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Igor Nenadic, Tilo Kircher & Andreas Jansen

Published in Frontiers in Systems Neuroscience (2020, Impact Factor: 3.293)

[Kessler et al., 2020]

2. Revisiting the e↵ective connectivity within the distributed cortical network for

face perception

Roman Kessler, Kristin M. Rusch, Kim C. Wende, Verena Schuster & Andreas Jansen

Published in NeuroImage: Reports (2021)

[Kessler et al., 2021b]

3. Function is bound by structure in e↵ective connectivity models

Roman Kessler & Andreas Jansen

manuscript

[Kessler and Jansen, 2022]

Additional articles

[Sahraei et al., 2021] Sahraei, I., Hildesheim, F.E., Thome, I., Kessler, R., Rusch, K.M., Sommer,
J., ... & Jansen, A. (2021). Developmental changes within the extended face processing network:
A cross-sectional functional magnetic resonance imaging study. Developmental Neurobiology.

[Thome et al., 2021] Thome, I., Hohmann, D.M., Zimmermann, K.M., Smith, M.L., Kessler, R.,
& Jansen, A. (2021). “I Spy with my Little Eye, Something that is a Face. . . ”: A Brain Network
for Illusory Face Detection. Cerebral Cortex.

iii



[Kessler et al., 2021a] Kessler, R., Henniger, O., & Busch, C. (2021). Fingerprints, forever young?
25th International Conference on Pattern Recognition (ICPR) (pp. 8647-8654). IEEE.

[Hildesheim et al., 2020] Hildesheim, F.E., Debus, I., Kessler, R., Thome, I., Zimmermann, K.M.,
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Abstract

The recognition and processing of faces is a core competence of our human brain, in which many
neuronal areas are involved. Faces are not only a means to recognize and distinguish between
individuals, but also a means to convey emotions, intentions, or trustworthiness of our counterpart.
The processing of faces is an orchestrated interaction of a multitude of neuronal regions. This
interplay can be quantified at the neuronal level using so-called e↵ective connectivity analysis.
The most common e↵ective connectivity analysis, which is also used in the present work, is
called Dynamic Causal Modeling. With its help, interregional interactions are modelled at the
neuronal level, and at the measurable level – such as with functional magnetic resonance imaging
– evidence is found for the probability of the presence of neuronal connections and also their
quantitative expression. E↵ective connectivity analyses can thus reveal the couplings between
brain areas during specific cognitive processes, such as face perception.

The way we process faces also changes when, for example, mental illness is present. Thus,
negative emotions such as fear may be perceived disproportionately more intense, or positive
emotions such as joy less intense. The evaluation of neuronal parameters in face processing could
be used in clinical practice, e.g. for the early detection of mental illnesses or the quantification of
therapy success.

A prerequisite for clinical application is the reliability of the modeling method. Thus, results of
models should be generalizable and not depend on certain nuances of the modeling. Furthermore,
the interpretability of many model parameters turns out to be di�cult. However, this is necessary
to be able to describe causal relationships.

In the present dissertation, so-called Dynamic Causal Models are applied in the field of neural
face processing. In a first study a clinical context is used. Here, neural models of emotion
regulation in face processing were used to identify potential consequences of risk factors for the
development of mental illness. In another study, the generalizability of neural network models was
tested in a healthy population. Here, many limitations of the method as a whole were revealed.
In a final study, both observed and simulated data were used to uncover more limitations in the
interpretation of model parameters.

Keywords: face perception, neural processing of faces, functional magnetic resonance imaging,
e↵ective connectivity, Dynamic Causal Modeling
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Zusammenfassung

Die Erkennung und Verarbeitung von Gesichtern ist eine Kernkompetenz unseres menschlichen
Gehirns, an welcher viele neuronale Areale beteiligt sind. Gesichter dienen nicht nur zur Erkennung
und Unterscheidung zwischen Individuen, sondern transportieren zum Beispiel auch Emotionen,
Absichten, oder Vertrauenswürdigkeit unseres Gegenübers. Dabei ist die Verarbeitung von
Gesichtern ein orchestriertes Zusammenspiel einer Vielzahl von neuronalen Regionen. Dieses
Zusammenspiel kann mittels der sogenannten e↵ektiven Konnektivitätsanalyse auf neuronaler
Ebene quantifiziert werden. Die häufigste, und auch in der vorliegenden Arbeit verwendete
Konnektivitätsanalyse trägt den Namen Dynamic Causal Modeling. Mit ihrer Hilfe model-
liert man interregionale Interaktionen auf neuronaler Ebene, und findet auf messbarer Ebene
– wie z.B. mit funktioneller Magnetresonanztomographie – Hinweise für die Wahrscheinlichkeit
neuronaler Verbindungen und auch deren quantitative Ausprägung. Mit Hilfe von e↵ektiven
Konnektivitätsanalysen können somit die Kopplungen zwischen Hirnarealen bei bestimmten
kognitiven Vorgängen, wie z.B. der Gesichterwahrnehmung, aufgedeckt werden.

Die Art und Weise, wie wir Gesichter verarbeiten, ändert sich beispielsweise, wenn z.B.
psychische Erkrankungen vorliegen. So können negative Emotionen wie Furcht unproportional
stärker wahrgenommen werden, oder positive Emotionen wie Freude weniger stark. Die Auswer-
tung neuronaler Kennwerte bei der Gesichterverarbeitung könnte perspektivisch im klinischen
Alltag zum Einsatz kommen, z.B. zur Früherkennung von psychischen Erkrankungen, oder der
Quantifizierung von Therpieerfolg.

Voraussetzung für einen klinischen Einsatz ist jedoch eine Verlässlichkeit der Modellierungs-
methode. So sollten Ergebnisse von Modellen generalisierbar sein, und nicht von bestimmten
Nuancen der Modellierung abhängen. Weiterhin stellt sich die Interpretatierbarkeit vieler Mod-
ellparameter als schwierig heraus. Diese ist jedoch notwendig, um ursächliche Zusammenhänge
beschreiben zu können.

In der vorliegenden Dissertation werden sogenannte Dynamic Causal Models im Bereich
der neuronalen Gesichterverarbeitung eingesetzt. In einer ersten Studie wird ein klinischer
Kontext herangezogen. Hier wurden anhand neuronaler Modelle der Emotionsregulation in der
Gesichterverarbeitung Auswirkungen von möglichen Risikofaktoren zur Entwicklung psychischer
Erkrankungen auf die Hirnkonnektivität erkannt. In einer weiteren Studie wird die Generalisier-
barkeit neuronaler Netzwerkmodelle an einer gesunden Population erprobt. Hier zeigten sich
viele Limitationen der Methode als Ganzes auf. In einer letzten Studie werden sowohl mit echten,
als auch mit simulierten Daten, weitere Limitationen in der Interpretation von Modellparametern
aufgedeckt.

Keywords: Gesichterwahrnehmung, Neuronale Verarbeitung von Gesichtern, funktionelle
Magnetresonanztomographie, e↵ektive Konnektivität, Dynamic Causal Modeling
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Abbreviations

BMA Bayesian Model Averaging

BMS Bayesian Model Selection

BOLD Blood Oxygen Level Dependent

DCM Dynamic Causal Modeling

spDCM spectral Dynamic Causal Modeling

stDCM stochastic Dynamic Causal Modeling

DWI Di↵usion Weighted Imaging

FFA Fusiform Face Area

HLM Hierarchical Linear Modeling

IFG Inferior Frontal Gyrus

MD Major Depression

MRI Magnetic Resonance Imaging

fMRI functional Magnetic Resonance Imaging

OFA Occipital Face Area

OFC Orbitofrontal Cortex

mPFC medial Prefrontal Cortex

STS (posterior) Superior Temporal Sulcus
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Chapter1

Introduction

�

’An agent does not have a model of its world - it is a model. In other words, the form, structure,

and states of our embodied brains do not contain a model of the sensorium - they are that

model. Every aspect of our brain and body can be predicted from our environment.’ – Karl Friston

�
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1.1 What is a model

1.1 What is a model

In our everyday life, we are surrounded by models. Models are used for weather forecasting

[Saxena et al., 2013], and models are used for personalized advertising [Wirtz et al., 2017]. Mod-

els are used to describe much of the primary questions of physics [Redhead, 1980], as well as our

understanding of the biological evolution up to social interactions in the complex ecosystems

we live in [Darwin, 1859, Hartmann et al., 2008]. Without models, we as a global society, and in

particular we as scientists, would not stand at this point. That is, we as society would lack much

of the outstanding knowledge we obtained access to during the last centuries. On the other hand

we as scientists would lack essential toolboxes to generate such knowledge. Without models to

interpret large and unstructured amounts of data, our understanding from the world would rely

upon anecdotes.

The human brain is presumed to create models of the outside world [Friston and Kiebel, 2009].

Each sensory input contributes to the shape of our internal model, therefore, learning is an

continuous updating of our internal models about our environment [Clark, 2013]. To raise the

stakes even further, Karl Friston – as pointed out in the opening quotation – proposes not only

the brain (i.e., we ourselves) containing models, but rather being large models by themselves

(i.e., ourselves) [Friston, 2013].

However, in our world we usually talk about less complex models than the human brain.

Models which we use as tools, e.g., in sciences. Such models can be deployed with di↵erent

aims. First, models can be used to describe the shape of data, such as the distribution of

some characteristic of a group [Fisher and Marshall, 2009]. Second, models can be used to infer

population properties or mechanisms, based on a sample [Allua and Thompson, 2009]. Third,

models can be used to predict current or future states of a characteristics [Larose, 2015].

Heinze and colleagues [Heinze et al., 2018] defined some minimally required properties of

a model. First, it should be valid, such as it provides predictions with acceptable accuracy.

To be valid, a model must also be reliable. If a model is not reliable, such as it encompasses

comparable model parameters when fitted to a similar subset of data, its validity must be

questioned. Second, it should be practically useful, hence promoting conclusions, and therefore

it should be interpretable. Third, it should be simple. An overly complex model is deemed to

be either not interpretable, or is subject to high variance, missing the fundamental ability to

generalize to novel data.

The studies presented in this dissertation will make use of models encompassing di↵erent

of the proposed aspects. The models of study A are proposed to be useful, in a way that they

describe di↵erences in brain connectivity between di↵erent groups of participants for which a
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1.2 Models to describe brain function

possible underlying mechanism is inferred [Kessler et al., 2020] (Appendix A). In study B, we

question the usefulness of a very popular model by testing its robustness and reliability, in

terms of replicability across di↵erent data sets [Kessler et al., 2021b] (Appendix B). All models

are such simple, that they can be used to illustrate the neural mechanisms they are aiming at

describing in an understandable fashion. However, with study C, we question the validity of these

kinds of models in general [Kessler and Jansen, 2022] (Appendix C). In particular, the overall

interpretability of such models are questioned, and commonly conducted pitfalls are illustrated,

largely constraining any interpretability and therefore the models’ usefulness.

1.2 Models to describe brain function

Researchers in cognitive neurosciences use models to render research results understandable,

teachable, and therefore accessible. One well-known example is the dual-stream model of visual

processing in the human brain [Van Essen and Deyoe, 1995, Ungerleider and Haxby, 1994]. The

dual-stream model separates visual processing pathways along the visual hierarchy into a ventral

stream, largely responsible for object identification, and a dorsal stream, largely responsible for

object localization [Ungerleider and Haxby, 1994]. Both streams originate in early visual cortex,

and increase in complexity of computations towards higher visual areas, i.e., towards downstream

levels of the respective streams [Milner, 2017]. This exemplary but famous model is rather vague

in its details, but serves as working model in research and teaching. However, it describes

interactions between many, partly distant brain regions during a cognitive processing task such

as visual perception. Other models of the brain describe more fine-grained operations within

the brain. For example, the model of Rao and Ballard illustrates microscopic computational

interactions between regions of the early visual cortex [Rao and Ballard, 1999]. On the other

hand, the model of Bastos et al. illustrates even more granular computations within a single

cortical column of early visual processing [Bastos et al., 2012]. Whereas these fine-grained models

are suitable to test hypotheses or describe interaction in insulated regions, they neglect the

complex interplay of these regions with other cortical regions. On the contrary, large-scale models

describing the interactions between regions – such as the dual-stream model – can integrate

rather coarse patterns of brain activation. However those lack some computational granularity

and neglect the many, microscopic processes occurring within each and every single region. Both

kinds of models are important to understand particular phenomena. However, integrating both

kinds of models has not yet become computationally traceable. Therefore, we must often decide

for one of the two kinds of models, depending on the research question and the spatial extend on

which we want to test hypotheses. The models applied throughout this thesis are larger-scale

3



1.3 Models of face processing

models, aiming at describing interactions between regions on a macroscopic scale.

1.3 Models of face processing

One famous model in the domain of face perception is the so-called Haxby model [Haxby et al., 2000].

The Haxby model aims at describing interactions between regions involved in human face per-

ception. Haxby distinguished between core system and extended system of face perception

[Haxby et al., 2000]. Whereas areas of the core system rather process basic information about

faces, areas of the extended system get involved to process specific aspects such as emotional

expression or biographical information [Gobbini and Haxby, 2007]. Within the core system, the

Occipital Face Area (OFA) processes single features of the face, the Fusiform Face Area (FFA)

processes the face rather holistically, and the (posterior) Superior Temporal Sulcus (STS) processes

dynamic aspects such as facial expressions [Haxby et al., 2000]. Regions of the extended system

encompass limbic regions such as the amygdala, crucial in the processing of emotional content

[Adolphs, 2002], alongside with often heteromodal regions of the prefrontal cortex such as the

Orbitofrontal Cortex (OFC), or the Inferior Frontal Gyrus (IFG) [Duchaine and Yovel, 2015]. The

Haxby model emerged from early research results mainly based on functional Magnetic Resonance

Imaging (fMRI) activation studies. It is an often-adopted working model in many studies of the

face perception network (e.g., [Frässle et al., 2016b, Fairhall and Ishai, 2007, Zhang et al., 2009]),

and throughout the years underwent refinements and revisions [Duchaine and Yovel, 2015]. In

the dissertation at hand, we tested a computational implementation of the Haxby model

[Fairhall and Ishai, 2007] – describing the neural interactions between the regions of the core

system – for its replicability and stability (appendix B). The Haxby model can not only be

used to visualize the sane processing patterns, aimed at understanding face perception in

fundamental research. It can further be used to understand abnormal processing patterns,

associated with several mental and cognitive disorders, such as prosopagnosia, autism, or

depression [Rossion, 2014, Avidan and Behrmann, 2014, Mayberg, 1997, Mayberg et al., 1997,

Bi and Fang, 2017, Koshino et al., 2008].

A cognitive disorder associated with impaired face perception (and recognition) abilities is

prosopagnosia. Prosopagnosia is referred to as face blindness, and often results from a lesion of

relevant areas of the face processing network, such as the OFA [Rossion, 2014]. Prosopagnosia has

also been put into the framework of the Haxby model [Avidan and Behrmann, 2014]. Similarly,

mental disorders such as autism or Major Depression (MD) can be understood within the

framework of computational models in the face perception system. For instance, the Mayberg

model [Mayberg, 1997] has frequently been used to explain altered patterns of emotion processing

4



1.4 Brain connectivity & Dynamic Causal Modeling

in MD, or to evaluate treatment e↵ects by antidepressant drugs [Mayberg et al., 1997]. In this

thesis, we used this model to delineate altered connectivity patterns during emotional face

processing in healthy participants with childhood trauma, a critical risk factor for MD and other

mental disorders (appendix A).

1.4 Brain connectivity & Dynamic Causal Modeling

Early fMRI studies were bound to research questions which could be explained by brain activation

(i.e., Blood Oxygen Level Dependent (BOLD) signaling) of particular brain regions. This type of

investigation, namely the investigation of functional segregation, considers each neural area as

insulated unit, but neglects its interactions with other areas [Tononi et al., 1994]. In contrast,

the investigation of functional integration tries to tackle the structural, functional, or so-called

e↵ective connectivity between brain regions, by exploring the statistical co-dependencies between

the single units or brain areas [Marrelec et al., 2008].

Structural connectivity describes the physical connections, e.g., axon bundles between brain

regions. Using Magnetic Resonance Imaging (MRI), structural connectivity can be approximated

using Di↵usion Weighted Imaging (DWI) [Soares et al., 2013]. Contrarily, functional connec-

tivity assesses the temporal commonalities between the activations of di↵erent brain regions

[Rogers et al., 2007]. It can be assessed using fMRI, and can be described such as – in its most

näıve form – it is nothing more as a correlation between the time series of two or more regions

[Rogers et al., 2007]. Whereas structural connectivity is rather time invariant across a modest

time span, functional connectivity is very task dependent, and therefore changeable within seconds

as when measured with fMRI [Hindriks et al., 2016]. However, the low-pass filter property of the

BOLD response hinders a very fine-grained analysis of the causal dependencies on the connectivity

between brain regions, such as inference about the direction of information transfer between

regions.

E↵ective connectivity however aims at finessing that drawback by modeling the neuronal

interactions on a very fine-grained time scale [Horwitz et al., 2005]. The e↵ective connectivity

method used in the dissertation at hand is Dynamic Causal Modeling (DCM) [Friston et al., 2003].

The interactions on neuronal level are vastly described by the so-called neural state equation.

Using a hemodynamic forward model, the neuronal states generated by the neural state equation

are translated into a predicted hemodynamic signal, which is then compared to the observed

hemodynamic signal [Buxton et al., 2004]. Neural model parameters are then estimated by

iteratively adjusting the neural and hemodynamic model parameters, and by comparing the time

series generated by the model with the actually observed time series [Friston et al., 2003]. This
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1.5 Motivation and objective of the thesis

process is usually referred to as model inversion. DCM aims at allowing for comparison between

hypotheses, such as identifying connections between a set of modeled brain regions which are

subject of task-dependent alterations.

More precisely: The foundation of DCM is the neural model, i.e., the neural state equation:

ż = Az + (
kX

j=1

u
(j)

B
(j))z + Cu

The neural state equation models the rate of change of activity ż as the interactions between

regions, depicted in A, B, and C matrices. The C matrix depicts the direct driving input into

brain regions of the model. Basically, if a model solely comprised a C matrix, the informative

value of the model parameters closely corresponded to activation studies targeting functional

segregation. However, A and B matrices spark opportunities to explore functional integration.

The A matrix thereby describes the task independent magnitude of the rate of change of activity

between regions. The B matrix, most critically, describes the change in this rate which is induced

my experimental perturbation. The sums of A matrix and B matrix (or rather B matrices) gets

multiplied by the current activity z of the regions to obtain the rate of change. All parameters

of the neural state equation get estimated during an iterative model inversion process, using

observed hemodynamic data and the forward model.

DCM exists in di↵erent flavors. The vanilla implementation was mostly applicable to tackle

research questions about the influence of experimental manipulations on particular connections

[Friston et al., 2003]. However, with the uprising resting-state functional connectivity research,

aiming at finding, e.g., neural biomarkers for particular disorders such as neurodegenerative

disorders (e.g., [Hohenfeld et al., 2018]), autism (e.g., [Dvornek et al., 2017]), or psychiatric

disorders (e.g., [Yamada et al., 2017]), two di↵erent flavors of DCM where developed for resting-

state data. One of which is stochastic Dynamic Causal Modeling (stDCM) [Daunizeau et al., 2012],

modeling stochastic noise. The other method is spectral Dynamic Causal Modeling (spDCM)

[Razi et al., 2017], which shifts the model inversion process from the time domain to the spectral

domain. Model inversion in spCPM! (spCPM!) requires less computing power and allows the

inversion of larger models. However, in all articles included in the dissertation at hand, the vanilla

task-based version for DCM – as described by Friston et al. [Friston et al., 2003] – was applied.

1.5 Motivation and objective of the thesis

In this dissertation, thoughts regarding the potentials as well as the limitations of e↵ective

connectivity models in basic research and clinical applications will be outlined. For this aim, I
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1.5 Motivation and objective of the thesis

will first present a study we have conducted using e↵ective connectivity models in the domain of

human face perception [Kessler et al., 2020] (Section 2.1). This study demonstrates a use case to

reveal potential biomarkers for MD in healthy participants at risk for MD [Kessler et al., 2020]

which builds upon an established model in clinical neurosciences [Mayberg, 1997].

Next, replicability of such models will be questioned [Kessler et al., 2021b] (Section 2.2).

Therefore, I will present a conceptual replication of one of the earliest models of the core face

perception system using contemporary state-of-the-art methods. I will demonstrate di↵erent

aspects which challenge the replicability of such models, and discuss problems in the interpretation

of model parameters.

Finally, I will demonstrate within a particular set of scenarios – using both real data and

simulations – that a considerable amount of model parameters are predetermined in the first

place [Kessler and Jansen, 2022] (Section 2.3). The results challenge the usability of e↵ective

connectivity models in a number of use cases, and therefore should alert the reader to take care

in the interpretation of these models and the conclusions drawn by studies using such models.

7



Chapter2

Summary of the published results

�

’Without data you are just another person with an opinion.’

– W. Edwards Deming

�
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2.1 Fronto-limbic dysconnectivity in healthy participants at risk for depression

2.1 Fronto-limbic dysconnectivity in healthy participants at risk

for depression

In the first study included in this dissertation [Kessler et al., 2020] (appendix A), we aimed at

applying e↵ective connectivity models to build upon the so-called Mayberg model of fronto-limbic

dysconnectivity in MD [Mayberg, 1997]. Instead of comparing healthy participants to patients

with MD, we rather focused on healthy participants with particular risks for MD. By investigating

healthy participants, it was possible to delineate connectivity parameters as potential neural

biomarkers for the disorder of interest, such as MD. Such biomarkers might eventually be

predictive for the occurrence of the disorder. 342 healthy participants were retrieved from a

comparably large, in-house built database [Kircher et al., 2019], aiming at detailed genotyping

and phenotyping of participants with current or past episodes of a↵ective disorders as well as

healthy controls. The healthy participants chosen from this database were classified either as

having a family history of a↵ective disorders (i.e., genetic or familial risk), childhood trauma

experiences (i.e., environmental risk), both or none of the chosen risks. All participants underwent

– among other examinations – an fMRI experiment. In the experimental paradigm participants

were shown a series of faces expressing negative emotions such as fear or anger. For each of the

participants, several e↵ective connectivity models were constructed. The nodes of these models

comprised the amygdala and the medial Prefrontal Cortex (mPFC). The amygdala as limbic

brain structure is involved in recognition of emotions, and the mPFC as prefrontal cortical region

is supposedly responsible for the control of the limbic reactivity to emotions. The constructed

e↵ective connectivitay models were fit to the hemodynamic data retrieved from the experimental

paradigm.

The rationale was as follows: In healthy participants, the mPFC is supposed to exert a inhibition

upon the amygdala, in order to regulate its reactivity to emotional stimuli [Delgado et al., 2008,

Urry et al., 2006, Johnstone et al., 2007]. In the context of an e↵ective connectivity model, this

inhibition should manifest itself in a negative coupling parameter from mPFC to amygdala. From

a mechanistic perspective, such a negative coupling parameter in turn indicates that with rising

activity in mPFC, the rate of change in activity in the amygdala is decreased likewise. We

hypothesized that both genetic and environmental risks reduce the inhibition of the mPFC onto

the amygdala, leading to less negative coupling parameters.

The results nicely illustrated a reduction of amygdala inhibition by mPFC in healthy con-

trols with environmental risk factors, i.e., childhood maltreatment (see [Kessler et al., 2020],

appendix A, Fig. 3). This was expressed by a less negative coupling parameter from mPFC to

9



2.2 Conceptual replication of the Haxby model

the amygdala. The diminished inhibition constitutes a mechanistic explanation of the amygdala

over-reactivity in healthy controls with childhood maltreatment experiences reported in the

literature [Dannlowski et al., 2012]. In particular, with decreased inhibition, the amygdala is

active more sustainably as response to emotional facial expressions, which might in turn lead to

adverse behavioral responses by the individual [Cheng et al., 2006]. However, contrary to our

expectations, no reduced amygdala inhibition has been found for participants with so-called

genetic risk factors, i.e., a family history of a↵ective disorders.

The Mayberg model in its original form described the deficits in amygdala inhibition in

patients su↵ering from MD [Mayberg, 1997]. Our model nicely complemented the Mayberg model

by not only describing the current is-state of already diagnosed patients, but providing a tool to

describe similar deficits in healthy participants at risk for MD and a↵ective disorders. Whereas

the ultimate aim however is to predict the future state – i.e., the probability of the individual

at-risk participant to actually develop MD – longitudinal studies need to be conducted to unfold

the potential of such connectivity parameters as neural biomarkers.

2.2 Conceptual replication of the Haxby model

In a next study [Kessler et al., 2021b] (appendix B), we were interested to replicate a DCM

implementation of the Haxby model, which was published by Fairhall & Ishai nearly 15 years

back [Fairhall and Ishai, 2007]. The authors were the first to apply both fMRI and DCM to the

Haxby model. The main body of their study tackled the e↵ective connectivity of the core system

of face perception, encompassing the OFA, FFA, and STS, during face processing experiments. The

DCM software package underwent a lot of methodological enhancements during the years since

its first publication, rendering the results more accurate and reliable according to the developers

(e.g., [The FIL Methods Group, 2020, The FIL Methods Group, 2014]). However, the results

of many old studies, such as the study of Fairhall & Ishai – which can be considered as a

milestone study in face perception and connectivity – remained unquestioned until today, even

though the methodology has grown further. Their model is still deployed as working model

for many related studies (e.g., [Elbich et al., 2019, Frässle et al., 2016b, Frässle et al., 2016a,

He et al., 2015, Nagy et al., 2012, Sato et al., 2017]).

For these reasons, we aimed at replicating their model, with a contemporary, state-of-the-art

implementation of DCM. To increase generalizability of the results, we analyzed four di↵erent

data sets, partly acquired in our laboratory and partly freely available in the internet. Some of

the data sets contained multiple measurements for each participant. In addition to replicating

the original results with contemporary software and across multiple data sets, we also discovered
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severe conceptual issues and miss-interpretations in the original study. Therefore, we changed

major aspects in the modeling procedure and in the interpretation of results. All in one, we

conducted a comprehensive conceptual replication approach, included several additions, and

further straightened some conceptual flaws of the original study.

Our results demonstrated, that the core system of face perception as proposed by Haxby

[Haxby et al., 2000] is more densely interconnected as described by the study of Fairhall and Ishai

[Fairhall and Ishai, 2007]. Whereas in their study, primarily feedforward connections leading

from OFA to FFA and from OFA to STS have been highlighted as playing a role in face perception,

we delineated the similar important backward connections as well as collateral connections

[Kessler et al., 2021b] (appendix B) in face perception and in emotion perception. Furthermore,

we showed an astonishing stability across our tested data sets, which were heterogeneous both in

their experimental set-up and their preprocessing pipelines. Furthermore, we eliminated some

conceptual limitations of the original study, and discussed di↵erences in results deriving from

those. A meta analytic approach further revealed connectivity parameters which were similar

across all our included data sets. This resulted in a model of which we think it is a more suitable

working model than the one proposed by the authors of the original study, with a higher capability

for generalization. However, it also underlined the importance for replications of these kind of

models, as methodological developments advance continuously and old models are rarely updated.

2.3 Limitations in interpretabiliy of e↵ective connectivity models

The replication of study B (Section 2.2) revealed major flaws in interpretability of many model

parameters by researchers dealing with e↵ective connectivity models such as DCM. With study C

we aimed at tackling further issues of interpretability, by investigating how the shape of a model

parameter is predestined by the setup of the model itself [Kessler and Jansen, 2022] (appendix C).

This is crucial, because if the shape of a model parameter – i.e., if it is positive or negative

– is predetermined by the experimental setting rather than by the data, interpretation upon

it must be drawn with caution. We argue, that many e↵ective connectivity models with a

hierarchical structure, applied to stereotypical experimental scenarios, can’t deliver additional

value to the study, because the shape of many of the models’ parameters are predetermined by

the experimental setup and not a meaningful outcome of the experiment.

In this study, we used both real experimental data and simulated data of a stereotypical

experiment. In this experiment, each modeled brain region was activated by the experimental

condition, meaning the BOLD signal increased after stimulus onset of the experimental condition.

Furthermore, the BOLD signal was lower in the control condition. A comparable intuition

11
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might apply for most fMRI experiments. By modeling the regional dynamics using DCM, we

demonstrated that parameters of so-called forward connections turn almost always positive.

Contrary, parameters of so-called backward connections turn almost always negative. This can be

easily shown by varying the region in which the experimental input enters the model (i.e., brain

network) in the first place, and observing the shape of the interregional coupling parameters as

response to this change.

When modeling such an experiment, the interpretation of the parameter shapes is rather

straightforward. For instance, the positivity of the forward connection is necessary to distribute

the activity (i.e., positive BOLD signal) across all modeled brain regions. However, the negativity

of the backward connections seems to have its origins in a supportive role for the negative self-

connections of each region. It therefore aids the system to decrease its activation, i.e., rendering

it stable.

In addition, we demonstrated that the very same pattern is captured either by the A matrix

or by the B matrix of a DCM. If a B matrix is present – i.e., modeled – it will capture the very

pattern, such as the positivity of the forward connections and the negativity of the backward

connections are represented within the B matrix. If it is not present, the pattern will shift to the

A matrix and will be less pronounced. The reason for the di↵erences in the absolute parameter

magnitudes can be traced back to the di↵erences in prior variances of the respective matrix

parameters, with the B matrix parameters having a far higher prior variance than the A matrix

parameters, allowing for a higher disparity from their prior distribution after being confronted

with experimental data. However, the interpretation of A and B matrices is di↵erent from a

mechanistic point of view, as the A matrix represent the context-independent couplings whereas

the B matrix represents the couplings induced by experimental perturbations [Friston et al., 2003].

Therefore, misuse of A and B matrices, as it has been done in the literature e.g., by leaving

out a B matrix where it was appropriate to include it or mixing up A and B matrices (e.g.,

[Straube et al., 2018], [Fairhall and Ishai, 2007]), can lead to misinterpretation of the acquired

results.

As we worked also with simulated data in this study, we were able to test the behavior of the

shape of a model, when we exactly know the ground truth model structure, i.e., the structure and

shape of the model which generated the data. We were able to demonstrate, that even if in the

ground truth model, no B matrix was present (equivalent to an experiment with no modulation

by experimental perturbation), allowing e↵ects within the B matrix of the tested model will pull

the positivity/negativity pattern towards itself. As a consequence, the resulting model provides

answers to question for which it is not supposed to have answers to from a theoretical point of

view.
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This study largely limits the interpretability of many model parameters, as we were able to

predict the shape (i.e., positive or negative) of a parameter depending on its position in the

model hierarchy. We argue, that throughout literature, many studies over-stated the meaning of

the value of particular model parameters, which were falling into this very pattern, and their

meaning is therefore of technical origin rather than reflecting some cognitive function.
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Chapter3

Discussion

�

’All generalizations are false, including this one.’

– Mark Twain

�
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3.1 The failed transfer of neural network models into clinical

application

Having elaborated possible applications of models and in particular connectivity models in

cognitive neurosciences, the question arises why are those kind of models not implemented

in practical workflows in academia or clinical application. For instance, why have neural

connectivity parameters – often extolled as clinical biomarkers (e.g., [Heinzle and Stephan, 2018,

Hohenfeld et al., 2018, Damoiseaux, 2012]) – not made their ways into clinical routine? One out

of many reasons might be the fact that many models have a weak predictive power when it comes

to forecasting the outcome for a single patient [Brennan et al., 2019, Plitt et al., 2015]. Moreover,

many studies including our own [Kessler et al., 2020], provide statistical di↵erences of connectivity

parameters between two or more groups. For instance in Figure 3 of the first study included in this

dissertation [Kessler et al., 2020] (appendix A) this statistical di↵erence is illustrated on a group

level. When however focusing on the level of an individual participant [Kessler et al., 2020] (e.g.,

appendix A, supplementary Fig. S3), the picture is less concise. The distributions of parameter

estimates highly overlap between groups. Therefore, the single expression of a variable of interest

is often not su�cient for a precise and therefore useful prediction. In this case, the prediction

of the risk group would be possible, i.e., better than chance level, but weak. The prediction of

individual disease onset however would be di�cult to be evaluated with cross-sectional data.

Furthermore, prediction might work better when more parameters of interest are included,

i.e., the number of non-redundant variables is increased. To build complex models which

provide precise predictions, a vast amount of training data is needed – so-called big data.

Scaling training data into the millions might be manageable for image classification problems

such done in facial recognition models [Meng et al., 2021, Deng et al., 2019, Parkhi et al., 2015,

Serengil and Ozpinar, 2020]. Whereas the capturing or even simple crawling of face images is

easily scaleable, neural data is far more expensive and time consuming to collect. For instance,

specialized acquisition protocols and equipment (i.e., MRI machines) and trained personnel is

required. The temporal and financial e↵orts to acquire enough data to build models with nearly

as precise predictions as in other domains still constitute an insurmountable obstacle to apply

more elaborate models of machine learning to this area.

Next, out of the abundance of studies published about arbitrary group di↵erences in con-

nectivity parameters, those results might have low replicability and reliability. For instance,

especially in the domain of imaging in cognitive neurosciences, a high portion of study results are

not replicable in the first place [Poldrack et al., 2017, Hong et al., 2019]. Whereas this must be
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an alarm call by itself, few lessons with impact have been adopted by the concerned research

community [Shrout and Rodgers, 2018, Mi lkowski et al., 2018, Poldrack and Gorgolewski, 2014].

Even if group results are replicable, their reliability might still be poor. Furthermore, in the

area of functional and e↵ective connectivity, good reliability of connectivity parameters is fre-

quently propagandized as study result, whereas a look into the actual numbers is less promising,

and fails to pass minimum stability requirements we would anticipate for any application (e.g.,

[Noble et al., 2021, Frässle et al., 2015, Almgren et al., 2018]).

Finally, having identified sample size issues in neuroimaging studies, poor replicability, and

poor reliability as some of the driving problems in the translation from academic research

results to clinical application, one fundamental flaw is limitation in interpretability of some

model parameters. Potential biomarkers such as introduced in study A [Kessler et al., 2020]

(appendix A) appear to have a sound interpretation within their model framework. Similarly,

they can easily be embedded in theories of emotion regulation (e.g., [Mayberg, 1997]). However,

having identified group di↵erences in the parameter, neither replicability nor reliability has been

shown within the study. For this, other study designs are necessary.

3.2 Limitations of the presented studies

When it comes to model interpretability, I demonstrated in study C [Kessler and Jansen, 2022]

(appendix C), that model parameters might be predetermined to a large degree in the first

place. The claims of study C can not be transferred to the results of study A directly, as the

model is not strictly hierarchical. In study A we combined 12 di↵erent models for the resulting

presented average model. However, some of the single models were hierarchical, at least those

comprising only one input region. Furthermore, both regions modeled in study A were activated

by the experimental condition (i.e., faces), compared to the control condition (i.e., shapes). The

activation therefore needed to be propagated throughout the system following the intuition and

schema carved out in study C.

The results of study B however can be more a↵ected. The prerequisites were similar between

study B and study C regarding the activation of the regions, that means each region got activated

by the experimental condition (i.e., faces), and less active during control condition (i.e., houses).

The models used however had only one region where the experimental input entered the system,

and therefore the activation needed to be propagated throughout the system originating at this

very region in a feed forward fashion. Depending on the exact model structure of all possible

models in study B, this were many possible paths in total. However, the parameter estimates

of the average models displayed in Figure 5 and Figure 6 of study B [Kessler et al., 2021b]
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(appendix B) were dominated by the parameter estimates of the most likely model, as determined

by Bayesian Model Selection (BMS) and calculated by Bayesian Model Averaging (BMA) and

Hierarchical Linear Modeling (HLM).

Moreover, in study B we deliberately interpreted the resulting model in the context of predictive

coding [Kessler et al., 2021b] (study B). Predictive coding is a common framework in neuro-

sciences, aiming at explaining the neural computations on microscopic (e.g., [Bastos et al., 2012,

Rao and Ballard, 1999]) or macroscopic scale (e.g., [Friston and Kiebel, 2009, Clark, 2013]). The

coarse intuition is the following: in a hierarchical brain, the higher level brain region trans-

mits predictions about the world, i.e., the sensory input, to the lower level brain region. The

lower level brain region, in turn, computes a disparity between prediction and the actual sen-

sory input (or rather information transmitted by the next lower brain region), and propagates

this calculated prediction error to the higher level brain region [Clark, 2013]. In study B, we

integrated the neural network parameters, i.e., positive forward connections and negative back-

wards connections, to the predictive coding theory, as has been done by other studies before

us (e.g., [Chen et al., 2009, den Ouden et al., 2008]). Whereas the interpretations of the models’

parameter estimates make sense in the predictive coding framework, the parameters are also

predetermined by the model structure, according to the pattern outlined in study C. Therefore,

the interpretation in any framework should rather be avoided when there can be shown, that the

outcome is rather driven by the experiment itself.

The same would count if we would interpret the results of a study exploring the early visual

hierarchy. Hypothetically, one could use the data and some of the models of study C to illustrate

a model explaining the visual hierarchy in the framework of predictive coding. From a theo-

retical standpoint, this makes perfectly sense (e.g., [Rao and Ballard, 1999, Bastos et al., 2012]).

However, by using the data from study C – which would be highly suitable to delineate the

interregional relationships in early visual cortex using fMRI data and DCM as top level analysis

– we would again pitfall into conclusions which we could not draw using the fMRI and DCM

methodologies.

3.3 Putting this dissertation into the bigger picture

Finally, I want to reflect the contribution of the dissertation at hand and the included studies to

the research landscape.

Study A was one of the first studies using relatively large cohort of participants to analyze

network dynamics using DCM, especially in the context of psychiatric disorders, or as in our

case, the sole presence of risks for psychiatric disorders. We deployed a compact neural network
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model which was – as a theoretical framework – established in the field of MD, and transferred

it to a new population of healthy participants with risk for MD. Despite its compactness, the

model allowed for a sound interpretation on a neurocognitive level of its parameters. These

result in turn allowed to explain the results of other research findings, such as findings reporting

amygdala over-reactivity of participants at risk for depression [Dannlowski et al., 2012]. The

results emphasize, that this over-reactivity results from a reduced inhibition by mPFC. Therefore,

the study contributes to the explanation of the phenomenological findings. On the other hand, it

further emphasizes the potential of deploying amygdala activation or its regulation as clinical

biomarker, despite the general critics of biomarkers outlined within the dissertation at hand.

Study B however tackled a profound conceptual replication of a long established and widely

used DCM model in the domain of face perception [Fairhall and Ishai, 2007]. Our study not only

exterminated interpretational flaws of the original study, it further updated its’ results in the

light of new software updates, and highly increased its capability for generalization by analyzing

several di↵erent datasets. The replication and revision of the original model within study B leads

to a modified and revised version of the Haxby model, casted in a network model with quantified

connections, i.e., a DCM model. We argue that this model is more suitable as working model

for further studies in the domain of face perception and neural connectivity in the early face

perception network.

Study C questioned the accuracy of interpretations upon a particular type of DCM models.

Both by analyzing real fMRI data with DCM and by simulating DCM models we have illustrated,

that a large proportion of connectivity parameters are predetermined by the modeling procedure

rather than determined by the shape of the underlying neurocognitive processes which are of

interest. I argue, that even if the investigated scenario was simple and straightforward, the

problem is generalizable to many other studies. Therefore the problem is much wider than the

scenario investigated in the manuscript. I am convinced, that among other, severe limitations

of the method DCM, it is not suitable to answer most of the research questions it is applied for.

I argue that the research community should overcome the fetish of using DCM as answer to all

questions and emphasize, that they should open themselves for the much more diverse landscape

of research methods available.
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Similar to patients with Major depressive disorder (MDD), healthy subjects at risk
for depression show hyperactivation of the amygdala as a response to negative
emotional expressions. The medial prefrontal cortex is responsible for amygdala control.
Analyzing a large cohort of healthy subjects, we aimed to delineate malfunction in
amygdala regulation by the medial prefrontal cortex in subjects at increased risk for
depression, i.e., with a family history of affective disorders or a personal history of
childhood maltreatment. We included a total of 342 healthy subjects from the FOR2107
cohort (www.for2107.de). An emotional face-matching task was used to identify the
medial prefrontal cortex and right amygdala. Dynamic Causal Modeling (DCM) was
conducted and neural coupling parameters were obtained for healthy controls with
and without particular risk factors for depression. We assigned a genetic risk if
subjects had a first-degree relative with an affective disorder and an environmental
risk if subjects experienced childhood maltreatment. We then compared amygdala
inhibition during emotion processing between groups. Amygdala inhibition by the
medial prefrontal cortex was present in subjects without those two risk factors, as
indicated by negative model parameter estimates. Having a genetic risk (i.e., a family
history) did not result in changes in amygdala inhibition compared to no risk subjects.
In contrast, childhood maltreatment as environmental risk has led to a significant
reduction of amygdala inhibition by the medial prefrontal cortex. We propose a
mechanistic explanation for the amygdala hyperactivity in subjects with particular risk for
depression, in particular childhood maltreatment, caused by a malfunctioned amygdala
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downregulation via the medial prefrontal cortex. As childhood maltreatment is a major
environmental risk factor for depression, we emphasize the importance of this potential
early biomarker.

Keywords: major depression, childhood maltreatment, fMRI, connectivity, emotion processing, dynamic
causal modeling

INTRODUCTION

Major depressive disorder (MDD) is a common, chronic, costly,
and debilitating disorder, affecting more than 300 million people
worldwide (World Health Organization, 2017). The lifetime
prevalence is in most countries in the range of 8–15% (Andrade
et al., 2003; Kessler et al., 2003; Moffitt et al., 2010). MDD
is caused by a complex interplay of genetic susceptibility and
environmental factors, showing a heritability of ⇠35% (Otte
et al., 2016). Genetic risk factors are believed to decrease
resilience to environmental stressors and make disorder onset
more probable. Environmental risk factors include stressful life
events and, in particular, childhood maltreatment (Nelson et al.,
2017). Childhood maltreatment leads to an increased risk for
the development of recurrent MDD and a weaker response to
treatment (Nanni et al., 2011). Childhood maltreatment is also
associated with persistent neurobiological alterations in brain
areas involved in mood regulation (Nemeroff, 2016), strongly
resembling changes reported for MDD patients (Dannlowski
et al., 2012). A deeper understanding how specific risk factors for
depression alter the functional neuroanatomy is important not
only from a basic neuroscience perspective, but also to identify
neurobiological changes that might be used as biomarkers to
potentially provide preventive measures to on-risk individuals at
early stages.

Functional magnetic resonance imaging (fMRI) yielded
insights into the neuroanatomical correlates of MDD. One
robustly replicated finding is the hyper-responsiveness of the
amygdala during emotion processing (e.g., Abler et al., 2007;
Dannlowski et al., 2007; Siegle et al., 2007; Suslow et al., 2010;
for meta-analysis, see Fitzgerald et al., 2008; Palmer et al.,
2015). Changes in activity in the amygdala and accompanying
changes of activity in the medial prefrontal cortex (mPFC) have
led to the formulation of the limbic-cortical model of major
depression (Graham et al., 2013). This model, first outlined by
Mayberg and colleagues (Mayberg, 1997), considers MDD as
a network disorder. One key aspect is that hyper-activity in
limbic areas is not adequately controlled by prefrontal regions,
with an associated depressed mood (Mayberg et al., 1999). More
importantly, amygdala hyperactivity is also present in subjects
at genetic (Joormann et al., 2012) and environmental risk for
depression, such as childhood maltreatment (Dannlowski et al.,
2012). This hyperactivity is therefore not specific for MDD but
may indicate a general vulnerability to mental disorders.

The limbic-cortical model offers a testable framework
that can continuously integrate neuroimaging findings
with complementary neuroanatomical, neurochemical,
and electrophysiological studies in the investigation of the
pathogenesis of depression. In the following, we deliberately

used a simplified version of the limbic-cortical model of Major
Depression. Our model focuses on the connection betweenmPFC
and amygdala. This allows, on the one hand, to test whether the
mPFC down-regulates the amygdala during emotion processing,
and on the other hand whether this downregulation is modulated
by risk factors.

The present study had two aims. First, we tested the limbic-
cortical model by assessing the strength of amygdala inhibition
exerted by the mPFC during an emotion processing task in a
large group of healthy subjects. Second, we tested whether genetic
(i.e., familial) and environmental risk factors modulate amygdala
inhibition. We operationalized those risks via a family history
of affective disorders and childhood maltreatment, respectively.
We hypothesized that both risk factors decrease the inhibitory
influence of the mPFC on the amygdala (Frodl et al., 2010; van
Harmelen et al., 2010; Dannlowski et al., 2012; Joormann et al.,
2012). To investigate the inhibition of mPFC to the amygdala, we
applied Dynamic Causal Modeling (DCM, Friston et al., 2003)
for fMRI. DCM allows for inferences about the directionality
of brain connectivity and aims at inferring neural interactions
from observational data. As DCM is strongly hypothesis-
driven, it allows us to test hypotheses within the borders of a
network model. Furthermore, previous studies have used such
models to decipher disorder and medication effects on limbic-
cortical circuitry (de Almeida et al., 2009; Sladky et al., 2015a;
Sladky et al., 2015b).

MATERIALS AND METHODS

Subjects
Neuroimaging, clinical and neuropsychological data were
obtained from the FOR2107 cohort1. FOR2107 is an ongoing
multicenter study that aims to decipher the neurobiological
foundations of affective disorders (Kircher et al., 2019). A
detailed study description, including recruitment and assessment
procedures, is given elsewhere (Vogelbacher et al., 2018; Kircher
et al., 2019). Neuroimaging was performed at two centers, the
University of Marburg and the University of Münster. The
study was approved by the ethics committees of all participating
institutions. Written informed consent was obtained from all
subjects after a complete description of the study.

A first data freeze (v1.00) was conducted after 1,000 subjects
(both patients and controls) were included in the study. For the
selection of our final sample, we proceeded as follows: First, we
decided to include only subjects measured at the University of
Marburg to reduce variance related to different MR scanners (see
Vogelbacher et al., 2018) for a comparison of data characteristics

1www.for2107.de
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of both sites), leading to a sample size of 800 subjects. Second,
we selected all subjects without any present or past psychiatric
disorders, leading to a sample size of 352 subjects. Third, we
excluded subjects with missing relevant imaging, clinical or
neuropsychological data, leading to a final sample size of 342
(135 men, mean age 33.4 ⇥ 12.6 years, range 18–65 years).
Subjects’ characteristics (sex, age, verbal IQ, years of education,
BDI, and HAMD scores) are summarized in Supplementary
Table S1.

The subjects were classified according to their risk status as
having a genetic risk (i.e., familial risk, n = 63), an environmental
risk (n = 44), or no risk factors (n = 247). Twelve subjects had
both a genetic and environmental risk. Genetic risk was assigned
if at least one first degree relative was suffering from an affective
disorder. We use the word ‘‘genetic risk’’ as a proxy for a familial
risk, knowing that we are not examining concrete genotypes
(see ‘‘Discussion’’ section). An environmental risk was assigned
when two subscales of the Childhood Trauma Questionnaire
(CTQ, Bernstein et al., 1997) exceeded a critical threshold
(10 for emotional abuse, eight for physical abuse, eight for sexual
abuse, 15 for emotional neglect, eight for physical neglect). We
hypothesized that both risk factors independently decreased the
inhibitory influence of the mPFC on the amygdala (Dannlowski
et al., 2012; Joormann et al., 2012).

Experimental Design
All subjects were measured with a large neuroimaging battery
assessing both brain function and structure. The study protocol
is described in detail elsewhere (Kircher et al., 2019). In the
present study, we analyzed the fMRI data from an emotional
face-matching task (Hariri et al., 2002). It aims at activating
face processing regions (e.g., fusiform face area, FFA), limbic
regions (e.g., amygdala), and prefrontal regions. In the active
condition, subjects viewed gray-scale images of fearful or angry
faces (Ekman, 1992), in the control condition they viewed
geometric shapes (circles and ellipsoids). In each trial, three
items were presented. A target image was located at the top,
two further images on the left and right side at the bottom,
whereby one of these images was identical to the target image.
The subject was instructed to indicate which of these two images
was identical to the target image by pressing a corresponding
button on an MRI-compatible response pad. The task was set
up as block design, with six face and shape trials, respectively,
per block. Blocks had a duration of 44 s (faces) and 32 s
(shapes), respectively. Five shape blocks and four faces blocks
were presented in an alternating order, starting with a shapes
block. Blocks were separated by short inter-block-intervals. The
paradigm lasted 6 min 14 s. Subjects of different subgroups
performed similar with respect to hit rates and reaction times in
this paradigm (Supplementary Table S2).

MRI Data Acquisition
MRI data were acquired at a 3TMRI scanner (Tim Trio, Siemens,
Erlangen, Germany), located at the Department of Psychiatry,
University of Marburg, using a 12-channel head matrix Rx-coil.
A T2*-weighted echo-planar imaging (EPI) sequence sensitive
to blood oxygen level-dependent (BOLD) contrast was used

with the following parameters: TE = 30 ms, TR = 2,000 ms,
FoV = 210 mm, matrix = 64 ⇥ 64, slice thickness = 3.8 mm,
distance factor = 10%, phase encoding direction anterior >>
posterior, flip angle = 90�, no parallel imaging, bandwidth
2,232 Hz/Px, ascending acquisition, axial acquisition, 33 slices,
slice alignment parallel to AC-PC line tilted 20� in the dorsal
direction. A quality assurance (QA) protocol was implemented
to monitor scanner stability by regular phantom measurements,
similar to the ‘‘Glover protocol’’ implemented in the FBIRN
consortium (Friedman and Glover, 2006). The QA protocol is
described in detail elsewhere (Vogelbacher et al., 2018).

MRI Data Analysis
Analysis of Brain Activity
fMRI data were analyzed with the software Statistical Parametric
Mapping (SPM8, r2975)2 based on MATLAB 7.9.0 R2009b using
standard routines and templates. Preprocessing: the initial three
functional images were excluded from further analysis to exclude
T1 stabilization effects. Functional images were realigned onto
the mean image of the series using a six parameter rigid-body
transformation, spatially normalized into standard MNI space,
and resampled to a resolution of 2 ⇥ 2 ⇥ 2 mm3. Finally,
the images were spatially smoothed using an 8 mm full-width-
half-maximum (FWHM) isotropic Gaussian kernel. Statistical
analysis: statistical analysis was performed using a general linear
model (GLM) framework to create three-dimensional maps
concerning the estimated regressor response amplitude. At the
individual subject level, fMRI responses for both conditions
(faces, shapes) were modeled in a block design using the
canonical hemodynamic response function implemented in
SPM8 convolved with a vector of onset times for the different
stimulus blocks. High-pass filtering was applied with a cut-off
frequency of 1/128 Hz to attenuate low-frequency components.
Weighted beta-images and t-statistic images were created by
contrasting the faces-condition (contrast weight 1) against the
shapes-condition (contrast weight �1). At the group level, brain
activation was assessed using a one-sample t-test for the contrast
(faces > shapes).

Analysis of Brain Connectivity
Connectivity changes between the mPFC and the amygdala
were assessed using Dynamic Causal Modeling [DCM, Friston
et al., 2003), SPM12, r6685, DCM12, r6591]. DCM is a Bayesian
framework for investigating the effective connectivity in a
neural network based on neuroimaging data. In the present
implementation, DCM describes the brain as a deterministic
input-output system using a bilinear differential equation:

dz
dt

=
✓
A +

Xm

j = 1
ujBj

◆
z + Cu,

where z depicts the neuronal activities, u corresponds to the
experimental input. A describes the endogenous (fixed or
context-independent) connection strengths, Bj defines how the
experimental manipulation uj affects the connections among the
network regions (modulatory connectivity), and C describes how

2http://www.fil.ion.ucl.ac.uk/spm/
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the driving inputs directly influence the neuronal state of the
network regions. The dynamics of the neuronal states in each
region are translated into predictions of the measured BOLD
signal by a hemodynamic forward model (Balloon-Windkessel
model; (Buxton et al., 1998). Using a Variational Laplace
approach with Gaussian assumptions on the prior and posterior
distributions, the posterior densities of the model parameters
(i.e., conditional mean and covariance) can be estimated by
maximizing the negative free energy.

The starting point for a DCM analysis is the selection of a
fixed set of regions, their possible connections, the driving inputs,
and the modulatory inputs. Different models can be compared
to identify which models best predict the data. DCM enables
inferences at different levels, on the one hand, inference onmodel
space, on the other hand, inference on parameter space of any
given model. In the following, we will describe: (i) the extraction
of time series in specific regions of interest (ROIs), the basis
for estimating models; (ii) the model space definition; and (iii)
the statistical inferences conducted with the model parameters
of interest.

Time Series Extraction
fMRI time series were extracted from the mPFC and the right
amygdala, analogous to the procedure described by Sladky
et al. (2015b). First, we calculated the group activation pattern
for the contrast (faces > shapes) using a one-sample t-test
on the weighted beta-images of all subjects. We determined
mPFC (MNI: 2, 46, �16) and right amygdala (MNI: 20, �6,
�20) by selecting voxels that showed the most significant
activations concerning the t-test in those areas. Subsequently,
we identified the single subject peak voxel coordinates using a
searchlight approach. For this, single subjects’ activation maps
were thresholded at p < 0.99, uncorrected, and the most
strongly activated voxel was determined for each subject for
the mPFC (within a search radius of 12 mm around group
peak) and the right amygdala (within a search radius of 8 mm
around group peak). See Figure 1 for a graphical depiction
of the localization of the regions. We selected such a liberal
threshold to avoid dropping single subjects due to sub-threshold
activation out of our DCM analysis. This would have created
a selective sample with only ‘‘strongly’’-activating subjects and
generalizations would not have been possible.

At last, the first principal component of the time series in
the mPFC and the right amygdala, respectively, was extracted

including all voxels inside a radius of 4 mm around the subject-
specific peak voxel.

Model Space Definition
Based on the limbic-cortical model of major depression (see
‘‘Introduction’’ section), we investigated the coupling between
the mPFC and the right amygdala in a two-region model
(Figure 2). We chose the right rather than bilateral amygdala
because the most consistent findings regarding connectivity and
risk factors focus on the right amygdala (e.g., Del-Ben et al.,
2005; Anderson et al., 2007; Dalby et al., 2010; Windischberger
et al., 2010; Dannlowski et al., 2012; Zhang et al., 2012; Sladky
et al., 2015b). The choice of our model space was motivated by
previous studies using a similar approach (de Almeida et al.,
2009; Sladky et al., 2015a,b). We assumed reciprocal structural
connectivity between both regions (Klingler and Gloor, 1960;
Catani et al., 2002; Ghashghaei and Barbas, 2002). Therefore, the
A-matrix was identical in all models. We created 12 different
models, differing in their B- and C-matrices. The face blocks
served as direct driving input (C-matrix) into the system,
either via the mPFC, the amygdala, or both regions. These
face regressors served also as modulatory input (B-matrix)
on the connection from mPFC to the amygdala, on the
connection from the amygdala to mPFC, on both connections or
none connection.

Statistical Inference
We assessed the impact of risk status on amygdala inhibition.
Our parameter of interest was, therefore, the modulatory
B-matrix parameter of the fronto-amygdala connection. Bayesian
Model Averaging (BMA) was conducted over the whole model
space of a subject to compute a weighted average of each
model parameter. The weighting was determined by the posterior
probability of each model. This approach is considered as useful
complementation to Bayesian Model Selection (BMS, Stephan
et al., 2009) when none of the models tested outperformed all
others (as was the case in the present study; see Supplementary
Table S3).

A Bayesian estimation (BEST) procedure implemented in
R (version 3.5.1; Kruschke, 2013) was used to calculate group
differences. As input data, we used the posterior point estimates
of all subjects’ DCM parameters (i.e., modulatory fronto-
amygdala connection) after subject-specific BMA. We used
uninformative default priors. In a first step, a Bayesian MCMC
process generated random draws from the posterior distribution

FIGURE 1 | Graphical depiction of the regions-of-interest for the Dynamic Causal Modeling (DCM) analysis. Medial prefrontal cortex (mPFC; blue; peak voxel at MNI
coordinates 2, 46, �16) and right amygdala (red; peak voxel at MNI coordinates 20, �6, �20) are shown on axial slices. As the center of the sphere, we used the
peak voxels of the group-level activation map. Numbers indicate the MNI z-coordinate.
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FIGURE 2 | Model space consisting of 12 different DCMs. Faces with emotional expressions served as input into the system (C-matrix, short arrows), either on the
mPFC, the amygdala, or both regions. The two regions were always reciprocally connected (A-matrix, grey arrows). Faces either modulated one connection, both
connections, or none of the connections (B-matrix, black arrows).

of group means and differences of means (500,000 samples
each). We used the distribution of mean differences to infer the
credibility of group differences. With this, posterior distributions
for group mean comparisons were generated, similar to a
t-test. But rather than p-values, Bayesian estimation provides
probabilistic statements about values of interest (for more
information, see Kruschke, 2010, 2013; Kruschke and Liddell,
2018). For example, we can state that with a probability of 95%
the true value (i.e., mean connection strength) is higher for group
A than for group B. Furthermore, an (e.g., 95%) highest density
interval (HDI) marks a region of the credibility of parameter
values. Obtaining a 95% HDI in the difference distribution
that lies fully above or below zero, we can conclude a credible
difference. Furthermore, we report effect sizes of the difference
distribution between groups.

First, we computed three posterior distributions for the
fronto-amygdala modulatory parameter, one for each group (no
risk, genetic risk, and environmental risk). Subjects with both risks
were included in both risk groups equally. We further computed
the difference distributions between the respective risk groups
and the no-risk group. We hypothesized that both risk factors
independently decrease the inhibitory influence of the mPFC on
the amygdala (Dannlowski et al., 2012; Joormann et al., 2012).

To account for confounding factors such as age, sex, and BDI
score, we additionally conducted a multiple regression analysis
(see Supplementary Analysis).

RESULTS

In the following, we will present subgroup-specific posterior
parameter estimates after BMA and BEST. Our parameter of
interest was the modulatory B-matrix parameter of the fronto-
amygdala connection.

For participants without any of our examined risk factors,
the coupling between mPFC and amygdala was negative,
characterized by a mean parameter estimate of �0.366 (Figure 3,
top left). Importantly, the 95% HDI interval was completely
below zero, indicating a credible difference from zero. In this
group, themPFC therefore clearly exerted an inhibitory influence
on amygdala activity during face processing.

For participants with a family history of affective disorders
(i.e., genetic risk), the coupling strength was similar (mean
parameter estimate �0.417, Figure 3, top center). The 95%
HDI was completely located in the negative range, indicating
that also in this group the mPFC exerted a clear inhibitory
influence on amygdala activity during face processing. The
differences of means between the no risk and the genetic
risk group were 0.049 (Figure 3, top right). Since both the
distribution of differences between means accumulated at zero
and the 95% HDI intersected zero, there was no evidence for
a different coupling strength between both groups. The effect
size of the difference distribution was 0.03 (Supplementary
Figure S1).

For participants with an environmental risk (i.e., childhood
maltreatment) the parameter estimate of the fronto-amygdala
coupling accumulated around zero (mean parameter estimate
�0.035, Figure 3, bottom center). The difference of means
between the no risk and the environmental risk group was�0.331
(Figure 3, bottom right). Importantly, the mean of the no-
risk group was with a probability of 99.5% more negative than
the mean of the environmental risk group. Similarly, the 95%
HDI was completely in the negative range (Figure 3, bottom
right). This showed that the inhibitory influence of the mPFC
on amygdala activity during face processing was diminished
in the environmental risk group compared to the no-risk
group. The corresponding effect size was�0.46 (Supplementary
Figure S2).

An additional multiple regression analysis confirmed those
results (see Supplementary Analysis). In the regression, we
found an overall significant amygdala inhibition in subjects at
no risk (p < 0.001), and a significant reduction of this inhibition
by childhood maltreatment as environmental risk (p = 0.02, see
Supplementary Analysis). Neither effects of age, sex, or BDI
have been found.

DISCUSSION

In the present study, we tested a neurobiological model for the
inhibition of the amygdala response to emotional stimuli in a
large sample of healthy subjects. In particular, we tested whether
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FIGURE 3 | Effect of emotional face processing on the fronto-amygdala connection in healthy participants with and without particular risks for depression.
Displayed are sampling distributions for the mean for each subgroup (left and middle column) as obtained via Bayesian estimation (“BEST”) and sampling
distributions for the difference of group means (right column). Top row: subjects with genetic risk (family history) for major depressive disorder (MDD; top center)
exhibited similar amygdala inhibition than those without risk (top left). 95% highest density intervals (HDIs) fell fully into the negative range. There was no credible
difference between groups (top right). The 95% HDI well accumulated around zero. Bottom row: amygdala inhibition in healthy participants with environmental risk
for depression (i.e., childhood maltreatment). Fronto-amygdala connectivity during emotional face processing was strongly diminished in healthy participants
exhibiting an environmental risk with a probability of 99.5%, with the 95% HDI accumulating completely in the negative range.

this inhibition is modulated by genetic and environmental risk
factors such as a family history of affective disorders and
childhood maltreatment, respectively. Our results showed that
amygdala inhibition by medial prefrontal cortex regions was
strongly diminished in subjects who experienced childhood
maltreatment, but not in subjects with genetic (i.e., familial)
risk factors.

In the following, we will first discuss some background
on the amygdala function and the necessity of amygdala
inhibition. Then we will introduce the limbic-cortical model
for depression. We will demonstrate how this network model
explains amygdala hyperactivity in on-risk subjects, particularly
those with past childhoodmaltreatment. Our results complement
findings of amygdala hyperactivation in subjects with childhood
maltreatment, and we propose a mechanistic model for how this
hyperactivation may be caused.

The Amygdala Prefrontal Pathway in
Emotion Regulation
Amygdala’s activity is generally associated with the processing
of emotionally salient stimuli, e.g., fearful facial expressions
(Davis, 1992; Adolphs, 2002; Fitzgerald et al., 2006; Pessoa
and Adolphs, 2011). The amygdala can respond to biologically
relevant stimuli quickly (Méndez-Bértolo et al., 2016), allowing
for a fast modulation of specialized cortical processing as well as

behavioral, vegetative and endocrine reactions (LeDoux, 1998).
Proper amygdala functioning was therefore of major advantage
throughout vertebrate evolution. However, amygdala activity
needs regulation, for instance after a stimulus has been evaluated
as harmless. Such control is functionally related to the prefrontal
cortex (Kim and Whalen, 2009; Agustín-Pavón et al., 2012),
in particular to the orbitofrontal cortex (ORB), ventromedial
prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC;
Mayberg, 1997; Mayberg et al., 1999; Etkin et al., 2011; Motzkin
et al., 2015). Studies report overlapping functionalities of these
three medial frontal regions (Etkin et al., 2011; Marusak et al.,
2016). Lesions in medial prefrontal areas are associated with
impaired down-regulation of fear and anxiety (Agustín-Pavón
et al., 2012; Motzkin et al., 2015), implicating its role as an
emotion control region. Additionally, metabolic alterations of
those regulatory regions have been found for disorders such
as MDD, which are accompanied by impaired emotion control
abilities (Portella et al., 2011).

The amygdala has reciprocal anatomical connections to
medial prefrontal regions, e.g., via the uncinate fasciculus
(UF; Ebeling and von Cramon, 1992; Thiebaut de Schotten
et al., 2012; Von Der Heide et al., 2013), which has been
linked to inhibitory signaling from the mPFC to the amygdala
(Kim and Whalen, 2009; Motzkin et al., 2015). Top-down
signaling from mPFC towards the amygdala may be regarded
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as safety signaling, with the mPFC supposedly calming down
the amygdala (Harrison et al., 2017). Dysfunctions of amygdala
downregulation in MDD have been associated with structural
abnormalities in the UF, showing, for instance, an inverse
relationship between UF volume and trait anxiety (Kim and
Whalen, 2009; Baur et al., 2012) and weakened UF white
matter structural integrity in MDD (de Kwaasteniet et al., 2013),
particularly right-hemispheric (Dalby et al., 2010; Zhang et al.,
2012). In an often-used analogy, the amygdala is regarded as a
barking watchdog, while the mPFC is the dog’s owner, evaluating
the relevance of the barking dog and therefore differentiating
between harmless and potentially hazardous events. In MDD
however, the owner fails to regulate his or her watchdog as
effectively as necessary, and the dog keeps alarming longer or
louder as usual.

The Limbic-Cortical Model
A network model describing the interaction of mPFC and
amygdala was first outlined by Mayberg and colleagues in
the context of MDD (Mayberg, 1997). Its initial formulation
proposed aberrant networking of a variety of cortical and
subcortical areas. It proposes hypo-activity in the dorsal cortical
and dorsal limbic areas and accompanying hyperactivity in
ventral (para-) limbic areas in MDD. This activation pattern
was supposed to flip with treatment (Mayberg, 1997), and
medial prefrontal areas are to mediate between those major
compartments (Mayberg, 1997). It’s baseline activity has further
been proposed as a biomarker for treatment success (Mayberg,
1997). Over the years the Mayberg model has been adapted
and revised in very different fashions. For instance, the
ventromedial prefrontal cortex (vmPFC) is often described as
the regulatory region, inhibiting the amygdala in healthy subjects
(e.g., Johnstone et al., 2007; Dutcher and Creswell, 2018) and
lacking such inhibition in MDD (e.g., Johnstone et al., 2007).
Other studies assigned such a regulatory function rather than
the (ORB, Sladky et al., 2015b), but also (ACC, Johnstone et al.,
2007; Etkin et al., 2011). In neuroimaging studies, regions such
as vmPFC, ORB, and sometimes ACC are named in a very
heterogeneous fashion, complicating the comparison of studies
and findings. We derived both regions of interest from local
peaks within the respective areas. Therefore, we named our
prefrontal region, which encompassed both vmPFC and medial
ORB, ‘‘mPFC’’ to keep it sufficiently general.

We applied the limbic-cortical model to data derived by
healthy subjects with and without particular risk status for MDD
rather than MDD patients themselves. We hypothesized that
both of our examined risks may be associated with aberrant
networking of this emotion regulation circuit, which then, in
turn, may contribute to disorder onset. In the present study, we
are not able to evaluate a causality chain due to the cross-sectional
data used. However, we were able to evaluate the network model
in healthy individuals without those two risk factors by showing,
that there is indeed a down-regulation of the amygdala by mPFC
during emotion processing, indicated by negative parameter
estimates. We then examined how the network model behaves
in subjects at-risk. In future studies, using longitudinal data that
is currently collected in the FOR2107 cohort, we will be able

to further refine our findings by applying our models also to
patient data.

The Impact of Risk Factors
MDD is most likely caused by a combination of some
polygenetic predisposition and environmental factors. Showing
high heritability, a family history of MDD may have a major
impact on an individual, e.g., lowering resilience to adverse
life events (Joormann et al., 2012). On the other hand, there
are environmental factors, elevating the probability of clinical
depression. One factor, leading to increased risk for depression,
is childhood maltreatment (Kessler, 1997; Gilbert et al., 2009).
Childhood maltreatment probably leads to psychological and
biological vulnerabilities and higher sensibility to stressors
(Kessler, 1997; Beck, 2008; Danese et al., 2008; Nanni et al., 2011),
increasing the probability of disorder onset. Furthermore, MDD
patients that experienced childhood maltreatment show lower
treatment outcome (Hammen et al., 2000; Lanquillon et al., 2000;
Nanni et al., 2011). On a neural system level, healthy subjects
with a family history of MDD show amygdala hyperactivity
in emotional tasks (Joormann et al., 2012). Similarly, healthy
subjects with childhood trauma experiences show amygdala
hyperactivity as a response to emotional faces, much like patients
suffering from MDD (Dannlowski et al., 2012), accompanied
with structural alterations in the prefrontal cortex (Frodl et al.,
2010; van Harmelen et al., 2010; Dannlowski et al., 2012).
Early life events, therefore, may establish long-lasting changes in
emotional processing and associated unfavorable alterations in
brain structure, function, and connectivity.

In our analysis, we tackled the question of amygdala inhibition
by mPFC in healthy subjects at-risk. We operationalized a
genetic risk by assigning it to a subject if a first-degree relative
ever had a diagnosed affective disorder. We found no credible
differences in amygdala inhibition between the no risk and the
genetic risk group (Figure 3, bottom). This was contrary to our
hypothesis as we expected a weaker inhibition in those subjects
under genetic (i.e., familial) risk. Likewise, the environmental
risk was operationalized via childhood maltreatment (see
‘‘Materials and Methods’’ section). We found that childhood
maltreatment was associated with a strong reduction of amygdala
inhibition (Figure 3, bottom). In the framework of our network
model—an operationalization of the limbic-cortical model—we,
therefore, provide a mechanistic explanation for the observed
amygdala hyperactivity in healthy subjects with childhood
trauma experiences (Dannlowski et al., 2012), namely a failure
of amygdala regulation by prefrontal control regions.

Limitations
We acknowledge some limitations of our analyses. First, we
used a simplified model including only two regions, covering
only a small part of the brain regions associated with emotion
processing. A widely distributed network of regions would form
a better picture but comes with higher computational costs.
Second, we identified one possible prefrontal region for our
analysis, derived from our group activation data. Literature,
however, reveals many different localizations of potential
prefrontal control regions, with overlapping functionality but
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variability in their designations (Etkin et al., 2011; Marusak
et al., 2016). We refer to the Mayberg studies with our results,
which can be seen as the basis for the limbic-cortical model of
MDD (Graham et al., 2013). It provides us a suitable framework
for our hypotheses. However, the prefrontal control region
we used differed from the regions within the original studies.
Additionally, we operationalized a genetic risk via a family
history of affective disorders. However, this does not capture any
concrete genotype. With this kind of operationalization, we may
also not distinguish between a true genetic risk due to inheritance,
and an environmental factor such as emotional neglect due to
the indirect consequences of a parent’s disorder. Therefore, our
assigned genetic risk can be better understood as a familial risk,
including both genetic and environmental factors.

Conclusion
In this article, we constructed and evaluated a model proposing
that childhood maltreatment but not a family history of affective
disorders are characterized by a reduced inhibition of the
amygdala by mPFC. In the context of our model, we illustrate
a potential mechanism for the frequently reported amygdala
hyperactivation in MDD during emotion processing. More
importantly, the model provides a mechanistic explanation for
amygdala hyperactivation in healthy subjects with childhood
trauma experiences. Model parameters such as this may
constitute vulnerability markers for clinical symptoms in later
life and maybe predictive for treatment success. Information
of such model parameters may be used for early therapeutic
intervention in at-risk individuals, to prevent disorder onset and
poor treatment response in later life stages, when pathological
connections are tightened and more difficult to treat.

DATA AVAILABILITY STATEMENT

All PIs take responsibility for the integrity of the respective
study data and their components. All authors and co-authors
had full access to all study data. Code for crucial analyses
as well as statistical maps, subject-specific DCM models, and
further data is available in a public repository of the first author
(https://github.com/kesslerr/limbiccortical).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethikkomission FB 20 Medizin, Baldingerstraße,
35032 Marburg & Ethik-Kommission der Ärztekammer
Westfalen-Lippe und der Westfälischen Wilhelms-Universität
Münster, Gartenstraße 210-214, 48147 Münster. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

RK: conceptualization of analyses, conduction of analyses,
interpretation of the data, drafting, and revision of the
manuscript. SS and TS: data collection, revision of the
manuscript, and interpretation of the data. FS and DY: data

collection. DG: data collection and provided data infrastructure.
UD: design of fMRI protocol and financially enabled the study.
TH: financially enabled the study and interpretation of the data,
and revision of the manuscript. AD: financially enabled the
study. JS and OS: provided data infrastructure. IN: financially
enabled the study, and interpretation of the data. TK: design
of fMRI protocol, financially enabled the study, and revision of
the manuscript. AJ: conceptualization of analyses, conduction of
analyses, interpretation of the data, provided data infrastructure,
design of fMRI protocol, drafting and revision of the manuscript,
and financially enabled the study.

FUNDING

This work is part of the German multicenter consortium
‘‘Neurobiology of Affective Disorders. A translational perspective
on brain structure and function,’’ funded by the German
Research Foundation (Deutsche Forschungsgemeinschaft
DFG; Forschungsgruppe/Research Unit FOR2107). Principal
investigators (PIs) with respective areas of responsibility in the
FOR2107 consortium are: Work PackageWP1, FOR2107/MACS
cohort and brainimaging: TK (speaker FOR2107; DFG grant
numbers KI 588/14-1, KI 588/14-2), UD (co-speaker FOR2107;
DA 1151/5-1, DA 1151/5-2), Axel Krug (KR 3822/5-1, KR
3822/7-2), IN (NE 2254/1-2), Carsten Konrad (KO 4291/3-1).
WP2, animal phenotyping: Markus Wöhr (WO 1732/4-1, WO
1732/4-2), Rainer Schwarting (SCHW 559/14-1, SCHW 559/14-
2). WP3, miRNA: Gerhard Schratt (SCHR 1136/3-1, 1136/3-2).
WP4, immunology, mitochondriae: Judith Alferink (AL 1145/5-
2), Carsten Culmsee (CU 43/9-1, CU 43/9-2), Holger Garn (GA
545/5-1, GA 545/7-2). WP5, genetics: Marcella Rietschel (RI
908/11-1, RI 908/11-2), Markus Nöthen (NO 246/10-1, NO
246/10-2), Stephanie Witt (WI 3439/3-1, WI 3439/3-2). WP6,
multi-method data analytics: AJ (JA 1890/7-1, JA 1890/7-2), Tim
Hahn (HA 7070/2-2), Bertram Müller-Myhsok (MU1315/8-2),
AD (DE 1614/3-1, DE 1614/3-2). CP1, biobank: Petra Pfefferle
(PF 784/1-1, PF 784/1-2), Harald Renz (RE 737/20-1, 737/20-2).
CP2, administration: TK (KI 588/15-1, KI 588/17-1), UD (DA
1151/6-1), Carsten Konrad (KO 4291/4-1).

ACKNOWLEDGMENTS

WP1: Henrike Bröhl, Katharina Brosch, Bruno Dietsche, Rozbeh
Elahi, Jennifer Engelen, Sabine Fischer, Jessica Heinen, Svenja
Klingel, Felicitas Meier, Tina Meller, Torsten Sauder, Simon
Schmitt, Frederike Stein, Annette Tittmar, Dilara Yüksel (Dept.
of Psychiatry, Marburg University); Mechthild Wallnig, Rita
Werner (Core-Facility Brainimaging, Marburg University);
Carmen Schade-Brittinger, Maik Hahmann (Coordinating
Centre for Clinical Trials, Marburg). Michael Putzke (Psychiatric
Hospital, Friedberg); Rolf Speier, Lutz Lenhard (Psychiatric
Hospital, Haina); Birgit Köhnlein (Psychiatric Practice,
Marburg); Peter Wulf, Jürgen Kleebach, Achim Becker
(Psychiatric Hospital Hephata, Schwalmstadt-Treysa); Ruth Bär
(Care facility Bischoff, Neukirchen); Matthias Müller; Michael
Franz, Siegfried Scharmann, Anja Haag, Kristina Spenner, Ulrich

Frontiers in Systems Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 28

32



Kessler et al. Limbic-Cortical Model and Childhood Trauma

Ohlenschläger (Psychiatric Hospital Vitos, Marburg); Matthias
Müller, Michael Franz, Bernd Kundermann (Psychiatric
Hospital Vitos, Gießen); Christian Bürger, Katharina Dohm,
Fanni Dzvonyar, Verena Enneking, Stella Fingas, Katharina
Förster, Janik Goltermann, Dominik Grotegerd, Hannah Lemke,
Susanne Meinert, Nils Opel, Ronny Redlich, Jonathan Repple,
Kordula Vorspohl, Bettina Walden, Dario Zaremba (Dept. of
Psychiatry, University of Münster); Harald Kugel, Jochen Bauer,
Walter Heindel, Birgit Vahrenkamp (Dept. of Clinical Radiology,
University of Münster); Gereon Heuft, Gudrun Schneider (Dept.
of Psychosomatics and Psychotherapy, University of Münster);
Thomas Reker (LWL-Hospital Münster); Gisela Bartling (IPP
Münster); Ulrike Buhlmann (Dept. of Clinical Psychology,
University of Münster); WP2: Marco Bartz, Miriam Becker,
Christine Blöcher, Annuska Berz, Moria Braun, Ingmar Conell,
Debora dalla Vecchia, Darius Dietrich, Ezgi Esen, Sophia
Estel, Jens Hensen, Ruhkshona Kayumova; Theresa Kisko,
Rebekka Obermeier, Anika Pützer, Nivethini Sangarapillai, Özge
Sungur, Clara Raithel, Tobias Redecker, Vanessa Sandermann,
Finnja Schramm, Linda Tempel, Natalie Vermehren, Jakob
Vörckel, Stephan Weingarten, Maria Willadsen, Cüneyt Yildiz
(Faculty of Psychology, Marburg University); WP4: Jana
Freff, Silke Jörgens, Kathrin Schwarte (Dept. of Psychiatry,
University of Münster); Susanne Michels, Goutham Ganjam,
Katharina Elsässer (Faculty of Pharmacy, Marburg University);
Felix Ruben Picard, Nicole Löwer, Thomas Ruppersberg
(Institute of Laboratory Medicine and Pathobiochemistry,
Marburg University); WP5: Helene Dukal, Christine Hohmeyer,
Lennard Stütz, Viola Schwerdt, Fabian Streit, Josef Frank, Lea
Sirignano (Dept. of Genetic Epidemiology, Central Institute

of Mental Health, Medical Faculty Mannheim, Heidelberg
University); Stefanie Heilmann-Heimbach, Stefan Herms, Per
Hoffmann (Institute of Human Genetics, University of Bonn,
School of Medicine and University Hospital Bonn); Andreas
J. Forstner (Institute of Human Genetics, University of Bonn,
School of Medicine and University Hospital Bonn; Centre
for Human Genetics, Marburg University); WP6: Anastasia
Benedyk, Miriam Bopp, Roman Keßler, Maximilian Lückel,
Verena Schuster, Christoph Vogelbacher (Dept. of Psychiatry,
Marburg University); Jens Sommer, Olaf Steinsträter (Core-
Facility Brainimaging, Marburg University); Thomas W.D.
Möbius (Institute of Medical Informatics and Statistics, Kiel
University); CP1: Julian Glandorf, Fabian Kormann, Arif
Alkan, Fatana Wedi, Lea Henning, Alena Renker, Karina
Schneider, Elisabeth Folwarczny, Dana Stenzel, Kai Wenk, Felix
Picard, Alexandra Fischer, Sandra Blumenau, Beate Kleb, Doris
Finholdt, Elisabeth Kinder, Tamara Wüst, Elvira Przypadlo,
Corinna Brehm (Comprehensive Biomaterial Bank Marburg,
Marburg University). The FOR2107 cohort project (WP1) was
approved by the Ethics Committees of the Medical Faculties,
University of Marburg (AZ: 07/14) and University of Münster
(AZ: 2014-422-bS).

SUPPLEMENTARY MATERIAL

The corresponding single-subject parameter estimates are
displayed in Supplementary Figure S3. The Supplementary
Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fnsys.2020.00028/
full#supplementary-material.

REFERENCES

Abler, B., Erk, S., Herwig, U., and Walter, H. (2007). Anticipation of aversive
stimuli activates extended amygdala in unipolar depression. J. Psychiatr. Res.
41, 511–522. doi: 10.1016/j.jpsychires.2006.07.020

Adolphs, R. (2002). Neural systems for recognizing emotion. Curr. Opin.
Neurobiol. 12, 169–177. doi: 10.1016/s0959-4388(02)00301-x

Agustín-Pavón, C., Braesicke, K., Shiba, Y., Santangelo, A. M., Mikheenko, Y.,
Cockroft, G., et al. (2012). Lesions of ventrolateral prefrontal or anterior
orbitofrontal cortex in primates heighten negative emotion. Biol. Psychiatry 72,
266–272. doi: 10.1016/j.biopsych.2012.03.007

Anderson, I. M., Del-Ben, C. M., McKie, S., Richardson, P., Williams, S. R.,
Elliott, R., et al. (2007). Citalopram modulation of neuronal responses to
aversive face emotions: a functional MRI study. Neuroreport 18, 1351–1355.
doi: 10.1097/wnr.0b013e3282742115

Andrade, L., Caraveo-Anduaga, J. J., Berglund, P., Bijl, R. V., De Graaf, R.,
Vollebergh, W., et al. (2003). The epidemiology of major depressive episodes:
results from the International Consortium of Psychiatric Epidemiology (ICPE)
Surveys. Int. J. Methods Psychiatr. Res. 12, 3–21. doi: 10.1002/mpr.138

Baur, V., Hänggi, J., and Jäncke, L. (2012). Volumetric associations between
uncinate fasciculus, amygdala and trait anxiety. BMC Neurosci. 13:4.
doi: 10.1186/1471-2202-13-4

Beck, A. T. (2008). The evolution of the cognitive model of depression and its
neurobiological correlates. Am. J. Psychiatry 165, 969–977. doi: 10.1176/appi.
ajp.2008.08050721

Bernstein, D. P., Ahluvalia, T., Pogge, D., and Handelsman, L. (1997). Validity of
the childhood trauma questionnaire in an adolescent psychiatric population.
J. Am. Acad. Child Adolesc. Psychiatry 36, 340–348. doi: 10.1097/00004583-
199703000-00012

Buxton, R. B., Wong, E. C., and Frank, L. R. (1998). Dynamics of blood flow and
oxygenation changes during brain activation: the ballon model. Magn. Reson.
Med. 39, 855–864. doi: 10.1002/mrm.1910390602

Catani, M., Howard, R. J., Pajevic, S., and Jones, D. K. (2002). Virtual in vivo
interactive dissection of white matter fasciculi in the human brain.NeuroImage
17, 77–94. doi: 10.1006/nimg.2002.1136

Dalby, R. B., Frandsen, J., Chakravarty, M. M., Ahdidan, J., Sørensen, L.,
Rosenberg, R., et al. (2010). Depression severity is correlated to the integrity
of white matter fiber tracts in late-onset major depression. Psychiatry Res. 184,
38–48. doi: 10.1016/j.pscychresns.2010.06.008

Danese, A., Moffitt, T., Pariante, C., Antony, A., Poulton, R., and Caspi, A. (2008).
Elevated inflammation levels in depressed adults with a history of childhood
maltreatment. Arch. Gen. Psychiatry 65, 409–415. doi: 10.1001/archpsyc.
65.4.409

Dannlowski, U., Ohrmann, P., Bauer, J., Kugel, H., Arolt, V., Heindel, W.,
et al. (2007). Amygdala reactivity to masked negative faces is associated with
automatic judgmental bias in major depression: a 3 T fMRI study. J. Psychiatry
Neurosci. 32, 423–429. doi: 10.30965/9783657764082_082

Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T.,
Grotegerd, D., et al. (2012). Limbic scars: long-term consequences of childhood
maltreatment revealed by functional and structural magnetic resonance
imaging. Biol. Psychiatry 71, 286–293. doi: 10.1016/j.biopsych.2011.10.021

Davis, M. (1992). The role of the amygdala in fear and anxiety. Annu.
Rev. Neurosci. 15, 353–375. doi: 10.1146/annurev.ne.15.030192.
002033

de Almeida, J. R. C., Versace, A.,Mechelli, A., Hassel, S., Quevedo, K., Kupfer, D. J.,
et al. (2009). Abnormal amygdala-prefrontal effective connectivity to happy
faces differentiates bipolar frommajor depression. Biol. Psychiatry 66, 451–459.
doi: 10.1016/j.biopsych.2009.03.024

Frontiers in Systems Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 28

33



Kessler et al. Limbic-Cortical Model and Childhood Trauma

de Kwaasteniet, B., Ruhe, E., Caan, M., Rive, M., Olabarriaga, S., Groefsema, M.,
et al. (2013). Relation between structural and functional connectivity in major
depressive disorder. Biol. Psychiatry 74, 40–47. doi: 10.1016/j.biopsych.2012.
12.024

Del-Ben, C. M., Deakin, J. F. W., Mckie, S., Delvai, N. A., Williams, S. R.,
Elliott, R., et al. (2005). The effect of citalopram pretreatment on
neuronal responses to neuropsychological tasks in normal volunteers: an
fMRI study. Neuropsychopharmacology 30, 1724–1734. doi: 10.1038/sj.npp.13
00728

Dutcher, J. M., and Creswell, J. D. (2018). Behavioral interventions in health
neuroscience. Ann. N Y Acad. Sci. 1428, 51–70. doi: 10.1111/nyas.13913

Ebeling, U., and von Cramon, D. (1992). Topography of the uncinate
fascicle and adjacent temporal fiber tracts. Acta Neurochir. 115, 143–148.
doi: 10.1007/bf01406373

Ekman, P. (1992). An argument for basic emotions. Cogn. Emot. 6, 169–200.
Etkin, A., Egner, T., and Kalisch, R. (2011). Emotional processing in anterior

cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93.
doi: 10.1016/j.tics.2010.11.004

Fitzgerald, D. A., Angstadt, M., Jelsone, L. M., Nathan, P. J., and Phan, K. L. (2006).
Beyond threat: amygdala reactivity across multiple expressions of facial affect.
NeuroImage 30, 1441–1448. doi: 10.1016/j.neuroimage.2005.11.003

Fitzgerald, P. B., Laird, A. R., Maller, J., and Daskalakis, Z. J. (2008). A
meta-analytic study of changes in brain activation in depression. Hum. Brain
Mapp. 29, 683–695. doi: 10.1002/hbm.20426

Friedman, L., and Glover, G. H. (2006). Report on a multicenter fMRI quality
assurance protocol. J. Magn. Reson. Imaging 23, 827–839. doi: 10.1002/jmri.
20583

Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling.
NeuroImage 19, 1273–1302. doi: 10.1016/s1053-8119(03)00202-7

Frodl, T., Reinhold, E., Koutsouleris, N., Reiser, M., and Meisenzahl, E. M. (2010).
Interaction of childhood stress with hippocampus and prefrontal cortex volume
reduction in major depression. J. Psychiatr. Res. 44, 799–807. doi: 10.1016/j.
jpsychires.2010.01.006

Ghashghaei, H. T., and Barbas, H. (2002). Pathways for emotion: interactions
of prefrontal and anterior temporal pathways in the amygdala of the
rhesus monkey. Neuroscience 115, 1261–1279. doi: 10.1016/s0306-4522(02)
00446-3

Gilbert, R., Widom, C. S., Browne, K., Fergusson, D., Webb, E., and Janson, S.
(2009). Burden and consequences of child maltreatment in high-income
countries. Lancet 373, 68–81. doi: 10.1016/s0140-6736(08)61706-7

Graham, J., Salimi-Khorshidi, G., Hagan, C., Walsh, N., Goodyer, I., Lennox, B.,
et al. (2013). Meta-analytic evidence for neuroimaging models of depression:
state or trait? J. Affect. Disord. 151, 423–431. doi: 10.1016/j.jad.2013.07.002

Hammen, C., Henry, R., and Daley, S. E. (2000). Depression and sensitization to
stressors among young women as a function of childhood adversity. J. Consult.
Clin. Psychol. 68, 782–787. doi: 10.1037/0022-006x.68.5.782

Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., and Weinberger, D. R. (2002).
The amygdala response to emotional stimuli: a comparison of faces and scenes.
NeuroImage 17, 317–323. doi: 10.1006/nimg.2002.1179

Harrison, B. J., Fullana, M. A., Via, E., Soriano-Mas, C., Vervliet, B., Martínez-
Zalacaín, I., et al. (2017). Human ventromedial prefrontal cortex and
the positive affective processing of safety signals. NeuroImage 152, 12–18.
doi: 10.1016/j.neuroimage.2017.02.080

Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., and Davidson, R. J.
(2007). Failure to regulate: counterproductive recruitment of top-down
prefrontal-subcortical circuitry inmajor depression. J. Neurosci. 27, 8877–8884.
doi: 10.1523/jneurosci.2063-07.2007

Joormann, J., Cooney, R. E., Henry, M. L., and Gotlib, I. H. (2012). Neural
correlates of automatic mood regulation in girls at high risk for depression.
J. Abnorm. Psychol. 121, 61–72. doi: 10.1037/a0025294

Kessler, R. C. (1997). The effects of stressful life events on depression. Ann. Rev.
Psychol. 48, 191–214. doi: 10.1146/annurev.psych.48.1.191

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., et al.
(2003). The epidemiology of major. JAMA 289, 3095–3105. doi: 10.1001/jama.
289.23.3095

Kim, M. J., and Whalen, P. J. (2009). The structural integrity of an amygdala-
prefrontal pathway predicts trait anxiety. J. Neurosci. 29, 11614–11618.
doi: 10.1523/JNEUROSCI.2335-09.2009

Kircher, T., Wöhr, M., Nenadic, I., Schwarting, R., Schratt, G., and Alferink, J.
(2019). Neurobiology of the major psychoses: a translational perspective on
brain structure and function—the FOR2107 consortium. Eur. Arch. Psychiatry
Clin. Neurosci. 269, 949–962. doi: 10.1007/s00406-018-0943-x

Klingler, J., and Gloor, P. (1960). The connections of the amygdala and of the
anterior temporal cortex in the human brain. J. Comp. Neurol. 115, 333–369.
doi: 10.1002/cne.901150305

Kruschke, J. K. (2010). What to believe: bayesian methods for data analysis. Trends
Cogn. Sci. 14, 293–300. doi: 10.1016/j.tics.2010.05.001

Kruschke, J. K. (2013). Bayesian estimation supersedes the T test. J. Exp. Psychol.
Gen. 142, 573–603. doi: 10.1037/a0029146

Kruschke, J. K., and Liddell, T. M. (2018). The bayesian new statistics: hypothesis
testing, estimation, meta-analysis, and power analysis from a bayesian
perspective. Psychon. Bull. Rev. 25, 178–206. doi: 10.3758/s13423-016-1221-4

Lanquillon, S., Krieg, J.-C., Bening-Abu-Shach, U., and Vedder, H. (2000).
Cytokine production and treatment response in major depressive disorder.
Neuropsychopharmacology 22, 370–379. doi: 10.1016/s0893-133x(99)00134-7

LeDoux, J. (1998). Fear and the brain: where have we been and where are we going?
Biol. Psychiatry 44, 1229–1238. doi: 10.1016/s0006-3223(98)00282-0

Marusak, H. A., Thomason, M. E., Peters, C., Zundel, C., Elrahal, F., and
Rabinak, C. A. (2016). You say ‘prefrontal cortex’ and I say ‘anterior cingulate’:
meta-analysis of spatial overlap in amygdala-to-prefrontal connectivity and
internalizing symptomology. Transl. Psychiatry 6:e944. doi: 10.1038/tp.
2016.218

Mayberg, H. S. (1997). Limbic-cortical dysregulation: a proposed model of
depression. J. Neuropsychiatry Clin. Neurosci. 9, 471–481. doi: 10.1176/jnp.9.
3.471

Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K.,
Jerabek, P. A., et al. (1999). Reciprocal limbic-cortical function and negative
mood: converging PET findings in depression and normal sadness. Am.
J. Psychiatry 156, 675–682. doi: 10.1176/ajp.156.5.675

Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-
Alvarez, R., Mah, Y. H., et al. (2016). A fast pathway for fear in human
amygdala. Nat. Neurosci. 19, 1041–1049. doi: 10.1038/nn.4324

Moffitt, T. E., Caspi, A., Taylor, A., Kokaua, J., Milne, B. J., Polanczyk, G., et al.
(2010). How common are common mental disorders? Evidence that lifetime
prevalence rates are doubled by prospective versus retrospective ascertainment.
Psychol. Med. 40, 899–909. doi: 10.1017/S0033291709991036

Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., and Koenigs, M.
(2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala
activity in humans. Biol. Psychiatry 77, 276–284. doi: 10.1016/j.biopsych.2014.
02.014

Nanni, V., Uher, R., and Danese, A. (2011). Childhood maltreatment predicts
unfavorable course of illness and treatment outcome in depression: a meta-
analysis. Am. J. Psychiatry 169, 141–151. doi: 10.1176/appi.ajp.2011.11020335

Nelson, J., Klumparendt, A., Doebler, P., and Ehring, T. (2017). Childhood
maltreatment and characteristics of adult depression: meta-analysis. Br.
J. Psychiatry 210, 96–104. doi: 10.1192/bjp.bp.115.180752

Nemeroff, C. B. (2016). Paradise lost: the neurobiological and clinical
consequences of child abuse and neglect. Neuron 89, 892–909. doi: 10.1016/j.
neuron.2016.01.019

Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M.,
et al. (2016). Major depressive disorder. Nat. Rev. Dis. Primers 2:16065.
doi: 10.1038/nrdp.2016.65

Palmer, S. M., Crewther, S. G., and Carey, L. M. (2015). A meta-analysis of
changes in brain activity in clinical depression. Front. Hum. Neurosci. 8:1045.
doi: 10.3389/fnhum.2014.01045

Pessoa, L., and Adolphs, R. (2011). Emotion processing and the amygdala: from
a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat. Rev.
Neurosci. 11, 773–783. doi: 10.1038/nrn2920

Portella, M. J., de Diego-Adeliño, J., Gómez-Ansón, B., Morgan-Ferrando, R.,
Vives, Y., Puigdemont, D., et al. (2011). Ventromedial prefrontal spectroscopic
abnormalities over the course of depression: a comparison among first
episode, remitted recurrent and chronic patients. J. Psychiatr. Res. 45, 427–434.
doi: 10.1016/j.jpsychires.2010.08.010

Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., and Thase, M. E.
(2007). Increased amygdala and decreased dorsolateral prefrontal
BOLD responses in unipolar depression: related and independent

Frontiers in Systems Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 28

34



Kessler et al. Limbic-Cortical Model and Childhood Trauma

features. Biol. Psychiatry 61, 198–209. doi: 10.1016/j.biopsych.2006.
05.048

Sladky, R., Höflich, A., Küblböck, M., Kraus, C., Baldinger, P., Moser, E.,
et al. (2015a). Disrupted effective connectivity between the amygdala and
orbitofrontal cortex in social anxiety disorder during emotion discrimination
revealed by dynamic causal modeling for fMRI. Cereb. Cortex 25, 895–903.
doi: 10.1093/cercor/bht279

Sladky, R., Spies, M., Hoffmann, A., Kranz, G., Hummer, A., Gryglewski, G., et al.
(2015b). (S)-citalopram influences amygdala modulation in healthy subjects:
a randomized placebo-controlled double-blind fMRI study using dynamic
causal modeling. NeuroImage 108, 243–250. doi: 10.1016/j.neuroimage.2014.
12.044

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., and Friston, K. J.
(2009). Bayesian model selection for group studies.NeuroImage 46, 1004–1017.
doi: 10.1016/j.neuroimage.2009.03.025

Suslow, T., Konrad, C., Kugel, H., Rumstadt, D., Zwitserlood, P., Schöning, S.,
et al. (2010). Automatic mood-congruent amygdala responses to masked facial
expressions in major depression. Biol. Psychiatry 67, 155–160. doi: 10.1016/j.
biopsych.2009.07.023

Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R., and Catani, M. (2012).
Monkey to human comparative anatomy of the frontal lobe association tracts.
Cortex 48, 82–96. doi: 10.1016/j.cortex.2011.10.001

van Harmelen, A. L., van Tol, M. J., van der Wee, N. J. A., Veltman, D. J.,
Aleman, A., Spinhoven, P., et al. (2010). Reduced medial prefrontal cortex
volume in adults reporting childhood emotional maltreatment. Biol. Psychiatry
68, 832–838. doi: 10.1016/j.biopsych.2010.06.011

Vogelbacher, C., Möbius, T. W. D., Sommer, J., Schuster, V., Dannlowski, U.,
Kircher, T., et al. (2018). The marburg-münster affective disorders cohort
study (MACS): a quality assurance protocol for MR neuroimaging
data. NeuroImage 172, 450–460. doi: 10.1016/j.neuroimage.2018.
01.079

Von Der Heide, R. J., Skipper, L. M., Klobusicky, E., and Olson, I. R. (2013).
Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis.
Brain 136, 1692–1707. doi: 10.1093/brain/awt094

Windischberger, C., Lanzenberger, R., Holik, A., Spindelegger, C., Stein, P.,
Moser, U., et al. (2010). Area-specific modulation of neural activation
comparing escitalopram and citalopram revealed by pharmaco-fMRI: a
randomized cross-over study. NeuroImage 49, 1161–1170. doi: 10.1016/j.
neuroimage.2009.10.013

World Health Organization. (2017). Depression and Other Common Mental
Disorders: Global Health Estimates. Geneva: World Health Organization.

Zhang, A., Leow, A., Ajilore, O., Lamar, M., Yang, S., Joseph, J., et al. (2012).
Quantitative tract-specific measures of uncinate and cingulum in major
depression using diffusion tensor imaging. Neuropsychopharmacology 37,
959–967. doi: 10.1038/npp.2011.279

Conflict of Interest: TK received unrestricted educational grants from Servier,
Janssen, Recordati, Aristo, Otsuka, neuraxpharm. Markus Wöhr is scientific
advisor of Avisoft Bioacoustics.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Kessler, Schmitt, Sauder, Stein, Yüksel, Grotegerd, Dannlowski,
Hahn, Dempfle, Sommer, Steinsträter, Nenadic, Kircher and Jansen. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 28

35



   

Supplementary Material 

1 Supplementary Methods 

1.1 Subjects Characteristics 

Table S1: Subjects’ characteristics. N: Total number of subjects in the subgroup. HAMD is the 
Hamilton depression score (Hamilton, 1960). BDI is Becks Depression Inventory score (Beck, Ward, 
Mendelson, Mock, & Erbaugh, 1961).  

group no risk genetic risk environmental risk both risks 

N 247 51 32 12 

sex (m/f) 99/148 20/31 13/19 3/9 

age 33 ± 13 32 ± 13 40 ± 12 38 ± 13 

verbal IQ 115 ± 14 114 ± 15 117 ± 16 113 ± 11 

years education 14 ± 2 14 ± 3 14 ± 3 14 ± 3 

BDI 4.2 ± 3.9 4.9 ± 5.6 5.4 ± 5.5 10 ± 7.7 

HAMD 1.0 ± 1.5 1.6 ± 1.9 2.2 ± 2.5 4.0 ± 6.1 

 

1.2 Task Performance 

Table S2: Hit rates and reaction times (RT) for the different subgroups.  

 mean hit rate 
faces 

sd hit rate 
faces 

mean hit rate 
shapes 

sd hit rate 
shapes 

mean RT 
faces 

sd RT 
faces 

mean RT 
shapes 

sd RT 
shapes 

no risk 0.91 0.25 0.89 0.25 1223.05 377.33 1041.71 295.47 

genetic risk 0.90 0.26 0.88 0.26 1171.51 399.16 1005.99 306.22 

environmental 
risk 

0.91 0.25 0.90 0.24 1206.05 387.28 1030.48 304.58 

both risks 0.91 0.25 0.90 0.24 1206.05 387.28 1030.48 304.58 
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1.3 Bayesian Model Selection 

Table S3: Model exceedance probabilities and posterior probabilities. Bayesian Model Selection was 
conducted in each subgroup separately. Model exceedance probabilities describe the probability that 
one model is more like than all competing models generating the data. Posterior model probabilities 
determine the relative probability of a model and further its contribution of a model to the respective 
subgroups average model (BMA). For a graphical description of the twelve models see Figure 2. The 
subgroup-specific model probabilities as displayed here were not of particular importance for the 
group comparisons using BEST. Instead, we used subject-specific model probabilities to calculate 
each subject’s individual average model. 

 

posterior 

probabilities 

model 

1 2 3 4 5 6 7 8 9 10 11 12 

 no risk 0.01 0.01 0.01 0.30 0.02 0.02 0.04 0.36 0.00 0.04 0.15 0.04 

genetic risk 0.02 0.03 0.02 0.16 0.02 0.04 0.03 0.30 0.02 0.10 0.18 0.09 

environmental risk 0.04 0.11 0.08 0.18 0.03 0.05 0.04 0.29 0.03 0.07 0.04 0.04 

both risks 0.04 0.04 0.05 0.22 0.05 0.06 0.09 0.20 0.05 0.09 0.05 0.07 

 

 

 

 

 

 

 

 

 

 

 

 

exceedance 

probabilities 

model 

1 2 3 4 5 6 7 8 9 10 11 12 

 no risk 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 

genetic risk 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.83 0.00 0.01 0.09 0.00 

environmental risk 0.00 0.04 0.02 0.19 0.00 0.01 0.00 0.73 0.00 0.00 0.00 0.00 

both risks 0.01 0.01 0.01 0.44 0.01 0.02 0.06 0.34 0.01 0.05 0.01 0.03 
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2 Supplementary Results 

2.1 Bayesian Estimation 

For both comparisons (either no risk vs. genetic risk or no risk vs. environmental risk) we used 
Bayesian Estimation (“BEST”, (Kruschke, 2013)) to calculate e.g. differences of means. 
Furthermore, effect sizes, and differences in variances etc. are displayed in the following graphics.  

2.1.1 No risk vs. genetic risk 
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Figure S1: Detailed Bayesian Estimation (‘BEST’) results for the comparisons of subjects without 
risk (group 1) and subjects with genetic risk (group 2). Displayed are estimated group means and 
standard deviations, differences of means and standard deviations, degree of normality and effect 
sizes (Kruschke, 2013) alongside with highest density intervals (HDI). 

 

2.1.2 No risk vs. environmental risk 

 

Figure S2: Detailed Bayesian Estimation (‘BEST’) results for the comparisons of subjects without 
risk (group 1) and subjects with environmental risk (group 2). Displayed are estimated group means 
and standard deviations, differences of means and standard deviations, degree of normality and effect 
sizes (Kruschke, 2013) alongside with highest density intervals (HDI). 
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3 Supplementary Analysis: Linear regression 

Groups were not explicitly matched for sex, age, verbal IQ or years of education. Instead, we selected 
as many subjects as possible to increase the sensitivity of our analyses. To strengthen our results and 
to correct for these covariates, we additionally conducted a multiple linear regression analysis. We 
included covariates as age, sex, and BDI into our analysis as covariates. 

3.1 Methods 

Group differences between the modulatory B-matrix parameter of the fronto-amygdala connection 
were assessed using a linear regression model using R (version 3.5.1). We constructed the linear 
regression model of amygdala inhibition as a function of risk factors. As risk factors, we 
categorically modeled a family history (genetic risk) and childhood maltreatment (environmental 
risk). We further included major possible confounding variables as age (mean-centered), sex (female 
= 0, male = 1), and BDI in our model. The intercept of the model represents the average amygdala 
inhibition (if negative) of (female) subjects with none of the above risks and a BDI of zero. Other 
regression parameters give insight about the significance and strength of risk factors and confounding 
variables. If slopes are positive, the modeled factor decreases amygdala inhibition by mPFC. If 
negative, those factors increase amygdala inhibition. We further used a step-wise backward 
regression, by iteratively pruning the model parameters with highest p-value (until all p<0.05) to get 
a simpler model with only significant predictor variables. 

3.2 Results 

A multiple linear regression model was constructed to predict the influence of mPFC onto the 
amygdala during emotion processing. Predictors were genetic risk (family history, categorical), 
environmental risk (childhood maltreatment, categorical), age (mean-centered), sex (female = 0), and 
BDI. After stepwise backward regression using ordinary least squares (OLS), a significant regression 
equation was found (p=0.02) with an adjusted R-squared of 0.013. The predicted influence of mPFC 
onto the amygdala was -0.503 (intercept, 95% CI -0.618 & -0.387, p<0.001), with an increase of the 
parameter estimate by childhood maltreatment (binary) of 0.381 (95% CI 0.06 & 0.703, p=0.02). 
Therefore, the parameter estimate for healthy subjects at no risk was negative (i.e. amygdala 
inhibition). With childhood maltreatment, this inhibition was decreased significantly (i.e. reduced 
inhibition). 

Using a full model without backward regression, we obtain similar results. Only the intercept 
(amygdala inhibition at no risk) and childhood maltreatment as predictor became significant. A 
family history, as well as covariates such as age, sex, and BDI, remained non-significant. The 
corresponding single-subject parameter estimates are displayed in Figure S3. 
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Figure S3: Single subject parameter estimates of the fronto-amygdala connection and result of 
multiple linear regression analysis. 

4 Supplementary Analysis: Full-factorial analysis 

To evaluate activation differences between groups, we constructed a 2x2 full-factorial analysis on the 
second level fMRI data. The first factor was environmental risk (childhood maltreatment), and the 
second factor genetic risk (family history). ). We then analyzed “main effect of environmental risk” 
and “main effect of genetic risk” as F-contrasts. We masked the resulting contrast with the very 
same masks for right amygdala (“rAmy”) and medial prefrontal cortex (“mPFC”), which we used to 
extract the time series for our subjects. No voxels exceeded significance in the F-contrasts at 
thresholds of p<0.01 (uncorrected for multiple comparisons). We therefore conclude no meaningful 
activation differences between no-risk and at-risk groups on activation level within our sample. 
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A B S T R A C T   

The classical core system of face perception consists of the occipital face area (OFA), fusiform face area (FFA), 
and posterior superior temporal sulcus (STS). The functional interaction within this network, more specifically 
the effective connectivity, was first described by Fairhall and Ishai (2007) using functional magnetic resonance 
imaging and dynamic causal modeling. They proposed that the core system is hierarchically organized; infor-
mation is processed in a parallel and predominantly feed-forward fashion from the OFA to downstream regions 
such as the FFA and STS, with no lateral connectivity, i.e., no connectivity between the two downstream regions 
(FFA and STS). Over a decade later, we conducted a conceptual replication of their model using four different 
functional magnetic resonance imaging data sets. The effective connectivity within the core system was assessed 
with contemporary versions of dynamic causal modeling. 

The resulting model of the core system of face perception was densely interconnected. Using hierarchical 
linear modeling, we identified several significant forward, backward, and lateral connections in the core system 
of face perception across the data sets. Face perception increased the forward connectivity from the OFA to the 
FFA and OFA to the STS and increased the inhibitory backward connectivity from the FFA to the OFA, as well as 
the lateral connectivity between the FFA and STS. Emotion perception increased forward connectivity between 
the OFA and STS and decreased the lateral connectivity between the FFA and STS. Face familiarity did not 
significantly alter these connections. 

Our results revise the 2007 model of the core system of face perception. We discuss the potential meaning of 
the resulting model parameters and propose that our revised model is a suitable working model for further 
studies assessing the functional interaction within the core system of face perception. Our work further em-
phasizes the general importance of conceptual replications.   

1. Introduction 

Face processing is mediated by a widely distributed neural network. 
This network is often divided into a core system and an extended system 
(Haxby model, Haxby et al., 2000). The core system is involved in the 

processing of basic information about faces. It consists of several bilat-
eral brain regions in the occipitotemporal cortex; specifically, the oc-
cipital face area (OFA) in the inferior occipital gyrus, the fusiform face 
area (FFA) in the middle fusiform gyrus, and an area in the posterior 
superior temporal sulcus (STS). According to the Haxby model, the OFA 
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is responsible for the early processing of physical features of face stimuli 
and sends its output to both the FFA and STS. The FFA is associated with 
the representation of invariant aspects of the face (e.g., face identity), 
while the STS processes changeable aspects of facial expression (e.g., lip 
movements and the direction of eye-gaze). Beyond the core system, 
there are several additional regions that contribute to face perception, 
such as the amygdala, insula, inferior frontal gyrus, and orbitofrontal 
cortex (Gobbini and Haxby, 2007). This extended system tends to be 
task-specific and comes into play if additional information is extracted 
from faces, such as attractiveness or biographical information. 

Only a few studies have previously investigated the assumptions 
made by the Haxby model with respect to the interplay between the 
face-sensitive regions. An understanding of the interaction between 
these areas, however, is crucial for unraveling how the human brain 
processes faces and might also provide new insights into the patho-
physiology of disorders where face perception is impaired (e.g., proso-
pagnosia). One method to test the interactions between brain regions is 
dynamic causal modeling (DCM) (Friston et al., 2003). DCM is used to 
test hypotheses about the neural network structure. It estimates the 
directed coupling between brain areas (effective connectivity) and the 
changes in coupling caused by experimental manipulations (i.e., 
context). A few different neural network models (i.e., DCMs) have been 
developed for the face perception system. These DCMs assessed the 
neural dynamics within the core system of face perception, the inter-
action between the core system and extended system, and the effects of 
‘emotions’ and ‘fame’ on the effective connectivity within those net-
works (e.g., Dima et al., 2011; Fairhall and Ishai, 2007; Furl, 2015; Furl 
et al., 2015; Herrington et al., 2011). They were typically limited to one 
hemisphere but have recently been expanded by bilateral DCMs, 
including interactions between both hemispheres (Frässle et al, 2016b, 
2016c, 2016b). 

The first study that used DCM to describe the interactions between 
face-sensitive brain regions was published almost 15 years ago. In this 
study, Fairhall and Ishai (2007) tested DCMs, which were built based on 
the Haxby model and described the interactions within the core system. 
Not only did they show how the OFA, FFA, and STS interact during face 
processing, but they also assessed how factors like emotional valence 
and the fame of faces influenced those interactions (see Fig. 1 for a 
graphical depiction of their model). Their study’s main results were:  

i. The OFA propagates face-specific content simultaneously to the 
FFA and STS in a feed-forward fashion.  

ii. Backward connections to the OFA and collateral connections 
between the FFA and STS were not present in their proposed 
model.  

iii. Emotional valence enhanced connectivity from the OFA to the 
FFA.  

iv. ‘Fame’ enhanced connectivity from the OFA to the FFA. 

The Fairhall and Ishai (2007) study has been highly influential and 
widely cited since it was published, and it further makes far-reaching 
claims on how the brain regions in the core system interact during 
face processing and how these interactions are modulated. Various 
studies investigating the connectivity within the core system of face 
perception have been published, building upon these results (Elbich 
et al., 2019; Frässle et al., 2016a, 2016b, 2016c, 2016b; He et al., 2015; 
Lohse et al., 2016; Nagy et al., 2012; Nguyen et al., 2014; Sato et al., 
2017). However, the study’s results have never been formally replicated, 
neither in different samples nor with different strategies of analysis. 
Therefore, the aim of the present study was to investigate the degree to 
which we can reproduce the results from the study by Fairhall and Ishai 
(2007). 

Concerns about the reproducibility of neuroimaging findings have 
been steadily raised in recent years since numerous studies have shown 
that the results of previous experiments could not be replicated (Gor-
golewski and Poldrack, 2016). One reason for this is that results ob-
tained can be highly dependent on the tools being used as well as 
differences in the experimental setup, pipeline, or statistical methods 
(Bedenbender et al., 2011; Botvinik-Nezer et al., 2020; Weissenbacher 
et al., 2009). Reproducibility can be assessed with different approaches 
(Diener and Biswas-Diener, 2016). An exact replication can be per-
formed by attempting to repeat the original study in the best way 
possible, i.e., using identical paradigms and tools for analysis. However, 
there is also the option of a conceptual replication, wherein the re-
searchers are not interested in simply repeating the steps of the original 
study in an exact and sequential manner. Instead, they may be interested 
in answering the very same research question as that in the original 
study by using tools that are similarly suitable to find those answers. 
Both types of replications are important since they each give us new but 
complementary information. While exact replications strengthen our 
belief in the findings from the original research, conceptual replications 
can strengthen the theoretical idea behind the findings. In other words, 
conceptual replications offer insights into how generalizable the find-
ings are. In the present study, we aimed to conduct a conceptual repli-
cation of the core results of the study by Fairhall and Ishai (2007). We 
were not interested in whether these results could be reproduced in one 
specific sample, with one specific face perception task, and with one 
specific analysis pipeline. Rather, we aimed to assess whether the find-
ings can be replicated over several samples, different implementations 
of face processing tasks, and different analysis methods. 

In summary, we investigated face-specific interactions in the core 
system, i.e., between the OFA, FFA, and STS in the right hemisphere. We 
expected similar results to those from the study conducted by Fairhall & 
Ishai (Fairhall and Ishai, 2007), namely an increase in forward con-
nectivity from the OFA to the FFA and from the OFA to the STS. 
Furthermore, we investigated the influence of ‘emotion’ and ‘fame’ on 
the strength of the connections between brain regions of the core system. 

Fig. 1. Dynamic causal model of the in-
teractions within the core system of face 
perception by Fairhall and Ishai (2007). 
Driving input (faces) enters the OFA, which 
propagates the information in a parallel 
manner toward the FFA and STS. Assump-
tions about the effect of faces were drawn 
from the A-matrix. Assumptions about the 
effects of emotion and fame were drawn 
from separate B-matrices (see Material and 
Methods for further information on the ter-
minology of DCM, see Discussion for further 
information on the modeling strategy).   
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We expected ‘emotion’ and ‘fame’ to increase the connectivity from the 
OFA to the FFA, similar to what was observed in the original study. By 
analyzing four different samples, three of which were acquired in our 
laboratory, we aimed to increase the generalizability of our results. In all 
four samples, the processing of faces was investigated; emotion pro-
cessing was additionally assessed in two samples. The fourth sample, 
which was retrieved from an open neuroimaging platform (Wakeman 
and Henson, 2015), allowed us to investigate the effect of ‘fame’. All the 
studies from which the samples were obtained used distinct paradigms 
and participants. To combine our results with these studies, we applied a 
hierarchical linear modeling (HLM) approach. 

2. Material and Methods 

2.1. Study samples 

We analyzed four samples of healthy participants (referred to in the 
manuscript as data sets A–D, studies A–D, paradigms A–D, samples A–D, 
and so forth). Three of these data sets (A, B, and C) were retrieved from 
ongoing (and therefore yet unpublished) studies in our lab (Laboratory 
for Multimodal Neuroimaging, Department of Psychiatry, University of 
Marburg, Germany). Studies A and B were originally planned to inves-
tigate the changes in connectivity in the face perception network asso-
ciated with facial emotion processing. Study C initially assessed the 
impact of female hormones on brain structure and function, and, on the 
face-processing network. Written informed consent was provided by all 
the participants. The fourth data set (data set D) was obtained from the 
OpenNeuro project (openneuro.org), accession number ds000117, 
Wakeman and Henson (2015). In Table 1, we summarized detailed in-
formation on the participants’ characteristics of studies A-D and the 
original study (Fairhall and Ishai, 2007) (henceforth referred to as ‘study 
FI’). Participants in samples A and B were investigated just once. Par-
ticipants in sample C (all female) were investigated twice, with 1–25 
weeks between sessions (mean = 7 weeks); one measurement took place 
during the mid-luteal phase and the other during the early follicular 
phase of the menstrual cycle. Participants in sample D were measured 
ten times each with the same face perception paradigm. Sessions in 
which there was no significant activation in each of the three regions of 
the core system were excluded from DCM analyses (see chapter 2.4.2 
[i]). Therefore, we report both the total number of participants and 
sessions for each study (rows 1 and 2) and the participants and sessions 
included in the final analyses (remaining rows). In study FI, participants 
were measured five times with four different paradigms (Fairhall and 
Ishai, 2007). 

2.2. Functional paradigms 

The paradigms of all the data sets were constructed to tackle ques-
tions related to face perception. Participants viewed face stimuli in the 
experimental conditions and non-face stimuli (i.e., houses or phase- 
scrambled images) in the control conditions. Studies A–D used photo-
graphs of faces, while study FI used different face stimuli (line drawings 
of faces, famous faces, emotional faces, and unfamiliar faces). Paradigms 
A–C were set up in a block design similar to study FI, whereas paradigm 
D used an event-related design. All the paradigms included a simple 
task, such as a one-back task (paradigm A–C) or symmetry rating task 
(paradigm D). Study FI did not include any accompanying task. We have 
presented paradigm A in Fig. 2. More detailed descriptions of paradigms 
A–C can be found in the supplementary methods. A description of 
paradigm D is found in the study by Wakeman and Henson (2015). 
Paradigm FI is described in study FI (Fairhall and Ishai, 2007). 

One crucial difference between the paradigms was the inclusion of 
emotional or famous faces. Paradigm A used four different emotional 
expressions, namely neutral, fearful, happy, and angry, separated into 
different blocks (Fig. 2). Paradigm B used two different emotional ex-
pressions, neutral and fearful. Paradigms C and D used neutral faces 
instead of particularly emotional expressions. Paradigms A–C used non- 
famous faces, whereas paradigm D used non-famous as well as famous 
faces. 

2.3. Data acquisition 

High resolution structural images and blood oxygen level-dependent 
functional images of all four data sets were acquired using Siemens 3T 
TIM TRIO MR scanners (Siemens, Erlangen, Germany). Study FI used a 
3T Philips Intera scanner (Philips, Hamburg, Germany). All measure-
ment volumes for the functional image acquisitions covered the entire 
core system of face perception. Information on the properties of the 
scanning sequences is detailed in the supplementary methods. 

2.4. Data analysis 

2.4.1. Preprocessing and statistical analysis of brain activity 
Analyses of the magnetic resonance imaging (MRI) data sets A, B, 

and C were conducted using Statistical Parametric Mapping 12 (SPM12) 
(https://www.fil.ion.ucl.ac.uk/spm/). Data set D was processed using 
FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), and study FI used SPM5. In 
all the data sets, preprocessing included motion correction, spatial 
normalization (except study A), and spatial smoothing. Statistical ana-
lyses were conducted using a general linear model. We modeled ‘faces’ 
as regressors of interest, and the control condition (e.g., houses or 
scrambled faces) were modeled as separate regressors, following which 
we contrasted the ‘face’ vs. control conditions. Here, we did not differ-
entiate between neutral, emotional, or famous faces. Similarly, we did 
not differentiate between the different control conditions. Nuisance re-
gressors included the six realignment parameters. A more detailed 
description of the specific analysis pipelines can be found in the sup-
plementary methods. Notably, we could have used the raw data of each 
data set and implemented an identical preprocessing pipeline for all 
paradigms. However, to increase the generalizability, we decided to use 
the preprocessed data sets. All the procedures that were implemented by 
the respective authors represent valid implementations of preprocessing 
pipelines. 

2.4.2. Dynamic causal modeling 
The connectivity pattern of the core system of face perception was 

assessed with DCM (Friston et al., 2003; Zeidman et al., 2019a). DCM is 
a framework to disentangle effective connectivity in neuroimaging data. 
In its original formulation, it models the brain as a deterministic 
input-output system using the following differential equation: 

Table 1 
Sample characteristics of each study.  

Sample A B C D FI 

total number of participants 25 31 20 16 n.a. 
total number of sessions per 

participant 
1 1 2 10 5 

number of participants 
included 

23 27 17 16 10 

number of sessions 
included per participant 

1 1 1–2 5-10 
(Md: 8) 

5 

number of males 11 13 0 9 5 
number of females 12 14 17 7 5 
age (years) 24 

(Md) 
24 
(Md) 

24 
(Md) 

n.a. 25 
(mean) 

minimum age (years) 21 20 20 23* n.a. 
maximum age (years) 29 29 28 37* n.a. 

Abbreviations: Md, median; n.a., Information not available. *Study D: The age 
range of all 19 participants was included in the online repository. However, at 
the time of our analysis, the data for only 16 participants were accessible. 
Therefore, the age range in study D might differ from that shown above. 
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dz
dt =

(
A+

∑m

j=1
ujB(j)

)
z + Cu 

In this equation, z depicts the neural activations, u is the experi-
mental input or context, A describes the endogenous connection 
strengths, B(j) models how the experimental context uj affects connec-
tivity in the network, and C models how the experimental input directly 
influences the neural activity within the regions of interest. The dy-
namics of the neural activations are translated into predictions about the 
blood oxygen level-dependent signal by a hemodynamic forward model 
(Buxton et al., 1998). The model parameters are then estimated by 
maximizing the negative free energy. 

DCM enables inferences at different levels, such as the inferences on 
model space and parameter space of any given model. In the following 
sections, we will describe (i) the extraction of time series from the OFA, 
FFA, and STS, (ii) the specification of the model space, and (iii) the 
specific DCM analyses assessing the network parameters within and 
across the studies.  

(i) Identification of the OFA, FFA, and STS 

DCMs were constructed for the core system of face perception within 
the right hemisphere (OFA, FFA, and STS). In the following paragraphs, 
we describe how we defined regions of the core system and extracted the 
time series of the respective regions. 

Two different approaches were used to identify brain regions at the 
single-participant level. Regarding the choice of the preprocessing steps, 
we did not adopt one specific standard for the present study. Instead, to 
increase the generalizability, we applied the approaches for time series 
extraction that had been used by the authors in the respective studies. 
The first approach was used for data set A, in which the MRI data was not 
normalized. In this data set, we manually identified the peak activation 
clusters at a single participant level in the native image space (Frässle 
et al., 2016c). We superimposed the participants’ co-registered struc-
tural image with the t-map for the contrast “faces > control condition.” 
We then identified the OFA, FFA, and STS as the clusters with the highest 
activities in the inferior occipital gyrus, posterior fusiform gyrus, and the 
posterior superior temporal sulcus, respectively. If several clusters were 
candidates for a particular region, we used the activation strength and 
symmetry to an analog cluster in the opposite hemisphere as criteria. 
The second approach was used for data sets B, C, and D, in which the 
MRI data was normalized (Kessler et al., 2020; Sladky et al., 2015). For 
each study, we first assessed the brain activity at the group level. The 

individual contrast images (“faces > control condition”) were entered in 
a random-effects analysis using a one-sample t-test. We identified the 
group peak activation coordinates for the OFA, FFA, and STS using the 
same anatomical criteria as described above. Next, we identified 
participant-specific peak coordinates for these regions. A peak coordi-
nate was defined in each participant as the voxel with the highest t-value 
within a mask (radius, 12 mm) centered on the group peak coordinate 
for the respective region. 

For all the data sets, the time series were extracted for each region 
and participant/session as the first principal component of all the voxels 
activated at a threshold of 0.001, uncorrected for multiple comparisons, 
located within a radius of 4 mm around the participant-specific peak 
voxel. Due to the lower overall activation in data set D, we increased the 
statistical threshold to 0.1 (uncorrected) for this data set. Participants/ 
sessions in which no activity was found at the pre-defined statistical 
threshold in at least one region were excluded from further analyses. 
Two participants from data set A, four from data set B, and three from 
data set C were excluded (Table 1).  

(ii) Specification of model space 

For all the data sets, we specified models similar to those in study FI 
(Fairhall and Ishai, 2007). All the models consisted of three regions: the 
OFA, FFA, and STS. These regions were interconnected differently, 
varying in the presence or absence of context-independent connections 
(A-matrix). In total, we constructed 24 models (Fig. 3). A ‘face’ input 
regressor was set onto the OFA in all the models (C-matrix). Further-
more, we allowed ‘faces’ to modulate all available interregional con-
nections within each model (B-matrix). Intra-regional connections (i.e., 
self-connections) were not modulated in the B-matrix. Our model 
specification was informed by the models of study FI, as well as by 
assuming the OFA as an input region and by allowing an input to be 
distributed to all downstream regions by at least one possible route. 
However, our model specification deliberately differed from that in 
study FI with regard to the specification of the influence of face 
perception. In study FI, the influence of the presentation of faces, in 
comparison to other objects, was not modeled explicitly (see Section 4.2 
for a detailed discussion). To assess the effects of ‘emotion’ and ‘fame,’ 
we further allowed the modulation of all interregional connections by 
‘emotion’ (data set A and B) and ‘fame’ (data set D). At this point, we 
decided again to use a different modeling procedure compared to study 
FI (see discussion 4.2. for a more detailed explanation). 

Whereas study B comprised only one emotion (fear, plus neutral 
expression), the regressor for ‘emotion’ was interpreted in a 

Fig. 2. Experimental paradigm for study A. 
In paradigm A, pictures of either neutral, 
happy, angry, or fearful faces (Langner et al., 
2010) were shown in the experimental con-
dition, and houses were shown in the control 
condition. Single stimuli and blocks were 
intervened by a gray screen. Participants 
were instructed to maintain the fixation of 
their gaze throughout the entire experiment. 
They were further instructed to press a but-
ton if a stimulus was presented twice in a 
row (one to two times per block). The total 
experiment lasted about 30 min.   
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straightforward manner (i.e., as an effect of ‘fear’). In study A, however, 
three different expressions (happiness, fear, anger) were presented 
alongside neutral facial expressions. We deliberately pooled across all 
emotional expressions, except ‘neutral,’ to construct a regressor for 
‘emotion’ to stay consistent with the approach of the original study 
(Fairhall and Ishai, 2007). In that study, pooling was conducted across 
two emotions; specifically, fear and happiness. We acknowledge that 
different emotions may lead to different activity and connectivity.  

(iii) DCM Analysis 

Our DCM analysis can be divided into three steps. First, we con-
ducted Bayesian model selection (BMS) to assess which model is best 
supported by the data separately for each participant and study. Second, 
we used Bayesian model averaging (BMA) to estimate averaged model 
parameters separately for each participant and study. Last, as the main 
aim of the present study, we used HLM to assess model parameters 
across the participants and studies. 

Bayesian model selection: First, we compared the different models 
using random-effects BMS separately for each study (Stephan et al, 
2009, 2010). We quantified the models’ goodness-of-fit based on the 
negative free energy, an approximation to the log model evidence 
(Friston et al., 2007). As a result of BMS, we obtained the posterior and 
exceedance probabilities for each model, assessed across all the partic-
ipants within each study. Our objective was not just to assess whether 
the winning models in our data sets were congruent with the winning 
model reported in study FI but also to qualitatively assess if the winning 
model is consistent across all the studies. 

Bayesian model averaging: Next, we calculated the averaged model 
parameters via BMA (Penny, 2012; Penny et al., 2010)). BMA uses the 
posterior model probabilities of all the models of a particular participant 
and calculates a weighted average model. The weights were determined 

by the respective posterior model probabilities. BMA, therefore, ac-
counts for the uncertainty of each model (Stephan et al., 2010). The 
results are presented at the single participant and group levels. The 
single participant results allow the visualization of the variance across 
the participants within one study (see Figs. S1–S4). The group results 
allow the description of the variability of the results across the studies. 
Two-sided one-sample t-tests were conducted for each connection per 
study to assess whether a connection parameter significantly differed 
from zero. We applied a Bonferroni family-wise error correction within 
each matrix for a particular study, resulting in a threshold of αBonf = α

n =
0.05

6 , with n as the number of tests, and α as the native false-positive 
threshold. We tested inter-regional connections (i.e., off-diagonal ele-
ments of the respective matrix). Self-connections were first converted to 
unit Hertz by applying aHz = −0.5*e{alogscale} to be on the same scale as 
the inter-regional connections (Zeidman et al., 2019a). We did not test 
self-connections for significance because those are negative by defini-
tion (Fig. S2). 

Studies C and D included more than one experimental session per 
participant. In study C, each participant was measured twice, with the 
participants’ hormone levels differing between the two experimental 
sessions. Therefore, we have reported the BMS and BMA results for both 
sessions separately. In study D, we included five to nine experimental 
sessions per participant depending on the number of sessions in which 
all the regions could be clearly identified (see 2.4.2.[i]). The division 
into two separate sessions was not motivated by an experimental 
manipulation as in study C. For the sake of clarity, we will not report 
group-BMS and group-BMA results across all nine sessions in study D. 
However, for the subsequent analysis with HLM, we included each 
participant and session appropriately. 

Hierarchical linear modeling: Third, as the main aim of the present 
study, we estimated the model parameters across the studies. In the 

Fig. 3. Model space. Models of the core system of face perception tested with Bayesian model selection (BMS). Connectivity was investigated by modifying the 
forward, lateral, and feedback connections between the three investigated regions, namely the OFA (blue), FFA (green), and STS (purple). Driving input by faces was 
set on the OFA (C-matrix, short arrow). All context-independent connections (A-matrix) are displayed with arrows, except the inhibitory self-connections. All 
interregional connections were modulated (B-matrix) by ‘faces’ (studies A-D), ‘emotion’ (studies A and B), and ‘fame’ (study D). The winning model of the original 
study FI (#2) and the winning model of our revised model comparisons (#24, see Results section) are marked with dashed rectangles. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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preceding step, we used the model probabilities of each participant to 
create an average model for each participant and the respective session. 
Now, we aimed to quantify the connectivity parameters across all the 
sessions, participants, and studies. 

To assess these group effects, we constructed HLMs using the R (R 
version 3.6.2, (R Core Team, 2020)) packages lme4 (lme4_1.1) and nlme 
(nlme_3.1) (Bates et al., 2015; Lindstrom and Bates, 1990). We decided 
to use hierarchical modeling instead of simple multiple linear modeling 
to account for the hierarchical structure in the data. Hierarchical 
structures were introduced by studies C and D, in which participants 
were measured multiple times. 

The present HLM approach evaluates the magnitude of each con-
nectivity parameter between regions. These parameters were nested into 
studies and further nested into repeated measurements per participant. 
For HLM, we deliberately used the point estimate of the posterior 
parameter of each participant and session after BMA. 

To describe the magnitude of a particular connectivity parameter, we 
modeled it as a function of the study and hormone as fixed effects, 
respectively. Fixed effects are unknown, constant parameters, which are 
like regression coefficients in multiple regression analysis. We modeled 
the particular participant as a random effect. Random-effects represent 
random (unobserved) variables (West et al., 2014) instead of simple 
regression coefficients. More illustratively, we modeled each participant 
having a random intercept. Consequently, the participants’ intercepts 
deviated around the fixed-effect, or global, intercept. 

We were not interested in the interpretation of the effects of the 
study, participant, or hormone. We were, however, interested in the 
shared connectivity across the studies, participants, and sessions. 
Therefore, it was important to design the model such that the global 
intercept can be interpreted as an average parameter estimate across the 
studies. To achieve this interpretation, we used contrast coding or Hel-
mert coding on the study variable and hormone variable (Sundström, 
2010). In the first contrast variable (‘AvsB’), we assigned a value of +0.5 
for all the observations belonging to study A and −0.5 for all the ob-
servations belonging to study B. Next, we included study C (‘ABvsC’) by 
contrasting studies A and B (+0.25 each) versus study C (−0.5). We 
continued the same way with study D (‘ABCvsD’) by assigning +0.16 for 
the observations of studies A, B, and C and −0.5 for the observations of 
study D. Similarly, we introduced a one-level Helmert coding for the 
hormone variable, contrasting mid-luteal vs. early follicular phase 
(‘MvsP’). 

For each connection of each DCM matrix, we constructed a separate 
HLM. Of those HLMs, we emphasized the global intercept (i.e., fixed- 
effect intercept) of the corresponding model. When modeling the DCM 
parameters of the A-matrix, B-matrix ‘faces’, and C-matrix, we included 
all the terms. When modeling the B-matrix ‘emotions’, we dismissed the 
explanatory variable ‘hormone’ because study C and study D did not 
include emotions in their paradigms. When analyzing the B-matrix 
‘fame’, we did not include ‘hormone’ or ‘study’ as we just used study D 
for this analysis. As an example, a particular B-matrix connectivity 
parameter for the effect of ‘faces’ was modeled in the following manner: 

yi = β0 + β1xi1 + β2xi2 + β3xi3 + γxi4 + ui + εi  

with yi being the DCM parameter (response variable) of participant i, β0 
representing the global (fixed effect) intercept, β1 to β3 representing the 
slopes of the contrasts of the study variables xi1 to xi3, respectively, γ 
being the slope of the contrast of the hormone variable xi4 (all fixed 
effects). ui corresponds to the random effect of ‘participant,’ and εi is the 
random error, with εi ∼ N(0,σε2), and ui ∼ N(0,σu

2). When modeling the 
parameters of other matrices, such as ‘emotion’ or ‘fame,’ particular 
fixed-effect terms were dismissed according to the logic described 
above. Using contrast coding, we tested the intercept for significance, 
applying a Bonferroni family-wise error correction with a threshold of 
αBonf = α

n = 0.05
6 , with n as the number of tests on interregional con-

nections per matrix (A matrix, B matrix ‘emotion,’ and B matrix ‘fame’), 

and α as the native false-positive threshold. 

3. Results 

The results section is structured as follows: first, we present a com-
parison of all the neural models using BMS separately for each study 
(3.1). Second, we describe the weighted parameter estimates after 
participant-specific BMA for all the data sets (3.2). Last, we present the 
HLM results showing parameter estimates across the studies (3.3). Based 
on this, we propose a revised model of the core face perception network. 

3.1. Bayesian model selection 

First, we conducted a BMS separately for each study. The results for 
study C are presented separately for both sessions (corresponding to two 
different phases of the participants’ menstrual cycle). Group results are 
not displayed for study D because of the variable number of sessions 
included for each participant. 

The posterior probability for model #24 (see Fig. 3) was the highest 
in all the studies (Fig. 4, left panel), ranging from 0.248 (study C1) to 
0.417 (study B). Similarly, the exceedance probabilities for model #24 
— the probabilities that model #24 is more likely than any of the other 
models — ranged from 0.915 (study C1) to >0.999 (study B, Fig. 4, right 
panel). The winning model expressed the highest possible inter-
connectivity in each analyzed data set. In all the data sets analyzed, we 
discerned the same winning model with a high posterior and exceedance 
probability (Fig. 4). Interestingly, our winning model differs from that of 
study FI (see Fig. 3). 

3.2. Bayesian model averaging 

In the second step, we calculated an average model for each partic-
ipant and study using BMA. BMA uses the posterior model probabilities 
of all the models of a particular participant and calculates a weighted 
average model. The weights were determined by the respective posterior 
model probabilities. BMA, therefore, accounts for the uncertainty of 
each model, as revealed by BMS (Stephan et al., 2010). Kernel density 
estimates of the participant-specific connectivity parameters after BMA, 
grouped by the respective study for the A-matrix, C-matrix, and all 
B-matrices, are illustrated in the supplementary results (Figs. S1–S4). 
The kernel density plots visualize the variability of the single participant 
parameter estimates grouped by the respective study. 

To calculate a separate model for each study, we applied a one- 
sample t-test onto each connectivity parameter separately for each 
study. We used a Bonferroni-corrected threshold of p = 0.05 per matrix 
and study (see Methods). The average models for each study are dis-
played in Fig. 5. The connectivity patterns for each study were similar; 
although the average connections may have differed in magnitude, they 
tended to point in the same direction (i.e., positive or negative). More-
over, some connections exceeded the threshold for significance in one 
study but not in the others. Therefore, naively contemplating each study 
in the absence of the others could lead one to draw similar conclusions 
regarding many parameters while disregarding other parameters due to 
significance thresholds. 

As a general pattern, the following was observed: within the A-ma-
trix, the parameters were relatively small and rarely significant. The C- 
matrix was always significantly positive. Within the B-matrix (‘faces’), 
forward connections from the OFA to the FFA and the OFA to the STS 
were always significantly positive. Most of the time, the backward 
connections from the FFA to the OFA and the STS to the OFA were 
negative (sometimes significantly). Collateral and backward connec-
tions between the FFA and STS were always negative (sometimes 
significantly). The B-matrices (‘emotion’) showed weaker parameters 
which were rarely significant. 

We tested for statistical significance across the studies in the 
following step to identify the global effects using HLM. 
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3.3. Hierarchical linear modeling 

In the final step, we assessed the commonalities in the participant- 
and session-specific connectivity parameters across the studies to 
investigate the modulatory influences of ‘faces,’ ‘emotion,’ and ‘fame’ 
on the network, as well as the interregional, context-independent 
connection of the A-matrix and the driving input (C-matrix). We used 
HLM as a tool to quantify the magnitude and significance of each 
connection. We included all the significant connections in a new and 
revised model of the core face perception network (Fig. 6). 

Using HLM, we identified the intercepts representing the ‘average 
effects across studies’ that significantly differed from zero. We have 
displayed all the connections in pseudo-colors in Fig. S5. Furthermore, 
we have displayed all the significant connections in a model-like 
structure in Fig. 6. First, in the context-independent connections (A- 
matrix), only the forward connection from the OFA to the FFA showed 
significant positivity (+0.08, p = 0.0016). The corresponding backward 
connection from the FFA to the OFA was significantly negative (−0.19, 
p = 3.3*10−8). Further, the driving input into the system (C-matrix) had 
a positive value (+1.42, p = 9.3*10−31). ‘Faces’ positively modulated 
the forward connection from the OFA to the FFA by +0.92 (p =
1.3*10−17), and that from the OFA to the STS by +0.77 (p = 2.8*10−13). 
‘Faces’ negatively modulated the backward connection from the FFA to 
the OFA by −1.13 (p = 3*10−14), and the collateral connections from the 
FFA to the STS by −0.31 (p = 0.002) and vice versa by −0.4 (p =
0.0007). Similarly, ‘emotions’ positively modulated the forward 
connection from the OFA to the STS by +0.35 (p = 7.7*10−6) and 
negatively modulated the collateral connection from the FFA to the STS 
by −0.19 (p = 0.0005). However, ‘fame’ did not significantly modulate 
any connection. 

Our resulting model has some similarities and differences compared 
with the original study. The similarities include the increase of forward- 
coupling induced by ‘faces.’ Differences mainly relate to the connections 
not included in the winning model of study FI. ‘Emotions’ modulated the 
forward connection to the STS instead of those to the FFA. We discuss 
possible reasons for the differences between our results and those of 
study FI below. 

4. Discussion 

In this study, we conducted a conceptual replication of an early 
network model of face perception using multiple data sets. While we 
successfully reproduced some aspects of the original model, the revised 
model was distinct in terms of some other major aspects. 

We will first describe our revisited model in terms of single in-
teractions and compare it to the original model (4.1). Secondly, we will 
discuss the modifications applied to our analysis pipeline compared to 
that of the original study (4.2). Some of these modifications were 
introduced by us to remedy issues in the original study, which may have 
limited its interpretability. Other modifications were merely due to 
developments within the DCM framework which have been introduced 
in new software versions. Further, we embed the presented network 
model within the broader framework of the predictive coding theory and 
outline some limitations (4.3). Finally, we emphasize the importance of 
conceptual replications in network neuroscience (4.4). 

4.1. The revisited model of face perception 

We tested face perception models consisting of the OFA, FFA, and 
STS, with the OFA serving as a hierarchically early input region that 
propagates information to the FFA and STS. As stated previously, 
inference in DCM is possible at different levels; it is possible at the level 
of the model space (i.e., which model is most likely) and parameter 
space (i.e., the shape of model parameters) (Stephan et al., 2010). 
Regarding the model space, we showed that our winning model was 
fully interconnected. This total interconnectivity was revealed by BMS 
in all the different samples and paradigms (Fig. 4); it comprised forward, 
backward, and lateral connections. The model proposed by study FI 
comprised merely forward connections (Fig. 1). Recently published 
studies have proposed hemispheric differences in the degree of inter-
connectivity. For instance, Wang et al. (2020) quantified structural, 
functional, and effective connectivity within the core- and extended 
systems of face perception. They reported higher interconnectivity 
within the face perception system of the right hemisphere comprising 
both feed-forward and feedback connections, while the left hemisphere 
showed a predominantly feed-forward pattern (Wang et al., 2020). 

Regarding the parameter space: in all the models, the external input 

Fig. 4. Bayesian model selection results. Left panel: The posterior model probabilities are displayed. We see that model #24 has the highest relative probability with 
0.248 (study C1) to 0.417 (study B). Right panel: The model exceedance probabilities are displayed. In all the data sets, model #24 exhibited a high exceedance 
probability (>0.9). 
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was modeled via the effect of ‘faces’ in the C-matrix. ‘Faces’ entered the 
system via the OFA according to the Haxby model. However, concurring 
theories propose the FFA as the input region (Rossion, 2008). As a 
working model, we stick to the OFA as a hierarchically earliest region 
and, therefore, target region for the driving experimental input, 
consistent with the Haxby model (Haxby et al., 2000). We further 
modeled the ‘effect of faces’ on every interregional connection (B-ma-
trix). Across the studies and participants, we found five significant 

modulations of ‘faces’ on interregional connections. ‘Faces’ positively 
increased the forward connectivity from the OFA to the FFA and from 
the OFA to the STS; this supports the prevailing opinion that face 
perception drives such forward connectivity, as proposed in the original 
Haxby model (Fan et al., 2020; Haxby et al., 2000). Further, we found a 
significantly negative backward connectivity from the FFA to the OFA 
and collateral connectivity between the FFA and STS. 

‘Emotion’ further increased the positive forward connection strength 

Fig. 5. The average connectivity within each study. Studies A, B (upper panels), and C (lower panels) were divided into two scanning sessions. The connectivity 
between the following three regions is illustrated: the OFA (blue), FFA (green), and STS (purple). In the left panel, the A-matrix (context-independent coupling) is 
shown. In the middle panel, the driving input (‘faces,’ C-matrix) and B-matrix (‘faces’) are displayed, and in the right panel, the B-matrix (‘emotions’) is shown. Black 
arrows indicate significant connections (i.e., significant within-study). Gray arrows indicate non-significant connections. The number alongside each arrow indicates 
the average connection strength. Self-connections (A-matrix) were omitted in the figures but distributed around −0.5 (see Fig. S2). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of this article.) 

R. Kessler et al.                                                                                                                                                                                                                                  

50



Neuroimage: Reports 1 (2021) 100045

9

from the OFA to the STS and the negative coupling from the FFA to the 
STS in the revised model (Fig. 6). Here, we differed from the original 
model ((Fairhall and Ishai, 2007), Fig. 1), which proposed a positive 
forward modulation by ‘emotion’ from the OFA to the FFA; based on the 
single parameters across the studies, we could not clearly discern this 
across the presently analyzed paradigms. However, previous fMRI 
studies emphasize the importance of the STS in emotion recognition 
(Duchaine and Yovel, 2015; Engell and Haxby, 2007; Haxby et al., 2000; 
Hildesheim et al., 2020; Sliwinska et al., 2020). 

Lastly, the effect of ‘fame’ was not significant, even though it was 
only modeled in one of our paradigms. According to lesion studies and 
imaging studies, face familiarity may be processed in more anterior re-
gions, such as the anterior temporal face area in combination with the 
FFA (Busigny et al., 2014; Evans et al., 1995; Sergent et al., 1992; Wil-
liams et al., 2006). To disentangle the effects of ‘fame,’ models with 
anterior temporal face regions included might provide better insights. 

4.2. Methodological adjustments to the original model 

We deliberately introduced some modifications to the original DCM 
pipeline as described below. 

4.2.1. A-matrix and experimental effects 
The A-matrix represents the context-independent coupling between 

regions, i.e., the underlying effective connectivity throughout the entire 
experiment (control conditions, fixations, etc.). Other effects, such as the 
effect of ‘faces’ on a particular connection, specified via the B-matrix, 
are additive to the context-independent parameters. Deciding which 
experimental effects to model in which matrices are important in the 
DCM workflow. We decided to model the effect of ‘faces’ explicitly in a 
B-matrix; this allowed us to differentiate the connectivity induced by 
‘faces’ from the residual connectivity at rest or induced by any control 
condition. In study FI, the effect of ‘faces’ was not modeled explicitly in a 
B-matrix (unlike how they modeled the effects of ‘emotions’ and ‘fame’ 
in a B-matrix). Instead, the A-matrix parameters were interpreted as the 
effect of ‘faces,’ which were confounded by all the conditions present in 
the respective experimental runs. 

Irrespective of the matrix in which study FI and our study modeled 
‘faces,’ the effect of ‘faces’ highly overlapped between both studies; the 
positive forward connectivity from the OFA to the FFA and the OFA to 
the STS was present in both the original model (Fig. 1) and our revised 
model (Fig. 6). Backward connections were modeled in the original 
study but did not survive the model selection (Fairhall and Ishai, 2007). 

4.2.2. One-vs. two-step model selection 
The effects of ‘emotion’ and ‘fame’ in the original study were 

modeled in a two-step approach. First, the authors assessed the coarse 
structure of the model by conducting a BMS that only specified the A- 
and C-matrices. However, it is unclear if the experimental input was 

properly distributed across the regions without the specification of a B- 
matrix onto the connections. Due to the control conditions and rest 
periods, the resulting A-matrix parameters potentially underestimated 
the true effect of ‘faces.’ Similarly, the parameters of the A-matrix were 
provided with more narrow shrinkage priors, much tighter than those of 
the B-matrix (Zeidman et al., 2019a), which under Bayesian assump-
tions lead to a weaker posterior parameter estimate. 

However, model #2 was selected by BMS in study FI (Fig. 1, left or 
Fig. 3). Then, the authors added B-matrices for ‘emotion’ or ‘fame’ in the 
appropriate paradigms and reported the significance of the resulting 
coupling parameters; however, the model selection procedure did not 
account for these additional regressors. Therefore, the model selection 
could have yielded different results if these regressors had been 
included. For this reason, we included all the regressors (A-, B-, and C- 
matrices in the respective paradigms) from the beginning to avoid 
biasing the model selection. 

4.2.3. The use of different information criteria 
Since the original study was published (Fairhall and Ishai, 2007), the 

DCM framework has undergone significant developments. One imple-
mentation was free energy (Friston et al., 2007; Penny, 2012), which 
became the preferred choice of information criterion. However, in study 
FI, Akaike information criterion (AIC) and Bayesian information crite-
rion (BIC) were the current standard information criteria that, under 
certain signal-to-noise ratio conditions, are not sensitive for fully 
interconnected models. Instead, they deploy a high penalty for the 
number of parameters (i.e., model complexity) (Penny, 2012). 
Conversely, free energy incorporates the covariance between the pa-
rameters, increasing the sensitivity for fully connected models (Penny, 
2012). However, it has also been shown that free energy overemphasizes 
fully connected models (Litvak et al., 2019). We additionally repeated 
the BMS analysis with AIC and BIC rather than F. The results are illus-
trated in Fig. S6 in the supplementary material and demonstrate that the 
different information criteria have strongly contributed to the differ-
ences in the structure of the winning model (Fig. S6). However, none of 
the BMS results corresponded to the results of the original study FI 
(Fig. S6). 

4.2.4. Modeling across different data sets 
We included four different data sets in our analysis; thus, we needed 

to include covariates to control for specific independent variables of the 
different studies. A relatively novel method to include covariates in DCM 
is the parametric empirical Bayes (PEB) framework (Friston et al., 2016; 
Zeidman et al., 2019b). This framework allows second-level dynamic 
causal models to assess the effects of covariates across a group or be-
tween groups. However, using PEB was not practical in our study, as we 
dealt with different dependencies and B-matrices for each data set. 
Further, within the PEB framework, participants are weighted differ-
ently according to their respective model fit; we wanted each participant 

Fig. 6. A revisited model for the core system 
of face perception. Driving input (‘faces’) 
enters the OFA. Significant connections, as 
revealed by HLM, are displayed with black 
arrows and depicted with numbers. Non- 
significant (determined by HLM) but pre-
sent (determined by BMS) connections are 
illustrated by gray arrows without numbers. 
The context-independent connections and 
modulatory effects of ‘faces’ and ‘emotion’ 
are displayed separately. ‘Fame’ did not 
significantly modulate any present connec-
tion and is therefore not shown. The final 
model of the original study is depicted in 
Fig. 1 for comparison.   
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to be weighted rather equally in a group analysis. Due to these reasons, 
we decided to use HLM instead of PEB. 

4.3. Face perception revisited in the predictive coding framework 

In the following, we embed our resulting main model parameters 
(Fig. 6, Fig. S5) into the broader context of predictive coding as the 
predictive coding framework generally seems well-suited for such hi-
erarchical models. Despite the oversimplification of the complex pre-
dictive coding theory, we integrated our model in the predictive coding 
framework for a comprehensive and meaningful interpretation at the 
level of the resulting parameter estimates. 

Briefly, in the predictive coding framework, the brain is organized 
into hierarchical interconnected modules. Each module communicates 
predictions (i.e., expectations about its input) to the respective lower 
level. Similarly, each module calculates a prediction error as the 
discrepancy between the prediction (i.e., the expected signal from the 
lower level) and input (i.e., received a signal from the lower level). The 
prediction error is then propagated to the respective higher level, 
wherein the prediction is updated. The updated prediction is then 
propagated back to the respective lower level (prediction updating). 
This iterative process is described on a microscopic scale (Bastos et al., 
2012) within the early visual hierarchy (Rao and Ballard, 1999) and on a 
macroscopic scale in the context of DCM (Chen et al., 2009; Den Ouden 
et al., 2009). 

In this framework, we might interpret the positive parameters from 
lower regions (OFA) to hierarchically higher regions (FFA and STS) as 
prediction error signaling, analogous to a forward propagation of the 
signal along the hierarchy (Fig. 6). Conversely, we might interpret the 
negative backward connections from higher to lower level areas as 
prediction updating. Prediction updating in Bayesian networks is 
equivalent to “explaining away the stimulus” (Gotts et al., 2012), 
whereby the causes of the sensory input are learned, and the prediction 
error, which is the neural activation that results in the positive 
forward-coupling, gets reduced. It is plausible that over the course of an 
experimental simulation, the presence of a particular input stimulus 
(either a sequence of faces or a single face, depending on the experi-
mental paradigm) is learned, therefore “explained away,” causing the 
positive and negative couplings on a macroscopic scale. 

In the previous paragraphs, we deliberately detailed an interpreta-
tion of the positive forward connectivity and negative backward con-
nectivity in the context of the predictive coding theory. However, 
positive forward connectivity appears to be the most obvious option 
available. If all three neural regions are activated by faces within the 
respective fMRI paradigms, and the input regressor of faces (C-matrix) 
enters the system via the OFA, the obvious explanation in the context of 
the full model (#24 in Fig. 3) is a positive forward transfer to the other 
two regions. Alternatively, a positive forward connection to one region 
and positive collateral connectivity from this region to the remaining 
regions could also be an alternative pathway to activate all the regions. 
Analogous effects may be the easiest way to explain the positive activity 
by face perception within all three regions in the context of other 
models, such as those evolving from prototypes 1 and 3 (Fig. 3). 

The lack of alternatives for the general expression of the parameters 
can also be seen in the negative backward connectivity by ‘faces’ from 
the FFA to the OFA. Usually, negative self-connections within a region 
induce a decrease in activity within that region over time (e.g., during 
the whole modeled experiment) and prevent the system from becoming 
epileptic. However, self-connections in our models were context- 
independent, as they were only present in the A-matrix, and we did 
not allow the modulation of those in the B-matrix. Therefore, the 
inhibitory parameters remained the same throughout the course of the 
experiment, regardless of whether it was an experimental or control 
condition. In the experimental condition (‘faces’), the activity in all the 
presently modeled regions was higher (see the definition of the regions 
for the extraction of the time series). Therefore, allowing only the 

connections from other regions (instead of self-connections) to down-
regulate this additional activity may have caused such a manifestation of 
negative couplings between regions. This concerns the negative back-
ward couplings from the FFA and STS toward the OFA, which down-
regulate the OFA activity. Further, this concerns the negative collateral 
connections between the FFA and STS, which downregulate the STS and 
FFA, respectively. 

Experiments and simulations are required to validate these theories 
in the future. However, such effects, implicitly introduced by the setup 
of the models, limit any extensive interpretation of our revised model or 
any similar model. However, complementary imaging techniques such 
as EEG/MEG, which have a far better temporal resolution, might shed 
light on the time-sensitive orchestrations between the regions during 
bottom-up and top-down processing. For instance, a recent study by Fan 
et al. (2020) investigated response times of the regions of the core sys-
tem using specialized paradigms to untie top-down and bottom-up 
processes within the predictive coding framework (Fan et al., 2020). 
Interpretations using fMRI however can rather be made for long-lasting 
interactions in the brain. 

4.4. The requirement of conceptual replications 

As we have already discussed in the introduction, neuroimaging 
findings are often vulnerable to non-replication (Gorgolewski and Pol-
drack, 2016). DCM may be particularly vulnerable to this due to the 
massive number of degrees of freedom a researcher is faced within the 
analysis. Additionally, changes in the experimental setup, pipeline, 
statistical methods, and even software versions can cause significant 
changes in the parameter estimates (Bedenbender et al., 2011; Botvi-
nik-Nezer et al., 2020; Frässle et al., 2016b; Weissenbacher et al., 2009). 
As we can usually only investigate very narrow hypotheses in a single 
study, we highly depend on the validity and reproducibility of the pre-
vious results being built upon. Therefore, we need more conceptual 
replications and meta-analyses of models like that in the present study. 
Most importantly, we need to be critical and mindful while interpreting 
previously published results. 

5. Conclusion 

The aim of our study was to conceptually replicate the main findings 
of Fairhall and Ishai (2007) on the effective connectivity within the core 
system of face perception. Across four different data sets, we demon-
strated that our revised model was more complex than the originally 
proposed model, with a high degree of interaction between regions. 
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Nagy, K., Greenlee, M.W., Kovács, G., 2012. The lateral occipital cortex in the face 
perception network: an effective connectivity study. Front. Psychol. 3, 1–12. https:// 
doi.org/10.3389/fpsyg.2012.00141. 

Nguyen, V.T., Breakspear, M., Cunnington, R., 2014. Fusing concurrent EEG-fMRI with 
dynamic causal modeling: application to effective connectivity during face 
perception. Neuroimage 102, 60–70. https://doi.org/10.1016/j. 
neuroimage.2013.06.083. 

Penny, W.D., 2012. Comparing dynamic causal models using AIC, BIC and free energy. 
Neuroimage 59, 319–330. https://doi.org/10.1016/j.neuroimage.2011.07.039. 

Penny, W.D., Stephan, K.E., Daunizeau, J., Rosa, M.J., Friston, K.J., Schofield, T.M., 
Leff, A.P., 2010. Comparing families of dynamic causal models. PLoS Comput. Biol. 6 
https://doi.org/10.1371/journal.pcbi.1000709. 

Rao, R.P.N., Ballard, D.H., 1999. Hierarchical predictive coding of natural images. Nat. 
Neurosci. 2, 79. 

R. Kessler et al.                                                                                                                                                                                                                                  

53



Neuroimage: Reports 1 (2021) 100045

12

Rossion, B., 2008. Constraining the cortical face network by neuroimaging studies of 
acquired prosopagnosia. Neuroimage 40, 423–426. https://doi.org/10.1016/j. 
neuroimage.2007.10.047. 

Sato, W., Kochiyama, T., Uono, S., Matsuda, K., Usui, K., Usui, N., Inoue, Y., Toichi, M., 
2017. Bidirectional electric communication between the inferior occipital gyrus and 
the amygdala during face processing. Hum. Brain Mapp. 38, 4511–4524. https://doi. 
org/10.1002/hbm.23678. 

Sergent, J., Ohta, S., Macdonald, B., 1992. Functional neuroanatomy of face and object 
processing. Brain 115, 15–36. https://doi.org/10.1093/brain/115.1.15. 

Sladky, R., Spies, M., Hoffmann, A., Kranz, G., Hummer, A., Gryglewski, G., 
Lanzenberger, R., Windischberger, C., Kasper, S., 2015. (S)-citalopram influences 
amygdala modulation in healthy subjects: a randomized placebo-controlled double- 
blind fMRI study using dynamic causal modeling. Neuroimage. https://doi.org/ 
10.1016/j.neuroimage.2014.12.044. 

Sliwinska, M.W., Elson, R., Pitcher, D., 2020. Dual-site TMS demonstrates causal 
functional connectivity between the left and right posterior temporal sulci during 
facial expression recognition. Brain Stimul 13, 1008–1013. https://doi.org/ 
10.1016/j.brs.2020.04.011. 

Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J., Friston, K.J., 2009. Bayesian 
model selection for group studies. Neuroimage 46, 1004–1017. https://doi.org/ 
10.1016/j.neuroimage.2009.03.025. 

Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E., Daunizeau, J., Friston, K.J., 
2010. Ten simple rules for dynamic causal modeling. Neuroimage 49, 3099–3109. 
https://doi.org/10.1016/j.neuroimage.2009.11.015. 

Sundström, S., 2010. Coding in multiple regression analysis: a review of popular coding 
techniques. Mathematics. 

Team, R.C., 2020. R: A Language and Environment for Statistical Computing. 
Wakeman, D.G., Henson, R.N., 2015. A multi-subject, multi-modal human neuroimaging 

dataset. Sci. data 2, 150001. https://doi.org/10.1038/sdata.2015.1. 
Wang, Y., Metoki, A., Smith, D.V., Medaglia, J.D., Zang, Y., Benear, S., Popal, H., Lin, Y., 

Olson, I.R., 2020. Multimodal mapping of the face connectome. Nat. Hum. Behav. 4, 
397–411. https://doi.org/10.1038/s41562-019-0811-3. 

Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., Windischberger, C., 
2009. Correlations and anticorrelations in resting-state functional connectivity MRI: 
a quantitative comparison of preprocessing strategies. Neuroimage 47, 1408–1416. 
https://doi.org/10.1016/j.neuroimage.2009.05.005. 

West, B., Welch, K., Gałecki, A., 2014. Linear mixed models, linear mixed models. 
https://doi.org/10.1201/b17198-2. 

Williams, M.A., Savage, G., Halmagyl, M., 2006. Abnormal configural face perception in 
a patient with right anterior temporal lobe atrophy. Neurocase 12, 286–291. https:// 
doi.org/10.1080/13554790601026379. 

Zeidman, P., Jafarian, A., Corbin, N., Seghier, M.L., Razi, A., Price, C.J., Friston, K.J., 
2019a. A guide to group effective connectivity analysis, part 1: first level analysis 
with DCM for fMRI. Neuroimage 200, 174–190. https://doi.org/10.1016/j. 
neuroimage.2019.06.031. 

Zeidman, P., Jafarian, A., Seghier, M.L., Litvak, V., Cagnan, H., Price, C.J., Friston, K.J., 
2019b. A guide to group effective connectivity analysis, part 2: second level analysis 
with PEB. Neuroimage 200, 12–25. https://doi.org/10.1016/j. 
neuroimage.2019.06.032. 

R. Kessler et al.                                                                                                                                                                                                                                  

54



 1 

Supplementary	Material	1 

Supplementary	Methods	2 

Paradigms	3 

Paradigm	A	4 

To	investigate	brain	connectivity	during	the	observation	of	different	basic	emotions,	a	paradigm	5 

was	designed	 to	 present	 image	 sequences	 of	 neutral,	 happy,	 angry,	 or	 fearful	 faces	 as	well	 as	6 

houses	 in	a	block	design.	The	 face	stimuli	 (39	 individuals)	were	 taken	 from	the	Radboud	Face	7 

Database	(RaFD,	(Langner	et	al.,	2010)),	whereas	the	house	stimuli	were	freely	available	pictures	8 

taken	 from	 the	 internet.	The	 stimuli	were	 transformed	 into	 gray-scale	 images	 and	 cropped	 to	9 

500*400px.	Furthermore,	 they	were	matched	 in	mean	 luminance	using	 the	SHINE	 toolbox	 for	10 

MATLAB	 (Willenbockel	 et	 al.,	 2010).	 To	 avoid	 lateralization	 effects	 due	 to	 low-level	 image	11 

properties	like	asymmetries	in	the	faces	or	houses,	each	image	was	mirrored	vertically	in	one	half	12 

of	its	appearances.	A	fixation	cross	was	shown	in	the	center	of	each	stimulus,	as	well	as	during	the	13 

inter-stimulus-intervals	 and	 inter-block-intervals	 in	 the	 center	 of	 the	 screen.	 The	 participants	14 

were	advised	to	maintain	the	fixation	of	their	gaze	during	the	entire	experiment.	Each	of	the	five	15 

conditions	appeared	20	times,	resulting	in	a	total	of	100	blocks.	Within	each	block,	a	sequence	of	16 

24	images	was	shown.	A	face	or	house	stimulus	was	shown	for	350	ms	followed	by	a	fixation	cross	17 

for	150	ms,	resulting	in	a	total	block	length	of	11.85	s	(main	article,	Fig.	2).	A	jittered	inter-block-18 

interval	 of	 approximately	 3.3–7.3	 seconds	 was	 introduced	 to	 reduce	 anticipation	 effects.	19 

Additionally,	four	pause-trials	of	25	seconds	were	included,	appearing	after	the	21st,	40th,	60th,	20 

and	80th	stimulus	block,	in	which	the	participants	were	instructed	to	relax	and	close	their	eyes.	21 

To	ensure	the	attention	of	the	participants	during	the	stimulus	presentation,	a	1-back	task	was	22 

introduced.	The	participants	were	instructed	to	press	a	button	with	the	index	finger	of	both	hands	23 

whenever	a	stimulus	was	shown	twice	in	a	row,	which	happened	1–3	times	in	each	block.	The	24 

total	duration	of	the	experiment	was	approximately	30	minutes.	25 
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Paradigm	B	26 

To	 investigate	 the	 connectivity	between	 the	 core	 system	of	 face	perception	 and	 the	 amygdala	27 

during	the	observation	of	fearful	faces,	stimuli	showing	neutral	faces,	fearful	faces,	or	houses	were	28 

presented	 in	a	block	design.	The	 face	stimuli	 (30	 individuals)	were	 taken	 from	the	Karolinska	29 

Directed	Emotional	Faces	dataset	(http://www.emotionlab.se/resources/kdef)	(Lundqvist	et	al.,	30 

1998),	whereas	 the	 house	 stimuli	were	 freely	 available	 pictures	 taken	 from	 the	 internet.	 The	31 

stimuli	were	transformed	into	gray-scale	images	and	cropped	to	600*530px.	Furthermore,	they	32 

were	matched	 in	mean	 luminance	 using	 the	 SHINE	 toolbox	 for	MATLAB	 (Willenbockel	 et	 al.,	33 

2010).	The	participants	were	advised	to	fixate	their	gaze	on	the	nasion	of	the	faces.	For	the	house	34 

stimuli,	they	were	asked	to	maintain	their	eyes	at	about	the	same	height	as	that	of	the	fixation	for	35 

the	 face	 stimuli.	 Each	 of	 the	 three	 conditions	 (neutral	 faces,	 fearful	 faces,	 and	 houses)	 was	36 

repeated	14	times,	resulting	in	a	total	of	42	blocks.	Within	each	block,	a	sequence	of	20	images	37 

was	shown.	The	face	or	house	stimulus	was	shown	for	~310	ms	followed	by	a	fixation	cross	for	38 

~390	ms,	 resulting	 in	a	 total	block	 length	of	14.5	s.	We	used	an	 inter-block-interval	of	∼6.5	s.	39 

Additionally,	a	pause-trial	of	30	s	in	which	the	participants	were	instructed	to	relax	and	eventually	40 

close	their	eyes	for	a	moment	was	included	after	half	of	the	stimuli	were	presented.	To	ensure	the	41 

attention	 of	 the	 participants	 during	 stimulus	 presentation,	 a	 1-back	 task	was	 introduced.	 The	42 

participants	were	instructed	to	press	a	button	with	the	index	finger	of	both	hands	whenever	a	43 

stimulus	was	shown	twice	in	a	row,	which	happened	1–3	times	in	each	block.	44 

Paradigm	C	45 

The participants simply viewed blocks of faces, houses, and scrambled pictures. The pictures of houses 46 

and faces were obtained from a standardized database. The scrambled pictures were generated using 47 

a Fourier transformation. In total, 14 blocks of every condition appeared in a randomized order, 48 

including a 20 s break after half of the experiment. Every block contained 20 stimuli (faces, houses, or 49 

scrambled pictures), which were presented for 300 ms in the middle of the screen. Between each 50 

block, a fixation cross was shown for 12 s. The stimuli were controlled for brightness and contrast and 51 

presented in different grey scales. The participants were asked to push a button on a response box as 52 
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soon as they saw the same stimuli in immediate succession. Successive stimuli were presented 3–4 53 

times in every condition. The total length of the paradigm was 13 min. 54 

Paradigm	D	55 

See (Wakeman and Henson, 2015) for further information on this paradigm. 56 

Paradigm	FI	57 

The authors conducted five experimental runs within one session, scanning 10 participants (Fairhall 58 

and Ishai, 2007). They presented line drawings of unfamiliar faces (1 run) and gray-scale photographs 59 

of unfamiliar (two runs), famous (one run), and emotional faces (fearful and happy, one run). Each 60 

image was presented for 3 seconds. As a visual baseline, scrambled versions of the stimuli were used. 61 

The stimuli were presented in a block fashion, with a duration of 36 s for the experimental condition 62 

and 24 s for the control condition. The experimental and control conditions were each presented thrice 63 

per run. 64 

Data	acquisition	65 

Data	set	A	66 

The MRI data were acquired using a 3.0-Tesla MR scanner (Siemens TIM Trio, Erlangen, Germany) with 67 

a 12-channel head matrix receive coil at the Core Unit Brainimaging, Department of Psychiatry and 68 

Psychotherapy, University of Marburg. A high-resolution structural data set was acquired using a T1-69 

weighted magnetization-prepared-rapid gradient-echo sequence with the following parameters: 70 

acquisition time, 4 min 18 s; repetition time (TR), 1900 ms; echo time (TE), 2.52 ms; field of view, 256 71 

mm; matrix, 256x246; slice thickness (ST), 1 mm; phase encoding direction (PE), anterior » posterior; 72 

distance factor (DF), 50 %; flip angle, 9°; parallel imaging generalized autocalibrating partially  73 

parallel acquisitions with acceleration factor, 2; bandwidth, 170 Hz/Px; sagittal, ascending acquisition; 74 

176 slices. 75 

Functional images were collected using a T2*-weighted gradient-echo echo-planar imaging sequence 76 

(EPI) sensitive to the blood oxygen level-dependent (BOLD) contrast. TR, 1550 ms; TE, 36 ms; matrix, 77 
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72x72; phase oversampling, 12 %; ST, 2.7 mm; DF, 15 %; voxel size, 2.8x2.8x2.7 mm (2.8x2.8x3.1 mm 78 

incl. gap); PE, anterior » posterior; flip angle, 70 °; bandwidth, 1654 Hz/Px; no parallel imaging; 79 

ascending acquisition; 20 slices with the measurement volume aligned to the anterior-posterior 80 

commissural line. The volume covered the whole temporal and occipital lobes, and the inferior frontal 81 

gyrus. 82 

Data	set	B	83 

Functional images were collected using a T2*-weighted gradient-echo echo-planar imaging sequence 84 

(EPI) sensitive to the BOLD contrast. The parameters were as follows: TR, 1610 ms; TE, 36 ms; matrix, 85 

96 x 128; ST, 2.4 mm; DF, 15 %; voxel size, 2.0x2.0x2.4 mm; PE, anterior » posterior; flip angle, 70 °; 86 

bandwidth, 1346 Hz/Px; partial fourier, 7/8; no parallel imaging; ascending acquisition; 18 slices with 87 

the measurement volume aligned to the most ventral parts of the temporal and occipital poles. The 88 

slab covered the whole temporal and occipital lobes. 89 

Data	set	C	90 

All MRI data were acquired using a 3-Tesla TIM-Trio MR Scanner (Siemens Medical Systems) at the 91 

Department of Psychiatry and Psychotherapy, Philipps-University, Marburg. High resolution T1-92 

weighted anatomical images were acquired from every participant (TE, 2.26 ms; TR, 1.9 ms; flip angle, 93 

9°; matrix, 256 x 256; 176 sagittal slices; ST, 1 mm). To minimize head movements, the participants’ 94 

heads were fixated with foam pads. Functional images were collected with a T2* weighted EPI 95 

sequence sensitive to the BOLD contrast (matrix, 64x64; field of view, 192 mm; 30 slices [descending]; 96 

ST, 4 mm [15% gap]; TR, 1450ms; TE, 25ms; flip angle, 90°). Slices covered the whole brain and were 97 

positioned in a transaxial parallel direction to the anterior-posterior commissural line. The BOLD 98 

responses to different experiments were recorded with this sequence. A total of 565 scans were 99 

recorded for the face perception task. The initial four images were excluded. Contrary to data set A 100 

and B, the measurement volume covered the whole cortex. 101 

Data	set	D	102 

See (Wakeman and Henson, 2015) for further information on this paradigm. 103 
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Functional	imaging	data	analysis	104 

Data	set	A	105 

All the fMRI data sets were analyzed using the Statistical Parametric Mapping software (SPM12, release 106 

6685, Welcome Department of Cognitive Neurology, Institute of Neurology, London, United Kingdom) 107 

based on MATLAB (version 8.3 R2014a). The initial three functional images were excluded from further 108 

analysis due to T1 stabilization effects, as implemented in the protocol of the MR scanner system. The 109 

field maps were calculated using the acquired phase and magnitude images from a field map sequence. 110 

These were converted to voxel displacement maps to unwarp geometrically distorted EPI images. In a 111 

combined realignment and unwarping step, the effects of static and movement-related susceptibility-112 

induced distortions were corrected for, as well as within-participant motion correction through a rigid 113 

body (six parameters) spatial transformation. Each participant’s functional images were also 114 

normalized to the Montreal Neurological Institute space. For an accurate transformation, each 115 

participant's T1-weighted image (coregistered to the mean functional image) was segmented, bias-116 

corrected, and spatially normalized using the segmentation algorithm as implemented in SPM12 117 

(formerly called "New Segment" in SPM8). The resulting forward deformation field was used for 118 

registering the realigned functional images to the Montreal Neurological Institute space that were 119 

subsequently resampled to a resolution of 2 x 2 x 2 mm3 and blurred with an isotropic Gaussian filter 120 

of 6mm full width at half maximum. 121 

Statistical analyses were performed within a general linear model framework to create a 3-dimensional 122 

map in relation to the estimated regressor response amplitude. At the single-participant level, the task 123 

was modeled in a block design with BOLD responses for each condition (neutral, happy, angry, and 124 

fearful faces as well as houses, respectively) convolved with the canonical hemodynamic response 125 

function. Inter-block intervals and breaks were not modeled. The six realignment parameters of the 126 

motion correction procedure were included in the statistical model as nuisance regressors to correct 127 

for residual head movement. For each participant, differences in brain activation between the ‘face’ 128 

and control conditions were calculated. High pass filtering was applied with a cut-off frequency of 129 
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1/256 Hz to attenuate low-frequency components. At the group level, the weighted ß-images (‘face’ 130 

conditions vs. control condition) were entered into one-sample t-tests. 131 

Data	set	B	132 

The preprocessing and statistical analysis of data set B were performed in the same way as those for 133 

data set A, but using MATLAB version 7.8 R2009a and a high-pass filter of 1/128 Hz. 134 

Data	set	C	135 

All the fMRI data were analyzed with the software package SPM 8 (v4290) (www.fil.ion.ucl.ac.uk/spm) 136 

using standard routines and templates running on MATLAB 7.7.0.471 (R2008b) (The MathWorks, Inc.). 137 

SPM 8 was used for realignment, normalization, smoothing, and statistical analysis. The functional 138 

images were realigned, normalized to a resulting voxel size of 2 x 2 x 2 mm3, smoothed with a 5-mm 139 

isotropic Gaussian filter, and high-pass filtered by a cut-off period of 128 s. After preprocessing, the 140 

statistical analysis was performed. BOLD responses for the test and control conditions were modeled 141 

by a boxcar function convolved with the canonical hemodynamic response function employed by 142 

SPM8. Parameter estimates (β-) and t-statistic images were calculated, describing the activation 143 

differences between the test and control conditions. For the face perception tasks, three conditions 144 

were modeled (faces, houses, scrambled images; the instruction was not modeled). Additionally, the 145 

six realignment parameters were included as covariates in each design matrix. At the group level, the 146 

weighted ß-images were entered into one-sample t-tests. The “2* faces > (houses + scrambled)” 147 

contrast, describing the differences in the patterns of brain activation between the activation and 148 

control conditions, was calculated for each participant. 149 

Data	set	D	150 

See (Wakeman and Henson, 2015) for further information on the processing steps. 151 

Data	set	FI	152 

See (Fairhall and Ishai, 2007) for further information on the processing steps. 153 
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Supplementary	Results	154 

Single	participant	BMA	parameters	155 

Here, we describe the distribution of the single participant BMA parameters. For the A-matrix (Fig. S1, 156 

left panel), we found relatively small parameter estimates ranging from approximately -1 to +1. Most 157 

distributions appeared roughly symmetrical and centered around zero. For the C-matrix (Fig. S1, right 158 

panel), the parameters were mostly positive and ranged from -0.058 to +6.626. Positive values are 159 

expected here, as we extracted the time series for the DCM construction from the voxels that exceeded 160 

significance in the contrasts (e.g., ‘faces’ conditions vs. ‘non-face’ conditions, depending on the 161 

respective study). Therefore, in these voxels, the activation should be higher during the ‘faces’ 162 

conditions, which is consequently a positive input. The connectivity parameters for the ‘face’ condition 163 

(B-matrix, Fig. S3) were spread more widely, i.e., from approximately -4 to +4. The distributions of a 164 

parameter over participants indicated that some parameters shifted more into the positive or negative 165 

range, respectively. Connectivity parameters for the ‘emotions’ and ‘fame’ conditions (B-matrices, Fig. 166 

S3) seemed to be more symmetrically accumulated around zero compared to those for the ‘faces’ 167 

conditions. 168 

 169 
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 170 

Fig. S1: Kernel density estimates of all the connectivity parameters of the interregional (i.e., off-diagonal) connections of 171 

the A-matrix (left panel) and C-matrix (right panel) after participant-specific BMA. 172 
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 173 

Fig. S2: Kernel density estimates of all the connectivity parameters of the self-connections (i.e., on-diagonals) of the A-174 

matrix after participant-specific BMA. 175 

 176 
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 177 

Fig. S3: Kernel density estimates of all the connectivity parameters of the B-matrix ‘faces’ after participant-specific BMA. 178 

 179 
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 180 

Fig. S4: Kernel density estimates of all the connectivity parameters of the B-matrix ‘emotions’ (top panel) and ‘fame’ (lower 181 

panel) after participant-specific BMA. Note the different scaling of the axes for the regressors ‘emotions’ and ‘fame’. 182 

 183 
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Hierarchical	linear	modeling	results	184 

 185 

Fig. S5: Connectivity parameters across studies as revealed by HLM. For each matrix (A-, B-‘faces’-, B-‘emotions’, B-‘fame’, 186 

and C-matrix), the connection strength is displayed using pseudo colors ranging from -1.5 (blue) to +1.5 (red), as indicated by 187 

the color bar at the bottom right and the values in each cell. Significance is indicated by additional asterisks. The source and 188 

target regions are labeled on the x- and y-axis of each matrix, respectively. For the C-matrix, there is no source region, but 189 

the ‘faces’ regressor targets the OFA. The significant parameters of this figure are further displayed in a model-like manner 190 

in Error! Reference source not found.. 191 

 192 
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Alternative	approximations	of	the	log	model	evidence	193 

Since the publication of SPM8, free energy (F) is the preferred choice as an approximation to the log 194 

model evidence. Before (i.e., up to SPM5), Akaike information criterion (AIC) and Bayesian information 195 

criterion (BIC) have been largely used for this purpose. The authors of study FI used both criteria as 196 

well (Fairhall and Ishai, 2007). In our study using the free energy criterion, model #24 showed striking 197 

superiority to the competing models throughout all examined data sets (Error! Reference source not 198 

found., Error! Reference source not found.). Study FI, which applied the AIC and BIC, found that a 199 

sparser model was superior to the competing models (Fig. 3, Fairhall and Ishai, 2007). Some of the 200 

advantages and possible disadvantages of the free energy criterion have been outlined in Section 4.2. 201 

We hypothesized that the choice of the free energy criterion may largely drive differences in posterior 202 

model probabilities, and therefore the winning models between study FI and our study. To test this, 203 

we repeated the BMS for study A, B, and the two sessions of study C (C1 and C2) by applying AIC, BIC, 204 

and F separately. The results are illustrated in Fig. S6. Using AIC, either model #22 or model #24 have 205 

the highest exceedance probabilities, depending on the data set analyzed. Model #22 misses one 206 

connection compared to the full model #24, the unidirectional connection from FFA to STS (the 207 

corresponding opposite connection is however present, Error! Reference source not found.). Using 208 

BIC, either model #5, model #6, model #22, or model #24 have the highest exceedance probabilities. 209 

Model #6 does not express backward connections from FFA to OFA and from STS to OFA. Model #5 210 

further misses the unidirectional connection from STS to FFA (the corresponding opposite connection 211 

is however present, Error! Reference source not found.). Altogether the BMS was highly variable 212 

across data sets when using AIC/BIC. Most strikingly, none of the single BMS results corresponded to 213 

the BMS result of study FI, which found model #2 to have the highest posterior probability. 214 
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Fig. S6: BMS results using different approximations for log model evidence. Upper panel: posterior model probabilities. 217 

Lower panel: Model exceedance probabilities. The different data sets (A, B, C1, and C2) for which a BMS was possible are 218 

separated along the vertical axes. The BMS results of these studies are separated for AIC, BIC, and F as information criteria 219 

along the horizontal axis. The panels for F correspond to the results displayed in Error! Reference source not found.. 220 
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Abstract
Dynamic Causal Modeling (DCM) is a widely used method to analyze effective
connectivity between brain regions based on functional magnetic resonance imaging
(fMRI) data. The major advantage of DCM over other connectivity analyses is mainly
the putative possibility to make statements about directions of information transfers.
Once one is familiar with the rough basics, the application of the method is relatively
straightforward and allows - also due to the integration of the analysis steps into a
simple graphical user interface - a broad mass of researchers to apply this analysis
method to their own dataset.

In this article we want to dispel some misconceptions about the interpretability of
DCM parameters. In particular, we want to show that many parameters of a
stereotypical DCM model are not interpretable, using real measured but also simulated
fMRI data. More specifically, we show that within these experiments, much of the
qualitative output of the DCM model is determined solely by the way it is modeled.
As a result, their expression (e.g., whether the parameters become positive or negative)
is determined solely by the structure of the model, and does not have much to do with
the cognitive processes that one would like to interpret into the model parameters.

Among other things, we show that forward connections almost always become
positive, while backward connections almost always become negative. We provide
simple but valid evidence for this pattern. The results emphasize the following: by
pure plausibility considerations, a preponderance of the expressions of connections -
i.e., whether they are estimated to be positive or negative - can already be predicted
before an experiment is even conducted. Thus, only a few connectivity parameters
remain for free interpretation. We argue that the explanatory power of a DCM model
is therefore severely limited.

Introduction 1

Modeling the interactions between brain regions can offer invaluable insights on brain 2

function in health and disease. Numerous techniques have been developed over the 3

past decades, aiming at quantifying information transfer between cortical regions 4

based on functional magnetic resonance imaging (fMRI) data. Some techniques offer 5

insights on correlative basis (e.g., seed-based correlation, independent component 6
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analysis) – and are termed measures of functional connectivity [25]. Other techniques 7

however promise to disentangle causal interactions between cortical regions (e.g., 8

psychophysiological interaction, structure equation models, Dynamic Causal Models) – 9

and are termed measures of effective connectivity [12]. One very popular framework of 10

effective connectivity is Dynamic Causal Modeling (DCM, [7]). DCM at the one hand 11

aims at determining the nature of neural connections, i.e., whether it is excitatory 12

(positive) or inhibitory (negative). On the other hand, DCM aims at estimating the 13

connection magnitudes either during particular cognitive computations [7] or at 14

rest [23]. 15

The core part of the vanilla DCM implementation is the neural state equation 16

(eq. 1), which describes the rate of change in connectivity ż 2 Rn, 17

ż = Az + (
kX

j=1

u
(j)

B
(j))z + Cu (1)

with n being the number of modeled brain regions. The rate of change is assembled 18

as a sum of several components. First, the product between a binary onset-offset 19

vector u multiplied with the magnitude of the experimental input C 2 Rn⇥k. Second, 20

the product of the magnitudes of connections between regions A 2 Rn⇥n and the 21

current state (i.e., activation) z 2 Rn of the respective regions. Third, connection 22

between regions can be further modulated by experimental perturbation, which is 23

reflected in a sum across k different experimental manipulations, for each of which the 24

magnitudes of connections specific to the respective experimental manipulation 25

B
(j) 2 Rn⇥n is multiplied with the current states z and also u

(j) as a binary 26

onset-offset vector specifying the presence or absence of the respective experimental 27

manipulation at a particular timepoint. 28

The neural state equation is the point above which a scientist typically defines the 29

structure of their model, by allowing (i.e. enabling) or not allowing (i.e. disabling) 30

particular cells of the A, B and C matrices to be estimated. Other parts such as the 31

input vectors u are mostly given by the setup of the (e.g., fMRI) experiment. Having 32

agreed for the particular connections which they wants to be estimated, a sequence of 33

steps is rather generic for the remaining modeling procedure. This includes the 34

specification of the prior means, which are all set around 0. Next, the prior variances 35

are set to 0 for all connections, which were ’disabled’, and to 1 for ’enabled’ 36

connections of the B and C matrices, or to 1
64 for ’enabled’ connection within the A 37

matrix [28,29]. The modeled neural states z are then translated into a hemodynamic 38

signal using an empirically inspired forward model [3] with its own internal priors [29]. 39

The neural state equation alongside with the forward model is then iteratively 40

estimated using a variational Laplace approximation [8]. 41

A straightforward experiment using fMRI and DCM includes a activation condition 42

(e.g., visual input, or faces) and a control condition (e.g., void screen, or houses). In 43

many cases, the experimental condition activates all of the modeled brain regions, 44

whereas in the control condition these regions are less active (e.g., 45

see [6, 11,14,15,18,26]). Next, one or several DCMs are constructed encompassing 46

those very regions. Those DCM then gets fitted to disentangle causal interactions 47

between the brain regions, for instance to quantify the information transfer due to a 48

neural process such as processing a face. 49

In the present work, we will illustrate, that a researcher using DCM can infer many 50

of the resulting model parameter estimates without even estimating the model, by 51

plain plausibility considerations on the level of the neural state equation (eq. 1). 52

Critically, by being able to anticipate many of the outcomes of an DCM estimation 53

process – i.e., the expression of parameter estimates of the A, B and C matrices – the 54

interpretability of these parameter estimates simply cease to apply. 55
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Motivating example 56

In the following illustrations we ignore the non-linearities in the signal induced by the 57

hemodynamic forward model to keep it traceable, and we instead stay at the neuronal 58

rather than the hemodynamic level to describe interactions between cortical regions. 59

The introduced non-linearities of the hemodynamic forward model would not change 60

any of the qualitative conclusions we draw from the plausibility considerations, but 61

keep the argumentation more straightforward. 62

We will illustrate the general problem with the following example. Picture a model 63

comprising two regions. The fMRI experiment conducted consisted of a task condition 64

and a control condition. Both modeled brain regions are activated by the task 65

condition, but not by the control condition. Both regions are reciprocally 66

interconnected, and each region has a (per definition negative) self connection, leading 67

to a fully connected A matrix (eq. 2) where ⌧ denotes a parameter with non-zero 68

variance (i.e., enabled), and 0 (not present) would denote a parameter with zero prior 69

variance (i.e., disabled). Further, the indices of each element of an A or B matrix (e.g. 70

ai,j) denote the index of the target region i and the source region j of the connection. 71

A =

✓
a1,1 a1,2

a2,1 a2,2

◆
=

✓
⌧ ⌧

⌧ ⌧

◆
(2)

No B matrix is specified in this example. We further set the experimental input 72

(i.e., a region gets targeted by an experimental input, meaning the experimental input 73

directly changes the regions state over time) to the first region, resulting in the 74

following C matrix (eq. 3): 75

C =

✓
c1

c2

◆
=

✓
⌧

0

◆
(3)

Having specified A and C matrices, and rearranged the neural state equation 76

(eq. 1), we can describe the rate of change in activity of region 1 and region 2 by 77

equations 4 and 5, respectively: 78

ż1 = c1 · u+ a1,1 · z1 + a1,2 · z2 (4)
ż2 = a2,1 · z1 + a2,2 · z2 (5)

In the following, we will disentangle the different model terms of equations 4 and 5: 79

The current activation z· is always non-negative. The self connections a1,1 and a2,2 are 80

always negative per definition. Region 1 gets activated by the task, as the 81

experimental condition leads to higher activity in the modeled regions (see definition 82

of the experiment). The input parameter c1 therefore has to become positive to excite 83

the system and to render ż1 and consequently z1 positive (eq. 4). Next, due to the fact 84

that region 2 is more active during task condition than control condition, region 2 85

needs a positive slope of activation ż2. The only non-negative term in eq. 5 86

encompasses the connection from region 1 to region 2 a2,1. Therefore, a1,2 needs to be 87

positive, to render ż2 positive. 88

Determined by the activation properties of the both regions (i.e., both regions get 89

activated by the experimental task), and by the connectivity between the regions, we 90

were able to already infer that two major parameters c1 and a2,1 should be positive. 91

Parameters a1,1 and a2,2 are negative by definition, and the only still to be inferred 92

parameter would be parameter a1,2. Therefore, the remaining three parameters are of 93

minor value for a range of interpretations, as their quality (i.e., sign) is already 94

predetermined. 95

In the present article, we will demonstrate this very effect using real and artificial 96

fMRI data. Furthermore, we will demonstrate related effects, which again can vastly 97
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be inferred by plausibility considerations based on the neural state equation. Those 98

effects are anything but rocket science. However, we argue that most researchers 99

generously interpret the quality (i.e., sign) of their DCM parameters, while this quality 100

should be highly predictable by the model structure, assuming the empirical time 101

series are not dominated by noise. The purpose of the present article is to show the 102

user of such models, that given these predictabilities, those very models are in some 103

cases not useful tools to answer given research hypotheses. 104
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Material and Methods 105

In the following, we will describe the principle data and experimental procedures 106

which will form the basis of all subsequent analyses. Afterwards, we will assemble 107

Methods and Results individually for each claim about the behavior of DCMs. Each 108

claim will be evaluated on empirical data from a prototypical fMRI experiment (e.g., 109

visual input versus rest) in the early visual cortex. Furthermore, the claims will be 110

supported by simulations, in which the ground truth (i.e., the model which generated 111

the data) is well known. 112

Experimental data 113

For the purpose of this study, we decided to use a rather simple fMRI data set. The 114

only prerequisites were an experimental and a control condition. We then aimed at 115

identifying regions, which were more active during experimental conditions than 116

during control conditions. Therefore, we decided for a simple visual stimulation 117

paradigm, freely available in the internet (openneuro.org/datasets/ds001553) [10]. 118

The data set comprises three healthy, right-handed, female participants (25, 28, 119

and 30 years), each measured around 100 times with the identical visual checkerboard 120

paradigm during a full k-space echo planar imaging sequence (time of repetition (TR): 121

2.0s, echo time (TE): 0.03s) in a 3T MRI scanner [10]. We only made use of the first 122

participant’s data (25 years), comprising 105 functional runs. Each run began with 30 123

seconds of rest, followed by 5 repetitions of alternating task blocks (20 seconds each) 124

and rest blocks (40 seconds each), and ending with an additional rest block of 10 125

seconds. During rest blocks, a black screen with a fixation cross was displayed. During 126

task blocks, a checkerboard stimulus was flickering at a frequency of 7.5Hz. To control 127

for attention and ensure compliance, participants were instructed to discriminate 128

between letters and numbers with corresponding button presses. Letters and numbers 129

were pseudo-randomly displayed in the center of the screen [10]. 130

fMRI data processing 131

The downloaded raw data (openneuro.org/datasets/ds001553) was processed using 132

SPM12 (r7771, fil.ion.ucl.ac.uk/spm) for Matlab (R2020b, The MathWorks Inc.). 133

All functional images were realigned and cross-registered across sessions using a 6 134

parameter rigid body registration. Then, all functional images were normalized to 135

MNI space using a 12 parameter affine transformation. No additional spatial blurring 136

was performed. We discarded the first 5 volumes to allow for magnetic stabilization. 137

Thereafter, we fitted a general linear model (GLM) using the onset-offset vectors of 138

the checkerboard stimulation and convolved it with a hemodynamic response function 139

for each session separately. Mass-univariate one-sample t-tests were performed for 140

each voxel to reveal brain activation induced by visual stimulation. 141

Region identification 142

Our aim was to model interactions between regions. All regions were activated by the 143

experimental conditions, compared to the control condition. Such a pattern should 144

clearly be identifiable in early visual areas [10]. We used anatomical masks to narrow 145

down early visual cortical regions. We decided for a mask for Brodmann area 17 146

(BA17), Brodmann area 18 (BA18), and Brodmann area 19 (BA19, Fig. S1), extracted 147

from the Talairach atlas [16,17] implemented in nilearn (nilearn.github.io) [1]. 148

BA17 is supposed to encompass cortical region V1, BA18 is supposed to encompass 149

V2, and BA19 is supposed to encompass V3, V4, and V5 [4,24]. We extracted time 150
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series within the three disjunct masks as the first principle component of all voxels 151

within each mask at a statistical threshold of p < 0.001 (uncorrected for multiple 152

comparisons). Untypical to many other DCM studies, the regions were spatially 153

closely aligned, and we did not limit the voxels to a sphere with small radius (see 154

e.g. [9, 14,15,26]). The extracted time series of all modeled brain regions increased 155

following the start of the experimental stimulation, and decreased after stimulation 156

ended (Fig. 1). 157

Figure 1. Exemplary time series of functional run #1. The extracted first prin-
ciple component for each region is displayed. Hemodynamic activation (mean-centered)
is displayed on the y axis (arbitrary numbers), and the time (1 TR = 2.0 seconds) on
the x axis. The shaded regions mark time intervals of visual stimulation., i.e., in which
the onset-offset vector shapes to 1. The hemodynamic pattern is the same throughout
all functional runs: Activity increases shortly after stimulation onset, and decreases
shortly after stimulus offset.

Modeling 158

We then constructed DCMs encompassing three regions for each of the 105 functional 159

runs (Fig. 2). All models share several common properties: 160

• within the A matrix, BA17 was connected to BA18, and BA18 was connected to 161

BA19; 162

• beginning from an input region (red), all downstream regions were targeted by 163

at least one forward connection along this route; 164

• within the A matrix, a self connection (per definition negative) was deployed on 165

each region (i.e., on-diagonal elements of the matrix). 166

For instance, the prior variances of the A matrix of model ’A1’ (Fig. 2) were 167

assembled as displayed in equation 6, 168

V arprior(A) =

0

@
1
64

1
64 0

1
64

1
64

1
64

0 1
64

1
64

1

A (6)

The regions comprise BA17, BA18, and BA19. Source regions are represented in 169

columns, and target regions in rows of matrices A and B. Therefore, parameter 170

V arprior(A1,2) represents the A matrix (in this case: prior variance) originating at 171

region 2, targeting region 1. Priors variances of enabled connections are then set to 172

either 1 or 1
64 , depending on the matrix type (see above), and set to 0 for disabled 173
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connections. Throughout this article, the anatomical regions BA17, BA18, and BA19 174

are used interchangeable with the terms region 1, regions 2, and region 3. 175

Naïvely, a biophysically plausible model could be constructed in a hierarchical 176

fashion [22]. The experimental input would enter the system via BA17, and then gets 177

propagated to BA18 and BA19, with reciprocal connections between regions (Fig. 2, 178

model ’A1’). To tackle some questions about information transfer between regions, 179

such a base model could easily be accepted by the reader community. However, to test 180

different hypotheses about the behavior of a model, we systematically varied the 181

definition of the A, B, and C matrices, as visualized in Figure 2. For an better 182

understanding of the graphical representations of the models used in Figure 2 and for 183

the terms used to describe particular regions and connections over the curse of this 184

article, we further refer to Figure S2. 185

In contrast to the commonalities of all models, the following model parameters 186

were varied systematically: 187

• input either to BA17 (V arprior(C =
⇣
1
0
0

⌘
), BA18 (V arprior(C) =

⇣
0
1
0

⌘
), or BA19 188

(V arprior(C) =
⇣
0
0
1

⌘
); 189

• experimental modulation of connections (i.e., B matrix parameters) either 190

enabled or disabled. If disabled, the prior variances of the B matrix parameters 191

comprised only zeros. If enabled, the prior variances in the B matrix has 192

non-zero prior variance at the same off-diagonal matrix elements as the A matrix 193

(i.e., interregional connections), but with prior variances of 1 instead of 1
64 , and 194

contrary to the A matrix comprises prior variances of 0 on all on-diagonal 195

elements (i.e., self connections); 196

• BA17 and BA19 either not connected, or also reciprocally connected; 197

• regions were either reciprocally connected or only unidirectionally connected, so 198

that only forward connections were enabled 199

By those variations in our 3-region DCM, we estimated 3⇥ 3⇥ 2 models (Fig. 2) 200

for each experimental session. We analyzed posterior model parameters to verify 201

different claims about their quality (i.e., positive or negative). Therefore, we extracted 202

both posterior means and variances of each single parameter estimate of all models 203

and connections across functional runs and analyzed them further. For self 204

connections of the A matrices (e.g., a1,1) we transformed the estimated parameters to 205

unit Hertz to be consistent with the interregional parameters (eq. 7). 206

aHz = �e
alog

2
(7)

In contrast, for self connections of the B matrices (e.g., B(1)
1,1) we did not convert to 207

unit Hertz, for ease of interpretation (see [28] for more details). Consequently, a more 208

negative parameter estimate (in log scale) of the self connection of the B matrix 209

indicates a weaker self-inhibition, i.e., shifting the total self inhibition towards zero 210

Hertz. In contrast, a more positive parameter estimate (in log scale) of the self 211

connection of the B matrix indicates a stronger self-inhibition, i.e., shifting the total 212

self inhibition (in Hertz) stronger negative. 213

Simulations 214

One might argue, that the models of e.g., the leftmost column of Figure 2 can be 215

biophysically motivated to some degree. Unfortunately, the ground truth, i.e., the 216
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Figure 2. Overview of constructed models. Three regions were modeled, BA17
(region 1), BA18 (region 2), and BA19 (region 3). The input region (C matrix) is
colored in red, whereas non-input regions are colored in purple. For each type of model
(A, B, AF, BF, Anb, and Bnb), the input region is systematically varied. Grey arrows
depict parameters modeled in the A matrix only (i.e., only non-negative prior variances
are allowed within the A matrix). Black arrow depict parameters modeled in the B

matrix, which requires the same parameter also being modeled within the A matrix.
Grey circles around a region represent the (negative) self connection modeled within
the A matrix. See also Figure S2.

model that generated the data we observe, is not known. Therefore, any validity of 217

inference about the ground truth model is – among other things – bound by the 218

limited world of the tested hypotheses (i.e., the model space). To partially finesse the 219

fact that the ground truth model is unknown, we simulated hemodynamic time series. 220

Therefore, we constructed several – in our opinion – plausible ground truth models, 221

generated the neural and hemodynamic time series, added some noise, and then 222

continued the modeling procedure similar to above, by constructing and estimating 223

DCMs. 224

To be able to generate plausible hemodynamic time series, we needed plausible 225

parameters for the data generating model in the first place. To obtain such, we 226

calculated posterior parameter estimates for some of the biophysically most plausible 227

models, for example for model ’A1’ (Fig. 2, top left) from all 105 experimental sessions. 228

We then averaged the parameter estimates per connection. The average estimates 229

formed the ground truth model, which was then used to generate hypothetical time 230

series. The generation of the hypothetical time series was repeated 100 times to 231

simulate 100 sessions. Furthermore, the signal-to-noise ratio (SNR) was systematically 232

varied to be either 1, 3, or 5. The generated time series were in turn used to feed and 233

estimate other models, for instance models ’A2’ or ’B1’ depending on the respective 234

research question. See Figure S3 for an exemplary simulation procedure. 235

This detour was motivated by two reasons. First, the shape of the data generating 236

models were not completely far-fetched, but were based on some empirical motivations. 237

Second, we needed the simulations to draw conclusions in a hypothesis space, where 238
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the ground truth is known. By having time series generated by a ’true’ synthetic 239

model (e.g., ’A1’), and by using these times series to estimate different models (e.g., 240

’B1’), we can attribute the differences in resulting model parameters rather to the 241

perturbations in model structure, than to the likelihood of the model in the first place, 242

because the shape of the model which generated the data is known. 243

Statistical inferences 244

To test hypotheses about the resulting DCM parameter estimates, we applied several 245

statistical tests. In cases in which we tested if parameter estimates across sessions 246

differed from zero, we deployed two-tailed one sample t tests for each posterior 247

parameter estimate of a particular matrix. To test the difference between two 248

distributions, e.g., to compare the parameter estimates of an A to a B matrix, or the 249

respective A matrices of two kinds of models, we used paired sample t tests. 250

To adjust for multiple comparisons, we applied Benjamini-Yekutieli correction for 251

false discovery rate (FDR) [2]. We particularly used Benjamini-Yekutieli approach to 252

account for arbitrary interdependencies between tests, i.e., interdependencies between 253

different connections of a model. We applied a corrected threshold of ↵BY = 0.05, and 254

corrected for the number of tests. For example, the number of tests is 10 when testing 255

if each kind of connection per model (i.e., forward ⇥3, backward ⇥3, downstream 256

forward ⇥2, downstream backward ⇥2) of model space ’A’ is different from zero. The 257

number of tests is 20, when testing the same for model space ’B’, or 9 respective 18 258

when testing the same for model spaces ’AF’ respective ’BF’ (see Fig. 3,5,9). 259
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1 Forward connections are positive 260

1.1 Hypothesis 261

Connections leading away from the input region (i.e., forward connections and 262

downstream forward connections) are always characterized by positive parameters. If 263

not, downstream regions showing a similar time course (i.e., being activated in the 264

same contrast) could not be upregulated. 265

Therefore, when the input is given to a different region, all connections within the 266

models are adjusted so that they always follow the same pattern. Namely, all forward 267

connections become positive. This applies both to the direct forward connection 268

starting from the input region and to the subsequent (i.e., downstream) forward 269

connections starting from the next region through which the signal travels (Fig. S2). 270

This would continue until all regions have been activated by at least one positive 271

(forward) connection. 272

1.2 Methods 273

To test the hypothesis, we created three models. The models were identical except for 274

the input region. We expected in all models both positive forward connections and 275

positive downstream forward connections. 276

Model structure: Each model included three regions (BA17, BA18, and BA19). A 277

matrix: Endogenous connections were set bidirectionally between BA17 and BA18 and 278

between BA18 and BA19. B matrix: No modulatory connections were allowed in any 279

model. C matrix: Exogenous input was modeled by an ’activation’ regressor 280

(modeling activation task) and was set to BA17 (model ’A1’), BA18 (model ’A2’) and 281

BA19 (model ’A3’), respectively (for an overview, see Fig. 2). Model parameters were 282

estimated both for real data and for synthetic data. For synthetic data, we generated 283

data from model ’A1’ (see Fig. S3 for more details). 284

For illustration, we classified the model parameters into different groups, forward, 285

backward, downstream forward, downstream backward, and self connections according 286

to the rationale outlined in Figure S2. Each connection of a model was classified into 287

one of these five groups and then evaluated together. We tested significant (FDR 288

corrected) differences from zero by one sample t tests. 289

1.3 Results 290

As expected, forward connections and downstream forward connections were always 291

positive (Fig. 3 for real data, Fig. S4 for synthetic data). The sign of the endogenous 292

parameters was therefore not dependent on the specific data, but on the structure of 293

the model. In other words, already the choice of the input region was sufficient to 294

determine the sign of the endogenous forward and downstream forward connections of 295

all models. Interestingly, parameter estimation also revealed that the backward 296

connections as well as the downstream backward connections were always negative (all 297

p << 0.001). This pattern was again present in all models, independent of where the 298

experimental input entered the model. We will refer to that behavior in claim 3. 299

One might argue that we could have additionally used a Bayesian model selection 300

(BMS) procedure. If the BMS favored one model (i.e., the winning model), only 301

parameters from this model might have been interpreted. BMS, however, did not yield 302

any evidence that the rather ’plausible’ model ’A1’ was superior to the others, rather 303

the opposite (see claim 6). 304
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Figure 3. Magnitude of DCM parameters in the A matrix of model space ’A’.
Illustrated are parameter estimates of three different models of model space ’A’. The
models differed in their respective input region. Driving input (C matrix) either entered
the model via BA17 (input region 1), BA18 (input region 2) or BA19 (input region 3).
Across 105 sessions posterior parameter estimates were extracted from all connections of
each model. The parameter estimates were classified as forward, backward, downstream
forward, downstream backward, or self connection. See Figure S2 for a more detailed
explanation of this classification. Across all different models, the following pattern was
present: Forward connections and downstream forward connections became positive,
and backward and downstream backward connections became negative. Self connections
became negative by definition.
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2 Positivity shifts to the B matrix, if enabled 305

2.1 Hypothesis 306

The previous models were rather naïve with respect to the matrix specifications, as we 307

totally neglected a modulatory influence of the experimental condition on the 308

connections (i.e., B matrix), but rather assumed a context-independent transfer 309

between regions (i.e., A matrix). However, one might argue that the interregional 310

connections – examplary in the early visual cortex – behaved differently during the 311

experimental condition than during the control condition. More specifically, one would 312

expect stronger coupling in the task condition than in the control condition, that is, 313

when a visual stimulus is processed. 314

Consequently, the same effect visible in claim 1 should also be present, when a B 315

matrix is specified (i.e., enabled) in addition to an A matrix. The B matrix is 316

multiplied with the onset/offset vector u
(j) of the experimental condition (see eq. 1). 317

In theory, it is exactly where we would expect the positive forward connections to 318

manifest itself, as visual processing is unsurprisingly dependent on a visual input. 319

In addition, parameters of the A and B matrices do have different prior variances 320

(Fig. 4, top row) [28,29]. Due to the higher variances in the priors of the B matrix, 321

the B matrix parameters can be adjusted more easily during the estimation procedure. 322

This in turn makes it simpler to capture the variance in the data by adjusting a 323

particular connection in the B matrix rather than the corresponding connection in the 324

A matrix. Furthermore, by the higher prior variances within the B matrix, larger 325

maximum a posteriori parameter estimates become more likely. 326

Figure 4. Exemplary prior and posterior distributions of model parameters.
A interregional connection of the A matrix gets assigned a prior mean of µ = 0 and
prior variance of �2 = 1

64 . A interregional connection of the B matrix gets assigned a
prior mean of µ = 0 and prior variance of �2 = 1. Displayed are priors and posteriors
of a particular connection from BA17 to BA18 in both A and B matrix (a2,1 and b2,1).
The connections were extracted from the models ’A1’ and ’B1’, estimated by data of the
first experimental session. Top row: prior distributions of the parameters are displayed.
Bottom row: posterior distributions of the parameters are displayed. Left column: In
model ’A1’, in which only the A matrix is enabled for this particular connection, the
posterior becomes positive. Right column: When a B matrix parameter is enabled for
this connection (as in model ’B1’), the posterior becomes more positive, than the A

matrix parameter of the corresponding model ’A1’. Conversely, the respective A matrix
parameter of model ’B1’ becomes even negative.

We therefore hypothesized that the pattern of the A matrix seen in claim 1 now 327
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rather manifests in the connections of the B matrix. Namely, we expected positive 328

forward connections and downstream forward connections in the B matrix. 329

2.2 Methods 330

First, we adapted both models (real and synthetic data) of the previous claim and 331

added a B matrix to these models (Fig. 2, model space ’B’). Only interregional 332

connections were enabled in the B matrix, corresponding the the off-diagonal elements 333

of the matrix. As before, we varied the C matrix (i.e., input region), and analyzed the 334

magnitude of all resulting model parameter estimates. We tested significant (FDR 335

corrected) differences from zero by one sample t tests. We further tested for 336

differences in the magnitude of parameter estimates of the B matrix parameters of the 337

models of model space ’B’, compared to those of the A matrix parameters of model 338

space ’A’ by applying FDR corrected paired samples t tests. 339

In addition, we simulated time series from an artificial ground truth model ’B1’, 340

and, like before, estimated all models of model space ’B’ (Fig. 2). 341

2.3 Results 342

DCM estimation revealed positive forward connections, and positive downstream 343

forward connections in the B matrix (Fig. 5, p << 0.001). This pattern was 344

independent of the input region. Therefore, if the input was set to a different region, 345

the parameter estimates changed according to fit this very pattern. Furthermore, 346

backward connections as well as downstream backward connections were for the most 347

part negative (all p << 0.001), comparable to the corresponding A matrix parameters 348

in the claim 1. These patterns were present in the vast majority of models, and 349

independent of where the experimental input entered the model. 350

In addition, the pattern was significantly stronger in the B matrix (in 8 out of 10 351

tested types of connections, p < 0.05), than it has been in the A matrix in claim 1, 352

easily recognizable on the different scaling of the y axes between Figure 3 and Figure 5 353

(bottom row). With a B matrix enabled, the parameters of the A matrix tended to be 354

closer to zero compared to the models with only A matrix enabled (all p < 0.05). The 355

pattern of positive forward and negative backward connections has can not be seen in 356

the A matrix (Fig. 5). 357

Moreover, with simulated data, one can clearly identify the same pattern for the B 358

matrix as with real data (Fig. S5). In turn, the pattern was not longer manifested in 359

the A matrix (Fig. S6). 360

We illustrated the parameter estimates (prior and posterior means and variances) 361

of the forward connection from BA17 to BA18 of experimental session 1 (out of 105) 362

as an example in Figure 4. The posterior A matrix parameter of the forward 363

connection was positive, when the B matrix was disabled (i.e., claim 1, Fig. 3, bottom 364

left). When the a B matrix was enabled, this very connection from BA17 to BA18, 365

now in the B matrix became even stronger positive, then the A matrix forward 366

connection of the corresponding model with only A matrix enabled (Fig. 4, bottom 367

right). Conversely, the corresponding A matrix parameter in the model with B matrix 368

enabled however was slightly negative. Whereas this is just an exemplary connection 369

of session 1, Figure 5 in comparison with Figure 3 indicates that this pattern is 370

present across the vast majority of sessions. 371
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Figure 5. Magnitude of DCM parameters, when a B matrix was enabled.
Illustrated are parameter estimates of three different models of model space ’B’. See
Figure 3 for details. Across all different models, the following pattern was now rather
present in the B matrix than in the A matrix: Forward connections and downstream
forward connections were estimated positive, and backward and downstream backward
connections were estimated negative. Self connections (within the A matrix) were esti-
mated negative by definition.
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3 Negative backward connections support self 372

inhibition 373

3.1 Hypothesis 374

Experiments of claim 1 and claim 2 have confirmed a positive forward coupling, and 375

positive downstream forward coupling. This pattern has either be seen in the A 376

matrix, if a B matrix was disabled, or in the B matrix, if the B matrix was enabled. 377

However, a negative backward coupling and negative downstream backward coupling 378

has been demonstrated to accompany the positive forward and downstream forward 379

couplings. As the negativity in (downstream) backward connection seems similarly 380

predetermined as the positivity in (downstream) forward connections, the question 381

regarding the origin or purpose of this negativity arises. 382

One possible role of the negative backward connection would be to support the 383

inhibitory self connections in down-regulating the activity in the regions, and therefore 384

to subserve as antagonist to the positive (forward & downstream forward) connections 385

in maintaining a stable system. It might therefore be computationally more cost 386

effective to move the priors of both the negative self connection, and the backward 387

connection to just a certain degree, rather than moving just the prior of the self 388

connection alone. By shifting just one of both priors, that very shift would need to be 389

stronger to exceed the same effect (of downregulating the regions) than if both priors 390

had to be shifted to a less severe degree. 391

We hypothesized, that in models with backward connections disabled, the self 392

connections get larger negative than in models with enabled backward connections. 393

This effect should rather be seen in self connections of those regions, which are 394

targeted by a backward connection (e.g., region BA17 and BA18 in model ’A1’, 395

Fig. 2), rather than regions that are not targeted by a backward connection (e.g., 396

region BA19 in model ’A1’, Fig. 2). 397

3.2 Methods 398

We replicated the models of model spaces ’A’ and ’B’ to form model spaces ’Anb’ and 399

’Bnb’, respectively (Fig. 2, bottom row). In these model spaces, we disabled all 400

backward and downstream backward connections. So for instance, from model ’A1’, 401

we disabled the backward connection from BA18 to BA17 in the A matrix, and the 402

downstream backward connection from BA19 to BA18 in the A matrix, and named it 403

model ’Anb1’. From model ’A2’, we disabled the backward connection from BA17 to 404

BA18, and the downstream backward connection from BA19 to BA18 in the A matrix, 405

and named it model ’Anb2’. We proceeded with model ’A3’ in an analogue fashion to 406

create model ’Anb3’. In model space ’B’ we disabled the very same connections to 407

create models of the model space ’Bnb’, but both in the respective A matrix, and the 408

respective B matrix. 409

We already illustrated in claims 1 and 2, that backward connections render 410

negative in most of the cases in the A or B matrix, respectively. Here, we were 411

interested in how the omission of the (negative) backward connections changes the 412

self-inhibition in each region. We hypothesized, that in all regions, which were initially 413

targeted by a (negative) backward connection, the self connection will become stronger 414

negative after disabling the backward connection to compensate for the ’missing’ 415

backward connection. 416
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3.3 Results 417

In Figure 6, we illustrate the parameter estimates of the self connections, pair-wise for 418

models with backward connections enabled, and models with backward connection 419

disabled. One can clearly discern, that if a region was targeted by a backward 420

connection, the self connection became less negative than if the region was not 421

targeted by a backward connection. For instance, in models which got the input in 422

region 1 (Fig. 6, top row), both region 1 and region 2 were targets of a backward 423

connection. These both regions showed a clear difference in negativity of the self 424

connection, when the backward connections were disabled. On the opposite, in regions 425

3, which was not targeted by a backward connection, this effect is not seen as strongly 426

or not seen at all. Similarly, when the input enters region 2 (Fig. 6, middle row), only 427

region 2 was targeted by backward connections. Therefore, only region 2 showed a 428

strong difference in self connections after disabling the backward connections, whereas 429

regions 1 and 3 remain less unaffected. The same logic applies for models with region 430

3 as input region (bottom row). Strong differences in the distribution of the 431

magnitudes of self connections are seen in regions, which were targeted by a backward 432

connection in model spaces ’A’ and ’B’, but not in model spaces ’Anb’ and ’Bnb’. 433

Figure 6. Magnitude of self connections when backward connections are
disabled vs. enabled. Displayed are self connections (unit Hertz) of regions 1, 2,
and 3 (x axis). The input region varies across rows. The left column displays self
connections of the three regions within models which are part of model spaces ’A’ and
’Anb’, whereas the right column displays self connections of regions of models which
are part of model spaces ’B’ and ’Bnb’. Yellow boxes represent parameter estimates
of models with backward connections enabled (model spaces ’A’ and ’B’). Green boxes
represent parameter estimates of models with backward connections disabled (model
spaces ’Anb’ and ’Bnb’).
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4 The pattern manifests independently of the 434

underlying true model 435

4.1 Hypothesis 436

All of the previous analyses were limited to only include models belonging to one 437

particular model space. Still open is the behavior of parameters, if the true (data 438

generating) model is outside the respective model space, and if the very same pattern 439

would still be persistent. To answer this question we conducted several cross 440

simulations, by generating data by one model and estimating models of a disjunct 441

model space. 442

In the previous claims we have demonstrated, that the positive and negative 443

connections manifest themselves in the B matrix, if enabled, or in the A matrix, if B 444

matrix is disabled. However, the ground truth model which generated the data 445

remained unknown. In this claim we argue, that even if the time series are generated 446

by a model with positive and negative connections in the A matrix (with B matrix 447

disabled), the pattern manifests itself in a B matrix, if enabled during model 448

estimation. Likewise, if the time series is generated by a model with positive and 449

negative connections in the B matrix, the pattern will manifest itself in the A matrix, 450

if the B matrix is disabled during model estimation. 451

4.2 Methods 452

For this line of simulations, we created models similar to the procedure shown in 453

Figure S3. First, we created an average model ’A1’ from empirical data. Then we 454

simulated time series with different SNRs by this model, and in turn used these time 455

series to estimate models of model space ’B’, i.e., ’B1’, ’B2’, and ’B3’ (Fig. 2). 456

Likewise, we created an average model ’B1’ from empirical data. Then we simulated 457

time series with different SNRs by this model, and in turn used these time series to 458

estimate models of model space ’A’, i.e., ’A1’, ’A2’, and ’A3’ (Fig. 2). We extracted 459

the parameter estimates of the different estimated models for inference. 460

4.3 Results 461

The posterior parameter estimates distributed according to the very same pattern as 462

before. If the time series was generated by model ’A1’, and this time series was used 463

to estimate models of model space ’B’, the pattern now shifted into the B matrix 464

(Fig. 7). More specifically, the forward and downstream forward connections in the B 465

matrix became positive, and the backward and downstream backward connections 466

became negative (Fig. 7). This was seen in a vast majority of models where the 467

experimental input entered region 1 or 3. In models in which the experimental input 468

entered region 2, the negativity of the backward connection only manifested in about 469

50% of cases. On the contrary, in the A matrix, where this pattern was initially 470

manifested during data generation, it largely vanished (Fig. S7), closely corresponding 471

to the insights revealed by real data in Figure 2. 472

On the other hand, we simulated the opposite direction. If the time series was 473

generated by model ’B1’, and this time series was used to estimate models of model 474

space ’A’, the pattern now shifted from the B matrix towards the A matrix (Fig. 8). 475

More specifically, the forward and downstream forward connections in the A matrix 476

became positive, and the backward and downstream backward connections became 477

negative (Fig. 8). 478
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Figure 7. Magnitude of DCM parameters in the B matrix of models with
B matrix enabled, estimated using time series generated by model ’A1’.
Illustrated are parameter estimates of the B matrix of three different models (columns)
of model space ’B’ for three different SNRs (rows). The times series used to estimate
the models however were generated by model ’A1’. The pattern of positive forward
and negative backward connections manifested in the B matrix, although the data
generating model comprised no B matrix. See Figure S4 as reference for the simulations.
See Figure S7 for the corresponding A matrix parameters of the models.
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Figure 8. Magnitude of DCM parameters in the A matrix of models with
B matrix disabled, estimated using time series generated by model ’B1’. Il-
lustrated are parameter estimates of the A matrix of three different models (columns)
of model space ’A’ for three different SNRs (rows). The times series used to estimate
the models however were generated by model ’B1’. The pattern of positive forward and
negative backward connections manifested in the A matrix, whereas the data generating
model showed this pattern in the B matrix. See Figure S4 as reference for the simula-
tions.
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5 The pattern vanishes when enabling lateral 479

connections 480

5.1 Hypothesis 481

The models used to evaluate claims 1-4 were of hierarchical structure. In particular, a 482

signal needed to propagate all three regions in a continuous fashion. For instance, in 483

model ’A1’, it first entered region 1 (BA17), then wanders to the second (BA18), and 484

finally to the third region (BA19) (Fig. 2). Likewise, in the case the input entered the 485

second region (BA18), the signal propagated to BA17 and BA19 in a parallel fashion 486

(Fig. 2). 487

However, it is not yet clear, if the pattern (forward positive, backward negative) 488

still persists, if all regions of the model were fully interconnected. Hypothetically, the 489

pattern may vanish, because of additional degrees of freedom by the additional 490

connections. The signal might travel along the regions in several possible ways, even 491

differently per experimental session, leading to the pattern getting untraceable across 492

sessions. In other words, with the higher amount of possible connections, the model 493

becomes simply more flexible to fit the data. 494

5.2 Methods 495

To test this, we enabled reciprocal connections between the two regions, which were 496

not connected in the models of claim 1 and claim 2. Therefore, we compared the 497

parameter estimates of models from before (Fig. 2, ’A’ and ’B’) to the new models with 498

the additional connections (Fig. 2, ’AF’ and ’BF’), which we will term fully connected. 499

5.3 Results 500

The distribution of model parameters is displayed in Figure 9. The pattern was still 501

present, i.e., positive forward connections, and negative backward connections. New 502

were however the lateral connections. Those rendered either positive or negative. In 503

model space ’AF’ with disabled B matrix, the lateral connections rendered either 504

positive or negative, with a slight tendency of getting negative (Fig. 9). The same 505

accounts for model space ’BF’ with enabled B matrix. In those models, the lateral 506

connections rendered either negative or positive, with a slight tendency to getting 507

negative. 508
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Figure 9. Magnitude of DCM parameters, when the regions are fully con-
nected. Illustrated are parameter estimates of models of model space ’AF’ (top) and
’BF’ (bottom). The models differed in their respective input region. Driving input (C
matrix) either entered the model via BA17 (input region 1), BA18 (input region 2)
or BA19 (input region 3). All regions were fully interconnected. Across 105 sessions
posterior parameter estimates were extracted from all connections of each model. The
parameter estimates were classified as forward, backward, lateral, or self connection.
See Figure S2 for a more detailed explanation of this classification. For model space
’BF’, both A and B matrices are illustrated separately. For model space ’AF’, only A

matrix is illustrated. Across all different models, the following pattern was still present:
Forward connections were estimated positive, and backward connections were estimated
negative. Self connections were estimated negative by definition. Lateral connections
were either estimated positive or negative.
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6 The input region is not identifiable with 509

uninformative priors 510

6.1 Hypothesis 511

The human early visual system is likely one of the best-studied cortical areas. 512

Therefore, it is common sense, that the visual input enters the human cortex via the 513

Lateral Geniculate Nucleus entering the V1 region (i.e., BA17), and hierarchically and 514

reciprocally processes to higher regions, such as V2 (BA18), and other visual regions 515

such as V3, V4, or V5/MT (BA19) [13]. However, the model structure is not always as 516

easy to derive from the literature as in the present example. For example, it is often 517

unclear between which regions connections should be enabled (A and B matrices) and 518

into which region the experimental input should enter directly (C matrix). 519

The DCM framework encourages to set up multiple models and to use data to 520

evaluate their likelihood via model comparison, i.e., BMS [20]. However, in the 521

distributed DCM software package, a uniform distribution of prior model probabilities 522

is set upon a model space, so that P (M1) = P (M2), and so forth. However, given 523

differently strong (prior) evidence from the literature for different model structures, 524

this assumption is oversimplified for nearly every application. Therefore, model 525

selection results must be distorted, as equal prior probabilities are implausible. In 526

other words, this restriction somewhat contradicts the Bayesian nature of the analysis 527

and hence further limits its possibilities. Most researchers however do not take into 528

account such different prior probabilities on the models, but assume a uniform 529

distribution of prior probabilities. As a consequence, the posterior odds of a model, 530

compared to another model, completely depends on the Bayes Factor (BF) and 531

therefore the data, and not the prior probabilities of each model (see eq. 8- 10). 532

P (Mi|y) =
P (y|Mi) · P (Mi)

P (y)
(8)

P (M1|y)
P (M2|y)

=
P (y|M1)

P (y|M2)
· P (M1)

P (M2)
(9)

posterior odds = Bayes Factor · prior odds (10)

Equation 8 depicts the Bayes theorem [5]. The conditional probability of model i, 533

given the data y is the posterior probability of a model P (Mi|y). It is the quotient of 534

the conditional probability of the data, given that model i is true P (y|Mi) – often 535

termed likelihood – times the prior probability of model i P (Mi), and the marginal 536

probability P (y) for normalization. When comparing two models, simply the fraction 537

between two posterior probabilities can be calculated, as for example with equation 9, 538

which is named the posterior odds (eq. 10). The posterior odds is nothing than the BF 539

times the prior odds. With uniform prior probabilities, and therefore prior odds of 1
1 , 540

the posterior probabilities simply correspond to BFs. 541

6.2 Methods 542

We implemented a straightforward BMS based on BFs. We then compared three 543

models within a model space with each other in a pairwise fashion. The respective 544

three models varied in their input regions (input into BA17, BA18, or BA19). 545

Therefore, we only took the models of model spaces ’A’ and ’B’ separately (Fig. 2). 546

We first took each of the 105 experimental sessions, and calculated a BF between each 547

pair of models i and j, as derived by the model evidences p(y|Mi), which were 548

approximated by the negative free energy Fi [27] of a model: 549
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BFi,j =
p(y|Mi)

p(y|Mj)
t exp(Fi � Fj) (11)

We further calculated a Group Bayes Factor GBFi,j [27] between each pair of 550

model across functional runs: 551

GBFi,j = exp(
SX

s=1

Fi � Fj) =
SY

s=1

BF
(s)
i,j

(12)

with s the sessions and S the total number of sessions. Because the proposed GBF 552

depends on the number of sessions included, and therefore easily converges to 0 or 1 553

for high number of sessions, we further introduce the root-n-Group Bayes Factor: 554

rnGBF = S
p

GBFi,j (13)

Further to calculating Bayes Factors, we converted the Bayes Factors to posterior 555

probabilities. Therefore, the posterior probability pM1 of model 1 (within a 556

comparison to model 2) is – given the uniformity assumption on priors, therefore prior 557

odds of 1 – derived by [19]: 558

pM1 =
posterior odds

1 + posterior odds =

p(y|Mi)
p(y|Mj)

1 + p(y|Mi)
p(y|Mj)

=

p(Mi|y)
p(Mj |y)

1 + p(Mi|y)
p(Mj |y)

=
BF

1 + BF (14)

According to Raftery [21], a Bayes Factor of > 150 – corresponding to a posterior 559

probability of > 0.99 – can be seen as very strong evidence in favor of a model. Similar 560

accounts for a Bayes Factor of 1
150 – corresponding to a posterior probability of < 0.01 561

– speaking strongly against a particular model. 562

6.3 Results 563

The pair-wise model comparisons between models with different input regions are 564

displayed in Figure 10, both for model group ’A’ (left column) and model group ’B’ 565

(right column). In both groups, the following pattern is visible: 566

• model 1 (i.e., input into BA17) is outperformed by model 2 (i.e., input into 567

BA18), with rnGBF
(A)
1,2 = 2⇥ 10�40, and rnGBF

(B)
1,2 = 4⇥ 10�50 568

• model 1 outperforms model 3 (i.e., input into BA19), with rnGBF
(A)
1,3 = 4⇥ 1034 569

and rnGBF
(B)
1,3 = 2⇥ 1012 570

• model 2 outperforms model 3, with rnGBF
(A)
2,3 = 2⇥ 1074 and 571

rnGBF
(B)
2,3 = 5⇥ 1061 572

Therefore, according to Bayes Factors and nrGBF – i.e., under uniformity 573

assumptions on priors – model 2 has highest posterior probability, with pM2 >> 0.99 574

when comparing both to models 1 and 3. 575

The model selection presented in this chapter was performed to emphasize the 576

relevance of the patterns elaborated in the previous claims. For example, in claim 1, 577

one could argue that it is nothing one should be concerned about when model 578

parameters change after the researcher changing the input region, because a 579

biophysically illogical model, such as model ’A2’, would be inferior in a model 580

comparison compared to a biophysically more plausible model such as model ’A1’. 581

Inferior means, it should be inferior both by smaller prior probability (which is 582
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Figure 10. Distributions of Bayes Factors for pairwise model comparisons.
Left column: models of type ’A’ (see Fig. 2). Right column: models of type ’B’ (see
Fig. 2). The Bayes Factors (in log10 scale) are visualized on the x axes, and the
corresponding counts (out of 105 total comparisons each) are displayed on the y axes.
The solid vertical black lines marks a Bayes Factor of 1, i.e. the situation where both
models of a comparison are equally likely. The dotted vertical black lines mark Bayes
Factors of 150 and 1

150 , the defined thresholds for very strong evidence in favor or
against a particular model, respectively [21]. In the figures of the right column, those
thresholds are very close to the solid vertical black line. The red vertical line indicates
the respective rnGBF (see eq. 13).

typically not adjusted in DCM), and smaller likelihoods and therefore BFs (which was 583

not the result of the presented model comparison). Thus, if one were to include a 584

model selection in one’s analysis pipeline, and then interpret only the parameters of 585

the winning model, then it need not matter that the inferior models have unreasonable 586

parameter expressions. With the above results we were able to show, using two 587

different model spaces as examples, that the more plausible model (from a biophysical 588

point of view, e.g., ’A1’ or ’B1’) would have been inferior in the model comparison, 589

and a rather implausible model such as ’A2’ or ’B2’ would have won. If – in a study 590

with a substantive question about connectivity in early visual areas – a researcher had 591

subsequently interpreted the parameters of these winning models, they would have 592

interpreted parameters which were merely determined by the structure of the model 593

(which is also true for the winning model), but are not very plausible from the outset. 594
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Discussion 595

Complementing the motivating example 596

Throughout the different claims we have evaluated possible explanations for the 597

pattern we have seen in all models, namely, positive forward and negative backward 598

connections. We were able to demonstrate, that if we changed the input region and 599

therefore if for instance a forward connection turned into a backward connection, its 600

parameter estimate switched accordingly. In our introductory example (page 3) we 601

introduced a hypothesis about the nature of the positivity of the forward couplings, 602

namely to spread the neural activation across all regions. We have then carved out a 603

possible explanation for the emergence of negative backward couplings, namely that 604

those might play a supportive role in the down-regulation of each region, a task which 605

is usually assigned to the self connections. 606

With the findings we are now in a position to close the last gap from our 607

motivating example on page 3. In that example we argued, that following plausibility 608

considerations on the level of the neural state equation, one is able to predict the 609

quality (i.e., being positive or negative) of most connections without even estimating 610

the model. Now having gained some insights about the nature of the backward 611

connection, which seems to turn negative in most cases, we were able to close the 612

remaining gap, rendering the model fully predictable. 613

Putting it more precisely, from the elements of the A matrix in our motivating 614

example (eq. 2), one is now able to not only predict the on-diagonal elements, which 615

are by definition negative, but also both of the off-diagonal elements a1,2 and a2,1. 616

Whereas we already proposed the forward connection a2,1 to become positive from 617

plausibility considerations, we have then shown with empirical data and simulations of 618

claims 1, 2, 4, and 5 that this holds in the vast majority of cases. Furthermore, we 619

were able to demonstrate that the backward connection a1,2 should render negative, 620

by demonstrating the negativity of backward connections with claims 1, 2, 4, and 5, 621

and identifying a possible concept for the negativity in claim 3. 622

In addition, we were able to show that the data are generously explained by model 623

structures that actually had nothing to do with the generation of the data. For 624

example, the B matrix had caught most of the effects when modeled, even though 625

these effects were actually attributable to the A matrix. On the other hand, the A 626

matrix explained effects when no B matrix was available for modeling (claim 4). 627

Now, one could argue that all this is not so dramatic if one just follows the 628

guidelines of the developers and performs model selections first. We have shown the 629

opposite here with a very comprehensible model selection. Even with this intuitive 630

fMRI dataset, model selection did not spawn the model that would have been easily 631

accepted by a wide audience of experts. 632

Limitations of the present claims 633

Despite using a simple paradigm, we have also used a simple model for all plausibility 634

considerations, empirical calculations and simulations. For instance, one could argue 635

that the pattern vanished if the number of regions becomes sufficiently high, and if the 636

regions got more interconnected than in the presently used models. In all claims but 637

claim 5, the signal had only one possible route to pass through the system. Enabling 638

many connections between several regions might open more degrees of freedom for the 639

signal to be propagated, and the pattern may vanish across sessions or subjects. 640

However, in a three region model, fully interconnected, the pattern remains still 641

consistent (claim 5). Furthermore, the pattern may become less traceable if the 642

covariance of the regions’ time series is not high enough, or if some regions activate in 643
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an statistically orthogonal fashion. When more experimental conditions would be 644

combined, perhaps in an fully orthogonal design, plausibility considerations leading to 645

a fully predictable outcome might get more cumbersome. 646

Frontiers of model interpretability 647

Many models in the existing literature (e.g., [6, 11]), including our own (e.g., [9, 14]) 648

can become victim of the logic introduced during this article. Whereas DCM is a 649

highly elegant method to describe neural interactions, we want to emphasize, that the 650

interpretation of many model parameters just do not add any value to some research, 651

if the outcome is predictable anyway. Therefore, before applying Dynamic Causal 652

Models in the first place, we highly recommend to rehearse possible outcomes, which is 653

feasible because at that point preliminary inference has usually already been done on 654

the level of neural activation. 655
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Supporting Information

Figure S1. Masks to identify visual regions in occipital cortex. Top row:
Brodmann area 17 (BA17) encompassing region V1. Middle row: Brodmann area 18
(BA18) encompassing region V2. Bottom row: Brodmann area 19 (BA19) encompass-
ing region V3, V4, and V5.
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Figure S2. Glossary models. Different parts of these hypothetical models were
labeled to better understand the differences in the models of Figure 2, and to get an
intuition about the terms used when describing particular connections of a model.
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Figure S4. Magnitude of DCM parameters in the A matrix with simulated
time series. Illustrated are parameter estimates of three different models of model
space ’A’. The models differed in their respective input region. Driving input (C ma-
trix) either entered the model via BA17 (input region 1), BA18 (input region 2) or BA19
(input region 3). Across 100 simulated sessions posterior parameter estimates were ex-
tracted from all connections of each model. The parameter estimates were classified
as forward, backward, downstream forward, downstream backward, or self connection.
See Figure S2 for a more detailed explanation of this classification. Throughout all dif-
ferent models, the following pattern was present: Forward connections and downstream
forward connections were estimated positive, and backward and downstream backward
connections were estimated negative. Self connections were estimated negative by defi-
nition. This pattern was present for different signal-to-noise ratios (SNRs).
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Figure S5. Magnitude of DCM parameters in the B matrix of models with
B matrix enabled with simulated time series. Illustrated are parameter estimates
of the B matrix of three different models of model space ’B’. See Figure S4 as reference.
When a B matrix is enabled, the pattern (positive forward, negative backward) is now
manifested in the B matrix.
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Figure S6. Magnitude of DCM parameters in the A matrix of models with
B matrix enabled with simulated time series. Illustrated are parameter estimates
of the A matrix of three different models of model space ’B’. See Figure S4 as reference.
When a B matrix is enabled, the pattern (positive forward, negative backward) is not
longer manifested in the A matrix.
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Figure S7. Magnitude of DCM parameters in the A matrix of models with
B matrix enabled, fed by time series generated by model ’A1’. Illustrated are
parameter estimates of the A matrix of three different models (columns) of model space
’B’ for three different SNRs (rows). The times series used to estimate the models however
were generated by model ’A1’. The pattern of positive forward and negative backward
connections manifested in the B matrix (Fig. 7), although the data generating model
comprised no B matrix. See Figure S4 as reference for the simulations. See Figure 7
for the corresponding B matrix parameters of the models.
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Eigener Anteil der vorliegenden Arbeit

Laut §8, Absatz 3 der Promotionsordnung der Philipps-Universität Marburg (Fassung vom
15.07.2009) müssen bei den Teilen der Dissertation, die aus gemeinsamer Forschungsarbeit ent-
standen sind,

”
die individuellen Leistungen des Doktoranden deutlich abgrenzbar und bewertbar

sein“. Der eigene Anteil wird im Folgenden detailliert erläutert.

1. Manuskript 1

• Konzeption der Auswertung / Hypothese

• Datenvorverarbeitungen (Programmierung & Durchführung)

• Konnektivitätsanalysen (Programmierung & Durchführung)

• Statistische Analysen (Programmierung & Durchführung)

• Visualisierung der Ergebnisse

• Interpretation der Ergebnisse (Zusammen mit Prof. Dr. Andreas Jansen, und z.T.
anderen Koautoren)

• Schreiben des Manuskriptes (Zusammen mit Prof. Dr. Andreas Jansen, Korrektur
durch z.T. anderen Koautoren)

Anteil gesamt: 70%

Dieses Manuskript wurde in der vorliegenden Form im Journal Frontiers in Systems

Neurosciences verö↵entlicht [Kessler et al., 2020].

2. Manuskript 2

• Konzeption des experimentellen Paradigmas (Paradigma 1)

• Programmierung des Paradigmas (Paradigma 1)

• Rekrutierung und Messung der Probanden (Paradigma 1)

• Konzeption der Auswertung / Hypothese

• Datenvorverarbeitungen (Programmierung & Durchführung)

• Konnektivitätsanalysen (Programmierung & Durchführung)

• Statistische Analysen (Programmierung & Durchführung)

• Visualisierung der Ergebnisse

• Interpretation der Ergebnisse (Zusammen mit Prof. Dr. Andreas Jansen)

• Schreiben des Manuskriptes (Zusammen mit Prof. Dr. Andreas Jansen, Korrektur
durch andere Koautoren)

Anteil gesamt: 80%

Dieses Manuskript wurde in der vorliegenden Form im Journal Neuroimage: Reports

verö↵entlicht [Kessler et al., 2021b].

3. Manuskript 3

• Konzeption der Hypothese
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• Programmierung & Durchführung Simulationen

• Konzeption der Auswertung / Hypothese

• Datenvorverarbeitungen (Programmierung & Durchführung)

• Konnektivitätsanalysen (Programmierung & Durchführung)

• Statistische Analysen (Programmierung & Durchführung)

• Visualisierung der Ergebnisse

• Interpretation der Ergebnisse (Zusammen mit Prof. Dr. Andreas Jansen)

• Schreiben des Manuskriptes (Korrektur durch Prof. Dr. Andreas Jansen)

Anteil gesamt: 90%

Dieses Manuskript ist noch nicht verö↵entlicht [Kessler and Jansen, 2022].

Ort, Datum, Unterschrift Roman Keßler

Ort, Datum, Unterschrift Prof. Dr. Andreas Jansen
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