
Dissertation

Construction of Interpolating and
Orthonormal Multigenerators and

Multiwavelets on the Interval

Mojdeh Hematidaryoni

2022





Construction of Interpolating and

Orthonormal Multigenerators and

Multiwavelets on the Interval

Dissertation

zur

Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt

dem Fachbereich Mathematik und Informatik

der

Philipps–Universität Marburg

von

Mojdeh Hematidaryoni

Aus Schiras (Iran)

Marburg April 2022



Vom Fachbereich Mathematik und Informatik

der Philipps-Universität Marburg (Hochschulkennziffer: 1180)

als Dissertation angenommen am: 27. April 2022

Erstgutachter: Prof. Dr. Stephan Dahlke, Philipps-Universität Marburg

Zweitgutachter: Prof. Dr. Christian Rieger, Philipps-Universität Marburg

Tag der mündlichen Prüfung: 29. Juli 2022
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Chapter 1

Introduction

In recent years, wavelets have become a very powerful tool in applied mathematics. In
general, a wavelet basis is a system of functions that is generated by scaling, translating
and dilating a finite set of functions, the so-called mother wavelets. A mother wavelet is
a function ψ ∈ L2(R) such that for some parameters a > 1 and b > 0, the collection

{a
j
2ψ(ajx− bk)|j, k ∈ Z}

is an orthonormal basis of L2(R). Wavelets have been very successfully applied in im-
age/signal analysis, e.g., for denoising and compression purposes. In contrast to tradi-
tional Fourier- or Gabor transforms, wavelet methods are useful for analyzing local and
non-stationary structures on different scales. This is accomplished by multi-scale decom-
positions, e.g., a signal or image is mapped to a phase space parametrized by a time/space-
and a scale/size/resolution parameter. We refer to the monograph [51] for details. Another
important field of applications is the analysis and the numerical treatment of operator
equations [19]. In particular, it has been possible to design adaptive numerical algorithms
based on wavelets for a huge class of operator equations including operators of nega-
tive order [15, 16]. The success of wavelet algorithms is an ultimative consequence of the
following facts:

� Weighted sequence norms of wavelet expansion coefficients are equivalent in a certain
range (depending on the regularity of the wavelets) to smoothness norms such as
Besov or Sobolev norms.

� For a wide class of operators their representation in wavelet coordinates is nearly
diagonal.

� The vanishing moments of wavelets remove the smooth part of a function and give
rise to very efficient compression strategies.

These facts can, e.g., be used to construct adaptive numerical strategies that are guar-
anteed to converge with optimal order, in the sense that these algorithms realize the con-
vergence order of best N-term approximation schemes. The most far-reaching results have
been obtained for linear, symmetric elliptic operator equations. Generalization to nonlin-
ear elliptic equations also exist [17]. However, then one is faced with a serious bottleneck:
every numerical algorithm for these equations requires the evaluation of a nonlinear func-
tional applied to a wavelet series. Although some very sophisticated algorithms exist [22],
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they turn out to perform quite slowly in practice. In recent studies, it has been shown
that this problem can be ameliorated by means of so-called interpolants [61]. However,
then the problem occurs that most of the known bases of interpolants do not form stable
bases in L2[a, b].

In this work, we provide a significant contribution to this problem and construct
new families of interpolants on bounded domains that are not only interpolating, but
also stable in L2[a, b]. Since this is hard to achieve (or maybe even impossible) with
just one generator, we will work with multigenerators and multiwavelets , that is, vectors
(ψ0, . . . , ψr−1)>, r > 0 of L2(R), for which the collection

{ψi,j,k(x) := 2
j
2ψi(2

jx− k)|j, k ∈ Z, 0 ≤ i < r}

constitutes a (Riesz) basis of L2(R). One can obtain multiwavelets from multigenerators
or scaling vectors (φ0, . . . , φr−1)>, r > 0 of L2(R), which are the solutions of a matrix
refinement equation. Details are given in Section 3.2.1.
The use of a multigenerator appears to be more attractive since their component functions
have relatively small support and in many cases have more favorable properties. Indeed, in
the papers [42,43,45] it has been shown that, in the setting of multiwavelets, it is possible
to construct orthogonal and biorthogonal bases that are in addition interpolating, at least
on the real line. It is the aim of this project to adapt the constructions in [42] to an interval.
In the first step, we want to restrict ourselves to the interpolation property. Strictly inside
the interval, we will use the interpolating wavelets from [42]. However, to preserve the
approximation properties of the underlying multiresolution analysis, some modifications
at the boundary are necessary in the sense that the polynomial exactness is maintained.
These modifications have to be performed in such a way that the interpolation property
is not destroyed. To some extend, we will follow the approach in [4, 5]. The analysis in
these papers has only been carried out for a single generator, so it has to be generalized
to several generators.
After this is done, the next step is the construction of boundary vectors to preserve
the orthogonality. For the case of one generator, several approaches for the construction
of biorthogonal and orthonormal bases on intervals already exist [18, 21, 58]. But the
scalar orthogonal wavelets can not passes the nice features such as compact support,
approximation order and smoothness at the same time. Furthermore, the published works
so far study a particular case of orthogonal wavelets on the interval. To overcome these
restrictions, We construct orthogonal multigenerators and multiwavelets which preserve all
the nice properties. Motivated by the results in [2,3,41], we propose an approach to adapt
the Discrete Multiwavelets Transform (DMWT) on the interval. The DMWT is applied
for denoising and compression of infinitely signals and images. In many applications, we
deal with finite signal and need to modify the DMWT near the boundaries. Again we
utilize the construction of Karsten Koch in [42] and try to find the appropriate boundary
functions at the edges.

This thesis is proceeded as follows. In Chapter 2 we introduce the necessary nota-
tions and definitions for our work. We start with the function spaces and specially in
Subsection 2.1.1 we give an introduction to the Sobolev spaces. Then we present some
definitions which are needed throughout this thesis. The next chapter is devoted to the
wavelets and multiwavelets setting. In section 3.1 we briefly recall some basic concepts
of wavelets. Moreover, we introduce the scaling vectors and their properties in Section
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3.2. Then we define the Discrete Multiwavelets Transform and multiwavlets. Particularly,
we focus on the construction of Karsten Koch in [42]. In Chapter 4 we adapt this con-
struction to a bounded domain. In Section 4.1 we propose a method for constructing the
interpolating scaling vectors on the interval [0, 1]. In the next section we will verify, if they
are as well refinable. This is particularly important to construction a new multiresolution
analysis on the interval. Section 4.3 is devoted to the approximation order of boundary
scaling vectors. First we investigate the ability of boundary scaling vectors to reproduce
the polynomials. Then we look over, if the interpolation operator verifies the error es-
timate in L2(R) and L2[0, 1]. This is the main and difficult part of this chapter. In the
next section we visualize our construction with some examples. Finally, in Section 4.5
we construct the multiwavelets corresponding to interpolating boundary scaling vectors
and give some examples. In Chapter 5 we develop an approach for the construction of
orthogonal boundary scaling vectors which have short support and the same regularity as
those on the line. First of all we investigate the necessary and sufficient conditions for our
construction. Then in Section 5.2 we modify the DMWT to find appropriate functions
near the boundaries. Moreover, we compute the necessary numbers of boundary scaling
functions at each edge. The next section is concerned with the the necessary and sufficient
conditions for the approximation order of orthogonal boundary vectors. In Section 5.4.1
we introduce the general algorithm of our construction and then present some examples.
The last section is devoted to the construction of orthogonal multiwavelets corresponding
to orthogonal boundary vectors and as well visualization of them. Finally, in Chapter 6
we summarize our result and discuss the future researchs. Furthermore, a list of notations
can be found starting on page 97.
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Chapter 2

Preliminaries

In this chapter we present some concepts and notations that are required throughout this
dissertation. In the first section we give an introduction to the function spaces. We start
with the general notations and then define some important spaces and their corresponding
norms. In Section 2.1.1 we focus on the Sobolev spaces and some of their properties and
results, which are crucial for our purpose. Finally in Section 2.2 we introduce the important
definations needed by our work. The results in this chapter stem from [1,7,30,37,41,53,60].

2.1 Function Spaces

In this section we introduce some function spaces and their basic properties. First of all, we
fix some notations used in this thesis. By N, Z, R and C, we denote the set of all natural,
integer, real and complex numbers, respectively. Furthermore, suppose that N0 = N∪{0}
and Rn be Euclidean n-space, where n ∈ N. The vector α = (α1, . . . , αn) ∈ Nn

0 with
absolute value |α| =

∑n
j=1 αj is called multiindex. For x = (x1, . . . , xn) ∈ Rn we put

xα = xα1 . . . x
α
n.

Then we define partial derivatives as

Dαf :=
∂|α|

∂xα1
1 · · · ∂xαnn

f,

where f is a sufficient smooth real valued function.

Definition 2.1. (Cm(Ω) spaces). Let Ω ⊆ Rn be a domain, i.e. an open, bounded and
connected subset in Rn. By Cm(Ω), m ∈ N0, we denote the space of functions which
are bounded and m times continuously differentiable in Ω. Moreover, for f ∈ Cm(Ω) the
associated norm

‖f‖Cm(Ω) :=
∑
|α|≤m

sup
x∈Ω
|Dαf(x)|,

is finite.

We denote the support of a function f , defined for x ∈ Ω, with

suppf := {x ∈ Ω : f(x) 6= 0}.
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Then we determine the space of test functions with

C∞0 (Ω) := {f ∈ C∞(Ω) : suppf ⊂ Ω},

where C∞(Ω) is the space of functions which are bounded and infinitely continuously
differentiable. We define also the space of Hölder continuous functions denoted by Cm,k(Ω),
m ∈ N0 and 0 < k < 1 with the norm

‖f‖Cm,k(Ω) := ‖f‖Cm(Ω) +
∑
|α|=m

sup
x,y∈Ω,x 6=y

|Dαf(x)−Dαf(y)|
|x− y|k

.

Definition 2.2. (Lp(Ω) spaces). By Lp(Ω) we denote the space of all equivalence classes
of measurable functions on Ω whose powers of order p are integrable. The corresponding
norm is

‖f‖Lp(Ω) :=


(∫

Ω

|f |pdx
)1/p

, 1 ≤ p <∞,

ess sup
x∈Ω
|f(x)|, p =∞.

The spaces Lp(Ω) are Banach space with respect to the norm ‖·‖Lp(Ω) and the spaces

L2(Ω) are Hilbert space. Moreover, for f, g ∈ L2(Ω) we can define the inner product

〈f, g〉 :=

∫
Ω

f(x)g(x)dx,

and Cauchy–Schwarz inequality with∫
Ω

|f(x)g(x)|dx ≤ ‖f‖L2(Ω) ‖g‖L2(Ω) .

Moreover, the inner product for the vectors f = (f1, . . . , fn) and g = (g1, . . . , gn) is defined
by

〈f, g〉 :=

〈f1, g1〉 . . . 〈f1, gn〉
...

. . .
...

〈fn, g1〉 . . . 〈fn, gn〉

 .

Definition 2.3. (`p(Z) spaces). For 1 ≤ p <∞, we can define

`p := {(cn) : cn ∈ R,
∞∑
n=1

|cn|p <∞},

and corresponding `p-norm for {ck}k∈Z as

‖c‖`p :=

(∑
k∈Z

|ck|p
)1/p

.
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2.1.1 Sobolev Spaces and their Properties

In this subsection we recall some definitions and results from sobolev spaces which are re-
quired for the approximation order of boundary scaling vectors. To discuss about Sobolev
spaces we may start with some basic notations and definitions that are necessary for
introducing these spaces.

Definition 2.4. Suppose that x ∈ Rn, A1 an open ball with center in x and A2 an open
ball not containing x. The set

Cx = A1 ∩ {x+ λ(y − x) : y ∈ A2, λ > 0},

is called finite cone in Rn having vertex at x.

Definition 2.5. Domain Ω ⊆ Rn has the cone property if there exists a finite cone C such
that each point x ∈ Ω is the vertex of a finite cone Cx contained in Ω and congruent to
C. That means, Cx is obtained from C by a rigid motion.

Definition 2.6. The boundary ∂Ω of an open set Ω ⊆ Rn is locally Lipschitz, if each point
x ∈ ∂Ω has a neighborhood Ax such that Ω ∩ Ax is the graph of a Lipschitz continuous
function. In this case Ω is called a Lipschitz domain.

We define the space of locally integrable functions Lloc1 (Ω) by

Lloc1 (Ω) := {f : f ∈ L1(K) for all closed bounded K ⊂ Ω}.

Definition 2.7. Let Ω ⊆ Rn be a domain and α a multiindex. A function f ∈ Lloc1 (Ω)
has an α-th weak derivative, if there exists a function g ∈ Lloc1 (Ω) satisfying

〈g, ϕ〉 = (−1)|α|〈f,Dαϕ〉, for all ϕ ∈ C∞0 (Ω).

Moreover we denote the α-th weak derivative by Dαf := g.

In the following, we introduce the space of functions with weak derivatives, Sobolev
Spaces.

Definition 2.8. (Sobolev spaces). For m ∈ N0 and 1 ≤ p ≤ ∞, we define the Sobolev
spaces as

Wm
p (Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), 0 ≤ |α| ≤ m} ,

and the corresponding norm with

‖f‖Wm
p (Ω) :=


∑
|α|≤m

‖Dαf‖pLp(Ω)

1/p

, 1 ≤ p <∞,

max
|α|≤m

||Dαf ||Lp(Ω), p =∞.

Clearly W 0
p (Ω) = Lp(Ω) and for 1 ≤ p <∞, Wm

p (Ω) ⊂ Lp(Ω).
Consequently, Sobolev spaces can be defined for any arbitrary s ∈ R. Suppose that m ∈ N0

and 0 < s ∈ R with s = m + k, 0 < k < 1, then we can introduce the Sobolev norms
‖·‖W s

p (Ω) as

‖f‖W s
p (Ω) :=

{
‖f‖pWm

p (Ω) + |f |pk,p,Ω
}1/p

,
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where

|f |pk,p,Ω :=
∑
|α|=m

∫
Ω

∫
Ω

|Dαf(x)−Dαf(y)|p

|x− y|n+pk
dx dy.

Furthermore, for p = 2, Sobolev spaces form a Hilbert space and and have the special
notation Hs(Ω) := W s

2 (Ω). In this case, for s = m ∈ N0 we can define the inner product
as

〈f, g〉Hm(Ω) :=
∑
|α|≤m

∫
Ω

Dαf(x)Dαg(x)dx,

and for s = m+ k, 0 < k < 1, we have

〈f, g〉Hs(Ω) :=〈f, g〉Hm(Ω)

+
∑
|α|=m

∫
Ω

∫
Ω

|Dαf(x)−Dαf(y)||Dαg(x)−Dαg(y)|
|x− y|n+2k

dx dy.

For s < 0 and 1 < p < ∞ the Sobolev space W s
p (Ω) is defined as the dual space of

W̊−s
q (Ω), which is the closure of C∞0 (Ω) with respect to the norm ‖ · ‖W−sq (Ω). Moreover,

the corresponding norm is defined as

‖f‖W s
p (Ω) := sup

06=g∈W̊−sq (Ω)

|〈f, g〉|Ω
‖g‖W−sq (Ω)

,

where 1/q + 1/p = 1. Consequently, W̊ s
p (Ω) is the dual space of W−s

q (Ω).
Now we want to state some properties of Sobolev spaces, which are required later in

Chapter 4. One of the important properties is called extention property which is described
in the following.

Definition 2.9. Let Ω ⊆ Rn be a domain. For given m and p, a linear operator E :
Wm
p (Ω) → Wm

p (Rn) is called an (m, p)-extension operator for Ω if there exist a constant
C such that for every f ∈ Wm

p (Ω), the following conditions hold:{
Ef(x) = f(x) a.e. in Ω,

‖Ef‖m,p,Rn ≤ C‖f‖m,p,Ω.

Another importance of Sobolev spaces is related to in their connections with the
spaces of continuous and uniformly continuous functions. This is indicated in embedding
theorems:

Theorem 2.10. Let Ω ⊆ Rn be a bounded domain with Lipschitz boundary ∂Ω and let

n ≤ s for p = 1, n/p < s for p > 1.

For f ∈ W s
p (Ω) and a constant C, we obtain

‖Ef‖L∞(Ω) ≤ C‖f‖W s
p (Ω), for all f ∈ W s

p (Ω).
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The proof is given in [7, 53].

Theorem 2.11. Let Ω be a domain having the cone property in Rn. Let s > 0 and
1 < p < n.

(a) if n > sp, then we get the embadding W s
p (Ω) ↪→ Lr(Ω) for p ≤ r ≤ np/(n− sp).

(b) if n = sp, then we get the embadding W s
p (Ω) ↪→ Lr(Ω) for p ≤ r <∞.

For the proof, see [1].

Theorem 2.12. Let Ω be a bounded domain having the cone property in Rn. Then the
following embedding is compact:

Wm+j
p (Ω) ⊂ Wm

q (Ω) if n− jp > 0 and m+ j − n/p ≥ m− n/p.

We refer to [1] for the proof.
Another concept that is related with Sobolev spaces, is distributions. This motivates

the following definitions and results.

Definition 2.13. A continuous linear functional T : C∞0 (Ω)→ C is called a distribution.
T is continuous on C∞0 (Ω), if ϕk → ϕ in C∞0 (Ω) always implies T (ϕk) → T (ϕ). The set
of all distributions on C∞0 (Ω) is denoted by (C∞0 (Ω))′.

Example 2.14. Let f ∈ Lloc1 (Ω). Then a distribution is defined by

Tf (ϕ) :=

∫
Ω

f(x)ϕ(x)dx, for ϕ ∈ C∞0 (Ω).

This type of distributions are called regular distribution. Otherwise they are called singu-
lar.

Moreover, the higher order derivatives of a distribution Tf ∈ C∞0 (Ω) is defined by

(DαTf )(ϕ) := (−1)|α|Tf (D
αϕ), for ϕ ∈ C∞0 (Ω).

To conclude this section, we introduce another definition of the Sobolev spaces
Hs(Rn), s ∈ R which is based on the Fourier transform of distributions. We start with
the definition of the Schwartz spaces S(Rn).

Definition 2.15. Let ϕ ∈ C∞(Rn) satisfy

‖ϕ‖k,m := sup
x∈Rn

(|x|k + 1)
∑
|α|≤m

|Dαϕ(x)| <∞, for all k,m ∈ N0.

Then S(Rn) is the space of functions ϕ. Moreover, with S ′(Rn) we denote the space of
temperate distributions as the space of all complex valued linear functional T over S(Rn).

Consequently, for a function ϕ ∈ S(Rn), one can be defined the Fourier transform
ϕ̂ ∈ S(Rn) as

ϕ̂(ω) := (Fϕ)(ω) = (2π)−
n
2

∫
Rn
ϕ(x)e−i〈x,ω〉dx, for ω ∈ Rn.

The mapping F : S(Rn)→ S(Rn) is invertible and the inverse Fourier transform is given
by

(F−1ϕ̂)(x) = (2π)−
n
2

∫
Rn
ϕ̂(ω)ei〈x,ω〉 dω, x ∈ Rn.
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Definition 2.16. For s ∈ R and f ∈ S(Rn), we define the bounded linear operator
J s : S(Rn)→ S(Rn), called the Bessel potential of order s, by

J sf(x) := (2π)−
n
2

∫
Rn

(1 + |ω|2)s/2f̂(ω)ei〈x,ω〉 dω, x ∈ Rn.

Regarding this definition and as an application of the Fourier transform we have

(FJ sf)(ω) = (1 + |ω|2)s/2f̂(ω).

Now for T ∈ S ′(Rn), we define the bounded linear operator J s : S ′(Rn)→ S ′(Rn) on the
space of temperate distributions as

(J sT )(ϕ) := T (J sϕ), for all ϕ ∈ S(Rn).

Ultimately, we define the Sobolev spaces Hs(Rn), s ∈ R by

Hs(Rn) := {f ∈ S ′(Rn) : J sf ∈ L2(Rn)} .

and for all f, g ∈ S ′(Rn) we equip this space with the inner product

〈f, g〉Hs(Rn) := 〈J sf,J sg〉L2(Rn),

which implies the norm

‖f‖2
Hs(Rn) := ‖J sf‖2

L2(Rn) =

∫
Rn

(1 + |ω|2)s|f̂(ω)|2 dω.

2.2 Some Definitions

In this section we present some definitions which are needed later. We refer to [30,37,41]
for more details.

Definition 2.17. (Laurent Polynomials). In a formal variable z, Laurent polynomial
is an expression of the form

p(z) =
∑
k∈Z

pkz
k,

where pk ∈ C, and only finitely many of the pk are nonzero. The Laurent polynomials
treat as the regular polynomials except that the negative powers for z are allowed.

Similarly, vector or matrix Laurent polynomial has the form

P (z) =
∑
k∈Z

Pkz
k,

where the coefficients are vectors or matrices. In other words, they are vectors or matrices
with polynomials entries.

Now for ω ∈ R, we can define the trigonometric polynomial as

p(ω) =
∑
k∈Z

pke
−ikω.
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All trigonometric polynomials are 2π-periodic and infinitely often differentiable. Analo-
gously, for vector or matrix trigonometric polynomial, we have

P (ω) =
∑
k∈Z

Pke
−ikω,

with the coefficients of vectors or matrices. In many situations, it is easier to work with
if we use the z-notation as

P (z) =
∑
k∈Z

Pkz
k, z ∈ T,

where T denotes the complex unit circle,

T =
{
z ∈ C

∣∣z = e−iω , ω ∈ R
}
.

In the end, we introduce one of the useful tools in linear algebra that is called Singular
Value Decomposition (SVD).

Theorem 2.18. If A is a real matrix of size m× n, then there exist orthogonal matrices
U ∈ Rm×m and V ∈ Rn×n, such that

U>AV = Σ,

where
Σ = diag(σ1, . . . , σk) ∈ Rm×n, k = min{m,n},

is a diagonal matrix, in which Σii = σi for i = 1, 2, . . . , k, and Σij = 0 for i 6= j. Moreover,
we have

σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0.

The proof is given in [30].
The SVD is more written as a factorization of A,

A = UΣV >.

The diagonal entries of Σ are the singular values of A. The columns of U are the left
singular vectors , and the columns of V are the right singular vectors .

Example 2.19. The matrix

A =

(
0.96 1.72
2.28 0.96

)
has the following SVD:

U =

(
0.6 −0.8
0.8 0.6

)
, Σ =

(
3 0
0 1

)
, V =

(
0.8 0.6
0.6 −0.8

)
.

As a consequence of the SVD, the singular values and vectors satisfy the relations

Avi = σiui,

A>ui = σivi, i = 1, 2, . . . ,min{m,n}.
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The SVD reveals useful informations about the structure of a matrix. Let r be the number
of nonzero singular values. Then r is the rank of A, and

range(A) = span{u1, . . . , ur},
null(A) = span{vr+1, . . . , vk}.

That means, the SVD yields orthonormal bases of the range and null space of A. Conse-
quently, we have

A =
r∑
i=1

σiuiv
>
i ,

which is called the SVD expansion of A.
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Chapter 3

Wavelets and Multiwavelets

In this thesis, we are working mainly with multiwavelets, but to better comprehension of
their concept, we give a brief intruduction to the classical univariate wavelet setting in
the first section. We begin with the definition of wavelets and multiresolution analysis.
Then we describe some properties of wavelets, which are very desirable for application
purposes. The second section deals with multiwavelet theory in L2(R). In particular, we
consider multiwavelets which were constructed by Karsten Koch [43, 45] and have really
nice features for our work and practical applications.

3.1 Wavelets

As stated before, the interest in wavelets has grown enormously during the last years.
In the most general sense, wavelet bases are discrete families of functions obtained by
dilations and translations of a finite number of well chosen mother functions. The most
famous ones are certainly dyadic orthonormal bases of L2(R), of the type

ψj,k(x) = 2
j
2ψ(2jx− k), j, k ∈ Z. (3.1)

These bases have found many interesting applications, both in mathematics because they
form Riesz bases for many functional spaces and in signal processing because wavelet
expansions are more appropriate than Fourier series to represent the abrupt changes in
non-stationary signals. Several examples have been given by [54] and [23], generalizing the
classic Haar basis in [33], where the mother wavelet ψ := χ[0, 1

2
)−χ[ 1

2
,1] suffers from a lack of

regularity since it is not even continuous. In late 1986, Mallat and Meyer recognized that
construction of different wavelet bases can be realized by the concept of multiresolution,
see [52, 54].
A multiresolution analysis (MRA) is a sequence (Vj)j∈Z of closed subspaces of L2(R) which
satisfies:

(a) Vj ⊂ Vj+1 for each j ∈ Z,

(b)
⋂
j∈Z

Vj = {0},

(c)
⋃
j∈Z

Vj is dense in L2(R),
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(d) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1 for each j ∈ Z,

(e) there exist φ ∈ L2(R) such that {φ(x− k) |k ∈ Z} is an orthonormal basis in V0.

The function φ in (e) is called the scaling function or father wavelet . Furthermore, since
that V0 is the closed subspace generated by the integer translates of a single function φ, we
say that φ generates the MRA. It follows from Condition (d), which is the main property

of the MRA, that for each j ∈ Z the set {φjk = 2
j
2φ(2jx − k) |k ∈ Z} is an orthonormal

basis for Vj. Also, regarding condition (a), we have V0 ⊂ V1 and φ has to satisfy the
refinement equation

φ(x) =
∑
k∈Z

akφ(2x− k) for almost all x ∈ R, (3.2)

where the mask (ak)k∈Z is determined by the relation ak = 2〈φ, φ(2 · −k)〉. Here, and in
the following, 〈·, ·〉 denotes the usual L2 inner product.
Figure 3.1 shows two different examples of a father and a mother wavelet.

Figure 3.1: Haar and Daubechies wavelets

Conditions (b) and (c) can be expressed in terms of the orthogonal projections Pj of
an arbitrary function f ∈ L2(R) onto Vj and we can result the following lemma.

Lemma 3.1. For any f ∈ L2(R), Pjf → f in L2(R) as j →∞.

The projection Pjf can be considered as an approximation of f at the resolution or
scale 2−j. Therefore, the successive approximations of a given function f ∈ L2(R) are
defined as the orthogonal projections Pj onto the space Vj by

Pjf =
∑
k∈Z

cjkφjk,

where cjk = 〈f, φjk〉 and the basis functions φjk are shifted in steps of 2−j as k varies,
thus Pjf cannot represent any detail on a scale smaller than that.
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The real power of the multiresolution analysis arises from considering the differences
between approximations at different levels. The difference between the approximations at
resolution 2−j and 2−j−1 is called the fine detail at resolution 2−j:

Qjf(x) = Pj+1f(x)− Pjf(x),

and Qj is as well an orthogonal projection. Since Vj ⊂ Vj+1, we define Wj as the orthogonal
complement of Vj in Vj+1 for every j ∈ Z so that we have

Vj+1 = Vj ⊕Wj.

Moreover, the sequence (Wj)j∈Z satisfies conditions similar to MRA conditions. Thus,
given an orthogonal MRA with scaling function φ, we have

(1) Wj⊥Wj′ if j 6= j′,

(2) L2(R) =
⊕
j∈Z

Wj,

(3) f ∈ Wj if and only if f(2·) ∈ Wj+1,

(4) if we find a function ψ ∈ W0 such that {ψ(· − k) |k ∈ Z} is an orthonormal basis

of W0, then for each j ∈ Z the set {ψj,k = 2
j
2ψ(2j · −k) |k ∈ Z} constitutes an

orthonormal basis for Wj,

(5) Since ψ ∈ W0 and W0 ⊂ V1, there has to exist a sequence (bk)k∈Z such that

ψ(x) =
∑
k∈Z

bkφ(2x− k) for almost all x ∈ R. (3.3)

Consequently, using the following theorem, we can find the sequence (bk)k∈Z. More
details can be found in [45].

Theorem 3.2. Let (Vj)j∈Z be an MRA, and let φ be the corresponding scaling function
with mask (ak)k∈Z. For any odd number N

bk = (−1)kaN−k, k ∈ Z,

and then equation (3.3) defines a wavelet ψ associated to (Vj)j∈Z.

Note that ψ is defined in terms of φ, not in terms of itself and therefore it is not a
refinable function.

We now come to an important concept, the discrete wavelet transform (DWT), with
decent properties which allows the effortless computation of the wavelet coefficients. Given
a function f ∈ L2(R), one can define the projection Qj in terms of the wavelet function
as

Qjf =
∑
k

djkψjk,

with djk = 〈f, ψjk〉. Then we can represent f as

f =
∞∑

j=−∞

Qjf, (3.4)
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which complete decomposition in terms of detail at all levels. Although, in practical
applications one is needed to find a finite approximation of f . To achieve this purpose,
most of the wavelet coefficients have to vanish or be very small in modulus. In other
words, the representation (3.4) is desired to be sparse. Also to compute or approximate
the coefficients djk, the wavelet function ψ should decay reasonably fast. Thus, a compactly
supported wavelet ψ is more desirable. Furthermore, if the function f possesses as well a
compactly support, then for each fixed scale j we obtain a finite number of coefficients
djk 6= 0. Hence, the only thing that remains to be control, is the behavior of the djk
when j → ±∞. For j → −∞, we can start at any level j′ and use the approximation at
resolution 2−j

′
plus all the detail at finer resolution:

f = Pj′f +
∞∑
j=j′

Qjf. (3.5)

For application purposes, we need to earn a finite representation of the form (3.5). The key
property of a wavelet which enables the obtainment of sparse representations of functions
as well as sparse representations of some operators is a high order of vanishing moments ,
i.e., there exists an integer m ≥ 1 such that∫

R
xnψ(x)dx = 0 for n = 0, . . . ,m− 1.

A high number of vanishing moments for a wavelet leads to a high compressibility since
the fine scale wavelet coefficients of a function are essentially zero where the function is
smooth enough, see [15,16].

Practically, the vanishing moments of a wavelet may be not sufficient to obtain control
over the djk for j → ∞. This problem can be bypassed by reducing the representation
(3.5), i.e., by introducing a finest scale J . Suppose that f ∈ VJ for some J > j′. Then

f = PJf = Pj′f +
J−1∑
j=j′

Qjf. (3.6)

It means that the original function or signal f is decomposed into a coarse approxima-
tion Pj′f , and fine detail at several resolutions. Therefor, the DWT can be described by
equation (3.6).

We refer to the following section for more details in a general setting.

3.2 Multiwavelets

As we have seen in the preceding section, wavelets have nice features such as interpo-
lation, smoothness and orthogonality which are very useful for practical purposes like
image/signal analysis as well as in numerical analysis, geophysics and in many other
fields. A scalar wavelet setting is based on a single scaling function and mother wavelet.
Particularly we are interested to use interpolating scaling functions and it has turned out
that this setting can not provide enough flexibility and is somewhat restricted. A very
simple example of interpolating function in the univariate setting is the Haar function, i.e.,
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the characteristic function of the unit interval. This function is the only compactly sup-
ported scalar generator of a multiresolution analysis which is orthonormal, interpolating
and symmetric. Therefore, with the wavelet setting we can not have desirable properties
at the same time.

One approach to provide more flexibility, is to use the biorthogonal wavelets. In this
case, we have two refinable functions φ and φ̃ which satisfy the condition

〈φ(x), φ̃(x− k)〉 = δ0,k, for all k ∈ Z.

Here φ̃ is called the dual of φ. In other words, we use a dual pair of wavelet bases instead
of one orthogonal basis. This causes the better results but as it is stated in [44], there
exists some restrictions. Another possibility is to utilize the frames. Frames are stable,
redundant generating systems in Hilbert spaces but they do not establish an orthonormal
basis. They represent an alternative approach for decomposition of elements in L2(R).
However, they have nice properties in applications but also bear some limitations. For
more details, refer to [11]. Finally, we will discuss a preferable approach to overcome the
restrictions. We use a generalization of scalar wavelets which is called multiwavelets. The
concept of multiwavelet goes back to the early 1990s. Recently, multiwavelets have been
introduced as a powerful multiscale analysis tool, see [25,29,32,35]. In this approach, we
replace the scaling function by a function vector. This makes it possible to have several
nice properties such as symmetry, orthogonality, short support and a higher number of
vanishing moments simultaneously. Furthermore, an interpolating and continuous scaling
vectors with compact support have been constructed in [59]. Therefore, with the vector
setting we can bypass most of the restrictions of using scalar wavelets. However, there exist
as well some disadvantages and most of the approaches do not provide all the nice proper-
ties, like interpolation, compact support and orthonormality, at the same time. Moreover,
there are some problems in construction of multiwavelets corresponding to interpolating
scaling vectors. In [44], Karsten Koch, tackled these problems and constructed interpo-
lating scaling vectors and multiwavelets, which are optimal ones in the vector approaches
with really nice properties.

In this section we intend to introduce the scaling vectors and multiwavelets constructed
by Karsten Koch in [44]. Furthermore, we discuss their nice properties and vector mul-
tiresolution analysis. Finally, we present some examples of orthonormal and interpolating
scaling vectors and corresponding multiwavelets.

3.2.1 Refinable Scaling Vectors

As it was stated in Section 3.1 the refinability of scaling functions is an important feature
for the construction of wavelets. Therefore, we start this subsection with introducing the
scaling vectors which satisfy a refinement equation similar to (3.2).

Let Φ := (φ0, . . . , φr−1)>, r > 0, be a vector of L2(R)-functions and satisfies a matrix
refinement equation

Φ(x) =
∑
k∈Z

AkΦ(2x− k), (3.7)
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with the mask A = (Ak)k∈Z of real r × r matrices. Then Φ is called a refinable r-scaling
vector . Furthermore, the mask entries are denoted by

Ak =

 a
(0,0)
k . . . a

(0,r−1)
k

...
. . .

...

a
(r−1,0)
k . . . a

(r−1,r−1)
k

 . (3.8)

We apply the Fourier transform component-wise to equation (3.7) and get

Φ̂(ω) =
1

2
A(e−i

ω
2 )Φ̂(

ω

2
), ω ∈ R (3.9)

with the symbol

A(z) =
∑
k∈Z

Akz
k, z ∈ T, (3.10)

where T denotes the complex unit circle,

T =
{
z ∈ C

∣∣z = e−iω , ω ∈ R
}
.

Consequently, with iterating (3.9) we obtain

Φ̂(ω) =
∞∏
j=1

1

2
A(e−i

ω

2j )Φ̂(0) =: P (ω)Φ̂(0),

and if the infinite product P (ω) converges then the scaling vector Φ can be determined by
its symbol or mask. However, the Fourier transform of refinement equation (3.9) implies

that Φ̂(0) = 1
2
A(1)Φ̂(0). Therefore, either Φ̂(0) is an 2–eigenvector of A(1) or we have

Φ̂(0) = 0 which is not desirable case.
The following theorem, stated in [9], supply the sufficient condition for the existence

of a compactly supported solution for refinement equation (3.7). Let `0(Z)r×r denote the
sequence space corresponding to the masks with finite number of non-vanishing coeffi-
cients.

Theorem 3.3. For a mask A ∈ `0(Z)r×r let A(1) have the eigenvalues λ1 =
2, |λ2|, . . . , |λr| < 2, then the following statements hold:

(i) The infinite matrix product P (ω) converges uniformly on compact sets.

(ii) Any 2–eigenvector υ of A(1) defines a compactly supported distributional solution

Φ of (3.7) via Φ̂(ω) =: P (ω)υ.

(iii) If Φ is a nontrivial compactly supported distributional solution of (3.7) then Φ̂(0) is
an 2–eigenvector of A(1).

Another approach to get approximate point values of Φ(x) is the cascade algorithm or
subdivision scheme, which is a fixed point iteration applied to the refinement equation.
We choose a suitable starting vector Φ(0), and define

Φ(n)(x) =
∑
k∈Z

AkΦ
(n−1)(2x− k).

In many cases, this will converge to a vector of L2(R)-functions. For more details see [12].
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3.2.2 Desirable Properties

As stated before, we are interested in the scaling vector with nice properties such as
interpolating, compact support and orthogonality. In this subsection we investigate the
fundamental properties of 2-scaling vectors (r = 2) and multiwavelets constructed in [44].
First of all, we introduce some definitions needed in this subsection.

We define the ith subsymbol Ai(z) of A(z) by

Ai(z) :=
∑
k∈Z

A2k+iz
k, z ∈ T, i = 0, 1,

such that we have the decomposition

A(z) = A0(z2) + zA1(z2).

Definition 3.4. For a matrix M or an operator M defined on a finite dimensional linear
space, we say that M satisfies Condition E if M has a simple eigenvalue of 1, and all
other eigenvalues are smaller than 1 in modulus.

Definition 3.5. The transition operator or transfer operator for the symbol A(z) is
defined by

TAC(z) =
1

4

(
A(
√
z)C(

√
z)A(

√
z)
>

+ A(−
√
z)C(−

√
z)A(−

√
z)
>)

, z ∈ T,

for all 2× 2 matrices of Laurent polynomials C(z).

If the transition operator satisfies Condition E, the cascade algorithm converges for
any starting vector Φ(0). Consequently, the spectral properties of the transition operator
plays an important role in the stability and regularity of scaling vectors. Moreover, TA :
H −→ H is a linear operator which the certain finite dimension space H is invariant under
TA and can be represented by the matrix T ∈ `0(Z)4×4:

T :=
1

2
(Γ2k−α)k,α∈K ,

with
Γα :=

∑
β∈Z

Aβ−α ⊗ Aβ, α ∈ Z,

where P ⊗Q stands for the Kronecker product of arbitrary matrices P and Q. The index
set K is given by

K :=

(
∞∑
n=1

2−nsupp (T )

)
∩ Z.

Definition 3.6. A scaling vector Φ is said to be L2-stable if there are constants 0 < A ≤
B <∞, such that

A

1∑
ρ=0

‖cρ‖2
`2
≤

∥∥∥∥∥
1∑
ρ=0

∑
k∈Z

cρ,kφρ(· − k)

∥∥∥∥∥
2

L2

≤ B
1∑
ρ=0

‖cρ‖2
`2

(3.11)

holds for any sequences cρ = (cρ,k)k∈Z ∈ `2(Z), ρ = 0, 1.
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Many properties of scaling vectors can be determined by their symbols. Particularly,
the following condition from [57] are related to our purpose.

Lemma 3.7. If Φ is a compactly supported, L2-stable solution vector of (3.7), then A(1)
has a simple eigenvalue 2 and the moduli of all its other eigenvalues are less than 2.

Note that Lemma 3.7 together with Theorem 3.3 imply that a compactly supported
L2-stable scaling vector Φ with finite mask satisfies Φ̂(0) 6= 0.

As we have already mentioned, scaling vectors satisfying interpolation requirements
have become of increasing interest and in many applications are very beneficial. For the
case 2-scaling vector an interpolation property similar to the scalar case can be defined.
A continuous 2-scaling vector Φ is called interpolating if for ρ ∈ {0, 1}, the components
of Φ satisfy

φρ(
n

2
) = δρ,n =

{
0, if n ∈ Z \ {ρ}
1, if n = ρ.

(3.12)

One advantage of interpolating scaling vectors is that they give rise to a Shannon–like
sampling theorem as follows. For a compactly supported function vector Φ and for k, l ∈ Z,
we define

S(Φ) :=

{∑
k∈Z

υkΦ(· − k) | υ ∈ `(Z)1×2

}
. (3.13)

Since Φ has compact support, S(Φ) is well defined, for more details see [44]. Then for any
function f ∈ S(Φ) the equation

f(x) =
∑
k∈Z

f(k)φ0(x− k) + f(k +
1

2
)φ1(x− k), (3.14)

holds. Consequently, for compactly supported Φ the interpolation property yields (alge-
braically) linearly independent translates , i. e., for (υk)k∈Z := ((ck, dk))k∈Z with ck, dk ∈ C,
we have ∑

k∈Z

υkΦ(x− k) = 0 =⇒ υk = 0 for all k ∈ Z.

Another advantage of interpolating scaling vectors is that their masks have a simple
structure. Inserting the refinement equation (3.7) into the interpolation condition (3.12)
and using the coefficient matrices Ak in (3.8) for 2-scaling vectors leads to

aρ0
k = δρ,k.

Consequently, for the symbol A(z) we obtain

A(z) =

(
1 a0(z)
z a1(z)

)
, z ∈ T, (3.15)

with entries

aρ(z) :=
∑
k∈Z

aρ1
k z

k, ρ ∈ {0, 1}.

This form of symbols will simplify remarkably the construction of scaling vectors.
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Another desirable property of scaling vectors is orthonormality. A scaling vector Φ is
called orthonormal, if its integer translates are orthonormal, i.e.,

〈φρ, φµ(· − k)〉 = δ0,kδρ,µ, 0 ≤ ρ, µ < 2, k ∈ Z. (3.16)

A necessary condition for Φ to be orthonormal is that its symbol has to satisfy

I2 =
1

4

(
A(z)A(z)

>
+ A(−z)A(−z)

>)
, z ∈ T, (3.17)

where I2 denotes the 2-dimensional unit matrix.
It was shown in [40] that this condition is also sufficient as follows.

Theorem 3.8. Let Φ be 2-scaling vector with finitely supported mask A ∈ `0(Z)2×2. Φ is
orthonormal if and only if the following statements hold:

(i) A(z) satisfy (3.17),

(ii) 1 ∈ spec(Ai(1)>) for i = 0, 1, where spec denotes the spectrum of an operator or a
matrix,

(iii) A(1) has a simple eigenvalue 2 and the moduli of all its other eigenvalues are smaller
than 2 in modulus, and

(iv) TA satisfies Condition E.

In the following, a scaling vector satisfying (3.12) and (3.16) is called an orthonormal
interpolating scaling vector.

3.2.3 Multiresolution Analysis and Multiwavelets

In this subsection we want to introduce the multiwavelet corresponding to the scaling
vactor in Subsection 3.2.1. As in the scalar case, the multiwavelet is constructed by a
multiresolution analysis (MRA). The definition of MRA for the vector case are the same
as in Section 3.1, but has to be modify to the multifunction setting, see [31, 39] for more
details.

A multiresolution analysis (MRA) is a sequence (Vj)j∈Z of closed subspaces of L2(R)
which satisfies:

(1) Vj ⊂ Vj+1 for each j ∈ Z,

(2) g(x) ∈ Vj if and only if g(2x) ∈ Vj+1 for each j ∈ Z,

(3)
⋂
j∈Z

Vj = {0},

(4)
⋃
j∈Z

Vj is dense in L2(R), and

(5) there exist an L2-stable Φ ∈ L2(R)r such that

V0 = span{φi(x− k), k ∈ Z, 0 ≤ i < r}.
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To construct some multiwavelets, we first have to check all these conditions to find a
suitable MRA. For a detailed discussion see, e.g., [23,32,44]. In the following, we explain
an approach to obtain a multiwavelet basis.

Suppose that W0 denotes an algebraic complement of V0 in V1 and define Wj :=
{g(2j·) |g ∈ W0} . Then, we obtain Vj+1 = Vj ⊕Wj and as a consequence of conditions (3)
and (4), we get

L2(R) =
⊕
j∈Z

Wj.

Now we can find the r-multiwavelet, i.e., the function vectors Ψ = (ψ0, . . . , ψr−1)> ∈
L2(R)r, such that the integer translates of its components is a stable basis of W0. Conse-
quently, after dilation of components, we obtain a (Riesz) basis of L2(R) as{

ψ0(2j · −k), . . . , ψr−1(2j · −k)|j, k ∈ Z
}
.

Moreover, since W0 ⊂ V1, we represent each Ψ as

Ψ(x) =
∑
k∈Z

BkΦ(2x− k) (3.18)

with real r× r matrices Bk. By applying the Fourier transform to this equation we obtain

Ψ̂(ω) =
1

2
B(e−i

ω
2 )Φ̂(

ω

2
), ω ∈ R,

with the symbol

B(z) =
∑
k∈Z

Bkz
k, z ∈ T.

Thus instead of finding a stable multiwavelet basis, we can construct the symbols B(z).
Furthermore many fundamental properties of the solution of the matrix refinement equa-
tion (3.7) can be characterized in terms of the symbol.

3.2.4 Discrete Multiwavelet Transform

Similar to the traditional wavelets, we can define the Discrete Multiwavelet Transform
(DMWT) based on the decomposition

Vj = Vj́ ⊕Wj́ ⊕Wj́+1 ⊕ . . .⊕Wj−1.

It means that the DMWT takes a function f ∈ Vj for some j and decomposes it into a
coarser approximation at level j́ < j, plus the fine detail at the intermediate levels:

f = Pjf = Pj́f +

j−1∑
k=j́

Qkf.

Now suppose that we have a function f ∈ Vj represented by its coefficient sequence {f>jk}
as

f =
∑
k

f>jkΦjk.
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One can decompose f into its components in Vj−1 and Wj−1:

f = Pj−1f +Qj−1f =
∑
n

f>j−1,nΦj−1,n +
∑
n

g>j−1,nΨj−1,n,

where
{
f>j−1,n

}
= {〈f,Φj−1,n〉} and

{
g>j−1,n

}
= {〈f,Ψj−1,n〉}.

For the masks Ak in (3.7) and Bk in (3.18), the DMWT is defined by

fj−1,n =
∑
k

Ak−2nfjk,

gj−1,n =
∑
k

Bk−2nfjk.
(3.19)

Furthermore, the inverse DMWT is given by

fjk =
∑
n

A>k−2nfj−1,n +
∑
n

B>k−2ngj−1,n.

To become the notation nicer, we interleave the coefficients fj−1,n and gj−1,n in (3.19) and
obtain the following matrix formulation:

...
(fg)j−1,−1

(fg)j−1,0

(fg)j−1,1
...

 =


· · · · · · · · ·
· · · S−1 S0 S1 · · ·

· · · S−1 S0 S1 · · ·
· · · S−1 S0 S1 · · ·

· · · · · · · · ·

 =


...

fj,−1

fj,0
fj,1

...

 ,

where

Sk =

(
A2k A2k+1

B2k B2k+1

)
, k ∈ Z. (3.20)

Therefore the DMWT can be represented as

(fg)j−1 = S fj, (3.21)

where S = (Sk)k∈Z and

(fg)j−1 =



...
fj−1,0

gj−1,0

fj−1,1

gj−1,1
...


,

Similarly, the inverse DMWT can be written as

fj = S>(fg)j−1.

Note that the infinite matrix S is orthogonal. For more details, you can refer to [41].
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3.2.5 Biorthogonality

As we have seen in the last subsections, Φ is a L2-stable scaling vector and generates
a multiresolution analysis. Moreover, it is possible to orthonormalize an existing scaling
vector with stable shifts, but then it does not usually have strong properties any more.
This makes it less desirable for practical applications.Therefore, to provide more flexibility
such as symmetric, good approximation and regularity properties, it is often beneficial to
switch to the biorthogonal case.
r-scaling vectors Φ, Φ̃ are biorthogonal or duals of each other if the integer translates of
all component functions are mutually orthogonal, i.e.,

〈φρ, φ̃µ(· − k)〉 = c δ0,kδρ,µ, 0 ≤ ρ, µ < r, (3.22)

holds for all k ∈ Z and a constant c > 0.
A necessary condition for Φ, Φ̃ to be biorthogonal is that their symbols A(z) and Ã(z)
satisfy

A(z)Ã(z)
>

+ A(−z)Ã(−z)
>

= 4Ir.

It was shown in [12] that these conditions are sufficient to ensure biorthogonality if the

cascade algorithm for both Φ and Φ̃ converges.
Unfortunately it is not possible for a scaling vector Φ to be interpolating and strictly

orthonormal at the same time. However, regarding the following theorem, we can switch
between these properties via multiplying Φ by

√
r and 1/

√
r respectively.

Theorem 3.9. Let Φ = (φ0, . . . , φr−1)> be a compactly supported interpolating r–scaling

vector with finite mask that satisfies (3.16) with Φ̃ = Φ. Then we have

‖φi‖2
L2

=

∫
R
φi(x) dx =

1

r
,

for i ∈ {0, . . . , r − 1}.
The proof is given in [44].

Now, let Φ, Φ̃ ∈ L2(R)r and A, Ã ∈ `0(Z)r×r, then the biorthogonality condition (3.22)

implies that Φ and Φ̃ are L2-stable, see [13,14]. Moreover, Theorem 3.3 yields that both,

Φ as well as Φ̃, are compactly supported. Consequently, each scaling vector generates an
MRA. Now assume that we have two MRAs Vj and Ṽj, generated by biorthogonal scaling

vectors Φ and Φ̃. The projections Pj and P̃j from L2(R) into Vj and Ṽj respectively, are
given by

Pjf =
∑
k∈Z

r−1∑
i=0

〈f, φ̃i,j,k〉φi,j,k(x),

P̃jf =
∑
k∈Z

r−1∑
i=0

〈f, φi,j,k〉φ̃i,j,k(x).

These are now nonorthogonal projections. If there exist some multiwavelets associated to
these MRAs, then the task of finding these multiwavelets can be reduced to finding the
corresponding symbols.
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3.2.6 Approximation Order of Scaling Vector

One of the important properties of a scaling vector is its ability to reproduce polynomials.
In this subsection we want to give a brief introduction to this property and approximation
order of scaling vectors. We begin with some definitions and notations.

Definition 3.10. Suppose that πm denotes the space of all polynomials of total degree
less or equal than m in R. A function vector Φ with compact support is said to provide
accuracy order m+ 1, if πm ⊂ S(Φ).

Definition 3.11. A compactly supported function vector Φ ∈ L2(R) is said to provide
approximation order m > 0 if the Jackson-type inequality

inf
g∈Vj

{
‖f − g‖L2

}
≤ C2−jm ‖f‖Hm , (3.23)

holds for all f contained in the Sobolev space Hm(R) with C > 0 and

Vj = span{φi(2j · −k), k ∈ Z, 0 ≤ i < r}.

The approximation order plays a crucial role in the regularity or smoothness of a
scaling vector. Moreover, the regularity leads to a certain minimum approximation order,
see [41].

Note that if a compactly supported scaling vector Φ has linearly independent integer
translates or is at least stable, then the order of accuracy is equivalent to the approxima-
tion order provided by Φ. For more details, see [38].
Following theorem from [55] shows that the approximation order of scaling vectors is
connected with a specific factorization of the symbol.

Theorem 3.12. (Plonka). Let Φ be a compactly supported r–scaling vector, and let
{φρ(· − n) : n ∈ Z, ρ = 0, . . . , r − 1} form a (algebraically) linearly independent basis of
their closed linear span. Then Φ provides approximation order m if and only if the symbol
A(z) of Φ satisfies the following conditions:
The elements of A(z) are Laurent polynomials, and there are vectors yk ∈ Rr, y0 6= 0, k =
0, . . . ,m− 1, such that for n = 0, . . . ,m− 1

n∑
k=0

(
n
k

)
(yk)

>(2i)k−n
(
Dn−kA

)
(1) = 21−n(yn)>,

n∑
k=0

(
n
k

)
(yk)

>(2i)k−n
(
Dn−kA

)
(−1) = 0>,

(3.24)

holds. Furthermore there exist matrices Ck, k = 0, . . . ,m − 1, such that A(z) factorizes
like

A(z) =
1

2m−1
C0(z2) . . .Cm−1(z2)Am(z)C−1

m−1(z)C−1
0 (z),

where Am(z) is a suitable matrix with Laurent polynomials as entries.

Here D denotes the differential operator with respect to ω in terms of z = e−iω, i. e.,
DA(e−iω) :=

(
d
dω

A(e−iω)
)

(ω).
The equations (3.24) are called sum rules of order m and were also obtained by Heil

et al. in [34].
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Remark 3.13. Note that condition (ii) in Theorem 3.8 is equivalent to the mask A
satisfying the sum rules of order 1. Furthermore, conditions (iv) in Theorem 3.8 and (3.24)
are the necessary and sufficient conditions for the convergence of cascade algorithm. For
more details, see [12,41].

Beside that compactly supported scaling vector Φ provides accuracy of order m, if the
mask of Φ satisfies the sum rules of order m. The proof is given in [8,40]. If additionally,
Φ is stable, then Φ reproduces polynomials of total degree less than m. Moreover, since
Φ provides accuracy of order m, it holds that xn ∈ S(Φ) for |n| < m, and, due to the
sampling property (3.14), we have

xn =
∑
k∈Z

r−1∑
i=0

(k +
1

2
ρi)

nφi(x− k), (3.25)

where {ρi}r−1
i=0 denote a complete set of representatives of Z/2Z. For the case r = 2, we

choose ρ0 = 0 and ρ1 = 1.
The ability of scaling vector for the reproduction of polynomials are very important for
the properties of multiwavelets. As in the scalar case, a function vector Ψ ∈ L2(R)r is
said to have vanishing moments of order m, if

〈xn,Ψ(x)〉 := (〈xn, ψ0(x)〉, . . . , 〈xn, ψr−1(x)〉) = 0

for all n ∈ Z+ with |n| < m.
Similar to the univariate scalar setting, vanishing moments play a key role in many appli-
cations. For example in signal/image processing, the coefficients in the wavelet expansion
become very small with the high order of vanishing moments and this leads to a com-
pressed signal or image. See Chapter 7 from [44] for more details.

3.2.7 Construction of Scaling Vectors and Multiwavelets

In this subsection we intend to assemble all the results in the previous subsections to
construct the orthonormal interpolating 2-scaling vectors. Karsten Koch in [43] trans-
formed the interpolating and orthonormality conditions into an applicable version. This
has shown in the following theorem.

Theorem 3.14. Let Φ be a compactly supported interpolating 2-scaling vector with symbol

A(z) =

(
1 a0(z)
z a1(z)

)
, a0(z) 6= zν , ν ∈ Z.

If Φ is also orthonormal, then the symbol entries a0(z) and a1(z) have to satisfy

2 = |a0(z)|2 + |a0(−z)|2

and
a1(z) = ±z2κ+1a0(−z), κ ∈ Z,

with

a0(z) =
N∑

k=M

akz
k, M,N ∈ Z, N −M odd.
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Corollary 3.15. With the notations and conditions of Theorem 3.14 the 2-scaling vector
Φ provides approximation order m iff for n = 0, . . . ,m − 1 the mask coefficients of the
symbol entry a0(z) satisfy

2−n =
∑
k

(−2k)na2k −
∑
k

(2(k − κ) + 1)na2k+1,

2−n =
∑
k

(−2k − 1)na2k+1 −
∑
k

(2(k − κ))na2k.

Based on Theorem 3.14 and Corollary 3.15, one can be constructed orthonormal in-
terpolating 2-scaling vector.

In the following, we present two examples from [42], which are interpolating and or-
thonormal 2-scaling vector with the highest regularity.

Example 3.16. In Figure 3.2, we plot a one-parameter set of 2-scaling vectors Φ sup-
ported on the interval [−1, 2] with symbols

A(z) =

(
1 0.2208z−1 + 0.9486− 0.2208z + 0.0514z2

z 0.0514z−1 + 0.2208 + 0.9486z − 0.2208z2

)
, z ∈ T. (3.26)

In this case, one turns out an interpolating and orthonormal 2-scaling vector which pro-
vides approximation order 1.

Figure 3.2: Interpolating and orthonormal 2-scaling vector, approximation order 1

Example 3.17. For 2-scaling vector Φ supported on the interval [−2, 3], one obtains the
symbols

A(z) =

(
1 a0(z)
z a1(z)

)
, z ∈ T,

where

a0(z) = 0.0313z−2 + 0.2460z−1 + 0.9375− 0.2421z + 0.0313z2 − 0.0040z3

and

a1(z) = 0.0040z−2 + 0.0313z−1 + 0.2421 + 0.9375z − 0.2460z2 + 0.0313z3.

This construction leads to an interpolating and orthonormal solution which provides ap-
proximation order 2 and is shown in Figure 3.3.
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Figure 3.3: Interpolating and orthonormal 2-scaling vector, approximation order 2

Now we intend to construct a 2-multiwavelet corresponding to the interpolating and
orthonormal 2-scaling vector Φ. As it was already mentioned, for the construction of
multiwavelets, we need to compute the symbol B(z) of Ψ. It was shown in [31,32] that to
construct the orthonormal multiwavelets, the symbol has to satisfy

B(z) := B0(z2) + zB1(z2), z ∈ T,

where B0(z) and B1(z) are submatrices of an quadratic matrix Q(z), i. e.,

Q(z) =
1√
2

(
A0(z) A1(z)
B0(z) B1(z)

)
.

It would be desirable, that Ψ is also interpolating, i. e.,

Ψ(
n

2
) =

(
δ0,n

δ1,n

)
, n ∈ Z.

In this case, the symbol B(z) is completely determined by the symbol A(z) in (3.15) and
satisfies

B(z) =

(
1 −a0(z)
z −a1(z)

)
, z ∈ T.

For more details, see [43,59].
Figure 3.4 and 3.5 show two orthonormal and interpolating 2-multiwavelets corre-

sponding to the scaling vectors in 3.2, 3.3 respectively.
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Figure 3.4: Interpolating 2-multiwavelets supported on [−1, 2]

Figure 3.5: Interpolating 2-multiwavelets supported on [−2, 3]
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Chapter 4

Interpolating Scaling Vectors and
Multiwavelets on the Interval [0, 1]

The methods based on wavelets have been recently studied in the analysis and the numer-
ical treatment of operator equations [19,20]. The advantage of such methods is that they
provide a good localization both in space and frequency. Thanks to wavelet properties,
it is possible to predict the behavior of the solution at a certain time-step from the pre-
vious time-step. Moreover some methods based on the wavelet transform can be used to
accelerate the numerical schemes [6]. Wavelet bases are usually constructed via multires-
olution analysis on R, which make them very attractive in pure and applied mathematics.
However in many applications, we are interested in problems confined on the interval.
Examples are solutions to the partial differential equations with boundary conditions at
the edges of the interval, image analysis: where the domain of interest is the Cartesian
product of two intervals.
Unfortunately, there exist some difficulties when applying such methods to problems in
bounded domain. Classical wavelets cause some instability problems, since that they are
originally a basis on the whole line. Moreover, in the methods for solving a boundary value
problem, one is needed to compute the nonlinear terms in the physical space and then
projecting them back to the wavelet coefficient space through some quadrature formula.
This technique reduces the efficiency of procedure and slows the computations.
In this chapter, we want to overcome these problems in a satisfactory way. We con-
struct new families of interpolating scaling vectors with short support and more favorable
properties. First of all, we use the multigenerators from [42] and the approach in [4] for
adapting them to a bounded interval in a general way. The interpolating nature of these
multigenerators appears to be a powerful tool for obtaining multiresolution analyses on
more complex geometries. Consequently, we have to introduce new multiresolution analy-
sis (MRA) on the interval. Then we have to check out that the approximation properties
are preserved. Finally, we will construct corresponding multiwavelets on the interval and
give some examples for our results. To fix notations, let us assume that the interval is
[0, 1].
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4.1 Construction of Interpolating Multigenerators

on the Interval

In this section we intend to modify a given interpolating r-scaling vector which generates
a multiresolution analysis for L2(R), so that it generates a multiresolution analysis for
L2([0, 1]) with desired properties. For simplicity of calculations, we suppose that r = 2
and begin with the 2-scaling vector which have the following properties:

� Φ = (φ0, φ1)> is a vector of L2(R)-functions which satisfies a matrix refinement
equation (3.7) and the support of Φ is contained in the interval [−N,N+1], N ∈ N.
Therefore the number of refinement terms is finite and there is a minimal positive
integer M such that

Φ(x) =
M∑

t=−M

AtΦ(2x− t), (4.1)

with At = 0 for t < −M or t > M .

� The 2-scaling vector Φ is continuous and interpolating, i.e., for ρ ∈ {0, 1}, Φ satisfies

φρ(
n

2
) = δρ,n =

{
0, if n ∈ Z \ {ρ}
1, if n = ρ.

(4.2)

� Φ satisfies a shannon-like sampling theorem, i.e., for any function f ∈ S(Φ) the
equation (3.14) holds. Since Φ provides accuracy of order m, it holds that xn ∈ S(Φ)
for |n| < m, and due to this property, we have

xn =
∑
k∈Z

1∑
i=0

(k +
1

2
i)nφi(x− k). (4.3)

� Φ is L2 − stable and satisfies the inequality (3.11).

� Φ provides approximation order m > 0 and satisfies the Jackson-type inequality
(3.23).

Now we define an interpolation operator Ij : Hm(R)→ Vj, m > 0, by means of

Ijf(x) =
∑
k∈Z

1∑
i=0

f(
k + 1

2
i

2j
)φi(2

jx− k), (4.4)

where f is defined on R. Since that S(Φ) in (3.13) is well defined and Φ is a compactly
supported interpolating 2-scaling vector, it is clear that (4.4) is well defined. Moreover,
we are interested in approximating Ijf

∣∣
[0,1] .

Let us now suppose that we know the values of f only in [0, 1], at the dyadic points

xi,k = (
k+ 1

2
i

2j
), i ∈ {0, 1}. Since the support of Φ is contained in the interval [−M,M ],

we require to compute the values of f at the points xi,n for n = −M, . . . ,−1 and n =
2j + 1, . . . , 2j + M . For 2j > 2m + 2 (j has to be large enough for non-interacting the
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boundaries on the left and right side), where m > 0 is the approximation order of Φ, we
define extrapolating polynomials PL and PR of degree m that interpolate f at the dyadic
points internal to the interval [0, 1] by

PL(
k + 1

2
i

2j
) = f(

k + 1
2
i

2j
), k = 0, . . . ,m,

PR(
k + 1

2
i

2j
) = f(

k + 1
2
i

2j
), k = 2j −m, . . . , 2j.

and at the external dyadic points by

PL(
n+ 1

2
i

2j
) =

m∑
k=0

ci,k,nf(
k + 1

2
i

2j
), n = −M, . . . ,−1,

PR(
n+ 1

2
i

2j
) =

2j∑
k=2j−m

di,k,nf(
k + 1

2
i

2j
), n = 2j + 1, . . . , 2j +M,

(4.5)

with

ci,k,n = `Li,k(xi,n),

di,k,n = `Ri,k(xi,n),
(4.6)

where `Li,k and `Ri,k are the Lagrange polynomials relative to the interpolation points:

`Li,k(x) =
m∏
s=0
s 6=k

x− xi,s
xi,k − xi,s

, k = 0, . . . ,m,

`Ri,k(x) =
2j∏

s=2j−m
s 6=k

x− xi,s
xi,k − xi,s

, k = 2j −m, . . . , 2j,

with xi,s = (
s+ 1

2
i

2j
) and i ∈ {0, 1}. Using such polynomials will enable us to preserve the

interpolation property and same accuracy.
Now we can define Ijf

∣∣
[0,1] , denoted by Ijf as following:

Ijf(x) =
−1∑

n=−M

1∑
i=0

PL(
n+ 1

2
i

2j
)φi(2

jx− n)

+
2j∑
k=0

1∑
i=0

f(
k + 1

2
i

2j
)φi(2

jx− k)

+
2j+M∑
n=2j+1

1∑
i=0

PR(
n+ 1

2
i

2j
)φi(2

jx− n).

(4.7)
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By combining equations (4.5) and (4.7), we have

Ijf(x) =
m∑
k=0

1∑
i=0

f(
k + 1

2
i

2j
)

(
φi(2

jx− k) +
−1∑

n=−M

ci,k,nφi(2
jx− n)

)

+
2j−m−1∑
k=m+1

1∑
i=0

f(
k + 1

2
i

2j
)φi(2

jx− k)

+
2j∑

k=2j−m

1∑
i=0

f(
k + 1

2
i

2j
)

φi(2jx− k) +
2j+M∑
n=2j+1

di,k,nφi(2
jx− n)

 .

With this new definition of Ijf , we can introduce the boundary interpolating vectors
ΦL = (φL0 , φ

L
1 )> and ΦR = (φR0 , φ

R
1 )> by means of

φLi (2jx− k) = φi(2
jx− k) +

−1∑
n=−M

ci,k,nφi(2
jx− n), k = 0, . . . ,m,

φRi (2jx− k) = φi(2
jx− k) +

2j+M∑
n=2j+1

di,k,nφi(2
jx− n), k = 2j −m, . . . , 2j.

(4.8)

where i = 0, 1, and for n = k, we have ci,k,n = di,k,n = 1. Furthermore we set φi,j,k(x) :=

2
j
2φi(2

jx− k) and obtain

φLi,j,k(x) =
m∑

n=−M

ci,k,nφi,j,n(x), k = 0, . . . ,m, i = 0, 1,

φRi,j,k(x) =
2j+M∑
n=2j−m

di,k,nφi,j,n(x), k = 2j −m, . . . , 2j, i = 0, 1.

Consequently, for ΦL
j,k = (φL0,j,k, φ

L
1,j,k)

> and ΦR
j,k = (φR0,j,k, φ

R
1,j,k)

>, we have the following
matrix equations

ΦL
j,k(x) =

m∑
n=−M

Ck,nΦj,n(x), k = 0, . . . ,m,

ΦR
j,k(x) =

2j+M∑
n=2j−m

Dk,nΦj,n(x), k = 2j −m, . . . , 2j,
(4.9)

where Ck,n and Dk,n are diagonal matrixes with the entries ci,k,n and di,k,n respectively.
In conclusion, with using the scaling vectors inside to interval and polynomials PL and
PR, we defined boundary vectors on the left and right side of the interval [0, 1]. But the
main point is that these vectors still satisfy the interpolation property, which we will prove
in the following.

Lemma 4.1. Boundary scaling functions φLi and φRi in (4.8) still verify the interpolation
property and for `, k = 0, . . . , 2j and s, i = 0, 1, we have

φLi,j,k(
`+ 1

2
s

2j
) = 2

j
2 δ`kδsi,

φRi,j,k(
`+ 1

2
s

2j
) = 2

j
2 δ`kδsi.

(4.10)
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Proof. For ` = k and s = i on the left edge functions we have

φLi,j,k(
k + 1

2
i

2j
) = 2

j
2φLi (2j(

k + 1
2
i

2j
)−k) = 2

j
2φi(2

j(
k + 1

2
i

2j
)−k)+2

j
2

−1∑
n=−M

ci,k,nφi(2
j(
k + 1

2
i

2j
)−n).

Since the scaling functions φi are interpolating and k 6= n, we obtain

φLi (2j(
k + 1

2
i

2j
)− k) = φLi (

1

2
i) = φi(

1

2
i) +

−1∑
n=−M

ci,k,nφi(
1

2
i+ k − n) = 1,

and therefore we have

φLi,j,k(
k + 1

2
i

2j
) = 2

j
2 .

In every other case, we obtain

φLi,j,k(
`+ 1

2
s

2j
) = 0.

Analogously, the equality (4.10) can be proved in the same manner for the right edge
functions.

4.2 Refinability of Boundary Scaling Vectors

In this section we intend to construct a multiresolution analysis on the interval. For
constructing the spaces Vj on the interval [0, 1] and then a multiresolution analysis of
L2[0, 1], one has to check the refinability of the boundary scaling vectors. It signifies that
the spaces Vj[0, 1] have to satisfy:

Vj[0, 1] ⊂ Vj+1[0, 1] ⊂ L2[0, 1], j ∈ Z.

In the following Theorem, we intend to prove that ΦL and ΦR are refinable.

Theorem 4.2. For x ∈ [0, 1] , assume that Φ is a vector of L2(R)-functions and satisfies a
matrix refinement equation (3.7). The boundary vectors ΦL

j,k, k = 0, . . . ,m and ΦR
j,k, k =

2j −m, . . . , 2j from (4.9) are refinable and satisfy the equations

ΦL
j,k(x) = 2−

1
2

m∑
`=0

EL
k,`Φ

L
j+1,`(x) + 2−

1
2

M+2m∑
t=m+1

FL
k,tΦj+1,t(x), (4.11)

and

ΦR
j,k(x) = 2−

1
2

2j+1−m−1∑
t=2j+1−M−2m

FR
k,tΦj+1,t(x) + 2−

1
2

2j+1∑
`=2j+1−m

ER
k,`Φ

R
j+1,`(x) (4.12)

where there exist matrices EL = (EL
k,`) and ER = (ER

k,`) of size 2(m + 1) × 2(m + 1),
FL = (FL

k,t) and FR = (FR
k,t) of size 2(m+ 1)× 2(m+M).
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Proof. We will call ΦL
j,k refinable if it satisfies the relation (4.11) and for that, we have

to find matrices EL and FL. First of all, regarding (4.1), for n ∈ Z we have

Φ(2jx− n) =
M∑

t=−M

AtΦ(2(2jx− n)− t)

=
M+2n∑

t=−M+2n

At−2nΦ(2j+1x− t).

(4.13)

Using (4.13), for the left boundary vectors ΦL
j,k, k = 0, . . . ,m and 0 ≤ x ≤ 1, we deduce

that

ΦL
j,k(x) =

m∑
n=−M

Ck,nΦj,n

=
m∑

n=−M

Ck,n

[
2−

1
2

M+2n∑
t=−M+2n

At−2nΦj+1,t(x)

]

= 2−
1
2

M+2m∑
t=−3M

[
m∑

n=−M

Ck,nAt−2n

]
Φj+1,t(x).

(4.14)

By regarding the restriction x ≥ 0 we obtain

ΦL
j,k(x) = 2−

1
2

M+2m∑
t=−M

[
m∑

n=−M

Ck,nAt−2n

]
Φj+1,t(x). (4.15)

If we substitute (4.9) into (4.11), we get

ΦL
j,k(x) = 2−

1
2

m∑
`=0

EL
k,`

m∑
t=−M

C`,tΦj+1,t(x) + 2−
1
2

M+2m∑
t=m+1

FL
k,tΦj+1,t(x).

Therefore, we have

ΦL
j,k(x) = 2−

1
2

m∑
t=−M

(
m∑
`=0

EL
k,`C`,t

)
Φj+1,t(x) + 2−

1
2

M+2m∑
t=m+1

FL
k,tΦj+1,t(x). (4.16)

Comparing (4.15) and (4.16) we obtain the following identities,

m∑
n=−M

Ck,nAt−2n =
m∑
`=0

EL
k,`C`,t, t = −M, . . . ,m,

m∑
n=−M

Ck,nAt−2n = FL
k,t, t = m+ 1, . . . ,M + 2m.

If ΦL is refinable, the coefficients have to be related by

CV = ELC,

CW = FL,
(4.17)



4.2 Refinability of Boundary Scaling Vectors 37

where

C =


C0,−M C0,−M+1 . . . C0,−1 I 0 . . . 0

C1,−M C1,−M+1 . . . C1,−1 0 I
. . .

...
...

...
. . .

...
...

. . . . . . 0
Cm,−M Cm,−M+1 . . . Cm,−1 0 . . . 0 I

 ,

is of size 2(m+1)×2(m+M+1), EL = (EL
k,0, · · · , EL

k,m) and FL = (FL
k,m+1, · · · , FL

k,M+2m).
Furthermore, V = (At−2n)n,t, n, t = −M, . . . ,m, is of size 2(m+M + 1)× 2(m+M + 1)
and W = (At−2n)n,t, n = −M, . . . ,m, t = m + 1, . . . ,M + 2m is of size 2(m + M + 1)×
2(m+M). Now we can find matrices EL and FL from (4.17). It is clear that C has linearly
independent rows and consequently, C> has linearly independent columns. Thus C> may
be decomposed as C> = QR, where Q is a matrix with orthonormal columns and R is
an upper triangular matrix. Then C = R>Q> satisfies CC> = I and EL = CV C>. This
completes the proof of refinability for the left boundary vectors ΦL

j,k.
The refinability of the right edge functions ΦR

j,k are derived in a similar manner. Using
(4.9) and (4.13), we find that

ΦR
j,k(x) =

2j+M∑
n=2j−m

Dk,nΦj,n(x)

=
2j+M∑
n=2j−m

Dk,n

[
2−

1
2

M+2n∑
t=−M+2n

At−2nΦj+1,t(x)

]

= 2−
1
2

2j+1+3M∑
t=2j+1−M−2m

 2j+M∑
n=2j−m

Dk,nAt−2n

Φj+1,t(x).

By taking the restriction 0 ≤ x ≤ 1 into consideration, we obtain

ΦR
j,k(x) = 2−

1
2

2j+1+M∑
t=2j+1−M−2m

 2j+M∑
n=2j−m

Dk,nAt−2n

Φj+1,t(x). (4.18)

If we substitute (4.9) into (4.12), we get

ΦR
j,k(x) = 2−

1
2

2j+1−m−1∑
t=2j+1−M−2m

FR
k,tΦj+1,t(x)

+ 2−
1
2

2j+1∑
`=2j+1−m

ER
k,`

2j+1+M∑
t=2j+1−m

D`,tΦj+1,t(x).

Then we have

ΦR
j,k(x) = 2−

1
2

2j+1−m−1∑
t=2j+1−M−2m

FR
k,tΦj+1,t(x)

+ 2−
1
2

2j+1+M∑
t=2j+1−m

 2j+1∑
`=2j+1−m

ER
k,`D`,t

Φj+1,t(x).

(4.19)
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By comparing (4.18) and (4.19), we obtain the following identities

2j+M∑
n=2j−m

Dk,nAt−2n = FR
k,t t = 2j+1 −M − 2m, . . . , 2j+1 −m− 1,

2j+M∑
n=2j−m

Dk,nAt−2n =
2j+1∑

`=2j+1−m

ER
k,`D`,t t = 2j+1 −m, . . . , 2j+1 +M.

In the same way as the left edge functions we can find matrices ER and FR. Consequently,
the scaling vectors on the right are refinable as well.

Now we can construct our space Vj[0, 1] as Vj[0, 1] = span
{

Φ
[ ]
j,k

}
where

Φ
[ ]
j,k(x) =


ΦL
j,k(x), if 0 ≤ k ≤ m,

Φj,k(x)|[0,1], if m+ 1 ≤ k ≤ 2j −m− 1,

ΦR
j,k(x), if 2j −m ≤ k ≤ 2j.

(4.20)

The refinability of interior scaling vectors Φj,k(x) is clear and since ΦL and ΦR are refinable

as well, we can write Φ
[ ]
j,k as

Φ
[ ]
jk(x) = 2−

1
2

2j+1∑
t=0

A
[ ]
k,tΦ

[ ]
j+1,t(x), (4.21)

where

A
[ ]
k,t =


EL
k,t, F

L
k,t, if 0 ≤ k ≤ m,

Ak,t, if m+ 1 ≤ k ≤ 2j −m− 1,

FR
k,t, E

R
k,t, if 2j −m ≤ k ≤ 2j.

(4.22)

Therefore we have Vj[0, 1] ⊂ Vj+1[0, 1].

4.3 Error Estimate of Interpolation Operator

In Section 4.1, we defined the interpolation operator Ijf to construct the boundary vec-
tors. The main goal of this section is to investigate that this operator gives us an approx-
imation of f with the same approximation order as we had on the line. That is, we will
show that the operator Ij verifies the error estimate in L2[0, 1]. Moreover, we want to
indicate that the boundary vectors can be able to reproduce polynomials.

As we mentioned, the approximation properties of a scaling vector are closely related
to its ability to reproduce polynomials. Furthermore, we have seen that interior scaling
vectors have approximation order m and satisfy (4.3). For the left edge and x ≥ 0, we
have

xn|[0,+∞) =
∞∑

t=−M

1∑
i=0

(t+
1

2
i)nφi(x− t)

=
m∑

t=−M

1∑
i=0

(t+
1

2
i)nφi(x− t) +

∞∑
t=m+1

1∑
i=0

(t+
1

2
i)nφi(x− t),

(4.23)
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where |n| < m. On the other hand, the left boundary vectors can reproduce polynomials
of degree m, if they satisfy

xn|[0,+∞) =
m∑
k=0

1∑
i=0

υi,kφ
L
i (x− k) +

∞∑
k=m+1

1∑
i=0

(k +
1

2
i)nφi(x− k),

for some unknowns υi,k. Using the definition of φLi (x− k) in (4.8) for j = 0, we get

xn|[0,+∞) =
m∑
k=0

1∑
i=0

υi,k

[
φi(x− k) +

−1∑
t=−M

ci,k,tφi(x− t)

]
+

∞∑
k=m+1

1∑
i=0

(k +
1

2
i)nφi(x− k)

=
m∑
k=0

1∑
i=0

υi,kφi(x− k) +
−1∑

t=−M

m∑
k=0

υi,kci,k,tφi(x− t) +
∞∑

k=m+1

1∑
i=0

(k +
1

2
i)nφi(x− k),

or

xn|[0,+∞) =
−1∑

t=−M

m∑
k=0

υi,kci,k,tφi(x− t) +
m∑
t=0

1∑
i=0

υi,tφi(x− t) +
∞∑

t=m+1

1∑
i=0

(t+
1

2
i)nφi(x− t).

(4.24)
Now with comparing (4.23) and (4.24), we obtain

m∑
k=0

υi,kci,k,t = (t+
1

2
i)n, t = −M, . . . ,−1,

υi,t = (t+
1

2
i)n, t = 0, . . . ,m,

(4.25)

where i = 0, 1. Therefore, υi,k can be computed from the second equation in (4.25).
Moreover, substituting this equation into the first equation, we get

m∑
k=0

(k +
1

2
i)nci,k,t = (t+

1

2
i)n, t = −M, . . . ,−1.

Regarding the definition of ci,k,n as the Lagrange polynomials and interpolation theorem
in [49], this is satisfied.

For the boundary vectors on the right side, this can be proven in the same way.
Now, we want to give an estimate of the interpolation error on the interval. Before

that, we have to prove the error estimate of interpolation operator Ijf in L∞ and L2(R).

Theorem 4.3. Suppose that Φ = (φ0, φ1)> is a compactly supported interpolating 2-
scaling vector and provides approximation order m. Fix m and suppose that λ ∈ R and
λ > m+ 1. For f ∈ Hm+ 1

2 and Ijf in (4.4), there is a constant C such that

‖f − Ijf‖L∞ ≤ C2−mj ‖f‖
Hm+1

2
.

Proof. For S(Φ) in (3.13), suppose p ∈ S(Φ). By (4.4), we obtain

p(x) =
∑
k∈Z

1∑
i=0

p(
k + 1

2
i

2j
)φi(2

jx− k).
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Hence for polynomials p ∈ πm(R), m ∈ Z we have Ijp = p. Since that Φ provides
approximation order m, it holds that xα ∈ S(Φ) for |α| < m and we have

xα

α!
=
∑
k∈Z

1∑
i=0

1

α!
(
k + 1

2
i

2j
)αφi(2

jx− k).

For more details refer to [44]. Now fix an x ∈ R and let p be the Taylor polynomial of
degree m− 1 for f at x. If r is the remainder in Taylor’s Theorem, then f = p+ r and

r(y) =
∑
|α|=m

(Dαf)(ξαy)
(y − x)α

α!
, x, y, ξ ∈ R.

Hence,

‖(f − Ijf)(x)‖L∞ = ‖p(x)− Ijf(x)‖L∞
= ‖Ijp(x)− Ijf(x)‖L∞
= ‖Ijr(x)‖L∞

=

∥∥∥∥∥∑
k∈Z

1∑
i=0

r(
k + 1

2
i

2j
)φi(2

jx− k)

∥∥∥∥∥
L∞

=

∥∥∥∥∥∑
k∈Z

〈Φ(2jx− k), Rj(k)〉

∥∥∥∥∥
L∞

,

where 〈·, ·〉 is the standard scalar product and Rj(k) = (r( k
2j

), r(
k+ 1

2

2j
))>.

Now let Vα(x) = (x
α

α!
,

(x− 1
2

)α

α!
)>. Using the Cauchy–Schwarz inequality it holds that∑

k∈Z

〈Φ(2jx− k), Rj(k)〉 ≤
∑
k∈Z

∥∥Φ(2jx− k)
∥∥

2
‖Rj(k)‖2

≤
∑
k∈Z

∥∥Φ(2jx− k)
∥∥

2

√
r2(

k

2j
) + r2(

k + 1
2

2j
)

=
∑
k∈Z

∥∥Φ(2jx− k)
∥∥

2

√√√√√
∑
|α|=m

(Dαf)(ξα k

2j
)
( k

2j
− x)α

α!

2

+

∑
|α|=m

(Dαf)(ξ
α
k+1

2
2j

)
(
k+ 1

2

2j
− x)α

α!

2

≤
∑
k∈Z

∥∥Φ(2jx− k)
∥∥

2

(
max
|α|≤m

‖Dαf‖L∞

)2−mj
∑
|α|=m

∥∥Vα(2jx− k)
∥∥

2


= 2−mj ‖f‖Wm

∞

∑
|α|=m

∑
k∈Z

∥∥Φ(2jx− k)
∥∥

2

∥∥Vα(2jx− k)
∥∥

2
.

Considering that Φ has compact support, we assume that

M = sup
x∈R
‖Φ(x)‖2 ‖Vα(x)‖2 (1 + |x|)λe|x| <∞.
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Now we set y = 2jx and get∑
k∈Z

‖Φ(y − k)‖2 ‖Vα(y − k)‖2 ≤
∑
k∈Z

M(1 + |y − k|)−λe−|k−y|

≤
∑
|k|6=0,1

M(1 + |y − k|)−λe|y|e−|k|

≤ e|y|
∑
|k|6=0,1

Me−|k||k|2λ

(|k|2 + |y − k|)λ

≤ e|y|
∑
|k|6=0,1

Me−|k||k|2λ

(|k|2 + |y| − |k|)λ

≤ e|y|
∑
|k|6=0,1

Me−|k||k|2λ

(1 + |y|)λ

≤ Me|y|

(1 + |y|)λ
∑
|k|6=0,1

|k|2λe−|k|.

Since the last summation is convergent, we obtain∑
k∈Z

‖Φ(y − k)‖2 ‖Vα(y − k)‖2 ≤ C1
Me|y|

(1 + |y|)λ
<∞,

for C1 > 0. Thus ∑
|α|=m

∑
k∈Z

‖Φ(y − k)‖2 ‖Vα(y − k)‖2 ≤ C,

for C > 0. Therefore we obtain

‖f − Ijf‖L∞ ≤ C2−mj ‖f‖Wm
∞
.

Finally the desired result follows from the embedding theorem 2.12 as

‖f‖Wm
∞
≤ C ‖f‖

Hm+1
2
.

Now it is enough to compute the error estimate in L2(R).

Theorem 4.4. Suppose that Φ = (φ0, φ1)> is a compactly supported interpolating and
biorthogonal 2-scaling vector and provides approximation order m. For f ∈ Hm and Ijf
in (4.4), there is a constant C such that

‖f − Ijf‖L2
≤ C2−jm ‖f‖Hm .

Proof. Suppose that Pjf : L2(R)→ Vj is the biorthogonal projection where

Pjf(x) =
∑
k∈Z

1∑
i=0

〈f, φ̃i,j,k〉φi,j,k(x).
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First we prove that Pjf is uniformly bounded. With the substitution 2jx = y, dx = 2−jdy,
we have

〈f, φ̃i,j,k〉 =

∫
R
f(x)2

j
2 φ̃i(2

jx− k)dx

= 2
−j
2

∫
R
f(2−jy)φ̃i(y − k)dy,

and therefore for C1 > 0:

‖Pjf(x)‖2
L2

=

∥∥∥∥∥∑
k∈Z

1∑
i=0

〈f, φ̃i,j,k〉φi,j,k(x)

∥∥∥∥∥
2

L2

=

∥∥∥∥∥∑
k∈Z

1∑
i=0

2
−j
2 〈f(2−j·), φ̃i(· − k)〉2

j
2φi(2

jx− k)

∥∥∥∥∥
2

L2

=

∥∥∥∥∥∑
k∈Z

1∑
i=0

〈f(2−j·), φ̃i(· − k)〉2−jφi(· − k)

∥∥∥∥∥
2

L2

=
∥∥2−jP0(f(2−j·))

∥∥2

L2

≤ ‖P0‖2
L2

∥∥2−jf(2−j·)
∥∥2

L2

= ‖P0‖2
L2
‖f‖2

L2

≤ C1 ‖f‖2
L2
.

Beside that, we have

‖f − Ijf‖L2
= ‖f − Pjf + Pjf − Ijf‖L2

≤ ‖f − Pjf‖L2
+ ‖Pjf − Ijf‖L2

.

By (3.23), we obtain for g ∈ Vj and C2, C3 > 0:

‖f − Pjf‖L2
= ‖f − g + g − Pjf‖L2

≤ ‖f − g‖L2
+ ‖Pjg − Pjf‖L2

≤ ‖f − g‖L2
+ ‖Pj‖L2

‖g − f‖L2

≤ (1 + ‖Pj‖L2
) ‖f − g‖L2

≤ (1 + C2) inf
g∈Vj
‖f − g‖L2

≤ C32−jm ‖f‖Hm .

Now we need to find an upper bound ‖Pjf − Ijf‖L2
. Let us assume that χIj,k is the

characteristic function of Ij,k = supp φ̃i,j,k. It was shown in [44] that for a compactly
supported interpolating scaling vector Φ we have

∑
k∈Z

1∑
i=0

φi(x− k) = 1.
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Since Φ reproduces all polynomials of degree less than m, the following holds for f ∈ S(Φ),

f(x) =
∑
k∈Z

1∑
i=0

f(k +
1

2
i)φi(x− k).

Then we get ∫
φ̃0(x)dx =

∫
1 φ̃0(x)dx

=

∫
(
∑
k∈Z

1∑
i=0

φi(x− k))φ̃0(x)dx

=
∑
k∈Z

[
〈φ0(x− k), φ̃0(x)〉+ 〈φ1(x− k), φ̃0(x)〉

]
= 1.

Analogously, we can show that
∫
φ̃1(x)dx = 1. Now with the substitution 2jx − k = y,

dx = 2−jdy we have

〈f(
k + 1

2
i

2j
)χIj,k , φ̃i,j,k〉 =

∫
Ij,k

f(
k + 1

2
i

2j
)φ̃i,j,k(x)dx

=

∫
Ij,k

f(
k + 1

2
i

2j
)2

j
2 φ̃i(2

jx− k)dx

=

∫
I0,0

f(
k + 1

2
i

2j
)2
−j
2 φ̃i(y)dy

= 2
−j
2 f(

k + 1
2
i

2j
).

Therefore

2
j
2 〈f(

k + 1
2
i

2j
)χIj,k , φ̃i,j,k〉 = f(

k + 1
2
i

2j
).

Since

Ijf(x) = 2
−j
2

∑
k∈Z

1∑
i=0

f(
k + 1

2
i

2j
)φi,j,k(x),

we obtain

‖Pjf(x)− Ijf(x)‖2
L2

=

∥∥∥∥∥∑
k∈Z

1∑
i=0

〈f, φ̃i,j,k〉φij,k(x)− 2
−j
2

∑
k∈Z

1∑
i=0

f(
k + 1

2
i

2j
)φi,j,k(x)

∥∥∥∥∥
2

L2

=

∥∥∥∥∥∑
k∈Z

1∑
i=0

(
〈f, φ̃i,j,k〉φi,j,k(x)− 〈f(

k + 1
2
i

2j
)χIj,k , φ̃i,j,k〉φi,j,k(x)

)∥∥∥∥∥
2

L2

=

∥∥∥∥∥∑
k∈Z

1∑
i=0

〈f − f(
k + 1

2
i

2j
)χIj,k , φ̃i,j,k〉φi,j,k(x)

∥∥∥∥∥
2

L2

.
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The stability of the scaling vectors implies that

‖Pjf − Ijf‖2
L2
≤ C4

∑
k∈Z

1∑
i=0

∣∣∣∣〈f − f(
k + 1

2
i

2j
)χIj,k , φ̃i,j,k〉

∣∣∣∣2 ,
where C4 > 0. If we consider αki =

∣∣∣〈f − f(
k+ 1

2
i

2j
)χIj,k , φ̃i,j,k〉

∣∣∣, then

αki =

∣∣∣∣∣
∫
Ij,k

(f − f(
k + 1

2
i

2j
))φ̃i,j,k(x)dx

∣∣∣∣∣
≤
∫
Ij,k

∣∣∣∣f − f(
k + 1

2
i

2j
)

∣∣∣∣ ∣∣∣φ̃i,j,k(x)
∣∣∣ dx.

By the mean value theorem, we get∣∣∣∣f(x)− f(
k + 1

2
i

2j
)

∣∣∣∣ = |f ′(ξ)||x−
k + 1

2
i

2j
|

≤ ‖f‖w1
∞

2−j.

Consequently for C̃ > 0:

αki ≤ ‖f‖w1
∞

2−j2−
j
2

∫
I0,0

|φ̃i(x)|dx

≤ C̃ ‖f‖w1
∞

2−j2−
j
2 .

Therefore we obtain

‖Pjf − Ijf‖2
L2
≤ C4C̃

2 ‖f‖2
w1
∞

(∑
k∈Z

1∑
i=0

2−3j

)
.

Now it is clear that on the unbounded domain the last sum is not finite. However, for
our purpose it should be enough to assume that suppf is compact, i.e., for A > 0,
suppf ⊆ [−A,A]. Then

‖Pjf − Ijf‖2
L2
≤ C2 ‖f‖2

w1
∞

(
2j2−3j

)
≤ C2 ‖f‖2

w1
∞

2−2j,

and consequently using the embedding theorem 2.12, we have

‖Pjf − Ijf‖L2
≤ C2−j ‖f‖w1

∞

≤ C2−j ‖f‖
H

3
2
.

where C > 0.

Finally, we prove the following error estimate for the operator Ijf on the interval [0, 1].

Lemma 4.5. The operator Ijf in (4.7) for function f ∈ Hs[0, 1], s > 1
2

satisfies the
following error estimate:

‖f − Ijf‖L2[0,1] ≤ C2−sj ‖f‖Hs[0,1] .
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Proof. It was shown in [27] that for any continuously differentiable f , there is a contin-
uous linear extension E : Hs[0, 1]→ Hs(R), s > 1

2
verifying

Ef |[0,1] =

{
f(x) if x ≥ 0,

3f(−x)− 2f(−2x) if x < 0.

With using this extension, we have

‖f − Ijf‖L2[0,1] ≤ ‖f − IjEf‖L2[0,1] + ‖IjEf − Ijf‖L2[0,1] .

We remark that

‖f − IjEf‖L2[0,1] = ‖Ef − IjEf‖L2[0,1]

≤ C2−sj ‖Ef‖Hs(R)

≤ C2−sj ‖f‖Hs[0,1] .

where the last inequality obtains from Proposition 6.10. in [27].
Next, we want to find an upper bound for ‖IjEf − Ijf‖L2[0,1]. Using the definitions

of Ijf and Ijf , we have

‖IjEf − Ijf‖L2[0,1]

= ‖2−
j
2

 −1∑
`=−M

+
m∑
`=0

+
2j−m−1∑
`=m+1

+
2j∑

`=2j−m

+
2j+M∑
`=2j+1

 1∑
i=0

Ef(
`+ 1

2
i

2j
)φi,j,`

− 2−
j
2

1∑
i=0

(
−1∑

`=−M

m∑
k=0

f(
k + 1

2
i

2j
)ci,k,`φi,j,` +

m∑
`=0

f(
`+ 1

2
i

2j
)φi,j,`

+
2j−m−1∑
`=m+1

f(
`+ 1

2
i

2j
)φi,j,` +

2j∑
`=2j−m

f(
`+ 1

2
i

2j
)φi,j,`

+
2j+M∑
`=2j+1

2j∑
k=2j−m

f(
k + 1

2
i

2j
)di,k,`φi,j,`)

∥∥
L2[0,1]

= ‖2−
j
2

−1∑
`=−M

1∑
i=0

(
Ef(

`+ 1
2
i

2j
)−

m∑
k=0

f(
k + 1

2
i

2j
)ci,k,`

)
φi,j,`

+ 2−
j
2

2j+M∑
`=2j+1

1∑
i=0

Ef(
`+ 1

2
i

2j
)−

2j∑
k=2j−m

f(
k + 1

2
i

2j
)di,k,`

φi,j,`
∥∥
L2[0,1].

Let us find an upper bound for the first sum. Since the scaling vectors φi are L2-stable,
for constant 0 < B <∞, we have∥∥∥∥∥2−

j
2

−1∑
`=−M

1∑
i=0

(
Ef(

`+ 1
2
i

2j
)−

m∑
k=0

f(
k + 1

2
i

2j
)ci,k,`

)
φi,j,`

∥∥∥∥∥
L2[0,1]

≤ 2−
j
2B

√√√√ −1∑
`=−M

1∑
i=0

∣∣∣∣∣Ef(
`+ 1

2
i

2j
)−

m∑
k=0

f(
k + 1

2
i

2j
)ci,k,`

∣∣∣∣∣
2

.
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By (4.5), we know that

PL(xi,j,`) =
m∑
k=0

ci,k,`f(xi,j,k),

as ci,k,`, ` = −M, . . . ,−1 is defined in (4.6) and xi,j,k = (
k+ 1

2
i

2j
). Beside that the Lagrange

polynomial approximation theorem tells us

f(x) = PL(x) +R(x),

where R(x) is the error term of the form hC with constant C > 0 and h = (xi,j,` −
xi,j,0)(xi,j,` − xi,j,1) . . . (xi,j,` − xi,j,m). By the embedding of H

3
2

+ε[0, 1] in W 1,∞ we deduce∣∣∣∣∣Ef(
`+ 1

2
i

2j
)−

m∑
k=0

f(
k + 1

2
i

2j
)ci,k,`

∣∣∣∣∣
= |3f(−xi,j,`)− 2f(−2xi,j,`)− f(xi,j,`) +R(xi,j,`)|
= |3f(−xi,j,`)− 3f(−2xi,j,`) + f(−2xi,j,`)− f(xi,j,`) +R(xi,j,`)|
≤ |f ′(ξ1)|| − xi,j,`|+ 3|f ′(ξ2)|| − 3xi,j,`|+ |R(xi,j,`)|
≤ |f |1,∞,R|xi,j,`|+ 3|f |1,∞,R|3xi,j,`|+ |hC|
≤ C2−j|f |

H
3
2+ε[0,1]

.

This implies∥∥∥∥∥2−
j
2

−1∑
`=−M

1∑
i=0

(
Ef(

`+ 1
2
i

2j
)−

m∑
k=0

f(
k + 1

2
i

2j
)ci,k,`

)
φi,j,`

∥∥∥∥∥
L2[0,1]

≤ 2−
3
2
j|f |

H
3
2+ε[0,1]

.

With bounding the second sum in the same way, we obtain

‖IjEf − Ijf‖L2[0,1] ≤ C2−
3
2
j|f |

H
3
2+ε[0,1]

4.4 Examples

In this section we present some examples of our results for interpolating boundary vectors
on the interval. For our purpose, we use the scaling vectors from [44], which are interpo-
lating and orthonormal. Especially we are interested in those solutions which possess the
highest regularity.

Example 4.6. First, we consider the interpolating and orthonormal scaling vectors in
Example 3.16, which are supported on the interval [−1, 2] and possess the approximation
order 1. We compute the masks Ak from the symbols A(z) in (3.26) as

A−1 =

(
0 0.2208
0 0.0514

)
, A0 =

(
1 0.9486
0 0.2208

)
,

A1 =

(
0 −0.2208
1 0.9486

)
, A2 =

(
0 0.0514
0 −0.2208

)
.
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Using (4.1) and (4.9), we can obtain the scaling vector Φ(x) and then the corresponding
left scaling vector ΦL = (φL0 , φ

L
1 )>. Figure 4.1 shows the left scaling functions φL0 and φL1 .

Figure 4.1: Interpolating left scaling vector on the interval [0, 1]

Also similar to the left edge, we can plot the scaling vector for the right side. Figure
4.2 shows the right scaling vector ΦR = (φR0 , φ

R
1 )>.

Figure 4.2: Interpolating right scaling vector on the interval [0, 1]

Example 4.7. In this example, we use the interpolating scaling vectors in Example 3.17,
which are supported on the interval [−2, 3] and have the approximation order 2. Again
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we compute the symbols Ak from A(z) as

A−2 =

(
0 0.0313
0 0.0040

)
, A−1 =

(
0 0.2460
0 0.0313

)
, A0 =

(
1 0.9375
0 0.2421

)
,

A1 =

(
0 −0.2421
1 0.9375

)
, A2 =

(
0 0.0313
0 −0.2460

)
, A3 =

(
0 −0.0040
0 0.0313

)
.

Using these symbols and computing the coefficients ci,k,n in (4.5), we can plot the boundary
scaling functions. Figures 4.3 and 4.4 shows respectively the scaling vectors ΦL on the left
and ΦR on the right.

Figure 4.3: Interpolating left scaling vector on the interval [0, 1]

Figure 4.4: Interpolating right scaling vector on the interval [0, 1]
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4.5 Construction of multiwavelets on the interval

In this section, we intend to construct the multiwavelets corresponding to the interpolating
scaling vectors on the interval. So far such constructions have been introduced for wavelets
like those in [21,28]. Compared to the classical wavelets on the interval, our construction
will possess more flexibility for the practical purposes. In Section 4.1, we introduced an
MRA on the interval, which can be utilized for computing the boundary multiwavelets.

First of all, we define Q
[0,1]
j = I [0,1]

j+1 − I
[0,1]
j and set Wj[0, 1] = Range(Q

[0,1]
j ). We now

seek an accessible representation for the elements of Wj[0, 1]. We know that

Wj[0, 1] = (Ij+1 − Ij)(Vj+1)[0,1].

On the other hand

Vj+1[0, 1] = Ij+1(Vj+1)[0,1]

= (Ij+1 − Ij)(Vj+1)[0,1] + Ij(Vj+1)[0,1]

= Wj[0, 1] + Vj[0, 1].

Using this interpretation, we can construct the multiwavelets on the interval. Similar to the
multiwavelets on the line, we have to show that there is a representation of multiwavelets
on the interval in terms of the scaling vector in the larger scale. We define Ψ

[ ]
j,k(x) =

(ψ
[ ]
0,j,k(x), ψ

[ ]
1,j,k(x))> and it can be written as

Ψ
[ ]
j,k(x) = (Ij+1 − Ij)Φ[ ]

j+1,k(x)

First of all, we start with the construction on the left edge. For i = 0, 1 and k = 0, · · · ,m
we can write:

ψLi,j,k(x) = (Ij+1 − Ij)φLi,j+1,k(x)

= φLi,j+1,k(x)−

(
m∑
`=0

1∑
s=0

φLi,j+1,k(
`+ 1

2
s

2j
)φLs,j,`(x)

)
.

(4.26)

If we define the 2× 2 matrix BL
j+1,k,` as

BL
j+1,k,` =

(
φL0,j+1,k(

`
2j

) φL0,j+1,k(
`+ 1

2

2j
)

φL1,j+1,k(
`
2j

) φL1,j+1,k(
`+ 1

2

2j
)

)
,

and use the refinability relation (4.11), then for ΨL
j,k(x) = (ψL0,j,k(x), ψL1,j,k(x))T , we have

ΨL
j,k(x) = ΦL

j+1,k(x)− 2−
1
2

m∑
`=0

BL
j+1,k,`

(
m∑
t=0

EL
`,tΦ

L
j+1,t(x) +

M+2m∑
t=m+1

FL
`,tΦj+1,t(x)

)

= ΦL
j+1,k(x)− 2−

1
2

m∑
t=0

m∑
`=0

BL
j+1,k,`E

L
`,tΦ

L
j+1,t(x)

− 2−
1
2

M+2m∑
t=m+1

m∑
`=0

BL
j+1,k,`F

L
`,tΦj+1,t(x).

(4.27)
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The equation (4.27) describes left multiwavelets on the interval in terms of the left scaling
vectors on the interval plus the interior scaling vector. Furthermore we can construct the
right boundary multiwavelets from their corresponding boundary scaling vectors as

ψRi,j,k(x) = (Ij+1 − Ij)φRi,j+1,k(x)

= φRi,j+1,k(x)−

 2j∑
`=2j−m

1∑
s=0

φRi,j+1,k(
`+ 1

2
s

2j
)φRs,j,`(x)

 .
(4.28)

Using the refinability relation (4.12), for ΨR
j,k(x) = (ψR0,j,k(x), ψR1,j,k(x))T , we obtain

ΨR
j,k(x) = ΦR

j+1,k(x)− 2−
1
2

2j∑
`=2j−m

BR
j+1,k,`

 2j+1−m−1∑
t=2j+1−M−2m

FR
`,tΦj+1,t(x) +

2j+1∑
t=2j+1−m

ER
`,tΦ

R
j+1,t(x)


= ΦR

j+1,k(x)− 2−
1
2

2j+1−m−1∑
t=2j+1−M−2m

2j∑
`=2j−m

BR
j+1,k,`F

R
`,tΦj+1,t(x)

− 2−
1
2

2j+1∑
t=2j+1−m

2j∑
`=2j−m

BR
j+1,k,`E

R
`,tΦ

R
j+1,t(x),

where

BR
j+1,k,` =

(
φR0,j+1,k(

`
2j

) φR0,j+1,k(
`+ 1

2

2j
)

φR1,j+1,k(
`
2j

) φR1,j+1,k(
`+ 1

2

2j
)

)
.

Now we define the multiwavelets on the interval as follows:

Ψ
[ ]
j,k(x) :=


ΨL
j,k(x), if 0 ≤ k ≤ m,

Ψj,k(x)|[0,1], if m+ 1 ≤ k ≤ 2j −m− 1,

ΨR
j,k(x), if 2j −m ≤ k ≤ 2j,

where Ψj,k(x)|[0,1] are the interior scaling vectors from [42].
The following Lemma is a result from the above discussion.

Lemma 4.8. A function f in Vj+1[0, 1], j ∈ Z, has got the representation

f(x) = 2−
j
2

2j∑
k=0

1∑
i=0

ci,j,kφ
[ ]
i,j,k(x) + 2−

j
2

2j∑
k=0

1∑
i=0

di,j,kψ
[ ]
i,j,k(x),

where

ci,j,k =
2j∑
`=0

1∑
s=0

f(
`+ 1

2
s

2j
)φ

[ ]
s,j+1,`(

k + 1
2
i

2j
),

di,j,k = f(
k + 1

2
i

2j
).

Furthermore, the first sum is in the space Vj[0, 1] and the second one in the space Wj[0, 1].



4.5 Construction of multiwavelets on the interval 51

Proof. Every f ∈ Vj+1[0, 1] can be written as

f(x) = Ij+1f(x) = (Ij+1 − Ij + Ij)f(x) = (Ij+1 − Ij)f(x) + Ijf(x),

and since (Ij+1 − Ij)f(x) ∈ Wj[0, 1], we have:

f(x) = 2−
j
2

2j∑
k=0

1∑
i=0

f(
k + 1

2
i

2j
)(Ij+1 − Ij)(φ[ ]

i,j+1,k(x))

+ 2−
j
2

2j∑
`=0

1∑
s=0

f(
`+ 1

2
s

2j
)Ij(φ[ ]

s,j+1,`(x))

= 2−
j
2

2j∑
k=0

1∑
i=0

f(
k + 1

2
i

2j
)ψ

[ ]
i,j,k(x)

+ 2−
j
2

2j∑
`=0

1∑
s=0

f(
`+ 1

2
s

2j
)

 2j∑
k=0

1∑
i=0

φ
[ ]
s,j+1,`(

k + 1
2
i

2j
)φ

[ ]
i,j,k(x)


= 2−

j
2

2j∑
k=0

1∑
i=0

f(
k + 1

2
i

2j
)ψ

[ ]
i,j,k(x)

+ 2−
j
2

2j∑
k=0

2j∑
`=0

1∑
i,s=0

f(
`+ 1

2
s

2j
)φ

[ ]
s,j+1,`(

k + 1
2
i

2j
)φ

[ ]
i,j,k(x).

Finally, we will present some examples of left and right multiwavelets on the interval.
To plot the boundary multiwavelets, we used the relations (4.26) and (4.28). Figures 4.5
and 4.6 present the left and right boundary multiwavelets corresponding to the left and
right scaling vectors in Example 4.6.

Moreover, the boundary multiwavelets corresponding to the boundary scaling vectors
in Example 4.7 are shown in Figures 4.7 and 4.8.
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Figure 4.5: Left multiwavelet on the interval [0, 1]

Figure 4.6: Right multiwavelet on the interval [0, 1]
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Figure 4.7: Left multiwavelet on the interval [0, 1]

Figure 4.8: Right multiwavelet on the interval [0, 1]
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Chapter 5

Orthogonal Scaling Vectors and
Multiwavelets on the Interval

This chapter is concerned with the construction of the orthogonal boundary vectors and
multiwavelets on the interval [0, 1]. So far such constructions have been studied for the
univariate wavelets, see [18,21,58]. The orthogonal wavelets are very useful in some appli-
cations such as signal/image processing and numerical solutions of differential equations.
However some properties such as orthogonality, compact support, symmetry and high
order of vanishing moments are necessary in many applications and a scalar wavelet can
not posses all of them simultaneously. To bypass these problems, we will utilize again the
orthogonal construction from Karsten Koch, cf. [44], on the real line and adapt it to the
interval. In Chapter 4, we have constructed new families of interpolating scaling vectors
and multiwavelets on the interval but unfortunately they can not be orthogonal on the
interval. Madych in [50] constructed a finite orthogonal transform based on the multires-
olution analysis of Mallat and Meyer in [52,54] for the scalar wavelets. Moreover, Keinert
in [2] and [3] has modified it for the multiwavelets. Here, we will utilize this approach
to construct the orthogonal boundary vectors and multiwavelets based on the orthogonal
multiresolution analysis in [44], which have desirable properties. First of all, we investigate
the conditions for construction of orthogonal boundary scaling vectors. Particularity, we
focus on the refinability and orthogonality conditions. Then in Section 5.2 we construct
the Discrete Multiwavelet Transform on the Interval. In Section 5.3 we discuss about the
polynomials reproduction and approximation order of scaling functions. Afterwards, we
explain an algorithm for constructing boundary scaling vectors which are orthogonal. In
the end, we construct the orthogonal multiwavelets and present some examples.

5.1 Definitions and Conditions

In this section, we will determine the necessary and sufficient conditions to construct an
orthogonal multiresolution analysis. We suppose that the boundary scaling functions are
linear combinations of the scaling functions on the line that cross the boundaries. First
of all, we provide the following basic assumptions concerning the scaling functions on the
line, which were constructed by Karsten Koch in [44].

� Let Φ = (φ0, φ1)> be the interpolating 2-scaling vector of L2(R)-functions such that
it satisfies a matrix refinement equation (3.7) and is supported on [−N,N + 1] for
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N ∈ N. Thus, we can write (3.7) as

Φ(x) =
N+1∑
k=−N

AkΦ(2x− k). (5.1)

Moreover, the scaling vector Φ is orthogonal and provides approximation order m ≥
1.

� Let Ψ = (ψ0, ψ1)> be the 2-multiwavelet corresponding to the scaling vector Φ with
the same support and the masks B−N , . . . , BN+1 for N ∈ N. Therefore we have

Ψ(x) =
N+1∑
k=−N

BkΦ(2x− k). (5.2)

Now we intend to show the following for the boundary vectors:

� There exists a left boundary scaling vector ΦL = (φL0 , φ
L
1 , . . . , φ

L
l−1)>, l > 0, and

also a right boundary scaling vector ΦR = (φR0 , φ
R
1 , . . . , φ

R
r−1)>, r > 0, which both

of left and right boundary functions are linear combinations of scaling functions
that cross the boundaries. The construction of boundary vectors in this way has the
benefit that the boundary functions automatically inherit continuity. In addition,
we suppose that the number of boundary functions is the same at both edges but
it is not necessarily a multiple of 2.

� The left and right boundary functions are refinable, orthogonal, continuous, and
provide approximation order≥ 1. Therefore they are regular which is very important
for application purposes.

To construct the orthogonal left boundary vector on the interval [0, 1], we need that
the masks Ak start with zero. Therefore we shift the scaling vector and corresponding
multiwavelet in order to be supported on [0,M ]. Hence, (5.1) turns into

Φ(x) =
M∑
k=0

AkΦ(2x− k). (5.3)

If the left boundary functions are linear combinations of boundary-crossing functions,
then for x ≥ 0, we define

ΦL(x) =
−1∑

k=−M+1

CkΦ(x− k), (5.4)

where Ck is a matrix of size l × 2. Consequently, for 0 ≤ x ≤ 1, one can define

ΦL
j (x) =

−1∑
k=−M+1

CkΦj,k(x), (5.5)

with j large enough for non-interacting the boundaries on the left and right side. Here
ΦL
j (x) := 2

j
2 ΦL(2jx) and Φj,k(x) := 2

j
2 Φ(2jx− k).



5.1 Definitions and Conditions 57

For the right boundary vector we are working on the interval [−M, 0]. Thus, without loss
of generality, we construct the right boundary functions for x ≤ 0 and then shift them to
be in the interval [−M + 1, 1]. Therefore for x ≤ 0 we have

Φ(x) =
0∑

k=−M

AkΦ(2x− k), (5.6)

and similar to the left side, we define

ΦR(x) =
M−1∑
k=1

DkΦ(x− k). (5.7)

Here Dk is a matrix of size r × 2. Now for −1 ≤ x ≤ 0 we have

ΦR
j (x) =

M−1∑
k=1

DkΦj,k(x), (5.8)

where ΦR
j (x) = 2j/2ΦR(2jx). Hence, the construction of orthogonal boundary vectors

reduces to find the matrices Ck and Dk.

5.1.1 Refinement Equation on the Interval

As we have seen in Chapter 3, the scaling vectors on the line satisfy the refinement
equation (3.7). The boundary vectors ΦL and ΦR are refinable if they satisfy

ΦL
j (x) = 2−

1
2EΦL

j+1(x) + 2−
1
2

M−2∑
t=0

FtΦj+1,t(x), x ≥ 0,

ΦR
j (x) = 2−

1
2

0∑
t=−M+2

F̃tΦj+1,t(x) + 2−
1
2 ẼΦR

j+1(x), x ≤ 0,

(5.9)

where E = 〈ΦL
j ,Φ

L
j+1〉, Ft = 〈ΦL

j ,Φj+1,t〉, Ẽ = 〈ΦR
j ,Φ

R
j+1〉 and F̃t = 〈ΦR

j ,Φj+1,t〉. The

matrices E and Ẽ are of size l × l and r × r respectively. Ft is a l × 2 matrix and F̃t is
a r × 2 matrix. Our aim is to find the matrices E, Ẽ, Ft and F̃t such that the equations
(5.9) are possible.
We will call ΦL, ΦR refinable, if they satisfy the equations (5.9). Using the definition of
the left scaling vector ΦL

j (x) and (5.3), we see that

ΦL
j (x) =

−1∑
k=−M+1

CkΦj,k(x)

=
−1∑

k=−M+1

Ck

[
2−

1
2

M+2k∑
t=2k

At−2kΦj+1,t(x)

]

= 2−
1
2

M−2∑
t=−M+1

[
−1∑

k=−M+1

CkAt−2k

]
Φj+1,t(x),

(5.10)
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where the lower limit in the last t-summation is obtained by taking the restriction x ≥ 0
into consideration. If we substitute (5.5) into (5.9) for the left boundary vector, we get

ΦL
j (x) = 2−

1
2E

−1∑
t=−M+1

CtΦj+1,t(x) + 2−
1
2

M−2∑
t=0

FtΦj+1,t(x). (5.11)

By comparing (5.10) and (5.11), we obtain the following equations:

−1∑
k=−M+1

CkAt−2k = ECt, t = −M + 1, . . . ,−1,

−1∑
k=−M+1

CkAt−2k = Ft, t = 0, . . . ,M − 2.

If ΦL(x) is a refinable vector, the coefficients have to satisfy

CV = EC,

CW = F,
(5.12)

where C = (C−M+1, C−M+2, · · · , C−1), F = (F0, · · · , FM−2), V = (At−2k)k,t, k, t = −M +
1, . . . ,−1 and W = (At−2k)k,t for k = −M + 1, . . . ,−1, t = 0, . . . ,M − 2. Moreover, both
of matrices V and W are of size 2(M−1)×2(M−1). The equation CV = EC is a type of
eigenvalue problem and plays an important role for constructing the left boundary vector.
In Section 5.4.1, we will describe an algorithm to find the matrices C, E and F using
(5.12).

For the right boundary vector we proceed analogously. By (5.6), we have

ΦR
j (x) =

M−1∑
k=1

DkΦj,k(x)

=
M−1∑
k=1

Dk

[
2−

1
2

2k∑
t=−M+2k

At−2kΦj+1,t(x)

]

= 2−
1
2

M−1∑
t=−M+2

[
M−1∑
k=1

DkAt−2k

]
Φj+1,t(x),

(5.13)

for x ≤ 0. By substituting (5.8) into (5.9) for the right boundary vectors, we get

ΦR
j (x) = 2−

1
2

0∑
t=−M+2

F̃tΦj+1,t(x) + 2−
1
2 Ẽ

M−1∑
t=1

DtΦj+1,t(x). (5.14)

By comparing (5.13) and (5.14), we obtain the following identities:

M−1∑
k=1

DkAt−2k = F̃t, t = −M + 2, . . . , 0,

M−1∑
k=1

DkAt−2k = ẼDt, t = 1, . . . ,M − 1.
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Therefore for the refinability of ΦR(x), the coefficients have to satisfy

DW̃ = F̃ ,

DṼ = ẼD,
(5.15)

where D = (D1, D2, · · · , DM−1), F̃ = (F̃−M+2, · · · , F̃0), Ṽ = (At−2k)k,t, k, t = 1, . . . ,M−1

and W̃ = (At−2k)k,t for k = 1, . . . ,M − 1, t = −M + 2, . . . , 0. Furthermore, the matrices

Ṽ and W̃ are of size 2(M − 1)× 2(M − 1). In the similar manner to the left boundaries,

we can calculate the matrices D, Ẽ and F̃ from solving the eigenvalue problem in (5.15).

5.1.2 Orthogonality Conditions for Boundary Scaling Vectors

The central aim of this chapter is to construct the boundary vectors which are orthogonal.
As we have already seen in Subsection 3.2.2, the orthogonal scaling vectors on the real
line have to satisfy the condition (3.16). For the left boundary scaling functions we have
almost the same conditions:

〈φLρ , φLµ〉 = δρ,µ, 0 ≤ ρ, µ ≤ l − 1,

〈φLρ , φµ(· − k)〉 = 0, 0 ≤ ρ ≤ l − 1, 0 ≤ µ ≤ 1, k ≥ 0,

〈φLρ , ψµ(· − k)〉 = 0, 0 ≤ ρ ≤ l − 1, 0 ≤ µ ≤ 1, k ≥ 0,

or simply the following vector form:

〈ΦL(x),ΦL(x)〉 = Il,

〈ΦL(x),Φ(x− k)〉 = 0, k ≥ 0,

〈ΦL(x),Ψ(x− k)〉 = 0, k ≥ 0.

(5.16)

Now we want to find a more applicable version of conditions (5.16). The first relation of
(5.16) and the equation (5.9) for j = 0 lead to

Il = 〈ΦL(x),ΦL(x)〉

= 〈EΦL(2x) +
M−2∑
t=0

FtΦ(2x− t), EΦL(2x) +
M−2∑
t=0

FtΦ(2x− t)〉

= EE>〈ΦL(2x),ΦL(2x)〉+
M−2∑
t=0

FtF
>
t 〈Φ(2x− t),Φ(2x− t)〉

=
1

2
EE> +

1

2

M−2∑
t=0

FtF
>
t =

1

2
(EE> + FF>).

Therefore, the first condition in (5.16) reduces to

1

2
(EE> + FF>) = Il. (5.17)
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Moreover, using the second condition in (5.16), the equations (5.9) and (5.3) we obtain

〈ΦL(x),Φ(x− k)〉

= 〈EΦL(2x) +
M−2∑
t=0

FtΦ(2x− t),
M+2k∑
t=2k

At−2kΦ(2x− t)〉

=
M−2∑
t=0

FtA
>
t−2k,

where k ≥ 0. Hence, we have

M−2∑
t=0

FtA
>
t−2k = 0, k ≥ 0. (5.18)

In the same manner, from third condition we obtain

M−2∑
t=0

FtB
>
t−2k = 0, k ≥ 0. (5.19)

Similarly orthogonality for the right boundary functions means

〈ΦR(x),ΦR(x)〉 = Ir,

〈ΦR(x),Φ(x− k)〉 = 0, k ≥ 0,

〈ΦR(x),Ψ(x− k)〉 = 0, k ≥ 0.

(5.20)

In the same way as the left side, the conditions (5.20) transform to

1

2
(ẼẼ> + F̃ F̃>) = Ir, (5.21)

0∑
t=−M+2

F̃tA
>
t−2k = 0, k ≥ 0,

0∑
t=−M+2

F̃tB
>
t−2k = 0, k ≥ 0.

(5.22)

Since the boundary functions are linear combinations of boundary-crossing functions,
they are orthogonal to all interior functions. Therefore the conditions (5.18), (5.19) and
(5.22) are automatically satisfied. The conditions (5.17)and (5.21) are the main conditions

that are used to find the suitable matrices E, Ẽ, F and F̃ . Moreover, using the cascade
algorithm, we can prove the sufficiency of these conditions. The cascade algorithm for the
left boundary vector is given by

ΦL(n)(x) = EΦL(n−1)(2x) +
M−2∑
t=0

FtΦ(2x− t). (5.23)
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The idea is that we start with an orthogonal initial vector ΦL(0) and then we have

〈ΦL(1)(x),ΦL(1)(x)〉

= 〈EΦL(0)(2x) +
M−2∑
t=0

FtΦ(2x− t), EΦL(0)(2x) +
M−2∑
t=0

FtΦ(2x− t)〉

= EE>〈ΦL(0)(2x),ΦL(0)(2x)〉+
M−2∑
t=0

FtF
>
t 〈Φ(2x− t),Φ(2x− t)〉

=
1

2
EE> +

1

2

M−2∑
t=0

FtF
>
t =

1

2
(EE> + FF>) = Il.

Therefore, the condition (5.17) ensures that each ΦL(n) will be orthogonal. If the iteration
converges, the limit will also be orthogonal. This will be shown in Section 5.3.

5.2 Discrete Multiwavelet Transform on the Interval

In Subsection 3.2.4, we have already seen that the Discrete Multiwavelet Transform leads
to an orthogonal decomposition in terms of scaling vectors Φ and multiwavelets Ψ. Conse-
quently, we obtained the decomposition matrix in (3.21) which is infinite and orthogonal.
In this section, we want to modify the DMWT and decomposition matrix on the interval.
Moreover, we compute the number of boundary scaling vectors at the endpoints.

To define the DMWT on the interval, we need the boundary multiwavelets denoted
by ΨL = (ψL0 , ψ

L
1 , . . . , ψ

L
l−1)>, l > 0, and ΨR = (ψR0 , ψ

R
1 , . . . , ψ

R
r−1)>, r > 0, which have to

satisfy the recursion equations

ΨL
j (x) = 2−

1
2GΦL

j+1(x) + 2−
1
2

M−2∑
t=0

HtΦj+1,t(x), x ≥ 0,

ΨR
j (x) = 2−

1
2

0∑
t=−M+2

H̃tΦj+1,t(x) + 2−
1
2 G̃ΦR

j+1(x), x ≤ 0,

(5.24)

where G = 〈ΨL
j ,Φ

L
j+1〉, Ht = 〈ΨL

j ,Φj+1,t〉, G̃ = 〈ΨR
j ,Φ

R
j+1〉 and H̃t = 〈ΨR

j ,Φj+1,t〉. Matrices

G and G̃ are of size l× l and r× r respectively. Ht is of size l× 2 and H̃t is of size r× 2.
For adapting the infinite matrix in (3.21), we need some modifications at the endpoint.

From the results in [2, 3, 50], we define the finite decomposition matrix as

SM =



X0 X1 . . . Xk 0 . . . . . . 0 0
0 S0 S1 . . . Sk 0 . . . 0 0
... 0 S0 S1

. . . Sk 0
...

...
...

...
. . . . . . . . . . . . . . .

...
...

0 0 . . . 0 S0 S1 . . . Sk 0
0 0 . . . . . . 0 Y0 Y1 . . . Yk


, (5.25)

where Sk is defined as in (3.20) and the matrices Xk and Yk, k =
⌈
M−1

2

⌉
, are unknown

boundary matrices.
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Now suppose that we only have two block matrices S0 and S1 as

S0 =

(
A0 A1

B0 B1

)
, S1 =

(
A2 A3

B2 B3

)
. (5.26)

Here we assume that M is odd. Otherwise, we can introduce extra masks AM = 0 and
BM = 0 to form the block matrices Sk. Consequently, the matrix in (5.25) can be written
as

S3 =

X0 X1 0 0
0 S0 S1 0
0 0 Y0 Y1

 , (5.27)

and similar to the matrices S0 and S1, we define

X0 =

(
E
G

)
, X1 =

(
F
H

)
,

for the left side and

Y0 =

(
F̃

H̃

)
, Y1 =

(
Ẽ

G̃

)
,

for the right side. Since the infinite matrix S in (3.21) is orthogonal, their coefficients
satisfy

1

2

(
S0 S

>
0 + S1 S

>
1

)
= I

S0 S
>
1 = 0.

(5.28)

Moreover, the orthogonality conditions in Subsection 5.1.2 lead to the orthogonality of
matrix S3.

Regarding relations (5.28) and Singular Value Decomposition (SVD) of S0 and S1, one
can prove the following lemma and theorem stated in [2, 3].

Lemma 5.1. Suppose that S0, S1 are square matrices of size 4k×4k for k =
⌈
M−1

2

⌉
which

satisfy relations (5.28). Then there exist orthogonal matrices U, V such that

S0 = U

(√
2Iµ0 0
0 0µ1

)
V >, S1 = U

(
0µ0 0

0
√

2Iµ1

)
V >, (5.29)

where µ0 = rank(S0), µ1 = rank(S1) and µ0 +µ1 = 4k. Here Iµ denotes the identity matrix
of size µ× µ.

Theorem 5.2. If S3 is orthogonal and has the structure given in (5.27), then
X0, X1, Y0, Y1 must have sizes 2µ1 × µ1, 2µ1 × 4k, 2µ0 × 4k and 2µ0 × µ0, respectively.

As a result of this theorem, we can determine the number of scaling functions at the
boundaries with l = µ1 and r = µ0.
In the case of more than two matrices Sk, we reduce the DMWT decomposition matrix
in (3.21) to the case of only two matrices S0 and S1 with forming the block matrices. For
example if we have A0, . . . , A7, (3.21) yields three matrices S0, . . . , S3. We define

Ŝ0 =

S0 S1 S2

0 S0 S1

0 0 S0

 , Ŝ1 =

S3 0 0
S2 S3 0
S1 S2 S3

 .

The new matrices Ŝ0 and Ŝ1 still satisfy the relations in (5.28). For more details, see [50].
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5.3 Approximation Order of Scaling Vectors on the

Interval

This section is concerned with the approximation order conditions for boundary scaling
vectors. As we have already discussed in Section 3.2.6, the interior scaling vectors have
approximation order m and satisfy the equation (3.25). Therefore for the interpolating
2-scaling vector Φ, we obtain

xn =
∑
k∈Z

pnkΦ(x− k), (5.30)

where pnk = (kn, (k + 1
2
)n) and |n| < m.

In the following theorem, we want to investigate the necessary and sufficient conditions
for the approximation order of orthogonal scaling vectors on the interval. The results
derived originally from [3], but for our case, it was necessary to do some modifications.

Theorem 5.3. Suppose that Φ = (φ0, φ1)> is a compactly supported orthogonal 2-scaling
vector and provides approximation order m. Moreover, the left and right boundary vectors
defined by (5.5) and (5.8) are refinable and satisfy equations (5.9). Then the left boundary
vector ΦL has approximation order m, if and only if there exist row vectors υn, n =
0, · · · ,m− 1, such that for x ≥ 0:

υnE = 2−nυn,

υnFt = ζnt, t = 0, · · · ,M − 2,
(5.31)

where

ζnt = 2−npnt −
b t2c∑
k=0

pnkAt−2k,

with pnk defined in (5.30). Similarly, the necessary and sufficient conditions for approxi-
mation order m at the right boundary are the existence of vectors υ̃n, n = 0, · · · ,m− 1,
such that for x ≤ 0:

υ̃nẼ = 2−nυ̃n,

υ̃nF̃t = ζ̃nt, t = −M + 2, · · · , 0,

with

ζ̃ = 2−npnt −
0∑

k=d t2e
pnkAt−2k.

Proof. First af all, we start with the left side. It has been already mentioned that the
approximation order of scaling vector is connected with its ability to reproduce polyno-
mials. Consequently, the boundary vector ΦL has approximation order m if there exist
row vectors υn, n = 0, · · · ,m− 1, such that for x ≥ 0:

xn = υnΦL(x) +
∞∑
k=0

pnkΦ(x− k). (5.32)
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If we replace x by 2jx, we have

(2jx)n = υnΦL(2jx) +
∞∑
k=0

pnkΦ(2jx− k),

or

(2jx)n = 2−
j
2υnΦL

j (x) + 2−
j
2

∞∑
k=0

pnkΦj,k(x). (5.33)

By combining the equations (5.9), (5.3) and (5.33), we obtain

(2jx)n = 2−
j
2υn

(
2−

1
2EΦL

j+1(x) + 2−
1
2

M−2∑
t=0

FtΦj+1,t(x)

)

+ 2−
j
2

∞∑
k=0

pnk

(
2−

1
2

M+2k∑
t=2k

At−2kΦj+1,t(x)

)

= 2−
j
2υn(. . .) + 2−

j+1
2

M−2∑
t=0

b t2c∑
k=0

pnkAt−2kΦj+1,t(x) +
∞∑

t=M−1

b t2c∑
k=d t−M2 e

pnkAt−2kΦj+1,t(x)

 x ≥ 0.

Consequently, we get

(2jx)n = 2−
j+1
2 υnEΦL

j+1(x) + 2−
j+1
2

M−2∑
t=0

υnFt +

b t2c∑
k=0

pnkAt−2k

Φj+1,t(x)

+ 2−
j+1
2

∞∑
t=M−1

b t2c∑
k=d t−M2 e

pnkAt−2kΦj+1,t(x).

(5.34)

On the other hand replacing j by j + 1 in (5.33) yields

(2j+1x)n = 2−
j+1
2 υnΦL

j+1(x) + 2−
j+1
2

∞∑
t=0

pntΦj+1,t(x),

or

(2jx)n = 2−
j+1
2 2−nυnΦL

j+1(x) + 2−
j+1
2 2−n

∞∑
t=0

pntΦj+1,t(x).

If we compare this equation and (5.34), we see that

2−nυn = υnE,

2−npnt = υnFt +

b t2c∑
k=0

pnkAt−2k, t = 0, · · · ,M − 2,

2−npnt =

b t2c∑
k=d t−M2 e

pnkAt−2k, t = M − 1, · · · ,∞,

(5.35)
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where n = 0, · · · ,m− 1.
We have an analogous result for the right endpoints. The boundary vector ΦR has ap-
proximation order m if there exist row vectors υ̃n, n = 0, · · · ,m− 1, such that for x ≤ 0
we have

(2jx)n =
0∑

k=−∞

pnkΦ(2jx− k) + υ̃nΦR(2jx),

or

(2jx)n = 2−
j
2

0∑
k=−∞

pnkΦj,k(x) + 2−
j
2 υ̃nΦR

j (x). (5.36)

By combining the equations (5.9), (5.6) and (5.36), we obtain

(2jx)n = 2−
j
2

0∑
k=−∞

pnk

(
2−

1
2

2k∑
t=−M+2k

At−2kΦj+1,t(x)

)

+ 2−
j
2 υ̃n

(
2−

1
2

0∑
t=−M+2

F̃tΦj+1,t(x) + 2−
1
2 ẼΦR

j+1(x)

)
, x ≤ 0,

Consequently, we have

(2jx)n = 2−
j+1
2

−M+1∑
t=−∞

b t+M2 c∑
k=d t2e

pnkAt−2kΦj+1,t(x)

+ 2−
j+1
2

0∑
t=−M+2

υ̃nF̃t +
0∑

k=d t2e
pnkAt−2k

Φj+1,t(x) + 2−
j+1
2 υ̃nẼΦR

j+1(x),

(5.37)

On the other hand, similar to the left side, replacing j by j + 1 in (5.36) yields

(2jx)n = 2−
j+1
2 2−n

0∑
t=−∞

pntΦj+1,t(x) + 2−
j+1
2 2−nυ̃nΦR

j+1(x).

By comparing this equation and (5.37), we have

2−npnt =

b t+M2 c∑
k=d t2e

pnkAt−2k, t = −∞, · · · ,−M + 1,

2−npnt = υ̃nF̃t +
0∑

k=d t2e
pnkAt−2k, t = −M + 2, · · · , 0,

2−nυ̃n = υ̃nẼ,

where n = 0, · · · ,m − 1. The first of these conditions and the third condition in (5.35)
are corresponding to interior approximation order and are automatically satisfied. Fur-
thermore, conditions (5.31) are sufficient if the cascade algorithm for the left boundary
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vector converges. We start with an initial vector ΦL(0) in (5.23) which is supported on
[0,M − 1]. Then ΦL(1) can be determined on [(M − 1)/2,M − 1] by a linear combination
of translates Φ(2x). Afterward, ΦL(2) is given on [(M−1)/4, (M−1)/2] as a linear combi-
nation of Φ(4x− t). With iterating this process, the cascade algorithm will be converge to
a continuous function on (0,M −1]. Note that in every step, ΦL(n) is a linear combination
of continuous functions and therefore it will be continuous as well. Now, it remains to
show the convergence for x = 0. Equivalently, we can prove that for a fixed x0 in (0, 1],
the sequence ΦL(2−nx0) converges to a continuous vector as follows. First of all, using the
equation (5.3), we have

Φ(
x0

2
) = A0Φ(x0) + A1Φ(x0 − 1) + . . .+ AMΦ(x0 −M).

Since that x0 ∈ (0, 1], we obtain

Φ(
x0

2
) = A0Φ(x0),

Φ(
x0

4
) = A2

0Φ(x0),

...

Φ(2−nx0) = An0 Φ(x0).

Similarly, for the left boundary vector we have

ΦL(
x0

2
) = EΦL(x0) + F0Φ(x0) + F1Φ(x0 − 1) + . . .+ +FM−2Φ(x0 −M + 2)

= EΦL(x0) + F0Φ(x0),

ΦL(
x0

4
) = E2ΦL(x0) + (EF0 + F0A0)Φ(x0),

...

ΦL(2−nx0) = EnΦL(x0) +Rn−1Φ(x0).

where
Rn−1 = En−1F0 + En−2F0A0 + . . .+ F0A

n−1
0 . (5.38)

Now, we have to check the convergence of En and Rn−1. First, we suppose that spec(E) =
1. In this case, the eigenvalues of E are as

λ0 = 1 and |λi| < 1 for i = 1, . . . , l − 1,

and
EQ = QΛ,

or
E = QΛQ−1, (5.39)

where Q is the square l × l matrix whose columns are the right eigenvectors qi of E for
i = 0, . . . , l−1, and Λ is the diagonal matrix whose diagonal entries are the corresponding
eigenvalues λi, i = 0, . . . , l − 1. Furthermore, we have

Q−1 =

 υ0
...

υl−1

 ,
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where υi, i = 0, . . . , l − 1, are the corresponding left eigenvectors of E. Then

E = (q0, . . . , ql−1)


1 0 0 . . . 0
0 λ1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 λl−2 0
0 . . . 0 0 λl−1


 υ0

...
υl−1

 ,

and thus

En −→ (q0, . . . , ql−1)


1 0 . . . 0
0 0 . . . 0
...

. . . . . .
...

0 . . . 0 0


 υ0

...
υl−1

 = q0υ0

as n −→∞.
Moreover, the equation (5.39) leads to

Q−1E = ΛQ−1.

Consequently, for i = 0, we obtain

υ0E = υ0,

...

υ0E
n = υ0,

Therefore, for Rn−1 in (5.38), we get

υ0Rn−1 = υ0

(
En−1F0 + En−2F0A0 + . . .+ F0A

n−1
0

)
= υ0F0

(
I + A0 + A2

0 + . . .+ An−1
0

)
−→ υ0F0(I − A0)−1, as n −→∞.

(5.40)

Furthermore, for the interior scaling vector, we have

An0 Φ(x0) −→ Φ(0) = 0, as n −→∞,

for any x0. This implies that spec(A0) < 1 and therefore, (I − A0)−1 exists.
Afterward, for i = 1, . . . , l − 1, we get

υiE
n = λni υi,

and then
υiRn−1 = υiF0

(
λn−1
i + λn−2

i A0 + . . .+ An−1
0

)
. (5.41)

It was shown in [36], that for a matrix A and given ε > 0, there is a matrix norm such
that

‖A‖ ≤ spec(A) + ε.

As stated, spec(A0) < 1 and therefore, there is a norm such that ‖A0‖ < 1. Let

h = max(‖A0‖, |λ1|, . . . , |λl−1|) < 1.
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Then, the norm of equation (5.41) will be as

‖υiRn−1‖ ≤ ‖υi‖‖F0‖
n−1∑
k=0

|λi|k‖A0‖n−k−1

≤ ‖υi‖‖F0‖nhn−1,

which converges to zero as n −→ ∞. This, together with (5.40) implies that Q−1Rn−1

converges to 
υ0

0
...
0

F0(I − A0)−1,

and then

Rn−1 = QQ−1Rn−1 = (q0, . . . , ql−1)

 υ0
...

υl−1

Rn−1 −→ q0υ0F0(I − A0)−1.

Thus, ΦL(2−nx0) converges to

ΦL(0) = q0υ0

(
ΦL(x0) + F0(I − A0)−1Φ(x0)

)
. (5.42)

It is easy to show that ΦL(2−nx0) converges to zero if spec(E) < 1. Moreover, for
spec(E) > 1, it diverges for most starting functions. Therefore, it will not lead to nice
solutions and we do not consider it here.

To complete the proof, we show that (5.42) is indipendent of x. By assumption, for
n = 0 in (5.32), we have

1 = υ0ΦL(x) + p00Φ(x), (5.43)

and by conditions (5.35) for t = 0 and n = 0, we get

υ0E = υ0,

υ0F0 = p00(I − A0).

Therefore

p00 = υ0F0(I − A0)−1.

By combining (5.43) and (5.42), we obtain

ΦL(0) = q0

(
υ0ΦL(x) + υ0F0(I − A0)−1Φ(x)

)
= q0

(
υ0ΦL(x) + p00Φ(x)

)
= q0.

This proves the continuity of ΦL(x) at x = 0.
Analogously, it can be proceeded for the right boundary vector.
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5.4 Construction of Orthogonal Boundary Scaling

Vectors

5.4.1 General Approach

In this subsection, we will describe an algorithm to find suitable matrices C, E and F
in (5.12) for the left boundary vector and D, Ẽ and F̃ in (5.15) for the right boundary
vectors. Then we can construct the orthogonal scaling vectors on the interval.

It was stated in section 5.1.1, that the equation CV = EC is an eigenvalue problem.
The rows of C are the eigenvectors of matrix V and every row of EC is a linear combination
of rows of C. This implies that rowspan{C} is a left invariant subspace for the matrix V .
That is, the rows of C must be a linear combination of no more than l left eigenvectors
of V . The matrix E is a diagonal matrix with the l eigenvalues of V as entries.
Note that, to compute the desired solutions for the scaling vector ΦL, we can choose an
invertible matrix U and replace ΦL by UΦL. The new scaling vector still spans the same
space. Furthermore the orthogonality and approximation order is preserved. Consequently,
after replacing ΦL in (5.4) by UΦL, we have

UΦL(x) =
−1∑

k=−M+1

UCkΦ(2x− k), x ≥ 0.

Therefore the matrix C turns into UC. If we substitute UC into (5.12), we get

UCV = EUC,

UCW = F.

Replacing E and F by UEU−1 and UF , we have

UCV = UEU−1UC,

UCW = UF,

which corresponds to (5.12). Thus, the effect of U on the matrices E, F and C will be as
UEU−1, UF and UC respectively. For the right scaling vectors, we proceed in the same
way.

Based on the past results, we suggest the following construction of the left and right
scaling vectors on the interval:

1. Using Lemma 5.1, we compute µ0 and µ1, which are equal to the number of right
and left boundary scaling vectors respectively.

2. Utilizing the equation CV = EC and DṼ = ẼD, we calculate the eigenvalues and
left eigenvectors of the matrices V and Ṽ .

3. We choose l eigenvalues of V and r eigenvalues of Ṽ to construct the diagonal
matrices E and Ẽ respectively. Note that there might exist more selections and
we prefer those, which lead to regular solutions, that is they include the simple
eigenvalue 1. Now we select the left eigenvectors corresponding to these eigenvalues
and form the matrices C and D. Consequently, we can calculate the matrices F and
F̃ , using the equations F = CW and F̃ = DW̃ .
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4. The last and important step is the orthonormalization of the boundary vectors. For
that, we use the equation (5.17) for the left boundary vectors and intend to find an
invertible matrix U such that

(UEU−1)(UEU−1)> + (UF )(UF )> = 2Il. (5.44)

We multiply (5.44) from the left by U−1 and from the right by (U>)−1 and we have

EU−1(U−1)>E> + FF> = 2U−1(U−1)>,

where (U−1)> = (U>)−1. Now let the vector e = (e1, . . . , el)
> denotes the diagonal

elements of E and we define Ê = e.e>. Then we obtain

Ê � (U−1(U−1)>) + FF> = 2U−1(U−1)>,

FF> = (2− Ê)� U−1(U−1)>,

which leads to
U−1(U−1)> = FF> � (2− Ê), (5.45)

where � and � indicate element-wise multiplication and division of matrices and 2
is a matrix with the entries 2. Consequently, we can find U−1 as a cholesky factor
of the right-hand side of (5.45).

5. Finally, we set C = UC and apply the first equation in (5.5) to obtain the left
scaling vector on the interval [0, 1].

Analogously, we proceed the steps 4 and 5 for the right boundary vector.

5.4.2 Examples

In this subsection we present some examples based on the results in the preceding sections.
As stated above, the solutions obtained by our construction are not unique. Therefore,
we select those solutions which are regular.

Example 5.4. As in the interpolation case, we start with the orthonormal scaling vector
in Example 3.16 which has approximation order 1. First of all, we shift this vector to be
in the interval [0, 3]. The masks Ak are

A0 =

(
0 0.2208
0 0.0514

)
, A1 =

(
1 0.9486
0 0.2208

)
,

A2 =

(
0 −0.2208
1 0.9486

)
, A3 =

(
0 0.0514
0 −0.2208

)
,

and their corresponding multiwavelet coefficients are

B0 =

(
0 −0.2208
0 −0.0514

)
, B1 =

(
1 −0.9486
0 −0.2208

)
,

B2 =

(
0 0.2208
1 −0.9486

)
, B3 =

(
0 −0.0514
0 0.2208

)
.
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Now we can form the matrices S0 and S1 in (5.26) and compute their ranks µ0 = µ1 = 2.
That means there are two left and right boundary functions. Furthermore, for the left
boundary vector, the matrices V and W are

V =

(
A2 A3

A0 A1

)
, W =

(
0 0
A2 A3

)
.

Consequently, we have the following left eigenvectors and their corresponding eigenvalues
of matrix V :

λ1 = 1, v1 = (0.5, 0.5, 0.5, 0.5),

λ2 = 0.2227, v2 = (0.6491, 0.1446, 0, 0.7468),

λ3 = 0.4733, v3 = (0.8855, 0.4191, 0,−0.1871).

First we choose the eigenvalues λ1 and λ2 and then we form the matrices E and C:

E =

(
1 0
0 0.2227

)
, C =

(
0.5 0.5 0.5 0.5

0.6491 0.1446 0 0.7468

)
.

Consequently to find an orthogonal solution, we compute the matrix U :

U =

(
1.6021 0
−1.9912 2.1370

)
.

Then using the transformation matrix U , we obtain new matrices E, F and C:

E =

(
1 0

−0.9660 0.2227

)
,

F =

(
0.8011 0.5830 0 −0.1357
0.6003 0.7893 0 −0.1837

)
,

C =

(
0.8011 0.8011 0.8011 0.8011
0.3916 −0.6866 −0.9956 0.6003

)
,

which lead to a regular solution. That is the orthogonal left boundary vector ΦL showing
in Figure 5.1.
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Figure 5.1: Orthogonal left scaling vector on the interval [0, 1], solution 1

For the second regular solution, we choose the eigenvalues λ1 and λ3 and we have

E =

(
1 0
0 0.4733

)
, C =

(
0.5 0.5 0.5 0.5

0.8855 0.4191 0 −0.1871

)
,

and the matrix U :

U =

(
1.6021 0
2.7682 10.1841

)
.

Then using the transformation matrix U , we obtain

E =

(
1 0

0.9100 0.4733

)
,

F =

(
0.8011 0.5830 0 −0.1357
−0.5218 −0.8006 0 0.1864

)
,

C =

(
0.8011 0.8011 0.8011 0.8011
10.4018 5.6525 1.3841 −0.5218

)
.

Figure 5.2 shows the second solution for the left boundary.
There are as well other orthogonal solutions which are not regular. For example, by

choosing the eigenvalues λ2 and λ3, we obtain the left boundary scaling vector in Figure
5.3.
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Figure 5.2: Orthogonal left scaling vector on the interval [0, 1], solution 2

Figure 5.3: Orthogonal left scaling vector on the interval [0, 1], solution 3

Similar to the left edge, we can plot the orthogonal scaling vector for the right side.
First of all, we compute matrices W̃ and Ṽ :

W̃ =

(
A0 A1

0 0

)
, Ṽ =

(
A2 A3

A0 A1

)
,

and then we have the following left eigenvectors and their corresponding eigenvalues of
matrix Ṽ :

λ1 = 1, v1 = (0.5, 0.5, 0.5, 0.5),

λ2 = 0.2227, v2 = (0.6491, 0.1446, 0, 0.7468),

λ3 = 0.4733, v3 = (0.8855, 0.4191, 0,−0.1871).
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Now as in the left edge, we choose the eigenvalues λ1 and λ2 and then we form matrices
Ẽ and D:

Ẽ =

(
1 0
0 0.2227

)
, D =

(
0.5 0.5 0.5 0.5

0.6491 0.1446 0 0.7468

)
.

Then to find an orthogonal solution, we compute matrix U :

U =

(
1.2799 0
−1.6131 2.4177

)
,

and we obtain new matrices Ẽ, F̃ and D:

Ẽ =

(
1 0

−0.9796 0.2227

)
,

F̃ =

(
0 0.1742 0.6400 0.7484
0 0.1450 0.7629 0.6228

)
,

D =

(
0.6400 0.6400 0.6400 0.6400
0.7629 −0.4570 −0.8065 0.9991

)
.

Consequently we can plot the orthogonal right boundary vector ΦR as in Figure 5.4.

Figure 5.4: Orthogonal right scaling vector on the interval [0, 1], solution 1

To find the second regular solution, we choose the eigenvalues λ1 and λ3 and we have

Ẽ =

(
1 0
0 0.4733

)
, D =

(
0.5 0.5 0.5 0.5

0.8855 0.4191 0 −0.1871

)
.

Consequently, we compute the matrix U :

U =

(
1.2799 0
−2.2772 2.0856

)
.
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Then using the transformation matrix U , we obtain

Ẽ =

(
1 0

−0.9370 0.4733

)
,

F̃ =

(
0 0.1742 0.6400 0.7484
0 0.1428 0.7081 0.6133

)
,

D =

(
0.6400 0.6400 0.6400 0.6400
0.7081 −0.2645 −1.1386 −1.5289

)
.

Figure 5.5 shows the second regular solution for the right boundary.

Figure 5.5: Orthogonal right scaling vector on the interval [0, 1], solution 2

For the non-regular solution, we might choose the eigenvalues λ2 and λ3 and obtain
the right boundary scaling vector in Figure 5.6.
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Figure 5.6: Orthogonal right scaling vector on the interval [0, 1], solution 3

Example 5.5. Considering the orthonormal scaling vectors in Example 3.17 with ap-
proximation order 2, we want to construct the boundary scaling vectors. Again, we shift
these vectors to be in the interval [0, 5]. The masks Ak are

A0 =

(
0 0.0313
0 0.0040

)
, A1 =

(
0 0.2460
0 0.0313

)
, A2 =

(
1 0.9375
0 0.2421

)
,

A3 =

(
0 −0.2421
1 0.9375

)
, A4 =

(
0 0.0313
0 −0.2460

)
, A5 =

(
0 −0.0040
0 0.0313

)
,

and their corresponding multiwavelets coefficients are

B0 =

(
0 −0.0313
0 −0.0040

)
, B1 =

(
0 −0.2460
0 −0.0313

)
, B2 =

(
1 −0.9375
0 −0.2421

)
,

B3 =

(
0 0.2421
1 −0.9375

)
, B4 =

(
0 −0.0313
0 0.2460

)
, B5 =

(
0 0.0040
0 −0.0313

)
.

Now we define matrices S0, S1 and S2 by

S0 =

(
A0 A1

B0 B1

)
, S1 =

(
A2 A3

B2 B3

)
, S2 =

(
A4 A5

B4 B5

)
.

Since there are more than four masks, we form the block matrices Ŝ0 and Ŝ1:

Ŝ0 =

(
S0 S1

0 S0

)
, Ŝ1 =

(
S2 0
S1 S2

)
.

After computing the ranks of these matrices, we obtain µ0 = µ1 = 4.
Now, for the left boundary vector, we compute the matrices V and W :

V =


A4 A5 0 0
A2 A3 A4 A5

A0 A1 A2 A3

0 0 A0 A1

 , W =


0 0 0 0
0 0 0 0
A4 A5 0 0
A2 A3 A4 A5

 ,
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and we find the following left eigenvectors and their corresponding eigenvalues of matrix
V :

λ1 = 1, v1 = (0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536),

λ2 = 0.5, v2 = (0.6030, 0.4523, 0.3015, 0.1508, 0,−0.1508,−0.3015,−0.4523),

λ3 = 0.4672, v3 = (−0.5770,−0.4215,−0.2695,−0.1259, 0, 0.1555, 0.3329, 0.5157),

λ4 = 0.2689, v4 = (0.7284, 0.4260, 0.1959, 0.0527, 0, 0.0568, 0.2111, 0.4460),

λ5 = −0.1956, v5 = (−0.3308, 0.9364, 0.0647,−0.0127, 0,−0.0182, 0.0928,−0.0227),

λ6 = −0.0757, v6 = (0.0956,−0.0224,−0.0072, 0.0005, 0,−0.0392, 0.5182,−0.8487),

λ7 = 0, v7 = (0.7015, 0.0891, 0, 0, 0, 0,−0.0891, 0.7014).

In this case, we have more solutions but we would select some of these and orthonormalize
them. First we choose the eigenvalues λ1, λ2, λ3 and λ4 and then we form the matrices E
and C:

E =


1 0 0 0
0 0.5 0 0
0 0 0.4672 0
0 0 0 0.2689

 ,

C =


0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.6030 0.4523 0.3015 0.1508 0 −0.1508 −0.3015 −0.4523
−0.5770 −0.4215 −0.2695 −0.1259 0 0.1555 0.3329 0.5157
0.7284 0.4260 0.1959 0.0527 0 0.0568 0.2111 0.4460

 .

Consequently to find an orthogonal solution, we compute the matrix U :

U =


1.5119 0 0 0
2.6386 3.5602 0 0
5.2870 126.1328 107.6904 0
−4.5705 −345.1550 −340.2733 47.8640

 .

Then using the transformation matrix U , we obtain the new matrices E, F and C:

E =


1 0 0 0

0.8726 0.5 0 0
−0.1665 1.1631 0.4672 0
0.3466 −0.2099 −0.6263 0.2689

 ,

F =


0.5345 0.5157 0.5345 0.3863 0 −0.1148 0 0.0146
−0.1406 −0.3640 −0.6773 −0.5923 0 0.1622 0 −0.0206
−0.3137 −0.0494 0.3641 0.3973 0 −0.0994 0 0.0126
−0.7135 −0.6906 0.3420 0.5066 0 −0.1064 0 0.0135

 ,

C =


0.5345 0.5345 0.5345 0.5345 0.5345 0.5345 0.5345 0.5345
3.0798 2.5430 2.0063 1.4696 0.9329 0.3962 −0.1406 −0.6773
15.7971 13.5277 10.8729 7.3240 1.8692 −0.3991 −0.3137 0.3641
21.4371 6.0859 −4.5902 −8.2806 −1.6159 0.2194 −0.7135 0.3420

 ,

which lead to a regular solution and the orthogonal left boundary vector corresponding
to this solution can be seen in Figure 5.7.
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Figure 5.7: Orthogonal left scaling vector on the interval [0, 1], solution 1

For another regular solution, we choose the eigenvalues λ1, λ4, λ5 and λ6 and we have

E =


1 0 0 0
0 0.2689 0 0
0 0 −0.1956 0
0 0 0 −0.0757

 ,

C =


0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.7284 0.4260 0.1959 0.0527 0 0.0568 0.2111 0.4460
−0.3308 0.9364 0.0647 −0.0127 0 −0.0182 0.0928 −0.0227
0.0956 −0.0224 −0.0072 0.0005 0 −0.0392 0.5182 −0.8487

 ,

U =


1.5119 0 0 0
−1.7863 3.1164 0 0
−0.6285 0.2697 10.8109 0
−2.2480 11.7180 −55.2470 6.8603

 .

Then using the transformation matrix U , we obtain

E =


1 0 0 0

−0.8638 0.2689 0 0
−0.4495 0.0402 −0.1956 0
0.1238 1.2428 0.6129 −0.0757

 ,

F =


0.5345 0.5157 0.5345 0.3863 0 −0.1148 0 0.0146
0.0263 0.3003 0.7585 0.6930 0 −0.1858 0 0.0236
0.8380 0.7937 −0.3477 −0.5406 0 0.1117 0 −0.0142
0.1064 −0.1062 −0.1341 −0.1294 0 0.0363 0 −0.0046

 ,

C =


0.5345 0.5345 0.5345 0.5345 0.5345 0.5345 0.5345 0.5345
1.6385 0.6962 −0.0210 −0.4674 −0.6316 −0.4546 0.0263 0.7585
−3.6016 10.0157 0.5302 −0.3448 −0.2222 −0.4032 0.8380 −0.3477
26.6700 −47.6878 −2.1237 0.5257 −0.7948 0.6044 0.1064 −0.1341

 .
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Figure 5.8 shows the second solution for the left boundary.

Figure 5.8: Orthogonal left scaling vector on the interval [0, 1], solution 2

There exist other possible combinations as well. For example, the choice of eigenvalues
λ1, λ2, λ4 and λ5 leads to the left boundary scaling vector in Figure 5.9.

Figure 5.9: Orthogonal left scaling vector on the interval [0, 1], solution 3

Two other regular solutions based on (1, 3, 5, 6) and (1, 2, 3, 7) are shown in Figure
5.10 and 5.11 respectively.
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Figure 5.10: Orthogonal left scaling vector on the interval [0, 1], solution 4

Figure 5.11: Orthogonal left scaling vector on the interval [0, 1], solution 5
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The choices of (2, 3, 6, 7) and (2, 3, 4, 5) lead to non-regular solutions which can be seen
in Figure 5.12 and 5.13.

Figure 5.12: Orthogonal left scaling vector on the interval [0, 1], solution 6

Figure 5.13: Orthogonal left scaling vector on the interval [0, 1], solution 7
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Finally, we want to plot the orthogonal scaling vector for the right side. Similar to the
left edge, we compute matrices W̃ and Ṽ :

W̃ =


A0 A1 A2 A3

0 0 A0 A1

0 0 0 0
0 0 0 0

 , Ṽ =


A4 A5 0 0
A2 A3 A4 A5

A0 A1 A2 A3

0 0 A0 A1

 ,

and then we have following left eigenvectors and their corresponding eigenvalues of matrix
Ṽ :

λ1 = 1, v1 = (0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536),

λ2 = 0.5, v2 = (0.6030, 0.4523, 0.3015, 0.1508, 0,−0.1508,−0.3015,−0.4523),

λ3 = 0.4672, v3 = (−0.5770,−0.4215,−0.2695,−0.1259, 0, 0.1555, 0.3329, 0.5157),

λ4 = 0.2689, v4 = (0.7284, 0.4260, 0.1959, 0.0527, 0, 0.0568, 0.2111, 0.4460),

λ5 = −0.1956, v5 = (−0.3308, 0.9364, 0.0647,−0.0127, 0,−0.0182, 0.0928,−0.0227),

λ6 = −0.0757, v6 = (0.0956,−0.0224,−0.0072, 0.0005, 0,−0.0392, 0.5182,−0.8487),

λ7 = 0, v7 = (0.7015, 0.0891, 0, 0, 0, 0,−0.0891, 0.7014).

As in the left boundary, we have many choices and here we present some of them. By
selecting the eigenvalues λ1, λ2, λ3 and λ4, we obtain matrices Ẽ and D:

Ẽ =


1 0 0 0
0 0.5 0 0
0 0 0.4672 0
0 0 0 0.2689

 ,

D =


0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.6030 0.4523 0.3015 0.1508 0 −0.1508 −0.3015 −0.4523
−0.5770 −0.4215 −0.2695 −0.1259 0 0.1555 0.3329 0.5157
0.7284 0.4260 0.1959 0.0527 0 0.0568 0.2111 0.4460

 .

Consequently to find an orthogonal solution, we compute matrix U :

U =


1.3333 0 0 0
−2.3360 2.4449 0 0
−4.5136 81.6236 83.3098 0
−5.7884 333.2705 394.4857 39.8692

 .
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Then we obtain new matrices Ẽ, F̃ and D:

Ẽ =


1 0 0 0

−0.8760 0.5 0 0
0.1164 1.0960 0.4672 0
0.2825 0.1591 0.9386 0.2689

 ,

F̃ =


0 0.0166 0 0.1307 0.4714 0.5727 0.4714 0.4585
0 0.0214 0 0.1683 0.6484 0.6710 0.2798 0.0693
0 −0.0130 0 −0.1021 −0.4413 −0.3450 0.2081 0.4464
0 0.0090 0 0.0706 0.3623 0.1960 −0.5932 −0.6441

 ,

D =


0.4714 0.4714 0.4714 0.4714 0.4714 0.4714 0.47140.4714
0.6484 0.2798 −0.0887 −0.4573 −0.8259 −1.1945 −1.5630− 1.9316
−0.4413 0.2081 0.5594 0.2190 −1.5958 −0.9455 1.52564.4550
0.3623 −0.5932 −0.0804 0.6225 −2.0465 11.3210 37.199168.4627

 .

Now we can plot the orthogonal right boundary vector ΦR = (φR0 , φ
R
1 , φ

R
2 , φ

R
3 ) as in Figure

5.14.

Figure 5.14: Orthogonal right scaling vector on the interval [0, 1], solution 1
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Furthermore, the choice of (1, 4, 5, 6) leads to a regular solution which can be seen in
Figure 5.15.

Figure 5.15: Orthogonal right scaling vector on the interval [0, 1], solution 2

Two other regular solutions have been shown in Figures 5.16 and 5.17.

Figure 5.16: Orthogonal right scaling vector on the interval [0, 1], solution 3, (1,3,5,6)
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Figure 5.17: Orthogonal right scaling vector on the interval [0, 1], solution 4, (1,5,6,7)

For the non-regular solution, we might choose the eigenvalues (2, 3, 4, 5) and obtain
the right boundary scaling vector in Figure 5.18.

Figure 5.18: Orthogonal right scaling vector on the interval [0, 1], solution 5

5.5 Construction of Orthogonal Multiwavelets on the

Interval

Given the orthogonal multigenerators on the interval [0, 1], our purpose is now to deter-
mine the corresponding multiwavelets. In this section, by applying the orthogonal con-
ditions for the multiwavelets, we intend to find the boundary multiwavelets and their
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recursion coefficients. Therefore, we may compute the matrices G and Ht, G̃ and H̃t in
(5.24) to determine the boundary multiwavelets and then visualize them.

Since our boundary scaling vectors are orthogonal, we may consider the boundary
multiwavelets ΨL and ΨR to be orthogonal as well, i.e.,

〈ΨL(x),ΨL(x)〉 = Il,

〈ΨL(x),ΦL(x)〉 = 0,

〈ΨL(x),Ψ(x− k)〉 = 0, k ≥ 0,

〈ΨL(x),Φ(x− k)〉 = 0, k ≥ 0,

(5.46)

for the left side and

〈ΨR(x),ΨR(x)〉 = Ir,

〈ΨR(x),ΦR(x)〉 = 0,

〈ΨR(x),Ψ(x− k)〉 = 0, k ≥ 0,

〈ΨR(x),Φ(x− k)〉 = 0, k ≥ 0,

for the right boundary multiwavelet. Consequently, the first relation of (5.46) and the
equation (5.24) for j = 0 lead to

〈ΨL(x),ΨL(x)〉

= 〈GΦL(2x) +
M−2∑
t=0

HtΦ(2x− t), GΦL(2x) +
M−2∑
t=0

HtΦ(2x− t)〉

=
1

2
GG> +

1

2

M−2∑
t=0

HtH
>
t =

1

2
(GG> +HH>),

where H = (H0, · · · , HM−2). Thus, the first condition in (5.46) reduces to

1

2
(GG> +HH>) = Il. (5.47)

Moreover, for the second condition in (5.46), we get

〈ΨL(x),ΦL(x)〉

= 〈GΦL(2x) +
M−2∑
t=0

HtΦ(2x− t), EΦL(2x) +
M−2∑
t=0

FtΦ(2x− t)〉

=
1

2
GE> +

1

2

M−2∑
t=0

HtF
>
t =

1

2
(GE> +HF>).

Therefore we obtain
GE> +HF> = 0. (5.48)

For the other orthogonal conditions in (5.46), we have

M−2∑
t=0

HtB
>
t−2k = 0,

M−2∑
t=0

HtA
>
t−2k = 0, (5.49)
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where k ≥ 0.
The conditions (5.49) lead to a trivial solution and is automatically satisfied. Therefore,

for finding the matrices G and Ht, we apply the conditions (5.47) and (5.48) and it yields
a system of equations. However, it is clear that this system may be underdetermined and
there exist several solutions anyway.
Similarly, for the construction of right boundary multiwavelet, we apply the following
orthogonal conditions

1

2
(G̃G̃> + H̃H̃>) = Ir,

G̃Ẽ> + H̃F̃> = 0,
(5.50)

where H̃ = (H̃−M+2, · · · , H̃0).
As stated above, the solutions obtained by our construction are not unique. In the

sequel, we present a couple of these solutions.

Example 5.6. For the left boundary multiwavelet corresponding to the scaling vector
in Example 5.4, we have to compute the matrices G and H in (5.47). Suppose that
G = (gij), 1 ≤ i, j ≤ 2, and H = (hij), 1 ≤ i ≤ 2, 1 ≤ j ≤ 4. After applying
the conditions (5.47) and (5.48) for matrices E and F in solution 1, we get a system
of equations with 5 degrees of freedom. For g12 = 0, h11 = −0.6, h21 = −0.55 and
h13 = h23 = 0, we have

G =

(
0.1252 0
0.2224 1.1206

)
,

H =

(
−0.6000 0.8339 0 0.9638
−0.5500 0.2396 0 −0.5786

)
.

Consequently, we obtain the orthogonal left boundary multiwavelet depicted in Figure
5.19.

Figure 5.19: Orthogonal left multiwavelet on the interval [0, 1], solution 1
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The left boundary multiwavelet corresponding to solution 2 in Example 5.4 has been
shown in Figure 5.20. Here we set g12 = 0, h11 = −0.65, h21 = −0.55 and h13 = h23 = 0.
Then we obtain

G =

(
0.1646 0
−0.0167 0.7525

)
,

H =

(
−0.6500 0.8274 0 0.9305
−0.5500 0.5763 0 −0.8937

)
.

Figure 5.20: Orthogonal left multiwavelet on the interval [0, 1], solution 2

Similar to the left boundary multiwavelet, we find the matrices G̃ and H̃ using the
conditions (5.50). First of all, we compute the solution corresponding to the solution 1

for the right boundary scaling vector in Example 5.4. Let G̃ = (g̃ij), 1 ≤ i, j ≤ 2, and

H̃ = (h̃ij), 1 ≤ i ≤ 2, 1 ≤ j ≤ 4. We set g̃12 = 0, h̃13 = 0.55, h̃21 = 0.45 and h̃11 = h̃21 = 0
and obtain

G̃ =

(
0.0699 0
−0.0996 −1.2752

)
,

H̃ =

(
0 1.0243 0.5500 −0.8022
0 −0.3654 0.4500 −0.1667

)
.

Then we get the orthogonal right boundary multiwavelet depicted in Figure 5.21.
Moreover, for the right boundary multiwavelet corresponding to solution 2 in Example

5.4, we set g̃12 = 0, h̃13 = 0.55, h̃23 = 0.45 and h̃11 = h̃21 = 0 and obtain

G̃ =

(
0.0575 0
0.2921 0.9095

)
,

H̃ =

(
0 −1.2774 0.5500 −0.2498
0 0.3756 0.4500 −0.8626

)
.

These matrices lead to the solution 2 showing in Figure 5.22.
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Figure 5.21: Orthogonal right multiwavelet on the interval [0, 1], solution 1

Figure 5.22: Orthogonal right multiwavelet on the interval [0, 1], solution 2
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Chapter 6

Conclusion and Perspectives

In this thesis, we have discussed the construction of boundary scaling vectors and mul-
tiwavelets, which are either orthonormal or interpolating. We introduced two different
approaches, to find appropriate boundary vectors. In the following, we want to summa-
rize our results and discuss the future prospects.

The first approach given in chapter 4 leads to interpolating scaling vector on the in-
terval. By using the Lagrange polynomials, we defined an interpolation operator and then
boundary interpolating functions which still satisfy the interpolation property and have
the same approximation order as those on the line. Therefore, we expect our approach to
be useful in application purposes, especially for solving the boundary value problems. The
only disadvantage of this approach is that the boundary scaling vectors can not be or-
thonormal anymore. Consequently, we proved the error estimate of interpolation operator
in L2(R) as well as L2[0, 1] which plays a significant role in our construction. Moreover,
the refinability of boundary scaling vectors was verified which is important to construct
a multiresolution analysis on the interval. In addition, we constructed the boundary mul-
tiwavelates corresponding to interpolating scaling vectors. Finally, we provided some ex-
amples which are the first ones of their kind throughout the known literature.

In chapter 5, we presented a second approach, base on orthonormal scaling vectors
in [42]. Applying the orthogonality and refinability conditions, we tried to construct new
edge functions, which are orthonormal and keep the approximation order. As states before,
this new boundary functions can be put to good use in signal processing when the signal
is finite. In contrast to the results in [2], which are only for the case of four masks and
provide the approximation order 1 or 2, our construction justifies for an arbitrary number
of masks and better approximation order. Consequently, we constructed corresponding
orthogonal multiwavelets and the Discrete Multiwavelet Transform on the interval which
is a very useful tool in applications.

In the following, we want to present some future researches:

� In this thesis we discuss more theoretical aspects. The implementation of new bases
and numerical experiments will be one of the possible future works.

� We introduced an approach to construct the interpolating multiwavelets on the
interval. The next challenge is to generalize the approach to higher-dimensional
domains. We will start with simple geometries such as cubes. Our aim will be to
construct generalized, highly anisotropic tensor wavelets as, e.g., introduced in [26]
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for the single generator case. The approximation properties of these new bases will
be carefully studied, and similar to the single generator setting we expect dimension-
independent convergence rates. We expect that these new bases will be extremely
well-suited for the treatment of high-dimensional problems.

� The next step will be the generalization to more complicated domains. We will
restrict ourselves to polygonal and polyhedral domains. For these kinds of domains, a
first construction of generalized tensor wavelets has been performed in [10]. There, by
the application of extension operators, bases on domains have been constructed from
corresponding bases on subdomains that form a non-overlapping decomposition. As
subdomains, hypercubes (or smooth parametric images of those), equipped with
tensor product wavelet bases have been used. Of course, for our purposes, this
construction has to be generalized to the multiwavelet case. Once again, we will
study the approximation properties, and similar to the construction in [10], we
expect dimension-independent convergence rates.
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Zusammenfassung

In den letzten Jahren haben sich Wavelets zu einem hochwertigen Hilfsmittel in der ange-
wandten Mathematik entwickelt. Eine Waveletbasis ist im Allgemeinen ein System von
Funktionen, das durch die Skalierung, Translation und Dilatation einer endlichen Menge
von Funktionen, den sogenannten Mutterwavelets, entsteht. Wavelets wurden sehr erfol-
greich in der digitalen Signal- und Bildanalyse, z. B. zur Datenkompression verwendet.
Ein weiteres wichtiges Anwendungsfeld ist die Analyse und die numerische Behandlung
von Operatorgleichungen. Insbesondere ist es gelungen, adaptive numerische Algorith-
men basierend auf Wavelets für eine riesige Klasse von Operatorgleichungen, einschließlich
Operatoren mit negativer Ordnung, zu entwickeln, siehe [15,16]. Der Erfolg der Wavelet-
Algorithmen ergibt sich als Konsequenz der folgenden Fakten:

� Gewichtete Folgennormen von Wavelet-Expansionskoeffizienten sind in einem bes-
timmten Bereich (abhängig von der Regularität der Wavelets) äquivalent zu
Glättungsnormen wie Besov- oder Sobolev-Normen.

� Für eine breite Klasse von Operatoren ist ihre Darstellung in Wavelet-Koordinaten
nahezu diagonal.

� Die verschwindenden Momente von Wavelets entfernen den glatten Teil einer Funk-
tion und führen zu sehr effizienten Komprimierungsstrategien.

Diese Fakten können z. B. verwendet werden, um adaptive numerische Strategien mit
optimaler Konvergenzgeschwindigkeit zu konstruieren, in dem Sinne, dass diese Algo-
rithmen die Konvergenzordnung der besten N-Term-Approximationsschemata realisieren.
Die maßgeblichen Ergebnisse lassen sich für lineare, symmetrische, elliptische Operator-
gleichungen erzielen. Es existiert auch eine Verallgemeinerung für nichtlineare elliptische
Gleichungen [17]. Hier verbirgt sich jedoch eine ernste Schwierigkeit: Jeder numerische Al-
gorithmus für diese Gleichungen erfordert die Auswertung eines nichtlinearen Funktionals,
welches auf eine Wavelet-Reihe angewendet wird. Obwohl einige sehr ausgefeilte Algorith-
men existieren [22], erweisen sie sich als ziemlich langsam in der Praxis. In neueren Studien
wurde gezeigt, dass dieses Problem durch sogenannte Interpolanten verbessert werden
kann [61]. Dabei stellt sich heraus, dass die meisten bekannten Basen der Interpolanten
keine stabilen Basen in L2[a, b] bilden.

In der vorliegenden Arbeit leisten wir einen wesentlichen Beitrag zu diesem Problem
und konstruieren neue Familien von Interpolanten auf beschränkten Gebieten, die nicht
nur interpolierend, sondern auch stabil in L2[a, b] sind. Da dies mit nur einem Generator
schwer (oder vielleicht sogar unmöglich) zu erreichen ist, werden wir mit Multigeneratoren
und Multiwavelets arbeiten. Es wurde in den Artikeln [42,43,45] gezeigt, dass es im Rah-
men von Multiwavelets möglich ist, orthogonale und biorthogonale Basen zu konstruieren,
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die zumindest auf der reellen Linie interpolierend sind. Das Ziel dieses Projektes ist es,
die Konstruktionen in [42] auf einem Intervall anzupassen. Zunächst beschränken wir uns
auf die Interpolationseigenschaft. Innerhalb des Intervalls verwenden wir ausschließlich
die interpolierenden Wavelets aus [42]. Um jedoch die Approximationseigenschaften der
Multiskalenanalyse zu bewahren, sind einige Modifikationen am Rand erforderlich, in dem
Sinne, dass die polynomiale Genauigkeit beibehalten wird. Diese Modifikationen müssen
so durchgeführt werden, dass die Interpolationseigenschaft nicht zerstört wird. Wir folgen
teilweise dem Ansatz in [4, 5]. Die Analyse in diesen Artikeln wurde nur für einen einzel-
nen Generator durchgeführt und muss daher für mehrere Generatoren verallgemeinert
werden. Daher werden wir Multigeneratoren konstruieren, die einen kleinen Träger haben
und deren interpolierende Natur zu einem praktischen Weg führt, um die Multiskalen-
analyse auf komplexeren Geometrien zu erzielen.

Der nächste Schritt ist die Konstruktion von den Skalierungsvektoren, um die Orthog-
onalität zu bewahren. Für den Fall eines Generators existieren bereits mehrere Ansätze
zur Konstruktion von biorthogonalen und orthonormalen Basen auf Intervallen [18,21,58].
Jedoch können skalare orthogonale Wavelets vorteilhafte Eigenschaften wie kompakter
Träger, Approximationsordnung und Glätte nicht gleichzeitig aufweisen. Darüber hinaus
betrachten die bisher veröffentlichten Arbeiten einen speziellen Fall orthogonaler Wavelets
auf dem Intervall. Um diese Einschränkungen zu überwinden, konstruieren wir orthogo-
nale Multigeneratoren und Multiwavelets, die alle vorteilhaften Eigenschaften bewahren.
Motiviert durch die Ergebnisse in [2, 3, 41] entwickeln wir einen Ansatz, um die Diskrete
Multiwavelet-Transformation (DMWT) auf das Intervall anzupassen. Der DMWT wird
zum Entrauschen und Komprimieren von unendlichen Signalen und Bildern verwendet. In
vielen Anwendungen haben wir es mit endlichen Signalen zu tun und müssen die DMWT
nahe der Grenzen modifizieren. Wir benutzen wieder die Konstruktion von Karsten Koch
in [42] und versuchen, die passenden Randfunktionen an den Kanten zu finden.

Diese Arbeit ist wie folgt gegliedert. In Kapitel 2 führen wir die notwendigen Nota-
tionen und Definitionen ein. Unter anderem definieren wir in Unterkapitel 2.1.1 Sobolev-
Räume. Im Anschluss stellen wir einige Definitionen vor, die in dieser Arbeit benötigt
werden. Kapitel 3 ist der Wavelet- und Multiwavelet-Einführung gewidmet. In Abschnitt
3.1 wiederholen wir kurz einige Grundkonzepte von Wavelets. Außerdem betrachten wir
die Skalierungsvektoren und ihre Eigenschaften in Abschnitt 3.2. Hier erfolgt zunächst
die Einführung der Diskreten Multiwavelet-Transformation und Multiwavelets. Insbeson-
dere konzentrieren wir uns auf die Konstruktion von Karsten Koch in [42]. In Kapitel 4
passen wir diese Konstruktion an einen beschränkten Definitionsbereich an. In Abschnitt
4.1 entwickeln wir eine Methode zur Konstruktion der interpolierenden Skalierungsvek-
toren auf dem Intervall [0, 1]. Im nächsten Abschnitt werden wir überprüfen, ob diese auch
verfeinerbar sind. Dies ist besonders wichtig, um eine neue Multiskalenanalyse für das In-
tervall zu konstruieren. Abschnitt 4.3 widmet sich der Approximationsordnung der neuen
Skalierungsvektoren. Zuerst untersuchen wir die Fähigkeit der Randskalierungsvektoren,
die Polynome zu reproduzieren. Im Mittelpunkt dieses Abschnitts steht die Überprüfung,
ob der Interpolationsoperator die Fehlerabschätzungen in L2(R) und dann in L2[0, 1]
erfüllt. Nachfolgend visualisieren wir unsere Konstruktion und geben einige Beispiele an.
Schließlich konstruieren wir, aufbauend auf den neuen, interpolierenden Skalierungsvek-
toren, Multiwavelets. In Kapitel 5 entwickeln wir einen Ansatz zur Konstruktion orthog-
onaler Randskalierungsvektoren, die einen kleinen Träger und die gleiche Regularität wie
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die Skalierungsvektoren auf der reellen Linie haben. Zunächst betrachten wir die notwendi-
gen und hinreichenden Bedingungen für unsere Konstruktion. Dann modifizieren wir in
Abschnitt 5.2 die DMWT, um geeignete Funktionen an den Grenzen zu finden. Außerdem
berechnen wir die notwendige Anzahl von Randskalierungsfunktionen an jeder Kante. Der
nächste Abschnitt beschäftigt sich mit den notwendigen und hinreichenden Bedingungen
für die Approximationsordnung orthogonaler Randvektoren. In Abschnitt 5.4.1 leiten wir
den allgemeinen Algorithmus unserer Konstruktion her und stellen dann einige Beispiele
vor. Der letzte Abschnitt ist der Konstruktion orthogonaler Multiwavelets gewidmet, die
orthogonalen Randvektoren entsprechen, sowie deren Visualisierung. Abschließend fassen
wir in Kapitel 6 unsere Ergebnisse zusammen und diskutieren die zukünftige Forschung.
Außerdem befindet sich ab Seite 97 eine Liste zur Erklärung der, in dieser Arbeit verwen-
deten, Notation.
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Notation

We list here all used notations in this thesis. The number in the right column refers to
the page where the symbol is introduced or where it appears first.

N Set of natural numbers
N0 Set of non-negative integers
Z Set of integers
R Set of real numbers
C Set of complex numbers
Rn n-dimensional Euclidian space
| · | Absolute value, Euclidian norm on Rn

〈·, ·〉 Standard scalar product on Rn 40

‖·‖2 norm
√
〈·, ·〉 on Rn 40

A ⊆ B A is a subset of B
A ⊂ B A is a proper (or strict) subset of B, i.e., A ⊂ B and A 6= B
↪→ Continuously linearly embedded 9
suppf Support of a function f 5
ess sup Essential supremum of a function f 6
span(S) Set of all finite linear combinations of elements (vectors) of S 20
range(A) Set of all possible linear combinations of column vectors of

matrix A
12

null(A) Set of solutions to the equation Ax = 0 12
rank(A) Dimension of the vector space generated (or spanned) by

columns of A
62

spec(A) Spectrum of an operator or a matrix A 21
bxc greatest integer ≤ x 63
dxe smallest integer ≥ x 61
δi,j Kronecker delta
χA(x) Characteristic function for a given subset A 13
Ω Domain, i.e., an open subset in Rn 5
∂Ω Boundary of a domain Ω ⊆ Rn 7
Dαf , α ∈ Nn

0 generalized/weak/distributional derivative 5
Lp(Ω) Lebesgue space 6
`p(Z) Sequence space 6
Lloc1 (Ω) Space of local integrable functions 7
Cm(Ω) Space of m times continuously differentiable functions 5
Cm,k(Ω) Space of Hölder continuous functions 6
C∞0 (Ω) Space of test functions 6
Wm
p (Ω) Sobolev space with integer smoothness 7
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W s
p (Ω) Sobolev space with non-negative smoothness 7

Hs(Ω) Sobolev space with non-negative smoothness and parameter
p = 2

8

〈f, g〉 Inner product for two functions or two vectors f and g 6
ϕ̂ Fourier transform of a function ϕ 9
S(Rn) Schwartz space of rapidly decreasing real-valued functions on

Rn

9

S ′(Rn) Space of real-valued tempered distributions 9
{Vj}j∈Z Multiresolution analysis (MRA) 13

{Ṽj}j∈Z Dual multiresolution analysis 24
Wj Wavelet/Multiwavelet space 15
(ak)k∈Z Masks of a refinable function 14
(bk)k∈Z wavelet coefficients 15
φj,k Dyadic shifts and dilations of the scaling function 14

φ̃ Dual of scaling function φ 17
ψj,k Mother wavelet corresponding to φj,k 13
Φ Multigenerator/Scaling vector 17

Φ̂ Fourier transform of the scaling vector Φ 18

Φ̃ Dual of scaling vector Φ 24
Ψ Multiwavelet 22

Ψ̂ Fourier transform of the multiwavelet Ψ 22
(Ak)k∈Z Masks of refinable scaling vector 18
A(z) Symbol matrix of a refinable scaling vector 18

Ã Symbol matrix of Φ̃ 24
Ai(z) ith subsymbol of A(z) 19
(Bk)k∈Z Multiwavelet coefficients 22
B(z) Symbol matrix of a multiwavelet 22

A
>

Conjugate transpose of a matrix A 24
φL Left boundary scaling function 34
φR Right boundary scaling function 34
ΦL Left boundary scaling vector 34
ΦR Right boundary scaling vector 34
Φ[ ] Scaling vector on the interval 38
A[ ] Mask of refinable scaling vector on the interval 38
ψL Left boundary wavelet 49
ψR Right boundary wavelet 50
ΨL Left boundary multiwavelet 49
ΨR Right boundary multiwavelet 50
Ψ[ ] Multiwavelet on the interval 49

‖f‖Cm(Ω), m ∈ N0 5

‖f‖Cm,k(Ω), m ∈ N0, 0 < k < 1 6
‖f‖Lp(Ω), 1 ≤ p ≤ ∞ 6

‖c‖`p , 1 ≤ p ≤ ∞ 6

‖f‖Wm
p (Ω), m ∈ N0, 1 ≤ p ≤ ∞ 7
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‖f‖W s
p (Ω), 0 < s ∈ R, 1 ≤ p ≤ ∞ 7

‖f‖m,p,Ω, m ∈ N0, 1 ≤ p ≤ ∞ 8
‖f‖Hs(Rn), 0 < s ∈ R 10
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approximation order, 25

Bessel potential, 10
boundary interpolating vectors, 34

cascade algorithm, 18
Cauchy–Schwarz inequality, 6
Condition E, 19
cone property, 7

Discrete Multiwavelet Transform (DMWT),
22

discrete wavelet transform (DWT), 15
distribution, 9
domain, 5

error estimate, 38
extention property, 8
extrapolating polynomials, 33

father wavelet, 14
fine detail at resolution, 15
finite cone, 7

inner product, 6
interpolating, 20

Jackson-type inequality, 25

Kronecker product, 19

Lagrange polynomials, 33
left singular vectors, 11
linearly independent translates, 20
Lipschitz domain, 7

mask, 14
matrix refinement equation, 17

mother wavelet, 13
multigenerators, 2
multiindex, 5
multiresolution analysis (MRA), 13
multiwavelets, 2

refinable, 57
refinement equation, 14
regular distribution, 9
resolution, 14
right singular vectors, 11

scale, 14
scaling function, 14
Singular Value Decomposition (SVD), 11
singular values, 11
sparse, 16
subdivision scheme, 18
subsymbol, 19
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support, 5
SVD expansion, 12

test functions, 6
transfer operator, 19
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