

SK
A

-H
is-A

rgG
-F

pT
S049,pT

S050
G

A
G

A
TG

C
T

T
G

A
G

A
A

T
C

G
T

C
G

T
G

G
C

C
C

TC
A

G
G

G
C

C
G

G
A

T
C

C
G

TA
T

G
G

TG
A

SK
A

-H
is-A

rgG
-R

pT
S049,pT

S050

132



Chapter 4

Suppl. Table 4.2: Mutations and predicted ∆∆G values of 9 ArgG variants.
ArgG variant Non-synonymous mutations No. of synonymous

mutations
∆∆G* [kcal mol−1]

E12 Y39H, R59S, Q152H, V223A, K252E, P384L 3 6.1
A7 L29Q, Q86L, I163F, I356N 1 4.4
A5 E62D, I356F 0 8.8
G3 F100Y, D164V, E235D, G269S, I311F, S339P 1 9.0
G9 L29P, E228V, R416H, Q438R, N441S 6 6.0
E9 E66D, L308M, N368D 1 1.1
F7 G272S, T375S 2 7.5
F2 A36V, L210H, M260V, F337L 1 9.9
E2 K34R, N92D, M197V, S229C, E235D, F420Y 2 5.3

*∆∆G = ∆Gfold
mutant −∆Gfold

wildtype, estimated with FoldX 5.0 (Guerois et al., 2002; Schymkowitz et al., 2005) using a re-refined

ArgG crystal structure (1k92 from PDB_ REDO) (Lemke and Howell, 2001; Joosten et al., 2011).

Suppl. Table 4.3: Citrulline concentrations, biomass-specific citrulline yields, and cit-
rulline production rates in different experiments.

Doubly dysregulated
ArgG deletion strain
(Fig. 4.3)(n=2)

G9-based strain at 42°C
(Fig. 4.4)(n=3)

G9-based strain in
bioreactor (Fig. 4.5)(n=2)

citrulline concentrations [g L−1] 0.024 ± 0.003 (after 10 h) 0.033 ± 0.002 (after 7 h) 3.09 ± 0.23 (after 45 h)
yields [g g−1

DW ] 1.32 ± 0.18 (after 10 h) 1.35 ± 0.14 (after 7 h) 5.48 ± 0.84 (after 45 h)
production rates [mmol g−1

DW h−1] 0.73 ± 0.07 (first 10 h) 1.10 ± 0.12 1.01 ± 0.13 (only produc-
tion phase)
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Abstract

Temperature-sensitive proteins are a unique tool to control engineered microbes in

biomedical and biotechnological applications. Here, we screened for temperature-

sensitive alleles across all 352 essential genes of Escherichia coli and used metabo-

lomics for functional profiling. We created a pooled strain library by CRISPR/Cas9

genome editing, which included 15,120 E. coli mutants each with a different amino

acid substitution in an essential protein. We measured temperature-sensitivity of

the mutants in a competitive fitness assay and identified 1,045 strains with puta-

tively temperature-sensitive alleles in 250 genes. Growth analysis of 92 isolated

temperature-sensitive mutants revealed that the growth rate-temperature relation-

ships varied greatly between mutants and that growth rates could be gradually

controlled by temperature. By measuring the metabolome, we investigated the

metabolic implications of the mutations. For 42 out of 80 mutants with temperature-

sensitive enzymes, we confirmed the function as metabolic valves that enabled the

introduction of metabolic bottlenecks. In some cases, metabolic profiles were more

complex and indicated that single mutations caused secondary metabolic bottle-

necks in distal pathways. Examples for this effect are folate metabolism and purine

synthesis, arginine and purine synthesis (and vice-versa), as well as cysteine and

methionine synthesis. In a final step, we employed a selection of temperature-

sensitive metabolic valves for the overproduction of chemicals. A (non-enzymatic)

temperature-sensitive mutant of dnaX was feasible to control growth of an argi-

nine overproduction strain enabling a two-stage bioprocess. With this study, we

consolidate temperature-sensitivity as a powerful and versatile tool for metabolic

engineering.

1 Keywords

Temperature-sensitive mutants, CRISPR/Cas9, metabolic engineering, Escherichia coli,
competitive fitness assay, metabolomics, next generation sequencing
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2 Introduction

Microbial strains can be engineered to produce a wide variety of industrially relevant

chemicals. Though, many bioprocesses suffer from low production yields since sub-

strates are converted into both, biomass and the product chemical. One solution to the

trade-off between biomass and product formation is to dynamically switch the metabolism

of a production strain between growth and production stages (Burg et al., 2016; Cress

et al., 2015; Hartline et al., 2021; Klamt et al., 2018).

To control microbial growth and product formation, different strategies have been

used. Nutrient limitations are very effective to switch off growth (Chubukov et al., 2017;

Sonderegger et al., 2005; Tokuyama et al., 2019) but, at the same time, they can trig-

ger cellular stress responses and impair production rates. Chemical inducers (Soma et

al., 2014), optogenetics (Zhao et al., 2018), quorum sensing systems (Gupta et al., 2017),

degradation tags (Brockman and Prather, 2015), or CRISPR interference (Lv et al., 2015)

were used to control metabolic pathways. However, a limitation of these methods is

that they often fail to stop growth fully because they modulate enzyme abundance and

residual functional enzyme can enable growth.

As alternative, temperature-sensitive proteins can be used to control microbial growth

and metabolism by temperature (M. D. Lynch et al., 2016; M. Lynch et al., 2019; Schramm

et al., 2020). For example, a temperature-sensitive transcription factor has been used

to control of gene expression in chicken embryo cells (Weber, 2003). Large yeast li-

braries have been constructed and collected with hundreds of temperature-sensitive al-

leles (Ben-Aroya et al., 2008; Kofoed et al., 2015) that were pivotal in understanding gene-

gene interactions (Li et al., 2011). So far, many temperature-sensitive alleles have been

found for E. coli. Very often, sequencing data is however missing or mutants contain

multiple mutations. Finding temperature-sensitive mutations can be tedious, and many

methods rely on random mutagenesis approaches (Schramm et al., 2020; Ben-Aroya et

al., 2010).

Here, we used a barcoded CRISPR-Cas9 genome editing method to generate around

46 mutants in each of 346 essential genes. In a competitive fitness assay, we screened

for temperature-sensitive mutants. After isolating 92 temperature-sensitive strains, we

analyzed their function by metabolomics. We show gradual and dynamic control of

growth and endogenous as well as heterogeneous overproduction of metabolites for a

set of example strains.
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3 Results

3.1 A CRISPR library with temperature-sensitive variants of all
essential genes in E. coli.

We used a CRISPR-Cas9 method (Garst et al., 2017) to create a library of temperature-

sensitive E. coli strains. As a starting point, we selected 352 genes that are essential

for growth on minimal glucose medium (Goodall et al., 2018; Patrick et al., 2007). For

each of the 352 essential genes, we predicted amino acid substitutions that had a high

probability of increasing temperature-sensitivity of the respective protein (Tan et al.,

2014; Varadarajan et al., 1996). The CRISPR-Cas9 genome editing method (Garst et al.,

2017) uses 85 bp-long homologous DNA sequences (integration cassette) to insert the

desired mutations into the E. coli genome. Because the distance between the PAM site

and the mutation site effects recombination efficiency, we ranked all the desired amino

acid substitutions based on this distance but also the number of possible amino acid sub-

stitutions and off-targets. We then selected the 10 best predicted amino acid substitution

sites with each 5 substitutions (Fig. 5.1.a). This would yield 50 amino acid substitutions

per essential gene.

For 154 genes, we found less than 50 substitutions, either because the number of pre-

dictions for amino acid substitutions were limited or only cassettes with putatively poor

recombination efficiencies were available. For example, the algorithms predicted no tem-

perature sensitive alleles in rpmA and rpmH, which encode small (85 aa and 45 aa) ri-

bosomal proteins. In another set of genes (leuL, rplU, rpmC, and rpsI ) we found only

cassettes with putatively poor recombination efficiencies available and were discarded.

In total, our CRISPR library contained 16,038 member and covered 346 genes with a

mean of 46.4 amino acid substitutions per gene, 9.28 amino acid substitution sites per

gene, and a mean of 4.91 substitutions per amino acid substitution site. Out of the 346

essential genes, the largest fractions of genes were part of amino acid metabolism (69

genes, 19.9 %), and cofactor and prosthetic group biosynthesis (58 genes, 16.8 %) (Fig.

1.b). With 3.2 % to 3.8 % library shares, the smallest fractions covered genes in central

metabolism, cell division, or were translation associated.

Using a 200 bp array-synthesized oligonucleotide pool, we first cloned the 16,038 cas-

settes on plasmids. Deep sequencing of this pooled plasmid library showed that 97 % of

the designed cassettes were present. During cloning of the plasmids, the library compo-

sition was conserved with exception of library members targeting ribosomal subunits.

These members were diluted from 10.4 % share in the library before cloning to 4.7 % after
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Figure 5.1: The figure caption is on the next page.
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Figure 5.1: A pooled CRISPR library of E. coli strains bearing single amino acid
substitutions. (a) An overview is provided showing key steps in the creation of the
CRISPR library. (b) The 346 genes covered by the library were assigned to functional
categories. The share of each category in the library is shown for different steps in the
creation of the library. (c) The scheme shows our experimental approach of a competitive
fitness assay using NGS to read out plasmid-borne barcodes. (d) The relative abundance
of each strain detected by NGS in the sample at t = 0 in the competitive fitness assay. R2

is Pearson’s correlation coefficient between replicates (n = 2). (e) The normalized read
counts are shown for the competitive fitness assay. Lines were calculated by smoothing
through data of 7 time points and indicate the abundance changes for single strains in the
library. Each subfigure shows data for strains that are assigned to different clusters with
different fitness (yellow: low fitness, light blue: reduced fitness, dark blue: high fitness).
Colored lines show the mean of entire clusters, the colored shades show the standard
deviation. The four blue clusters containing strains with neutral or increased fitness
were plotted into a single subfigure. (f) Heatmap showing which strain was assigned to
which of the clusters. (g) Bar plot showing the fraction of strains within a functional gene
category that had high, reduced, or low fitness. The fraction of strains with inconclusive
data is grey.

cloning (Fig. 5.1.b). An explanation for this effect could be that the DNA sequences on

the plasmid or the protospacer in the sgRNA, which are homologous to ribosomal genes,

are toxic to the cells. Next, we transformed an E. coli strain, which carried a second plas-

mid with Cas9 and the lambda red system, with the plasmid library (Suppl. Fig. 5.6).

In these strains, we induced Cas9 expression and Lambda Red mediated recombination

to obtain the final CRISPR library. This library contained 15,120 of the 16,038 designed

cassettes (94 %) and targeted all 346 genes that we included in the initial library design.

In contrast to the cloning step, the library composition changed during recombination

(Fig. 5.1.b). Mutants in amino acid metabolism were strongly enriched from 21.2 % li-

brary share after cloning to 40.0 % after recombination. Mutants in the cofactor and

prosthetic group biosynthesis were slightly enriched (18.1 % to 23.5 %). Mutants in all

other functional groups were diluted. A reason for the enrichment of mutants in the

amino acid metabolism is that many of the respective genes are conditional essential.

Mutations in the amino acid metabolism that are lethal in M9 glucose medium can often

be complemented by supplementation of amino acids in the medium. During recom-

bineering, complex media that also contain amino acids are commonly used to reduce

cellular stress and maximize efficiency of the genome editing. Therefore, we expected

that a large fraction of the mutants in the amino acid metabolism were in fact unviable

in minimal glucose medium.

146



Chapter 5

Having created a pooled strain library with mutations in 346 essential genes, we then

sought to measure growth associated fitness of the 15,120 mutants at 30 °C. For this

purpose, we used a growth competition assay. After cultivating the pooled strain library

in duplicate for 14 h in minimal glucose medium, we started main cultures at t0 and took

samples for next generation sequencing (NGS) every 2 hours (t1 to t7) for a total of 12

h (Fig. 5.1.c). Oxygen and nutrient limitations in the medium were avoided by diluting

the cultures back every 3 hours.

The NGS was reproducible as indicated by high correlation scores (R2 ≥ 0.96) between

duplicates for all time points (t0 data as example: Fig. 5.1.d). We then used the normal-

ized read counts as proxy for the fitness and growth of the mutants. To calculate the

normalized read counts, we first normalized the read counts to the total number of reads

per sample, which gave the relative abundances of the mutants in a sample. Second, we

normalized these values to the t0 sample. This yielded curves that indicated how the

abundance of the mutants changed in the pooled library throughout the cultivation.

Clustering of these curves helped us to classify the mutants into three categories (Fig.

5.1.e): (1) strains that had a low fitness at 30 °C and were rapidly diluted in the population,

(2) strains that had reduced fitness and were slowly diluted, and (3) strains that had a high

fitness and were maintained or even enriched throughout the experiment. The strains

with high fitness were distributed over 4 clusters with different degrees of enrichment.

7,154 strains had less than 15 reads at t0, which was our minimum cut off. However,

4,178 strains were present during the cloning and recombination steps, with read counts

higher than our cut off, and were then diluted to zero reads throughout the experiment.

These strains were also likely to have strong fitness defects and were included. In total,

5,748 strains had low fitness (35.8 %), 1,712 had reduced fitness (10.7 %), and 5,118 strain

had a high fitness (31.9 %) (Fig. 1.f). For 3,460 strains (21.6 %), the data was inconclusive,

which means that the mutants were not present even during the construction of the

library or their read count was too low to draw conclusions about the fitness.

We wondered whether some functional categories (Fig. 5.1.b) had more mutants with

fitness defects than other categories. Among the categories, genes from the amino acid

metabolism stood out. They had the lowest fractions of mutants with a high fitness

or inconclusive data and the highest fractions with reduced or low fitness (Fig. 5.1.g).

Mutants in the amino acid metabolism were enriched during recombineering in complex

medium (Fig. 5.1.b), and we expected already that a large fraction of the respective

mutants is unviable in minimal glucose medium. This idea is supported by the results

from the fitness measurements.
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In summary, we created a CRISPR library with 15,120 E. coli mutants, each with a

single amino acid substitution in one of 346 essential proteins. We measured fitness of

the mutants at 30 °C by tracking relative strain abundance during a competitive growth

assay. 31.9 % of the mutants had a high fitness at 30 °C and grew. Another 35.8 % had

a low fitness and were likely to have a defective gene product causing a growth defect.

Around 10.7 % had a reduced fitness indicating partial function of the gene product and

slow growth.

3.2 A time-resolved competitive fitness assay reveals
temperature-sensitive mutants

Having measured the fitness of 15,120 mutants in the CRISPR library at 30 °C, we sought

to identify temperature-sensitive mutants that grow at 30 °C but have a growth defect

at 42 °C. To measure the fitness of the mutants at 42 °C, we extended our competitive

growth experiment (Fig. 5.1.c), split up the main cultures at t0, and also the tracked

relative strain abundances during cultivation at 42 °C (Fig. 5.2.a).

With an average growth rate of 0.61 h−1, the total population grew faster at 42 °C

than at 30 °C (ca. 0.37 h−1) (Fig. 5.2.b). These growth rates were similar to wild type E.
coli (Fig. 5.2.c) and indicated that a considerable fraction of the CRISPR library was

not temperature-sensitive. Most mutants that had a low or reduced fitness already

at 30 °C (Fig. 5.1.e) also had a reduced fitness at 42 °C (Fig. 5.2.d). Mutants with

a high fitness at 30 °C showed much more diverse phenotypes at 42 °C. Apart from

strains with different degrees of high fitness at both temperatures, we also detected

mutants in the library whose data indicated temperature-sensitivity. Many of these

temperature-sensitive strains showed very different dynamics in the relative read counts

at 42 °C (Fig. 5.2.e). Some mutants like dnaN (Val70Trp) were immediately depleted from

the population after shifting the cultures to 42 °C while others like panB(Leu42Gln),

carA(Phe266Pro), secA(Val71Pro), and accC(Val335Gln) were depleted later. These strains

showed also different dynamics at 30 °C (Fig. 5.2.e), and panB(Leu42Gln) had already a

mild growth defect at 30 °C while carA(Phe266Pro) was enriched in the population under

this condition.

Apart from differences in the dynamics, we also observed that the normalized read

counts of some temperature-sensitive strains like aroB(Val273Gln) converged not to zero

but to another finite value (Fig. 5.2.f). We believe that this effect is caused by a subset of

strains that carry a plasmid with a correct NGS barcode but that do not have a correct
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genomic edit. Because of this convergence effect due to false-positive strains but also

complex dynamics in the reads counts, non-supervised approaches (clustering) provided

insufficient results to detect temperature-sensitive strains. Instead, we used a set of six

cut-offs to classify whether a strain was temperature-sensitive (Fig. 5.2.f). With these

cut-offs, we identified 1,045 putatively temperature-sensitive strains covering 250 genes

(Fig. 5.2.g). 743 of these mutants had a high fitness at 30 °C (Fig. 2.h), 297 a reduced fit-

ness, and 5 a low fitness. Thus, the fraction of temperature-sensitive strains was highest

among mutants with reduced fitness (17.4 %). In comparison, 14.5 % of the mutants with

high fitness at 30 °C were temperature-sensitive.

Besides temperature-sensitivity, the competitive fitness assay also provided insight

into how different mutations at a single amino acid site could affect protein function.

For example, our NGS data suggested that different mutations in DnaE at Leu634 cause

different phenotypes (Fig. 5.2.i). Leu634Trp likely resulted in the disruption of the pro-

tein function, Leu634Pro and Leu634Asp caused temperature-sensitivity, and Leu634Ala

and Leu634Gln had no apparent effects. In the future, our pooled approach of measuring

fitness of mutants with single codon mutations could be combined with protein structure

analysis and machine learning (Baek and Baker, 2022; Jumper et al., 2021) to automatize

and learn de novo design of proteins (Lovelock et al., 2022).

We constructed a CRISPR-Cas9 strain library that, after cloning, had 15,120 single

codon mutations in 346 essential genes in E. coli. The library was used for a competitive

fitness assay that resulted in the identification of 1,045 putatively temperature-sensitive

mutants. The results indicated that mutants with a reduced fitness at 30 °C were more

likely to be temperature-sensitive than strains with high or low fitness at 30 °C. The

NGS data of this screen also allowed us to study how different amino acid substitutions

at single sites affected the fitness of the strain.

3.3 Temperature-dependent growth of 92 mutants

Out of the previously identified 1,045 temperature-sensitive candidate strains, we chose

one strain per gene, yielding a total of 250 strains, and cloned them in two indepen-

dent batches using a new oligonucleotide pool. Sequencing of the library after recom-

bineering revealed that the construction was reproducible between batches, which was

indicated by R2 values of ≥ 0.95 (Suppl. Fig. 5.7). In the strain library, each of the 250

strains was present. However, the mean relative abundance of individual strains varied

between 0.0006 % and 2.53 %, with a median fraction of 0.1 % for all strains. Based on

this broad distribution, isolation of every mutant from the pooled library was improba-

149



Chapter 5

Figure 5.2: The figure caption is on the next page.
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Figure 5.2: A competitive fitness assay identifies temperature-sensitive strains.
(a) Scheme showing the experimental approach of the competitive fitness assay. (b) A
chart showing the optical density (at 600 nm) of the pooled strain library in the com-
petitive fitness assay at two different temperatures (n = 2). (c) Bar plot showing the
maximum growth rate of wild type E. coli BW25113 at 30 °C and 42 °C. (d) Charts show-
ing the normalized read counts of strains from three different clusters (also see Fig. 1.e)
during the competitive fitness assay at 42 °C. Lines were calculated by a smoothing al-
gorithm. (e) Charts showing the normalized read counts over the time course of the
competitive fitness assay for five selected example strains at 30 °C and 42 °C. Squares
indicate replicate 1, circles replicate 2. Lines are calculated by a smoothing algorithm.
(f) Same as in (e). A series of cut-offs is displayed that was used to identify temperature-
sensitive strains. e is an error measure and the relative difference between two replicates.
AUC30°C is the area under the curve for the data of a single strain at 30 °C. a30 °C and
a42 °C are the normalized read counts of a strain at the indicated temperatures and at the
end of the fitness assay. f(a) is a custom function with a42 °C as input (also see section
M.7). (g) Same as (d). Lines in light grey show strains at 30 °C, lines in dark grey strains
at 42 °C. The blue line is the mean over all strains at 30 °C, the red line the mean over all
strains at 42 °C. Shades indicate the respective standard deviations. (h) Bar plot showing
the number of strains from clusters with different fitness and their respective number of
temperature-sensitive strains. (i) Same as (e). The protein structure of DnaE is shown,
and the location of the mutant residue highlighted.

ble. We chose to screen 2016 isolates in 96-well liquid cultures for growth phenotypes.

We then Sanger-sequenced 456 strains that showed temperature-sensitivity and, finally,

yielded 92 unique temperature-sensitive mutants each covering a different gene.

Next, we analyzed the growth of the mutants in minimal M9 medium at different

temperatures. All strains grew at 30 °C and had a growth rate that was lower at 42

°C than for a control strain without a mutation (Fig. 5.3.a and Suppl. Fig. 5.8). At

least 50 % of the mutants grew faster at 34 °C than at 30 °C but slower at 38 °C (Fig.

5.3.a). 8 strains had already strong growth defects at 34 °C, with growth rates below 0.1

1/h: argG(Leu114Pro), dfp(Leu347Asp), gapA(Val17Trp), glnA(Ile88Gln), leuA(Ile7Trp), ,

ligA(Val121Asp), panB(Leu42Gln), and panC(Ile263Trp).

For many strains, the growth rate would first increase with increasing temperature

before sharply decreasing. Similar behavior is commonly observed for enzyme activities

(Daniel and Danson, 2013). Thus, multiple growth rate models have been developed

before that assume that a single enzyme becomes the rate limiting step for growth while

increasing temperature (Sharpe and DeMichele, 1977; Zwietering et al., 1991). In our

temperature-sensitive mutants, it is very likely that the mutant proteins become indeed

the single point of failure or the rate limiting step in the cells. Thus, we fitted our growth
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Figure 5.3: The growth rates of 92 temperature-sensitive strains as functions of
temperature. (a) A dot plot showing the maximum growth rates of 92 temperature
sensitive strains and a control strain (green circles) without genomic edit at different
temperatures. (b) A chart showing the growth rate µ as a function of temperature T for
the strain dnaN (Val70Trp). The function was determined using a mathematical model
using three terms, which are given in the grey box. Dots in the chart indicate the mean
of measured growth rates (n = 3). Vertical black lines are the standard deviation. R2

is the coefficient of determination. Dotted black lines indicate the maximum growth
rate and the relative temperature (Tµ,max) as well as temperatures, at which 50 % of the
maximum growth rate was reached (T50,low and T50,high). (c) The same as (b) for all 93
strains except that only the fitted functions are shown. Blue indicates a low temperature,
at which the maximum growth rate was reached, yellow a high temperature. The red
line shows the control strain. (d) Dot plot showing temperature differences between
combinations of T50,low, T50,high, and Tµ,max for 42 strains, for which both, T50,low and
TT50,high, could be calculated.
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rate data to a model that assumes Arrhenius-like increase of the growth rate at low

temperatures and growth rate decreases at high temperatures as observed for enzyme

inactivation (Daniel and Danson, 2013) (Fig. 5.3.b). We observed a very good fit with our

data indicated by a median R2 of > 0.987.

Analyzing the sensitivity of the individual strains to changes in the temperature, we

noticed that the growth rate of some mutants decreased sharply within a few Kelvin

while other mutants had a much more gradual decrease (Fig. 5.3.c). To quantify this

effect, we determined the temperatures, at which the growth rate is maximal or 50 %

of the maximum growth rate (Tµ,max, T50,low, and T50,high). These values indicated how

sensitive the strains were to changes in temperature. In 51 cases, at least one of these

values could not be determined since 50 % of the growth rate was not reached at any

temperature. Yet, for the remaining 42 mutants, we observed that the T50,low was on me-

dian 5.9 K lower than the temperature at maximum growth rate (Fig. 5.3.d). The T50,high

was on median only 3.5 K above the Tµ,max. By this analysis, the three most sensitive

strains were purM(Ile305Trp), lpxD(Phe141Asp), and ppc(Val809Asp), and they each had

T50,high values that were < 1.5 K above the Tµ,max. The three most insensitive strains

were accC(VAL335GLN), frr(Val117Gln), metC(Met106Asp) with > 8 Kelvin difference

between Tµ,max and T50,high.

To conclude, having isolated 92 temperature-sensitive strains, we characterized the

growth of the strains at different temperatures. This analysis revealed that the strains

were temperature-sensitive at different degrees. In the extreme cases, strains would

grow at maximum growth rate and then, almost switch-like, stop growing after increas-

ing the temperature only by a few Kelvin. In contrast, other strains allowed a precise,

gradual control of growth by increasing the temperature in single Kelvin steps. Both

cases, sensitive or less sensitive switching, are equally useful for controlling metabolism

dynamically, depending of the application. Thus, we continued with all 92 temperature-

sensitive strains and investigated metabolic implications of the mutations.

3.4 Functional screening of 92 temperature-sensitive mutants by
metabolomics

To study the function of the mutations and the effects on metabolism, we performed

high-throughput metabolomics based on flow-injection mass spectrometry (Fuhrer et al.,

2011). We measured 325 metabolites in the 92 temperature-sensitive strains and a control

strain after prolonged incubation (16 h) in 96-well microtiter plates at 42 °C (n = 3).
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Out of the 92 mutant genes, 80 encode for enzymes that catalyze metabolic reactions

or directly use a metabolite to, for example, charge a tRNA. For reactions that are cat-

alyzed by temperature-sensitive enzymes, we expected that substrates of the reaction ac-

cumulate and products decrease at 42 °C. For example, LysA catalyzes the reaction from

meso-diaminopimelate to L-lysine. In the lysA(Leu280Asp) strain, we measured an in-

crease of the substrate and a decrease of the product (Fig. 5.4.a). Since the flow-injection

mass spectrometry method cannot resolve isomers, all figures are denoted without in-

formation about isomers. In the lysA case, the metabolic reaction is controlled by tem-

perature and can be turned off by increasing the temperature. Thus, the mutant protein

LysA(Leu280Asp) functions as a metabolic valve that can be tuned by temperature, simi-

lar to temperature-sensitive mutants of ArgG (Schramm et al., 2020). In 26 temperature-

sensitive strains, either the product or the substrate changed in a similar manner to

the lysA(Leu280Asp) strain (Fig. 5.4.b). This provided evidence that the temperature-

sensitivity of these 26 strains was indeed due to the mutations in the respective genes.

We then wondered about the remaining 65 temperature-sensitive strains. In some

cases, we were not able to measure the direct substrates or products of the relevant en-

zyme reaction. However, we could often detect metabolites that are in close proximity

to the putatively perturbed reaction and that are substrates in up- or downstream reac-

tions. In the aroC(Val339Pro) strain, for example, we measured an increase in shikimate

phosphate, which is the substrate in the reaction one step upstream from aroC in the

shikimate and aromatic amino acid synthesis pathway (Fig. 5.4.c). We also observed

that shikimate phosphate was increased in strains with mutations in the leucine syn-

thesis pathway. A possible explanation for this could be a regulatory crosstalk between

the leucine and aromatic amino acid synthesis. Shikimate phosphate was decreased in

strains with mutations in cysteine metabolism.

Another case, in which metabolites in close proximity to a perturbed reaction showed

the function of the temperature-sensitive strain, was gapA(Val17Trp). Dihydroxyacetone

phosphate (DHAP) accumulated in glycolysis instead of glyceraldehyde phosphate (Fig.

5.4.d), which is the substrate of GapA, and phosphoenolpyruvate (PEP), three reactions

downstream of GapA, decreased.

Another interesting cases, in which two synthesis pathways were perturbed simulta-

neously, were the temperature-sensitive mutants carA(Phe266Pro) and carB(Val322As).

First, we observed a decrease of orotate, downstream of the CarA and CarB catalyzed

reactions in the pyrimidine synthesis pathway. Second, we measured an increase of

acetyl-ornithine in the arginine synthesis pathway. The reaction product of CarA and
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Figure 5.4: The figure caption is on the next page.
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Figure 5.4: Functional analysis of 92 temperature-sensitive strains by
metabolomics. (a) Charts displaying flow-injection mass spectrometry raw data
in the mass over charge range relevant for diaminopimelate and lysine. Both metabo-
lites are reactants of the LysA catalyzed metabolic reaction. (b) Dot plot showing the
metabolomics data of 92 temperature sensitive strains and a control strain without
genomic edit. The data was normalized by multiple steps including a modified z-scoring
(based on median values, also see Methods part 5.10). Dots are the mean of three
replicates. Blue dots indicate strains with mutations in genes that encode for enzymes
that have the indicated metabolite as substrate or product. (c, d, e, and f) Same as (b).
The schematics show metabolic pathways of E. coli. Yellow circles are metabolites, for
which metabolomics data is given in one of the charts. Metabolic valves in blue were
confirmed by data in (b). Metabolic valves were confirmed by more complex metabolic
profiles, and according genes are shown as yellow circles in the charts.

CarB, carbamoyl phosphate, is not only used in the pyrimidine synthesis but also used

in a reaction in the in the arginine synthesis pathway (ArgF/ArgI catalzyed). Acetyl-

ornithine is upstream of this carbamoyl phosphate-using reaction. Thus, its increase

indicated that the carbamoyl phosphate using reaction in the arginine synthesis path-

way became a metabolic bottleneck, which lead to an accumulation of acetyl-ornithine.

The connection between pyrimidine and arginine synthesis by carbamoyl phosphate

already attracted attention in a metabolic engineering study, in which arginine overpro-

duction caused a carbamoyl phosphate shortage and, thus, a limitation in purine synthe-

sis (Sander, Wang, et al., 2019). Interestingly, in the purK(Ile213Asp), purC(Val188Asp),

and purE(Ile29Trp) strains from the purine synthesis pathway, we measured elevated

levels of acetyl-glutamate 5-semialdehyde (Fig. 5.4.e), which is also an intermediate in

the arginine synthesis. This data suggested also crosstalk between the purine and argi-

nine pathway.

In the temperature-sensitive strain panC(Ile263Trp), acetyl-CoA levels were decreased.

PanC is, likewise to Dfp and CoaD, involved in the coenzyme A synthesis (Fig. 5.4.f). Di-

rect substrate or product level changes showed already the function of the temperature-

sensitive mutants dfp(Leu347Asp) and coaD(Leu113Trp). However, in both, dfp(Leu347Asp)

and coaD(Leu113Trp), acetyl-CoA levels were also decreased like in panC(Ile263Trp).

This suggested that a limitation in coenzyme A synthesis causes decreased acetyl-CoA

levels and explained the panC(Ile263Trp) strain. Similar to the carA and carB mutants,

glyA(Met201Asp) and folA(Met92Pro) mutants caused a metabolic bottleneck in another

pathway. In these mutants, we detected three increased metabolites in the purine syn-

thesis pathway (AICAR, AIR, and SAICAR)(Fig. 5.4.e). The three metabolites are all up-
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stream of the PurH catalyzed reaction that requires a tetrahydrofolate as cofactor. Thus,

a perturbed tetrahydrofolate metabolism in the glyA and folA mutants could explain why

PurH became a metabolic bottleneck.

Notably, we also observed that specifically AIR accumulated strongly in the argG(Leu-

114Pro) strain (Fig. 5.4.f). Since the substrate of the ArgG reaction (citrulline) also accu-

mulated strongly in this strain, there was likely a metabolic bottleneck in the arginine

biosynthesis pathway. Such bottleneck usually triggers metabolic feedback regulation

in the arginine synthesis (Schramm et al., 2020; Sander, Wang, et al., 2019; Sander, Farke,

et al., 2019), and we expected that the argG mutant had increased expression of CarA

and CarB draining intracellular hydrogen carbonate levels. The reaction in the purine

synthesis pathway that uses AIR as substrate, which accumulated in the argG mutant,

requires hydrogen carbonate as cofactor. Thus, a depletion of hydrogen carbonate could

trigger a metabolic bottleneck in purine synthesis and explain the increased AIR level.

The Asd catalyzed reaction fuels the lysine, methionine, and isoleucine synthesis path-

ways. We measured low lysine levels in the asd(Ile110Asp) strain indicating that the

strain indeed had a metabolic bottleneck at the Asd reaction. During this analysis, we

also noticed that lysine levels were high in the argA(Met173Pro) strain. This was ex-

pected for a bottleneck in the arginine pathway since lysine and arginine are structurally

very similar and both interact each with the transcription factors of both pathways, ArgR

and ArgP (Lempp et al., 2019; Nguyen Le Minh et al., 2018).

Lastly, metabolomics revealed that mutants in the cysteine metabolism (cysB(Val171-

Gln), cysE(Val226Ala), and cysH (Val49Gln)) caused perturbations in the methionine and

threonine synthesis. We were not able to measure cysteine. However, these three strains

had decreased levels of reduced glutathione (Fig. 5.4.f), which is formed in two steps from

cysteine, indicating that cysteine synthesis was limited. Since cysteine is also required

in the methionine synthesis pathway, a cysteine limitation explains low levels of me-

thionine that we measured in the cysB(Val171Gln), cysE(Val226Ala), and cysH (Val49Gln)

strains. Since homoserine and threonine are isomers, we were not able to distinguish be-

tween them with our metabolomics approach. Still, the combined value of both metabo-

lites provided insights: increased levels of threonine/homoserine and phospho-homose-

rine indicated that a metabolite accumulation upstream of the reaction in the methionine

synthesis pathway that uses cysteine would redirect flux into the threonine pathway. In

the cysS(Val45Trp) strain, we expected high levels of cysteine levels that could explain

the elevated levels of sulfate that we measured in this strain (Fig. 5.4.f). Although the

cysD(Ile269Gln) strain had also low levels of reduced glutathione, we did not observe
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strong changes (mod. z-score > 3) in the methionine or threonine pathways.

Apart from the temperature-sensitive strains covering enzymes, 12 strains had muta-

tions in genes not encoding for enzymes and included: dnaE(Leu634Asp), dnaN (Val70Trp),

dnaX (Leu289Gln), frr(Val117Gln), ftsQ(Ile74Gln), ftsY (Ile457Gln), grpE(Val190Gln), gyrB-

(Phe514Trp), mreC(Val238Pro), rpoH (Phe60Pro), secA(Val71Pro), and ssb(Val104Pro). Most

of these strains had either no significant metabolic changes compared to a control strains

(modified z-score> 3 or< -3) or cryptic changes. Yet, one exception was the ssb(Val104Pro)

strain. In this strain, thymine, guanine, inosine, and guanosine levels were increased

(Suppl. Fig. 5.9). Since Ssb binds ssDNA and protects it from degradation (Shereda et

al., 2008), malfunction of the temperature-sensitive Ssb at 42 °C and subsequent degra-

dation of ssDNA explains the measured increase in the thymine, guanine, inosine, and

guanosine levels.

To conclude, out of 80 temperature-sensitive strains covering enzymes, we could con-

firm the function as a metabolic valve for 42 strains by metabolomics. The analysis

revealed that in many cases (26) the substrate or product levels of perturbed reactions

were directly affected. However, since not all metabolites were measurable, we relied

also on inferring the function as metabolic valve from very specific metabolic pattern.

By this analysis, we could confirm another 16 metabolic valves, and observed that many

metabolic valves can cause secondary metabolic bottlenecks in distal pathways. The

data indicated that (mis-)regulation of metabolism could be a major factor for this effect.

In case of the 12 temperature-sensitive strains that had mutations in genes not encoding

for enzymes, only ssb(Val104Pro) had a specific metabolic profile that allowed to draw a

connection to the function of SSb.

3.5 Temperature-sensitive mutants applied in metabolic
engineering

Out of 92 temperature-sensitive strains, 80 had mutations in genes encoding for en-

zymes. We already confirmed the function as metabolic valves for 42 of the 80 mutant

enzymes. A main characteristic of a metabolic valves is that, if it is closed, it introduces

a bottleneck into a metabolic pathway. Usually, this is accompanied by the accumu-

lation of the substrate of the perturbed enzyme reaction (Donati et al., 2021, 2018). If

the metabolic valve is essential, not only metabolite accumulation but also growth can

be controlled (Schramm et al., 2020; Harder et al., 2018; Cho et al., 2012) that enables

two-stage bioprocesses with optimized product yields. Thus, we selected a subset of
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our temperature-sensitive strains to test them in two-stage bioprocesses to overproduce

metabolites.

Based on our previous metabolomics results (Fig. 5.4), we selected lysA(Leu280Asp)

for the diaminopimelate production, argG(Leu114Pro) for the citrulline production, aroC-

(Val339Pro) for the shikimate phosphate production, and metA(Phe285Trp) and thrB(Phe267Asp)

for the homoserine/threonine production. Since homoserine is the substrate for the en-

zyme reactions of MetA and ThrB, we also included a strain that carried both temperature-

sensitive mutations metA(Phe285Trp) + thrB(Phe267Asp). Homoserine and threonine

were inseparable by LC-MS/MS, and, thus, we always reference both. After cultivat-

ing the strains at 30 °C, we started main cultures for 24 h of incubation at 42 °C. All

temperature-sensitive strains did not grew at 42 °C, except the aroC(Val339Pro) strain

that had a growth defect compared to a control strain without a mutation (Fig. 5.5.a).

Throughout the experiment, we took metabolite samples from the culture broth and

determined absolute metabolite concentrations by targeted LC-MS (Guder et al., 2017).

Isomers cannot be distinguished by this method such that metabolite labels are given

without indication of isomerism.

The aroC(Val339Pro) strain produced 103 µmol/L shikimate phosphate, whereas the

production rate was 28 µmol g−1
DW h−1 in the initial 6 h. The argG(Leu114Pro) strain

produced 186 µmol/L citrulline, and the production rate remained stable for 24 h at 301

µmol g−1
DW h−1 (Fig. 5.5.c). The lysA(Leu280Asp) strain accumulated diaminopimelate

(DAP) with a production rate of 31 µmol g−1
DW h−1 during the first 6 hours (Fig. 5.5.d).

Then, the production rate declined. The final concentration of DAP was 20 µmol/L af-

ter 24 h. The metA(Phe285Trp) strain produced 30 µmol/L homoserine/threonine in 24

h, and the thrB(Phe267Asp) strain 189 µmol/L. A strain with both mutation produced

254 µmol/L (Fig. 5.5.e). In all three homoserine/threonine production strains, the pro-

duction rates were stable over 24 h and were 48 µmol g−1
DW h−1, 270 µmol g−1

DW h−1,

and 477 µmol g−1
DW h−1 for metA(Phe285Trp), thrB(Phe267Asp), and metA(Phe285Trp)+

thrB(Phe267Asp), respectively.

These results showed that a wild type E. coli strain can be converted into an over-

production strain, whose growth can be controlled by temperature, by introduction of a

single amino acid substitution. However, the measured production rates varied greatly

between 28 and 477 µmol g−1
DW h−1. To have a point of reference for these values, we

used the iJO1366 genome scale model of E. coli (Orth et al., 2010) and calculated the the-

oretical metabolite flux in the amino acid synthesis pathways at exponential growth (0.6

h−1).
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Figure 5.5: Benchmarking temperature-sensitive strains in two-stage metabo-
lite overproduction experiments. (a) Chart showing the OD600 of six temperature-
sensitive strains (as described in the grey box) and a control strain without genomic edit
during shake flask cultivations at 42 °C over 24 h. Lines and dashed lines indicate repli-
cates. (b, c, d, e) Schemes showing parts of synthesis pathway in E. coli. The charts show
the metabolite concentrations in the whole culture broth of strains from (a) over the time
course of the cultivation. qgene,time is the biomass-specific production rate of a specific
strain in a time range from the start of the experiment up to the indicated hour. (f) Same
as (b-e). Growth data is given in Suppl. Fig. 5.10. The arginine strain is transcriptionally
and allosterically dysregulated in the arginine synthesis pathway and carries a plasmid
for overexpression of ArgO, an arginine exporter.
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The flux in the arginine synthesis pathway is estimated to be 172µmol g−1
DW h−1 during

exponential growth. In the argG(Leu114Pro) strain we measured rates almost double as

high during growth arrest (301 µmol g−1
DW h−1). These measured rates were similar to

production rates in an E. coli strain with deletion of argG and argR (Schramm et al.,

2020). ArgR is the transcription factor controlling expression of the arginine pathway

genes by arginine-mediated feedback regulation. Thus, we expected that expression of

arginine genes were increased in the argG(Leu114Pro) at 42 °C, which can explain the

measured production rates.

The shikimate phosphate production rate in the aroC(Val339Pro) strain was lower

than the theoretical flux in the aromatic amino acid pathway (222 µmol g−1
DW h−1). This

was expected because the strain was still growing at reduced rate at 42 °C implying that

AroC(Val339Pro) was partially active.

In case of the DAP production, we observed only 31 µmol g−1
DW h−1, which was around

7 times lower than the estimated flux in the lysine pathway at exponential growth (200

µmol g−1
DW h−1). In contrast to the argG strain, the lysA(Leu280Asp) strain stayed well

below its usual capacity at exponential growth, similarly to the aroC(Val339Pro) strain.

However, the lysA(Leu280Asp) did not grew unlike the aroC mutant. Thus, we did not

expect low production rate in the lysA(Leu280Asp) strain. However, there are two ma-

jor differences in comparison to the argG strain. First, DAP is also a substrate for pep-

tidoglycan synthesis. Second, the lysine synthesis pathway starts with a substrate (L-

aspartate 4-semialdehyde) that is also used in methionine, threonine, and subsequently

also isoleucine synthesis (Fig. 5.4.f). Thus, these synthesis pathways competing for the

same substrates could drain flux from the lysine synthesis pathway causing the lower-

than-expected production rates.

Just one enzyme reaction downstream of L-aspartate 4-semialdehyde, L-homoserine

is another branching-point, from which the L-threonine and isoleucine synthesis as well

as methionine synthesis pathways are fed (Fig. 5.4.f). MetA catalyzes the first step in

L-methionine synthesis, and ThrB the first step in L-threonine and isoleucine synthe-

sis. The theoretical flux in the L-methionine synthesis pathway is 90 µmol g−1
DW h−1,

and 317 µmol g−1
DW h−1 in the L-threonine and L-isoleucine pathways combined. Hav-

ing a bottleneck in either, ThrB or MetA, resulted in the overproduction of homoser-

ine/threonine. Yet, the production rates were lower than the theoretical ones. In a strain

with both mutations (metA(Phe285Trp) and thrB(Phe267Asp)), the production rate was

however higher than the theoretical rate (407 µmol g−1
DW h−1). This, again, indicated that

flux could be redirected at a metabolic branching point resulting in reduced production
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rates.

Apart from metabolic valves, we also tested a temperature-sensitive mutant of dnaX
in the overproduction of arginine and used it to control growth by temperature. The

production strain had an allosterically and transcriptionally dysregulated arginine syn-

thesis pathway (Sander, Wang, et al., 2019) and carried a plasmid expressing the arginine

exporter ArgO. Additionally, the strain carried the dnaX (Leu289Gln) mutation that we

identified in this study. At 42 °C, the strain did not grew (Suppl. Fig. 5.10) and accu-

mulated 478 µmol/L arginine during 24 h. The arginine production rate was 738 µmol

g−1
DW h−1 , which was around three times less than in a growing arginine overproduction

strain (Sander, Wang, et al., 2019). However, the biomass-specific arginine yield was, to

our knowledge, with a value of 14.2 mmol/gDW the highest reported so far. This showed

the strength of two-stage bioprocesses to improve production yields but also showed

that temperature-sensitive dnaX can be used to control growth of an overproduction

strain.

4 Discussion

In this study, we explored temperature-sensitivity as a tool for metabolic engineering.

Using a barcoded CRISPR-Cas9 genome editing method, we designed and created a

pooled strain library with 15,120 E. coli strains covering 346 essential genes. Subse-

quently, we investigated the fitness of the strains by a competitive fitness assay and

found that around 35.8 % of the strains had already a very low fitness at 30 °C, and 10.7

% a reduced fitness. Only 31.9 % of strains were unaffected by the mutations. In com-

parison, around 30 % to 40 % of spontaneous or induced mutations were lethal in yeast

(Eyre-Walker and Keightley, 2007; Wloch et al., 2001). This showed that the selection of

putatively temperature-sensitivity inducing mutations by the TSpred algorithm (Tan et

al., 2014; Varadarajan et al., 1996) resulted in similar fractions of strains with fitness de-

fects. An estimation of how well the prediction tool performed is difficult since reference

data is not present. However, future studies investigating temperature-sensitivity could

focus on site saturation mutation libraries to understand the underlying mechanisms

better and improve temperature-sensitivity prediction tools.

As next step, we extended the competitive fitness assay to 42 °C and identified 1,045

putatively temperature-sensitive strains covering 250 unique genes. Our data indicated

that strains that had already a mild fitness defect at 30 °C were most likely to be tem-

perature-sensitive (17.4 %). Strains with high or neutral fitness at 30 °C were in 14.5 %
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of the cases temperature-sensitive. Like in our study, in most other studies that screen

for temperature-sensitive strains, not all theoretically possible mutations of a gene were

tested. The main reason for this is that the number of possible mutations is usually too

large for testing. For example, the average bacterial protein has 320 amino acids (Tiessen

et al., 2012), which means that around 6,000 mutations are needed to be tested if only

single amino acid substitutions were considered. As a consequence, it is not known how

many of the single amino acid substitutions cause temperature-sensitivity for an average

protein.

For each of the 250 genes with temperature-sensitive strains, we chose one strain for

a new strain library, from which we isolated 92 strains. Characterization of the growth

rate-temperature relationship revealed that the individual temperature-sensitive strains

differed greatly between each other. The temperature, at which the strains grew with

maximum growth rate, spanned over at least 10 K between the strains. The strains also

showed different slopes, at which the growth rates decreased with temperature, that in-

dicated different degrees of temperature-sensitivity. For example, for some strains the

temperature with maximum growth rate and a temperature without growth were sepa-

rated by only less than 4 K, whereas other strains had greater temperature differences (>

8 K in extreme cases). On median, 3.5 K separated the temperature with the maximum

growth rate and a higher temperature with 50 % of the maximum growth rate. A gradual

control of growth by temperature-sensitivity has been reported before (Schramm et al.,

2020; Li et al., 2011; Chakshusmathi et al., 2004). Our observations on the temperature

dependency of the growth rate was very similar to the enzyme activity-temperature re-

lationship (Daniel and Danson, 2013). In metabolic engineering approaches, different

switching characteristics could be used to fine tune fluxes in the metabolic network and,

for examples, turn off competing pathways entirely but leaving other required path-

ways at reduced activity. Relying on different switching behaviors of the temperature-

sensitive mutants, it would also be possible to combine multiple mutations to establish

triple-stage bioprocesses with three distinct cultivation temperatures: an initial growth

stage is followed by a conditioning phase with reduced growth, in which the enzymes

for overproduction of a metabolite are overexpressed. In a third stage, growth is arrested

fully, and only the desired product metabolite formed.

By high-throughput metabolomics, we confirmed the function of 42 temperature-

sensitive enzymes as metabolic valves. 26 of the strains had either direct substrates

or products of the perturbed enzyme reaction accumulating or decreasing. In further 16

strains, the function as metabolic valve was inferred from complex metabolic profiles.
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The data showed that metabolic bottlenecks can cause secondary bottlenecks in distal

pathways. For example, perturbations in the folate metabolism caused a bottleneck in

purine synthesis. Another metabolic bottleneck in purine metabolism was observed in

the argG(Leu114Pro) strain that can be explained by a depletion of hydrogen carbonate

due to increased expression of CarAB. Perturbations in the cysteine synthesis suggested

a metabolic bottleneck in methionine synthesis, which is accompanied by flux redistri-

bution from the methionine pathway towards threonine synthesis.

Out of the 42 temperature-sensitive strains that function as metabolic valves, we se-

lected 5 different strains and constructed one strain with two temperature-sensitive mu-

tations for the overproduction of metabolites. Our results show the potential of the

metabolic valves as a tool for metabolic engineering to precisely control metabolic re-

actions by temperature and to establish two-stage bioprocesses with improved product

yields. However, not only the metabolic valves are useful for metabolic engineering:

the temperature-sensitive mutant dnaX (Leu289Gln) allowed us to construct an arginine

overproduction strain, whose growth can be controlled by temperature. In a two-stage

bioprocess, we produced arginine with unprecedentedly high biomass-specific yields.

Taken together, our study consolidates that temperature-sensitive mutants are a ver-

satile and powerful tool for metabolic engineering. Finding these mutants can how-

ever be tedious. With the here presented screening approach based on barcoded pooled

CRISPR-Cas9 genome engineering coupled to competitive fitness assays, we were able

to find 92 temperature-sensitive strains of E. coli that each carried a single amino acid

substitution in a unique, essential gene. These mutants are a valuable resource for future

systems biology and metabolic engineering attempts.

5 Material and Methods

5.1 Construction of plasmids

We adapted a CRISPR-Cas9 genome editing method that is called CREATE (Garst et al.,

2017) and cloned two plasmids (pTS040 and pTS041) by Gibson assembly that resemble

the function of CREATE. pTS040 had the p15A origin of replication and carried a chlo-

ramphenicol resistance gene, a cassette with the homology arm for recombination, and

the guide RNA of the CRISPR system under control of a constitutive promoter (PJ23119).

pTS041 had the pSC101 origin of replication and carried a kanamycin resistance gene,

a gene for the anhydrotetracycline(aTc)-sensitive repressor tetR, cas9 under control of
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the aTc controlled PLtetO1 promoter, the arabinose-sensitive repressor araC, and the Es-
cherichia virus Lambda genes red under control of the arabinose-controlled promoter

ParaBAD. pTS056 had a p15A origin of replication, an ampicillin resistance gene, a gene

for the anhydrotetracycline(aTc)-sensitive repressor tetR, and argO encoding for an argi-

nine exporter under the aTc controlled PLtetO1 promoter. pTS056 was based on a plasmid

from (Sander, Wang, et al., 2019). For cloning, Q5 High-fidelity DNA polymerase (New

England BioLabs Inc., NEB) and Gibson Assembly Master Mix (NEB) was used.

5.2 Design of the temperature sensitive E. coli library

As targets for editing, we chose all genes (352) in E. coli that are known to be essential

on M9 minimal medium supplemented with glucose (Goodall et al., 2018; Patrick et al.,

2007). Using the TSpred online tool (Tan et al., 2014; Varadarajan et al., 1996), we gath-

ered predictions for every target gene. It is predicted, which amino acid of a protein,

upon substitution by one of the five amino acids alanine, tryptophan, glutamine, aspar-

tate, or proline, is likely to introduce temperature-sensitivity. If possible, we used crystal

structures of the target proteins as input for the algorithm. Elsewise, we used amino

acid sequences. We preferred partial crystal structures over amino acid sequences. After

collecting all predictions, we then checked possible designs for the homology arms for

recombination.

In general, the quality of a protospacer for CRISPR-Cas9 genome editing is strongly

affected by the distance of the PAM to the target site (Garst et al., 2017) and its off-

targets. We considered every PAM within 30 bp distance for every predicted site and

checked if a silent PAM-mutation was available. In some cases, the PAM and the target

site overlapped such that not every amino acid substitution was available to disrupt the

PAM. Further, we used the Cas-OFFinder (Bae et al., 2014) to check for off-targets up to 4

mismatches. We also checked, whether the protospacers had a 11 PAM-proximal perfect

match to multiple PAMs, which is good practice for CRISPRi protospacer design (Rousset

et al., 2018). Based on these results, we then ranked each available design for every site

with a custom scoring system and chose 10 predicted sites for each gene that had the

highest-ranking designs. We excluded designs that did not reach a certain minimum

score such that some target genes yielded no or less than 10 available designs. The final

library contained 16,038 members covering 346 genes.

Similarly as reported by (Garst et al., 2017), the final oligonucleotides in the library

were in total 200 bp long and contained in the following order: a spacer sequence (‘TC-

CTCTGGCGGAAAGCC’), a homology sequence with the desired mutation and a silent
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PAM-mutation, another spacer (‘GATC’), the J23119 promoter (‘TTGACAGCTAGCTCAG-

TCCTAGGTATAATACTAGT’), a protospacer, and a part of the sgRNA-Cas9 handle (‘GTTT-

TAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAG’).

5.3 Cloning and recombination of the libraries

The oligonucleotide pools were manufactured by Twist Bioscience (South San Fran-

cisco, United States). The oligonucleotides were used as template for PCR amplifica-

tion (oligonucleotide concentration: 0.1 µM; 15 cycles). The PCR products of correct

size were purified by agarose gel electrophoresis. The purified linear DNA was used for

cloning of pTS040 by Gibson assembly (NEBuilder HiFi DNA Assembly Reaction, NEB)

and electroporation of E. coli MegaX DH10B T1R cells (Invitrogen, Thermo Fisher Sci-

entific Inc.). E. coli BW25113 carrying pTS041 was cultured in LB medium at 37 °C under

shaking of 220 rpm until exponential growth. Expression of the Lambda red genes was

induced with L-arabinose (7.5 g/L). After 30 min, the culture was harvested for electro-

poration with the pooled pTS041 plasmid library. Cells were recovered in SOC medium

with kanamycin and 1 µM aTc for Cas9 induction at 30 °C for 2 h and streaked out on

to LB agar plates with kanamycin, chloramphenicol, and 1 µM aTc. After incubation

overnight at 30 °C, colonies were pooled by flushing the agar plates with LB medium,

glycerol added (final concentration: 22 vol.-%), the OD was determined, and the strain

library stored as cryo stocks.

5.4 Cultivations

If not stated otherwise, minimal medium (M9) was used for the experiments and con-

tained 42.2 mM Na2HPO4, 11.3 mM (NH4)2SO4, 22 mM KH2PO4, 8.56 mM NaCl, 1 mM

MgSO4 x 7 H2O, 100 µM CaCl2 x 2 H2O, 60 µM FeCl3, 6.3 µM ZnSO4 x 7 H2O, 7 µM

CuCl2 x 2 H2O, 7.1 µM, MnSO4 x 2 H2O, 2.8 µM thiamine-HCL, and 7.6 µM CoCl2 x 6

H2O. Standardly, 5 g/L glucose was used as substrate. Minimal medium (M9) and LB

agar plates contained 1.5 % agar. 30 µg/L chloramphenicol, 50 µg/mL kanamycin, and

50 µg/mL spectinomycin were added to the media when required.

Competition experiment and sampling for amplicon sequencing

The ts plasmid library (before electroporation of E. coli BW25113//pTS041) was used as

a sample for amplicon sequencing ("sample before recombination"). Plasmids were ex-

tracted from the cryo stock of the ts strain library (E. coli BW25113//pTS041//pTS040(ts-
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library), "sample after recombination"). 75 mL M9 medium was inoculated with 200 µL

of the ts strain library from cryo stock and incubated in a 500 mL shake flask for 15 h at

30 °C under shaking of 220 rpm. 10 mL of the exponentially growing culture were used

for plasmid extraction ("sample time point zero"). 300 mL of M9 medium was inoculated

with the previous culture to a start OD of 0.1. The 300 mL culture was split up to each

150 mL for cultivation in 1 L-shake flasks at 30 °C and 42 °C under shaking of 220 rpm.

Every 3 h, the 150 mL cultures were back diluted to an OD of 0.1. Every 2 h, a sample

for plasmid extraction was taken (sample volume x OD ≥ 5).

96-well cultivation and sampling for metabolomics by flow-injection mass
spectrometry

500 µL of LB in 2-mL deep well plates (96-well) were inoculated from cryo stock, covered

with Breathe-Easy (Diversified Biotech BEM-1) adhesive membrane, and incubated for

6 h at 30 °C under shaking at 220 rpm. 495 µL M9 (5 g/L glucose) were inoculated with 5

µL of the LB precultures and incubated for 24 h at 30 °C in 2 mL deep-well plates, under

shaking of 220 rpm. 100 µL M9 precultures were transferred to 900 µL of fresh M9 + 5

g/L glucose in 2 mL deep-well plates and incubated for 16 h at 42 °C, under shaking of

220 rpm. 850 µL of the liquid culture was centrifuged in 2 mL deep-well plates for 15

min at 4,000 rpm at 4 °C. The supernatant was removed and the cell pellets stored at -80

°C. 100 µL of -20 °C-cold 40:40:20 acetonitrile:methanol:water was added to the frozen

cell pellets and incubated for 4 h at -20 °C. The plate was vortexed and 80 µL of the cell

extract transferred to v-bottomed 96-well storage plates. The cell extracts were stored

at -80 °C until further analysis by flow-injection mass spectrometry.

5.5 Plate reader cultivations

500 µL of LB in 2-mL deep well plates (96-well) were inoculated from cryo stock, covered

with Breathe-Easy (Diversified Biotech BEM-1) adhesive membrane, and incubated for

6 h at 30 °C under shaking at 220 rpm. 500 µL M9 (5 g/L glucose) were inoculated with

1 µL of the LB precultures and incubated overnight at 30 °C in 2 mL deep-well plates

under shaking of 220 rpm. 297 µL of M9 (5 g/L glucose) were inoculated with 3 µL of the

overnight cultures in 96-well Greiner plates (flat-bottomed). 150 µL were transferred to

a second 96-well Greiner plate. Each plate was incubated at each two different temper-

atures. Biotek Epoch 2 or TECAN Synergy plate readers were used for incubation and

measurements of OD at 600 nm every 10 min. Maximum growth rates were calculated
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in exponential growth phases if applicable.

5.6 Two-stage production of metabolites and sampling for
LC-MS/MS

5 mL LB cultures were started from cryo stock. After ca. 6 h at 30 °C, 5 mL M9 + 5 g/L

glucose overnight cultures were started using 25 µL of the LB culture for inoculation.

Overnight M9 cultures were washed: cultures were pelletized by centrifugated at 4,000

rpm and 40 °C. After removing the supernatant, fresh 5 mL of M9 glucose medium was

added for resuspending cells. This step was repeated further 2 times. Final 15 mL cultures

were started in 100 mL shaking flasks at an OD of 0.5 and incubated for 24 h under

shaking of 220 rpm and 42 °C. At the start of the cultivation and after 2 h, 4 h, 6 h, and

24 h incubation, the OD600 was measured and samples for LC-MS/MS taken: 100 µL of

the culture broth transferred to 400 µL -20 °C cold 50:50 acetonitrile:methanol in 1.5 mL

reaction tubes. The samples were stored at -80 °C until further processing. The samples

were centrifugated for 15 min at 17,000 g and -9 °C. Metabolite concentrations in the

supernatant were analyzed by LC-MS/MS.

5.7 Sample processing for NGS

Using 3 ng total plasmid DNA, a plasmid part covering the homology sequences and pro-

tospacers was amplified (15 cycles) using two primers suited for further indexing PCRs

(forward: ‘TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTATCACGAGGCAGATCCTCTG’, reverse: ‘GTCTCGTG-

GGCTCGGAGATGTGTATAAGAGACAGACTCGGTGCCACTTTTTCAAGTT’). Amplicons were purified by AM-

Pure XP PCR beads (Beckman Coulter, # A63881). Using standard Illumina indexing

primers, amplicons were indexed in a second PCR and again purified by bead-clean

up. Amplicons were pooled and sequenced on an Illumina NextSeq500 (paired-end,

NextSeqTM 500 Mid Output Kit v2.5, # 20024908, 300 cycles). Two cartridges were re-

quired to yield the desired sequencing depth of around 4 million reads per sample.

5.8 NGS data analysis

Demultiplexed paired-end reads were aligned, merged (based on overlapping sequences),

and trimmed to the region of interest using a custom Matlab script. The resulting pro-

cessed reads were mapped against the designed sequences of the library. For each li-

brary member, the number of matching reads was counted. Only reads that shared a
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100 % identity with a designed sequence were counted since mutations could indicate a

malfunction of the CRISPR-Cas9 genome editing system with no genomic edit. For each

sample, the library member counts were normalized to the total number of reads of the

sample. The samples of a replicate were further normalized to the first sample of the

replicate. Using the normalized data for the ts library, the area under the curve (AUC)

was determined for the 30 °C and 42 °C time series of each library member. For each

library member of the CRISPR library i, an error e was estimated using the normalized

read counts n̄ for each replicate (A and B) and time point t normalized to the mean

normalized read counts:

ei =
∑
t

|n̄i,A,t,30°C − n̄i,B,t,30°C |
n̄i,A,t,30°C+n̄i,B,t,30°C

2

+
|n̄i,A,t,42°C − n̄i,A,t,42°C |

n̄i,A,t,42°C+n̄i,B,t,42°C

2

(5.1)

5.9 Selecting temperature-sensitive candidate strains from the
CRISPR library

Only strains were considered that met following criteria:

• They had at least 15 reads at time point zero (r̄t=0h).

• The mean normalized read count of the last sample at 30 °C (n̄i,t=12h,30°C) was

greater than 0.3.

• The mean normalized read count of the last sample at 42 °C (n̄i,t=12h,42°C) was lower

than 0.4.

• The error ei was lower than 15.

• The area under the curve for the 30 °C time series (AUCi,30°C) was greater than 5.

• The mean normalized read count of the last samples for the different temperatures

fulfilled following criterion:

n̄i,t=12h,30°C >
1

1 + ( 0.25
n̄i,t,12h,42°C

)
+ 0.3 (5.2)

For each gene, the candidates were sorted by the number of reads at time point zero

r̄t=0h, the relative area under the curve difference , the difference between the normal-

ized read counts at 30 °C and 42 °C at the last time point diffAUC = AUC30°C−AUC42°C
AUC42°C

(difft=12h), and the error e. Based on placement in the sortings (rank), a score was

calculated for each candidate i:

169



Chapter 5

scorei = ranki,n̄t=0h
·1.25+ ranki,diffAUC

·2+ ranki,difft=12h
·1.5+ ranki,e ·0.75 (5.3)

The candidates for each gene with the lowest score were selected for a new (sub-

)library.

5.10 Metabolomics

Flow-injection mass spectrometry (FI-MS)

An Agilent 6546 QTOF mass spectrometer (Agilent Technologies, Santa Clara, USA) was

used to analyze metabolite levels in the cell extracts. The source parameters were: source

gas 225 °C, flow rate of the drying gas 11 L/min, nebulizer pressure 20 psi, sheath gas

temperature 350 °C, sheath gas flow 10 L/min, nozzle voltage. Spectra in a 50-1100 m/z

range were acquired in 10 Ghz mode with an acquisition rate of 1.4 spectrum/s. The

mobile phase was 10 mM (NH4)CO3, 0.04 % NH4OH, 60:40 Isopropanol:H2O. The ref-

erence masses for online mass calibration in negative mode were 59.050 Da (C3H8O,

Isopropanol) and 1033.988 Da (C18H18F24N3O6P3, HP-921); in positive mode, 121.050 Da

(C5H4N4, Purine) and 922.009 Da (C18H18F24N3O6P3, HP-921).

FI-MS data analysis

Raw data files were converted into ".mzXML" files by MSConvert (Chambers et al., 2012).

Following data analysis was performed by custom MATLAB scripts that utilized MAT-

LAB functions (The MathWorks, Inc., Massachusetts, USA). The 10 spectra with the

highest signal in the TIC were summed, the resulting spectra were resampled ("msre-

sample"). Peaks with a minimum peak height of 1000 units and a peak peak prominence

of 500 units were selected ("findpeaks"). Peaks were annotated with a 3 mDa tolerance

by matching monoisotopic masses of metabolites with a single proton loss for negative

mode and single proton gain in positive mode. Double annotations (positive and nega-

tive mode) were manually cured based on peak shape and height. For each metabolite,

the maximum height of the annotated peak was taken for further analysis. The data

was then normalized to the control strain and converted into log-2 space. Subsequently,

modified z-scores were calculated as following:

mod.z − core =
0.6745 · (xi −median(x))

median(abs(x−median(x)))
(5.4)
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Targeted metabolomics by LC-MS/MS

Whole culture broth samples were analyzed by an isotope-ratio based LC-MS/MS method

(Guder et al., 2017). Changes to the LC parameters were made to reduce exposure of the

ESI to inorganic salts from the samples: in the initial 0.3 min, the analyte was discarded

into the waste. Between 0.3 and 2.0 min the analyte was injected to the ESI. 2.0 to 2.3

min the analyte was discarded into the waste again. An internal, fully 13C-labelled stan-

dard was calibrated with authentic 12C-metabolite standards. Based on the calibrated
13C-standard and isotope ratios, absolute metabolite concentrations in the samples were

calculated. Homoserine and threonine could not be distinguished. We used an authentic

homoserine standard to calculate absolute concentrations.
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6 Supplementary figures

Suppl. Fig. 5.6: Cloning and recombineering by an adapted CRISPR-Cas9
genome editing method. A oligonucleotide pool was used to clone a pooled plas-
mid library. The plasmid library was used in a pooled recombination step to introduce
specific mutations into an E. coli genome.

Suppl. Fig. 5.7: Reproducible construction of a pooled strain library. The chart
shows the read counts of each strain in the library in two different cloning batches with
each two technical replicates.

172



Chapter 5

Suppl. Fig. 5.8: The maximum growth rates of 92 temperature-sensitive strains
at different temperatures. The bar plot shows the mean maximum growth rates of in-
dicated strains at 30 °C (blue), 34 °C (yellow), 38 °C (orange), 42 °C(red) during cultivation
for 24 h in 96-well microtiter plates. Black vertical lines indicate the standard deviations
(n = 3).
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Suppl. Fig. 5.9: Metabolomics data of the temperature-sensitive strain
ssb(Val104Pro). The modified z-score was calculated as given in M.8.2 and is shown
on the y-axis of the chart. The x-axis shows the different measured metabolites. Yellow
indicate some of metabolites that had a z-score > 3. Dots are the mean of three repli-
cates.

Suppl. Fig. 5.10: OD600-time course of a temperature-sensitive arginine overpro-
duction strain. Lines and dashed lines indicate replicates.
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Chapter 6

Abstract

The targeted increase of cellular adenosine triphosphate (ATP) turnover (enforced

ATP wasting) has recently been recognized as a promising tool for metabolic engi-

neering when product synthesis is coupled with net ATP formation. The goal of the

present study is to further examine and to further develop the concept of enforced

ATP wasting and to broaden its scope for potential applications. In particular, con-

sidering the fermentation products synthesized by Escherichia coli under anaerobic

conditions as a proxy for target chemical(s), i) a new genetic module for dynamic

and gradual induction of the F1-part of the ATPase is developed and it is found that

ii) induction of the ATPase leads to higher metabolic activity and increased product

formation in E. coli under anaerobic conditions, and that iii) ATP wasting signifi-

cantly increases substrate uptake and productivity of growth-arrested cells, which

is vital for its use in two-stage processes. To the best of the authors’ knowledge, the

glucose uptake rate of 6.49 mmol g−1
CDW h−1 achieved with enforced ATP wasting

is the highest value reported for nongrowing E. coli cells. In summary, this study

shows that enforced ATP wasting can be used to improve yield and titer (in growth-

coupled processes) as well as volumetric productivity (in two-stage processes) de-

pending on which of the performance measures is more crucial for the process and

product of interest.
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1 Introduction

The development of bio-based production processes for fuels, commodity chemicals, and

high-value products plays a pivotal role in making the chemical industry more sustain-

able and environmentally friendly (Liao et al., 2016; Becker and Wittmann, 2015; Lee et

al., 2019). To be economically competitive with conventional fossil-based manufacturing

and to justify industrial applications, these processes need to be optimized in terms of

the three key performance measures: yield, titer, and (volumetric) productivity (Liao et

al., 2016; Cho et al., 2015). Metabolic engineering of the microbial production organisms

is one of the main approaches to improve these parameters (Keasling, 2010).

Manipulating the adenosine triphosphate (ATP) pool has been a major target for en-

hancing the performance of production organisms (Hädicke and Klamt, 2015; Singh et

al., 2011; Hädicke et al., 2015; Bj et al., 2002; Liu et al., 2016; de Kok et al., 2012; Koebmann

et al., 2002). For pathways with ATP limitations, increasing the pool of available ATP

may improve the production of desired compounds, e.g., of succinic acid (Singh et al.,

2011; Liu et al., 2016) or of recombinant proteins (Kim et al., 2012). A contrary strategy

for metabolic engineering has been proposed more recently based on enforced ATP con-

sumption (or enforced ATP wasting) (Hädicke et al., 2015; Liu et al., 2016; Semkiv et al.,

2016; Jensen et al., 2003). The main idea behind this approach is as follows: if product

synthesis is coupled to net ATP synthesis, an increased ATP drain should—not only for

thermodynamic reasons, but also due to evolutionary pressure-lead to an increased flux

along the product pathway. Enforced ATP hydrolysis has been implemented either by

the introduction of short futile cycles (Hädicke et al., 2015; Semkiv et al., 2016; Patnaik et

al., 1992) or by a more "direct" approach via expressing ATP-hydrolyzing enzymes such

as the (uncoupled) cytosolic F1-subunit of the ATPase from Escherichia coli (Liu et al.,

2016; de Kok et al., 2012; Koebmann et al., 2002). Early studies (Koebmann et al., 2002;

Holm et al., 2010; Chao and Liao, 1994) focused mainly on the physiological response of

the cells upon exposure to elevated ATP drain and did not aim to increase the synthesis

of certain products (Table 6.1). In these works, the authors consistently found that the

substrate uptake rates in E. coli increased with elevated ATP consumption, indicating

the potential of ATP wasting to improve the properties of microbial cell factories. Koeb-

mann et al. (Koebmann et al., 2002) already envisioned the application of ATP wasting

for metabolic engineering purposes; however, only very recently, first concrete applica-

tion examples have been published targeting lactate synthesis in E. coli, (Hädicke et al.,

2015) acetoin synthesis in Lactococcus lactis (Liu et al., 2016), and ethanol production in
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Saccharomyces cerevisiae (Semkiv et al., 2016) (Table 6.1).

In general, using enforced ATP wasting as a tool for metabolic engineering requires

that synthesis of the desired product is coupled with net ATP synthesis, ideally in an

obligatory manner where the pathway from substrate to product is the only pathway

that leads to net ATP production. In the case of anaerobic ethanol production with

yeast, (Semkiv et al., 2016) this is naturally the case. For lactate production with E. coli
and acetoin production with L. lactis, alternative (fermentation) pathways for ATP syn-

thesis have to be blocked by knocking out certain metabolic genes. Note that, to obtain

coupling, ATP synthesis need not necessarily be achieved along the pathway from a pre-

cursor to the product. For example, the pathway form pyruvate to lactate does not lead

to the production of ATP; however, ATP synthesis from glucose via glycolysis under

anaerobic conditions essentially requires the lactate pathway for balancing redox and

replenishing NAD if all alternative pathways have been blocked.

In the above-cited works, (Hädicke et al., 2015; Liu et al., 2016; Semkiv et al., 2016) it

could be shown that in strains where ATP synthesis is coupled with product synthesis,

a higher ATP demand imposed by a futile cycle or an uncoupled ATPase forces the cells

to generate more ATP, leading to higher (specific) productivities, substrate uptake rates,

and product yields accompanied with decreased growth rate and biomass yield. Based

on the results of these proofs of principle, we here aim to further develop and broaden

the scope of ATP wasting as a tool for metabolic engineering. One major aspect studied

herein concerns the fact that due to the reduced formation of biomass (the catalyst of the

bioconversion), the volumetric productivity (amount of product per time and volume)

will likely decrease compared to the strain without ATP wasting (Hädicke and Klamt,

2015).

One approach to overcome such inherent trade-offs between high product yield and

high volumetric productivity is to use two-stage fermentation (TSF) (Burg et al., 2016;

Venayak et al., 2015; Klamt et al., 2018) with decoupled growth and production phase in

contrast to one-stage fermentation (OSF) with growthcoupled product synthesis as used

in the aforementioned studies. In a recent theoretical study where the productivities

of OSF and TSF processes were systematically compared (Klamt et al., 2018), we found

that enforced ATP wasting in the second (production) phase can significantly increase

the productivity and thus the competitiveness of TSFs as it keeps a high driving force

for substrate uptake also in the production phase where cell growth (usually consuming

a large fraction of the substrate taken up) is missing (Harder et al., 2018; Chubukov

and Sauer, 2014). Accordingly, we here want to give experimental evidence that ATP
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Table 6.1: Aspects investigated in this study and other published papers on enforced
ATP wasting.

Chao and
Liao, 1994

Koebmann
et al., 2002

Holm et al.,
2010

Hädicke et al.,
2015

Liu et al., 2016 Semkiv et al.,
2016

This study

Direct ATP wasting via F1-
ATPase

No (futile
cylce)

Yes Yes No (futile
cylce)

Yes No (futile
cylce)

Yes

Inducible ATPase No No No No No No Yes

Organism E. coli E. coli E. coli E. coli L. lactis S. cerevisiae E. coli

Anaerobic conditions No No No Yes No Yes Yes

Use of ATP wasting for
growth-coupled product
synthesis

No No No Yes (lactate) Yes (acetion) Yes (ethanol) Yes (fermentation
products)

Use of ATP wasting for
growth-decoupled product
synthesis

No No No No No No Yes (fermentation
products)

wasting can serve as a tool to elevate substrate uptake and product synthesis rates in

growth-arrested cells.

A second important goal of this study is to test the use of an inducible ATPase as

an ATP wasting mechanism under anaerobic conditions, the preferred operation mode

for industrial applications. So far there is only one study examining ATP wasting un-

der anaerobic conditions in E. coli (Hädicke et al., 2015) (see also Table 6.1). This study

used the pyruvate kinase/phosphoenolpyruvate synthase futile cycle, which is an indi-

rect way to waste ATP and could have undesired side effects. In this study, we therefore

intended to use the ATP-hydrolyzing F1-subunit of the E. coli ATPase as a direct mecha-

nism for enforced ATP wasting. This method was described earlier for use in E. coli and

L. lactis, (Liu et al., 2016; Koebmann et al., 2002) however, only under aerobic cultivation

conditions. In addition, in these studies, the ATPase was set under the control of a con-

stitutive promoter. If a TSF or multistage fermentation process is meant to be applied,

one needs dynamic control over the relevant reactions for the synthesis of the product

(Venayak et al., 2015, 2018). Therefore, we put the ATPase encoding genes atpAGD under

the control of a promoter inducible by m-toluate (Balzer et al., 2013).

As an application example to analyze the effect of ATP wasting with an inducible

ATPase under anaerobic conditions in both growth-coupled (OSF) as well as growth-

decoupled (for TSF) mode, we chose the E. coli wild-type strain MG1655 and considered

the standard fermentation byproducts (ethanol, formate, acetate, lactate, and succinate)

as proxies for product synthesis since formation of these metabolites is naturally coupled

to ATP synthesis under anaerobic conditions (Clark, 1989). ATP wasting was induced

in growth-coupled fermentation conditions (OSF) and in conditions where growth was

arrested by the lack of a nitrogen source in the medium. We found that in growth-
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coupled conditions, yield, titer, as well as specific productivity can be improved by ATP

wasting, while volumetric productivity decreased due to a lower growth rate. In the

growth-decoupled production phase, however, even volumetric productivity could be

more than doubled by ATP wasting as high glucose uptake rates could be maintained

during stationary phase. Our results demonstrate that ATP wasting is a promising gen-

eral approach for metabolic engineering, as it can be used to adjust both factors of the

trade-off of optimizing yield/titer or productivity, depending on which of the parameters

is more crucial for the process and product of interest.
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2 Experimental Section

2.1 Strain and Plasmid Construction

The strains, plasmids, and primers used in this study are listed in Table 6.2. The stan-

dard molecular cloning techniques followed the protocols described earlier (Sambrook

and Russell, 2001). Polymerase chain reactions (PCRs) were performed using the Q5

Hot Start High-Fidelity DNA Polymerase (New England Biolabs) according to the man-

ufacturer’s protocol. For construction of pSB38.2, the kanamycin resistance cassette

was cut out from pSB-M1g-1- 17 with restriction enzyme PstI (New England Biolabs)

and substituted with the PstI-digested ampicillin resistance cassette created by PCR-

amplification from pKD3 with the primer pair Amp_PstI_fw/Amp_PstI_rv (Table 6.2).

For the construction of the ATPase expression plasmid pSB44.1, genes encoding the

ATPase F1-subunit were amplified by PCR from pCP41::atpAGD with primer pair at-

pAGD_mono_fw/atpAGD_mono_rv (Table 6.2). gfpmut3 was cut out from plasmid pSB38.2

with restriction enzymes NdeI (New England Biolabs) and BamHI (New England Biolabs)

and substituted with the NdeI/BamHIdigested atpAGD PCR product. For construction

of the control vector pSB43.1, the 5’-overhangs of the NdeI/BamHI-digested plasmid

pSB38.2 were filled-in using the Klenow Fragment (Thermo Scientific) and the blunt-

ended DNA fragment was self-ligated. pSB43.1 and pSB44.1 were transformed into the

E. coli wild-type strain MG1655, generating the control strain and the ATPase strain,

respectively (Table 6.2).

2.2 Media and Cultivation Conditions

When needed, 100µg mL−1 of ampicillin was added to cultures. For growth assays, 3 mL

of LB0 medium (5 g L−1 yeast extract, 10 g −1 tryptone, 5 g −1 NaCl) was inoculated with

the corresponding strain at 37°C and 150 rpm for 5 h. 100µL of the LB0 culture was

used to inoculate 50 mL of minimal medium (MM) adapted from Tanaka et al. (Tanaka

et al., 1967) with the pH adjusted to 7.0 and 0.4% of glucose added as the sole carbon

source. The expression of ATPase was induced with 0.1 mM (for growth-coupled pro-

duction) or 0.5 mM (for growth-decoupled production) of m-toluate, and the medium

was incubated without shaking at 37°C overnight. For growth-coupled production, cells

from the overnight culture were washed and used to inoculate fresh MM (with 0.1 mM

of m-toluate) to an optical density at 420 nm (OD420) of 0.2. The medium was filled into

5mL screw-cap glass vials (completely filled to the top), and the vials were incubated at
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Table 6.2: Strains, plasmids, and primers used in this study.
Strain or plasmid Relevant characteristics Source

E. coli NEB 5-alpha Competent cells for heat shock transformation New England Biolabs
E. coli MG1655 E. coli wild type Blattner et al., 1997
Control strain E. coli MG1655 transformed with pSB43.1 This study
ATPase strain E. coli MG1655 transformed with pSB44.1 This study
pCP42::atpAGD atpAGD under control of CP41-lacLM promoter, Ermr Koebmann et al., 2002
pSB-M1g-1-17 m-Toluate inducible xylS/Pm promoter (variant ML1-17), gfpmut3, Kanr Balzer et al., 2013
pKD3 Donor for Ampr -casette, Ampr Datsenko and Wanner, 2000
pSB38.2 pSB-M1g-1-17 derivative, kanamycin resistance cassette switched to ampicillin resistance cassette, Ampr This study
pSB43.1 pSB38.2 without gfpmut3 reporter gene (empty control plasmid), Ampr This study
pSB44.1 pSB43.1 with atpAGD gene (ATPase plasmid), Ampr This study

Primer Sequence (5’→3’)

Amp_PstI_fw CGTACTGCAGAATGTGCGCGGAACCCCTATTTG
Amp_PstI_rv CGTACTGCAGCGTACTATCAACAGGTTGAAC
atpAGD_mono_fw CATGAACATATGCAACTGAATTCCACCGAAATC
atpAGD_mono_rv CTAGAGGATCCTTAAAGTTTTTTGGCTTTTTCC

37°C without shaking. For every time point, new vials were opened to guarantee anaero-

bic conditions. For growth-decoupled production, cultivation conditions were the same

as described above, but MM without (NH4)2SO4 as a nitrogen source was used. The

medium was inoculated with an OD420 of 2, and 0.5 mM of m-toluate was added for AT-

Pase expression. Cell growth was monitored measuring the OD420 and using a factor

of 0.22 to convert one OD420 unit to gram cell dry weight (gCDW ) L−1. All cultivations

were performed in biological triplicates.

2.3 Analytical Methods

Extracellular glucose and ethanol concentrations in the medium were measured using

the corresponding kits from Megazyme. Extracellular lactate, acetate, formate, and suc-

cinate were quantified by the high-performance liquid chromatography (HPLC) method

described by Harder et al. (Harder et al., 2016) and using a mix of the organic acids

as an external standard. Pyruvate, orotate, and fumarate were measured by the same

method but were not secreted in significant amounts by the strains. The ATPase activ-

ity of the cell lysate was measured using the ATPase Activity Assay Kit (Colorimetric)

from BioVision (# K417). Cells from 15 mL of medium (OD420 1.7–2.3) were harvested

by centrifugation, and the cell pellet was resuspended in the supplied buffer (175µL

buffer/OD420). The cells were disrupted by sonication, and the ATPase activity in the

lysate was measured according to the manufacturer’s protocol. ATPase activity was nor-

malized to the overall protein content of the lysate, which was measured by the method

described by Bradford (Bradford, 1976).

For determination of intracellular adenosine monophosphate (AMP), adenosine diphos-

phate (ADP), and ATP concentrations, cells (≈0.5 mg of biomass) were applied to filter
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disks (polyvinylidene difluoride, 0.45µm, 25 mm; Merck-Millipore), while a N2 flow was

used to keep the environment oxygen-free. The medium was removed by suction fil-

tration, and the filter disks were immediately transferred to 1 mL of a -20°C cold ace-

tonitrile/methanol/water (40:40:20) quenching solution. After incubation at -20°C for 30

min, the samples were shaken vigorously, and 500µL of the mixture was centrifuged at

13 000 rpm and -9°C for 15 min. Next, 400µL of the supernatant was kept at -80°C until

metabolite quantification by liquid chromatography-tandem mass spectrometry, which

was performed as previously described (Guder et al., 2017) using an Agilent 6495 triple

quadrupole mass spectrometer (Agilent Technologies). Absolute ATP, ADP, and AMP

concentrations were determined with 13-C internal standard and authentic standards

(Guder et al., 2017). The intracellular adenosine energy charge was calculated with the

formula ([ATP] + 0.5[ADP])/([ATP] + [ADP] + [AMP]).

For growth-coupled production, the growth, productivity, and glucose uptake rates

were calculated for the exponential growth phase, while the yield and titer were deter-

mined at the end of the cultivation. For growth-decoupled production, biomass concen-

tration was assumed to be constant and the average of the measured biomass concen-

trations during the cultivation was used for calculating productivity and glucose uptake

rate.
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3 Results

3.1 Construction of an Inducible ATP-Wasting Mechanism for
E. coli

In order to have a dynamic and gradual control over the expression of the ATP wasting

machinery, the genes encoding the F1-part (consisting of the α-, γ-, and β-subunits) of

the ATPase from E. coli (atpAGD) were cloned into the XylS/Pm expression system, in-

ducible by the addition of m-toluate (Balzer et al., 2013). Herein, we used higher inducer

concentrations for the growthdecoupled than for the growth-coupled batch process to

obtain the highest ATPase expression under starvation.

3.2 Effect of ATP Wasting on Growth-Coupled Product
Formation

The effect of ATPase overexpression was first tested during growth-coupled production

of fermentation products (OSF) under anaerobic conditions. Plasmids pSB43.1 (empty

vector) and pSB44.1 (ATPase expression vector) were transformed into E. coli MG1655;

in the following, these two strains are referred to as control strain and ATPase strain,

respectively. Both strains were cultivated anaerobically, and as the formation of the main

fermentation products - ethanol, formate, acetate, lactate, and succinate - is naturally

coupled to ATP synthesis, they were used as proxies to evaluate the influence of ATP

wasting on product synthesis.

Overexpression of the ATPase increased the specific glucose uptake rate by 18.5% and

the specific productivity by 17.2% compared to the control strain (Table 6.3 and Figure

6.1C). Note that for a better comparability, the sum of all carbon atoms incorporated

in the five main fermentation products was considered to be the overall product. At the

same time, the yield and titer also increased by 6.8% and 8.7%, respectively (Figure 6.1E,F).

With a yield of 88% product C-atoms/glucose Catoms, the control strain is already close

to the theoretical maximum yield. With the help of ATP wasting, more than half of the

remaining 12% could be captured in the form of fermentative products.

In contrast, the expression of the ATPase decreased the growth rate, which dropped

from 0.40 h−1 (control strain) to 0.28 h−1 (ATPase strain) (Figure 6.1A and Table 6.3).

Similarly, although the specific productivity increased significantly, the volumetric pro-

ductivity of the ATPase strain decreased by 25.3% compared to the control strain during

exponential growth (Figure 6.1D). This is due to the lower growth rate and the associ-
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Table 6.3: Summary of performance parameters with and without ATP wasting under
growth-coupled and growth-decoupled production conditions.

Growth-coupled production Growth-decoupled production

Control strain ATPase strain Control strain ATPase strain

µ [h−1] 0.40± 0.01 0.28± 0.01 ≈ 0 ≈ 0
rGlucose [mmol gCDW−1 h−1] 11.68± 0.35 13.84± 0.51 2.82± 0.02 6.49± 0.19
qGlucose [mmol L−1 h−1] 1.97± 0.11 1.46± 0.04 1.29± 0.01 2.75± 0.08
rΣ C-atoms in products [mmol
gCDW−1 h−1]

66.31± 2.09 77.75± 2.52 15.37± 0.71 37.30± 2.49

qΣ C-atoms in products [mmol L−1

h−1]
11.19± 0.60 8.36± 0.33 7.02± 0.39 15.79± 0.99

Y Σ C-atoms in products/ glucose C-atoms

[mol mol−1]
0.88± 0.03 0.94± 0.02 0.92± 0.03 1.01± 0.08

ated decrease in biomass, which acts as the biocatalyst. At the beginning of the cultiva-

tion (the first ≈3.5 h), the higher specific productivity can compensate for the reduced

biomass formation since product concentrations are slightly higher in the ATPase strain

than in the control strain even though less biomass is present (Figures 6.1B and 6.2B). In

addition to the volumetric productivity, the volumetric glucose uptake rate of the ATPase

strain is also higher at the beginning of the cultivation (Figure 6.2A). However, when the

difference in biomass surpasses a certain value, the higher specific productivity cannot

make up for the reduced amount of biomass and only at the end of the cultivation, the

product concentration of the ATPase strain surpasses the control strain, leading to a

higher yield and titer.

3.3 Determination of ATPase Activity and Intracellular ATP
Concentration

To examine whether the observed effects on growth, productivity, and yield are due to

an increased ATPase activity in the cytosol and not a result of the burden to overexpress

three proteins (sum of molecular weights of the three ATPase subunits: 137.12 kDa), the

ATPase activity in the lysate of both strains was measured. With 21.5 mUmg−1 protein,

the ATPase activity was almost twice as high in the ATPase strain as in the control,

showing that the overexpression leads indeed to an increased ATPase activity in the

cytosol (Figure 6.3B).

Furthermore, the influence of the expressed ATPase on the intracellular concentra-

tions of AMP, ADP, and ATP was examined. Samples for intracellular metabolite quan-

tification were taken at the end of the exponential growth phase (after 7.3 h). The mea-
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Figure 6.1: Concentration profiles, productivities, yield, and titer of the control strain
(black) and the ATPase strain (red) under growth-coupled production conditions. A)
Biomass concentration (solid line) and glucose concentration (dashed line) during cul-
tivation, B) product (sum of carbon atoms incorporated in main fermentation products)
concentration during cultivation, C) specific glucose uptake rate and specific productiv-
ity, D) volumetric glucose uptake rate and volumetric productivity, E) yield, and F) titer.
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Figure 6.2: A,C) Volumetric glucose uptake rate and B,D) volumetric productivity (A,B)
during growth-coupled and (C,D) growth-decoupled production of the control strain
(black) and the ATPase strain (red).
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Figure 6.3: A) Intracellular concentrations of AMP, ADP, and ATP in control strain
(black) and ATPase strain (red). B) ATPase activity of cell lysate of control strain (black)
and ATPase strain (red).

surements revealed that the concentration of intracellular ATP in the ATPase strain

was 34.7% lower than in the control strain (Figure 6.3A). Likewise, the [ATP]/[ADP]

ratios also dropped in the ATPase strain (2.99± 0.28) compared to the control strain

(3.74± 1.09), while the adenosine energy charge decreased only slightly from 0.78± 0.04

(control strain) to 0.76± 0.02 (ATPase strain). The only mild reduction of the energy

charge is a consequence of the fact that the total adenosine pool [ATP] + [ADP] + [AMP]

in the ATPase strain was significantly smaller.

3.4 Effect of ATP Wasting on Growth-Decoupled Product
Formation

The issue of decelerated cell growth of the ATPase strain and the associated lower vol-

umetric productivity in an OSF batch process can be circumvented if growth and pro-

duction phases are decoupled in a two-stage fermentation (TSF). We therefore examined

the behavior and performance of the ATPase strain under growth-arrested conditions

(mimicking the second [production] phase of a TSF) by using production medium with-

out the addition of a nitrogen source. The medium was inoculated with a tenfold higher

cell density compared to the growth-coupled production conditions. Except for a small

biomass increase of the control strain at the beginning of the cultivation, the biomass

concentration stayed constant or decreased slightly throughout the 32-h cultivation pe-

riod (Figure 6.4A). ATP wasting under these conditions led to a peak glucose uptake

rate of 6.78± 0.28 mmol g−1
CDW h−1, which stayed in that range until all of the glucose

was consumed (Figures 6.2C and 6.4C). The control strain reached a peak value of only
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4.22± 0.60 mmol g−1
CDW h−1 at the beginning of the cultivation, which then continuously

decreased and went down to close to zero after 32 h, although one-fourth of the added

glucose was still present in the medium (Figures 6.2C and 6.4A). Considering the mean

values within the first 11.75 h of cultivation, the specific glucose uptake rate with ATP

wasting was more than twice as high (6.49± 0.19 mmol g−1
CDW h−1), than without wast-

ing (2.82± 0.02 mmol g−1
CDW h−1; Figure 6.4C). Consequently, the specific productivity of

the ATPase strain was more than 142% higher than of the control strain. Interestingly,

the productivity of lactate was especially upregulated and more than twelve times higher

(Figure 6.4C).

We hypothesize that under nitrogen starvation conditions, the lactate pathway (with a

yield of 2 mol ATP per mol glucose) may either have a higher saturation or/and it is pre-

ferred for redox balancing, as it requires only one enzymatic step from pyruvate opposed

to several enzyme steps needed for the ATP yieldoptimal pathway (2.5 mol ATP mol−1

glucose) with formation of formate, ethanol, and acetate. The slightly lower ATP yield

may pay off due to the reduction in enzyme synthesis costs, which are especially cru-

cial under nitrogen limitation. In contrast to the growth-coupled production conditions,

where a higher biomass concentration of the control strain led to a higher volumetric

productivity, biomass concentrations in growth-decoupled production conditions were

the same for both strains and stayed constant. Thus, the differences in specific glucose

uptake rate and specific productivity between the control and the ATPase strain could be

directly transferred to the volumetric uptake rate and volumetric productivity (Figures

6.2D, 6.4D).

The yield of the ATPase strain reached the maximum with 1.01± 0.08 product C-

atoms/glucose C-atoms. In theory, the control strain should also reach themaximal pos-

sible yield (Klamt et al., 2018) but stayed with 0.92± 0.03 product C-atoms/glucose C-

atoms somewhat below the maximum, which could be due to the increase of biomass

(and thus a flux of carbon to the biomass) at the beginning of the cultivation as men-

tioned above. Because not all of the added glucose was consumed by the control strain,

the product titer was 27.57% lower than in the ATPase strain (Figure 6.4B,F).

Using the experimentally determined exchange rates and a stoichiometric model of

the central metabolism of E. coli Hädicke and Klamt, 2017 and the software CellNetAn-

alyzer (Klamt et al., 2007; von Kamp et al., 2017), we estimated the nongrowth associ-

ated ATP maintenance demand in both strains (in the ATPase strain, this value includes

the amount of ATP hydrolyzed by the overexpressed ATPase) and obtained a value of

5.34 mmol ATP g−1
CDW h−1 in the control strain and 12.62 mmol ATP g−1

CDW h−1 in the AT-
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Figure 6.4: Concentration profiles, productivities, yield and titer of the control strain
(black) and the ATPase strain (red) under growth-decoupled production conditions. A)
Biomass concentration (solid line) and glucose concentration (dashed line) during cul-
tivation, B) product (sum of carbon atoms incorporated in main fermentation products)
concentration during cultivation, C) specific glucose uptake rate and specific productiv-
ity, D) volumetric glucose uptake rate and volumetric productivity, E) yield, and F) titer.

Pase strain (data not shown). Hence, the expression of the ATPase more than doubles

the ATP demand (and metabolic activity) in the nongrowing cells. The factor for the

ATP demand is thus well in the range of the measured doubled ATPase activity (Figure

6.3B) in the ATPase strain.
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4 Discussion

The goal of the present study was to further examine and further develop the concept of

enforced ATP wasting and to broaden its scope for potential applications in metabolic

engineering. We studied aspects that have not been investigated before or/and not in the

combination as used herein (see Table 1). In particular, i) we developed a new genetic

module for dynamic induction of an ATPase; ii) we showed that the F1-part of the ATPase

leads to higher metabolic activity and increased product formation in E. coli also under

anaerobic conditions; and iii) we tested and proved suitability of ATP wasting also for

growth-arrested production which is vital for its use in TSF processes. To keep things

simple, in our example process, we considered the total amount of fermentation products

as a proxy for the target chemical(s); however, in realistic applications, one may focus

on a particular metabolite by deleting pathways to other fermentation products as was

done, e.g., for lactate (Hädicke and Klamt, 2015).

Our results with the ATPase strain for growth-coupled product synthesis confirmed

earlier results of increased ATP demand in E. coli or L. lactis (Hädicke et al., 2015; Liu

et al., 2016; Koebmann et al., 2002), namely an increase in substrate uptake, specific pro-

ductivity, product yield, and titer accompanied with a reduced growth rate and biomass

yield, causing reduced volumetric productivities. Hence, generalizing results found for

aerobic conditions (Koebmann et al., 2002), the flux through glycolysis in E. coli wild-

type cells is governed by ATPconsuming processes even under anaerobic conditions.

However, as the necessary redirection of carbon flux from biomass to ATP formation

(coupled with product synthesis) reduced the growth rate of the ATPase strain, less

biomass as biocatalyst was present and the volumetric productivity dropped by 25.3%

compared to the control strain. Lowered volumetric productivities were also observed

in Hädicke et al. (Hädicke et al., 2015) and Liu et al. (Liu et al., 2016), however, Liu et

al. (Liu et al., 2016) also reported that fine-tuning of the ATPase activity by selecting

a (constitutive) promoter with moderate strength led to a L. lactis strain that exhibited

even a slightly higher volumetric productivity for acetoin than the control strain. It is

important to note that the amount of substrate used, the reference time point, growth in-

hibition by the accumulated product and other factors determine the relative volumetric

productivity of an OSF with ATP wasting against an OSF without ATP wasting. As was

already mentioned in Section 3, when we stop the fermentation within the first 3 hours,

the volumetric productivity of the ATPase strain would be higher than of the control

strain. However, in general, it is very likely that the volumetric productivity of a strain
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with enforced ATP wasting will be lower than a strain without increased ATP demand,

reflecting the trade-off between high product yield and high volumetric productivity.

Here, adjusting the strength of the ATPase activity enables one to adjust product yield

and productivity at a desired point with an optimal trade-off. Compared to the approach

followed by Liu et al. (Liu et al., 2016), where different strains were constructed each

having a static constitutive promoter of a specific strength, our developed system with

an inducible ATPase promoter offers a more practical solution for fine tuning the ATPase

expression and for studying the influence of different expression levels on cell physiol-

ogy. Moreover, the inducible promoter now allows applications with dynamic control

of the ATPase activity, which will be essential for TSF processes where enforced ATP

wasting is desired only in the production phase. For industrial applications, however,

external inducers are often too costly, which may favor the use of autonomous switches,

e.g., based on quorum sensing (Gupta et al., 2017).

Generally, TSF processes separating growth and production may help to overcome

the drawback of reduced volumetric productivity during OSF(Burg et al., 2016; Venayak

et al., 2015; David et al., 2016; Nemr et al., 2018).[20,21,39,40] In Klamt et al.(Klamt et al.,

2018) we hypothesized that ATP wasting in the production phase could further boost the

performance of TSFs. We therefore analyzed the effect of overexpressed ATPase under

growth-arrested conditions (mimicking the production phase of a TSF) caused by nitro-

gen starvation, where the biomass of the ATPase strain and the control strain remain

constant. As was shown earlier, the metabolism usually shuts down in nongrowing cells

just to cover cellular maintenance, leading to low substrate uptake rates and productiv-

ities and thus severely limiting TSF processes (Harder et al., 2018; Chubukov and Sauer,

2014). This can also be observed in the present study: the specific glucose uptake rate of

the control strain slows down under nitrogen starvation conditions until it comes almost

to a complete rest even though the substrate was not completely consumed. In recent

years, there have been several attempts to maintain high metabolic rates in the station-

ary phase, e.g. by overexpression of PtsI in E. coli, which is involved in the regulation

of the glucose uptake machinery (Chubukov et al., 2017; Gosset, 2005), by modulating

the stringent response program leading to a "high glucose throughput (HGT)" strain

(Michalowski et al., 2017), and by directed evolution (Sonderegger et al., 2005). To the

best of our knowledge, the glucose uptake rate of 6.49 mmol gCDW h−1 we achieved with

enforced ATP wasting is the highest reported for nongrowing E. coli cells. For example,

although not directly comparable (anaerobic conditions in our study and aerobic condi-

tions in the studies mentioned above), the specific glucose uptake rate in the PtsI overex-
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pression strain was ≈2.5 mmol g−1
CDW h−1 (Chubukov et al., 2017), 3.27 mmol g−1

CDW h−1

in the HGT strain (Michalowski et al., 2017), and 1.55 mmol g−1
CDW h−1 in the evolved

strain (Sonderegger et al., 2005). Moreover, the ATPase strain keeps these high rates -

in contrast to the control strain - until all of the glucose is completely consumed. The

resulting high volumetric productivity during stationary phase could help make TSF

processes more efficient as envisioned in the theoretical study of our group (Klamt et

al., 2018). In contrast, if yield and titer are more important than productivity (e.g., for

high-value products), ATP wasting can be applied in a growth-coupled mode in an OSF

as described above.

Our measurements of the adenosine pools in the ATPase and the control strain in

the growth-coupled process showed, as expected, reduced ATP levels and a lowered

ATP/ADP ratio and thus followed the same trend as in Koebmann et al. (Koebmann et

al., 2002) Interestingly, and also consistent with the study of Koebmann et al.(Koebmann

et al., 2002), we found that the concentrations of AMP, ADP, and ATP were all lower

in the ATPase strain compared to the control strain (Figure 6.3A). As a consequence,

energy charges of the ATPase strain (0.76), as well as the control strain (0.78), differed

only to a minor extent, meaning that E. coli is still able to counterbalance the increased

ATP demand caused by the expressed ATPase, at least in terms of energy charge. In

future studies, the tipping point between maximizing the glucose uptake rate and over-

burdening the cells with too high ATP wasting rates should be determined by titrating

the expression level of the ATPase. Furthermore, we plan to test the approach for other

(heterologous) products and substrates in E. coli and other organisms and to fine-tune

the ATP wasting level for the respective product.

In summary, we showed that yield and titer, as well as volumetric productivity, can

be improved by enforced ATP wasting depending on which cultivation approach (OSF

or TSF) is being applied. We believe that this concept can become a general approach in

bioprocess and metabolic engineering to construct microbial cell factories with superior

performance.
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Abstract

One long-standing question in microbiology is how microbes buffer perturbations

in energy metabolism. In this study, we systematically analyzed the impact of differ-

ent levels of ATP demand in Escherichia coli under various conditions (aerobic and

anaerobic, with and without cell growth). One key finding is that, under all con-

ditions tested, the glucose uptake increases with rising ATP demand, but only to a

critical level beyond which it drops markedly, even below wild-type levels. Focusing

on anaerobic growth and using metabolomics and proteomics data in combination

with a kinetic model, we show that this biphasic behavior is induced by the dual

dependency of the phosphofructokinase on ATP (substrate) and ADP (allosteric ac-

tivator). This mechanism buffers increased ATP demands by a higher glycolytic

flux but, as shown herein, it collapses under very low ATP concentrations. Model

analysis also revealed two major rate-controlling steps in the glycolysis under high

ATP demand, which could be confirmed experimentally. Our results provide new

insights on fundamental mechanisms of bacterial energy metabolism and guide the

rational engineering of highly productive cell factories.
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1 Introduction

The sugar and energy metabolism of microorganisms has been subject of research for

many decades (Jensen and Michelsen, 1992; Kochanowski et al., 2013; Chubukov et al.,

2014; Basan et al., 2020). One central goal of these studies is to decipher key princi-

ples of cellular metabolism and to uncover regulatory mechanisms that enable microor-

ganisms to adapt to perturbations and varying environments (Chubukov et al., 2014;

Bruggeman et al., 2020). The integration of various experimental data, often in com-

bination with mathematical modeling, helps to shed light on global phenomena of mi-

crobial metabolism, such as overflow metabolism or diauxie (Bruggeman et al., 2020;

Basan et al., 2015; Chen and Nielsen, 2019). However, despite the progress made, a com-

prehensive understanding of how microbes respond and adapt to perturbations is still

lacking in many cases. This also limits our ability to rationally engineer the metabolism

of microorganisms for biotechnological applications. One example of directed metabolic

interventions to optimize microbial production hosts is the manipulation of the supply

of ATP, the energy currency of the cell. Increasing ATP availability can, for example,

lead to improved succinate (Zhang et al., 2009; Singh et al., 2011) or recombinant pro-

tein (Kim et al., 2012) production. In the opposite direction, artificially enforcing a high

turnover ("wasting") of ATP can substantially increase the specific glucose uptake rate

and the production rate of certain target compounds (if production of the latter is cou-

pled with ATP formation)(Boecker et al., 2021; Chao and Liao, 1994; Koebmann et al.,

2002; Hädicke et al., 2015; Boecker et al., 2019; Zahoor et al., 2020).

Studying the response of the cells to perturbed ATP levels is thus essential not only

for understanding fundamental physiological processes but also for guiding metabolic

engineering efforts. As one approach, several previous studies investigated the influence

of a continuous drain of ATP on the metabolism of Escherichia coli (Chao and Liao, 1994;

Koebmann et al., 2002; Holm et al., 2010). However, more systematic studies, especially

with varying levels of ATP demand under different growth conditions, are still needed

to address fundamental questions, for example, to which extent the cells are able to

compensate a rising ATP drain by increasing the glucose uptake rate. In particular, it

is unknown what the maximal glucose uptake rate is and what happens when the ATP

drain is further increased beyond this point.

In this study, we systematically analyzed the consequences of varying levels of ATP

turnover in E. coli by overexpressing the genes of the ATP-hydrolyzing F1-subunit of the

FOF1-ATPase under different conditions (aerobic and anaerobic conditions, cell growth

207



Chapter 7

and growth arrest). As one key result, we found that the glucose uptake rate shows un-

der all conditions a biphasic response curve with respect to increasing ATPase activity,

reaching a maximum at a medium ATPase level but dropping markedly when this level

is exceeded. Focusing on anaerobic growth, we combined metabolome and proteome

data with a kinetic model of E. coli’s central metabolism to reveal the underlying mech-

anism of this behavior. Analysis of the model showed that the dual dependency of the

phosphofructokinase on ATP as substrate and ADP as activator can explain the bipha-

sic steady-state response curve of the glycolytic flux. The model also helped to explain

unexpected phenomena such as the accumulation of glycolytic metabolites, and it sug-

gested two major rate-controlling steps under high ATP drain, which were confirmed

experimentally by overexpressing the genes of the associated metabolic enzymes.
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2 Results

2.1 Construction of the ATPase strains with different ATPase
expression strengths

As in previous studies (Koebmann et al., 2002; Boecker et al., 2019; Holm et al., 2010),

as ATP-consuming mechanism, we chose the atpAGD-encoded F1-subunit of the FOF1-

ATP synthase (ATPase) from E. coli, which hydrolyzes ATP to ADP and phosphate. We

decided to regulate the expression strength via different origins of replication and thus

varying copy numbers of the plasmids harboring the ATPase genes. Three different plas-

mids were constructed: a low copy plasmid (RK2 replicon, LC), a medium copy plasmid

(p15A replicon, MC), and a high copy plasmid (pMB1 replicon, HC) (Appendix Table

S1). E. coli wild-type strain MG1655 was transformed with the three plasmids as well as

with the corresponding empty control plasmids leading to the six strains "LC control",

"LC ATPase", "MC control", "MC ATPase", "HC control", and "HC ATPase". Expression

of atpAGD was put under control of the isopropyl β-D-thiogalactopyranoside (IPTG)

inducible Ptrc-promoter, and the same amount of IPTG was used for all strains. Addi-

tional controls were the E. coli wild-type strain MG1655 without plasmid and without

IPTG addition ("WT") and without plasmid but with IPTG addition ("WT + IPTG").

2.2 Anaerobic growth

First, we cultivated all strains anaerobically and monitored the effect of expressing AT-

Pase on growth rate, glucose uptake, and production of the five main fermentation prod-

ucts (ethanol, acetate, formate, lactate, and succinate) in the exponential phase. As ex-

pected, the growth rates and biomass yields of the three ATPase strains decreased with

increasing expression levels of the ATPase (Fig 7.1A–D; Table 7.1). Furthermore, com-

pared to their control strains, the specific glucose uptake rate of the LC and MC ATPase

strain increased by 16.6% to 16.4 mmolGlc/gDW/h and by 17.8% to 17.7 mmolGlc/gDW/h,

respectively. Similarly, the specific production rates of fermentation products were ele-

vated, and their cumulated yield increased by 11.4% to 0.93 molproductC−atoms / molGlcC−atoms

in the LC ATPase and by 16.7% to 0.97 molproductC−atoms / molGlcC−atoms in the MC AT-

Pase strain (Table 7.1). This indicates that a larger portion of the substrate was redirected

from biomass to energy production (and thus to the formation of fermentation products)

in these two ATPase strains to keep up with the higher cellular ATP demand. However,

the data from the HC ATPase strain with highest ATPase level suggest that there is a
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maximal ATPase activity, beyond which E. coli cannot compensate the ATP drain with

even higher glycolytic rates. The specific glucose uptake rate in the HC ATPase strain

dropped by 60.3% to 5.1 mmolGlc/gDW/h, which is far below the WT strain level. Ap-

parently, there are limitations in E. coli’s metabolism that prevent a further increase in

the glycolytic flux needed to counterbalance the high ATPase activity. Using a stoichio-

metric model of the central metabolism of E. coli, we performed metabolic flux analysis,

based on the measured exchange rates, to estimate the ATPase flux in the different strains

(see Materials and Methods). Importantly, while the ATPase flux increased with higher

ATPase abundance from LC to MC ATPase strain, we determined the lowest ATPase flux

among all ATPase strains for the HC ATPase strain (Table 7.1). In fact, the markedly re-

duced substrate uptake rate already implies that the ATP hydrolysis rate must be lower

in this strain. However, if less ATP is consumed than in the other two strains, this raises

the question why the glucose uptake rate drops so strongly. A hypothesis is that the

HC ATPase strain has very low ATP levels, which constrains both the glycolytic and the

ATPase flux. This will be further addressed in a later section.

2.3 Anaerobic cultivation under growth arrest

As the next step, we cultivated all strains anaerobically and arrested growth by transfer-

ring the cells to a medium without a nitrogen source. Such conditions are of particular

interest for biotechnological applications (e.g., in two-stage production processes (Burg

et al., 2016; Klamt et al., 2018). All ATPase strains showed high glycolytic and product

exchange rates, while all control strains came to a metabolic halt and barely took up

any glucose after 10 h of cultivation (Fig 7.2A–D; Table 7.1). Compared to their corre-

sponding control strains, the LC ATPase strain had a 300% increased glucose uptake rate

(8.96 mmolGlc/gDW/h), the MC ATPase strain a 380% increase (10.46 mmolGlc/gDW/h),

and the HC ATPase still a 175% increase (8.10 mmolGlc/gDW/h). To our knowledge, the

specific glucose uptake rate of the MC ATPase strain is the highest rate ever reported

for growth-arrested E. coli cells. The HC ATPase strain showed again the lowest glucose

uptake rate among the three ATPase strains. While the WT and control strains metabo-

lized most of the glucosecarbon to ethanol, acetate, formate, and succinate, the amount

of formed lactate increased with the expression strength of ATPase. The HC ATPase

strain converted all glucose almost entirely to lactate (1.74 molLac/molGlc) (Fig 7.2C and

D; Table 7.1). As for the case of anaerobic growth, the overall ATPase flux in the HC

ATPase strain was lower than in the other ATPase strains.
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Figure 7.1: Anaerobic growth of the different strains. (A) Time course of biomass
concentration. (B) Time course of glucose concentration. (C) Specific glucose (Glc) up-
take rate and specific productivity for ethanol (Eth), acetate (Ace), formate (For), lactate
(Lac), and succinate (Suc). (D) Yield of Eth, Ace, For, Lac, and Suc. Data information:
The reaction rates in (C) were calculated for the exponential phase under assumption
of quasi-steady state. As changes in glucose and fermentation products are rather small
during cultivation of the HC ATPase strain, a higher initial biomass concentration of
0.1 gDW/l was used for this strain to get more robust data for the calculation of the
metabolite exchange rates. The means (A and B) and the means and individual data (C
and D) for n = 3 biologically independent samples are shown. The error bars represent
± SD. Source data are available online for this figure.
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Figure 7.2: Anaerobic cultivation of the different strains under growth arrest.
(A) Time course of biomass concentration. (B) Time course of glucose concentration.
(C) Specific glucose (Glc) uptake rate and specific productivity for ethanol (Eth), acetate
(Ace), formate (For), lactate (Lac), and succinate (Suc). (D) Yield of Eth, Ace, For, Lac,
and Suc. Data information: The reaction rates in (C) were calculated from the beginning
of cultivation until the last sampling time point where glucose was still present in the
medium. The means (A and B) and the means and individual data (C and D) for n =
3 biologically independent samples are shown. The error bars represent ± SD. Note:
although no nitrogen source was present in the medium, some minor growth (especially
of the control and wild type strains) remained (A), which is a known phenomenon within
the first hours of cultivation after nitrogen depletion (Switzer et al., 2020). Source data
are available online for this figure.
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2.4 Aerobic cultivations

We repeated the same experiments under aerobic conditions (Figs EV 7.8A–D and EV7.9A–D,

Appendix Tables S2 and S3). Essentially, the same trends as in the anaerobic cultivations

could be observed. While all ATPase strains showed reduced growth rates and biomass

yields compared to the control strains, the specific glucose uptake rates increased in the

LC and MC ATPase strain by 6.5 and 49.2%, respectively, but dropped in the HC AT-

Pase strain by 39.1% (Fig EV7.8C, Appendix Table S2). The yield of acetate, which is the

major overflow byproduct of E. coli under aerobic conditions (Wolfe, 2005), increased

with the expression strength of the ATPase genes. We also tested the behavior of the

ATPase strains under aerobic conditions with growth arrest (Fig EV7.9A–D, Appendix

Table S3). While the metabolism of the WT and control strains slowed down after some

time (as under anaerobic conditions), all ATPase strains exhibited a very high metabolic

activity. Again, a biphasic steady-state response curve of the glucose uptake rate for

increasing ATPase levels could be observed. The MC ATPase strain reached the highest

glucose uptake rate (10.2 mmolGlc/gDW/h), which was more than 10-fold higher than

in the control strain (and even higher than in the WT with growth). Compared to the

anaerobic case, we estimated considerably higher ATPase fluxes for the ATPase strains,

which are possible due to the high ATP yield under aerobic conditions.

2.5 Increasing ATP demand induces biphasic response of glucose
uptake under all cultivation conditions

The data of the anaerobic and aerobic cultivations with and without growth consistently

show a biphasic curve of the steady-state glucose uptake rate as response to the increas-

ing overexpression of the ATPase genes. As summarized in Fig 7.3, for all cultivations,

the uptake rate increases from WT over LC to MC ATPase strain and then drops for HC

ATPase strain, especially sharply for growing cells. This observation raises the key ques-

tions: what causes this biphasic steady-state response, and why does E. coli not further

increase (or at least maintain a high) glycolytic flux under maximal ATPase expression?

For an in-depth analysis of this phenomenon, we focused on the response of the differ-

ent ATPase strains under anaerobic growth, where the highest specific glucose uptake

rates for the LC and MC ATPase strain and the steepest drop of the uptake rate of the

HC ATPase strain could be observed.
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2.6 Changes at the metabolome and proteome level for
increasing ATPase abundance

For a comprehensive metabolic characterization of the different ATPase strains under

anaerobic growth, we quantified the intracellular concentration of metabolites (Fig EV7.10A

and B; Dataset EV7.8) and determined changes on proteome level (Fig EV7.11; Dataset

EV1). ATP, ADP, and AMP concentrations remained relatively constant in the LC and

MC ATPase strains compared to the control strains. Only the HC ATPase showed larger

changes: the ATP level decreased by 56.0%, while the ADP level increased by 24.6% and

the AMP level by almost 1,000% (Fig EV7.10A). These observations are also reflected by

the adenylate energy charges, which are high in the WT and LC ATPase strain (0.87 and

0.88, respectively), only slightly lower in the MC ATPase strain (0.80), but significantly

reduced in the HC ATPase strain (0.34) (Fig EV7.10A). This indicates that the LC and

the MC, but not the HC ATPase strain, can compensate the higher ATP demand by the

increased glycolytic flux. The concentrations of several other intracellular metabolites

changed also significantly. Generally, we observed that the concentration of metabolites

involved in glycolysis (glucose-6-phosphate, fructose-6-phosphate (F6P), fructose-1,6-

bisphosphate (FBP), dihydroxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate

(G3P), PEP, and pyruvate) consistently increased with expression strength of the AT-

Pase genes, reaching highest values in the HC ATPase strain (Fig EV7.10B). Contrarily,

the acetyl-CoA concentration dropped in the HC ATPase strain (Fig EV7.10B). In con-

trast to metabolite concentrations, at the proteome level, enzymes from the anaerobic

core metabolism of E. coli were not as clearly up- or downregulated (Fig EV7.11; Dataset

EV7.8). In particular, larger changes of glycolytic enzyme levels could not be seen; the

abundance levels of these enzymes in the ATPase strains are all within the range of 60%

and 150% of the respective levels in the control strains. This indicates that changes in

the glycolytic fluxes are mainly induced by allosteric or substrate level regulation rather

than by alteration of enzyme levels. As expected, the three subunits of the F1-ATPase

were more abundant with increasing copy number of the expression plasmids. The av-

erage abundances of the ATPase α-, β-, and γ-subunits were +142% (LC ATPase), +549%

(MC ATPase), and +708% (HC ATPase) in comparison to the WT strain (Fig EV7.11;

Dataset EV7.8). Among the remaining enzymes from the core carbon metabolism, only

the malate dehydrogenase (upregulated), PEP carboxykinase (PCK, upregulated), and

the PEP carboxylase (PPC, downregulated) showed stronger changes in the MC and HC

ATPase strains compared to their control strains. PCK and PPC are adjacent in the sense
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Figure 7.3: For all growth regimes tested, the glucose uptake rate shows a bipha-
sic response curve to increasing ATPase levels. The means for n = 3 biologically
independent samples are shown. The error bars represent ± SD.

that PPC catalyzes the carboxylating reaction from PEP to oxaloacetate (with release

of a phosphate molecule) and PCK the reaction from oxaloacetate to PEP thereby con-

suming ATP (see also Fig 5C). Under certain conditions, for example, low ATP or high

PEP concentrations, the PCK reaction may also act in the reverse direction, and it seems

that the PCK is used to replace the PPC to provide additional ATP. However, despite the

fact that also the malate dehydrogenase is upregulated, the overall flux to succinate as

final product of this pathway is still relatively low in the HC ATPase strain (Fig 7.1C and

D; Table 7.1). Not as prominent but still noticeable was the downregulation of formate

acteyltransferase (formerly pyruvate formate lyase; PFL) and of the formate transporter

FocA in the HC ATPase strain. While the PFL and the FocA levels were not significantly

affected in the LC and MC ATPase strains, in the HC ATPase strain, compared to its

control, the levels dropped by 33% and 58%, respectively.

2.7 What limits the glycolytic flux under high ATPase activity - a
kinetic modeling approach

With the experimental findings and data at hand, we sought to find a mechanistic expla-

nation for the inability of the HC ATPase strain to sustain a high glycolytic flux, as in the

LC and MC ATPase strain, to compensate the high ATP demand. Given the low energy
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charge in the HC ATPase strain and the increased ratio between hexose phosphates and

FBP, we hypothesized that the kinetics of the phosphofructokinase (PFK), reaction con-

verting F6P to FBP under consumption of (Mg)ATP, might cause the biphasic behavior.

This reaction is considered as the committing step of glycolysis and is a major point of

regulation in E. coli (Fenton and Reinhart, 2009). In E. coli, there are two PFKs (PFK1 (en-

coded in pfkA) and PFK2 (pfkB)); however, more than 90% of the PFK activity in E. coli
can be attributed to PFK1 (Kotlarz et al., 1975). This enzyme is allosterically inhibited

by phosphoenolpyruvate (PEP) and has a dual dependency on (Mg)ADP and (Mg)ATP

(Blangy et al., 1968). On the one hand, high concentrations of the substrate (Mg)ATP are

required to obtain a high PFK flux. On the other hand, ADP (as well as GDP) is known to

allosterically activate the reaction (Peskov et al., 2008). Indeed, using a kinetic rate law

based on convenience kinetics (Liebermeister and Klipp, 2006) and including the effect of

the allosteric regulators leads to a biphasic curve when increasing the ADP/(ATP + ADP)

ratio (Fig 7.4; cf. also Ref. Peskov et al., 2008). For high ATP levels (low ADP/(ADP +

ATP) ratio), ADP as activator is limiting. With increasing ADP levels induced by higher

ATPase activity, the PFK rate increases as well, but only to an optimal point beyond

which the concentration of the co-substrate ATP becomes limiting. As second step of

the glycolysis, the PFK reaction kinetics could thus be the cause for the observed bipha-

sic response of the glucose uptake rate and the low glucose consumption rate in the HC

ATPase strain could be a consequence of the low ATP concentration (high ADP/(ATP +

ADP) ratio) in this strain.

However, it is not clear whether the biphasic response of the isolated PFK reaction in

Fig 7.4 (with fixed concentrations of PEP, FBP, F6P) translates into a biphasic response of

the glycolytic flux when the entire central metabolism with all its interactions and feed-

backs is taken into account. We therefore constructed a kinetic model of the central fer-

mentative metabolism of E. coli for anaerobic growth on glucose (see detailed description

in Appendix Supplementary Text; section 1). The model comprises 33 metabolites and

28 reactions and, as shown in Fig 7.5C, accounts for the glycolysis, anaplerotic reactions,

relevant parts of the TCA cycle, the major fermentative pathways, a growth reaction, a

reaction for nongrowth- associated ATP maintenance (NGAM) demand, and, finally, a

reaction for simulating ATP hydrolysis by the ATPase. The latter reaction depends on

the ATPase overexpression level. The model also accounts for allosteric regulation of the

involved enzymes. As described in detail in the Appendix Supplementary Text, for the

first version of the model, we fitted the unknown parameters of the model to the mea-

sured growth rate, the substrate uptake rate, and the product exchange fluxes of the wild
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Figure 7.4: Simulation of the PFK rate with varying ADP/(ATP+ADP) ratios. The
PFK flux was simulated as single (isolated) reaction with the following fixed metabolite
concentrations relevant for the kinetic rate law of the PFK (for the latter see Appendix
Supplementary Text, section 1.3): PEP: 0.27 µmol/gDW; F6P: 0.91 µmol/gDW; FBP: 9.74
µmol/gDW; total concentration ATP+ADP: 2.67 µmol/gDW.

type and the different ATPase strains (given in Table 1) as well as to measured metabolite

levels in these strains (see above and Dataset EV7.8). Since the proteomic data indicated

only minor or moderate changes in the levels of relevant metabolic enzymes, we used,

as an approximation, constant vmax values (i.e., constant enzymes concentrations) in

all four strains (WT as well as LC, MC, and HC ATPase strains) in the kinetic model

simulations. We were able to find a parametrization that gave a reasonable fit with the

experimental data (Fig 7.5A and B). In particular, the fitted model could reproduce the

observed biphasic response of the glucose uptake along the four strains (first plot in Fig

7.5A) demonstrating that the known metabolic and regulatory interactions contained in

the kinetic model are sufficient to generate this behavior.

Next, we used the model to simulate the steady-state response curves of glucose up-

take rate, energy charge, and ATPase flux when increasing the ATPase level (repre-

sented by vmax of the ATPase reaction) continuously from 0 (WT) to a maximal value of

85 mmol/gDW/h (Fig 7.6A). Starting with a low ATPase level, the ATPase flux increases

causing a higher ADP concentration (lower energy charge) which, as discussed in Fig

7.4, enhances the PFK and thereby the glycolytic flux. However, further increasing the

abundance of ATPase beyond a critical point reduces the ATP concentration, now lim-

iting the PFK flux and thus the glucose uptake rate (Fig 7.6A). These model simulations

also confirmed that the rate of ATP hydrolysis by the ATPase is lowest in the HC ATPase

strain, despite the fact that it has the highest ATPase abundance (i.e., the highest vmax;
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Figure 7.5: The figure caption is on the next page.
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Figure 7.5: Comparison of the simulations of the kinetic model version 1
and version 2 with experimental data of the different strains under anaerobic
growth conditions. (A) Comparison of the simulations of the kinetic model version 1
and version 2 with the measured exchange fluxes. (B) Comparison of the simulations of
the kinetic model version 1 and version 2 with the measured metabolite concentrations.
(C) Metabolic map containing most relevant reactions (blue) and metabolites (black) of
E. coli under anaerobic conditions. Dashed arrows indicate (lumped) reactions with sev-
eral enzymes involved. Allosteric regulations of the respective reactions are marked in
red (inhibition) or green (activation). The kinetic model (versions 1 and 2) covers al-
most all of the shown reactions and regulations; a map directly related to the model is
shown in Appendix Fig S1. Abbreviations of metabolites and reaction names: Glcex:
external glucose (substrate); G6P: D-glucose-6-phosphate; F6P: D-fructose-6-phosphate;
FBP: fructose-1,6-bisphosphate; GAP: D-glyceraldehyde-3-phosphate; DHAP: dihydrox-
yacetone phosphate; BPG: 1,3-bisphospho-D-glycerate; 3PG: 3-phosphoglycerate; PEP:
phosphoenol-pyruvate; PYR: pyruvate; AcCoA: acetyl coenzyme A; CoA: coenzyme A;
AKG: α-ketoglutarate; OAA: oxaloacetate; FUM: fumarate; SUC: succinate; FOR: for-
mate; LAC: lactate; ACE: acetate; ETH: ethanol; ATP: adenosine triphosphate; ADP:
adenosine diphosphate; NAD: oxidized nicotinamide adenine dinucleotide; NADP: ox-
idized nicotinamide adenine dinucleotide phosphate; NADH: reduced nicotinamide
adenine dinucleotide; NADPH: reduced nicotinamide adenine dinucleotide phosphate;
CO2: carbon dioxide; MQH2: menaquinol; MQ: menaquinone. PTS: phoshotrans-
ferase system; PGI: glucose-6-phosphate isomerase; PFK: phosphofructokinase; FBA:
fructose-bisphosphate aldolase; TPI: triose-phosphate isomerase; GHD: glyceraldehyde-
3-phosphate dehydrogenase; PGK: phosphoglycerate kinase; PGM: phosphoglycerate
mutase; ENO: enolase; PYK: pyruvate kinase; PFL: pyruvate formate-lyase (also known
as formate acteyltransferase); LDH: lactate dehydrogenase; PTA: phosphate acetyltrans-
ferase; ACK: acetate kinase; ACDH: acetaldehyde-CoA dehydrogenase; ADH: alcohol
dehydrogenase; PCK: phosphoenolpyruvate carboxykinase; PPC: phosphoenolpyruvate
carboxylase; CS: citrate synthase; ACO: aconitate hydratase A/B; ICDH: isocitrate de-
hydrogenase; MDH: malate dehydrogenase; FHD: fumarase; FRD: fumarate reductase;
NDH: NADH dehydrogenase; ADK: adenylate kinase; NGAM: ATP consumption for
non-growth-associated maintenance; ATPase: ATP hydrolysis by F1-ATPase in the AT-
Pase strains. Data information: For the measurements, the means for n = 3 biologically
independent samples are shown (A and B) and the error bars represent ± SD.
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ATPase). Available ATP is rapidly consumed by the large amounts of ATPase in the HC

ATPase strain, which keeps the concentration of ATP at a very low level limiting in turn

both the PFK as well as the ATPase flux. To further test our hypothesis regarding the

PFK mechanism and its effect on the glucose uptake under increasing ATP demand, we

utilized the model to evaluate how the steady-state response curves in Fig 7.6A change if

we remove the allosteric regulation of PFK by ADP (the respective ADPdependent term

in the kinetic rate law was fixed (clamped) to its wild-type value in all simulations). In-

deed, the biphasic response of the glucose uptake disappears and a monotonic decrease

in glucose uptake, upon enhanced ATP demand, can be seen (Fig 7.6B). Taken together,

our modeling results strongly support our hypothesis that the dual dependency of the

PFK on ADP and ATP causes the observed biphasic response in the glycolytic flux. As a

consequence, the PFK mechanism enables the cell to buffer moderate ATPase activities

(and to compensate moderate increases in ATP demand) by an instantaneous adjustment

of the glycolytic flux, but it collapses under very high ATP demand as in the HC ATPase

strain.

While the kinetic model (version 1) reproduced most experimental data in the differ-

ent strains reasonably well, especially the exchange rates (Fig 7.5A), some deviations can

be noted in the metabolite concentrations. The measured accumulation of hexose phos-

phates (glucose-6-phosphate, F6P) is correctly reflected by the model, again indicating

that the PFK activity is the limiting factor in the HC ATPase strain. However, the mea-

sured high concentrations of the glycolytic metabolites FBP, PEP, and pyruvate in the

HC ATPase strain are not captured in the simulation results. For example, the measured

concentrations of FBP and pyruvate increased markedly in the HC ATPase strain, but

the opposite behavior (strong decrease) was displayed by the model. Even after several

rounds of parameter fitting, we could not find a parametrization that leads to a better

reproduction of the qualitative trends of the metabolomics data. These discrepancies be-

tween data and model simulations suggested that there are missing regulatory elements

in our kinetic model, and we, therefore, introduced two major changes (model version

2; Appendix Supplementary Text). As a first change, because of (a) the low concen-

tration of acetyl-CoA, (b) the accumulation of pyruvate, (c) the increased lactate yield,

and (d) the observed reduced PFL levels in the HC ATPase strain, we introduced a term

in the kinetics of the PFL reaction, which ensures a lower abundance of PFL (and thus

a decreased vmax) under low ATP concentrations. As a possible mechanistic explana-

tion, we hypothesized that, at low energy charges, the large and costly PFL (consisting

of 759 amino acids) is replaced by cheaper pathways (e.g., via lactate fermentation), al-
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Figure 7.6: Simulation of the steady-state response curves of glucose uptake rate,
energy charge, and ATPase flux under anaerobic growth for increasing ATPase
activities. (A) Simulations with the standard kinetic model (version 1). The measured
glucose uptake rates of the different strains are indicated (cf. with Fig 3). (B) Simulations
with the kinetic model (version 1) as in (A), but without ADP activation term in the PFK
kinetics.
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though this may partially reduce the ATP yield (see also Discussion). However, even

with introduction of a downregulation of the PFL under low ADP concentrations, the

model was still not able to reflect the high concentration levels of PEP and FBP in the

HC ATPase strain. In fact, with (i) the observed high concentrations of PEP and ADP

(the substrates for the pyruvate kinase (PYK) reaction), (ii) the high FBP level (allosteric

activator of pyruvate kinase), and (iii) the highly negative standard Gibbs free energy

change of this reaction (∆rG°’ = -21.78 kJ/mol) (Park et al., 2016), one would expect a

higher PYK flux and thus a decrease of the PEP level, which contradicts the measured

high PEP concentration in the HC ATPase strain (Fig 7.5B). As a second change in the

model, we therefore introduced a term inhibiting PYK (flux) under high pyruvate con-

centrations. Although such an allosteric inhibition of PYK by pyruvate is not known, it

has been reported that alanine, which is directly produced from pyruvate, may act as in-

hibitor for PYK (Taber et al., 1998), and we observed higher concentrations of alanine in

all ATPase strains (Dataset EV7.8). With these two changes, the resulting model version

2 was now able to reproduce the qualitative trends in the fluxes and metabolite concen-

trations in all three ATPase strains (Fig 7.5A and B). With this, we can summarize our

understanding for the observed phenomena as follows: increasing the ATPase activity

reduces the growth rate in all strains and elevates the glycolytic flux in the LC and MC

ATPase strains due to (moderately) increased ADP levels, which enhances the activity

of PFK. However, in the HC ATPase strain, there is a sharp decrease of ATP, a substrate

of the PFK, which now limits the PFK and thereby the glycolytic flux. As consequence of

low ATP levels, the PFL abundance is reduced, which lowers the flux from pyruvate to

acetyl-CoA. Thus, pyruvate accumulates, which leads to higher lactate production rates

and inhibits (probably indirectly) PYK activity. Consequently, the levels of PEP increase

further, which further slows down the PFK flux due to negative inhibition, and thus, the

concentrations of hexose phosphates increase. Finally, high PEP concentrations prop-

agate also upward to other glycolytic intermediates (DHAP, G3P, FBP). Since PEP also

inhibits fructose-bisphosphate aldolase, this further contributes to FBP accumulation.

We note that the steady-state response curves shown for model version 1 in Fig 7.6 are

not affected by the model changes and look very similar for model version 2.
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2.8 Using Monte Carlo sampling of kinetic parameters to assess
the robustness of model predictions

The kinetic model (version 2) of E. coli’s central metabolism constructed in the previ-

ous section is relatively large and comprises more than 100 unknown parameters. To

assess the robustness of model predictions with respect to kinetic parameters, we em-

ployed Monte Carlo analysis as previously described in (Murabito et al., 2014). Briefly, we

used this method to sample Michaelis–Menten parameters over two orders of magnitude

while preserving the metabolic steady state to which the original parameters were fitted.

For each sampled set of kinetic parameters, systems properties can be computed. Here,

we focused on the flux control coefficients (FCCs), which are known from metabolic

control analysis and quantify the relative change of a steady-state metabolic flux when

changing the enzyme level, that is, when changing the vmax, of other reactions (Sauro,

2013). The resulting distributions of FCCs obtained from the Monte Carlo analysis al-

low us to assess the control properties with different (but consistent) parametrizations

and consequently to analyze the uncertainty of these global characteristics in our de-

terministic model. For details of the method, we refer to (Murabito et al., 2014) and the

Appendix Supplementary Text (section 4). For the wild-type metabolic steady state, we

found predominantly narrow distributions of FCCs, indicating a low sensitivity of these

FCCs against parameter variations (Appendix Fig S3). FCCs with broader distributions

were typically sign-dominant. That is, while the numerical value of the FCCs varies as a

function of kinetic parameters, the sign of the FCCs remains either positive or negative,

respectively, indicating robust qualitative control properties and hence robust predic-

tions based on the FCCs. Importantly, the FCC distribution of the NGAM reaction on

PTS was narrow with predominantly positive sign (>95% of sampled instances), con-

firming that the increase of glucose uptake in the wild type as response to higher ATP

demand is a robust feature of the model. Using instead the HC ATPase strain (with its

high ATP demand) as reference metabolic (steady) state, most FCCs still show narrow

distributions, but the fraction of enzymes with a broader distribution of FCCs increased

(Appendix Fig S4). The moderately increased sensitivity to parameter variations can be

interpreted as reduced robustness of the HC ATPase metabolic state. In particular, the

enzymes PYK, PFL, and PFK exhibited broad but sign-dominant (positive) distributions

of their respective FCCs on PTS and glycolytic flux, indicating that the sign (positive

control) of these enzymes on the glycolytic flux in this metabolic state is largely inde-

pendent of the choice of kinetic parameters. Furthermore, the FCCs of the NGAM and
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ATPase reactions on PTS and glycolytic flux are here predominantly negative. Together

with the predominantly positive FCCs of NGAM on PTS and glycolytic flux in the wild

type, this confirms the bi-phasic response of the glycolytic flux to increased ATP demand

as a robust feature of the model. The full results of the Monte Carlo analysis are shown

and discussed in Appendix Supplementary Text.

2.9 Using model predictions to obtain higher glycolytic fluxes in
the HC ATPase strain

Motivated by the Monte Carlo analysis from the previous section, in a final step, we

aimed to use the kinetic model (version 2) to make experimentally testable predictions

and, in this way, to further verify our reasoning of the low glycolytic flux in the HC

ATPase strain. We hypothesized that we could enhance the glycolytic flux by overex-

pressing genes of enzymes catalyzing reactions with the highest metabolic control. We

computed the FCCs of all glycolytic reactions in the kinetic model. Since FCCs are valid

only for small changes in the enzyme level, we also computed the resulting steady-state

glycolytic flux in the model when doubling the enzyme level, corresponding to doubled

vmax values of the respective reactions. The results can be found in the Appendix Sup-

plementary Text (section 2.3 and Fig S2). Consistent with our previous reasoning on

the experimental findings and consistent with the results from the Monte Carlo analy-

sis, we found that the PFL and the PFK have the highest control on the glycolytic flux

in the HC ATPase strain. We therefore overexpressed the genes of these two enzymes

to test whether they indeed represent bottlenecks. We constructed four variants of the

HC ATPase strain: one overexpressing the PFKencoding gene pfkA, one overexpressing

the PFL-encoding gene pflB, one overexpressing both genes, and one overexpressing the

phosphoglycerate kinase (PGK) encoding gene pgk (in all cases additionally to the at-

pAGD operon on the high copy plasmid). Overexpression of pgk was chosen as a control

since the model predicted an FCC close to zero for the PGK reaction. Thus, in contrast

to the other three strains, PGK overexpression should not have a major influence on the

glycolytic flux of the HC ATPase strain. The four variants were grown under anaerobic

conditions and compared to the HC ATPase strain.

As shown in Fig 7.7A–D and Table 7.2, the overexpression of pfkA and pflB indeed

had significant effects on the specific glucose uptake rate as well as on the composition

of the fermentation products, while we observed no significant changes for overexpres-

sion of pgk compared to the HC ATPase strain. In particular, the glucose uptake rate
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increased by 46.4% (pfkA), 48.0% (pflB), and 53.4% (pfkA+pflB) compared to the HC AT-

Pase strain and remained almost constant for the pgk overexpressing strain. As expected

and qualitatively predicted by the model, due to the enhancement of the PFL flux, the

lactate yield is largely reduced in the pflB and pfkA+pflB overexpressing strains. The

lactate yield dropped also in the pfkA overexpressing strain, although to a lesser extent.

Here, it is likely that the higher overall glycolytic flux, enabled by higher PFK activity,

increases ATP supply and thus leads to less downregulation of PFL. Therefore, more

carbon is redirected to acetate, ethanol, and formate and less to lactate also in the pfkA

overexpressing strain. We also observed that the growth rate was increased, at most

in the two pfkA overexpressing strains and less in the strain overproducing (only) PFL.

This might again be related to the relative high protein costs of PFL. Although the glu-

cose uptake rates of the pfkA and pflB overexpression strains were still below WT level,

the data in Table 7.2 confirm that PFK and PFL are indeed limiting (bottleneck) reac-

tions for the glycolytic rate in the HC ATPase strain, which can be partly overcome by

overexpression of the corresponding genes.

3 Discussion

In this study, we systematically analyzed the consequences of increasing ATP demand

on the physiology of the E. coli wild-type strain MG1655 under various conditions (aer-

obic/anaerobic, with/ without cell growth). On the one hand, this study was curiosi-

tydriven to explore maximal physiological capabilities of E. coli and to investigate how

this bacterium responds to situations of high ATP demand (which may be relevant un-

der challenging environmental conditions, e.g., under osmotic, acidic, or toxin-induced

stress). On the other hand, this study aimed to deliver new insights toward the use and

potential of enforced ATP wasting as a metabolic engineering strategy. We collected

a comprehensive dataset on metabolic fluxes, metabolite concentrations, and protein

abundances. In order to integrate these data with our current knowledge of the complex

metabolism and its regulation in E. coli, we constructed a kinetic model that enabled us

to modulate the ATP maintenance reaction and thus simulating different levels of ATP

wasting in the cells. The key findings of this study can be summarized as follows. First,

in all conditions tested, there is a biphasic steady-state response curve of the glucose

uptake rate with respect to increasing

ATPase activity. There is a maximum uptake rate at a medium ATPase level, and the

glucose uptake rate drops markedly beyond this level. Second, the model indicates that
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Figure 7.7: Anaerobic growth of the five HC ATPase strain variants. (A) Time
course of biomass concentration. (B) Time course of glucose concentration. (C) Specific
glucose (Glc) uptake rate and specific productivity for ethanol (Eth), acetate (Ace), for-
mate (For), lactate (Lac), and succinate (Suc). (D) Yield of Eth, Ace, For, Lac, and Suc.
Data information: The reaction rates in (C) were calculated for the exponential phase
under assumption of quasi-steady state. The means (A and B) and the means and indi-
vidual data (C and D) for n = 3 biologically independent samples are shown. The error
bars represent ± SD. Source data are available online for this figure.
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the PFK reaction with its dual dependency on ADP/ATP causes this biphasic behavior.

The PFK mechanism is known to buffer increased ATP demands by a higher glycolytic

flux (due to elevated ADP levels) but, as shown herein, it collapses under high ATP de-

mands with low ATP concentrations. Third, the metabolomics data under anaerobic

conditions show an increasing accumulation of glycolytic metabolites reaching high-

est values at maximal ATPase level. This behavior cannot be explained with current

knowledge, and we postulate that there are unknown regulatory mechanisms for PYK

(presumably allosteric regulation by pyruvate or alanine) and PFL (enzyme-level regula-

tion). Finally, we validated the model predictions that PFK and PFL are rate-limiting in

the HC ATPase strain and found that overexpressing the genes of these enzymes indeed

restores some of the glycolytic capacity. The kinetic model played an important role

in this study to identify and analyze potential mechanisms in the metabolism of E. coli
that led to the observed phenotypes under high ATP demand. It has to be noted that the

model is relatively large and comprises more than 100 unknown parameters, many of

which will not be uniquely identifiable, despite fitting the model against a considerable

set of data. However, the model is based on established biological knowledge of E. coli’s
central metabolism, it is able to reproduce measurements of the different strains reason-

ably well and it gave predictions that could be successfully verified. Moreover, the results

of the Monte Carlo sampling of kinetic parameters showed that key properties of the ki-

netic model and its predictions are robust over a wide range of parameter variations.

Hence, despite potential parameter identifiability issues, the model could demonstrate

its predictive power and thus represents a solid and plausible basis that supports our hy-

potheses and explains major findings of this study. However, as is true for every model,

we can neither prove its correctness nor that other models with alternative mechanisms

may exist that reproduce the observed phenomena equally well.

Our results are in several aspects consistent with current knowledge on the physiology

of energy metabolism in E. coli but, at the same time, indicate gaps in our understanding.

For example, the increasing levels of FBP in the LC and MC ATPase strains are consistent

with the linear correlation between glycolytic flux and FBP concentration that has been

shown for E. coli under various conditions and carbon sources (Kochanowski et al., 2013;

Kotte et al., 2010). Based on these earlier findings, it was proposed that FBP - presum-

ably indirectly via the transcription factor Cra (Bley Folly et al., 2018) - acts as a general

flux-sensing metabolite for E. coli. However, among all strains, the HC ATPase strain

had the highest level of intracellular FBP but by far the lowest glycolytic flux. Thus, the

generalization of FBP being a flux-sensor might not to be true for extreme metabolic per-
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turbations as in the HC ATPase strain. Our data also confirm previous work on overflow

metabolism and proteome allocation phenomena in E. coli. In particular, the observed in-

crease in acetate formation under aerobic conditions in the LC and MC ATPase strains is

likely a consequence of proteome reallocation from respiratory pathways (with high ATP

yield but also high protein costs) toward overflow metabolism. This consequently results

in lower ATP yields but enables higher glycolytic fluxes (and thereby higher total ATP

synthesis rates), due to reduced protein costs (Chen and Nielsen, 2019). The observed

downregulation of PFL in the HC ATPase strain under anaerobic conditions could be a

strategy to optimize proteome allocation, here as response to low ATP concentrations.

Again, lactate excretion (yielding 2 mol ATP per mol of glucose) seems disadvantageous

compared to the PFL reaction in combination with the formation of acetate, ethanol, and

formate resulting in an ATP yield of 2.5 mol ATP per mol of glucose. However, since PFL

is a rather large enzyme (759 amino acids vs. 343 amino acids in the average essential

protein in E. coli (Gong et al., 2008), under the low ATP levels in the HC ATPase strain, it

could be more cost-efficient for E. coli (in terms of ATP demand) to use the lactate path-

way. The lactate dehydrogenase appears to be constitutively available under anaerobic

conditions, and the pathway becomes active with rising pyruvate concentrations. Un-

der growth-arrested conditions with a limited nitrogen source, which further limits the

proteome pool, the effect is even more drastic. Here, almost the entire carbon is con-

verted into lactate in the HC ATPase strain (yield of 1.74 molLac/molGlc, Fig 7.2; Table

7.1), and increased lactate yields are also observed in the LC and MC ATPase strains.

Another interesting insight from the proteomic data in the HC ATPase strain is the re-

placement of PPC with PCK. Due to the low ATP level, PCK may run in the direction of

oxaloacetate and ATP synthesis, thus increasing the ATP yield compared to the sole use

of PPC. While overexpression of the PCK genes has been used to increase the ATP yield

in E. coli strains (Zhang et al., 2009; Chao and Liao, 1993; Kwon et al., 2008; Aslan et al.,

2017; Kyselova et al., 2018), we are not aware of a previous report showing that E. coli
naturally switches to PCK to enhance ATP supply. Identifying the regulatory mecha-

nisms that enable this switch is an interesting aspect of future work. When analyzing

proteome (re)allocation, we also need to consider the effect of the ATPase overproduc-

tion on the proteome pool. Especially in the HC ATPase strain, the expression of the

ATPase genes consumes cellular resources such as amino acids and may thereby reduce

the overall capacity to synthesize other proteins, including metabolic enzymes. Hence,

in addition to the discussed low ATP concentrations, changes in the proteome compo-

sition (such as the reduced PFL abundance) may also be induced by the synthesis costs
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of the ATPase subunits. However, there are several evidences that the activity of the

ATPase is the dominant factor, rather than the costs of its synthesis. First of all, com-

pared to the WT (where the three components of the F1-subunit are used to build the

FOF1-ATP synthase), the proteomic data indicated a moderate averaged 8.1-fold increase

of the three F1-ATPase components in the HC ATPase strain, which is still a compara-

bly small fraction of the overall proteome pool. Moreover, we see a 6.5-fold increase of

ATPase abundance already in the MC ATPase strain; hence, there is effectively only a

25% increase of the ATPase level in the HC strain compared to the MC strain. With this

relatively small change, it appears unlikely that the drastic change in the glycolytic flux

and ATP levels between these two strains is mainly caused by a reduction of available

resources for protein synthesis. Furthermore, except for the mentioned major changes,

other enzymes of central metabolic steps, especially in the glycolysis, show a relatively

constant level in the proteomic data and appear thus to be affected to a minor extent

only. Another evidence in this direction is the fact that the additional overexpression

of the pfkA or/and of the pflB gene (but not of the pgk gene) in the HC ATPase strain

increased the glycolytic flux, as predicted, although this will even further reduce the

available proteome pool for other enzymes. To further demonstrate that the lack of ATP

and not proteome burden causes the low glycolytic flux in the HC ATPase strain, we

cultivated the latter and its control strain anaerobically as before (with glucose as main

substrate), but this time with addition of fumarate enabling the strains to gain more ATP

(via fumarate respiration). As also suggested by our model, the glycolytic flux in the HC

ATPase strain should then increase due to the higher ATP levels fueling the PFK reaction

while we do not expect significant changes in the HC control as it is not ATP-limited.

In fact, with addition of fumarate, the glucose uptake rate even decreased slightly in

the HC control strain, but increased markedly in the HC ATPase strain by more than

100% almost reaching the level of the control strain (Fig EV7.12 and Appendix Table

S4). The extra amount of glucose was almost completely converted to lactate while the

gained ATP was directly consumed by the ATPase as reflected by a high ATPase flux.

This result is another strong indicator that it is the low ATP level in the HC ATPase

strain rather than ATPase synthesis costs that prevents higher glycolytic fluxes. The

finding that overexpression of the PFK- and PFL-encoding genes may largely increase

the glycolytic flux and, especially in the case of PFK, also the growth rate in the HC AT-

Pase strain under anaerobic conditions corroborates, on the one hand, our hypothesis on

physiological constraints in this strain but, on the other hand, demonstrates that E. coli,
as could be expected for the extreme perturbation in the HC ATPase strain, is not for all
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conditions primed to adjust an optimal expression pattern maximizing its growth rate

(cf. Bruggeman et al., 2020). Clearly, adaptive laboratory evolution may yield strains

that adapt to these physiological changes resulting, for example, in an upregulation of

PFK.

Our results are also of high relevance for metabolic engineering strategies that harness

the concept of enforced ATP wasting for strain optimization. Several previous works

have already demonstrated the potential of increased ATP turnover as a strategy to max-

imize substrate uptake and product synthesis rates (Boecker et al., 2021; Chao and Liao,

1994; Koebmann et al., 2002; Hädicke et al., 2015; Boecker et al., 2019; Zahoor et al.,

2020; Liu et al., 2016). However, our study is the first showing that there is an optimal

level of ATPase expression, at which the specific glucose uptake rate and metabolic ac-

tivity reaches a maximum. To use the full potential of ATP wasting, it will be important

to find the precise maximum (which will be specific for the production organism, the

respective substrate– product combination, and the chosen conditions) and to properly

adjust the optimal level of the ATPase. For each condition tested, the MC ATPase strain

showed the highest glucose uptake rate (which are, to the best of our knowledge, for

some cultivation conditions, the highest ever reported so far). Our data also reveal that

the highest relative increase can be seen for the growth-arrested cultivations (+1,016% for

aerobic and +380% for anaerobic conditions; Fig 7.3). Moreover, the relative drop in the

metabolic activity of the HC ATPase strain is less severe than in the cases with growth

indicating a higher robustness against maximal ATPase levels under these conditions.

With these findings, we anticipate that the highest potential of enforced ATP wasting

lies in the optimization of twostage (or even three-stage (Boecker et al., 2021)) processes,

in which ATP wasting may greatly boost the activity of the cells in the (growth-arrested)

production phase (Burg et al., 2016; Klamt et al., 2018).

4 Material and Methods

4.1 Strains and plasmid construction

All strains, plasmids, and primers used in this study are summarized in Appendix Table

S1. E. coli NEB 5-alpha competent cells (New England Biolabs, # C2987U) were used for

all cloning techniques and plasmid propagation. Standard molecular cloning techniques

followed protocols described earlier (Sambrook and Russell, 2001). The ATPase encoding

genes atpAGD were amplified from plasmid pCP41::atpAGD (Koebmann et al., 2002) by
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polymerase chain reaction (PCR) using the Q5 Hot Start High-Fidelity DNA Polymerase

(New England Biolabs, # M0493L) and the primer pair atpAGD_mono_fw/atpAGD_mono_rv

as described in (Boecker et al., 2019). To construct plasmids pSB58.6 and pSB62.6, gfp-
mut3 was cut out from pSB-T1g and pSB-T2g (Balzer et al, 2013) using restriction en-

zymes NdeI (New England Biolabs, # R0111S) and BamHI-HF (New England Biolabs, #

R3136S). The atpAGD PCR-amplicon was digested with the same enzymes and ligated

into the plasmid backbones of pSB-T1g and pSB-T2g using T4 DNA Ligase (New Eng-

land Biolabs, # M0202S), yielding plasmids pSB58.6 and pSB62.6, respectively. To con-

struct plasmid pSB66.1, the pMB1 replicon was cut out from pSB62.6 using restriction

enzymes AscI (New England Biolabs, # R0558S) and SpeI-HF (New England Biolabs, #

R3133S). The p15A replicon was amplified by PCR from plasmid pZA31-luc (Lutz, 1997)

using primer pair p15A_SpeI_fw/p15A_AscI_rv. The amplicon was digested with AscI

and SpeI-HF and ligated into the AscI/SpeI-HF digested plasmid pSB62.6. To construct

the control plasmids pSB60.1, pSB64.1, and pSB68.1, atpAGD was cut out from pSB58.6,

pSB62.6, and pSB66.1 using restriction enzymes NdeI and BamHI-HF. The 5’-overhangs

were filled-in using the Klenow Fragment (Thermo Scientific, # EP0054) and the blunt-

ended DNA fragments were self-ligated. The E. coli wild-type strain MG1655 (Blattner

et al., 1997) was transformed with the ATPase expression and control plasmids, gener-

ating three ATPase expression strains (low, medium, and high) and three control strains

(low, medium, and high) with varying plasmid copy numbers. For additional expression

of pfkA, pflB, and pgk together with atpAGD in the high copy plasmid pSB62.6, the plas-

mid was linearized by PCR with the primer pair pSB73.4_Gibson_fw/atpD_rv. The genes

encoding pfkA, pflB, and pgk were amplified from the genomic DNA of E. coli MG1655

by PCR using the primer pairs pfkA_rbs_fw/pfkA_rbs_rv, pflB_rbs_fw/pflB_rbs_rv, and

pgk_rbs_fw/pgk_rbs_fw, respectively. A ribosomal binding site (rbs) from the natural

ATPase operon of E. coli MG1655 (between atpD and atpC) was inserted into each for-

ward primer to allow polycistronic expression of atpAGD and the respective gene. The

linearized plasmid pSB62.6 and the DNA fragments harboring the amplified genes were

ligated by Gibson assembly, yielding plasmids pSB84.3, pSB85.3, and pSB88.11 (Appendix

Table S1). For coexpression of pfkA and pflB together with atpAGD in the high copy plas-

mid, pSB84.3 was linearized by PCR with the primer pair pSB73.4_Gibson_fw/pfkA_rv.

pflB was amplified from the genomic DNA of E. coli MG1655 by PCR using the primer

pair pflB_rbs2_fw/pflB_rbs_rv. The same rbs as used above was inserted into the forward

primer to allow polycistronic expression of atpAGD, pfkA, and pflB from a single operon.

The pflB-harboring DNA fragment and the linearized plasmid pSB84.3 were ligated by
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Gibson assembly, yielding plasmid pSB86.4 (Appendix Table S1).

4.2 Media and cultivation conditions

All liquid and solid media used for cultivation of the ATPase and control strains con-

tained kanamycin (except for "WT" and "WT + IPTG") with a final concentration of 50

µg/ml. For growth assays, cells were freshly transformed with the corresponding plas-

mid and plated on LB0 agar plates (10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, 15

g/l agar). A single colony was picked and used to inoculate 5 ml of LB0 medium. The

medium was incubated at 37°C and 150 rpm for 5 h. For aerobic cultivation, cells were

diluted 1:500 into chemically defined medium (MM: 4 g/l glucose, 34 mM NaH2PO4, 64

mM K2HPO4, 20 mM (NH4)2SO4, 1 µM Fe(SO4)4, 300 µM MgSO4, 1 µM ZnCl2, 10 µM

CaCl2, adapted from (Tanaka et al., 1967), containing 0.01 mM of IPTG (except for "WT")

and cultivated at 37°C and 250 rpm overnight. The cells were centrifuged at 5,000 g,

washed, and used to inoculate 25 ml of fresh MM (containing 0.01 mM IPTG, except for

"WT") to an optical density at 420 nm (OD420) of 0.2 (0.4 for the HC ATPase strain). The

cells were cultivated in 250-ml shake flasks with three baffles at 37°C and 250 rpm. For

anaerobic cultivation, cells from the LB0-culture were diluted 1:100 into MM (containing

0.01 mM IPTG, except for "WT") and cultivated at 37°C without shaking overnight. The

cells were centrifuged at 5,000 g, washed, and used to inoculate fresh MM (containing

0.01 mM IPTG, except for "WT") to an OD420 of 0.2 (0.4 for the HC ATPase and pfkA,

pflB, or pgk co-expressing strains). The medium was filled into 5-ml screw-cap glass

vials (completely filled to the top), and the vials were incubated at 37°C without shak-

ing. For every time point, new vials were opened to guarantee anaerobic conditions.

For cultivation of growth-arrested cells, the same procedures for aerobic and anaerobic

cultivation were followed as described above, but MM without added (NH4)2SO4 and

an initial OD420 of 2.0 were used for cultivation. For anaerobic cultivations in medium

containing additionally fumarate, the cells were cultivated as described above, but MM

supplemented with 20 mM of fumarate was used for the overnight and main cultures.

Cell growth was monitored measuring the OD420 and using a factor of 0.22 to convert

one OD420 unit to gram dry weight per liter (gDW/l). All cultivations were performed

in biological triplicates, if not stated otherwise.
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4.3 Analytical methods

Extracellular glucose, ethanol, acetate, formate, succinate, lactate, pyruvate, and fu-

marate in the medium were quantified as described earlier (Boecker et al., 2019). Oro-

tate was quantified by the same method but was not secreted in significant amounts by

the strains. For quantification of intracellular metabolites (except pyruvate), cells ( 0.5

mg of biomass, from mid-exponential growth phase, growth conditions as described

above) were applied to filter disks (Merck Millipore, # HVLP02500) under constant ni-

trogen flow to keep anaerobic conditions. The medium was removed by suction filtra-

tion, and the filter disks were immediately transferred to 1 ml of a -20°C cold acetoni-

trile/methanol/water (40:40:20) quenching solution. After incubation at -20°C for at least

30 min, the samples were shaken vigorously, and 500 µl of the mixture was centrifuged

at 17,000 g and -9°C for 15 min. Next, 400 µl of the supernatant was kept at -80°C until

metabolite quantification. Extracts were mixed with a 13C-labeled internal standard in

a 1:1 ratio and analyzed by liquid chromatography-tandem mass spectrometry, which

was performed as previously described (Guder et al., 2017) using an Agilent 6495 triple

quadrupole mass spectrometer (Agilent Technologies). The ratio of 12C and 13C peak

heights was used to quantify metabolites. 12C/13C ratios were normalized to OD at the

time point of sampling. Absolute ATP, ADP, and AMP concentrations were determined

with the 13C internal standard and authentic standards (Guder et al., 2017). A specific

cell volume of 2 µl/mg was used to calculate the cell volume. The intracellular adenosine

energy charge was calculated with the formula ([ATP] + 0.5[ADP])/([ATP] + [ADP] +

[AMP]). For quantification of intracellular pyruvate, cell extracts were prepared as de-

scribed above, but 1 mg of biomass and 2 ml of the quenching solution were used. 1.7 ml

of the extract were centrifuged at 17,000 g and -9°C for 15 min and 1.5 ml of the super-

natant transferred to a new test tube. The solvents were evaporated in a speed-vac and

the residues dissolved in 55 µl of H2O. Absolute pyruvate concentrations were deter-

mined using the pyruvic acid assay kit (Megazyme, # K-PYRUV) and normalized to OD

at the time point of sampling. For proteomics analysis, cells were cultivated as described

above. 1 × 109 cells were harvested by centrifugation (3 min, 4°C, 17,000 g), the super-

natant discarded and the cells resuspended in 2 ml of ice-cold PBS buffer. The cells were

centrifuged again (3 min, 4°C, 17,000 g) and the PBS-washing step was repeated twice.

Cell pellets were stored at -80°C until further analysis. The pelletized cells were lysed

in 400 µl of 2% sodium lauroyl sarcosinate (SLS) in 100 mM ammonium bicarbonate by

heat (20 min, 90°C) and sonication. After 10 min of centrifugation at 17,000 g, the protein

concentration in the supernatant was determined with a bicinchoninic acid (BCA)-based
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protein assay kit (Thermo Fisher, # 23252). 7.5 µl of 0.2 M tris(carboxylethyl)phosphine

in 100 mM ammonium carbonate were added to 300 µl of the supernatant. The solution

was incubated for 15 min at 90°C. 7.5 µl of 74 mg/ml iodoacetamide were added to the

cooled-off samples and incubated for 30 min at 25°C under shaking of 500 rpm. Using

2% SLS in 100 mM ammonium bicarbonate, 200 µl aliquots of the samples were prepared

containing a total protein mass of 50 µg. 600 µl of 100 mM ammonium bicarbonate and

8.5 µl of 0.1 µg/µl porcine trypsin were added to the samples for incubation overnight at

30°C. 5% trifluoroacetic acid was added to the samples to a final concentration of 1.5%.

After incubation for 10 min at room temperature, the samples were centrifuged at 17,000

g for 10 min at 4°C. The supernatant was used for solid phase extraction of the peptides

using C18-columns (Macherey-Nagel). Peptides were analyzed using a Q-Exactive Plus

mass spectrometer connected to an Ultimate 3000 RSLC nano and a nanospray flex ion

source (Thermo Scientific). The analytical setting was reported in detail previously (Do-

nati et al, 2021). In short, peptide separation was performed on a reverse-phase HPLC

column (75 µm × 42 cm) packed in-house with C18 resin (2.4 µm, Dr. Maisch GmbH,

Germany). The following separating gradient was used: 96% solvent A (0.15% formic

acid) and 4% solvent B (99.85% acetonitrile, 0.15% formic acid) to 30% solvent B over 60

min at a flow rate of 300 nl/min. The data acquisition mode was set with the following

parameters: 1 MS scan at a resolution of 70,000 with 50 ms max. ion injection fill time,

MS/MS at 17,500 scans of the 10 most intense ions with 50 ms max. fill time. Label-

free quantification (LFQ) of the data was performed using Progenesis QIP (Waters) and

MASCOT (v2.5, Matrix Science) for spectrum/peptide identification. Progenesis outputs

were further processed with SafeQuant (Glatter et al., 2012; Ahrné et al., 2016).

4.4 Calculation of growth rate, specific exchange rates, and yields

For experiments with growth, the growth rate (µ) for the exponential phase was deter-

mined by plotting the natural logarithm of the biomass concentrations of each sampled

time point (within the exponential growth period) against the cultivation time. The slope

of the linear regression equals µ. Specific uptake and excretion rates for the exponential

phase in growth-coupled experiments were determined with the formula:

rM = µ(cM,e − cM,s)/(cX,e − cX,s) [mmol/gDW/h]

where µ is the growth rate, cM,e and cM,s represent the end and start concentrations

of the respective metabolite M (mmol/l glucose, ethanol, acetate, formate, lactate, succi-

236



Chapter 7

nate, pyruvate, or fumarate), and cX,e and cX,s represent the end and start concentrations

of the biomass (gDW/l). In experiments with growth arrest, where the biomass concen-

tration remained nearly constant, the specific rates are calculated as:

rM = (cM,e − cM,s)/XAv/∆t [mmol/gDW/h]

where XAv is the average biomass concentration (gDW/l), and ∆t = te − ts the length

of the time period (difference of end and start time). This procedure was used for each of

the three replicates from which then the mean and the standard deviation was calculated

for each rate.

Metabolite yields were determined by plotting ∆cM (mmol/l) against ∆cGlc (mmol/l)

for every sampled time point of the exponential growth period (for growth-coupled cul-

tivation) or of the indicated time period (of growth-arrested cultivation). The slope of

the linear regression equals the yield of the respective metabolite. Biomass yields were

determined by plotting ∆cX (gDW/l) against ∆cGlc (g/l) for every sampled time point of

the exponential growth period (for growth-coupled cultivation). The slope of the linear

regression equals the biomass yield.

4.5 Statistical analysis

Unless stated otherwise, P-values for comparisons between different strains were calcu-

lated using an unpaired two-sample t-test with the software OriginPro (version 2020b,

OriginLab Corporation). Statistical details of the individual experiments can be found in

the captions of the respective tables and figures.

4.6 Metabolic flux analysis to determine ATP turnover rates
through the ATPase

Using a stoichiometric model of the central metabolism of E. coli (83 reactions and 54

internal metabolites; adapted from (Hädicke and Klamt, 2017) and the MATLAB (Math-

Works, version R2020b) toolbox CellNetAnalyzer (Klamt et al., 2007; von Kamp et al.,

2017), metabolic flux analysis based on the experimentally determined exchange rates

was performed to estimate the ATPase flux in the different strains. In stoichiometric

models, unspecific ATP consumption (which includes the non-growth-associated main-

tenance (NGAM) demand of ATP) is usually represented by an "ATPM" pseudo reac-

tion hydrolyzing ATP. In the ATPase strains, the estimated flux through this reaction
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in the stoichiometric model contains both the NGAM demand as well as the actual AT-

Pase flux and the latter can thus be calculated as the difference of the calculated ATPM

flux in the ATPase strains and the calculated ATPM flux in the corresponding control

strains. Herein, it was assumed that, after consideration of the measured growth rate

and exchange fluxes, the remaining degrees in the network were used by the cell to

produce a maximum amount of ATP (which is accounted for by maximizing the ATPM

flux under the given constraints). When performing these calculations, it happens (espe-

cially for anaerobic conditions) that the experimentally determined rates contradict each

other (e.g., due to linear dependencies). In those cases, CellNetAnalyzer can be used to

minimally adjust the measured rates to obtain a consistent scenario ("Check feasibility"

function) before the ATPM flux is maximized. The stoichiometric model together with

a detailed description of the calculations is provided on GitHub (see Data availability).

4.7 Kinetic model

The two versions for the kinetic model were implemented and simulated with COPASI

(Hoops et al., 2006) and are described in detail in the Appendix Supplementary Text. The

model files are also provided on GitHub (see Data availability).

Data availability

The kinetic models (provided in COPASI and SBML format) as well as the stoichiometric

model used for calculating the ATPase fluxes (provided as CellNetAnalyzer project and

as SBML file) are available under the following GitHub repository:

https://github.com/klamt-lab/Models_E.coli_High_ATP_Demand

Metabolomics MS data: Edmond Repository [Dyld9hM3KIMXqRg2]

https://edmond.mpdl.mpg.de/imeji/collection/Dyld9hM3KIMXqRg2

Proteomics MS data: MassIVE Repository MSV000088475

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000088475
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Fig. EV 7.8: Aerobic growth of the different ATPase strains. (A) Time course of
biomass concentration. (B) Time course of glucose concentration. (C) Specific glucose
(Glc) uptake rate and specific productivity for acetate (Ace). (D) Yield of Ace. Data
information: The reaction rates in (C) were calculated for the exponential phase under
assumption of quasi-steady state. Because changes in glucose and acetate are rather
small during cultivation of the HC ATPase strain, a higher initial biomass concentration
of 0.1 gDW/l was used for this strain to get data that are more robust for calculating the
metabolite exchange rates. The means (A and B) and the means and individual data (C
and D) for n = 3 biologically independent samples are shown. The error bars represent
± SD. Source data are available online for this figure.
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Fig. EV 7.9: Aerobic cultivation of the different strains under growth arrest. (A)
Time course of biomass concentration. (B) Time course of glucose concentration. (C)
Specific glucose (Glc) uptake rate and specific productivity for acetate (Ace). (D) Yield
of Ace. Data information: The reaction rates in (C) were calculated from the beginning
of cultivation until the last sampling time point where glucose was still present in the
medium. The means (A and B) and the means and individual data (C and D) for n =
3 biologically independent samples are shown. The error bars represent ± SD. Note:
although no nitrogen source was present in the medium, some minor growth (especially
of the control and wild-type strains) remained (A), which is a known phenomenon within
the first hours of cultivation after nitrogen depletion Switzer et al., 2020. Source data are
available online for this figure.
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Fig. EV 7.10: Intracellular metabolite concentrations of the different strains
during anaerobic growth. (A) Absolute intracellular ATP, ADP, and AMP concen-
trations and energy charge. (B) Relative intracellular metabolite concentrations from
core metabolism. Data information: The means and individual data of n = 3 biologically
independent samples are shown and the error bars represent ± SD.
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Fig. EV 7.11: Changes on proteome level (only proteins from core metabolism
are shown) of the three ATPase strains in regard to the corresponding control
strains under anaerobic cultivation conditions with growth. Significantly (P value
< 0.05) upregulated (upregulation > 1.5-fold) proteins are depicted in red, significantly (P
value < 0.05) downregulated (downregulation > 0.33-fold) proteins are depicted in green.
Proteins with a significant down- or upregulation but below the thresholds of 1.5-fold up-
or 0.33-fold downregulation are depicted in yellow, proteins with no significant change
(P value > 0.05) are depicted in grey. The gene names of the corresponding proteins are
given for significantly down- or upregulated proteins. P values were calculated for a
two-sample t-test from n = 3 biologically independent samples.
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Fig. EV 7.12: Anaerobic growth of the HC control (left) and HC ATPase (right)
strains with (red) and without (blue) fumarate addition. The average time courses
of biomass and glucose concentrations of n = 3 (-Fum) and n = 2 (+Fum) biologically
independent samples are shown. The error bars represent± SD. See also Appendix Table
S4 for the determined specific rates. Source data are available online for this figure.
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Key findings

Chapter 3: We systematically investigated in-scource modifications during FI-MS with

authentic metabolite standards spiked into a metabolite extract sample. We found

that a standard produced on average 68 significant m/z features. Using a network

approach and considering in-source fragmentation, we were able to explain 49 % of

the significant features. We showed that extensive in-source modifications occur

during FI-MS. Yet, many of these modifications can be explained. Our data is a

useful resource helping to avoid misannotations of metabolites.

Chapter 4: We created a large library of argG mutants in E. coli and presented a high-

throughput method to enrich temperature-sensitive mutants in the library. Our

method combined a TIMER-based single cell growth rate reporter and fluores-

cence activated cell sorting (FACS) to sort slow or non-growing cells. 90 % of ran-

domly isolated strains from the enriched population were temperature-sensitive

showing a high efficiency of our enrichment approach. We further showed that

temperature-sensitive argG can be used as a metabolic valve to dynamically arrest

growth and, simultaneously, overproduce citrulline in a two-stage bioprocess. In

1 L-bioreactors, we produced 3 g/L citrulline within 45 h.

Chapter 5: Using a customized barcoded CRISPR/Cas9 method, we created a pooled

library of 15,120 E. coli strains. Each strain had a single amino acid substitution in

one of 346 essential genes. We showed that competitive growth assays coupled to

deep sequencing of plasmid-borne barcodes can be used to identify temperature-

sensitive strains on a large scale. Growth analysis of 92 isolated temperature-

sensitive strains revealed different degrees of temperature-sensitivity among the

strains and a gradual response of growth to the temperature. By FI-MS, we show

that 42 temperature-sensitive enzymes, out of 80 isolated strains with mutant en-

zymes, function as metabolic valves that introduce metabolic bottlenecks at 42

°C. The data also revealed that metabolic bottlenecks can cause secondary bottle-

necks. Further, we used seven strains to decouple cell growth from the overpro-

duction of chemicals. A temperature-sensitive strain carrying a mutation in DNA

replication, dnaX (Leu289Gln), allowed us to control growth in an arginine over-

production strain creating a two-stage bioprocess. Our results show a great po-

tential of temperature-sensitivity as tool in metabolic engineering. With 92 identi-

fied temperature-sensitive mutants, we also provide a valuable resource for future

studies in E. coli.
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Chapter 6: The concept of enforced ATP wasting was tested in a strain overexpress-

ing ATPase. In the ATPase strain, glucose uptake rates were the second high-

est reported for growth-arrested strains under anaerobic conditions. Higher rates

were only achieved in a follow-up study (see Chapter 7). The consumption of

glucose and the production of fermentation products remained high until glucose

was depleted from the medium. These results showed that enforced ATP wasting
by ATPase overexpression can improve product titers and yields as well as the

production rate.

Chapter 7: Following up on Chapter 6, different expression strengths of ATPase in E.
coli were tested in growing and non-growing cells under aerobic and anaerobic

conditions. With increasing ATPase expression levels, the glucose uptake rates

increased. However, at very high expression levels, the uptake rate decreased

sharply and was lower than in a wild type strain. Phosphofructokinase caused this

effect since it is activated by ADP and has ATP as substrate. Further, we showed

that the PfkA and PflB catalysed reactions were rate limiting steps under very high

ATPase expression levels. These results revealed how glycolytic flux is adjusted to

increases in ATP demand and what the limits to this compensatory mechanism are.

The study further showed that enforced ATP wasting is very effective to increase

metabolic activity under growth arrest.

Open questions

How can we extend the number of explainable in-source
modifications during FI-MS?

High-throughput metabolomics methods like FI-MS are very useful in metabolic engi-

neering attempts that rely on testing hundreds or thousands of engineered strains. Our

systematic analysis of in-source modifications can help avoid misannotations of metabo-

lites during FI-MS (Chapter 3) and, thus, can improve the method. Although, in-source

modifications are abundant and easily detected during FI-MS, they are not exclusive to

FI-MS. Therefore, our findings about in-scource modifications are also valuable to other

mass spectrometry methods that use ESI. With our network approach, we could already

explain 49 % of the significant peaks using a set of 51 reference mass differences from

literature. An open question is how can the other 51 % of the significant peaks be ex-

plained?
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Extending the list of reference peaks can explain more peaks. However, systematically

adding all possible carbohydrates with a mass below 1,100 Da leads to a combinatorial

explosion. This poses the risk that a m/z value in the list matches with a measured m/z
difference by chance and does not reflect the actual in-source modification. For example,

a modification with an adduct that is not soluble or has not been observed in biological

cells is unrealistic. This problem is even more severe if a network approach is used.

Then, sequential combinations could potentially cover all possible masses. Thus, we

require constraints for the reference list that permit only chemically feasible and likely

modifications.

A possible approach is to focus on how metabolites interact directly with each other

during ESI and form new compounds. For this analysis, measuring pairwise combina-

tions of metabolite standards could help identifying common chemical synthesis reac-

tions during ESI. Using the information about such common synthesis reactions, the

number of peaks in our reference list can then be increased.

Another approach to increase the number of explainable peaks is to make more use of

isotope-labelled metabolites, either as pure standards or as uniformly-labelled metabo-

lite extract sample. This can help identifying the origin of an in-source modification.

For example, in our FI-MS study, we observed that G3P had a large number of signif-

icant m/z features. However it is unclear whether these peaks derive from in-source

fragmentations, chemical reactions with itself or its fragments, chemical reactions with

other metabolites, or other in-source modifications. Measuring G3P as pure standards as

well as spiked-into fully 13C-, 15N-, and [13C+15N]-labelled metabolite extract samples

would provide information about the origin of an adduct.

Which mutations induce temperature-sensitivity?

An algorithm that predicts temperature-sensitive mutations with high accuracy would

be very useful for metabolic engineering but also for studying essential genes. So far,

only few prediction tools are available, and the here used TSPred algorithm (Tan et al.,

2014; Varadarajan et al., 1996) still requires the testing of many predicted mutants. A

challenge is that in order to refine the prediction tools, we need many more temperature-

sensitive mutants to identify better design laws or to train machine-learning algorithms.

In this, we need not only many more mutants for a single gene but for many genes. Ide-

ally, the mutants have very few mutations making it easier to deconvolute the impact

of a mutation to the stability of a protein. High number of mutations or missing se-

quencing data is also the reason why existing libraries of temperature-sensitive mutants
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(Ben-Aroya et al., 2008; Li et al., 2011; Kofoed et al., 2015) are only of limited use to learn

design rules of temperature-sensitive mutations.

In our study on two-stage citrulline production (Chapter 4), we described a high-

throughput method to enriched temperature-sensitive argG mutants using a flow cy-

tometry approach. Out of ca. 81.000 sorted cells, we randomly isolated 90 mutants. 81 of

them were temperature-sensitive (90 %). These results indicate that the absolute num-

ber of possible temperature-sensitive variants of a protein could be very high. Consid-

ering how huge the design space of proteins is, finding a temperature-sensitive mutant

is still challenging though. We also observed that the temperature-sensitive ArgG vari-

ants, which we sequenced, had between 2 and 11 mutations. Some of these mutations

were synonymous. In case of multiple non-synonymous mutations, it requires tedious

follow-up work to clarify, which of the mutations contribute to temperature-sensitivity.

In future studies, both, the total number of mutations and the number of synonymous

mutations could be reduced in our approach by either optimizing the error-prone-PCR

further of by substituting it with a more targeted cloning method using oligonucleotide

pools. Our enrichment approach could then provide the required throughput to identify

many more temperature-sensitive mutants of single genes and support studies about

design principles of temperature-sensitivity.

In another study on temperature-sensitivity (Chapter 5), we used a barcoded CRISPR/-

Cas9 method to encode mutations for single amino acid substitutions into the genome

of E. coli. Using a tool to predict temperature-sensitive mutations (Tan et al., 2014;

Varadarajan et al., 1996), we were able to reduce the design space and cover 346 es-

sential genes. We found that only a small fraction of the predicted mutations induced

temperature-sensitivity (1,045 out of 15,120). Thus, the results of our study could be used

to improve the prediction tool. Alternatively, the CRISPR/Cas9 genome editing method

can also be used for site saturation mutagenesis of a gene (Garst et al., 2017). In future

studies, our approach to identify temperature-sensitive mutants could be combined with

site saturation mutagenesis to study temperature-sensitivity in an unbiased way.

What makes microbial strains stop overproducing under growth
arrest?

In Chapter 4, we observed that argG knockout strains are metabolically active for at least

32 hours under growth arrest and produced citrulline. However, the production rate de-

creased over time. As described in Chapter 5, the production rate during the two-stage
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arginine overproduction using a temperature-sensitive dnaX (Leu289Gln) strain also de-

clined over time, and similar effects were observed in Chapter 6 and in another study as

well (Harder et al., 2018). The dynamics of the production rate declines were different in

these experiments indicating a high specificity to the individual overproduction strain.

However, taken together, the production rates can initially be high under growth ar-

rest but within one or two days E. coli cells stop overproducing chemicals. So far, it is

unclear what the reason is for the decline of the production rates under growth arrest.

Possible explanations are cell ageing, regulatory responses, product toxicity, or inhibi-

tions due to fermentation products like acetate.

Our results in Chapter 6 and Chapter 7 showed that enforced ATP wasting is very effec-

tive in increasing the metabolic activity under growth arrest by nitrogen limitation. An

open question is whether enforced ATP wasting can also reduce or even stop the decline

of the production rate. By feeding glucose to the medium throughout an experiment or

by reducing the initial biomass, it would be possible test how long strains with enforced
ATP wasting keep their production rates at a high level.

Another open question is whether enforced ATP wasting can improve the production

rates in strains that are growth-arrested by other means than nitrogen limitation or in

strains, in which the product formation is not directly linked to ATP regeneration. In

future studies, the here presented two-stage overproduction strains with temperature-

sensitive mutations could be coupled with enforced ATP wasting to study further appli-

cations of the concept.

Concluding remarks

Only with advanced bioprocesses that are economically competitive, we will achieve a

transition to a sustainable bioeconomy. The field of metabolic engineering is thus fo-

cussing on developing microbial overproduction strains that enable economically viable

bioprocesses. Since the production of chemicals by microbes faces a trade-off between

product and biomass formation, a promising approach to create improved bioprocesses

is to decouple cell growth and production.

In the here presented work, we investigated temperature-sensitivity as a tool to dy-

namically control cell growth and metabolism. We presented two different approaches to

identify temperature-sensitive mutants in high-throughput. Analysis of the temperature-

sensitive mutants revealed that many of them allowed us to dynamically control cell

growth and metabolism. With some of these mutants, we created two-stage bioprocesses
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and overproduced chemicals under growth arrest. However, the production strains re-

quire further optimization and engineering to reach commercialisation.

A very promising approach to improve production rates, is the enforced ATP wast-
ing that we further studied in this work. In particular, enforced ATP wasting performed

very well in increasing production rates under growth arrest. Future applications could

integrate temperature-sensitive mutants and enforced ATP wasting to further advance

two-stage bioprocesses.

Fast mass spectrometry-based metabolomics methods play a crucial role in metabolic

engineering since they allow us to analyse many engineered microbial strains. FI-MS is

a particularly fast method. Our findings about in-source modifications during FI-MS can

be used to further improve the method. In the future, FI-MS could emerge as a crucial

technology to screen large strain libraries in metabolic engineering.
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