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Preface

This thesis is a summary of my work on two families of NP-hard graph problems that
find application in social network analysis and in the field of artificial intelligence.
The research for this work was performed from June 2017 to September 2021. From
June 2017 until September 2017, I worked as student research assistant in the group
of Christian Komusiewicz at Friedrich-Schiller-Universität Jena. In October 2017,
Christian Komusiewicz moved from Friedrich-Schiller-Universität Jena to Philipps-
Universität Marburg and I became a research assistant in his group in Marburg.

First and foremost, I want to thank my doctoral supervisor Christian Komusiewicz
for giving me the opportunity to work in his group, for proposing interesting problems
to study, for his support, and for many fruitful discussions helping me to improve my
understanding of the field significantly. Furthermore, I want to thank my colleagues
and friends Nils Morawietz, Frank Sommer, and Jaroslav Garvardt for creating a
wonderful working atmosphere, and for the pleasant and productive cooperation. I
also want to express my gratitude to my coauthors Laurent Bulteau, Nils Jakob Eck-
stein, Christian Komusiewicz, Nils Morawietz, Jannik Schestag, Frank Sommer, and
Manuel Sorge. Finally, I want to thank my parents Ralf Grüttemeier and Andrea
Grüttemeier, whose emotional and financial support made it possible for me to study
at the university.

The chapters of this thesis are based on journal and conference publications which
were created in close collaboration with coauthors. Below, I provide an overview on
which publication contributed to which chapter. I will also specify the contributions
of all coauthors to these publications. Besides the publications that are part of this
thesis, I have contributed to papers about edge deletion problems in edge-colored
graphs [82, 48], graph problems that aim to prevent small cuts in a graph [81, 134,
135], and on string factorization problems [80].

Part II: Strong Triadic Closure. Chapter 2 is based on parts of the publication
“On the Relation of Strong Triadic Closure and Cluster Deletion”, which appeared
in Algorithmica [77]. A preliminary version of this publication appeared in Proceed-
ings of the 44th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG ’18) [75]. Christian Komusiewicz proposed to study the two problems
Strong Triadic Closure and Cluster Deletion. Both coauthors partici-
pated in the development of the dichotomy on H-free graphs, the fixed-parameter
algorithms for the parameter ℓ and the kernel lower bound. I worked out the de-
tails and prepared the draft of the dichotomy and the kernel lower bound. Christian
Komusiewicz prepared the draft of the fixed-parameter algorithms.
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Chapter 3 and Chapter 4 are based on the publication “Your rugby mates don’t
need to know your colleagues: Triadic closure with edge colors”, which appeared in
Journal of Computer and System Sciences [20]. A preliminary version of this publi-
cation appeared in Proceedings of the 11th International Conference on Algorithms
and Complexity (CIAC ’19) [19]. I proposed to study Multi-STC and its general-
izations at the 7th annual research retreat of the Algorithmics and Computational
Complexity group of TU Berlin, Darlingerode, Germany, March 18th–23rd, 2018.
The results about the classic and the fine-grained complexity were developed jointly
by all coauthors. Christian Komusiewicz worked out the details of the 3m ·nO(1) time
algorithm. I prepared the draft and worked out the technical details of the ETH-
based lower bound. The fixed-parameter algorithm and the problem kernelization
for k1 were developed jointly by Christian Komusiewicz and me. I prepared the
draft and worked out the technical details. Furthermore, I showed the W[1]-hardness
for VL-Multi-STC.

Chapter 5 is based on parts of the publication “Maximum Edge-Colorable Sub-
graph and Strong Triadic Closure Parameterized by Distance to Low-Degree Graphs”,
which appeared in Proceedings of the 17th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT ’20) [78]; a full version of this publication is planned.
Nils Morawietz and I developed the problem kernelization for ECS parameterized
by ξc−1. The problem kernelization for ECS parameterized by λc and the problem
kernelization for Multi-STC parameterized by ξ⌊ c

2
⌋+1 were jointly developed by all

coauthors. I prepared the draft and worked out the technical details of all results
contained in this chapter.

Part III Bayesian Network Structure Learning. Parts of Chapter 6 are based
on the publication “Learning Bayesian Networks Under Sparsity Constraints: A Pa-
rameterized Complexity Analysis”, which appeared in Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (IJCAI ’20) [76]; a full version
of this publication is currently under review. Christian Komusiewicz proposed to
study Bayesian Network Structure Learning. The XP algorithms for (Π0+
v)-Skeleton BNSL, (Π1 + v)-Moral BNSL, the FPT algorithm for (Π0 + e)-
Skeleton BNSL, and the hardness results from Section 6.4 were jointly devel-
oped by both coauthors. The W[2]-hardness for (Π0 + v)-Skeleton BNSL was
discovered in a discussion by Nils Morawietz and me. I developed the kernel lower
bound forVanilla-BNSL and the W[1]-hardness results for (Π0+e)-Moral BNSL
and (ΠF + e)-Moral BNSL. I prepared the draft for all results in this chapter.

Chapter 7 is based on the publication “On the Parameterized Complexity of
Polytree Learning”, which appeared in Proceedings of the 30th International Joint
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Conference on Artificial Intelligence (IJCAI ’21) [83]; a full version is planned. I pro-
posed to study Polytree Learning. The FPT algorithm for parameterization by
the number n of vertices was jointly developed by all coauthors. Nils Morawietz and
I developed the kernel lower bound for n and the W[1]-hardness for parameterization
by the number d of dependent vertices. Nils Morawietz worked out the technical de-
tails and prepared the original draft of all of these results. Christian Komusiewicz
proposed to consider the technique of computing representative sets in a matroid as
an approach to solve Polytree Learning. I developed the FPT algorithm for d+p
and the problem kernel and prepared the draft for these two results.

Chapter 8 is based on the publication “Efficient Bayesian Network Structure
Learning via Parameterized Local Search on Topological Orderings”, which ap-
peared in Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI
’21) [79]. Christian Komusiewicz proposed to study ordering-based local search. He
also implemented a local search algorithm and performed the preliminary experi-
ments. All theoretical results were jointly developed by all coauthors. Nils Moraw-
ietz worked out the technical details and prepared the draft of the polynomial-time
algorithm for W-BNSL when the directed superstructure is a DAG and the W[1]-
hardness proofs for Insert-Local W-BNSL and Swap-Local W-BNSL. I worked
out the technical details and prepared the draft of the FPT algorithms for Inv-Local
W-BNSL and InvWin-Local W-BNSL.
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Abstract

In this thesis we investigate the computational complexity of two families of graph
problems with applications in social network analysis and artificial intelligence. We
analyze the classic, fine-grained, and parameterized complexity of the considered
problems.

Social networks can be modeled with the help of undirected graphs, in which the
vertices correspond to the agents in the network and an edge between two vertices
corresponds to a relationship or an interaction between two agents. One task in social
network analysis is to classify the relationships into strong and weak relationships,
if only the graph structure of the social network is known. In the computational
problem Strong Triadic Closure (STC) we are given an undirected graph G
and an integer k and aim to label the edges of G as strong or weak such that at
most k edges are weak and G contains no induced P3 with two strong edges. We
investigate the classic and parameterized complexity of STC. We also study a version
of STC with multiple strong relationship types (Multi-STC) and introduce further
generalizations where—for example—one may use vertex lists (VL-Multi-STC) to
restrict the set of possible strong relationship types incident with each vertex. We
show that under the Exponential Time Hypothesis (ETH), VL-Multi-STC cannot
be solved in time 2o(|V |2). We then proceed with a parameterized complexity analysis
of Multi-STC and its generalizations. For example, we provide a problem kernel
for Multi-STC parameterized by an edge deletion distance to low-degree graphs.

A Bayesian network structure is a directed acyclic graph, where the vertices cor-
respond to random variables and the arcs correspond to conditional dependencies.
We study the algorithmic task of learning an optimal network structure from ob-
served data using a score-based approach. Extending previous work, we analyze
the parameterized complexity of learning an optimal network structure when ad-
ditional constraints are posed on the network structure or on its moralized graph.
For example, we show that learning an optimal network whose moralized graph
has dissociation number at most k can be done in polynomial time for constant k.
Furthermore, we analyze the parameterized complexity of learning a good network
structure where the underlying undirected graph is acyclic. This problem variant is
known as Polytree Learning. Finally, we study parameterized local search al-
gorithms for learning a network structure. We consider the ordering-based approach
where a network structure is represented by a topological ordering. For a given in-
teger r and a pre-defined distance function on the space of orderings, we aim to find
an optimal ordering that has distance at most r to a given ordering. We analyze the
parameterized complexity for r with regard to four natural distance functions.
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Zusammenfassung

In dieser Dissertation untersuchen wir die Berechnungskomplexität zweier Familien
von Graphproblemen, die Anwendung im Bereich der Analyse sozialer Netzwerke
und im Bereich der künstlichen Intelligenz finden. Wir analysieren die klassische,
fine-grained und parametrisierte Komplexität.

Soziale Netzwerke können mit Hilfe ungerichteter Graphen modelliert werden,
wobei die Knoten den Agenten und die Kanten den Beziehungen oder Interaktionen
entsprechen. Eine Aufgabe in der Analyse sozialer Netzwerke ist es, Beziehungen
zwischen Agenten als stark oder schwach zu klassifizieren, wenn nur die Netzwerk-
struktur gegeben ist. In Strong Triadic Closure (STC) ist die Eingabe ein
Graph G und eine ganze Zahl k. Das Ziel ist es, die Kanten in G als stark oder
schwach zu klassifizieren, sodass G keinen induzierten P3 mit zwei starken Kanten
enthält. Wir untersuchen die klassische und die parametrisierte Komplexität von
STC und einer STC-Version mit mehreren starken Verbindungstypen (Multi-STC)
und führen weitere Verallgemeinerungen des Problems ein, in denen etwa Knotenlis-
ten benutzt werden können um mögliche starke Verbindungstypen an einem Knoten
einzuschränken (VL-Multi-STC). Wir zeigen, dass VL-Multi-STC unter der An-
nahme der Exponential Time Hypothesis (ETH) nicht in 2o(|V |2) Zeit gelöst werden
kann. Bezüglich der parametrisierten Komplexität liefern wir etwa einen Problemk-
ern für Multi-STC parametrisiert durch einen Kantenlöschungsparameter, der die
Distanz von G zu einem Graphen mit niedrigem Maximalgrad misst.

Eine bayessche Netzwerkstruktur ist ein gerichteter Graph, wobei die Knoten
Zufallsvariablen und die Kanten bedingten Abhängigkeiten entsprechen. Wir un-
tersuchen die algorithmische Aufgabe eine optimale Netzwerkstruktur aus gemesse-
nen Daten mit Hilfe eines score-basierten Ansatzes zu lernen. In Anknüpfung an
bestehende Forschung untersuchen wir die parametrisierte Komplexität des Lernens
einer Netzwerkstruktur, wenn zusätzliche Bedingungen an das Netzwerk oder an den
moralisierten Graph gestellt werden. Wir zeigen beispielsweise, dass das Lernen einer
Netzwerkstruktur, deren Moralgraph eine Dissociation Number von höchstens k hat,
in polynomialzeit lösbar ist, falls k eine Konstante ist. Weiterhin analysieren wir die
parametrisierte Komplexität vom Lernen einer Netzwerkstruktur, deren unterliegen-
der, ungerichteter Graph azyklisch ist. Diese Problemversion ist auch als Poly-
tree Learning bekannt. Schließlich betrachten wir parametrisierte lokale Suche
für das Lernen von bayesschen Netzwerkstrukturen. Wir verwenden dabei einen
ordnungsbasierten Ansatz, in dem eine Netzwerkstruktur durch ihre topologische
Sortierung repräsentiert wird. Für eine gegebene Zahl r und eine vordefinierte Dis-
tanzfunktion auf dem Raum der topologischen Sortierungen geht es darum, eine op-
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timale Sortierung mit Distanz höchstens r zur gegebenen Sortierung zu finden. Wir
analysieren die parametrisierte Komplexität für den Parameter r für vier natürliche
Distanzfunktionen.
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Many complex systems can be modeled as graphs, which are mathematical struc-
tures to model relations between objects. Roughly speaking, a graph is a collection of
objects (called vertices) together with a collection of pairwise relations (called edges
or arcs) between the vertices. With this simple structure at hand, we are able to
describe complex systems with thousands or millions of objects. Graphs can model
biological processes [130], links between web pages [169], friendships between agents
in a social network [72], or mathematical relations like conditional dependencies of
random variables [145]. It is thus well-motivated to study computational problems
that aim to extract informations from given graphs or to find graph structures rep-
resenting a given set of data. We often face the algorithmic challenge that many
such problems are NP-hard, which indicates that these problems are presumably not
solvable within polynomial time in the size of the given input [67]. Algorithms that
solve these problems have a running time that is superpolynomial in the size of the
input. For large instances, a superpolynomial—for example exponential—running
time in the input size might become impractical.

To deal with the NP-hardness we follow the approach of parameterized algorith-
mics [38, 46, 58, 139]. In this approach we aim to compute an exact solution in a
running time that is strongly influenced by some structural parameters of the input
instance. In other words, we analyze the running time of algorithms with a function
depending on multiple parameters instead of only the total input size. Some of these
parameters have a crucial influence on the running time if the running time—for
example—contains a factor that grows exponentially in the size of the parameter.
For other parameters, the influence might be only polynomial. Given an instance
where parameters that have a crucial influence on the running time are small, the
proposed algorithms might be an efficient approach to solve this instance. In this
work, we study parameterized algorithmics for two families of computational prob-
lems concerning graph-based data analysis.

Social networks are graphs that represent relationships between agents. For ex-
ample, every profile of an online social network can be modeled as a vertex and two
vertices are connected by an edge if the corresponding users are friends with each
other. Modern social networks may have a high number of agents and analyzing
these networks requires efficient algorithms. Strong Triadic Closure is the task
of determining the strength of relationships in a social network [164] by using a struc-
tural notion that was established in sociological work [72, 73]. In the first part of
this work, we analyze the classic and parameterized complexity of Strong Triadic
Closure and multiple generalizations of this problem.

In the second part of this work, we study the task of learning the structure
of Bayesian networks [143]. Bayesian networks are a versatile tool in artificial intel-
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ligence that enable machines to reason probabilistically [114]. A Bayesian network
is a compact representation of a multivariate probability distribution. One impor-
tant part of a Bayesian network is its so-called network structure, which is a graph
representing conditional dependencies between random variables. This graph can be
built from observational data. More precisely, given a data set containing multiple
instantiations of the random variables, one aims to compute a network structure
that has a good trade-off between matching the data set and providing querying
efficiency [160]. In this work, we study multiple variants of the task of finding good
network structures.

The aim of this work is to provide a (parameterized) complexity overview for
these two families of practically motivated NP-hard problems. In this overview, we
provide negative and positive results for the studied problems. The negative results
are intractability results that rely on standard complexity theoretic assumptions.
These lower bounds can be seen as a guide in the algorithm design process. The
positive results are concrete efficient algorithms to solve the problems or reduction
rules for an efficient pre-processing of input instances. While the presented results
are purely theoretic, we believe that some positive results have a practical potential.
Experimental evaluations are left open for future work.
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Chapter 1

Preliminaries

In this chapter, we give an overview of the central definitions, notations, and concepts
that we use in this work.

Given a set S, we let 2S denote the power set of S. We let N denote the set
of positive integers and we let N0 denote the set of non-negative integers. Given a
mapping f : A→ B and a subset A′ ⊆ A, we let f |A′ : A′ → B with f |A′(a) := f(a)
denote the restriction of f to A′. Given a set S, we call a family S := {S1, . . . , St}
of subsets of S a partition of S if Si ∩ Sj = ∅ for i ̸= j and

⋃︁
i∈{1,...t} Si = S.

A finite sequence of length r is an r-tuple A := (a1, . . . , ar) of specific elements. For
given j ∈ {1, . . . , r}, we refer to the jth element on A as A(j).

1.1 Graph Theory

We consider undirected and directed graphs. In the following, we describe the main
concepts and notations of graphs that we use in this work.

1.1.1 Undirected Graphs

A simple undirected graph is a tuple G := (V,E) with a vertex set V and an edge
set E ⊆ {{u, v} ⊆ V | u ̸= v}. If not stated otherwise, we set n := |V | and m := |E|.
Two vertices u ∈ V and v ∈ V are adjacent if {u, v} ∈ E. A vertex v ∈ V is incident
with an edge e ∈ E if v ∈ e. Two edges e1 and e2 are incident if |e1 ∩ e2| = 1. Given
a vertex v ∈ V , we define NG(v) := {u ∈ V | {u, v} ∈ E} as the open neighborhood
of v and NG[v] := NG(v) ∪ {v} as the closed neighborhood of v. Given a vertex
set V ′ ⊆ V , we define NG(V

′) :=
⋃︁
v∈V ′ NG(v). We define degG(v) := |NG(v)| as the

degree of v. We say G has maximum degree ∆ for some ∆ ∈ N0 if degG(v) ≤ ∆
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Chapter 1. Preliminaries

for all v ∈ V . Given two vertex sets V1 ⊆ V and V2 ⊆ V , we let EG(V1, V2) :=
{{v1, v2} ∈ E | v1 ∈ V1 and v2 ∈ V2} denote the set of edges between V1 and V2.
As a shorthand, we set EG(V1) := EG(V1, V1). For all notations we may omit the
subscript G if the graph is clear from the context.

Given a set V ′ ⊆ V , we let G[V ′] := (V ′, EG(V
′)) denote the subgraph of G

induced by V ′ and G − V ′ := G[V \ V ′] denote the graph obtained from G after
removing the vertices of V ′. A clique is a vertex set K ⊆ V such that in G[K] the
vertices are pairwise adjacent. An independent set is a vertex set I ⊆ V such that
in G[I] no two vertices are adjacent. A vertex cover is a vertex set S ⊆ V such
that S ∩ e ̸= ∅ for every edge e ∈ E. A graph is a bounded-vc graph for some given
integer k if a minimum vertex cover has size at most k. A matching is an edge
set M ⊆ E where e1 ∩ e2 = ∅ for every pair e1, e2 ∈M with e1 ̸= e2. A matching M
is maximal if there is no matching M ′ ⊇M and maximum if its size |M | is maximal
among all matchings.

Two graphs G1 := (V1, E1) and G2 := (V2, E2) are isomorphic if there exists a
bijective function f : V1 → V2 such that {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2

for every u, v ∈ V1. Given another graph H, we say that G contains H as an induced
subgraph if there is a vertex set V ′ ⊆ V such that G[V ′] and H are isomorphic. The
graph G is called H-free if G does not contain H as an induced subgraph.

Let G = (V,E) be an undirected graph. A path (of length r) in G is a finite
sequence P := (v1, . . . , vr) of vertices of G, where {vi, vi+1} ∈ E for all i ∈ {1, . . . , r−
1}. The path P is called vertex simple if no vertex appears twice on P and edge
simple if there are no distinct i, j ∈ {1, . . . , r − 1} such that {vi, vi+1} = {vj, vj+1}.
Given a path P we define the sets V (P ) := {vi | i ∈ {1, . . . , r}} and E(P ) :=
{{vi, vi+1} | j ∈ {1, . . . , r − 1}}. Two vertices u and v are called connected in G if
there exists a path P in G with u ∈ V (P ) and v ∈ V (P ). A connected component
of G is a maximal subset V ′ ⊆ V such that all vertices in V ′ are pairwise connected.

A graph class Π is a set of undirected graphs. For a graph class Π and k ∈ N0,
we let Π + kv := {G = (V,E) | ∃V ′ ⊆ V : (|V ′| ≤ k ∧ G − V ′ ∈ Π)} denote the
class of graphs that can be transformed into a graph in Π by performing at most k
vertex deletions. Analogously, we let Π + ke := {G = (V,E) | ∃E ′ ⊆ E : (|E ′| ≤
k∧ (V,E \E ′) ∈ Π)} denote the class of graphs that can be transformed into a graph
in Π by performing at most k edge deletions. We call Π monotone if Π is closed
under edge deletions and vertex deletions. Note that Π being monotone implies that
for every k ∈ N0, the graph classes Π + kv and Π + ke are monotone.

Throughout this work we refer to some specific small graphs with their commonly
used names. An overview of the small graphs used in this work is shown in Figure 1.1.
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1.1. Graph Theory

K3 P3 K2 +K1 3K1 P4

diamond C4 paw clawK4

co-diamond 2K2 co-paw co-claw4K1

Figure 1.1: Some small graphs considered in this work.

1.1.2 Directed Graphs

A directed graph D = (N,A) consists of a vertex set N and an arc set A ⊆ N ×N .
If not stated otherwise, we set n := |N |. Given a set P ⊆ N and a vertex v ∈ N ,
we define P × v := P × {v} as a shorthand. The skeleton of D is the undirected
graph S(D) := (N,E), with E := {{u, v} | (u, v) ∈ A}.

A directed path (of length r) is a finite sequence P = (v1, . . . , vr) of vertices,
where (vi, vi+1) ∈ A for every i ∈ {1, . . . , r − 1}. A directed path is called directed
cycle if v1 = vr. If D does not contain directed cycles, then D is a directed acyclic
graph (DAG). In a DAG D, we call a vertex v1 an ancestor of vr and vr a descendant
of v1 if there is a directed path (v1, v2, . . . , vr) in D. A topological ordering of D is
an n-tuple (v1, . . . , vn) containing every vertex of D exactly once such that i ≤ j for
every arc (vi, vj) ∈ A. A directed graph has a topological ordering if and only if it is
a DAG.

An arc (u, v) ∈ A is called incoming arc into v and outgoing arc from u. Given
a vertex v, the number of incoming arcs into v is called the in-degree of v, and the
number of outgoing arcs from v is the out-degree of v. A vertex without incoming
arcs is a source. A vertex without outgoing arcs is a sink. The set PA

v := {u ∈ N |
(u, v) ∈ A} is called parent set of v. The vertices in PA

v are called parents of v and
for every u ∈ PA

v , the vertex v is called child of u.
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1.2 Computational Complexity

We study computational problems that arise from practical motivations. In context
of the practical motivation, these problems are optimization problems where one
aims to find a feasible solution that minimizes or maximizes some target function.
In a complexity-theoretic framework, problems are defined as decision problems via
formal languages. In a decision problem, the task is to decide whether a given
instance is a yes-instance or a no-instance of the problem. For every optimization
problem, there is a corresponding decision problem, where the input consists of an
additional integer k and the question is, whether there is a feasible solution under
which the target function is at least (or at most) k. The optimization problem for
an instance I can then be solved by finding the largest (or smallest) integer k, for
which the tuple (I, k) is a yes-instance of the corresponding decision problem.

We use classic complexity, fine-grained complexity, and parameterized complexity.
We use classic complexity as a framework which allows us to distinguish between
problems that can be solved in polynomial time and problems that can not be solved
in polynomial time when assuming the famous hypothesis P ̸= NP. The fine-grained
complexity allows us to show even stronger lower bounds for problems which are
based on a stronger hypothesis called Exponential Time Hypothesis (ETH) [96]. The
parameterized complexity is a framework which allows us to analyze the complexity
of a problem with regard to multiple parameters instead of only the input size.

Throughout this work, we analyze the running times of the algorithms using
the random-access machine (RAM) model of computation as it is described in the
textbook by Cormen et al. [35].

1.2.1 Classic Complexity

A decision problem is formally defined as a language L ⊆ Σ∗ where Σ is a finite
alphabet. Given an instance x ∈ Σ∗, the task is to decide whether x ∈ L or x ̸∈ L.
An instance x is a yes-instance if x ∈ L. Otherwise, x is a no-instance.

Given an algorithm that decides if x ∈ L, we measure the running time of the
algorithm as a function of the input size |x| for all x ∈ Σ∗. The algorithm runs in
polynomial time if the corresponding function of the running time is a polynomial
in |x|. A complexity class is a set of decision problems. The most important com-
plexity classes are called P and NP. A decision problem L belongs to the complexity
class P if there exists an algorithm that decides L and runs in polynomial time.
A decision problem L belongs to the complexity class NP if there exists a polyno-
mial p : N → N and a polynomial-time algorithm A such that for every x ∈ Σ∗ it
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1.2. Computational Complexity

holds that x ∈ L if and only if there exists a certificate u ∈ Σp(|x|) and A accepts the
input tuple (x, u).

By the definition of P and NP it is easy to see that P ⊆ NP. A widely believed
conjecture in computer science is P ̸= NP. This conjecture means that there are
problems in NP that can not be decided in polynomial time. Some of these problems
that can presumably not be decided in polynomial time are identified via polynomial-
time reductions. Given two problems L1 ⊆ Σ∗ and L2 ⊆ Σ∗, a polynomial-time
reduction from L1 to L2 is a polynomial-time computable function f : Σ∗ → Σ∗ such
that x ∈ L1 if and only if f(x) ∈ L2 for every x ∈ Σ∗. A problem L is called NP-hard
if there is a polynomial-time reduction from L′ to L for every L′ ∈ NP. An NP-hard
problem is NP-complete if it belongs to the class NP. Assuming P ̸= NP, an NP-hard
problem L can not be solved in polynomial time since otherwise every L′ ∈ NP can be
decided in polynomial time: given an instance x for L′, first compute an equivalent
instance f(x) using the reduction from L′ to L, and then use a polynomial-time
algorithm to decide whether f(x) ∈ L. For a detailed introduction into the theory
of NP-completeness we refer the reader to the standard textbook by Garey and
Johnson [67].

In an optimization problem, for every instance I there is a set SI of feasible
solutions and a polynomial-time computable objective function that assigns a non-
negative integer to every s ∈ SI . Given an instance I, the task is to find a feasible
solution that maximizes the objective function. Given a constant c > 0, a factor-c
approximation is an algorithm that finds a feasible solution in polynomial time whose
objective function value is at least c times the optimum (in case of maximization) or
at most c times the optimum (in case of minimization). For a detailed introduction
into the theory of approximation algorithms we refer the reader to the textbook by
Vazirani [176]. The algorithms presented in this work are formulated to solve deci-
sion problems. However, the algorithms usually also solve the natural optimization
problem that corresponds to the decision problem.

1.2.2 Parameterized Complexity

We study the parameterized complexity of NP-hard problems. In the following, we
describe the main concepts and definitions of parameterized algorithmics. For a
detailed introduction, we refer to the standard textbooks [38, 46, 58, 139].

A parameterized problem is a language L ⊆ Σ∗×N0 where Σ is a finite alphabet.
Given an instance (x, k) we refer to k as the parameter. An instance (x, k) ∈ Σ∗×N0

is a yes-instance of L if (x, k) ∈ L. Otherwise, (x, k) is a no-instance. With the next
two definitions we define two classes in parameterized complexity that we consider
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in this work.

Definition 1.1. A parameterized problem L ⊆ Σ∗ × N0 is called slice-wise poly-
nomial (XP) if there exist computable functions f : N0 → N0, g : N0 → N0, and
an algorithm that, given an instance (x, k) decides whether (x, k) ∈ L in f(k) ·
|(x, k)|g(k) time. The complexity class XP is the class of all parameterized problems
that are slice-wise polynomial.

Definition 1.2. A parameterized problem L ⊆ Σ∗ × N0 is called fixed-parameter
tractable (FPT) if there exists a computable function f : N → N0 and an algorithm
that, given an instance (x, k) decides whether (x, k) ∈ L in f(k) · |(x, k)|O(1) time.
The complexity class FPT is the class of all parameterized problems that are fixed-
parameter tractable.

For constant values of the parameter k, problems in XP and problems in FPT
can both be solved within polynomial time. For a problem that is XP, the degree
of the polynomial depends on the value of k. In contrast, if the problem is FPT,
the degree is independent from k. Proving that a parameterized problem is FPT by
providing efficient algorithms with running time f(k) · |(x, k)|O(1) is arguably one of
the major goals in the field parameterized complexity.

The W-Hierarchy. There are parameterized problems in XP that resist all at-
tempts to find fixed-parameter algorithms. Like the widely believed assumption
that P ̸= NP, there is a similar assumption about parameterized complexity classes.
Downey and Fellows [44, 45, 46] developed a theory to show that some problems
in XP are unlikely to be in FPT. For every integer i ∈ N, they defined a complexity
class W[i] and a widely believed assumption states that FPT ⊊ W[1] ⊊ W[2] ⊊
· · · ⊊ XP.

Let i ∈ N. To show that a problem is presumably not fixed-parameter tractable
one can show W[i]-hardness which is defined by parameterized reductions. Let L1 ⊆
Σ∗ × N and L2 ⊆ Σ∗ × N be parameterized problems. A parameterized reduction
from L1 to L2 is a computable function f : Σ∗ × N0 → Σ∗ × N0 that maps an
instance (x, k) of L1 to an instance (x′, k′) of L2 such that

• (x, k) ∈ L1 if and only if (x′, k′) ∈ L2,

• k′ ≤ g(k) for some computable function g, and

• f can be computed in h(k) · |(x, k)|O(1) time for some computable function h.
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A parameterized problem L is W[i]-hard for some i ∈ N if there is a polynomial
reduction from L′ to L for every L′ ∈W[i]. If a problem is W[i]-hard it is assumed to
be not fixed-parameter tractable. Note that a parameterized reduction runs in h(k) ·
|(x, k)|O(1) time by definition. However, all parameterized reductions contained in
this work run in |(x, k)|O(1) time and thus, we may conclude NP-hardness from our
W[1]-hardness results.

Problem Kernelization. An important tool in the development of parameterized
algorithms is problem kernelization, which is a polynomial-time preprocessing by
data reduction rules yielding a problem kernel. Formally, this is defined as follows.

Definition 1.3. A parameterized problem L admits a (problem) kernel if there is a
polynomial-time algorithm that, given an instance (x, k) of L, computes an equivalent
instance (x′, k′) of L such that |x′|+ k′ ≤ g(k) for some computable function g. The
function g is called the kernel size. If g is a polynomial, we say that L admits a
polynomial kernel.

Problem kernels are often obtained by performing data reduction on an input
instance. A data reduction rule is an algorithm that transforms an instance (x, k)
of a problem L into an instance (x′, k′) of the same problem L such that (x, k) is
a yes-instance if and only if (x′, k′) is a yes-instance. A set of data reduction rules
has been exhaustively applied on an instance if no further application of one of the
rules changes the instance. An instance on which the set of reduction rules are
exhaustively applied is called a reduced instance.

Some parameterized problems are fixed-parameter tractable but presumably do
not admit a polynomial kernel [38]. By using polynomial parameter transformations
we can transfer these kernel lower bounds to other problems [17]. A polynomial
parameter transformation maps any instance (x, k) of some parameterized problem L
in polynomial time to an equivalent instance (x′, k′) of a parameterized problem L′

such that k′ ≤ p(k) for some polynomial p. All kernel lower bounds contained in this
work rely on the widely believed assumption that NP ̸⊆ coNP/poly.

Throughout this work we use the following problems as auxiliary problems to
transfer such kernel lower bounds via polynomial parameter transformations.

Multicolored Clique
Input: A graph G = (V,E) with a partition (V1, . . . , Vt) of V such that
each Vi is an independent set.
Question: Is there a multicolored clique in G, that is, a clique containing
one vertex from each set Vi?
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Multicolored Independent Set
Input: A graph G = (V,E) with a partition (V1, . . . , Vt) of V such that
each Vi is an independent set.
Question: Is there a multicolored independent set in G, that is, an inde-
pendent set containing one vertex from each set Vi?

Proposition 1.4. The problems Multicolored Clique and Multicolored In-
dependent Set do not admit a polynomial kernel when parameterized by

∑︁t−1
i=1 |Vi|

unless NP ⊆ coNP/poly.

Proof. We first show that the statement holds forMulticolored Clique by giving
a polynomial parameter transformation from Clique. In Clique the input is a
graph G and an integer t and the question is if there is a clique of size at least t
in G. Clique does not admit a polynomial kernel unless NP ⊆ coNP/poly when
parameterized by the size of a minimum vertex cover of the input graph [16]. We
may assume that a minimum vertex cover S of G is provided as input.

Construction. Let (G, t) be an instance of Clique and let S = {v1, . . . , vs}
be a minimum vertex cover in G. Furthermore, let I := V \ S be the remaining
independent set. Since I is an independent set, the maximal size of the clique
is s + 1. Consequently, (G, t) is a trivial no-instance if t > s + 1. Hence, we may
assume that t ≤ s+1. We construct an instance G′ for Multicolored Clique as
follows.

First, we define t disjoint sets V1, . . . , Vt that form the partition of the ver-
tex set of G′. For every vertex vi ∈ S there are t copies vi,1, . . . , vi,t in G′ such
that vi,1 ∈ V1, vi,2 ∈ V2, . . . , vi,t ∈ Vt. We also add all vertices of I to Vt. Now,
the classes V1, . . . , Vt−1 contain exactly s elements and the class Vt contains s + |I|
elements. Note that

∑︁t−1
i=1 |Vi| = (t − 1) · s. Thus, the parameter is polynomially

bounded in s since t ≤ s+ 1.
Next, we describe which edges are present in G′. If two vertices vi and vj of S are

adjacent in G, we connect all copies of vi with all copies of vj, except those that are
in the same set of the partition. Moreover, for the first (t − 1) classes V1, . . . , Vt−1

we do the following: For every edge {vi, w} with vi ∈ S and w ∈ I, we add edges
{vi,j, w} for each copy vi,j of vi. Observe that V1, . . . , Vt are all independent sets
in G′. Hence, G′ is a feasible instance of Multicolored Clique.

Correctness: To prove that the transformation from (G, t) into G′ is a polynomial
parameter transformation, it remains to show that G has a clique of size at least t if
and only if G′ has a multicolored clique.

(⇒) Let K be a clique of size t in G. Since I is an independent set we can assume
that t− 1 vertices of K lie in S and one vertex u of K lies in S ∪ I. Without loss of
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generality, we assume thatK = {v1, . . . , vt−1, u}. If u ∈ S, then u = vi for some i ≥ t.
Then there is a copy vi,t ∈ Vt of vi and the vertices v1,1, . . . , vt−1,t−1, vi,t form a
multicolored clique in G′. If u ∈ I, then u ∈ Vt and the vertices v1,1, . . . , vt−1,t−1, u
form a multicolored clique in G′.

(⇐) Conversely, let K ′ be a multicolored clique in G′. Without loss of general-
ity, we assume that K ′ = {vi1,1, vi2,2, . . . , vi(t−1),t−1, u} with u ∈ Vt. Note that the
indices i1, . . . , i(t−1) are pairwise distinct by the construction of G′. If u ∈ I, then
the vertices vi1 , vi2 , . . . , vi(t−1)

, u form a clique of size t in G. Otherwise, if u ̸∈ I, then
we can assume that u = vit,t for some it that is different from i1, . . . , it−1. Then,
the vertices vi1 , vi2 , . . . , vi(t−1)

, vit form a clique of size t in G, which completes the
correctness proof.

Multicolored Independent Set. By the above, we have shown that the state-
ment holds for Multicolored Clique. We next conclude that it also holds for
Multicolored Independent Set. To this end, we consider a simple polyno-
mial parameter transformation. Let G be an instance of Multicolored clique
where V1, . . . , Vt is the partition of the vertex set of G. We then construct an in-
stance G′ of Multicolored Independent Set from G as follows: For every
pair u ∈ Vi and w ∈ Vj with distinct indices i and j we remove the edge {u,w} if u
and w are adjacent in G or we add an edge {u,w} otherwise. It is easy to see that G
contains a multicolored clique if and only if G′ contains a multicolored independent
set. Moreover, the parameter is the same in both instances. Consequently, the trans-
formation described above is a polynomial parameter transformation and thus, the
statement holds for Multicolored Independent Set.

Exponential Time Hypothesis (ETH). In classic complexity, the widely be-
lieved conjecture P ̸= NP provides a framework which allows us to distinguish be-
tween problems that can be solved in polynomial time and problems that presumably
cannot be solved in polynomial time. However, there might be significant differences
in superpolynomial running times. For example, an algorithm with a subexponen-
tial running time of O(2 5√n) appears to be much more efficient than an algorithm
with a superexponential running time of O(2(n5)). The fine-grained complexity is a
framework that allows us to provide more elaborate lower bounds.

In fine-grained complexity, the ETH [96] is the standard conjecture. The ETH is a
conjecture about the complexity of 3-SAT. In 3-SAT the input is a logical formula ϕ
in 3-conjunctive normal form (3-CNF). That is, ϕ is a conjunction of disjunctions of
(at most) three literals. Let δ3 be the infimum of the set of constants c for which there
exists an algorithm solving 3-SAT in 2c·n · nO(1) time where n denotes the number
of variables in the input formula. The ETH then states that δ3 > 0, which implies

29



Chapter 1. Preliminaries

that 3-SAT can not be solved in 2o(n) · nO(1) time. Together with the Sparsification
Lemma [96], the ETH implies that 3-SAT cannot be solved in 2o(|ϕ|) · |ϕ|O(1) time,
where |ϕ| is the size of the input formula.

We can transfer the ETH-based lower-bound for 3-SAT via reductions. Given
a computable function f , we let f−1 denote the inverse function of f . If there
exists a polynomial-time reduction from 3-SAT to a problem L that produces an
instance x of size O(f(|ϕ|)) for some computable function f , then L can not be
solved in 2o(f

−1(|x|)) · |x|O(1) time unless the ETH fails. Furthermore, if there exists
a polynomial-time parameterized reduction from 3-SAT parameterized by |ϕ| that
produces an instance (I, k) of a parameterized problem L with k ∈ O(f(|ϕ|)) for
some computable function f , then L can not be solved in 2o(f

−1(k)) · |I|O(1) time
unless the ETH fails.
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Strong Triadic Closure
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Consider your relations to other persons. Some of these relations are strong re-
lations like close friendships, relationships to family members or to close colleagues.
On the flipside, some relations are weak relations like casual acquaintances or col-
leagues you see once in a while at a conference. In the first part of this work we study
a class of computational problems that are motivated by recovering the strength of
relations when only the structure of a social network is known.

Social networks represent relations between individuals such as friendship or ac-
quaintance in online social networks. These relations are modeled as an undirected
graph where the vertices represent agents in the network and an edge represents an
interaction or a friendship between two agents. One task in social network analysis
is to determine the strength [73, 156, 164, 180] and type [42, 168, 181] of the rela-
tionship signified by each edge of the network. We study a class of computational
problems called strong triadic closure problems which were introduced by Sintos and
Tsaparas in 2014 [164]. In these problems one aims to infer the strength of rela-
tionships in the following sense: One wants to find out which edges represent strong
relationships and which edges represent a weak relationship and label these edges
accordingly.

Even though the computational problems were introduced in 2014, the basic idea
of partitioning relationships of a social network into strong and weak relationships
goes back to the notion of strong and weak ties by the sociologist Mark Granovet-
ter [72, 73] who postulates that, if an agent has strong relations to two other agents,
then these two agents should have at least a weak relation. This property is known
as strong triadic closure property. Following this assertion, Sintos and Tsaparas [164]
proposed to find strong ties in social networks by labeling the edges as weak or strong
such that the strong triadic closure property is fulfilled and the number of strong
edges is maximized. Figure II.1 shows an example of a social network with weak and
strong relationships such that the strong triadic closure property is satisfied.

In context of sociological research, Granovetter’s idea has been used extensively
as a base for numerous works [105]. The strong and weak ties of an individual might
have an influence on poverty, health, and its well-being [24]. Sociologists also studied
the influence of weak ties on mental health and suicidal thoughts [10]. Weak ties are
also associated with the accessibility of specific resources [127] and may help when
one is looking for a job [74]. Strong ties might give instrumental and emotional
support [39].

Besides sociological research, the notion of strong triadic closure received atten-
tion in data mining. In experimental studies, the strong triadic closure property
has been used to identify strong relationships in social networks [164, 93, 156, 1].
The strong edges found in these experiments are considered as reasonable strong
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Figure II.1: An example of a social network. The vertices represent the four agents Devil,
Peppermint, Slime, and Witch1. An edge between two agents represents a friendship. The
dotted edges correspond to weak relationships and the remaining edges correspond to strong
relationships. Observe that the strong triadic closure property is satisfied: Whenever one
agent has strong relations with two other agents, these two agents are connected by an
edge.

relationships for a given data set [156] and have been claimed to seem sensible in
practice [164]. Adriaens et al. [1] experimentally evaluated relaxations of strong
triadic closure problems. Their experiments show that that the strong triadic clo-
sure property is a reasonable tool to find strong relationships in social networks
but one might fail to capture some strong ties that rely for example on community
structures and external information. Other studies combine strong triadic closure
and related approaches with external information like prior knowledge about spe-
cific strong relationships within the network [156, 155] to infer strong ties. The
strong ties that were discovered using this prior knowledge are reasonable for the
given data [156]. Moreover, it was observed that showing only the strong relation-
ships that were discovered in these experiments significantly simplifies the network
structure [156]. Furthermore, there are approaches of using strong triadic closure to
recover dynamic information such as the order in which the relationships occurred
in the network using a probabilistic factor graph model [52].

Apparently, inferring strong ties using the strong triadic closure property is a
reasonable technique that finds application in the data mining community. In this

1I would like to thank Sebastian Lieb for allowing me to use the characters from his game Evol-
ings. (https://soerbgames.itch.io/evolings)
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work, we study strong triadic closure from an algorithmic point of view. We study the
task of finding a maximum number of strong ties as a combinatorial optimization
problem. The aim is to find efficient algorithms to solve this problem exactly, to
outline the limits of tractability, and to improve our theoretical understanding of
strong triadic closure as a graph property.

In the following, we give the formal problem definitions of the combinatorial
optimization problems studied in this part and we state some basic observations
about strong triadic closure and so-called Gallai graphs [64, 124, 167].

Problem Definitions. In the computational problem Strong Triadic Clo-
sure (STC) introduced by Sintos and Tsaparas [164] we are looking for an STC-
labeling, which is defined as follows.

Definition II.1. A labeling L = (SL,WL) of an undirected graph G = (V,E) is a
partition of the edge set E. The edges in SL are called strong and the edges in WL

are called weak. A labeling L = (SL,WL) is an STC-labeling if there exists no pair
of strong edges {u, v} ∈ SL and {v, w} ∈ SL such that {u,w} ̸∈ E.

For a vertex u and a strong edge {u, v}, we call v a strong neighbor of u. Analo-
gously, if {u, v} is weak, we call v a weak neighbor of u. The computational problem
described informally above is now the following.

Strong Triadic Closure (STC)
Input: An undirected graph G = (V,E) and an integer k ∈ N0.
Question: Is there an STC-labeling L = (SL,WL) with |WL| ≤ k?

Sintos and Tsaparas [164] also introduced an extension of STC where agents
may have c different types of strong relationships. In this model, the strong triadic
closure property only applies to edges of the same strong type.

This extension is motivated by the observation that agents may very well have
close relations to agents that do not know each other if these relations themselves arise
in segregated contexts. For example, it is quite likely that one’s rugby teammates
do not know all of one’s close colleagues. The edge labelings with up to c strong
colors that model this variant of STC and the corresponding problem are defined as
follows.

Definition II.2. A c-labeling L = (S1
L, . . . , S

c
L,WL) of an undirected graph G =

(V,E) is a partition of the edge set E into c + 1 color classes. The edges in SiL, i ∈
{1, . . . , c}, are strong and the edges inWL are weak. A c-labeling L is an STC-labeling
if there exists no pair of edges {u, v} ∈ SiL and {v, w} ∈ SiL such that {u,w} ̸∈ E for
any i ∈ {1, . . . , c}. We say that such a pair of edges violates STC for a c-labeling.
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Multi Strong Triadic Closure (Multi-STC)
Input: An undirected graph G = (V,E) and integers c ∈ N and k ∈ N0.
Question: Is there an STC-labeling L = (S1

L, . . . , S
c
L,WL) with |WL| ≤ k?

Note that Multi-STC is a generalization of STC and thus NP-hard [164].
We also study two generalizations of Multi-STC. The first generalization deals

with the case where one restricts the set of possible relations for some agents. As-
sume, for example, that strong edges correspond to family relations or professional
relations. If one knows the profession of some agents, then this knowledge can be
modeled by introducing different strong colors for each profession and constraining
the sought edge labeling in such a way that each agent may receive only a strong
edge corresponding to a familial relation or to his profession. In other words, for each
agent we are given a list of allowed strong colors that may be assigned to incident
relationships. Formally, we arrive at the following extension of STC-labelings.

Definition II.3. Let G = (V,E) be a graph, Λ : V → 2{1,2,...,c} a mapping for
some c ∈ N, and L = (S1

L, . . . , S
c
L,WL) a c-colored STC-labeling. We say that an

edge {v, w} ∈ E satisfies the Λ-list property under L if {v, w} ∈ WL or {v, w} ∈ SαL
for some α ∈ Λ(v) ∩ Λ(w). We call a c-colored STC-labeling Λ-satisfying if every
edge satisfies the Λ-list property under L.

Vertex-List Multi Strong Triadic Closure (VL-Multi-STC)
Input: An undirected graph G = (V,E), integers c ∈ N and k ∈ N0, and
vertex lists Λ : V → 2{1,2,...,c}.
Question: Is there a Λ-satisfying STC-labeling L with |WL| ≤ k?

Multi-STC is the special case where Λ(v) = {1, . . . , c} for all v ∈ V .
The second generalization deals with the case where one restricts the set of pos-

sible relationship types for each relation. For example, if two rugby players live far
apart, it is unlikely that they play rugby together. We might model this knowledge
by restricting the number of relationship types for this specific relationship. In other
words, for each relationship we are given a list of possible strong colors that may be
assigned to this relationship. Observe that this is an actual generalization of VL-
Multi-STC: Consider three agents v1, v2, and v3 that are pairwise related in the
network. Assume the relationship between v1 and v2 and the relationship between v1
and v3 are both restricted to ‘rugby’ and ‘colleagues’. If now the relationship be-
tween v2 and v3 is restricted to ‘ballet class’ and ‘drinking buddies’, this situation
cannot be expressed with vertex lists. This more general constraint is formalized as
follows.
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Definition II.4. Let G = (V,E) be a graph, Ψ : E → 2{1,2,...,c} a mapping for
some c ∈ N and L = (S1

L, . . . , S
c
L,WL) a c-colored STC-labeling. We say that an

edge e ∈ E satisfies the Ψ-list property under L if e ∈ WL or e ∈ SαL for some
α ∈ Ψ(e). We call a c-colored STC-labeling Ψ-satisfying if every edge satisfies the
Ψ-list property under L.

This leads to the most general variant of STC studied in this work.

Edge-List Multi Strong Triadic Closure (EL-Multi-STC)
Input: An undirected graph G = (V,E), integers c ∈ N and k ∈ N0 and
edge lists Ψ : E → 2{1,2,...,c}.
Question: Is there a Ψ-satisfying STC-labeling L with |WL| ≤ k?

Gallai Graphs and their Relation to STC Problems. From a more abstract
point of view, in Multi-STC we aim to label the edges in a way such that no two
edges that form an induced P3 receive the same strong color. Thus, whenever two
edges form an induced P3 in a graph, these two edges can be seen as a ‘conflict pair’
regarding the strong triadic closure property. The so-called Gallai graph [64, 124, 167]
of a given graph models these conflict pairs. Formally, a Gallai graph is defined
as follows.

Definition II.5. Given a graph G = (V,E), the Gallai graph ˜︁G := (˜︁V , ˜︁E) of G is

defined by ˜︁V := E and

˜︁E := {{e1, e2} | e1 and e2 form an induced P3 in G}.

The Gallai graph of an n-vertex and m-edge graph has O(m) vertices and O(mn)
edges. Gallai graphs do have restricted structure in the sense that not every graph
is a Gallai graph of some other graph. For an example, consider a claw as given in
Figure 1.1 for an example: The central vertex in a claw in ˜︁G would correspond to
an edge in G that forms an induced P3 with three other edges that do not form an
induced P3 with each other. It is easy to see that this situation can not occur in a
graph with four edges. However, for every graph H, there is a Gallai graph which
contains H as induced subgraph [124]. For STC, the relation to Gallai graphs is as
follows: A graph G = (V,E) has an STC-labeling with at most k weak edges if and
only if its Gallai graph has a vertex cover of size at most k [164]. Thus, STC can
be solved in O(1.28k + nm) time by using the current fastest algorithm for Vertex
Cover [27]. More generally, a graph G = (V,E) has a c-colored STC-labeling with
at most k weak edges if and only if the Gallai graph of G has a properly c-colorable
induced subgraph on m− k vertices [164].
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In the following, we extend this relation to EL-Multi-STC by considering list-
colorings of the Gallai graph. The special cases VL-Multi-STC, Multi-STC,
and STC nicely embed into the construction. First, let us define the problem that
we need to solve in the Gallai graph formally. Given a graph G = (V,E), we call a
mapping χ : V → {0, 1, . . . , c} a subgraph-c-coloring if there is no edge {u, v} ∈ E
with χ(u) = χ(v) ̸= 0. Vertices v with χ(v) = 0 correspond to deleted vertices. The
List-Colorable Subgraph problem is defined as follows.

List-Colorable Subgraph
Input: An undirected graph G = (V,E) and integers c ∈ N, k ∈ N0 and
lists Γ : V → 2{1,...,c}.
Question: Is there a subgraph-c-coloring χ : V → {0, 1, . . . , c} such
that |{v ∈ V | χ(v) = 0}| ≤ k and χ(w) ∈ Γ(w) ∪ {0} for every w ∈ V ?

EL-Multi-STC and List-Colorable Subgraph have the following relation-
ship.

Proposition II.6. An instance (G, c, k,Ψ) of EL-Multi-STC is a yes-instance if

and only if ( ˜︁G, c, k,Ψ) is a yes-instance of List-Colorable Subgraph, where ˜︁G
is the Gallai graph of G.

Proof. We first describe how to transform c-colored Ψ-satisfying labeling L for G into
a coloring χL for ˜︁G that satisfies χL(v) ∈ Ψ(v)∪{0} for every vertex v of ˜︁G and vice
versa, such that the number of weak edges under L and the number of vertices that
receive color 0 under χL are the same. We let Lχ denote the Ψ-satisfying labeling

for G resulting from a coloring χ for ˜︁G.
Construction of χL and Lχ. For any c-colored labeling L we set χL(e) := i for

each edge in SiL with i ∈ {1, . . . , c}, and χL(e) = 0 for each edge inWL. By definition,
the c-colored labeling χ is Ψ-satisfying if and only if χL satisfies the list constraints
in the List-Colorable Subgraph instance, that is, χL(v) ∈ Ψ(v) ∪ {0} for each
vertex v. Moreover, the number of weak edges in L is precisely the number of vertices
in ˜︁G that receive color 0. By symmetric arguments, each subgraph-c-coloring χ that
satisfies Ψ and has k vertices v such that χ(v) = 0 defines a c-colored labeling Lχ
of G that is Ψ-satisfying and has k weak edges.

Equivalence. We show that

a) If L is an STC-labeling for G, then χL is a subgraph-c-coloring for ˜︁G, and
b) If χL is a subgraph-c-coloring for ˜︁G, then L is an STC-labeling for G.
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a) Let L be an STC-labeling. We show that for all adjacent vertices u and v

in ˜︁G either χL(u) ̸= χL(v) or χL(u) = 0 or χL(v) = 0. Assume that χL(u) ̸= 0
and χL(v) ̸= 0. Then, the corresponding edges u and v in G are colored with some

strong colors SiL and SjL. Since u and v are adjacent in ˜︁G, u and v form a P3 in G
and since L is an STC-labeling, we have i ̸= j. Therefore, χ(u) ̸= χ(v).

b) Let χ be a subgraph-c-coloring. We show that Lχ is an STC-labeling. Consider
a pair of incident edges u and v that form a P3 in G. If χ(u) = 0 or χ(v) = 0, then
one of the two edges is weak in Lχ. Otherwise, we have χ(u) ̸= χ(v) because u and v

are adjacent in ˜︁G. Thus, u and v have different strong colors under Lχ. Therefore, Lχ
is an STC-labeling.

The correspondence from Proposition II.6 means that we can solve EL-Multi-
STC by solving List-Colorable Subgraph on the Gallai graph of the input
graph. To this end we give a running time bound for List-Colorable Subgraph.
The algorithm for obtaining this running time is a straightforward dynamic pro-
gramming algorithm over subsets. Since we are not aware of any concrete result in
the literature implying this running time bound, we provide a proof for the sake of
completeness.

Proposition II.7. List-Colorable Subgraph can be solved in O(3n · c2(n +
m)) time. EL-Multi-STC can be solved in O(3m · c2mn) time.

Proof. We first describe an algorithm for List-Colorable Subgraph. Afterwards,
we analyze the running time.

Algorithm. Let (G = (V,E), c, k,Γ) be an instance of List-Colorable Sub-
graph. We define a dynamic programming table T with entries T [S, i] where S ⊆ V
and i ∈ {1, . . . , c}. The aim is to fill T such that for all entries we have T [S, i] = ‘true’
if there is a subgraph-c-coloring χ for G[S] such that χ(v) ∈ {1, . . . , i} ∩ Γ(v) for
all v ∈ S and T [S, i] = ‘false’ otherwise.

The table is initialized for i = 1 and each S ⊆ V by setting

T [S, 1] :=

{︄
‘true’ if S is an independent set ∧ ∀v ∈ S : 1 ∈ Γ(v),

‘false’ otherwise.

For i > 1, the table entries are computed by the recurrence

T [S, i] :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‘true’ if ∃S ′ ⊆ S such that S ′ is an independent set

∧ ∀v ∈ S ′ : i ∈ Γ(v)

∧ T [S \ S ′, i− 1] = ‘true’,

‘false’ otherwise.
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To check if the instance is a yes-instance we check if T [S, c] = ‘true’ for some S
such that |S| ≥ n− k. The correctness proof is straightforward and thus omitted.

Running Time. For each i ∈ {1, . . . , c} an entry T [S, i] can be computed inO(2|S|·
c · (m+n)) time where the factor c · (m+n) corresponds to the time needed to check
whether S ′ is an independent set and whether i ∈ Γ(v). Consequently, all entries can
be computed in O(c·

∑︁c
j=1

(︁
n
j

)︁
·c·(m+n)) = O(3n ·c2 ·(m+n)) time. The running time

for EL-Multi-STC follows from Proposition II.6 and the fact that the Gallai graph
of a graph G with n vertices and m edges has O(m) vertices and O(mn) edges.

Overview of Part II. In Chapter 2 we study STC—the problem variant with
one strong color—and its relation to a problem called Cluster Deletion (CD).
In CD, the input is a graph G and an integer k and the question is whether one can
delete at most k edges such that every connected component of the remaining graph
is a clique. Recall that in STC one aims to label one edge of every induced P3 as weak.
Therefore, as observed previously [110], STC is closely related to CD where one aims
to destroy induced P3s by edge deletions. First, we analyze the classic complexity of
both problems on graph classes that can be described by one forbidden subgraph H
of order at most 4. For every possible H, we then analyze if the solution structure
of STC corresponds to a solution of CD. Afterwards, we study the parameterized
complexity of both problems when parameterized by the number of strong edges (in
case of STC) or non-deleted edges (in case of CD). We present FPT algorithms
for STC and CD and show that both problems are unlikely to admit a polynomial
kernel.

In Chapter 3, we consider the case where we have multiple strong colors. More
precisely, we study Multi-STC and its list variants. We observe that known results
for a classic edge coloring problem imply the NP-hardness of Multi-STC for every
fixed number of strong colors. If the number of colors is at least 3,Multi-STC is NP-
hard even if k = 0. The main result of this chapter is a lower bound for VL-Multi-
STC: we show that the Exponential Time Hypothesis (ETH) implies that VL-
Multi-STC cannot be solved in 2o(n

2) time.

In Chapter 4, we initiate the study of the parameterized complexity of Multi-
STC and its list variants. Since we observed in Chapter 3 that Multi-STC is
NP-hard even if k = 0, we consider parameterization by the solution size k1 of STC.
On the positive side, we show that Multi-STC is FPT for k1 and that the list
versions are FPT for k1 + c, where c denotes the number of strong colors. Moreover,
we show that all three problems admit a problem kernel with at most 2c+1k1 vertices.
On the negative side, we show that VL-Multi-STC and EL-Multi-STC are W[1]-
hard when parameterized by k1 alone and unlikely to admit a polynomial kernel when
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parameterized by k1 + c.
In Chapter 5, we study the relation between Multi-STC and a problem called

Edge Colorable Subgraph (ECS). In ECS one is given a graph G and two
integers c and k. The task is to delete at most k edges from G such that the remaining
edges can be labeled with colors 1 to c in a way that no incident edges receive the same
color. Due to Vizing’s Theorem [178] ECS and Multi-STC are trivial on graphs
with maximum-degree c− 1. We use this fact as a base for a distance-from-triviality
parameterizations. For every c, we provide polynomial problem kernels for ECS
when parameterized by the edge-deletion distance ξc−1 to graphs with maximum
degree c−1 and the vertex-deletion distance λc to graphs with maximum component
size c. The main technical contribution of this chapter is to lift the problem kernel
for ξc−1 to Multi-STC for the cases where c ∈ {1, 2, 3, 4}.

41



42



Chapter 2

Strong Triadic Closure and Cluster
Deletion

We study Strong Triadic Closure (STC) and a closely related problem called
Cluster Deletion (CD). Both problems arise in social network analysis and data
clustering. Recall that STC is an edge coloring problem with two colors (one color
representing weak relationships and one color representing strong relationships) such
that the strong triadic closure property is satisfied. Informally, the strong triadic
closure property is the assumption that if one agent has strong relationships with
two other agents, then these two other agents should have at least a weak relationship.
The aim in the computational problem is then to label a maximum number of edges
of the given social network as strong while fulfilling this requirement.

Formally, the problem asks for an STC-labeling as defined in the introduction of
Part II. Recall that a labeling L = (SL,WL) of an undirected graph G = (V,E) is a
partition of the edge set E and that the edges in SL are called strong and the edges
inWL are called weak. A labeling L = (SL,WL) is then called an STC-labeling if there
exists no pair of strong edges {u, v} ∈ SL and {v, w} ∈ SL such that {u,w} ̸∈ E. For
a vertex u and a strong edge {u, v}, we call v a strong neighbor of u. Analogously,
if {u, v} is weak, we call v a weak neighbor of u. Recall that the computational
problem STC is defined as follows.

Strong Triadic Closure (STC)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an STC-labeling L = (SL,WL) with |WL| ≤ k?

We call an STC-labeling L optimal for a graph G, if the number |WL| of weak
edges is minimal. Furthermore, recall that the STC-labeling property can also be
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Chapter 2. STC and CD

stated in terms of induced subgraphs: For every induced P3 in G, at most one edge is
labeled strong. Therefore, as observed previously [110], STC is closely related to the
problem of destroying induced P3s by edge deletions. Since the graphs without an
induced P3 are exactly the disjoint union of cliques, this problem is usually formulated
as follows.

Cluster Deletion (CD)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Can we transform G into a cluster graph, that is, a graph where
every connected component is a clique, by at most k edge deletions?

Observe that any setD ⊆ E of at most k edges where (V,E\D) is a cluster graph,
directly implies an STC-labeling (E \D,D) with at most k weak edges. There are,
however, graphs G where the minimum number of weak edges in an STC-labeling
is strictly smaller than the number of edge deletions that are needed in order to
transform G into a cluster graph [110]. Due to the close relation between the two
problems, there are graph classes where any minimum-cardinality solution of CD
directly implies an optimal STC-labeling. This is the case, for example, on graphs
with maximum degree 3 [110].

In this chapter, we study the correspondence and the classic computational com-
plexity of both problems in graph classes that can be described by one forbidden
induced subgraph of order at most 4. Furthermore, we study the parameterized
complexity of STC when parameterized by the number of strong edges and consider
a similar parameterization for CD.

Related Work. Sintos and Tsarparas [164] introduced the computational problem
STC and proved that it is NP-hard. The NP-hardness holds even when restricted
to graphs with maximum degree 4 [110] or to split graphs [111]. In contrast, STC
is solvable in polynomial time when the input graph is subcubic [110], a proper
interval graph [111], or a cograph [110], that is, a graph with no induced P4. STC
can be solved in O(1.28k + nm) time which is implied by a parameter-preserving
reduction to Vertex Cover using the Gallai graph [164] and the current fastest
algorithm for Vertex Cover [27]. The reduction to vertex cover also implies a
factor-2 approximation. STC admits a problem kernel with 4k vertices [77]1, which
has recently been improved to a kernel with 2k vertices [23].

1The 4k vertex kernel for STC is presented in the puplication on which Chapter 2 is based
on [77]. In this work, it is not included in Chapter 2 since we provide a generalization of this
problem kernelization in Chapter 4.
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Table 2.1: Complexity dichotomy and correspondence of STC and CD on H-free graphs.

STC CD correspondent

H ∈ {3K1, K4, 4K1, C4, 2K2, claw, NP-h NP-h NO
co-claw, co-diamond, co-paw}

H = diamond NP-h NP-h YES

H ∈ {K3, P3, K2K1, paw, P4} P P YES

There are variants of STC with additional edge insertions [164, 138]. Other vari-
ants of STC ask for a labeling in which some prespecified communities are connected
via strong edges [156, 175, 93]. Golovach et al. [71] considered a generalization of
STC where the aim is to label at most k edges weak such that each induced subgraph
isomorphic to a fixed graph F has at least one weak edge. STC is then the special
case where F = P3.

CD is NP-hard [162], even when restricted to graphs with maximum degree 4 [109]
or to (2K2, 3K1)-free graphs [66], and solvable in polynomial time on cographs [66]
and in time O(1.42k + m) on general graphs [14]. CD admits a problem kernels
with 4k vertices [85], which has very recently been improved to a kernel with 2k
vertices [23].

Independent from our work, Golovach et al. [71] showed that STC parameterized
by the number of strong edges ℓ := m − k has no polynomial kernel unless NP ⊆
coNP/poly, even when the input graph is a split graph.

Our Results. First, we extend the line of research studying the complexity of
CD [66] and STC [110] on H-free graphs where H is a graph of order at most 4.
These results are shown in Table 2.1. We present a complexity dichotomy between
polynomial-time solvable and NP-hard cases for all possibilities for H. Moreover,
we show for all such graphs H whether STC and CD correspond on H-free graphs,
that is, whether every STC-labeling with at most k weak edges implies the existence
of a CD solution with at most k edge deletions.

Second, we initiate the study of the parameterized complexity of STC and CD
with respect to the parameter ℓ := |E| − k. Hence, in STC we are searching for an
STC-labeling with at least ℓ strong edges and in CD we are searching for a cluster
graph G′ that is a subgraph of G and that has at least ℓ edges; we call these edges the
cluster edges of G′. While we present fixed-parameter algorithms for both problems
parameterized by ℓ, we also show that, somewhat surprisingly, both problems do not
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Chapter 2. STC and CD

admit a polynomial kernel with respect to ℓ, unless NP ⊆ coNP/poly.

2.1 STC and CD on H-free Graphs

First, we study the correspondence and the classic complexity of STC and CD
on H-free graphs where H is a graph on at most four vertices. For an illustration of
these small graphs we refer to Figure 1.1.

2.1.1 The Correspondence between STC and CD on H-Free
Graphs

We study if an STC solution implies the existence of a CD solution of the same size.
Recall that the opposite direction always holds: Any set D ⊆ E of at most k edges
such that (V,E \ D) is a cluster graph directly gives an STC-labeling (E \ D,D)
with at most k weak edges. Thus, every solution of CD provides an STC-labeling.
Throughout this work, we call such labeling a cluster labeling. A cluster labeling is
not necessarily optimal, as shown in Figure 2.1. The figure provides two examples
where a cluster labeling is not an optimal solution of STC. In the upper example—
provided by Konstantinidis and Papadopoulos [111]—an optimal STC-labeling has
eight strong edges, while the best cluster labeling has only seven cluster edges. In
the second example, an optimal STC-labeling has seven strong edges, while the best
cluster labeling has six cluster edges. It has recently been shown that the number of
weak edges in a cluster labeling corresponding to an optimal CD solution is at most
twice as large as the number of weak edges in an optimal STC labeling [177].

We define that the problems STC and CD correspond on a graph class Π if for
every graph in Π we can find a cluster labeling that is an optimal STC-labeling. In
this case we call the labeling an optimal cluster labeling.

With the examples shown in Figure 2.1 we can identify graph classes on which
STC and CD do not correspond. The upper example is C4-, 2K2-, and co-diamond-
free. The lower example is 3K1-, K4-, 4K1-, co-paw-, claw-, and co-claw free. With
the next theorem, we show that STC and CD correspond on the class of H-free
graphs on all remaining cases where H has three or four vertices.

Theorem 2.1. Let H be a small graph on three or four vertices. Then, STC and CD
correspond on the class of H-free graphs if and only if

H ∈ {K3, P3, K2 +K1, P4, diamond, paw}.
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2.1. STC and CD on H-free Graphs

a) b) c)

Figure 2.1: Two graphs where no cluster labeling is an optimal STC-labeling. Column a)
shows the input graph, Column b) shows the strong edges of an optimal cluster labeling,
and Column c) shows the strong edges in an optimal STC-labeling.

Proof. The examples in Figure 2.1 show that the problems do not correspond on
the class of H-free graphs if H ∈ {3K1, C4, 2K2, co-paw, co-diamond, K4, 4K1, claw,
co-claw}. It remains to show that the problems correspond if H ∈ {K3, P3, K2 +K1,
P4, diamond, paw}.

Case 1: H = K3. On triangle-free graphs, the strong edges of an optimal STC-
labeling correspond to the edges of a maximum matching, which is an optimal clus-
ter labeling.

Case 2: H = P3. On P3-free graphs, every edge is labeled as strong in an
optimal STC-labeling [164]. Since P3-free graphs are cluster graphs, this labeling is
a cluster labeling.

Case 3: H = P4. On P4-free graphs, there is an optimal cluster labeling [110].

Case 4: H = paw. Then, each component of the input graph is triangle-free
or complete multipartite [140]. Complete multipartite graphs are P4-free. Thus,
it follows by the Cases 1 and 3 that there is an optimal cluster labeling on paw-
free graphs.

Case 5: H = K2 +K1. Then, since every K2 +K1-free graph is paw-free, there
is an optimal cluster labeling on K2 +K1-free graphs due to Case 4.
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Chapter 2. STC and CD

Figure 2.2: A graph that is contained as an induced subgraph in both examples given
in Figure 2.1.

Case 6: H = diamond. Let G = (V,E) be a diamond-free graph. We prove
that there is an optimal cluster labeling for G. The class of diamond-free graphs can
be characterized as strictly clique irreducible graphs [150]. That is, every edge of a
diamond-free graph lies in a unique maximal clique.

To show that there is an optimal cluster labeling, it is sufficient to prove that
there is an optimal STC-labeling L = (SL,WL) such that there is no triangle on
vertices u1, u2, and u3, with {u1, u2} ∈ SL, {u2, u3} ∈ SL, and {u1, u3} ∈ WL.

Let v ∈ V be a vertex of G. Since G is strictly clique irreducible, we can parti-
tion N [v] into maximal cliques K1, K2, . . . , Kt such that Ki ∩ Kj = {v} for i ̸= j.
Let L = (SL,WL) be an optimal STC-labeling for G such that v has a strong neigh-
bor w1 in K1 under L. We prove that v does not have a strong neighbor in any
of the other maximal cliques, which means E({v}, N(v) \ K1) ⊆ WL. Assume to-
wards a contradiction that v has a strong neighbor wj ∈ Kj for some j ̸= 1. Then,
there is an edge {w1, wj} ∈ E since L is an STC-labeling. Consequently, there is
a clique K+ ⊆ N [v] containing v, w1, and wj, which contradicts the fact that G is
strictly clique irreducible.

Now assume towards a contradiction that there is a triangle on vertices u1, u2,
and u3, such that {u1, u2} ∈ SL, {u2, u3} ∈ SL, and {u1, u3} ∈ WL. Since every
vertex can only have strong neighbors in one maximal clique, u1, u2, and u3 are
elements of the same maximal clique K. Since u1 and u3 do not have any strong
neighbors in V \K, we do not produce a strong P3 by adding {u1, u3} to SL, which
contradicts the fact that L is an optimal STC-labeling.

Finding examples of graphs where a cluster labeling is not an optimal STC-
labeling increases our understanding of strong triadic closure as a property of edge-
labeled graphs. It helps us to evaluate to which extent the inference of strong ties
using the strong triadic closure property differs from clustering the social network.

With Theorem 2.1 we provide a first step towards a characterization of graph
classes on which STC and CD correspond. A next step could be to classify the fam-
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2.1. STC and CD on H-free Graphs

ily H containing all graphs H such that STC and CD correspond on H-Free graphs.
Theorem 2.1 shows that {K3, P3, K2 + K1, P4, diamond, paw} ⊆ H. Furthermore,
note that each graph G where a cluster labeling is not an optimal STC-labeling con-
tains every H ∈ H as an induced subgraph. In particular, every H ∈ H is contained
as an induced subgraph in both examples given in Figure 2.1. As a consequence,
every H in H consists of at most seven vertices and has a maximum clique of size
at most 3. Figure 2.2 shows a small graph on five vertices that is called gem. Both
examples shown in Figure 2.1 contain a gem as induced subgraph. Thus, it would
be an interesting step to investigate if STC and CD correspond on gem-free graphs.

From a purely algorithmic point of view one might exploit the correspondence
between STC and CD to determine the classic complexity of STC. Recall that Kon-
stantinidis et al. [110] showed that the problems correspond on P4-free graphs and
used this correspondence to provide a polynomial-time algorithm. In the next section
we also exploit the correspondence to obtain NP-hardness of STC on some restricted
graph classes by using existing results for CD.

2.1.2 The Complexity of STC and CD on H-Free Graphs

We next study the classic complexity of STC and CD on H-free graphs, where H is
a small graph on three or four vertices. We provide a dichotomy between polynomial-
time solvable and NP-hard cases for all possibilities of H. For the case where H ∈
{C4, diamond, K4} we exploit the correspondence between STC and CD on diamond-
free graphs (Theorem 2.1) and an existing hardness result for CD [109]. We first
identify the cases where both problems are solvable in polynomial time.

Lemma 2.2. If H ∈ {K3, P3, K2+K1, P4, paw}, then STC and CD are solvable in
polynomial time on H-free graphs.

Proof. STC and CD are solvable in polynomial time on P4-free graphs [110]. More-
over, STC can also be solved in polynomial time on K2+K1-free and P3-free graphs,
since K2 +K1-free and P3-free graphs are P4-free. On triangle-free graphs, we can
solve both problems by computing a maximal matching, which can be done in poly-
nomial time [133]. Every component of a paw-free graph is triangle-free or complete
multipartite and thus P4-free [140]. Hence, we can use the polynomial-time algorithm
on the P4-free components and a polynomial-time algorithm to find a maximum
matching on the triangle-free components.

In the following, we show that for all other possible cases whereH has three or four
vertices, both problems remain NP-hard on H-free graphs. For the case where H ∈
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{3K1, 4K1, 2K2, claw, co-diamond, co-paw} we use a reduction from Clique that
has been previously used to show certain hardness results for CD [137]. When H
is a co-claw we provide a slightly more technical reduction from 3-Clique Cover.
The remaining cases where H ∈ {C4, diamond, K4} follow from previous results [109]
combined with the correspondence on diamond-free graphs from Theorem 2.1.

For the reduction from Clique we introduce the following definition.

Definition 2.3. Let G = (V,E) be a graph. The expanded graph ˆ︁G of G is the

graph obtained by adding a clique ˆ︁K := {v1, . . . , v|V |3} and edges such that every

vertex in V is adjacent to all vertices in ˆ︁K.

Obviously, we can construct ˆ︁G from G in polynomial time. We use this construc-
tion to give a reduction from Clique to STC and CD that also transfers certain H-
freeness properties from G to ˆ︁G. With the following lemma, we state that a Clique
instance (G, t) is a yes-instance if and only if the STC-instance ( ˆ︁G, (︁n3

2

)︁
+ t · n3) is a

yes-instance.

Lemma 2.4. Let (G = (V,E), t) be a Clique instance.

a) There is a clique of size at least t in G if and only if there is an STC-labeling

L = (SL,WL) for ˆ︁G such that |SL| ≥
(︁
n3

2

)︁
+ t · n3.

b) There is a clique of size at least t in G if and only if ˆ︁G has a solution for CD

with at least
(︁
n3

2

)︁
+ t · n3 cluster edges.

Proof. a) We separately prove the two directions of the statement.
(⇒) Let V ′ ⊆ V be a clique on t vertices in G. Then, we obtain an STC-

labeling L := (SL,WL) for ˆ︁G with at least
(︁
n3

2

)︁
+ t ·n3 strong edges by defining SL :=

E ˆ︁G(V ′ ∪ ˆ︁K). Note that L is a cluster labeling, and thus, it is an STC-labeling.

From | ˆ︁K| = n3 we also get that |SL| =
(︁
t
2

)︁
+
(︁
n3

2

)︁
+ t · n3 ≥

(︁
n3

2

)︁
+ t · n3.

(⇐) Conversely, let there be an STC-labeling L := (SL,WL) for ˆ︁G with at

least
(︁
n3

2

)︁
+ t · n3 strong edges. We show that there is a clique V ′ of size at least t

in G.
To this end, we call two vertices v1 and v2 in ˆ︁K members of the same family F ,

if v1 and v2 have the same strong neighbors in V . For each family F ⊆ ˆ︁K, the
set of strong neighbors of F forms a clique. Otherwise, if some vertex v ∈ F has
two nonadjacent strong neighbors u and w, then the edges {u, v} and {v, w} form a
strong P3 under L, contradicting the fact that L is an STC-labeling.
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Let F1, . . . , Fp be the families of vertices in ˆ︁K, and let KFi
denote the set of

strong neighbors of each family Fi. We show that |KFi
| ≥ t for some family Fi.

First, observe that

|SL \ (E ˆ︁G( ˆ︁K) ∪ E)| =
p∑︂
i=1

|Fi| · |KFi
| ≤ max

i
|KFi
| ·

p∑︂
i=1

|Fi| = max
i
|KFi
| · n3.

Next, observe that there are at least t · n3 edges in SL \ E ˆ︁G( ˆ︁K), since |SL| ≥(︁
n3

2

)︁
+ t · n3 and |E ˆ︁G( ˆ︁K)| =

(︁
n3

2

)︁
. Together with the fact that |E| ≤

(︁
n
2

)︁
, this implies

|SL \ (E ˆ︁G( ˆ︁K) ∪ E)| ≥ t · n3 −
(︃
n

2

)︃
> (t− 1) · n3.

Combining both inequalities, we have (t − 1) < maxi |KFi
|. Hence, there is a

clique of size at least t in G.
b) Let V ′ ⊆ V be a clique on t vertices in G. Since the labeling L from the proof

of Property a) is a cluster labeling, there is a solution of CD on ˆ︁G with at least(︁
n3

2

)︁
+ t · n3 cluster edges.

Now, let there be a solution of CD on ˆ︁G such that there are at least
(︁
n3

2

)︁
+ t · n3

cluster edges. We define an STC-labeling L = (SL,WL) for ˆ︁G by defining SL as
the set of cluster edges in the solution. Then, there is an STC-labeling with at
least

(︁
n3

2

)︁
+ t · n3 strong edges. It then follows by a), that G has a clique of size at

least t.

With the next lemma, we show that transforming a graph G into the expanded
graph ˆ︁G transfers certain H-free properties.

Lemma 2.5. Let H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1}. If a graph G is H-free,

then the expanded graph ˆ︁G is H-free.

Proof. Note that each H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1} is disconnected.

Assume towards a contradiction that ˆ︁G has H as an induced subgraph. Since G
is H-free and we do not add any edges between vertices of G during the construction
of ˆ︁G, at least one of the vertices of this induced subgraph lies in ˆ︁K. By construction,
each vertex in ˆ︁K is adjacent to every other vertex in ˆ︁G, which contradicts the fact
that the induced subgraph is disconnected.

We next use Lemmas 2.4 and 2.5 to obtain NP-hardness results for STC and CD.
Note that the NP-hardness for CD on 3K1-free graphs and 2K2-free graphs is already
known [66]. Moreover, the NP-hardness of STC on 2K2-free graphs and C4-free
graphs is implied by the NP-hardness of STC on split graphs [111].
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Lemma 2.6. STC and CD remain NP-hard on H-free graphs if

H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1, claw, C4, diamond, K4}.

Proof. We consider the following cases.
Case 1: H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1}. Clique remains NP-hard

on 3K1-,2K2-, co-diamond-, co-paw- and 4K1-free graphs since Independent Set
is NP-hard on the complement graphs: K3-, C4-, diamond-, paw-, and K4-free
graphs [148]. By Lemma 2.4, (G, k) ↦→ ( ˆ︁G,m − (

(︁
n3

2

)︁
+ k · n3)) is a polynomial-

time reduction from Clique to STC and CD. By Lemma 2.2 we know that if G
is H-free for H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1}, then ˆ︁G is H-free as well.
Thus, STC and CD remain NP-hard on H-free graphs.

Case 2: H = claw. Since both problems are NP-hard on 3K1-free graphs due to
Case 1, it follows, that they are NP-hard on claw-free graphs.

Case 3: H ∈ {C4, diamond, K4}. There is a reduction from 3Sat to CD pro-
ducing a C4-, K4-, and diamond-free CD instance [109]. By Theorem 2.1, there is
an optimal cluster labeling for STC on diamond-free graphs, so the reduction works
also for STC. Thus, STC and CD remain NP-hard on C4-, K4-, and diamond-free
graphs.

It remains to show NP-hardness on co-claw-free graphs. Since Independent Set
can be solved in polynomial time on claw-free graphs [158], we can solve Clique
on co-claw-free graphs in polynomial time. Thus, a reduction from Clique using
the expanded graph as in the proof of Lemma 2.6 does not show NP-hardness in
this case.

Lemma 2.7. STC and CD remain NP-hard on co-claw-free graphs.

Proof. We give a reduction from 3-Clique Cover. In 3-Clique Cover one is
given a graph G = (V,E) and the question is whether the vertex set V can be
partitioned into three sets V1, V2, and V3 such that each Vi is a clique in G. 3-Clique
Cover is NP-hard even if the input graph is co-claw-free [90]. We first describe a
reduction to STC. Afterwards, we argue why this is also a correct reduction to CD.

Construction. Let G := (V,E) be a co-claw-free instance for 3-Clique Cover.
We construct a co-claw-free STC instance (G′ := (V ′, E ′), k) as follows.

We define three vertex sets K1, K2, and K3. Every Ki consists of n3 ver-
tices v1,i, . . . , vn3,i. We set V ′ := V ∪K1 ∪K2 ∪K3. Moreover, we define edges from
every vertex in K1 ∪K2 ∪K3 to every vertex in V and edges of the form {vc,i, vd,j},
where c ̸= d. We define the edge set E ′ as the union of those edges and E. Note
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that each Ki is a clique of size n3 in G′. We complete the construction by set-
ting k := |E ′| − (3 ·

(︁
n3

2

)︁
+n4). Throughout this proof, let K := K1 ∪K2 ∪K3 denote

the union of the three cliques.
G′ is co-claw-free. Before we prove the correctness of the reduction, we show

that G′ is co-claw-free. A co-claw consists of a triangle and an isolated vertex.
Assume towards a contradiction that G′ has a co-claw as an induced subgraph.
Then, there is a triangle on some vertices u1, u2, and u3, and there is a vertex w that
is not adjacent to any vertex from the triangle on u1, u2, and u3. We consider the
following cases.

Case 1: w ∈ K. Without loss of generality, let w = vp,1 for some p = 1, . . . , n3.
By the construction of G′, the vertex w has edges to every other vertex of G′ ex-
cept vp,2 and vp,3. Hence, there cannot be three vertices in G

′ which are not adjacent
to w. A contradiction.

Case 2: w ∈ V . Since G has no induced co-claw, one of the triangle vertices
belongs to K. Without loss of generality, let u1 ∈ K. Then, by construction of G′,
there is an edge {w, u1} ∈ E ′. A contradiction.

Correctness. We next show that the reduction is correct. That is, we prove that G
has a clique cover of size 3 if and only if there is an STC-labeling L := (SL,WL)

for G′ with |SL| ≥ 3 ·
(︁
n3

2

)︁
+ n4.

(⇒) Let G have a clique cover of size 3. Then, there are three disjoint cliques V1,
V2, and V3 in G such that V1∪V2∪V3 = V . We define an STC-labeling L := (SL,WL)

for G′ with at least (3 ·
(︁
n3

2

)︁
+ n4) strong edges by setting SL :=

⋃︁3
i=1EG′(Ki ∪ Vi).

Since all Ki ∪ Vi are disjoint cliques, L is a cluster labeling. Thus, L is an STC-
labeling. Moreover, there are at least (3 ·

(︁
n3

2

)︁
+ n4) edges in SL since

3∑︂
i=1

|EG′(Vi ∪Ki)| =
3∑︂
i=1

(︃(︃
|Vi|
2

)︃
+

(︃
n3

2

)︃
+ |Vi| · n3

)︃

≥ 3 ·
(︃
n3

2

)︃
+ n3

3∑︂
i=1

|Vi|

= 3 ·
(︃
n3

2

)︃
+ n4.

(⇐) Conversely, let L = (WL, SL) be an STC-labeling for G′ with |SL| ≥ 3 ·(︁
n3

2

)︁
+ n4. Assume towards a contradiction that G does not have a clique cover of

size at most 3. We show that this is a contradiction to the fact that there are at
least 3 ·

(︁
n3

2

)︁
+ n4 strong edges. We first provide an upper bound for the number of

strong edges in EG′(K).
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Claim 1. There are at most 3 ·
(︁
n3

2

)︁
strong edges in EG′(K).

Proof . To prove the claim, we first show that each vertex v ∈ K has at most n3 − 1
strong neighbors in K. Without loss of generality assume that v = v1,1 ∈ K1. By the
construction of G′, the vertex v1,1 is adjacent to all of K except v1,2, v1,3, and itself.
It thus has n3 − 1 neighbors in each of the cliques K1, K2, and K3. Assuming v1,1
has more than n3 − 1 strong neighbors, it follows by the pigeonhole principle that
there is a number d = 2, . . . , n3 such that two vertices vd,i and vd,j with i ̸= j are
strong neighbors of v1,1. Since {vd,i, vd,j} ̸∈ E ′, the edges {vd,i, v1,1} and {v1,1, vd,j}
form a strong P3 under L, which contradicts the fact that L satisfies STC.

Since |K| = 3 ·n3 and each vertex in K has at most n3− 1 strong neighbors in K,
there are at most 3n3·(n3−1)

2
= 3 ·

(︁
n3

2

)︁
strong edges between vertices in EG′(K). ♢

We next give an upper bound on the number of strong edges in EG′(K, V ) by
using the assumption that G does not have a clique cover of size at most 3.

Claim 2. There are at most n4 − n3 strong edges in EG′(K, V ).

Proof . For vc,i ∈ K, let N (vc,i) := {w ∈ V | {vc,i, w} ∈ SL} denote the set of strong
neighbors of vc,i that lie in V . Obviously, each N (vc,i) forms a clique, since otherwise
there is a strong P3 under L.

Consider a triple of vertices vc,1, vc,2, vc,3 ∈ V for some fixed c = 1, . . . , n3. By
the construction of G′, those three vertices are pairwise nonadjacent. It follows
that N (vc,1), N (vc,2) and N (vc,3) are pairwise disjoint. Otherwise, if there is a
vertex w ∈ N (vc,1)∩N (vc,2), then the edges {vc,1, w} and {w, vc,2} form a strong P3

under L.
Since N (vc,1), N (vc,2), and N (vc,3) are disjoint cliques in V , the assumption that

there is no clique cover of size 3 implies that for each triple vc,1, vc,2, vc,3 we can find
a vertex w ∈ V such that w ̸∈ N (vc,1) ∪ N (vc,2) ∪ N (vc,3). Consequently, there are
at most n − 1 strong edges in EG′(V, {vc,1, vc,2, vc,3}). Since K consists of n3 such
triples, there are at most n3 · (n− 1) = n4 − n3 strong edges in EG′(K, V ). ♢

Claims 1 and 2 together with the fact that |EG′(V )| = |E| =
(︁
n
2

)︁
< n3 give us

the following inequality:

|SL| = |SL ∩ EG′(K)|+ |SL ∩ EG′(K, V )|+ |SL ∩ EG′(V )|

≤ 3 ·
(︃
n3

2

)︃
+ (n4 − n3) +

(︃
n

2

)︃
< 3 ·

(︃
n3

2

)︃
+ n4.
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This inequality contradicts the fact that |SL| ≥ 3 ·
(︁
n3

2

)︁
+ n4. Consequently, G has a

clique cover of size 3 or less, which proves the correctness of the reduction.
Correctness for CD. We next argue that the reduction described above is also a

correct reduction to CD. The STC-labeling defined in the forward direction of the
proof is a cluster labeling. This implies the existence of a solution for CD with at
most k edge deletions. The backwards direction follows from the fact that a solution
for CD with at most k edge deletions implies an STC-labeling with at most k weak
edges which then implies that the instance of 3-Clique Cover is a yes-instance.

From Lemmas 2.2, 2.6, and 2.7 we obtain the following complexity dichotomy
for STC and CD on H-free graphs.

Theorem 2.8. The problems STC and CD are solvable in polynomial time on H-
free graphs, if H ∈ {K3, P3, K2+K1, P4, paw}. Both problems are NP-hard on H-free
graphs, if H ∈ {3K1, K4, 4K1, C4, 2K2, diamond, co-diamond, claw, co-claw, co-paw}.

Due to Theorem 2.8, the classic complexity of STC and CD is the same on H-free
graphs for all cases of H that were studied in this work. The most interesting open
question might be: Is there a graph class on which one of the two problems is solvable
in polynomial time while the other problem is NP-hard? The existence of such graph
class might give new insights into the relation of these two problems and it would be
interesting to compare the solution structure (the clustering and the graph spanned
by the strong edges) on graphs belonging to this class.

The clique reductions using the expanded graph, the reduction behind Lemma 2.7,
and the reduction provided by Komusiewicz and Uhlmann [109] are reductions to
graphs where a cluster labeling is an optimal STC-labeling. Thus, the reductions
used in this work might help to easily identify graph classes on which STC and CD
are both NP-hard. Note that a necessary condition for STC and CD to have different
classic complexity on a graph class Π is that STC and CD do not correspond on Π.
Thus, if one considers H-free graphs, a good starting point are the graphs H that
are not induced subgraphs of graphs on which a cluster labeling is not an optimal
STC-labeling, like the ones given in Figure 2.1.

2.2 Parameterization by the Number of Strong

Edges

We now study the parameterized complexity of STC and CD. In case of STC, the
number k of weak edges and the number ℓ := m−k of strong edges are arguably the
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most natural parameterizations. Analogously, for CD, these two natural parameters
are the number of edge deletions and the number of cluster edges.

Both problems are known to be fixed-parameter tractable when parameterized
by k [14, 164]. Furthermore, both problems admit problem kernels with a linear
number of vertices [77, 85, 23]. We revisit the solution size of STC in Chapter 4,
where we study the parameterized complexity of STC with multiple relationship
types—a generalization of STC—regarding this parameter.

In the following, we study STC and CD parameterized by ℓ. Since parameteri-
zation by ℓ is arguably natural, it is somehow surprising that it has—to the best of
our knowledge—not been studied for CD so far. On the positive side, we show that
both problems are fixed-parameter tractable for ℓ. On the negative side, we show
that both problems do not admit a polynomial kernel for ℓ unless NP ⊆ coNP/poly.
Recall that independent from our work, Golovach et al. [71] also showed that STC
parameterized by ℓ has no polynomial kernel unless NP ⊆ coNP/poly.

2.2.1 Fixed-Parameter Algorithms

For CD, we obtain a fixed-parameter algorithm by a simple dynamic programming
algorithm.

Theorem 2.9. CD can be solved in O(9ℓ · ℓ2n) time.

Proof. We first describe the algorithm and afterwards, we analyze its running time.
Algorithm. The first step of the algorithm is to compute a maximal matching M

in G. If |M | ≥ ℓ, then answer yes. Otherwise, since M is maximal, the endpoints
of M are a vertex cover of size less than 2ℓ. Let C denote this vertex cover and
let I := V \ C denote the independent set consisting of the vertices that are not
endpoints of edges in M . We now decide if there is a cluster subgraph with at
least ℓ cluster edges using dynamic programming over subsets of C. In the following,
we assume that I := {1, . . . , n−|C|}. The dynamic programming table T has entries
of the type T [i, C ′] for all i ∈ {0, 1, . . . , n − |C|} and all C ′ ⊆ C. Each entry stores
the maximum number of cluster edges in a clustering of G[C ′ ∪ {1, . . . , i}]. The
entries are computed for increasing values of i and subsets C ′ of increasing size.
Note that the entry for i = 0 corresponds to the clusterings that contain no vertices
of I. For i = 0 and C ′ = ∅, we set T [0, ∅] := 0. The recurrence to compute an entry
for i = 0 and C ′ ̸= ∅ is

T [0, C ′] = max
C′′⊆C′:C′′is a clique

T [0, C ′ \ C ′′] +

(︃
|C ′′|
2

)︃
.
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The recurrence to compute an entry for i ≥ 1 is

T [i, C ′] = max
C′′⊆C′:C′′∪{i}is a clique

T [i− 1, C ′ \ C ′′] +

(︃
|C ′′|+ 1

2

)︃
.

After filling this table completely, we have a yes-instance if T [n−|C|, C] ≥ ℓ and
a no-instance otherwise. The corresponding set of edge-deletions can be found via
traceback. The correctness follows from the observation that we consider all cases
for the clique containing i since i is not adjacent to any vertex j < i.

Running Time. The running time of the algorithm can be seen as follows. A
maximal matching can be computed in linear time. If the matching has size less
than ℓ, we fill the dynamic programming table as defined above. For each i ∈
{0, 1, . . . , n− |C|} an entry T [i, C ′] can be computed in O(2|C′| · ℓ2) time where the
factor ℓ2 corresponds to the time needed to determine whether C ′′ ∪ {i} is a clique.
Consequently, all entries can be computed in O(n ·

∑︁2ℓ
j=0

(︁
2ℓ
j

)︁
· ℓ2) = O(32ℓℓ2n) time.

For STC, we combine a branching on the graph that is induced by a maximal
matching with a dynamic programming over the vertex sets of this graph.

Theorem 2.10. STC can be solved in ℓO(ℓ) · n2 time.

Proof. We first describe the algorithm and afterwards, we analyze its running time.
Algorithm. The initial step of the algorithm is to compute a maximal matchingM

in G. If |M | ≥ ℓ, then answer yes. Otherwise, the endpoints of M are a vertex
cover of size less than 2ℓ since M is maximal. Let C denote this vertex cover and
let I := V \ C denote the independent set consisting of the vertices that are not
endpoints of edges in M . The algorithm now has two further main steps. First, try
all STC-labelings of G[C] with at most ℓ strong edges. If there is one STC-labeling
with ℓ strong edges, then answer yes. Otherwise, compute for each STC-labeling
of G[C] with fewer than ℓ edges, whether it can be extended to an STC-labeling of G
with ℓ strong edges by labeling sufficiently many edges of E(C, I) as strong.

Observe that G[C] has ℓO(ℓ) STC-labelings with at most ℓ strong edges and
that they can be enumerated in ℓO(ℓ) time: The graph G[C] has less than

(︁
2ℓ
2

)︁
=

O(ℓ2) edges and we enumerate all subsets of the edge set of G[C] that have size at
most ℓ. Consider one such set SC . In O(ℓ2) time, we can check whether (SC , E(C) \
SC) is a valid STC-labeling. If this is not the case, then discard the current set.
Otherwise, compute whether this labeling can be extended into a labeling of G with
at least ℓ strong edges by using dynamic programming over subsets of C. In the fol-
lowing, we assume that I := {1, . . . , n−|C|}. The dynamic programming table T has
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entries of the type T [i, C ′] for all i ∈ {0, 1, . . . , n− |C|} and all C ′ ⊆ C. Each entry
stores the maximum number of strong edges in an STC-labeling of G[C ∪ {1, . . . , i}]
in which the strong edges in E(C) are exactly those of SC and in which the set of
strong neighbors of the vertices in {1, . . . , i} is a subset of C ′. For any STC-labeling,
the set of strong neighbors N (i) of each vertex i has to fulfill three properties:

• N (i) is a clique.

• No vertex of N (i) has a strong neighbor in C \N(i).

• No vertex of N (i) has a strong neighbor in I \ {i}.
We call a set that fulfills the first two properties valid for i. We ensure the third
property by the recurrence in the dynamic programming.

The entries are computed for increasing values of i and subsets C ′ of increasing
size. For i = 0 and C ′ = ∅, we set T [0, ∅] := |SC |. The recurrence to compute an
entry for i ≥ 1 is

T [i, C ′] = max
C′′⊆C′:C′′is valid for i

T [i− 1, C ′ \ C ′′] + |C ′′|.

After filling this table completely, we have a yes-instance if T [n−|C|, C] ≥ ℓ. Other-
wise, the current STC-labeling for G[C] cannot be extended to an STC-labeling for G
with at least ℓ strong edges. If T [n− |C|, C] < ℓ for every choice of an STC-labeling
for G[C], then we have a no-instance. The correctness follows from the observation
that we consider all valid sets for strong neighbors and that in the optimal solution
for G[i− 1, C ′ \ C ′′] no vertex from {1, . . . , i− 1} has strong neighbors in C ′′.

Running Time. The running time of the algorithm can be seen as follows. A
maximal matching can be computed greedily in linear time. If the matching has size
less than ℓ, we fill the dynamic programming table as defined above. The number of
partial labelings SC is ℓO(ℓ). Given a partial labeling, for each i ∈ {0, . . . , n−|C|} an
entry T [C ′, i] can be computed in O(2|C′| ·ℓ ·n) time where the factor ℓ ·n corresponds
to the time needed to compute the subsets of C ′ that are valid for i. Consequently,
the time needed to fill T for one partial labeling is O(n ·

∑︁2ℓ
j=0

(︁
2ℓ
j

)︁
·ℓn) = O(32ℓ ·ℓn2).

Thus, the overall running time is ℓO(ℓ) · n2.

An algorithm with running time ℓO(ℓ) ·n2 is too slow to be practically relevant. A
natural open question is thus, if the factor ℓO(ℓ) can be replaced by a factor of 2O(ℓ).
Note that for every partial labeling SC , the dynamic programming table T can be
filled in O(32ℓ · ℓn2) time. Thus, the bottleneck of the running time in the algorithm
behind Theorem 2.10 is to iterate over all partial labelings SC . Therefore, if one can
think of a way to decrease the number of partial labelings that can be extended to
a solution, one might obtain a faster algorithm for STC parameterized by ℓ.
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2.2.2 A Kernel Lower Bound for the Parameter ℓ

In the following, we provide a kernel lower bound for STC and CD parameter-
ized by ℓ. More precisely, we provide a polynomial parameter transformation that
implies that both problems do not admit a polynomial kernel when parameterized
by ℓ unless NP ⊆ coNP/poly. To prove the kernel lower bound we give a polynomial
parameter transformation fromMulticolored Clique. Recall that inMulticol-
ored Clique one is given a graph G = (V,E) together with a partition (V1, . . . , Vt)
of V , where every set Vr is an independent set. The question is if there exists a
multicolored clique in G, that is, a clique containing one vertex from each set Vr.
Multicolored Clique does not admit a polynomial kernel when parameterized
by
∑︁t−1

r=1 |Vr| due to Proposition 1.4.

Theorem 2.11. STC parameterized by the number of strong edges ℓ does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Proof. Construction. Let G = (V,E) together with a partition (V1, . . . , Vt) be an
instance of Multicolored Clique. Without loss of generality we assume that
all Vr except Vt have the same size z: if this is not the case we add maxi∈{1,...,t} |Vi|−
|Vr| isolated vertices to each class Vr, which only causes a polynomial blow up of
the parameter

∑︁t−1
r=1 |Vr|. Moreover, let v1,r, v2,r, . . . , vz,r be the vertices in Vr. We

describe how to construct an equivalent instance (G′ = (V ′, E ′), k) in polynomial
time such that ℓ is polynomially bounded in

∑︁t−1
r=1 |Vr|.

For each of the class Vr with r ∈ {1, . . . , t−1}, we define a family Kr of z−1 vertex
sets K1,r, K2,r, . . . , Kz−1,r, each of size t, and we add edges such that each K ∈ Kr
becomes a clique. Throughout this proof, we refer to these vertex sets as attached
cliques of Vr. For every i ∈ {1, . . . , z − 1} we also add edges {u, v} from all u ∈ Ki,r

to all v ∈ Vr. Figure 2.3 shows an example of this construction. We complete the
construction by setting k := |E ′| −

(︁(︁
t
2

)︁
+ (t− 1)(z − 1)

(︁
t+1
2

)︁)︁
. Consequently, ℓ =

|E ′| − k =
(︁
t
2

)︁
+ (t− 1) · (z − 1)

(︁
t+1
2

)︁
, which is polynomially bounded in

∑︁t−1
r=1 |Vr|.

Intuition. Before we prove the correctness of the polynomial parameter transfor-
mation, we provide some intuition. Every vertex in a class Vr with r ∈ {1, . . . , t− 1}
can be incident with up to t strong edges. This is the case if and only if it forms
a strong clique with one of the attached cliques of Vr. Since |Vr| = z and there are
only z−1 attached cliques, one vertex vr of each class Vr does not form such a strong
clique with an attached clique. All these vertices vr together with one vertex from Vt
then correspond to a multicolored clique in G.

Correctness. We show that G is a yes-instance of Multicolored Clique if
and only if (G′, k) is a yes-instance of STC.
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K1,1 K2,1

V1

K1,2 K2,2

V2

K1,3 K2,3

V3

V4

K1,1 K2,1 K1,2 K2,2 K1,3 K2,3

Figure 2.3: An example for the construction of G′ described in the proof of Theorem 2.11
with t = 4 color classes. The upper part shows color classes V1, V2, and V3 of size z = 3
and their attached cliques. The lower part shows color class V4. The edges between the
color classes are the edges from G. The dotted edges correspond to the weak edges of an
optimal STC-labeling for G′.

(⇒) Let R be a multicolored clique in G′. Without loss of generality we assume
that R = {vz,1, . . . , vz,t−1, u} with u ∈ Vt. We define the labeling L := (SL,WL)
for G′ by setting SL := ER ∪ EK ∪ EV , where ER is the set of all edges between
vertices of R, EK contains all edges between the vertices of the attached cliques,
and EV contains all edges between vertices vi,r with i ≤ z − 1 and r ≤ t− 1 and the
vertices in the corresponding attached cliques Ki,r. Formally, this is

ER := EG′(R),

EK :=
⋃︂

i=1,...,z−1
r=1,...,t−1

EG′(Ki,r), and

EV :=
⋃︂

i=1,...,z−1
r=1,...,t−1

EG′({vi,r}, Ki,r).

It remains to show that L is an STC-labeling with |SL| ≥
(︁
t
2

)︁
+(t−1)(z−1)

(︁
t+1
2

)︁
.
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The size of SL is

|SL| = |ER|+ |EK|+ |EV |

=

(︃
t

2

)︃
+ (t− 1)(z − 1)

(︃
t

2

)︃
+ (t− 1)(z − 1)t

=

(︃
t

2

)︃
+ (t− 1)(z − 1)

(︃
t+ 1

2

)︃
.

We next show that there is no strong P3 under L. We prove the slightly stronger
statement that L is a cluster labeling. To this end, we consider two strong edges e1 ∈
SL and e2 ∈ SL. We show that these edges are part of a strong triangle if they share
an endpoint. Consider the following case distinction.

Case 1: e1, e2 ∈ ER or e1, e2 ∈ EK. Then, if e1 and e2 share one endpoint, all
endpoints of e1 and e2 belong to the same strong clique.

Case 2: e1, e2 ∈ EV . Then, if e1 and e2 share exactly one endpoint, they
have the form e1 = {vi,r, w1} and e2 = {vi,r, w2} with w1, w2 ∈ Ki,r for some i ∈
{1, . . . , z − 1} and r ∈ {1, . . . , t − 1} by the definition of EV . Then, there exists a
strong edge {w1, w2} ∈ EK.

Case 3: (e1 ∈ ER and e2 ∈ EK) or (e1 ∈ ER and e2 ∈ EV ). Then, e1 and e2 do
not share an endpoint by the construction of G′.

Case 4: e1 ∈ EK and e2 ∈ EV . Then, if e1 and e2 share exactly one endpoint,
they have the form e1 = {vi,r, w1} and e2 = {w1, w2} with w1, w2 ∈ Ki,r for some i ∈
{1, . . . , z − 1} and r ∈ {1, . . . , t− 1}. Then, there exists a strong edge {vi,r, w2}.

We have thus shown that L is a cluster labeling. Consequently, L is an STC-
labeling with |SL| =

(︁
t
2

)︁
+ (t− 1)(z − 1)

(︁
t+1
2

)︁
.

(⇐) Conversely, let L := (SL,WL) be an optimal STC-labeling with |SL| ≥(︁
t
2

)︁
+(t−1)(z−1)

(︁
t+1
2

)︁
. We show that G contains a multicolored clique. To this end,

we use the following claim to show that we may make some assumptions about L
regarding the edges between the classes Vr and their attached cliques.

Claim 1. There exists an optimal STC-labeling L∗ := (SL∗ ,WL∗) that satisfies the
following properties for every tuple (r,K) with r ∈ {1, . . . , t− 1} and every K ∈ Kr.

a) There is at most one vj,r ∈ Vr that has a strong neighbor in K under L∗.

b) If there is a strong edge {vj,r, w} ∈ EG′(Vr, K), then EG′({vj,r}, K) ⊆ SL∗

Proof . Recall that L is an optimal STC-labeling. If L satisfies a) and b) for all r
and K ∈ Kr, nothing more needs to be shown. Otherwise, let r ∈ {1, . . . , t − 1}
such that there exists some K ∈ Kr where Properties a) or b) do not hold for the
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tuple (r,K). Then, there exists some v ∈ Vr that has a strong neighbor w ∈ K. We
define a new labeling L′ := (SL′ ,WL′) by setting

SL′ := (SL \ EG′(Vr, K)) ∪ EG′({v}, K)).

Then, L′ satisfies a) and b) for K. It remains to show that L′ is an optimal STC-
labeling for G′.

We first show that L′ is an STC-labeling. Let {v, u} ∈ EG′({v}, K), and let e ∈ E ′

be an edge that forms a P3 with {v, u}. Then, e ̸∈ EG′(K ∪ {v}), since K ∪ {v} is a
clique in G′. We consider the following cases to show that e is weak under L′.

Case 1: e = {v′, u} with v′ ∈ Vr \ {v}. Then, e is weak by the definition of L′.
Case 2: e = {v, y} with y ̸∈ K. Then, since NG′ [u] = NG′ [w], the edge e also

forms a P3 with {v, w} and thus, e is weak under L. Then, the edge e is also weak
under L′.

Consequently, L′ is an STC-labeling. We next show that L′ is optimal. Observe
that there are at most t edges in SL ∩ EG′(Vr, K), since otherwise—by pigeonhole
principle—there is a vertex w ∈ K that has two strong neighbors in Vr. Since Vr is
an independent set, this contradicts the fact that L is an STC-labeling. Together
with the fact that |EG′({v}, K)| = t, we have |SL′| ≥ |SL|. Thus, L′ is optimal.

Observe that by transforming L into L′, we only changed the labels of edges
in EG′(K,Vr). Thus, we can apply this transformation subsequently for every r ∈
{1, . . . , t − 1} and K ∈ Kr so that we obtain an optimal STC-labeling L∗ fulfilling
Properties a) and b) for every tuple (r,K) with r ∈ {1, . . . , t− 1} and K ∈ Kr. ♢

Throughout the rest of this proof, we assume without loss of generality that L
satisfies Properties a) and b) from Claim 1. We use this assumption to prove the
next claim. In this claim we show that in every class Vr with r ∈ {1, . . . , t−1}, there
is exactly one vertex that has no strong neighbor in one of the attached cliques. We
later use these vertices to show that there is a multicolored clique in G.

Claim 2. In every class Vr with r ∈ {1, . . . , t−1}, there are exactly z−1 vertices that
form a strong clique under L of size t+ 1 with one of the attached cliques K ∈ Kr.

Proof . Let r ∈ {1, . . . , t− 1}. Observe that all edges inside the attached cliques are
not part of any P3 in G

′, and thus, they are strong under L. Note that since |Vr| = z
and |Kr| = z − 1, there are at most z − 1 vertices in Vr that form a strong clique
with one of the attached cliques. It remains to show that there are at least z − 1
such vertices.

Assume towards a contradiction that there are two vertices v, w ∈ Vr that do not
form a strong clique with some K ∈ Kr. From Claim 1 b), we conclude that v and w
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do not have any strong neighbor in
⋃︁
K∈Kr

K. Furthermore, Claim 1 a) implies that
there is at least one K ∈ Kr such that the vertices in K have no strong neighbors
in Vr. Then, we can define a new labeling L+ = (SL+ ,WL+) by

SL+ := (SL \ EG′({v},
⋃︂

j=1,...,t
j ̸=r

Vj)) ∪ EG′({v}, K).

Note that there are at most t−1 strong edges between v and the other vertices of G,
since every Vj is an independent set. Together with the fact that |EG′({v}, K)| = t,
we have |SL+| > |SL|. Since every vertex in K has only weak neighbors in Vr \ {v}
and v has only weak neighbors in V ′\K under L+, the labeling L+ is an STC-labeling.
This contradicts the fact that L is an optimal STC-labeling. ♢

Observe that if a vertex v ∈ Vr with r ∈ {1, . . . , t− 1} forms a strong clique with
one of the attached cliques K, it has no strong neighbor outside K. From Claim 2
we know that there are (t − 1) · (z − 1) ·

(︁
t+1
2

)︁
strong edges in EG′(V ′ \ Vt). Since

|SL| ≥
(︁
t
2

)︁
+ (t − 1)(z − 1)

(︁
t+1
2

)︁
, there are at least

(︁
t
2

)︁
further edges that are strong

under L. In the following, we describe how we can find a multicolored clique in G′

using these
(︁
t
2

)︁
strong edges.

By Claim 2, every class Vr with r ∈ {1, . . . , t− 1} contains a unique vertex that
has no strong neighbor in one of the attached cliques. Without loss of generality,
let R := {v1,1, v1,2, . . . , v1,t−1} ⊆ V1 ∪ . . . ∪ Vt−1 be the set of these vertices. Since Vt
is an independent set, each v ∈ R has at most one strong neighbor in Vt. Therefore,
there are at most t− 1 strong edges in EG′(R, Vt). Since

(︁
t
2

)︁
− (t− 1) =

(︁
t−1
2

)︁
, there

are
(︁
t−1
2

)︁
strong edges between the vertices of R. Consequently, G′[R] is a complete

subgraph and R is a strong clique under L.
Now let U ⊆ Vt be the subset of vertices in Vt that have a strong neighbor in R.

The set U is not empty since |SL| ≥
(︁
t
2

)︁
+(t−1)(z−1)

(︁
t+1
2

)︁
. Thus, let u ∈ R. Then, u

has edges to each v ∈ R. Otherwise, if {u, v} ∈ E ′ and {u,w} ̸∈ E ′ for some v, w ∈ R,
the edges {u, v} and {w, v} form a strong P3 under L. Therefore, R ∪ {u} is a
multicolored clique in G′.

The proof of Theorem 2.11 also implies that CD has no polynomial kernel with
respect to the parameter ℓ: The strong edges in the STC-labeling obtained in the
forward direction of the proof form a disjoint union of cliques and the converse
direction follows from the fact that a cluster subgraph with at least ℓ cluster edges
implies an STC-labeling with at least ℓ strong edges which then implies that the
Multicolored Clique instance is a yes-instance. Thus, we obtain the following
kernel lower bound for CD.
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Corollary 2.12. CD parameterized by the number of cluster edges ℓ := |E|−k does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

2.3 Concluding Remarks

We provided a study on the correspondence and classic complexity of STC and CD
on some restricted graph classes. Moreover, we initiated the study of the parameter-
ized complexity of STC and CD for the parameter ℓ.

This chapter is based on parts of the publication “On the relation of strong
triadic closure and cluster deletion” which appeared in Algorithmica [77]. Besides
the results in this chapter, the original publication provides the first linear-vertex
kernel of order 4k for STC, where k is the number of weak edges. In Chapter 4
of this work, we study the solution size of STC as parameterization for Multi-
STC and its list variants. Among other results, we provide a more general problem
kernelization that implies a 4k-vertex kernel for STC.

Open Questions. In the beginning of this chapter, we studied the correspondence
of STC and CD on restricted graph classes. Analyzing the correspondence between
STC and CD increases our understanding of strong triadic closure as a property
of edge-labeled graphs and helps us to evaluate to which extent the inference of
strong ties using the strong triadic closure property differs from clustering the social
network. A natural question is to ask for further graph classes on which the two
problems correspond, as we discussed at the end of Section 2.1.1. An even bigger
goal is to achieve a complete characterization of the graphs in which an optimal
solution of CD does not correspond to an optimal solution of STC.

A related open question concerns a variant of STC that is called Strong Tri-
adic Closure with Edge Insertions (STC+). In STC+, one also aims to find
an STC-labeling with at most k weak edges, but—in contrast to STC—one is allowed
to connect two vertices with a weak edge that were nonadjacent in the input graph.
Formally, given a graph G = (V,E) and an integer k, one aims to find an STC-
labeling L = (SL,WL∪E+) of the graph G+ = (V,E∪E+) such that |WL∪E+| ≤ k.
This problem is closely related to the well-studied graph clustering problem Clus-
ter Editing (CE) [182, 12, 14, 13, 109]. In CE, one is given a graph G and an
integer k and the question is if G can be transformed into a cluster graph with at
most k edge modifications. Here, an edge modification is either an insertion or a
deletion of an edge. Analogously to STC and CD, the problems STC+ and CE are
related in the following sense: A solution of CE with k edge modifications implies the
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existence of a solution of STC+ with |WL∪E+| = k. Intuitively, the edge deletions in
CE correspond to labeling edges as weak, and the edge insertions in CE correspond
to adding weak edges to the graph. We would like to repeat one open question posed
by Neuendorf [138]: Does a solution for STC+ imply the existence of a solution
for CE of the same size? In other words, is there an example of an instance where
an optimal solution for STC+ is strictly smaller than an optimal solution for CE?
In the two examples given in Figure 2.1 a solution of STC+ corresponds to an op-
timal CE solution. Thus, the examples of non-correspondence for STC and CD do
not work for STC+ and CE. A correspondence between STC+ and CE might give
new insights into Cluster Editing: If an edge deletion corresponds to a weak
edge labeling, the solution size is not affected by P3s that arise from deleting one
edge in a triangle. This observation might lead to new algorithmic approaches for
the well-studied Cluster Editing problem like new ILP formulations or new FPT
algorithms.

We also provided a complexity dichotomy of the classic complexity on H-free
graphs for all graphs H that have at most four vertices. For each choice of H, either
both problems are NP-hard or solvable in polynomial time. Recall that an interesting
open question might be if one could find a graph class on which one problem is
polynomial-time solvable while the other one is NP-hard. The question appears to
be interesting since the existence of such graph class might give new insights into the
relation of STC and CD and it would be interesting to compare the solution structure
on these instances. Furthermore, one could investigate if there exist further graph
classes on which STC or CD are solvable in polynomial time. Besides extending
our knowledge of the classic complexity of these problems, identifying such graph
class Π might motivate the study of new parameterizations for STC and CD. For
example: Is STC (or CD) FPT when parameterized by the vertex deletion distance to
a graph that belongs to Π? These parameterizations are also known as distance-from-
triviality parameterizations. In Chapter 5 of this work, we study a distance-from-
triviality parameterization for Multi-STC and a related edge coloring problem.

Concerning the parameterized complexity, a natural open question is to ask if
there are more efficient algorithms for STC when parameterized by the number ℓ of
strong edges. The algorithm behind Theorem 2.10 has running time ℓO(ℓ) · n. Can
this be improved to 2O(ℓ) · nO(1) time? Recall that the running time bottleneck of
the presented algorithm is to enumerate all labelings of edges between the endpoints
of a maximal matching in the input graph. If one could efficiently identify a small
subset L of these labelings such that it is sufficient to check whether one labeling
in L can be extended to a solution, there would be a running time improvement.
For parameterization by the number k of weak edges, it is open whether we can
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solve STC faster than in O(1.28k + nm) time, the running time that is implied by
the parameter-preserving reduction to Vertex Cover [164]. It seems that any
faster algorithm would need to use new insights into STC.

Recall that an STC instance is a yes-instance if the input graph has a maximal
matching M of size at least ℓ. We exploit this relationship between ℓ and |M | in the
algorithm behind Theorem 2.10 since we iterate over every partial labeling of edges
connecting the at most 2ℓ endpoints of M . Concerning the relationship between the
size of a maximal matching M and the number of strong edges ℓ, we would like to
restate the following open question posed by Golovach et al. [71]: is there an FPT
algorithm for STC when parameterized by ℓ− |M |? Golovach et al. proved that
STC is FPT for ℓ − |M | if the maximum degree of the input graph is 4. Thus, a
further step towards answering this question is to determine if STC is FPT when
parameterized by ℓ − |M | + ∆, where ∆ denotes the maximum degree of the input
graph.

Consider problem kernelization for STC. Since the vertex cover number of a
graph is never larger than 2|M |, Theorem 2.11 implies that STC does not admit a
polynomial kernel for vc unless NP ⊆ coNP/poly. This excludes the existence of
polynomial kernels for many structural graph parameters. Furthermore, the rela-
tionship between ℓ and |M | implies that STC has a simple polynomial kernel when
parameterized by ℓ +∆, where ∆ denotes the maximum degree of the input graph.
Is it possible to replace ℓ by a smaller parameter like ℓ− |M |? Recall that it is not
yet known whether STC is FPT when parameterized by ℓ− |M |+∆.

Concerning approximability, a factor-2 approximation for minimizing the number
of weak edges in STC is implied by the reduction toVertex Cover [164]. It is open
whether there is a polynomial-time approximation algorithm with an approximation
factor smaller than 2.

Finally, we would like to state a practical question in context of STC. Given a real-
world social network G = (V,E) and an optimal STC-labeling L = (SL,WL), what
do the strong components look like? A strong component is a connected component
in (V, SL). Rozenshtein et al. [156] studied a variant of STC where one additionally
has pre-labeled strong cliques in a graph. Their experimental evaluations demon-
strated that showing only the strong edges significantly simplifies the graph. Maybe
there are real world applications in the field of social network analysis, where the
following framework delivers practically reasonable results:

1. Compute the strong edges in the network, and

2. solve a problem on the simplified network, where only the strong edges are shown.
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However, one has to be careful, as it is possible that the network becomes too simple
when only considering the strong edges: If—for example—all strong components
were cliques in most of the real-world instances, there would be no actual difference
between STC and CD. In this case, there are apparently no benefits in using the
strong triadic closure property instead of a classic graph clustering approach.
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Chapter 3

Hardness of Multicolored Strong
Triadic Closure Problems

We study the classic and fine-grained complexity of triadic closure problems with
multiple strong colors and its list variants as defined in the introduction of Part II.
Recall that Sintos and Tsaparas [164] introduced the extension of Strong Tri-
adic Closure where agents may have c different types of strong relationships. In
this model, the strong triadic closure property only applies to edges of the same
strong type.

Recall that, given an undirected graph G = (V,E), a c-labeling as given in Defi-
nition II.2 is a partition L = (S1

L, . . . , S
c
L,WL) of the edge set into c+1 color classes.

Such a labeling is an STC-labeling if there is no pair of edges {u, v} and {v, w}
with {u,w} ̸∈ E belonging to the same strong color class SiL. The computational
problem is then defined as follows.

Multi Strong Triadic Closure (Multi-STC)
Input: An undirected graph G = (V,E) and integers c ∈ N and k ∈ N0.
Question: Is there a c-colored STC-labeling L with |WL| ≤ k?

Besides Multi-STC, we also study the list variants VL Multi-STC and EL-
Multi-STC in this chapter. Recall that in VL-Multi-STC one is given a graph G,
two integers c and k, and vertex lists Λ (Definition II.3). Analogously, in EL-Multi-
STC one is given G, c, k, and edge lists Ψ (Definition II.4). A vertex list Λ(v) for
some vertex v is the set of strong colors that can be assigned to edges incident with v,
and an edge list Ψ(e) for some edge e is the set of strong colors that can be assigned
to the edge e. In both problems, the question is whether there exists an STC-labeling
with c strong colors and at most k weak edges that satisfies the additional restrictions
on strong colors imposed by the lists.
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Our Results. We study the classic and fine-grained complexity of Multi-STC
and its two generalizations.

First, we observe that previous results on the Edge Coloring problem give,
for every fixed c, a dichotomy of Multi-STC into NP-hard and polynomial-time
solvable instances with respect to the maximum degree of the input graph. In par-
ticular, for all c ≥ 3, Multi-STC is NP-hard even if k = 0. The NP-hardness of
Multi-STC even if k = 0 implies that for all three problems, there is presumably
no polynomial-time approximation algorithm.

Second, we show that the Exponential Time Hypothesis (ETH) implies a strong
lower bound for VL-Multi-STC and EL-Multi-STC. More precisely, we show
that, assuming the ETH, there is no 2o(n

2)-time algorithm for VL-Multi-STC and
EL-Multi-STC even if k = 0 and c ∈ O(n). This result is achieved by a com-
pression of 3-CNF formulas ϕ where each variable occurs in a constant number of
clauses into graphs with O(

√︁
|ϕ|) vertices. Since the lower bound holds on instances

with k = 0, it is not possible to compute an approximation within 2o(n
2) time for

VL-Multi-STC and EL-Multi-STC unless ETH fails.

3.1 Classic Complexity of Multi-STC

It was claimed that Multi-STC is NP-hard for every fixed c since in the Gallai
graph this is exactly the NP-hard problem Odd Cycle Transversal (in case
of c = 2) or Vertex c-Coloring (in case of c ≥ 3) [164]. It is not known, however,
whether these problems are NP-hard on Gallai graphs. Instead, the NP-hardness
can be observed from hardness results for Edge Coloring. In Edge Coloring,
one is given a graph G and a number of colors c and the question is whether the
edges can be colored with colors 1, . . . , c such that no two incident edges receive the
same color.

Recall that from a more abstract point of view, in Multi-STC we aim to label
the edges in a way such that no two edges that form an induced P3 receive the same
strong color. In triangle-free graphs every pair of incident edges forms an induced P3.
Consequently, on instances with a triangle-free graph and k = 0, Multi-STC is
equivalent to Edge Coloring. Using known results for Edge Coloring, this
gives the following dichotomy of the complexity of Multi-STC on bounded-degree
graphs.

Theorem 3.1. Multi-STC exhibits the following complexity dichotomy on bounded-
degree graphs:
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a) For c = 1, Multi-STC is NP-hard on graphs with maximum degree at least 4
and solvable in polynomial time when the maximum degree is at most 3.

b) For c = 2, Multi-STC is NP-hard on graphs with maximum degree at least 3
and solvable in polynomial time when the maximum degree is at most 2.

c) For every c ≥ 3, Multi-STC is NP-hard on instances with maximum degree
at least c even if k = 0 and it can be solved in polynomial time if the maximum
degree is at most c− 1.

Proof. Statement a) is a known result for STC [110]. For Statement c), the NP-
hardness follows from the classic result that Edge Coloring is NP-hard for every
fixed c ≥ 3 even if the input graph is triangle-free [126]. Furthermore, due to Vizing’s
Theorem [178], every graph with maximum degree ∆ can be edge-colored with ∆+1
colors such that no two incident edges recieve the same color. Thus, instances with
maximum degree at most c − 1 are trivial yes-instances for Multi-STC. To show
Statement b), we reduce from Edge Coloring, which is NP-hard even if c = 3 and
the input graph is cubic and triangle-free [90].

Construction: Let I := (G, c) be an instance of Edge Coloring where c = 3
and G is a cubic and triangle-free graph. Note that G has an even number of vertices.
We define J := (G, 2, k) with k := n

2
.

Correctness: We show that I is a yes-instance of Edge Coloring if and only
if J is a yes-instance of Multi-STC.

(⇒) Let I be a yes-instance of Edge Coloring. Hence, one can assign the
colors 1, 2, and 3 to the edges of G in a way that no two incident edges receive
the same color. Then, the fact that G is cubic implies that each color class is a
perfect matching in G. We let L := (S1

L, S
2
L,WL) be a labeling where S1

L contains
the edges that are assigned color 1, S2

L contains the edges that are assigned color 2,
and WL contains the edges that are assigned color 3. Note that |WL| = n

2
= k.

Furthermore, L is an STC-labeling since no two incident edges in G received the
same color. Consequently, J is a yes-instance of Multi-STC.

(⇐) Let J be a yes-instance of Multi-STC. Then, there exists an STC-labeling
L := (S1

L, S
2
L,WL) for G such that |WL| ≤ n

2
. Note that the strong color classes S1

L

and S2
L each form a matching in G, since G is triangle-free. We next show that the

edges in WL also form a matching. Assume towards a contradiction that there are
two edges in WL that share an endpoint. Then, |WL| ≤ n

2
implies that there is one

vertex v that is not incident with some edge in WL. Since G is cubic, this implies
that v is incident with two edges of the same strong color. This contradicts the
fact that S1

L and S2
L are matchings in G. Consequently, WL is a matching. Then,
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since the edges of G can be partitioned into three pairwise disjoint matchings, I is a
yes-instance of Edge Coloring.

Note that, for c = 2, Multi-STC parameterized by k is FPT since it is sufficient
to solve Odd Cycle Transversal in the Gallai graph which is FPT with respect
to k [152]. Thus, the dichotomy from Theorem 3.1 is also tight with regard to the
complexity for instances with constant k.

As mentioned above, the proof of Theorem 3.1 is based on known results for Edge
Coloring. In Chapter 5 of this work, we revisit the close relation between Multi-
STC and Edge Coloring and study a structural parameterization that is based
on Vizing’s Theorem [178].

3.2 Fine-Grained Complexity of Multi-STC with

Lists

Next, we provide a stronger hardness result for VL-Multi-STC and EL-Multi-
STC: we show that they are unlikely to admit a single-exponential-time algorithm
with respect to the number n of vertices. Thus, the simple algorithm behind Propo-
sition II.7 is optimal in the sense that m cannot be replaced by n in dense graphs.

We remark that for List-Edge Coloring, an ETH-based lower bound of 2o(|V |2)

has been shown recently [118]. In List-Edge Coloring one is given a graph G, a
number c of colors, and a list Ψ(e) of possible colors for each edge e. The question
is whether the colors 1, 2, . . . , c can be assigned to the edges of G such that no
two incident edges receive the same color and each edge receives a color from its list.
Note that List-Edge Coloring and EL-Multi-STC with k = 0 correspond if the
input graph is triangle-free, and that there is a natural reduction that transforms an
instance of List-Edge Coloring into an equivalent instance where the input graph
is triangle-free: Replace all edges with the gadget shown in Figure 3.1. However, this
reduction adds Ω(cm) vertices and therefore does not imply the desired lower bound
since the ETH reduction for List-Edge Coloring outputs a graph where the
number of edges is quadratic in the number of vertices [118].

We provide a lower bound for VL-Multi-STC. The construction behind the
2o(|V |2) lower bound for List-Edge Coloring contains triangles with edge lists
that cannot be easily modeled with vertex lists. In summary, we are not aware of
any direct reduction from List-Edge Coloring to VL-Multi-STC that would
transfers the desired lower bound to VL-Multi-STC.

Our lower bound for VL-Multi-STC is based on a reduction from 3-SAT.
This reduction is inspired by a reduction used to show that Rainbow Coloring
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u v

w1

w2

...

wc−1

x1

x2

...

xc−1

y z

Figure 3.1: A graph consisting of edges {u, v}, {y, z}, {v, wi}, {y, xi}, and {wi, xj}
for every i, j ∈ {1, . . . , c − 1}. It is easy to see that in every proper edge-labeling with
colors 1, . . . , c, the edges {u, v} and {y, z} must receive the same color. The graph can
thus be used as a gadget to transform an instance of Edge-List Coloring into an
equivalent triangle-free instance: we replace every edge e with list Ψ(e) by such gadget,
set Ψ({u, v}) := Ψ({y, z}) := Ψ(e), and assign full lists to the other edges of the gadget.

cannot be solved in 2o(n
3/2) time under the ETH [117]. Rainbow Coloring is a

mildly related problem where the input is a graph and an integer k and the question
is, whether the edges can be colored with k distinct colors such that every pair of
vertices is connected by a rainbow path, that is, a path where all edges on the path
have distinct colors.

As it is the case in most 3-SAT reductions, our constructions has a variable
part and a clause part. The compression of the variable part in our reduction works
mostly analogously to the reduction to Rainbow Coloring [117]. However, inVL-
Multi-STC we have vertex lists that need to be defined carefully. For the clause
part of the reduction, we use equitable colorings [87, 102] to achieve an even stronger
compression and thus a lower bound with a quadratic function in the exponent for
VL-Multi-STC. Intuitively, an equitable coloring is a vertex coloring such that all
color classes have roughly the same size.

Theorem 3.2. If the ETH is true, then VL-Multi-STC cannot be solved in 2o(|V |2)

time even if restricted to instances with k = 0.

Proof. We give a reduction from 3-SAT to VL-Multi-STC such that the resulting
graph has O(

√︁
|ϕ|) vertices, where ϕ is the input formula and |ϕ| is the number of

variables plus the number of clauses. By the Sparsification Lemma [96], a 2o(|ϕ|)-
time algorithm for 3-SAT defeats the ETH and, hence, a 2o(|V |2)-time algorithm for
VL-Multi-STC defeats the ETH as well.
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Below, we use n for the number of variables in ϕ. We can furthermore assume
that, in the formula ϕ, each variable occurs in at most four clauses, since arbitrary
3-CNF formulas can be transformed in polynomial time to equivalent 3-CNF formu-
las fulfilling this restriction while only increasing the formula length by a constant
factor [170]. Observe that in such instances the number of clauses in ϕ is at most 4

3
n.

Let ϕ be a 3-CNF formula with a set X = {x1, . . . , xn} of n variables and a
set C := {C1, . . . , Cm} of m ≤ 4

3
n clauses. Let Cj be a clause and let xi be a variable

occurring in Cj. We define the occurrence number Ω(Cj, xi) as the number of clauses
in {C1, C2, . . . , Cj} that contain xi. Note that Ω(Cj, xi) is only defined if xi occurs
in Cj. Intuitively, Ω(Cj, xi) = r means that the rth occurrence of variable xi is
the occurrence in clause Cj. Since each variable occurs in at most four clauses, we
have Ω(Cj, xi) ∈ {1, 2, 3, 4}.

We describe in three steps how to construct an equivalent instance

(G = (V,E), c = 9n+ 4, k = 0,Λ)

for VL-Multi-STC such that |V | ∈ O(
√
n). First, we describe the variable gadget.

Second, we describe the clause gadget. In a third step, we describe how these two
gadgets are connected. Before we present the formal construction, we give some in-
tuition.

Intuition. The strong colors 1, . . . , 8n represent the truth assignments of the
occurrences of the variables. We refer to these strong colors as T ri , F

r
i with i ∈

{1, . . . , n} and r ∈ {1, 2, 3, 4}. The idea is that a strong color T ri represents a
‘true’-assignment and F r

i represents a ‘false’-assignment of the rth occurrence of a
variable xi ∈ X. The strong colors 8n + 1, . . . , 9n + 4 are auxiliary strong colors
which we need for the correctness of our construction. We refer to these strong
colors as R1, . . . , Rn and Z1, Z2, Z3, Z4. In the variable gadget, there are four distinct
edges e1, e2, e3, e4 for each variable xi representing the (at most) four occurrences of
the variable xi. We define vertex lists that ensure that every such edge er can only
be labeled with the strong colors T ri and F r

i . The coloring of these edges represents a
truth assignment to the variable xi. In the clause gadget, there are m distinct edges
such that the coloring of these edges represents a choice of literals that satisfies ϕ.
The edges between the two gadgets make the values of the literals from the clause
part consistent with the assignment of the variable part. The construction consists
of five layers of vertices. In the variable gadget we have an upper layer, a middle
layer, and a down layer (UX ,MX and DX). In the clause gadget we have an upper
and a down layer (UC and DC). Figure 3.2 shows a sketch of the construction.

The Variable Gadget. The vertex set of the variable gadget consist of an upper
layer, a middle layer, and a down layer. The vertices in the middle layer and the
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UX ⊗

MX ⊙ γ1
midX(x1)

γ4
midX(x2)

γ4
midX(x3)

DX ⊗ δdownX(x1)
δdownX(x2)

δdownX(x3)

UC ⊗ ηupC(Cj)

DC ⊗ θdownC(Cj)

T 1
1 T 4

2 F 4
3

F 1
1 F 4

2 T 4
3

T 1
1 ∈ {T 1

1 , F
4
2 , T

4
3 }

Figure 3.2: An example of the construction. The grey rectangles correspond to the layers

of the construction. The dark rectangles in layer UX represent vertices α
(r,r′)
t with the

same value of t, ⊗ a clique, and ⊙ an independent set. The edge {ηupC(Cj), θdownC(Cj)
}

represents a clause Cj = (x1 ∨ x2 ∨ x3) with Ω(Cj , x1) = 1 and Ω(Cj , x2) = Ω(Cj , x3) = 4.
The edge {γ1

midX(x1)
, δdownX(x1)

} has strong color T 1
1 which models an assignment where x1

is true, which satisfies Cj . Due to the compression, we may have mid(x1) = mid(x2) and
therefore x1 and x2 may share the four middle vertices.

down layer form a variable-representation gadget, where each edge between the two
parts represents one occurrence of a variable. The vertices in the upper layer form
a variable-soundness gadget, which we need to ensure that for each variable either
all occurrences are assigned ‘true’ or all occurrences are assigned ‘false’. For an
illustration of the variable-representation and the variable-soundness gadget for some
variable xi see Figure 3.3.

We start by describing the variable-representation gadget. Let

MX := {γrt | t ∈ {1, . . . , ⌈
√
n ⌉}, r ∈ {1, 2, 3, 4}}

be the set of middle vertices, and let

DX := {δt | t ∈ {1, . . . , ⌈
√
n ⌉+ 9}}
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DX

MX

UX

δt

γ1t′ γ2t′ γ3t′ γ4t′

α
(1,2)
t

α
(2,1)
t

α
(2,3)
t

α
(3,2)
t

α
(3,4)
t

α
(4,3)
t

α
(1,3)
t

α
(3,1)
t

α
(2,4)
t

α
(4,2)
t

α
(1,4)
t

α
(4,1)
t

{T 1
i , F

1
i } {T 4

i , F
4
i }

{F 1
i , Ri} {T 4

i , Ri}

Figure 3.3: The variable-representation and the variable-soundness gadget for one vari-
able xi ∈ X such that downX(xi) = upX(xi) = t and midX(xi) = t′ with the possible colors

for the edges {δt, γ1t′}, {δt, γ4t′}, {α
(4,1)
t , γ1t′}, and {α

(4,1)
t , γ4t′}. Note that labeling {δt, γ1t′}

with the strong color F 1
i and labeling {δt, γ4t′} with the strong color T 4

i causes a P3 with
some strong color. The grey rectangles correspond to the layers UX , MX , and DX of the
construction.

be the set of down vertices.

We add edges such that DX becomes a clique in G. To specify the correspondence
between the variables in X and the edges in the variable-representation gadget, we
define below the two mappings midX : X → {1, . . . , ⌈

√
n ⌉} and downX : X →

{1, . . . , ⌈
√
n ⌉ + 9}. Then, for each xi ∈ X we add four edges {γr

midX(xi)
, δdownX(xi)

}
for r ∈ {1, 2, 3, 4}. We carefully define the two mappings midX , downX and the
vertex lists Λ(v) for every v ∈MX ∪DX of the variable-representation gadget.

Intuitively, the chosen truth assignment for each variable will be transmitted
to a clause by edges between the variable and clause gadgets. To ensure that
each such transmitter edge is used for exactly one occurrence of one variable, we
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first define the variable-conflict graph HX
ϕ := (X,ConflX) by ConflX := {{xi, xj} |

xi and xj occur in the same clause C ∈ C}, which we use to define midX and downX .
Since every variable of ϕ occurs in at most four clauses, the maximum degree of HX

ϕ

is at most 8. Hence, there is a proper vertex 9-coloring χ : X → {1, 2, . . . , 9} for HX
ϕ

which we compute in polynomial time by a folklore greedy algorithm. We end up
with nine color classes χ−1(1), . . . , χ−1(9). Then, we partition each color class χ−1(i)

into
⌈︂
|χ−1(i)|
⌈
√
n ⌉

⌉︂
groups arbitrarily such that each group has size at most ⌈

√
n ⌉. Let s

be the overall number of such groups and let S := {S1, S2, . . . , Ss} be the family of all
such groups of vertices in HX

ϕ (each corresponding to a pair of a color i ∈ {1, . . . , 9}
and a group in χ−1(i)). Consider the following claim about the sizes of the groups
and the total number of groups.

Claim 1. For the family S := {S1, S2, . . . , Ss} of groups of vertices in HX
ϕ , it holds

that

a) |Si| ≤ ⌈
√
n ⌉ for each i ∈ {1, . . . , s}, and

b) s ≤ ⌈
√
n ⌉+ 9.

Proof . Inequality a) holds due to the definition of the groups Si for i ∈ {1, . . . , s}.
Inequality b) can be shown as follows:

s =
9∑︂
j=1

⌈︃
|χ−1(j)|
⌈
√
n ⌉

⌉︃
≤ 9 +

∑︁9
j=1 |χ−1(j)|
⌈
√
n ⌉

= 9 +
n

⌈
√
n ⌉
≤ 9 + ⌈

√
n ⌉.

♢

For any given xi ∈ X we define downX(xi) := j as the index of the group Sj
that contains xi. The mapping is well-defined since S forms a partition of the set of
variables.

Claim 2. If xi, xj ∈ X occur in the same clause C ∈ C, then downX(xi) ̸=
downX(xj).

Proof . By definition, xi and xj are adjacent in H
X
ϕ . Hence, xi and xj are in different

color classes and therefore elements of different groups of S. ♢

Next, we define the mapping midX : X → {1, . . . , ⌈
√
n ⌉}. To this end, consider

the sequence Seqn := (downX(x1), down
X(x2), . . . , down

X(xn)) ∈ {1, . . . , ⌈
√
n ⌉ +

9}n. We define midX(xi) as the number of occurrences of downX(xi) in the par-
tial sequence Seqi := (downX(x1), . . . , down

X(xi)). From Claim 1 a) we conclude
that midX(xi) ∈ {1, 2, . . . , ⌈

√
n ⌉} for every xi ∈ X.
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Claim 3. Let xi, xj ∈ X and r ∈ {1, 2, 3, 4}. If xi ̸= xj, then

{γr
midX(xi)

, δdownX(xi)
} ≠ {γr

midX(xj)
, δdownX(xj)

}.

Proof . Without loss of generality, assume i < j. Obviously, the claim holds if
downX(xi) ̸= downX(xj). Let downX(xi) = downX(xj). Then, there is at least
one more occurrence of downX(xi) in the partial sequence Seqj1 compared to Seqi1.
Therefore, midX(xi) ̸= midX(xj). ♢

Thus, we assigned a unique edge in E(MX , DX) to each occurrence of a variable
in X. Furthermore, the assigned edges of variables that occur in the same clause do
not share an endpoint in DX due to Claim 2.

We complete the description of the variable-representation gadget by defining the
vertex list Λ(v) for every v ∈MX ∪DX . We set

Λ(γrt ) :=
⋃︂
xi∈X

midX(xi)=t

{T ri , F r
i , Ri} for every γrt ∈MX , and

Λ(δt) :=
⋃︂
xi∈X

downX(xi)=t

{T 1
i , T

2
i , T

3
i , T

4
i , F

1
i , F

2
i , F

3
i , F

4
i , Z2} for every δt ∈ DX .

Claim 4. Let xi ∈ X and r ∈ {1, 2, 3, 4}. Then, Λ(γr
midX(xi)

) ∩ Λ(δdownX(xi)
) =

{T ri , F r
i }.

Proof . Let Λ(i, r) := Λ(γr
midX(xi)

)∩Λ(δdownX(xi)
). Obviously, T ri and F r

i are elements

of Λ(i, r). It remains to show that there is no other strong color Y ∈ Λ(i, r).
Case 1: Y = Z2. Then, Z2 ̸∈ Λ(γrt ) and it follows that Y ̸∈ Λ(i, r).
Case 2: Y = Rj with j ∈ {1, . . . , n}. Then, Rj ̸∈ Λ(δt) and it follows that Y ̸∈

Λ(i, r).
Case 3: Y = T r

′
j or Y = F r′

j with r′ ̸= r and j ∈ {1, . . . , n}. Then, Y ̸∈
Λ(γr

midX(xi)
) and it follows that Y ̸∈ Λ(i, r).

Case 4: Y = T ri′ or Y = F r
i′ with i

′ ̸= i. Assuming T ri′ ∈ Λ(i, r) it follows from the
definition of Λ that there is some variable xi′ ̸= xi such that downX(xi′) = downX(xi)
and midX(xi′) = midX(xi), which contradicts Claim 3. Hence, Y ̸∈ Λ(i, r). ♢

For each variable xi there are four edges {{γr
midX(xi)

, δdownX(xi)
} | r ∈ {1, 2, 3, 4}}

that can only be colored with the strong colors T ri and F r
i representing the truth

assignments of the four occurrences of variable xi due to Claim 4. We need to ensure
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that there is no variable xi, where, for example, the first occurrence is set to ‘true’
(T 1

i ) and the second occurrence is set to ‘false’ (F 2
i ) in a Λ-satisfying STC-labeling

with no weak edges. To this end, we use a variable-soundness gadget, which we
describe in the following.

We define

UX := {α(r,r′)
t | t ∈ {1, . . . , ⌈

√
n ⌉+ 9}, (r, r′) ∈ {1, 2, 3, 4}2, r ̸= r′}

to be the set of upper vertices. We add edges such that the vertices in UX form a
clique in G. To specify the correspondence between the variables and the edges in the
variable-soundness gadget, we define below a mapping upX : X → {1, 2, . . . , ⌈

√
n ⌉+

9}. The main idea of the variable-soundness gadget is that for each variable xi ∈ X
and each pair {r, r′} ⊆ {1, 2, 3, 4} there are four edges between the vertices γri , γ

r′
i and

the vertices α
(r,r′)
t , α

(r′,r)
t of UX which cannot all be strong in a Λ-satisfying STC-

labeling if {γr
midX(xi)

, δdownX(xi)
} receives strong color T ri and {γr′

midX(xi)
, δdownX(xi)

}
receives strong color F r′

i . (Recall that we do not allow weak edges.) To this end,
we assign a set of twelve endpoints in UX to each variable xi. We need to ensure
in particular that two variables xi and xj with midX(xi) = midX(xj) do not use the
same endpoints in UX . We define upX(xi) := downX(xi). The following is directly
implied by Claim 3.

Claim 5. Let xi, xj ∈ X with xi ̸= xj. If midX(xi) = midX(xj), then upX(xi) ̸=
upX(xi).

We add the following edges between the vertices of MX and UX : For every
variable xi, every r ∈ {1, 2, 3, 4}, and every r′ ∈ {1, 2, 3, 4} \ {r} we add the

edges {α(r,r′)

upX(xi)
, γr

midX(xi)
}, and {α(r,r′)

upX(xi)
, γr

′

midX(xi)
}.

We complete the description of the variable-soundness gadget by defining the
vertex lists Λ(v) for each v ∈ UX . We set

Λ(α
(r,r′)
t ) :=

⋃︂
xi∈X

upX(xi)=t

{T ri , F r′

i , Ri, Z1} for every α
(r,r′)
t ∈ UX .

Claim 6. Let xi ∈ X, let r ∈ {1, 2, 3, 4}, and let r′ ∈ {1, 2, 3, 4} \ {r}. Then

a) Λ(α
(r,r′)

upX(xi)
) ∩ Λ(γr

midX(xi)
) = {T ri , Ri}, and

b) Λ(α
(r,r′)

upX(xi)
) ∩ Λ(γr

′

midX(xi)
) = {F r′

i , Ri}.
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Proof . Recall that

Λ(γrt ) :=
⋃︂
xi∈X

midX(xi)=t

{T ri , F r
i , Ri}.

We first prove Statement a). Let Λ(i, r, r′) := Λ(α
(r,r′)

upX(xi)
)∩Λ(γr

midX(xi)
). Clearly,

Λ(i, r, r′) contains T ri and Ri. It remains to show that there is no other strong
color Y ∈ Λ(i, r, r′). In the following case distinction we consider every possible
strong color Y ∈ Λ(γr

midX(xi)
).

Case 1: Y = Rj or Y = T rj for some j ̸= i. Then, there is a variable xj ̸= xi
with midX(xj) = midX(xi). It follows by Claim 5 that upX(xj) ̸= upX(xi) and

therefore Rj, T
r
j ̸∈ Λ(α

(r,r′)

upX(xi)
). Hence, Y ̸∈ Λ(i, r, r′).

Case 2: Y = F r
j . Then, since

{F p
t | p ∈ {1, 2, 3, 4}, t ∈ {1, . . . , n}} ∩ Λ(α

(r,r′)

upX(xi)
) ⊆ {F r′

1 , F
r′

2 , . . . , F
r′

n }

and we have r′ ̸= r, we conclude F r
j ̸∈ Λ(α

(r,r′)

upX(xi)
). Hence, Y ̸∈ Λ(i, r, r′).

We prove Statement b) with analogous arguments. Let Λ(i, r, r′) := Λ(α
(r,r′)

upX(xi)
)∩

Λ(γr
′

midX(xi)
). Clearly, {F r′

i , Ri} ⊆ Λ(i, r, r′). It remains to show that there is no other

color Y ∈ Λ(i, r, r′).
Case 1: Y = Rj or Y = F r′

j for some j ̸= i. Then, analogously to the proof of

Statement a) we conclude that Y ̸∈ Λ(i, r, r′).
Case 2: Y = T r

′
j . Then, since

{T pt | p ∈ {1, 2, 3, 4}, t ∈ {1, . . . , n}} ∩ Λ(α
(r,r′)

upX(xi)
) ⊆ {T r1 , T r2 , . . . , T rn}

and we have r′ ̸= r we conclude T r
′

j ̸∈ Λ(α
(r,r′)

upX(xi)
). Hence, Y ̸∈ Λ(i, r, r′). ♢

This completes the description of the variable gadget. We continue with the
description of the clause gadget.

The Clause Gadget. The clause gadget consists of an upper part and a lower
part. Let

UC := {ηi | i ∈ {1, . . . , 12⌈
√
n ⌉+ 1}}

be the set of upper vertices and let

DC := {θi | i ∈ {1, . . . , ⌈
√
n ⌉}}

be the set of lower vertices. We add edges such that UC and DC each form cliques
in G.
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Recall that for some clause Cj ∈ C and a variable xi occurring in Cj the oc-
currence number Ω(Cj, xi) is defined as the number of clauses in {C1, C2, . . . , Cj}
that contain xi. Below we define two mappings upC : C → {1, 2, . . . , 12⌈

√
n ⌉ + 1},

downC : C → {1, 2, . . . , ⌈
√
n ⌉}, and vertex lists Λ : V → 2{1,...,c}. Then, for each

clause Cj ∈ C, we add an edge {ηupC(Cj), θdownC(Cj)
}. Next, we ensure that this

edge can only be labeled with the strong colors that match the literals in Cj. This
means, for example, if Cj = (x1 ∨ x2 ∨ x3) we have Λ(ηupC(Cj)) ∩ Λ(θdownC(Cj)

) =

{TΩ(Cj ,x1)
1 , F

Ω(Cj ,x2)
2 , T

Ω(Cj ,x3)
3 }.

As before, we need to ensure that each variable occurring in a clause has a unique
edge between the clause and variable gadgets which transmits the variable’s truth
assignment to the clause. To achieve this, we define the clause-conflict graph HC

ϕ :=

(C,ConflC) by

ConflC := {{Ci, Cj} | Ci contains a variable xi and

Cj contains a variable xj such that

downX(xi) = downX(xj)}.

Clauses that share a variable are one example for adjacent vertices in HC
ϕ . Fur-

thermore, due to the compression there may be distinct variables that are mapped
to the same value under downX . Two distinct clauses containing these variables are
another example for adjacent vertices in HC

ϕ .
From the fact that each variable occurs in at most four clauses in combination

with Claim 1 a), it follows that the maximum degree ofHC
ϕ is at most 12·⌈

√
n ⌉. Thus,

there exists a proper vertex coloring χ : C → {1, 2, . . . , 12 · ⌈
√
n ⌉+1} such that each

color class χ−1(i), i ∈ {1, . . . , 12·⌈
√
n ⌉+1}, contains at most ⌈ m

12·⌈
√
n ⌉+1
⌉+1 ≤ ⌈

√
n ⌉

clauses [87]. Such coloring is known as equitable coloring and since it has O(
√
n)

colors, it can be computed in polynomial time [102].
For a given clause Ci ∈ C, we define upC(Ci) := j as the index of the color

class χ−1(j) that contains Ci. The following claim provides a useful property for the
clause gadget. In the proof we use a similar argument as in the proof of Claim 2.

Claim 7. If a clause Cj1 ∈ C contains a variable xi1 and a clause Cj2 ∈ C contains
a variable xi2 such that downX(xi1) = downX(xi2), then upC(Cj1) ̸= upC(Cj2).

Proof . By definition, Cj1 and Cj2 are adjacent inH
C
ϕ . Hence, Cj1 and Cj2 are elements

of different color classes and therefore upC(Cj1) ̸= upC(Cj2). ♢

Next, we define downC analogously to upX . To this end, consider the finite se-
quence Seqm = (upC(C1), up

C(C2), . . . , up
C(Cm)) and define downC(Cj) as the num-

ber of occurrences of upC(Cj) in the finite sequence Seqj := (upC(C1), . . . , up
C(Cj)).
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The fact that each color class contains at most ⌈
√
n ⌉ elements implies downC(Cj) ≤

⌈
√
n ⌉. Intuitively, the following claim guarantees that distinct clauses correspond to

distinct edges, which is an analogous statement to Claim 3.

Claim 8. Let Ci, Cj ∈ C such that Ci ̸= Cj. Then,

{ηupC(Ci), θdownC(Cj)
} ≠ {ηupC(Cj), θdownC(Cj)

}.

Proof . Without loss of generality, let i < j. The claim obviously holds if upC(Ci) ̸=
upC(Cj), so let upC(Ci) = upC(Cj). Then, there is at least one more occurrence
of upC(Ci) in the partial sequence Seqj1 compared to Seqi1. Therefore, downC(Ci) ̸=
downC(Cj). ♢

We complete the description of the clause gadget by defining the vertex lists Λ(v)
for every v ∈ UC ∪ DC. To this end, we introduce two color sets for each clause.
Given a clause Cj ∈ C, we define the color set X(Cj) and the literal color set L(Cj)
of Cj by

X(Cj) := {T
Ω(Cj ,xi)
i , F

Ω(Cj ,xi)
i | xi occurs in Cj}, and

L(Cj) := {T
Ω(Cj ,xi)
i | xi occurs as a positive literal in Cj} ∪

{FΩ(Cj ,xi)
i | xi occurs as a negative literal in Cj}.

Note that L(Cj) ⊆ X(Cj). The vertex lists for the vertices in UC ∪ DC are
defined as

Λ(ηt) :=
⋃︂
Cj∈C

upC(Cj)=t

X(Cj) ∪ {Z3} for every ηt ∈ UC, and

Λ(θt) :=
⋃︂
Cj∈C

downC(Cj)=t

L(Cj) ∪ {Z4} for every θt ∈ DC.

Claim 9. Let Cj ∈ C. Then, Λ(ηupC(Cj)) ∩ Λ(θdownC(Cj)
) = L(Cj).

Proof . Let Λ(j) := Λ(ηupC(Cj)) ∩ Λ(θdownC(Cj)
). Since L(Cj) ⊆ X(Cj) it holds

that L(Cj) ⊆ Λ(j). It remains to show that there is no other strong color Y ∈
Λ(j) \ L(Cj).

Case 1: Y ∈ {Z3, Z4}. Then, since Z3 ̸∈ Λ(θdownC(Cj)
) and Z4 ̸∈ Λ(ηupC(Cj)), it

follows that Y ̸∈ Λ(j).
Case 2: Y ̸∈ {Z3, Z4}. Assume towards a contradiction that Y ∈ Λ(j).

From Y ∈ Λ(θdownC(Cj)
) it follows that there is a clause Cj1 with downC(Cj1) =
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downC(Cj) and Y ∈ L(Cj1). It holds that Cj1 ̸= Cj, since otherwise Y ∈ L(Cj),
which contradicts the fact that Y ∈ Λ(j) \ L(Cj). From Y ∈ Λ(ηupC(Cj)) it follows
that there is a clause Cj2 with upC(Cj2) = upC(Cj) and Y ∈ X(Cj2). By the defini-
tion of X and L, there exists a variable xi that occurs in Cj1 and Cj2 such that Y =

T
Ω(Cj1

,xi)

i = T
Ω(Cj2

,xi)

i or Y = F
Ω(Cj1

,xi)

i = F
Ω(Cj2

,xi)

i . We conclude Ω(Cj1 , xi) =
Ω(Cj2 , xi) and therefore Cj2 = Cj1 ̸= Cj. Then, the fact that upC(Cj1) = upC(Cj)
and downC(Cj2) = downC(Cj) contradicts Claim 8 and therefore Y ̸∈ Λ(j). ♢

Connecting the Gadgets. We complete the construction of G by describing how
the vertices of the variable gadget and the vertices of the clause gadget are connected.
The idea is to define edges between the vertices in DX and UC that model the
occurrences of variables in the clauses.

For each Cj ∈ C we do the following: Let xi1 , xi2 , and xi3 be the variables that
occur in Cj. We add the three edges {δdownX(xi1 )

, ηupC(Cj)}, {δdownX(xi2 )
, ηupC(Cj)},

and {δdownX(xi3 )
, ηupC(Cj)}. The intuitive idea is that an edge {δdownX(xi)

, ηupC(Cj)}
transmits the truth value of a variable xi to a clause Cj, where xi occurs as a positive
or negative literal. The following claim states that the possible strong colors for

such an edge are only T
Ω(Cj ,xi)
i and F

Ω(Cj ,xi)
i , which correspond to the negated truth

assignment of the Ω(Cj, xi)th occurrence of xi.

Claim 10. Let Cj ∈ C be a clause and let xi ∈ X be some variable that occurs in Cj.

Then, Λ(δdownX(xi)
) ∩ Λ(ηupC(Cj)) = {T

Ω(Cj ,xi)
i , F

Ω(Cj ,xi)
i }.

Proof . Let Λ(i, j) := Λ(δdownX(xi)
) ∩ Λ(ηupC(Cj)). Recall that

Λ(δt) :=
⋃︂
xi∈X

downX(xi)=t

{T 1
i , T

2
i , T

3
i , T

4
i , F

1
i , F

2
i , F

3
i , F

4
i , Z2} and

Λ(ηt) :=
⋃︂
Cj∈C

upC(Cj)=t

X(Cj) ∪ {Z3}.

Obviously, {TΩ(Cj ,xi)
i , F

Ω(Cj ,xi)
i } ⊆ Λ(i, j). It remains to show that there is no

strong color Y ∈ Λ(i, j) \ {TΩ(Cj ,xi)
i , F

Ω(Cj ,xi)
i }.

Case 1: Y = Z3 or Y = Z2. Since Z3 ̸∈ Λ(δdownX(xi)
) and Z2 ̸∈ Λ(ηupC(Cj)), we

have Y ̸∈ Λ(i, j).
Case 2: Y = T rt or Y = F r

t with t ̸= i and r ∈ {1, 2, 3, 4}. If Y ̸∈ Λ(ηupC(Cj)),
then obviously Y ̸∈ Λ(i, j). Thus, let Y ∈ Λ(ηupC(Cj)). Then, by the definition of X,
there is a clause Cj′ containing a variable xt ̸= xi with upC(Cj) = upC(Cj′). If Cj′ =
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Cj, then Claim 2 implies downX(xi) ̸= downX(xt) and thus Y ̸∈ Λ(δdownX(xi)
). Oth-

erwise, if Cj′ ̸= Cj, then Claim 7 together with the fact that upC(Cj) = upC(Cj′)
imply that downX(xi) ̸= downX(xt). Consequently, Y ̸∈ Λ(δdownX(xi)

) ⊇ Λ(i, j).
Case 3: Y = T ri or Y = F r

i with r ̸= Ω(Cj, xi). Obviously, Y ∈ Λ(δdownX(xi)
).

Assume towards a contradiction that Y ∈ Λ(ηupC(Cj)). Then, by the definition of
the color set X(·), there is a clause Cj′ containing xi such that upC(Cj′) = upC(Cj)
and Ω(Cj′ , xi) = r ̸= Ω(Cj, xi). It follows that Cj′ ̸= Cj which contradicts Claim 7.
Hence, Y ̸∈ Λ(ηupC(Cj)) ⊇ Λ(i, j). ♢

This completes the description of the construction and basic properties of the
VL-Multi-STC instance (G, 9n + 4, 0,Λ). Note that G has O(

√
n) vertices. It

remains to show the correctness of the reduction.
Correctness. We show that there is a satisfying assignment for ϕ if and only if

there is a (9n+4)-colored Λ-satisfying STC-labeling L for G with strong color classes

S
T r
t

L , S
F r
t

L , SRt
L , SZr

L for all t ∈ {1, . . . , n} and r ∈ {1, 2, 3, 4},

and WL = ∅.
(⇒) Let A : X → {‘true’, ‘false’} be a satisfying assignment for ϕ. We describe

to which strong color classes we add the edges of G so that we obtain a Λ-satisfying
STC-labeling.

First, we describe to which strong color classes we add the edges of the vari-
able gadget. Formally, these are the edges in in E(UX ∪ MX ∪ DX). Let e :=
{δdownX(xi)

, γr
midX(xi)

} be an edge of the variable-representation gadget for some xi ∈
X and r ∈ {1, 2, 3, 4}. We add e to S

T r
i

L if A(xi) = ‘true’ or to S
F r
i

L if A(xi) =
‘false’. In both cases, e satisfies the Λ-list property by Claim 4. Next, let e1 :=

{γr
midX(xi)

, α
(r,r′)

upX(xi)
} and let e2 := {γr′

midX(xi)
, α

(r,r′)

upX(xi)
} be two edges of the variable-

soundness gadget for some xi ∈ X, r ∈ {1, 2, 3, 4}, and r′ ∈ {1, 2, 3, 4} \ {r}. We

add e1 to SRi
L if A(xi) = ‘true’ or to S

T r
i

L if A(xi) = ‘false’. Further, we add e2

to S
F r′
i

L if A(xi) = ‘true’ or to SRi
L if A(xi) = ‘false’. In each case, e1 and e2 satisfy

the Λ-list property by Claim 6. For the remaining edges of the variable-gadget we
do the following: We add all edges of E(UX) to SZ1

L and all edges of E(DX) to S
Z2
L .

Obviously, this does not violate the Λ-list property.
Second, we describe to which strong color classes we add the edges of the clause

gadget. Formally, these are the edges in E(UC ∪DC). Let Cj ∈ C be a clause. Since
A satisfies ϕ, there is some variable xi occurring in Cj, such that the assignment A(xi)
satisfies the clause Cj. Let r := Ω(Cj, xi). We add the edge {ηupC(Cj), θdownC(Cj)

}
to S

T r
i

L if A(xi) = ‘true’ or to S
F r
i

L if A(xi) = ‘false’. In both cases, the edge satisfies
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the Λ-list property by Claim 9. For the remaining edges of the clause gadget, we
do the following: We add all edges of E(UC) to SZ3

L and all edges of E(DC) to SZ4
L .

Obviously, this does not violate the Λ-list property.
Finally, we describe to which strong color classes we add the edges between

the two gadgets. Formally, these are the edges in E(DX , UC). Let Cj ∈ C be a
clause and let xi be some variable occurring in Cj. Let r := Ω(Cj, xi). We add the

edge {δdownX(xi)
, ηupC(Cj)} to S

F r
i

L if A(xi) = ‘true’ or to S
T r
i

L if A(xi) = ‘false’. This
does not violate the Λ-list property by Claim 10.

We have now added every edge of G to exactly one strong color class of L such
that L is Λ-satisfying. It remains to show that there is no induced P3 containing
two edges {u, v} and {v, w} from the same strong color class. In the following case
distinction, we consider every possible induced P3 on vertices u, v, and w where v is
the central vertex. The case distinction is organized as follows: We consider all pos-
sible positions of the central vertex v, that is v ∈ Q for Q ∈ {UX ,MX , DX , UC, DC}
(cases). For each such position, we consider all possible positions of u and w (sub-
cases).

Case 1: v ∈ UX. Then, v = α
(r,r′)
t for some t ∈ {1, . . . , ⌈

√
n ⌉+9}, r ∈ {1, 2, 3, 4}

and r′ ∈ {1, 2, 3, 4} \ {r}. Note that the vertices in UX are not adjacent to vertices
in DX , UC and DC. Thus, it suffices to consider the following subcases.

Case 1.1: u ∈ UX. Then, {u, v} ∈ SZ1
L . If w ∈ UX , then the vertices u, v, and w

do not form an induced P3, since U
X is a clique in G. If w ̸∈ UX , then {v, w} ̸∈ SZ1

L .
Hence, there is no STC-violation.

Case 1.2: u,w ∈ MX. Then, there are variables xi and xj with upX(xi) =
upX(xj) = t and u = γp

midX(xi)
, w = γq

midX(xj)
for some p, q ∈ {r, r′}. We need to

consider the following.
Case 1.2.1: xi ̸= xj. Then i ̸= j. By Claim 6 it holds without loss of generality

that Λ(u) ∩ Λ(v) ⊆ {T ri , F r
i , T

r′
i , F

r′
i , Ri} and Λ(w) ∩ Λ(v) ⊆ {T rj , F r

j , T
r′
j , F

r′
j , Rj}.

Since L is Λ-satisfying, the edges {u, v} and {v, w} are elements of different strong
color classes. Thus, there is no STC-violation.

Case 1.2.2: xi = xj. Then, p ̸= q, since otherwise u = v. Without loss
of generality, we have u = γr

midX(xi)
and w = γr

′

midX(xi)
. If A(xi) = ‘true’, it fol-

lows that {u, v} ∈ SRi
L and {v, w} ∈ S

F r′
i

L . Otherwise, if A(xi) = ‘false’, it follows

that {u, v} ∈ ST
r′
i

L and {v, w} ∈ SRi
L . In both cases, the edges {u, v} and {v, w} are

elements of different strong color classes. Thus, there is no STC-violation.
Case 2: v ∈MX. Then, v = γrt for some t ∈ {1, . . . , ⌈

√
n ⌉} and r ∈ {1, 2, 3, 4}.

Note that the vertices inMX are not adjacent to vertices in UC, DC, andMX . Thus,
it suffices to consider the following subcases.
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Case 2.1: u,w ∈ UX or u,w ∈ DX. Then, since UX and DX are cliques
in G, the vertices u, v, and w do not form an induced P3 in G. Hence, there is no
STC-violation.

Case 2.2: u ∈ UX and w ∈ DX. Then, there are variables xi and xj with

midX(xi) = midX(xj) = t and u ∈ {α(r,r′)

upX(xi)
, α

(r′,r)

upX(xi)
}, w = δdownX(xj)

for some r′ ̸= r.
We need to consider the following subcases.

Case 2.2.1: xi ̸= xj. Then, i ̸= j. Without loss of generality it holds by
Claim 6 that Λ(u) ∩ Λ(v) ⊆ {T ri , F r

i , T
r′
i , F

r′
i , Ri} for some r′ ̸= r and by Claim 4

that Λ(v) ∩ Λ(w) = {T rj , F r
j }. Since L is Λ-satisfying, the edges {u, v} and {v, w}

are elements of different strong color classes. Thus, there is no STC-violation.

Case 2.2.2: xi = xj. Then, if A(xi) = ‘true’ it follows that {u, v} ∈ SRi
L ∪ S

F r
i

L

and {v, w} ∈ ST
r
i

L . If A(xi) = ‘false’ it follows that {u, v} ∈ SRi
L ∪ S

T r
i

L and {v, w} ∈
S
F r
i

L . In both cases the edges {u, v} and {v, w} are elements of different strong color
classes. Thus, there is no STC-violation.

Case 3: v ∈ DX. Then, v = δt for some t ∈ {1, . . . , ⌈
√
n ⌉ + 9}. Note that

the vertices in DX are not adjacent to vertices in UX and DC. Thus, it suffices to
consider the following subcases.

Case 3.1: u ∈ DX. Then, {u, v} ∈ SZ2
L . If w ∈ DX , then the vertices u, v, and w

do not form an induced P3, since D
X is a clique in G. If w ̸∈ DX , then {v, w} ̸∈ SZ2

L .
Hence, there is no STC-violation.

Case 3.2: u,w ∈ UC. Then, the vertices u, v, and w do not form an induced P3,
since UC forms a clique.

Case 3.3: u,w ∈ MX. By Claim 4, all edges {v, y} ∈ E({v},MX) have dis-
tinct possible strong colors in Λ(v) ∩ Λ(y). Since L is Λ-satisfying, the edges {u, v}
and {v, w} are elements of different strong color classes.

Case 3.4: u ∈ MX and w ∈ UC. Then, u = γr
midX(xi)

for some xi ∈ X

with downX(xi) = t and r ∈ {1, 2, 3, 4}. Moreover, w = ηupC(Cj) for some clause Cj
containing a variable xi′ with downX(xi′) = t. We need to consider the following.

Case 3.4.1: xi ̸= xi′. Then, i ̸= i′ and by Claim 4 we have Λ(u)∩Λ(v) = {T ri , F r
i }

and by Claim 10 we have Λ(v)∩Λ(w) = {T r′i′ , F r′

i′ } with r′ = Ω(Cj, xi′). Then, since L
is Λ-satisfying, {u, v} and {v, w} are not elements of the same strong color class.

Case 3.4.2: xi = xi′. Then, if A(xi) = ‘true’ it follows that {u, v} ∈ S
T r
i

L

and {v, w} ∈ S
F r′
i

L for some r′ ∈ {1, 2, 3, 4}. If A(xi) = ‘false’, then it follows

that {u, v} ∈ SF
r
i

L and {v, w} ∈ ST
r′
i

L for some r′ ∈ {1, 2, 3, 4}. In both cases {u, v}
and {v, w} are elements of different strong color classes.

Case 4: v ∈ UC. Then, v = ηt for some t ∈ {1, . . . , 12⌈
√
n ⌉ + 1}. Note that
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the vertices in UC are not adjacent to vertices in UX and MX . Thus, it suffices to
consider the following subcases.

Case 4.1: u ∈ UC. Then, {u, v} ∈ SZ3
L . If w ∈ UC, then the vertices u, v,

and w do not form an induced P3 since UX is a clique in G. If w ̸∈ UC it follows
that {v, w} ̸∈ SZ3

L . Hence, there is no STC-violation.
Case 4.2: u,w ∈ DX or u,w ∈ DC. Then, the vertices u, v, and w do not form

an induced P3, since D
X and DC form cliques in G.

Case 4.3: u ∈ DX and w ∈ DC. Then, there is a clause Cj with upC(Cj) = t
and a clause Cj′ containing a variable xi with upC(Cj′) = t and u = δdownX(xi)

,
w = θdownC(Cj)

. We consider the following.

Case 4.3.1: Cj ̸= Cj′. Then, since upC(Cj) = upC(Cj′) it follows by Claim 7
that Cj and Cj′ do not share a variable. Hence, xi does not occur in Cj and there-

fore T
Ω(Cj′ ,xi)

i , F
Ω(Cj′ ,xi)

i ̸∈ L(Cj). Thus, by Claims 9 and 10 and the fact that L
is Λ-satisfying, the edges {u, v} and {v, w} are elements of different strong color
classes.

Case 4.3.2: Cj = Cj′. Let r := Ω(Cj, xi). If {v, w} ̸∈ S
T r
i

L ∪S
F r
i

L , the edges {u, v}
and {v, w} are elements of different color classes. Thus, there is no STC-violation.

If {v, w} ∈ ST
r
i

L ∪S
F r
i

L , then it follows by the construction of L that Cj is satisfied by
the assignment A(xi). Without loss of generality assume that xi occurs as a positive

literal in Cj. Then, A(xi) = ‘true’. This implies {v, w} ∈ S
T r
i

L and {u, v} ∈ S
F r
i

L .
Hence, {u, v} and {v, w} are elements of different strong color classes.

Case 5: v ∈ DC. Then, v is not adjacent with any vertices in UX , MX , or DX .
Hence, we need to consider the following cases.

Case 5.1: u,w ∈ UC or u,w ∈ DC. Then, the vertices u, v, and w do not form
an induced P3 since UC and DC are cliques in G.

Case 5.2: u ∈ DC and w ∈ UC. Then, {u, v} ∈ SZ4
L and {v, w} ̸∈ SZ4

L . Hence,
there is no STC-violation.

This proves that L is a Λ-satisfying STC-labeling for G with no weak edges.
(⇐) Conversely, let L be a (9n + 4)-colored Λ-satisfying STC-labeling for G

with WL = ∅. We show that ϕ is satisfiable. We define an assignment A : C →
{‘true’, ‘false’} by

A(xi) :=

⎧⎨⎩‘true’ if {δdownX(xi)
, γ1

midX(xi)
} ∈ ST

1
i

L , and

‘false’ if {δdownX(xi)
, γ1

midX(xi)
} ∈ SF

1
i

L .

The assignment is well-defined due to Claim 4. The following claim states that, if
one occurrence r ∈ {1, 2, 3, 4} of some variable xi that is assigned ‘true’ (or ‘false’,
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respectively), then so is the first occurrence of xi. We obtain this statement by using
the variable-soundness gadget.

Claim 11. Let xi ∈ X and let r ∈ {2, 3, 4}.

a) If {δdownX(xi)
, γr

midX(xi)
} ∈ ST

r
i

L , then {δdownX(xi)
, γ1

midX(xi)
} ∈ ST

1
i

L .

b) If {δdownX(xi)
, γr

midX(xi)
} ∈ SF

r
i

L , then {δdownX(xi)
, γ1

midX(xi)
} ∈ SF

1
i

L .

Proof . We show a). Let {δdownX(xi)
, γr

midX(xi)
} ∈ ST

r
i

L . Consider the vertex α
(r,1)

upX(xi)
.

By Claim 6 we have

Λ(α
(r,1)

upX(xi)
) ∩ Λ(γr

midX(xi)
) = {T ri , Ri}, and

Λ(α
(r,1)

upX(xi)
) ∩ Λ(γ1

midX(xi)
) = {F 1

i , Ri}.

Note that the vertices δdownX(xi)
, γr

midX(xi)
, α

(r,1)

upX(xi)
form an induced P3 inG. Since L is

a Λ-satisfying STC-labeling with no weak edges, we have {γr
midX(xi)

, α
(r,1)

upX(xi)
} ∈ SRi

L .

Then, since the vertices γr
midX(xi)

, α
(r,1)

upX(xi)
, and γ1

midX(xi)
form an induced P3, we

have {α(r,1)

upX(xi)
, γ1

midX(xi)
} ∈ SF

1
i

L . Then, since Λ(δdownX(xi)
) ∩ Λ(γ1

midX(xi)
) = {T 1

i , F
1
i }

due to Claim 4 and the vertices δdownX(xi)
, γ1

midX(xi)
, α

(r,1)

upX(xi)
form an induced P3 we

conclude that {δdownX(xi)
, γ1

midX(xi)
} ∈ ST

1
i

L as claimed.

Statement b) can be shown with the same arguments by considering the ver-

tex α
(1,r)

upX(xi)
instead of α

(r,1)

upX(xi)
. ♢

Next we use Claim 11 to show that every clause is satisfied by A. Let Cj ∈ C
be a clause. Then, there is an edge e1 := {ηupC(Cj), θdownC(Cj)

} ∈ E. By Claim 9 we
have Λ(ηupC(Cj))∩Λ(θdownC(Cj)

) = L(Cj). Since L is Λ-satisfying, it follows that e1 ∈
SYL for some Y ∈ L(Cj).

Consider the case Y = T ri for some variable xi that occurs positively in Cj
and r = Ω(Cj, xi). We show that A(xi) = ‘true’. Since xi occurs in Cj there is
an edge e2 := {δdownX(xi)

, ηupC(Cj)} ∈ E which can only be an element of the strong

classes S
T r
i

L or S
F r
i

L due to Claim 10. Since e1 and e2 form an induced P3 and L is

an STC-labeling we have e2 ∈ S
F r
i

L . The edge e3 := {δdownX(xi)
, γr

midX(xi)
} forms an

induced P3 with e2 and can only be an element of the strong classes S
T r
i

L or S
F r
i

L by

Claim 4. Hence, e3 ∈ S
T r
i

L . By Claim 11 we may conclude that {δdownX(xi)
, γ1

midX(xi)
} ∈

S
T 1
i

L and therefore A(xi) = ‘true’. Hence, Cj is satisfied by A.
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For the case Y = F r
i we can use the same arguments to conclude A(xi) = ‘false’.

Consequently, A satisfies every clause of ϕ.

Note that in the instance constructed in the proof of Theorem 3.2, every edge has
at most three possible strong colors and c ∈ O(n) where n is the number of variables
in ϕ. This implies the following.

Corollary 3.3. If the ETH is true, then

a) EL-Multi-STC cannot be solved in 2o(|V |2) time even if restricted to instances
where k = 0 and maxe∈E |Ψ(e)| = 3.

b) VL-Multi-STC cannot be solved in co(|V |2/ log |V |) time even if restricted to
instances where k = 0.

Since the lower bound holds for instances with k = 0, we also obtain a lower
bound for approximation algorithms for VL-Multi-STC and EL-Multi-STC.

Corollary 3.4. If the ETH is true, then there exists no approximation algorithm for
VL-Multi-STC that runs in time 2o(n

2).

Recall that our reduction is inspired by a reduction used to show that Rainbow
Coloring cannot be solved in 2o(n

3/2) time under the ETH [117]. We remark that for
Rainbow Coloring another ETH-based lower bound of 2o(m)nO(1) has been shown
recently [2]. Note that a lower bound of 2o(m)nO(1) is not implied by the 2o(n

3/2) lower
bound since m might be quadratic in n. In case of VL-Multi-STC, the lower
bound from Theorem 3.2 directly implies that VL-Multi-STC can not be solved
in 2o(m) time, since m ∈ O(n2). Consequently, the simple 3m · nO(1)-time algorithm
for EL-Multi-STC behind Proposition II.7 is optimal in the sense that 3m can not
be replaced by a factor that is subexponential in m.

3.3 Concluding Remarks

We have provided a first study of the classic complexity of Multi-STC and the
fine-grained complexity of two of its generalizations. We also stated the correspon-
dence between EL-Multi-STC and a vertex-coloring problem in the Gallai graph.
Furthermore, we discussed the relationship between Multi-STC and edge coloring
problems. In context of this work, the negative results presented in this chapter
motivate the study of the parameterized complexity that we consider in the next two
chapters.
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Open Questions. There are many interesting research questions that can be pur-
sued in future work. Most importantly, it is open whether Multi-STC admits an
algorithm with running time 2O(n). Even for instances with k = 0 it is unknown
whether such an algorithm exists. We would like to remark that an algorithm with
such a running time is also open for Edge Coloring: so far, it is only known that
List-Edge Coloring, where a color list is given for each edge, admits no 2o(n

2)-
time algorithm under the ETH [118]. A first step to prove a lower bound for Edge
Coloring could be to prove that a vertex list version of Edge Coloring admits
no 2o(n

2)-time algorithm as well.

Analogously to the complexity dichotomy presented in Chapter 2, it might be in-
teresting to analyze the classic complexity of Multis-STC and its generalizations on
graph classes that can be defined via forbidden induced subgraphs. Recall that Edge
Coloring is NP-hard on triangle-free graphs [126] and therefore, Multi-STC is
NP-hard on H-free graphs for every H containing a triangle. Since STC is solvable
in polynomial time on P4-free graphs [110] it might be interesting to investigate if
this result can be lifted to Multi-STC. Note that even on (K2 +K1)-free graphs it
is not known if Multi-STC can be solved in polynomial time.

In Chapter 2 we also analyzed the correspondence between STC and CD. The
question on correspondence of STC and CD can also be formulated as follows: Is there
an STC solution in which every strong component is a clique? A strong component
is a connected component in the graph where only the strong edges of the solution
are present. A similar question regarding the solution structure can be asked for
Multi-STC: How do the connected components look when only the edges of a fixed
strong color are present? In which cases do these components form a clique? An
example where not all strong components are cliques is an instance where the input
graph is a diamond: Consider a 2-colored STC-labeling of a diamond such that there
are no weak edges. The strong components are either two K2s and a P4, or a triangle
and a P3. Thus, in every possible solution, there are strong components that do not
form a clique. Is this also the case if the input graph is diamond-free?

It could also be interesting to study a version of Multi-STC with the addi-
tional constraint that there is at most one (non trivial) strong component for every
strong color. This might fit into the context of social network analysis when one
associates one strong color with one community in the network. Observe that for
this version of Multi-STC, we cannot conclude NP-hardness from existing results
for Edge Coloring.

By the NP-hardness dichotomy from Theorem 3.1, Multi-STC with c ≥ 3 is
presumably not FPT for k. However, Multi-STC with c = 2 is FPT, since there
exists a parameter preserving reduction to Odd Cycle Transversal [164]. This
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reduction also implies that Multi-STC admits a polynomial kernel for k: Given an
instance of Multi-STC, apply the parameter preserving reduction to Odd Cycle
Transversal. Afterwards, use an existing polynomial kernelization for Odd Cy-
cle Transversal [120] and convert the resulting instance back into an instance
of Multi-STC in polynomial time. The last step is possible since Multi-STC is
NP-hard and Odd Cycle Transversal belongs to NP and thus, there exists such
a polynomial-time reduction. Note that the size of the resulting instance of Multi-
STC is polynomially bounded in k. However, the degree of the polynomial is not
known. An interesting open question would thus be, if one could think of any di-
rect problem kernelization for the parameter k or if one could find the reduction
from Odd Cycle Transversal to Mulit-STC. The problem kernel for Odd
Cycle Transversal is based on a randomized technique [120]. It might be in-
teresting to study whether this idea can be adapted for Multi-STC, or if there
is a simpler deterministic kernelization. One could also aim to find efficient FPT
algorithms for k.
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Chapter 4

Multicolored STC Parameterized
by STC Solution Size

Motivated by the strong hardness results from the previous chapter we now study the
parameterized complexity of Multi-STC and its two generalizations VL-Multi-
STC and EL-Multi-STC. Recall that Multi-STC with c = 1—in other words
STC—is FPT when parameterized by k [164] and admits a problem kernel with at
most 2k vertices [23]. Due to Theorem 3.1, all variants of Multi-STC are NP-
hard even if k = 0. Thus, it is presumably impossible that Multi-STC or its
generalizations are FPT when parameterized by k.

Even though, fixed-parameter tractability for k is unlikely, we analyze how the
positive results for STC can be lifted to the more general problem variants. To this
end, we introduce a new structural parameter denoted by k1. Informally, k1 is the
solution size of STC. Formally, we define k1 as follows.

Definition 4.1. Let G = (V,E) be a graph and let L = (SL,WL) be a 1-colored
labeling for G such that

• L is an STC-labeling, and

• there is no 1-colored STC-labeling L′ = (SL′ ,WL′) for G with |WL′| < |WL|.

We set k1 := k1(G) := |WL|.

Observe that given an instance of Multi-STC we can compute k1 in O(1.28k1 +
nm) time as discussed in Chapter 2 and immediately accept if k ≥ k1; in this sense
one may assume k ≤ k1 for Multi-STC. For VL-Multi-STC and EL-Multi-
STC this is not necessarily true since some lists might be empty which enforces
weak edges.
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Table 4.1: An overview of the parameterized complexity results for the parameters num-
ber k of weak edges, number c of colors, and number k1 of weak edges for c = 1.

Multi-STC VL-Multi-STC EL-Multi-STC

k FPT if c ≤ 2 [164], NP-hard for k = 0 for all c ≥ 3 (Thm 3.1)

k1 (k1 + 1)k1 · nO(1) time (Thm 4.4) W[1]-hard (Thm 4.13)
4k1-vertex kernel (Cor 4.11)

O((c+ 1)
k1 · (cm+ nm)) time (Thm 4.2)

k1 + c 4k1-vertex kernel (Cor 4.11) no polynomial kernel (Cor 4.14)
2c+1k1-vertex kernel (Cor 4.11)

The parameter k1 is relevant for two reasons: First, it allows us to determine to
which extent the FPT algorithms for STC carry over to Multi-STC, VL-Multi-
STC, and EL-Multi-STC. Second, k1 has a structural interpretation: it is the
vertex cover number of the Gallai graph of the input graph G [164]. We believe
that this parameterization is of independent interest and might be useful for other
problems.

Our Results. Table 4.1 shows an overview of the parameterized complexity results
presented in this chapter.

First, we provide an O((c+ 1)k1 · (c|E|+ |V | · |E|))-time algorithm for the most
general problem, EL-Multi-STC. We then use this algorithm to show that Multi-
STC is FPT when parameterized by k1 alone.

Second, we present a 2c+1 ·k1-vertex kernel for VL-Multi-STC and EL-Multi-
STC by extending the 4k-vertex kernelization [77] for STC. In the case of Multi-
STC the kernelization gives a kernel with at most 4k1 vertices, thus extending the
linear-vertex kernel from c = 1 to arbitrary values of c.

Third, we outline the limits of parameterization by k1. We show that VL-Multi-
STC and EL-Multi-STC parameterized by k1 alone are W[1]-hard. Moreover,
both problems are unlikely to admit a kernel that is polynomial in c + k1, which
complements the 2c+1 · k1-vertex kernel.

4.1 A Fixed-Parameter Algorithm

We provide a simple FPT algorithm for EL-Multi-STC parameterized by (c, k1),
which is the most general of the three problems. The main idea of the algorithm is
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to solve List-Colorable Subgraph on the Gallai graph of the input graph which
is equivalent due to Proposition II.6.

Recall that the Gallai graph ˜︁G := (˜︁V , ˜︁E) of a given graph G = (V,E) is a

graph with vertex set ˜︁V := E and two vertices are adjacent in ˜︁G if and only if
the corresponding edges of G form an induced P3 in G. Moreover, we recall the
definition of List Colorable Subgraph. Given a graph G = (V,E), we call a
mapping χ : V → {0, 1, . . . , c} a subgraph-c-coloring if there is no edge {u, v} ∈ E
with χ(u) = χ(v) ̸= 0. Vertices v with χ(v) = 0 correspond to deleted vertices. The
List-Colorable Subgraph problem is defined as follows.

List-Colorable Subgraph
Input: An undirected graph G = (V,E), integers c ∈ N, k ∈ N0 and
lists Γ : V → 2{1,...,c}.
Question: Is there a subgraph-c-coloring χ : V → {0, 1, . . . , c} such
that |{v ∈ V | χ(v) = 0}| ≤ k and χ(w) ∈ Γ(w) ∪ {0} for every w ∈ V ?

Theorem 4.2. EL-Multi-STC can be solved in O((c+ 1)k1 · (cm+ nm)) time.

Proof. We first describe the algorithm and analyze its running time. Afterwards, we
show that the algorithm is correct.

Algorithm. Let (G, c, k,Ψ) be an instance of EL-Multi-STC. The first step

is to compute the Gallai graph ˜︁G = (˜︁V , ˜︁E) of G which has m vertices and at

most nm edges. Observe that (G, c, k,Ψ) is equivalent to the instance ( ˜︁G, c, k,Ψ)
of List-Colorable Subgraph due to Proposition II.6. We describe an algorithm
that solves ( ˜︁G, c, k,Ψ) in O((c+ 1)s · (|˜︁V | · c+ | ˜︁E|)) time, where s = k1 denotes the

size of a minimum vertex cover of ˜︁G.
Let S ⊆ ˜︁V be a size-s vertex cover of ˜︁G, which can be computed in O(1.28s +

sn) time [27]. Let I := ˜︁V \S denote the remaining independent set. We now compute

whether ˜︁G has a subgraph-c-coloring a : ˜︁V → {0, 1, . . . , c} with |{v ∈ ˜︁V | a(v) =
0}| ≤ k.

We enumerate all possible mappings aS : S → {0, 1, . . . , c}. Observe that there
are (c + 1)s such mappings. For each aS we check whether aS(v) ∈ Ψ(v) ∪ {0} for
all v ∈ S. Furthermore, we check in O(|˜︁V | · c+ | ˜︁E|) time whether aS is a subgraph-

c-coloring for ˜︁G[S]. If this is not the case, then discard the current aS. For every
other choice of aS we proceed as follows:

We check whether it is possible to extend aS to a mapping a : ˜︁V → {0, 1, . . . , c}
that is a subgraph-c-coloring for ˜︁G: For each vertex v ∈ I, we check whether Pv :=
Ψ(v) \ {aS(w) | w ∈ N ˜︁G(v)} is empty. If Pv = ∅ we set a(v) = 0. Otherwise, we
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set a(v) = p for some arbitrary p ∈ Pv. This can be done in O(|˜︁V | ·c+ | ˜︁E|) time. The

resulting mapping a : V → {0, 1, . . . , c} is a subgraph-c-coloring for ˜︁G, since aS is a
subgraph-c-coloring for G[S] and every v ∈ I has a color a(v) distinct from all vertices
in N(v) ⊆ S. Finally, we check whether the total number of vertices with a(v) = 0
is at most k. If so, then we accept and stop. Otherwise, we continue with the next
mapping aS. If we did not accept for any of the enumerated mappings aS, then we
reject.

Running Time. The overall running time of the algorithm is O((c+1)s ·(nc+m)).

Recall that k1 = s, |˜︁V | = m and | ˜︁E| ≤ nm. Therefore, the overall running time to
solve EL-Multi-STC is O((c+ 1)k1 · (cm+ nm)).

Correctness. To see that the above algorithm is correct, observe first that it only
accepts if it has found a subgraph-c-coloring for ˜︁G with |{v ∈ ˜︁V | a(v) = 0}| ≤ k. For

the other direction, assume that there is a subgraph-c-coloring a⋆ : ˜︁V → {0, 1, . . . , c}
with |{v ∈ ˜︁V | a⋆(v) = 0}| ≤ k. One of the enumerated mappings aS satisfies
aS = a⋆|S. For this mapping aS the algorithm sets a(v) = 0 for some vertex v ∈ I
if and only if Ψ(v) \ {a⋆(w) | w ∈ N ˜︁G(v)} is empty. Thus, the number of vertices

v ∈ ˜︁V with a(v) = 0 is at most |{v ∈ ˜︁V | a⋆(v) = 0}| ≤ k, as required.

Next, we conclude thatMulti-STC parameterized by k1 alone is fixed-parameter
tractable. To this end, we observe the following relationship between c and k1.

Lemma 4.3. Let I := (G = (V,E), c, k) be an instance of Multi-STC. If c >
k1(G), then I is a yes-instance.

Proof. Let c > k1. There exists an STC-labeling L = (SL,WL) for G with one strong
color and |WL| = k1. Let e1, e2, . . . , ek1 be the weak edges of L. We define a c-colored
labeling L+ := (S1

L+ , . . . , ScL+ ,WL+) by

WL+ := ∅ and SiL+ :=

⎧⎪⎨⎪⎩
{ei} for i ∈ {1, . . . , k1},
SL for i = k1 + 1,

∅ for i ∈ {k + 2, . . . , c}.

Since c > k1, every edge of G is labeled by L+. Because L is an STC-labeling, there is
no induced P3 containing two edges from Sk1+1

L+ = SL. Furthermore, since |SiL+| ≤ 1
for i ̸= k1 + 1, the labeling L+ is an STC-labeling. Since |WL+| = 0, it holds
that (G, c, k) is a yes-instance of Multi-STC for every integer k.

Lemma 4.3 implies an FPT algorithm forMulti-STC parameterized by k1 alone:
Let (G, c, k) be an instance of Multi-STC. If c > k1, the given instance is a yes-
instance by Lemma 4.3. We thus only need to consider instances with c ≤ k1.
Replacing c by k1 in the running time bound of Theorem 4.2 then gives the following.
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{1} {1, 2} {1, 2} {2}

Figure 4.1: A graph G and vertex lists Λ of an instance I := (G, c = 2, k = 0,Λ) of
VL-Multi-STC. It is easy to see that I is a no-instance while k1 = 1 < 2 = c.

Theorem 4.4. Multi-STC can be solved in O((k1 + 1)k1 · (k1m+ nm)) time.

The fixed-parameter tractability of Multi-STC parameterized by k1 alone relies
on the relationship between c and k1 from Lemma 4.3. Unfortunately, Lemma 4.3
does not hold for VL-Multi-STC; Figure 4.1 shows an example.

4.2 A Problem Kernel for EL-Multi-STC

We now show that EL-Multi-STC admits a 2c+1 · k1-vertex kernel. That is, a
linear-vertex kernel for every fixed value of c. The kernelization described in this
section generalizes a 4k-vertex kernel for STC [77].

To obtain a 2c+1 · k1-vertex kernel, we introduce a new parameter τ . Let I :=
(G, c, k,Ψ) be an instance of EL-Multi-STC. Then, τ := |Ψ(E) \ {∅}| is defined
as the number of different non-empty edge lists occurring in the instance I. We
then show that EL-Multi-STC admits a kernel with at most (τ + 1) · 2k1 vertices.
Since τ ≤ 2c − 1, this gives us the desired 2c+1 · k1-vertex kernel.

For this kernelization we use the notion of critical cliques and critical clique
graphs [151]. These concepts were also used to obtain linear-vertex kernels for graph
clustering problems parameterized by the number of edge modifications [85, 28] and
for STC [77] parameterized by the number of weak edges k. The kernelization de-
scribed here lifts this linear-vertex kernel for STC to the more general EL-Multi-
STC.

Definition 4.5. A critical clique of a graph G is a clique K where the vertices of K
all have the same neighbors in V \K and K is maximal under this property. Given
a graph G = (V,E), let K be the collection of its critical cliques. The critical clique
graph C of G is the graph (K, EC) with {Ki, Kj} ∈ EC if and only if {u, v} ∈ E for
all u ∈ Ki and v ∈ Kj.

For a critical clique K we let N (K) :=
⋃︁
K′∈NC(K)K

′ denote the union of its

neighbor cliques in the critical clique graph and we let N 2(K) :=
⋃︁
K′∈N2

C(K)K
′

denote the union of the critical cliques at distance exactly two from K. Given a
graph G, the critical clique graph of G can be constructed in O(n+m) time [91].
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K1 K2 K3

Figure 4.2: A graph where the vertex set is partitioned into critical cliques K1, K2,
and K3. Note that K2 is an open critical clique while K1 and K3 are closed critical cliques.

Critical cliques are an important tool for EL-Multi-STC, because every edge
contained in some critical clique is not part of any induced P3 in G. Hence, each
such edge e is strong under any STC-labeling unless Ψ(e) = ∅. In the following, we
distinguish between two types of critical cliques. We say that a critical clique K is
closed if N (K) forms a clique in G and that K is open otherwise. We will see that
the number of vertices in open critical cliques is at most 2k1. The reduction rule
leading to our kernel deals with large closed critical cliques. An example of the open
and closed critical cliques of a graph is shown in Figure 4.2.

Before we state the reduction rule leading to the problem kernel, we provide some
informal description. Let K be a critical clique and let v ∈ N (K). Furthermore,
let there be a subset Kψ

v ⊆ K such that all edges between v and Kψ
v have the same

edge list ψ ̸= ∅ under Ψ. The key idea is that all edges in E({v}, Kψ
v ) may receive

the same color under an optimal c-colored STC-labeling. Our reduction rule then
removes vertices from Kψ

v if |Kψ
v | exceeds some size. This is done by considering

each vertex v ∈ N (K) and each color list, and taking some edges between v and K
with that color list and marking the other end of that edge. Afterwards, we remove
all unmarked vertices in K. These steps are formally described in Algorithm 1.

Reduction Rule 4.1. If G has a closed critical clique K with

|K| > τ · |E(N (K),N 2(K))|,

then apply Algorithm 1 on G and K.

Proposition 4.6. Rule 4.1 is safe and can be applied in polynomial time.

Proof. Let I := (G = (V,E), c, k,Ψ) be an instance for EL-Multi-STC and let K
be a closed critical clique with |K| > τ · |E(N (K),N 2(K))|. Furthermore, let I ′ :=
(G′ = (V ′, E ′), c, k′,Ψ′) be the instance we obtain after applying Algorithm 1 on
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Algorithm 1 EL-Multi-STC kernelization

1: Input: A graph G = (V,E) and a closed critical clique K ⊆ V in G
2: for each v ∈ N (K) do
3: for each ψ ∈ {Ψ(e) ̸= ∅ | e ∈ E({v}, K)} do
4: i := 0
5: for each w ∈ N(v) ∩K do
6: if Ψ({v, w}) = ψ then
7: Mark w as important
8: i := i+ 1

9: if i = |E({v},N 2(K))| then
10: break
11: Delete all vertices u ∈ K which are not marked as important from G
12: Decrease the value of k by the number of edges e such that e is incident with a

deleted vertex u and Ψ(e) = ∅.

G and K. Since |N (K)|, |N(v) ∩K| ≤ n and |{Ψ(e) ̸= ∅ | e ∈ E({v}, K)}| ≤ |K| ≤
n, the given algorithm clearly runs in O(n3) time.

It remains to show that the produced instance I is a yes-instance if and only if I ′

is a yes-instance. To this end, let DV ⊆ V be the set of vertices that were deleted
by Algorithm 1, let DE be the set of edges that are incident with some v ∈ DV , and
let D∅

E ⊆ DE be the set of edges e ∈ DE with Ψ(e) = ∅. We have

G′ = (V \DV , E \DE), k
′ = k − |D∅

E|, and Ψ′ = Ψ|E\DE
.

We also define K ′ := K \DV as the modified critical clique in G′.

(⇒) Let L = (S1
L, S

2
L, . . . , S

c
L,WL) be a Ψ-satisfying STC-labeling for G such

that |WL| ≤ k. We define a labeling ˆ︁L = (S1ˆ︁L, . . . , Scˆ︁L,Wˆ︁L) by Wˆ︁L := WL \ DE

and Siˆ︁L := SiL \ DE for each i ∈ {1, . . . , c}. The fact that L is Ψ-satisfying implies

that ˆ︁L is Ψ′-satisfying. It also holds that

|Wˆ︁L| = |WL \DE| = |WL| − |WL ∩DE| ≤ k − |D∅
E| = k′,

since D∅
E ⊆ WL ∩ DE. It remains to prove that ˆ︁L does not violate STC. Assume

towards a contradiction that there is an induced P3 on vertices u, v, and w in V ′ with
edges {u, v}, {v, w} ∈ Siˆ︁L for some strong color i ∈ {1, . . . , c}. Then {u,w} ∈ DE,
since L is an STC-labeling. Thus, by the definition of DE, at least one of the
vertices u or w was deleted by the algorithm. This contradicts the fact that u and w
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are elements of V ′ = V \DV . Consequently, ˆ︁L is a Ψ′-satisfying STC-labeling for G′

with at most k′ weak edges.

(⇐) Conversely, let ˆ︁L = (S1ˆ︁L, . . . , Scˆ︁L,Wˆ︁L) be an optimal Ψ′-satisfying STC-

labeling for G′ such that |Wˆ︁L| ≤ k− |D∅
E|. We define a Ψ-satisfying STC-labeling L

for G, with |WL| ≤ k. To this end, we show that we may make an assumption re-
garding the strong edges in EG′(K ′,N (K ′)). Given a vertex v ∈ N (K ′) and an edge
list ψ ̸= ∅, we let Kψ

v ⊆ K ′ denote the inclusion maximal subset of vertices in K ′

where all edges in EG′({v}, Kψ
v ) have list ψ under Ψ.

Claim 1. There exists an optimal c-colored STC-labeling L∗ for G′ such that for every
combination of a vertex v ∈ N (K ′) and a list ψ ̸= ∅ with |Kψ

v | ≥ |EG′({v},N 2(K ′))|
at least one edge in EG′({v}, Kψ

v ) is strong under L∗.

Proof . Recall that ˆ︁L is an optimal c-colored STC-labeling for G′. If ˆ︁L satisfies
the property stated in the claim, nothing more needs to be shown. Otherwise,
there exists some v ∈ N (K ′) and some Kψ

v with |Kψ
v | ≥ |EG′({v},N 2(K ′))| such

that EG′({v}, Kψ
v ) ⊆ Wˆ︁L. Note that, whenever an edge e ∈ EG′({v}, Kv) forms

an induced P3 with another edge e′, we have e′ ∈ EG′({v},N 2(K ′)) since K ′ is
closed. Since ψ ̸= ∅, there exists some i ∈ ψ. We define a new labeling L′ :=
(S1

L′ , . . . , ScL′ ,WL′) for G′ by

SiL′ := Siˆ︁L ∪ EG′({v}, Kψ
v ) \ EG′({v},N 2(K ′)),

WL′ := Wˆ︁L \ EG′({v}, Kψ
v ) ∪ (Siˆ︁L ∩ EG′({v},N 2(K ′))), and

SjL′ := Sjˆ︁L for all j ̸= i.

Since |Kψ
v | ≥ |EG′({v},N 2(K ′))| we conclude

|WL′ | = |Wˆ︁L| − |EG′({v}, Kv)|+ |Siˆ︁L ∩ EG′({v},N 2(K ′))|
≤ |Wˆ︁L| − |Kv|+ |EG′({v},N 2(K ′))|
≤ |Wˆ︁L|.

Moreover, L′ clearly is Ψ′-satisfying. It remains to show that L′ is an STC-labeling.
To this end, we show that there is no induced P3 with an edge e ∈ EG′({v}, Kv) ⊆ SiL′

and another edge e′ ∈ SiL′ . As mentioned above, the edges in EG′({v}, Kv) only form
an induced P3 with edges in EG′({v},N 2(K ′)). By the construction of L′, no edge
in EG′({v},N 2(K ′)) belongs to SiL′ . Hence, L′ is an optimal c-colored STC-labeling
for G′ such that EG′({v}, Kψ

v ) contains strong edges.
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Observe that by transforming ˆ︁L into L′, we only changed the labels of edges
in EG′({v}, Kψ

v ) ∪ EG′({v},N 2(K)). Thus, we can apply this transformation sub-
sequently for every combination of v ∈ N (K ′) and ψ ̸= ∅ which results in an opti-
mal c-colored STC-labeling L∗ that satisfies the property stated in the claim. ♢

Throughout the rest of this proof, we assume without loss of generality that ˆ︁L
satisfies the property from Claim 1. We define the labeling L for G by extending ˆ︁L.
To this end, we describe to which strong color classes of ˆ︁L we add the edges in DE.
First, we label all edges in D∅

E as weak. Let WL := Wˆ︁L ∪D∅
E be the resulting set of

weak edges. Since |Wˆ︁L| ≤ k − |D∅
E| we have |WL| ≤ k. It remains to label all edges

in DE \D∅
E. Let u be some fixed vertex in DV and v ∈ N(u) such that {u, v} ̸∈ D∅

E.
We consider the following cases.

Case 1: v ∈ K. Then, the edge {u, v} is an edge between two vertices of a
critical clique. Since {u, v} ̸∈ D∅

E, there is some i ∈ Ψ({u, v}). We add {u, v} to Siˆ︁L.
Clearly, {u, v} satisfies the Ψ-list property. Since {u, v} is not part of any induced P3

this does not violate STC.
Case 2: v ∈ N (K). Then, there is a set Y ⊆ K ′ which contains at least

|E({v},N 2(K))| vertices distinct from u such that Ψ({v, y}) = Ψ({u, v}) for ev-
ery y ∈ Y . Otherwise, u would have been marked as important by Algorithm 1,
which contradicts the fact that u ∈ DV . Since ˆ︁L satisfies the property of Claim 1,
we know that EG′({v}, Y ) contains an edge {v, y} that belongs to a strong color
class Siˆ︁L for some i ∈ Ψ({u, v}). We then add {u, v} to Siˆ︁L. Clearly, {u, v} satis-

fies the Ψ-list property. Moreover, adding {u, v} to Siˆ︁L does not violate STC: The

only edges that form an induced P3 with {u, v} are the edges in E({v},N 2(K)).

Now, since {v, y} ∈ Siˆ︁L and since ˆ︁L is an STC-labeling for G′, none of these edges is

contained in Siˆ︁L.
Consequently, L is a Ψ-satisfying STC-labeling for G with |WL| ≤ k.

We next show that applying Reduction Rule 4.1 exhaustively leads to a problem
kernel containing at most (τ + 1) · 2k1 vertices. To this end, we provide two lemmas
that we need to show the size bound. The first lemma gives a bound on the size of
a closed critical clique in a reduced instance. The second lemma is a more general
statement declaring that there is no edge connecting vertices of distinct closed critical
cliques.

Lemma 4.7. Let (G, c, k,Ψ) be a reduced instance of EL-Multi-STC. Then, |K| ≤
τ · |E(N (K),N 2(K))| for every closed critical clique K in G.

Proof. We prove the lemma by having a closer look at the vertices that were not
deleted by Algorithm 1. The algorithm is applied on every closed critical clique K
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with |K| > τ · |E(N (K),N 2(K))|. Every vertex that was not marked as important
in Line 7 of the algorithm is deleted from G. Note that there are at most τ possible
images ψ ̸= ∅ of Ψ : E → 2{1,...,c}. By Lines 7, 9, and 10 it holds that for every v ∈
N (v) the algorithm marks at most τ · |E({v},N 2(K))| vertices of K. Consequently,
there are at most

τ ·
∑︂

v∈N (K)

|E({v},N 2(K))| = τ · |E(N (K),N 2(K))|

marked vertices in K, since {E({v},N 2(K)) | v ∈ N (v)} forms a partition of the
set E(N (K),N 2(K)). Hence, |K| ≤ τ · |E(N (K),N 2(K))| for every closed critical
clique K in G.

Lemma 4.8. Let K1 and K2 be closed critical cliques in a graph G. Then,

EG(K1, K2) = ∅.

Proof. Assume towards a contradiction that EG(K1, K2) ̸= ∅. Then, sinceK1 andK2

are critical cliques, we have {v1, v2} ∈ E for every v1 ∈ K1 and v2 ∈ K2. We consider
the following cases.

Case 1: N (K1)\K2 = N (K2)\K1. Then, all vertices in K1∪K2 have the same
closed neighborhood in G, which is a contradiction to the maximality of K1 and K2

since K1 ∪K2 forms a bigger critical clique.
Case 2: N (K1) \ K2 ̸= N (K2) \ K1. Without loss of generality, assume that

there exists a vertex v ∈ N (K1) \K2 with v ̸∈ N (K2) \K1. Then, for any w ∈ K2,
the vertices v and w are contained in N (K1) but not adjacent in G. This is a
contradiction to the fact that K1 is closed.

We now prove the kernel result for EL-Multi-STC.

Theorem 4.9. EL-Multi-STC admits a problem kernel with at most (τ + 1) ·
2k1 vertices.

Proof. Due to Proposition 4.6, Reduction Rule 4.1 can be applied in polynomial
time. Since every application of Reduction Rule 4.1 deletes some vertices, the rule
can be exhaustively applied in polynomial time. Next, let (G = (V,E), c, k,Ψ) be
an instance that is reduced regarding Reduction Rule 4.1. We show that |V | ≤
(τ + 1) · 2k1. To this end, let L := (SL,WL) be an optimal 1-colored STC-labeling
for G. Recall that |WL| = k1.

We first show that the overall number of vertices in open critical cliques is
bounded by 2k1. Let K be an open critical clique. Since N (K) does not form a
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clique in G, there are two vertices u and w in N (K) with {u,w} ̸∈ E. So, for every
vertex v ∈ K, the edges {u, v} and {v, w} form an induced P3. Thus, each vertex in
any open critical clique has at least one weak neighbor under L. Consequently, the
overall number of vertices in open critical cliques is at most 2k1.

Let K denote the set of all vertices in closed critical cliques. We next show
that |K| ≤ 2 · τ · k1. Intuitively, we show that there is a correspondence between the
weak edges of L and all vertices in K such that for every weak edge under L there
are at most 2 · τ distinct vertices in K. Formally, we give a mapping Φ : K → WL

such that for each e ∈ WL we have |Φ−1(e)| ≤ 2 ·τ , where Φ−1(e) := {v ∈ K | Φ(v) =
e} ⊆ K. Since |WL| = k1, this implies

|K| ≤
∑︂
e∈WL

|Φ−1(e)| ≤ 2 · τ · k1.

It remains to show the existence of such a mapping Φ. First, let v ∈ K such that v
is incident with an edge {v, w} ∈ WL. We then set Φ(v) := {v, w}. Next, let K
be a closed critical clique and consider the vertices of K that are not incident with
weak edges. Let v ∈ K. We define Φ(v) := {w, u} with w ∈ N (K) and u ∈ N 2(K).
Since |K| ≤ τ · |E(N (K),N 2(K))| due to Lemma 4.7, we can do this in a way such
that Φ−1({w, u}) contains at most τ distinct vertices from K for every {w, u} ∈
E(N (K),N 2(K)). Note that for each such v with Φ(v) = {w, u}, the edges {v, w}
and {w, u} form a P3 in G. Thus, since v is not incident with weak edges, we
have {w, u} ∈ WL. Therefore, Φ is well-defined. We next show that |Φ−1(e)| ≤ 2 · τ
for every e ∈ WL. Consider the following case distinction.

Case 1: e = {w, u} such that one endpoint w lies in K. Let K be the closed
critical clique containing w. Due to Lemma 4.8 we have u ̸∈ K. Thus, any vertex v ∈
K \ {w} with Φ(v) = {w, u} has only strong neighbors under L.

Assume towards a contradiction that |Φ−1({w, u})| > 2 · τ . Then, there exist at
least two closed critical cliques K1 and K2 distinct from K that contain vertices v1 ∈
K1 and v2 ∈ K2 with Φ(v1) = Φ(v2) = {w, u}. Since w ∈ K and vertices from
distinct closed critical cliques are not adjacent by Lemma 4.8 we have {v1, u} ∈ E
and {v2, u} ∈ E. Furthermore, Lemma 4.8 also implies {v1, v2} ̸∈ E. Then, {v1, u}
and {v2, u} form a strong P3 under L contradicting the fact that L is an STC-labeling.
Consequently, |Φ−1({w, u})| ≤ 2 · τ .

Case 2: e = {w, u} such that w and u do not belong to K. Then, every v ∈ K
with Φ(v) = {w, u} has only strong neighbors under L.

Assume towards a contradiction that |Φ−1({w, u})| > 2 · τ . Then, there exist
three distinct closed critical cliques K1, K2, and K3 containing vertices v1 ∈ K1,
v2 ∈ K2, and v3 ∈ K3 with Φ(v1) = Φ(v2) = Φ(v3) = {w, u}. By pigeonhole
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principle we may assume that v1 and v2 are both adjacent to u. Due to Lemma 4.8
we have {v1, v2} ̸∈ E. Since v1 and v2 only have strong neighbors under L, the
edges {v1, u} and {v2, u} form a strong P3 under L. This contradicts the fact that L
is an STC-labeling. Consequently, |Φ−1({w, u})| ≤ 2 · τ .

We thus have shown that |K| ≤ 2 · τ · k1. Therefore, G has at most 2k1 + 2τk1 =
(τ + 1) · 2k1 vertices.

Given an instance of EL-Multi-STC, Algorithm 1 removes vertices and their
incident edges, but does not apply changes on the edge lists. Thus, the kernel-
ization described above also implies a kernel for VL-Multi-STC: Given an in-
stance (G, c, k,Λ), we covert the vertex lists into edge lists by setting Ψ({u, v}) :=
Λ(u)∩Λ(v) for every edge {u, v} of G. Afterwards, we reduce the resulting instance
of EL-Multi-STC exhaustively regarding Reduction Rule 4.1 and obtain (G′ =
(V ′, E ′), c, k′,Ψ|E′) with |V ′| ≤ (τ + 1) · 2k1. We then return the VL-Multi-STC
instance (G′, c, k′,Λ|V ′), where Λ|V ′(v) is the union of all edge lists Ψ|E′(e) of edges e
incident with v. It is easy to see that these two instances are equivalent. Therefore,
the following holds.

Corollary 4.10. VL-Multi-STC admits a problem kernel with at most (τ+1) ·2k1
vertices, where τ := |{Λ(u) ∩ Λ(v) | {u, v} ∈ E} \ {∅}|.

Recall that for any EL-Multi-STC instance (G, c, k,Ψ) we have τ ≤ 2c − 1.
Also, Multi-STC is the special case of EL-Multi-STC where every edge has the
list {1, 2, . . . , c}, and thus τ = 1. Thus, we obtain the following.

Corollary 4.11. The following kernel results hold for strong triadic closure problems.

a) EL-Multi-STC and VL-Multi-STC admit a problem kernel with at most
2c+1k1 vertices.

b) Multi-STC admits a problem kernel with at most 4k1 vertices.

Recall that a problem kernel with at most 2k vertices for STC has been shown
recently [23].

4.3 Limits of Parameterization by k1

We next complement the positive results from Sections 4.1 and 4.2 by studying the
limits of parameterization by k1 and c+ k1.

Recall that the FPT algorithm for Multi-STC parameterized by k1 alone be-
hind Theorem 4.4 relies on the relationship between c and k1 from Lemma 4.3.
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Furthermore, recall that Figure 4.1 shows an example that this relationship does
not hold for VL-Multi-STC. In the following, we show that VL-Multi-STC and
EL-Multi-STC are presumably not fixed-parameter tractable when parameterized
by k1 alone. More precisely, we show that VL-Multi-STC is W[1]-hard for k1 by
giving a parameterized reduction from Set Cover which is defined as follows.

Set Cover
Input: A finite universe U ⊆ N, a family F ⊆ 2U , and an integer t ∈ N.
Question: Is there a subfamily F ′ ⊆ F with |F ′| ≤ t and

⋃︁
F∈F ′ F = U?

We reduce from Set Cover parameterized by the dual parameter |F| − t. The
W[1]-hardness of Set Cover for this parameterization follows from a classic reduc-
tion from Independent Set [99]. We provide it here for the sake of completeness.

Proposition 4.12. Set Cover parameterized by |F| − t is W[1]-hard.

Proof. In Independent Set one is given a graph G = (V,E) and an integer s and
the question is whether there is a subset V ′ ⊆ V of pairwise nonadjacent vertices
such that |V ′| ≥ s. Independent Set is W[1]-hard when parameterized by s [46].

Let (G = (V,E), s) be an instance of Independent Set. We construct a Set
Cover-instance (U,F , t) as follows. Set U := E, F := {Fv | v ∈ V } with Fv :=
{{v, u} | u ∈ N(v)} and t := |V | − s. Note that |F| = |V |, hence |F| − t =
|V | − (|V | − s) = s.

Theorem 4.13. VL-Multi-STC parameterized by k1 is W[1]-hard, even if k = 0.

Proof. We give a parameterized reduction from Set Cover parameterized by |F|−t
which is W[1]-hard due to Proposition 4.12.

Construction. Let (U,F , t) be an instance of Set Cover. We describe how to
construct an equivalent instance (G = (V,E), c, k,Λ) of VL-Multi-STC with k1 ≤
|F| − t and k = 0. Let F = {F1, . . . , F|F|}. We define the vertex set V of G
by V := U∪Z∪{a} where a is a new vertex and Z := {zi | i ∈ {t+1, t+2, . . . , |F|}}.
Furthermore, we define the edge set of G by E := EU ∪ EUa ∪ EZa with

EU := {{v, w} | v, w ∈ U},
EUa := {{u, a} | u ∈ U}, and
EZa := {{z, a} | z ∈ Z}.

Note that |EZa| = |Z| = |F| − t and that U is a clique. We set c := |F| + 1 and
define the lists Λ as

Λ(v) :=

{︄
{i | v ∈ Fi} ∪ {|F|+ 1} if v ∈ U ,
{1, 2, . . . , |F|} if v ̸∈ U .
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Λ(u) = {1, 2, 5}
Λ(v) = {1, 4, 5}
Λ(w) = {3, 5}
Λ(x) = {1, 2, 3, 4, 5}

u
v

w
x

a

1

1

3

1

2

4

Figure 4.3: An example of the construction in the proof of Theorem 4.13 for the Set
Cover-instance (U, {F1, F2, F3, F4}, 2) with U = {u, v, w, x}, F1 = {u, v, x}, F2 = {u, x},
F3 = {w, x}, and F4 = {v, x} together with a 5-colored STC-labeling. The edges between u,
v, w, and x are labeled with strong color 5. Note that {F1, F3} is a set cover of size 2
corresponding to the strong colors of edges in EUa.

Figure 4.3 shows an example of the construction.
Intuition. Before we prove the correctness, we provide some intuition. The strong

colors 1, . . . , |F| correspond to the sets F1, . . . , F|F|. The vertex a selects sets from F
by labeling the edges in EUa with the corresponding color. The edges in EZa ensure
that there are exactly t different strong colors left for the edges in EUa.

Parameter Transformation. We first show that k1 ≤ |F|− t. Recall that k1 is the
number of weak edges in an optimal 1-colored STC-labeling for G. Let e1, e2 ∈ E be
the edges of an induced P3 in G. Since U∪{a} is a clique by construction, at least one
of the edges e1 or e2 belongs to EZa. Since every P3 in G contains at least one edge
from EZa we obtain a 1-colored STC-labeling L := (SL,WL) by setting WL := EZa .
Then, since |EZa| = |F| − t, we have k1 ≤ |F| − t.

Correctness. It remains to show that (U,F , t) has a solution F ′ of size t if and

only if G has a Λ-satisfying STC-labeling L = (S1
L, . . . , S

|F|+1
L ,WL) with WL = ∅.

(⇒) Let F ′ ⊆ F be a set cover of U with |F ′| = t. Without loss of gen-
erality (by renaming) let F ′ = {F1, F2, . . . , Ft}. We define an STC-labeling L =

(S1
L, . . . , S

|F|+1
L , ∅) as follows. We start by defining the classes SiL for each i ∈

{t+ 1, t+ 2, . . . , |F|+ 1}. We set

SiL := {{a, zi}} for every i ∈ {t+ 1, t+ 2, . . . , |F|} and S|F|+1
L := EU .

Note that St+1
L ∪· · ·∪S|F|+1

L = EU ∪EZa, so by defining the strong color classes St+1
L ,

. . . , S
|F|+1
L we have labeled all edges in EU ∪ EZa. Before we continue with the

definition of L, we show that the definition of the strong classes St+1
L , . . . , S

|F|+1
L

does not violate the STC property and every edge in EU ∪ EZa satisfies the Λ-list
property. Since U is a clique by construction, there is no induced P3 containing two

106



4.3. Limits of Parameterization by k1

edges from S
|F|+1
L violating STC in EU . Moreover, since all sets St+1

L , . . . , S|F| contain
exactly one edge, there is obviously no STC violation in EZa. For every vertex u ∈ U
it holds that |F|+ 1 ∈ Λ(u), hence the Λ-list property is satisfied for every e ∈ EU .
Since {1, 2, . . . , |F|} = Λ(a) = Λ(zt+1) = · · · = Λ(z|F|), the edges in EZa also satisfy
the Λ-list property.

We now label the edges in EUa by defining the sets S1
L, . . . , S

t
L. Recall that F ′ =

{F1, . . . , Ft} is a set cover of size t. We set

S1
L := {{u, a} | u ∈ F1} and SiL := {{u, a} | u ∈ Fi \ (F1 ∪ · · · ∪ Fi−1)}

for each i ∈ {2, 3, . . . , t}. Obviously, each edge of EUa is an element of at most one
of the sets S1

L, . . . , S
t
L. Since F ′ is a set cover, we know that F1 ∪ · · · ∪ Ft = U .

Hence, S1
L, . . . , S

t
L is a partition of EUa. Since U ∪ {a} forms a clique, no pair of

edges in EUa violates the STC property. Moreover, since the edges in EUa receive
different colors from the edges in EZa, no pair of edges from these two sets violates
the definition of STC-labelings. From the definition of Λ we know that Λ(a) =
{1, . . . , |F|} and for every u ∈ U it holds that i ∈ Λ(u) if u ∈ Fi. Hence, every
edge in EUa satisfies the Λ-list property. Consequently, L is a c-colored STC-labeling
with WL = ∅ such that every edge satisfies the Λ-list property under L.

(⇐) Conversely, let L = (S1
L, . . . , S

|F|+1
L , ∅) be a c-colored STC-labeling for G

such that every edge of G satisfies the Λ-list property. We construct a set cover F ′ ⊆
F with |F ′| ≤ t. We focus on the vertex a and its incident edges. Those are exactly
the edges of EUa ∪EZa. Since there are no weak edges, we know that all those edges
are elements of strong color classes SiL. Since L is an STC-labeling and every pair
of edges e, e′ ∈ EZa forms a P3, it follows by |EZa| = |F| − t that the edges in EZa
are elements of |F| − t distinct color classes. Because there is no edge between the
vertices of U and Z, it also holds that there is no e ∈ EUa that is an element of the
same strong color class as some e′ ∈ EZa. Otherwise, e and e′ form a P3 with the
same strong color which contradicts the fact that L is an STC-labeling. Thus, the
edges in EUa are elements of at most t distinct strong color classes, since |Λ(a)| = |F|
and every edge of G satisfies the Λ-list property under L. Without loss of generality
(by renaming) we can assume that those strong color classes are S1

L, . . . , S
t
L.

We define F ′ := {F1, F2, . . . , Ft} (recall that F = {F1, F2, . . . , F|F|}). Obvi-
ously, |F ′| = t. We next show that F ′ ⊆ F is a set cover of U . The fact that all
edges of G satisfy the Λ-list property under L implies that for every u ∈ U there
is a j ∈ {1, . . . , t} such that j ∈ Λ(u). Since Λ(u) = {i | u ∈ Fi} ∪ {|F| + 1} for
all u ∈ U by construction, every u ∈ U is an element of one of the sets F1, F2, . . . , Ft.
Hence, U = F1 ∪ F2 ∪ · · · ∪ Ft and, thus, F ′ is a set cover of size t.

A closer look at the instance (G, c, k,Λ) for VL-Multi-STC constructed from
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the Set Cover instance (U,F , t) in the proof of Theorem 4.13 reveals that c =
|F| + 1 and k1 ≤ |F| − t. Thus, c + k1 ≤ 2|F| + 1 and the construction is a
polynomial parameter transformation from Set Cover parameterized by |F| to
VL-Multi-STC parameterized by c + k1. Now, since Set Cover parameterized
by |F| does not admit a polynomial kernel unless NP ⊆ coNP/poly [43] we obtain
the following.

Corollary 4.14. VL-Multi-STC parameterized by c + k1 does not admit a poly-
nomial kernel unless NP ⊆ coNP/poly.

Corollary 4.14 complements the 2c+1 · k1-vertex kernel from Corollary 4.11 in the
sense that it is unlikely to replace 2c+1 by a factor that is polynomial in c+ k1.

4.4 Concluding Remarks

We have provided the first study of the parameterized complexity of Multi-STC
and its list versions. More precisely, we studied how the positive results for STC
parameterized by solution size can be extended to the more general problems. We
also outlined the limits of such an extension. In context of this work, studying the
parameterized complexity of Multi-STC and its list versions is motivated by the
strong hardness results presented in Chapter 3. The STC solution size k1 is one of
two parameterization for Multi-STC that we consider in this work. In the next
chapter we introduce parameterization by a structural parameter, which is motivated
by the close connection between Multi-STC and edge coloring problems.

Open Questions. We have shown that the list variants of Multi-STC can be
solved in (c + 1)k1 · nO(1) time and that there is presumably no FPT algorithm for
parameterization by k1 alone due to W[1]-hardness. Note that the algorithm with
running time (c + 1)k1 · nO(1) is not an XP algorithm since the value of c might be
exponentially large in the total input size. Thus, one open question is, if VL-Multi-
STC and EL-Multi-STC are XP for k1. To answer this question, it might be a
good starting point to consider instances where c is superpolynomial in the input
size. Maybe it is possible to find a polynomial-time reduction that decreases the
number of colors in such an instance.

By Theorem 3.1, Multi-STC is NP-hard even if the number k of allowed weak
edges is 0. Analogously to STC it might be interesting to study the number of strong
edges ℓ := m−k as a possible parameterization for Multi-STC and its list variants.
A Multi-STC instance is a trivial yes-instance if the input graph has a maximal
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matching of size at least ℓ. In this sense, the parameter ℓ is closely related to the size
of a maximal matching in the input graph and appears to be a promising parameter
to obtain FPT algorithms for Multi-STC. However, for VL-Multi-STC and EL-
Multi-STC there might be edges that may not receive any strong color due to the
list constraints. Thus, the relation between ℓ and the matching size might not hold
for these problem variants.

In case of EL-Multi-STC, it is even possible to observe W[1]-hardness for ℓ
from the literature: Sintos and Tsaparas [164] introduced a problem called Max-
Ego-STC where one is given a Graph G, a vertex v of G, and an integer ℓ. The
question is whether one can label at least ℓ edges incident with v as strong such that
the strong triadic closure property is satisfied for these edges. Sintos and Tsaparas
proved NP-hardness of this problem by giving a parameter-preserving reduction from
Clique parameterized by solution size which is known to be W[1]-hard [46]. Defining
the edge lists of edges incident with v as {1} and the remaining edge lists as ∅, Max-
Ego-STC is a special case of EL-Multi-STC. Consequently, EL-Multi-STC is
W[1]-hard for the number of strong edges. Note that it is not clear how to model
Max-Ego-STC with vertex lists. Thus, one open question is whether VL-Multi-
STC is FPT for ℓ. In case of EL-Multi-STC, one might consider a more restricted
problem version, where none of the edge lists is empty and ask whether this restricted
version is FPT for ℓ.

We introduced the parameter k1 as STC solution size. In other words, k1 is the
number of weak edges in an STC-labeling with one strong color. Analogously to k1,
one may define a parameter ℓ1 := m − k1 where ℓ1 corresponds to the number of
strong edges in an STC-labeling with one strong color. In case of Multi-STC, we
intuitively have ℓ1 ≤ ℓ, since the number of strong edges in an STC-labeling with
multiple strong colors should not be smaller than the number of strong edges in
a 1-colored STC-labeling. Thus, if it turns out that Multi-STC is FPT for ℓ, it
might be interesting to investigate whether it is also FPT for ℓ1. However, recall
that the current-best algorithm to compute a 1-colored STC labeling has running
time ℓ1

O(ℓ1) · nO(1) (Theorem 2.10). Thus, to obtain an FPT algorithm for Multi-
STC parameterized by ℓ1 that could be practically relevant, a first step might be
to revisit STC parameterized by ℓ. In case of VL-Multi-STC and EL-Multi-
STC, ℓ1 is unbounded by the minimum number of strong edges in a solution, since
there might be empty lists. Furthermore, observe that the reduction from Clique
to Max-Ego-STC described above, the value of ℓ1 is unbounded in the parameter.
It is thus open, whether the list variants of Multi-STC are FPT for ℓ1.

Recall that k1 also has a structural interpretation as the vertex cover number of
the Gallai graph. It would be interesting to study if k1 or other structural parameters
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of the Gallai graph are useful for further problems. Furthermore, from an abstract
point of view, the Gallai graph models the conflicts between edges with regard to the
strong triadic closure property: Intuitively, every induced P3 forms an STC conflict
in the sense that the two edges of the P3 may not receive the same strong color.
Since each edge in the Gallai graph corresponds to two edges forming a P3 in the
original graph, the edges model the corresponding STC conflicts. Golovach et al. [71]
considered a generalization of STC where the aim is to color at most k edges weak
such that each induced subgraph isomorphic to a fixed graph F has at least one
weak edge. The corresponding problem is called Strong F Closure. In case
of F = 2K2, one could think of a conflict graph that is defined analogously to the
Gallai graph: There are vertices corresponding to the edges of the input graph and
two such vertices are adjacent if their corresponding edges form a 2K2. It is easy
to see that a minimum vertex cover of this auxiliary graph corresponds to the weak
edges of a solution of Strong 2K2 Closure. Moreover, an algorithm similar to
the algorithm from the proof of Theorem 4.2 could work for a multicolored version
of Strong 2K2 Closure. It might be interesting to study whether a multicolored
version of Strong 2K2 Closure has a polynomial kernel when parameterized by
the vertex cover number of the auxiliary graph. Considering Strong F Closure
for some F that contains more than two edges, it is not clear how a conflict graph
can look like. For example, let F = K3. Then, one might considers a conflict graph
where an edge corresponds to two edges that are in one induced K3 of the input
graph. Such auxiliary graph is also known as the anti-Gallai graph [124]. However,
note that a minimal vertex cover of the anti-Gallai graph does not correspond to a
solution of Strong K3 Closure.

Another open question is if the 2c+1 ·k1-vertex kernel for EL-Multi-STC can be
improved. Recall that for STC the kernel size has recently been improved from 4k
vertices to 2k vertices [23]. This kernel is obtained by removing vertices v where N [v]
is a clique and the degree of v is bigger than the number of edges between N [v] and
the rest of the graph. It is unknown if this approach can also be used to obtain
better kernelizations for Multi-STC and its list versions.
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Chapter 5

Edge Coloring Problems
Parameterized by Distance to
Low-Degree Graphs

As discussed in Chapter 3, the Multi-STC problem has a strong relation to the
classic Edge Coloring where one aims to label the edges of a given graph G with
a given number of colors such that no incident edges are labeled with the same color.
Such a labeling is called a proper (edge) labeling of G. The existence of a proper la-
beling with c colors implies the existence of an STC-labeling with c strong colors and
without weak edges. We used the relation between the two problems to give an NP-
hardness dichotomy for Multi-STC (Theorem 3.1). In this chapter, we revisit the
relation between Multi-STC and Edge Coloring and we study parameterization
by structural parameters that are motivated by this correspondence.

Edge Coloring and its many variants form a fundamental problem family in
algorithmic graph theory [33, 88, 90, 97]. By Vizing’s famous theorem, the number
of necessary colors for a proper edge coloring of a graph G is closely related to the
degree of G.

Theorem 5.1 (Vizing’s Theorem [178]). For every graph G with maximum degree ∆
there exists a proper edge labeling with ∆+ 1 colors.

Since the proof of Vizing’s theorem provides an algorithm that computes a proper
edge labeling with ∆+ 1 colors, it is an early example of an additive approximation
algorithm predating the theory of NP-completeness. Later it was shown that Edge
Coloring is NP-hard for c = 3 [90], and in light of Vizing’s result it is clear that
the hard instances for c = 3 are exactly the subcubic graphs. Not surprisingly, the
NP-hardness extends to every fixed c ≥ 3 [126].
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In this chapter we study the more general Edge-Colorable Subgraph (ECS)
problem and its relation to Multi-STC. Intuitively, we want to decide whether we
can remove a certain number of edges from the input graph such that the remaining
graph has a proper edge labeling with a given number of colors. Feige et al. [55]
mention that ECS has applications in call admittance in telecommunication net-
works. The edge labelings that model this variant of Edge Coloring and the
corresponding problem are defined as follows.

Definition 5.2. A c-labeling L = (S1
L, . . . , S

c
L,WL) is a proper labeling if there

exists no pair of edges e1, e2 ∈ SiL for some strong color i, such that e1 ∩ e2 ̸= ∅.

Edge-Colorable Subgraph (ECS)
Input: An undirected graph G = (V,E) and integers c ∈ N and k ∈ N0.
Question: Is there a c-colored proper labeling L with |WL| ≤ k?

Recall that ECS and Multi-STC are NP-hard even for constant c and k [90].
Therefore, both problems are presumably not fixed-parameter tractable for k + c.
Instead of the parameter k + c, we consider the parameter ξc−1 which we define as
the minimum number of edges that need to be deleted in the input graph to obtain
a graph with maximum degree c − 1. This is a distance-from-triviality parameter-
ization [86]: Due to Vizing’s Theorem, the answer is always yes if the input graph
has maximum degree c − 1. We parameterize by the edge-deletion distance to this
trivial case.

For another view on the parameter ξc−1, consider Edge Coloring instead
of ECS. In Edge Coloring, the instances with maximum degree larger than c
are trivial no-instances. Moreover, in non-trivial instances, the number of vertices
with degree c is at most 2ξc−1. Thus, in non-trivial instances, the parameter ξc−1 is
essentially the same as the number of vertices that have degree c. This is, arguably,
one of the most natural parameterizations for Edge Coloring.

Recall that ξc−1 is the edge-deletion distance to trivial yes-instances. We also
study of ECS parameterized by a vertex-deletion distance to another case that is
trivial due to Vizing’s theorem. The c-component order connectivity is the size λc of
a smallest vertex set D such that deleting D from G results in a graph where each
connected component has at most c vertices. The parameter λc presents a different
distance-from-triviality parameterization, since a graph with connected components
of order at most c can trivially be colored with c edge colors. In case of c = 1, λc
is the vertex cover number of the input graph. Moreover, observe that λc is non-
increasing for increasing values of c. Thus, λc is never larger than the vertex cover
number which is a popular structural parameter.
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Table 5.1: A summary of our results for the two problems. Here, ξc−1 denotes the
edge-deletion distance to graphs with maximum degree at most c− 1, and λc denotes the
vertex-deletion distance to graphs where every connected component has order at most c.

ECS Multi-STC

ξc−1 + c O(ξc−1c)-vertex kernel O(ξc−1)-edge kernel if c ≤ 4,
(Thm 5.8) (Thm 5.28)

λc + c O(c3 · λc)-vertex kernel No poly Kernel, even for c = 1
(Thm 5.13) (Prop 5.14)

Related Work. As discussed in Chapter 2, there are many results regarding the
classic complexity of Multi-STC for the case where c = 1.

ECS is NP-hard for c = 2 [55] and it has received a considerable amount of
interest for small constant values of c such as c = 2 [55, 115], c = 3 [115, 116, 153],
and c ≤ 7 [98]. Regarding the parameterized complexity, there are FPT algorithms
for the number ℓ := m − k of strong edges and the vertex cover number vc of the
input graph [3]. It admits an O(ℓ · c)-vertex kernel and an O(vc · c)-vertex kernel [3].
On the negative side, ECS does not admit a problem kernel of size O(x1−ε · f(c))
for any ε > 0 and computable function f unless NP ⊆ coNP/poly [3]. In the case
of c = 2, ECS is FPT when parameterized by structural width parameters [5].

Our Results. Table 5.1 shows a summary of the results of this chapter. We study
problem kernelizations forECS andMulti-STC parameterized by ξc−1+c and λc+c.

First, we show that ECS admits a problem kernel with at most 4ξc−1 · c vertices
and O(ξc−1 · c2) edges that can be computed in O(n+m) time. Observe that this is
a linear-size kernel for every fixed value of c. Second, we show that ECS admits a
problem kernel with O(λc · c3) vertices.

Afterwards, we consider Multi-STC. We first observe that Multi-STC does
not admit a polynomial kernel when parameterized by λc. Second, we study problem
kernelization for the parameter ξc−1. Even though the core technique we used to
obtain the kernel for ECS does not work for Multi-STC, we succeed to transfer
the kernelization result from ECS to Multi-STC for c ≤ 4. In fact, our result
for c ≥ 3 can be extended to a more general problem kernel with O(ξ⌊ c

2
⌋+1 ·c) vertices

and O(ξ⌊ c
2
⌋+1 ·c2) edges that can be computed in O(n+m) time. Here, ξ⌊ c

2
⌋+1 denotes

the number of edge-deletions needed to obtain maximum degree ⌊ c
2
⌋+ 1. For c = 5,

this gives a linear-size kernel for the parameter ξ3, for c = 6, a linear-size kernel for
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Chapter 5. Parameterization by Distance to Low-Degree Graphs

the parameter ξ4 and so on. Our techniques to obtain this kernel are very loosely
inspired by the proof of Vizing’s Theorem but in the context of Multi-STC several
obstacles need to be overcome. As a result, the proof differs quite substantially from
the one for ECS.

Notation and Parameter Definitions. For technical reasons, we let the first
vertex on a path P have index 0 throughout this chapter. More precisely, a path of
length r is a sequence P := (v0, . . . , vr−1) and given an index j ∈ {0, . . . , r − 1} we
refer to the vertex vj as P (j).

In many proofs in this chapter we compare two labelings that are equal on a
subset of edges and may differ on other edges. To this end, we introduce the following
notation. Let L := (S1

L, . . . , S
c
L,WL) be a labeling for some graph G := (V,E) and

let E ′ ⊆ E. Then, L|E′ := (S1
L ∩ E ′, . . . , ScL ∩ E ′,WL ∩ E ′) denotes the restriction

of L to E ′. Let L′ be another labeling for G. The labelings L and L′ are are called
partially equal with respect to E ′ if L|E′ = L′|E′ .

We also consider the colors of edges that are consecutive edges on a path in the
graph. Given a path P = (P (0), . . . , P (r− 1)) we define the color sequence QP

L of P
under L as the finite sequence QP

L = (q0, q1, . . . , qr−2) of elements in {0, . . . , c}, such
that {P (i), P (i+ 1)} ∈ SqiL if qi ≥ 1 and {P (i), P (i+ 1)} ∈ WL if qi = 0.

We next define the parameter ξt. For a given graph G = (V,E) and a constant t ∈
N0, we call Dt ⊆ E an edge-deletion set of G and t if the graph (V,E \ Dt) has
maximum degree t. We define the parameter ξt as the size of the minimum edge-
deletion set of G and t. Note that an edge-deletion set of G and t of size ξt can be
computed in polynomial time [63]. More importantly for our applications, we can
compute a factor-2 approximation D′

t for an edge-deletion set of size ξt in linear time
as follows: Add for each vertex v of degree at least t+1 an arbitrary set of deg(v)− t
incident edges to D′

t. Then |D′
t| ≤

∑︁
v∈V max(deg(v)− t, 0). This implies that |D′

t| is
a 2-approximation for ξt since

∑︁
v∈V max(deg(v)− t, 0) ≤ 2ξt as every edge deletion

decreases the degree of at most two vertices.

Proposition 5.3. Given a graph G and t ∈ N0, a factor-2 approximation of an
edge-deletion set of G and t can be computed in O(n+m) time.

A given edge-deletion set Dt induces the following important partition of the
vertex set V of a graph.

Definition 5.4. Let t ∈ N0, let G = (V,E) be a graph, and let Dt ⊆ E be an edge-
deletion set of G and t. We call C = C (Dt) := {v ∈ V | ∃e ∈ Dt : v ∈ e} the set of
core vertices and P = P(Dt) := V \ C the set of periphery vertices of G.
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C

P

Figure 5.1: An example of a partition into core and periphery vertices. The dotted edges
correspond to an edge-deletion set D3. The upper part shows the core vertices and the
lower part shows the periphery vertices.

Note that for arbitrary t ∈ N0 and G we have |C | ≤ 2|Dt| and for every v ∈P it
holds that degG(v) ≤ t. Moreover, every vertex in C is incident with at most t edges
in E \Dt. Figure 5.1 shows an example of a graph where the vertex set is partitioned
into core vertices and periphery vertices. In context of ECS and Multi-STC, for
a given instance (G, c, k) we consider some fixed edge deletion set Dt of the input
graph G and some integer t which depends on the value of c.

Finally, we define the parameter λt. For a given graph G = (V,E) and a con-
stant t ∈ N0, we call D ⊆ V an order-t component cover if every connected com-
ponent in G −D contains at most t vertices. Then, we define the component order
connectivity λt to be the size of a minimum order-t component cover. In context
of ECS we study parameterization by λt, where t = c is the number of colors. A
factor-(c + 1) approximation of the minimal order-c-component cover can be com-
puted in polynomial time [122].

The parameters ξc−1 and λc are incomparable in the following sense: In a path Pn
the parameter λc can be arbitrarily large when n increases while ξc−1 = 0 for all c ≥ 3.
In a star Sn the parameter ξc−1 can be arbitrary large when n increases while λc = 1.

5.1 Kernelization for Edge-Colorable Subgraph

We first provide problem kernels for ECS parameterized by the edge deletion dis-
tance ξc−1 to graphs with maximum degree c − 1, and the size λc of a minimum
order-c component cover. We first show that ECS admits a kernel with O(ξc−1 · c)
vertices and O(ξc−1 · c2) edges that can be computed in O(n+m) time. Afterwards,
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we consider λc and show that ECS admits a problem kernel with O(c3λc) vertices,
which is a linear vertex kernel for every fixed value of c. Note that if c = 1, solving
ECS is equivalent to computing a maximum matching, which can be done in poly-
nomial time. Hence, we assume c ≥ 2 for the rest of this section. In this case the
problem is NP-hard [55].

5.1.1 ECS Kernel for ξc−1 + c

The kernelization presented here is based on Vizing’s theorem [178]. Note that
Vizing’s Theorem implies that an ECS instance (G, c, k) is always a yes-instance
if ξc−1 = 0. Thus, parameterization by ξc−1 is a distance-from-triviality parameteri-
zation.

Our kernelization relies on the following lemma. This lemma is a reformulation
of a known fact about edge colorings [166, Theorem 2.3] which, in turn, is based on
the so-called Vizing fan equation [166, Theorem 2.1].

Lemma 5.5 ([166, Theorem 2.3]). Let G = (V,E) be a graph and let e := {u, v} ∈ E.
Moreover, let there be a be a proper ∆G-colored labeling L for the graph (V,E \ {e})
such that WL = ∅. If ∑︂

z∈Z

(degG(z) + 1−∆G) < 2

for all Z ⊆ NG(u) with |Z| ≥ 2 and v ∈ Z, then there exists a proper ∆G-colored
labeling L′ for G such that WL′ = ∅.

Note that the sum
∑︁

z∈Z(degG(z) + 1−∆G) essentially counts the vertices with
degree ∆G in the neighborhood of u. Since we require that v ∈ Z, an intuitive
understanding of the property of Lemma 5.5 is: The smaller the degree of v, the
more vertices in NG(u) may have high degree.

As mentioned above, Lemma 5.5 is a consequence of the so-called Vizing fan
equation [166, Theorem 2.1]. Intuitively, a maximal Vizing fan is a tool in context
of graph coloring that is used to transform a proper edge labeling into another label-
ing with the same number of colors, when an additional edge is inserted. Roughly
speaking, the maximal fan is a sequence of incident edges with one of the endpoints
of the inserted edge. The set Z from Lemma 5.5 corresponds to the endpoints
of the edges in this sequence. The process of transforming the coloring does not
work if the endpoints of the edges of the maximal Vizing fan satisfy the inequal-
ity
∑︁

z∈Z(degG(z) + 1−∆G) ≥ 2. Intuitively, if we can show that for every possible
choice of Z, this inequality is not satisfied, then there exists a maximal Vizing fan
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that can be used to transform the coloring into a new coloring of the graph with one
additional edge.

Lemma 5.5 is a statement about proper labelings without weak edges. We use
it for ECS to prove the next lemma which is the main tool that we need for our
kernelization. To handle proper labelings that contain weak edges, we exploit the fact
that, given any proper labeling L for a graph G = (V,E), the labeling (S1

L, . . . , S
c
L, ∅)

is a proper labeling for the graph (V,E \WL).

Lemma 5.6. Let L := (S1
L, S

2
L, . . . , S

c
L,WL) be a proper labeling with |WL| = k for a

graph G := (V,E). Moreover, let e ⊆ V such that e ̸∈ E and let G′ := (V,E ∪ {e})
be obtained from G by adding e. If for each endpoint u of e it holds that every
vertex w ∈ NG′ [u] has degree at most c−1 in G′, then there exists a proper labeling L′

for G′ with |WL′ | = k.

Proof. Consider the auxiliary graph Gaux := (V,E\WL). Since L is a proper labeling
for G, the labeling Laux := (S1

L, . . . , S
c
L, ∅) is a proper labeling for Gaux. Let Haux :=

(V,EH) where EH := (E \WL) ∪ {e}. In order to prove the lemma, we show that
there exists a proper labeling L′

aux for Haux such that WL′
aux

= ∅.
To this end, we first consider the maximum degree ofHaux. We have degHaux

(w) ≤
degG′(w) for all w ∈ V . Hence, the property that degG′(w) ≤ c−1 for all w ∈ NG′ [u]
implies ∆Haux = max(∆Gaux , c− 1). Since Laux is a proper c-colored labeling for Gaux

we know that ∆Gaux ≤ c and therefore we have ∆Haux ≤ c. So, to find a proper c-
colored labeling without weak edges forHaux it suffices to consider the following cases.

Case 1: ∆Haux ≤ c− 1. Then, there exists a proper labeling L′
aux for Haux such

that WL′
aux

= ∅ due to Vizing’s Theorem.
Case 2: ∆Haux = c. In this case we can apply Lemma 5.5: Observe that (V,EH \

{e}) = Gaux and Laux is a proper labeling for Gaux such that WLaux = ∅. Consider an
arbitrary Z ⊆ NHaux(u) with |Z| ≥ 2 and v ∈ Z. Note that Z ⊆ NHaux(u) ⊆ NG′(u)
and therefore degHaux

(z) ≤ c− 1 for all z ∈ Z. Thus,∑︂
z∈Z

(degHaux
(z)⏞ ⏟⏟ ⏞

≤c−1

+1−∆Haux⏞ ⏟⏟ ⏞
=c

) < 2.

Since Z was arbitrary, there exists a proper labeling L′
aux for Haux with WL′

aux
= ∅

due to Lemma 5.5.
We now define L′ := (S1

L′
aux
, S2

L′
aux
, . . . ScL′

aux
,WL). Note that the edge set E ∪ {e}

of G′ can be partitioned into WL and the edges of G′
aux. Together with the fact

that L′
aux is a labeling for G′

aux it follows that every edge of G′ belongs to exactly
one color class of L′. Moreover, it obviously holds that |WL′ | = |WL| = k. Since
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Chapter 5. Parameterization by Distance to Low-Degree Graphs

there is no vertex with two incident edges in the same strong color class SiL′
aux

, the
labeling L′ is a proper labeling for G′.

We now introduce the reduction rule leading to the problem kernelization. In-
tuitively, Lemma 5.6 guarantees that when we have a proper c-labeling of a graph,
we may insert a new edge e into the graph such that the resulting graph still has a
proper c-labeling if one endpoint of e has only neighbors with a low degree. Recall
that C is the set of vertices that are incident with at least one of the ξc−1 edge-
deletions that transform G into a graph with maximum degree c− 1. We make use
of the fact that edges that have at least one endpoint u that is not in C ∪ N(C )
satisfy deg(w) ≤ c− 1 for all w ∈ N [u]. Lemma 5.6 guarantees that these edges are
not important to decide whether an instance of ECS is a yes-instance.

Reduction Rule 5.1. Remove all vertices in V \ (C ∪N(C )) from G.

Proposition 5.7. Rule 5.1 is safe.

Proof. Let (G′ = (V ′, E ′), c, k) be the reduced instance after applying Rule 5.1. We
prove the safeness of Rule 5.1 by showing that there is a proper labeling with at
most k weak edges for G if and only if there is a proper labeling with k weak edges
for G′.

(⇒) Let L = (S1
L, S

2
L, . . . , S

c
L,WL) be a proper labeling with |WL| ≤ k for G.

Then, obviously L′ := L|E′ is a proper labeling for G′ with |WL′ | ≤ |WL| ≤ k.
(⇐) Conversely, let L′ = (S1

L′ , S2
L′ , . . . , ScL′ ,WL′) be a proper labeling with |WL′ | ≤

k for G′. Let E \ E ′ = {e1, e2, . . . , ep}. We define p + 1 graphs G0, G1, G2, . . . , Gp

by G0 := (V,E ′), and Gi := (V,E ′ ∪ {e1, . . . , ei}) for i ∈ {1, . . . , p}. Note that Gp =
G, degGi

(v) ≤ degG(v), and NGi
(v) ⊆ NG(v) for every i ∈ {0, 1, . . . , p} and v ∈ V .

We prove by induction over i that all Gi have a proper labeling with at most k weak
edges.

Base Case: i = 0. Then, since G0 and G′ have the exact same edges, L′ is a
proper labeling for G0 with at most k weak edges.

Inductive Step: 0 < i ≤ p. Then, by the inductive hypothesis, there exists
a proper labeling Li−1 for Gi−1 = (V,E ′ ∪ {e1, . . . , ei−1}) with at most k weak
edges. From E ′ = E(C ∪ N(C )) we conclude ei ∈ E \ E(C ∪ N(C )) = E(P) \
E(N(C )). Thus, we have NG[u] ⊆P for at least one of the endpoints u of e. There-
fore, degG(w) ≤ c − 1 for all w ∈ NG[u]. Together with the facts that degGi

(w) ≤
degG(w) and NGi

(w) ⊆ NG(w) we conclude degGi
(w) ≤ c − 1 for all w ∈ NGi

[u].
Then, by Lemma 5.6, there exists a proper labeling Li for Gi such that |WLi

| =
|WLi−1

| ≤ k.
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It remains to show that after applying Reduction Rule 5.1 the input graph consists
of O(ξc−1 · c) vertices.

Theorem 5.8. ECS admits a problem kernel with at most 4ξc−1 · c vertices and
O(ξc−1 · c2) edges that can be computed in O(n+m) time.

Proof. Let (G, c, k) be an instance of ECS. We apply Rule 5.1 on (G, c, k) as follows:
First, we compute a 2-approximation D′

c−1 of the smallest possible edge-deletion
set Dc−1 in O(n + m) time using the algorithm behind Proposition 5.3. Let C :=
C (D′

c−1).We then remove all vertices in V \ (C ∪NG(C )) from G which can also be
done in O(n+m) time. Hence, applying Rule 5.1 can be done in O(n+m) time.

We next show that after this application of Rule 5.1 the graph consists of at
most 4ξc−1 · c vertices and O(ξc−1 · c2) edges. Since D′

c−1 is a 2-approximation of
the smallest possible edge-deletion set we have |C | ≤ 4ξc−1. Since every vertex
in C has at most c − 1 neighbors in V \ C , we conclude |C ∪ N(C )| ≤ 4ξc−1 · c.
In E(C ∪N(C )) there are obviously the at most 2ξc−1 edges of D

′
c−1. Moreover, each

of the at most 4ξc−1 · c vertices has at most c− 1 further incident edges. Hence, after
applying Rule 5.1, the reduced instance has O(ξc−1 · c2) edges.

If we consider Edge Coloring instead of ECS, we can immediately reject if
one vertex has degree more than c. Then, since there are at most |C | ≤ 2ξc−1 vertices
that have a degree of at least c, Theorem 5.8 implies the following.

Corollary 5.9. Let hc be the number of vertices with degree c. Edge Coloring
admits a problem kernel with O(hc · c) vertices and O(hc · c2) edges that can be
computed in O(n+m) time.

5.1.2 ECS Kernel for λc + c

We now present a problem kernel for ECS parameterized by the number of strong
colors c and the component order connectivity λc. We prove that ECS admits a
problem kernel with O(c3 ·λc) vertices, which is a linear vertex kernel for every fixed
value of c. Our kernelization is based on the Expansion Lemma [154], a generalization
of the Crown Rule [31]. We use the formulation given by Cygan et al. [38].

Lemma 5.10 (Expansion Lemma). Let q be a positive integer and let G be a bipartite
graph with partite sets A and B such that |B| ≥ q|A| and there are no isolated vertices
in B. Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B with N(Y ) ⊆ X.
Moreover, there exist edges M ⊆ E(X, Y ) such that

a) every vertex of X is incident with exactly q edges of M , and
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D
X

Y

Figure 5.2: A visualization of Proposition 5.11. The upper part shows an order-3 com-
ponent cover D and the subset X ⊆ D. The lower part shows the vertices in Y ⊆ I. The
thick edges correspond to the set M ⊆ E(X,Y ).

b) q · |X| vertices in Y are endpoints of edges in M .

The sets X and Y can be found in (n+ q)O(1) time.

Before we apply Lemma 5.10 we consider the following simple reduction rule.

Reduction Rule 5.2. If there exists a connected component J of size at most c
in G, then remove all vertices in J from G.

Rule 5.2 is safe since |J | ≤ c and therefore the graphG[J ] has maximum degree c−
1 and can be labeled by Vizing’s theorem with c colors. For the rest of this section
we assume that (G, c, k) is reduced regarding Rule 5.2. The following proposition is
a direct consequence of Lemma 5.10. A visualization of the proposition is shown in
Figure 5.2.

Proposition 5.11. Let (G = (V,E), c, k) be an instance of ECS that is reduced
regarding Rule 5.2, let D be an order-c component cover of G, and let I := V \ D.
If |I| ≥ c2·|D|, then there exist nonempty sets X ⊆ D and Y ⊆ I with N(Y ) ⊆ X∪Y .
Moreover, there exists a set M ⊆ E(X, Y ) such that

a) every vertex of X is incident with exactly c edges of M , and

b) c·|X| vertices in Y are endpoints of edges inM and every connected component
in G[Y ] contains at most one such vertex.

The sets X and Y can be computed in polynomial time.

120
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Proof. We prove the proposition by applying Lemma 5.10. To this end, we define
an equivalence relation ∼ on the vertices of I: Two vertices v, u ∈ I are equivalent,
denoted u ∼ v, if and only if u and v belong to the same connected component
in G[I]. Obviously, ∼ is an equivalence relation. For a given vertex u ∈ I, let [u] :=
{v ∈ I | v ∼ u} denote the equivalence class of u. Note that |[u]| ≤ c since D is an
order-c component cover.

We next define an auxiliary graph Gaux, on which we will apply Lemma 5.10.
Intuitively, we obtain Gaux from G by deleting all edges in EG(D) and merging the
at most c vertices in every equivalence class in I. Formally, Gaux := (D ∪ I∗, Eaux)
with I∗ := {[u] | u ∈ I} and

Eaux := {{[u], v} | [u] ∈ I∗, v ∈
⋃︂
w∈[u]

(NG(w) \ I)}.

Note that Gaux can be computed from G in polynomial time and that |I| ≥ |I∗| ≥
1
c
|I|.
Observe that Gaux is bipartite with partite sets D and I∗. Since G is reduced

regarding Rule 5.2, every [u] ∈ I∗ is adjacent to some v ∈ D in Gaux. Consequently,
Gaux is a bipartite graph without isolated vertices in I∗. Moreover, since |I| ≥ c2|D|
and |I∗| ≥ 1

c
|I| we have |I∗| ≥ c · |D|. By applying Lemma 5.10 on Gaux and c ∈ N,

there exist nonempty vertex sets X ′ ⊆ D and Y ′ ⊆ I∗ with NGaux(Y
′) ⊆ X ′ that can

be computed in polynomial time such that there exists a set M ′ ⊆ EGaux(X
′, Y ′) of

edges, such that every vertex of X ′ is incident with exactly c edges ofM ′, and c · |X ′|
vertices in Y ′ are endpoints of edges in M ′.

We now describe how to construct the sets X, Y , and M from X ′, Y ′, and M ′.
We set X := X ′ ⊆ D and Y :=

⋃︁
[u]∈Y ′ [u] ⊆ I. We prove that NG(Y ) ⊆ X ∪ Y .

Let y ∈ Y . Note that all neighbors of y in I are elements of Y by the definition of
the equivalence relation ∼ and therefore

NG(y) ⊆ NGaux([y]) ∪ Y ⊆ X ′ ∪ Y = X ∪ Y.

Next, we constructM ⊆ EG(X, Y ) fromM ′. To this end we define a mapping π :
M ′ → EG(X, Y ). For every edge {[u], v} ∈ M ′ with [u] ∈ Y ′ and v ∈ X ′ we
define π({[u], v}) := {w, v}, where w is some fixed vertex in [u]. We set M :=
{π(e′) | e′ ∈M ′}. It remains to show that Properties a) and b) hold for M .

a) Observe that π({[u1], v1}) = π({[u2], v2}) implies [u1] = [u2] and v1 = v2.
Thus, π is injective. We conclude |M | = |M ′|. Moreover, observe that the edges
of M have the same endpoints in X as the edges of M ′. Thus, since every vertex
of X ′ is incident with exactly c edges of M ′, the Property a) holds for M .
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b) By the Properties a) and b) of the Expansion Lemma, no two edges inM ′ have
a common endpoint in Y ′. Hence, in every connected component in G[Y ] there is at
most one vertex incident with an edge in M . Moreover, since |M | = |M ′| and there
are exactly c · |X ′| vertices in Y ′ that are endpoints of edges in M ′, the Property b)
holds for M .

The following rule is the key rule for our kernelization.

Reduction Rule 5.3. If |I| ≥ c2 ·|D|, then compute the sets X and Y from Proposi-
tion 5.11, delete all vertices in X ∪Y from G, and decrease k by |EG(X, V )|− c · |X|.

Proposition 5.12. Reduction Rule 5.3 is safe.

Proof. Let G′ = (V ′, E ′) := G − (X ∪ Y ) be the graph after applying Rule 5.3.
Then, V ′ = V \ (X ∪ Y ) and E ′ = E \ (EG(X ∪ Y, V )). Moreover, let k′ :=
k−|EG(X, V )|+c · |X|. We show that there exists a proper labeling L with |WL| ≤ k
for G if and only if there is a proper labeling L′ with |WL′| ≤ k′ for G′.

(⇒) Let L be a proper labeling for G with |WL| ≤ k. We define a labeling L′

for G′ by L′ := L|E′ . Obviously, no vertex in V is incident with two edges of the
same strong color under L, and therefore no vertex in V ′ ⊆ V is incident with two
edges of the same strong color under L′. Hence, L′ is a proper labeling for G′.
It remains to show that |WL′ | ≤ k′. Obviously, every vertex x ∈ X is incident
with at most c edges of distinct strong colors under L, since L is a proper labeling.
Hence, the maximum number of strong edges in EG(X, V ) is c · |X|. Thus, we
have |WL ∩ EG(X, V )| ≥ |EG(X, V )| − c · |X|. Therefore,

|WL′| = |WL ∩ E ′| = |WL| − |WL ∩ EG(X ∪ Y, V )|
≤ |WL| − |WL ∩ EG(X, V )| ≤ k − |EG(X, V )|+ c · |X| = k′.

(⇐) Conversely, let L′ be a proper labeling for G′ with |WL′ | ≤ k′. We now
describe how to construct a labeling L for G with |WL| ≤ k from L′. We set WL :=
WL′ ∪ (EG(X, V ) \M), where M ⊆ EG(X, Y ) is the set of edges satisfying Proper-
ties a) and b) from Proposition 5.11. This implies

|WL| = |WL′ |+ |EG(X, V )| − |M | ≤ k′ + |EG(X, V )| − c|X| = k.

Next, we describe to which strong color classes of L we add the remaining edges of G.
Since NG(Y ) ⊆ X ∪ Y it remains to label all edges in E ′ \WL′ ∪ EG(Y ) ∪M .

First, consider the edges in E ′ \WL′ . Every edge e ∈ E ′ \WL′ has a strong color i
under L′. We then add e to SiL. Note that this implies L|E′ = L′|E′ .
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5.1. Kernelization for ECS

Second, consider the edges in M . For each x ∈ X we define a set BM
x :=

{e ∈ M | x ∈ e} ⊆ M . By Proposition 5.11 a), every x ∈ X is incident with
exactly c edges in M . Thus, |BM

x | = c and we let e1x, e
2
x, . . . , e

c
x denote the elements

of BM
x . For every x ∈ X we add eix to the strong color class SiL. Note that by

Proposition 5.11, there are c|X| vertices in Y that are incident with edges in M .
Hence, the family {BM

x ⊆ M | x ∈ X} forms a partition of M and therefore every
edge in M belongs to exactly one strong color class of L.

Finally, consider the edges in EG(Y ). Let J ⊆ Y be a connected component
in G[Y ]. Note that NG(J) ⊆ J ∪ X and observe that by Proposition 5.11 b) there
is at most one vertex v ∈ J that is an endpoint of some edge in M . Hence, there is
at most one edge in EG(J,X) that belongs to some strong color class SiL. Since D
is an order-c component cover, we know that |J | ≤ c, and therefore ∆G[J ] ≤ c − 1.
Consequently, there exists a proper labeling L′′ = (S1

L′′ , . . . , ScL′′ ,WL′′) for G[J ] due
to Vizing’s Theorem. Without loss of generality we can assume that v is not incident
with an edge in SiL′′ : Since degG[J ](v) ≤ c− 1, there exists one strong color class SjL′′

that contains no edge incident with v and we can interchange the edges in SiL′′

and SjL′′ . Then, for every t ∈ {1, . . . , c} we add all edges in StL′′ to the strong color
class StL.

It remains to show that L is a proper labeling. To this end, we show for every
vertex v ∈ V , that v is not incident with two edges of the same strong color under L.
Consider the following case distinction.

Case 1: v ∈ V \ (X ∪ Y ). Then, since EG({v}, Y ) = ∅, and EG({v}, X) ⊆ WL,
every strong edge incident with v has the same strong color under L as it has under L′.
Since L′ is a proper labeling, the vertex v ∈ V \ (X ∪ Y ) is not incident with two
edges of the same strong color under L.

Case 2: v ∈ X. Then, since EG({v}, V \ Y ) ⊆ WL, and EG({v}, Y ) \BM
v ⊆ WL,

all strong edges incident with v are elements of BM
v . Since BM

v = {e1v, . . . , ecv}, and
every eiv ∈ SiL, the vertex v is not incident with two edges of the same strong color
under L.

Case 3: v ∈ Y . Let J ⊆ Y be the connected component in G[Y ] that contains v.
Note that NG(v) ⊆ X ∪ J . First, consider the case, that v has no strong neighbors
in X. Then, there are no ECS violations since L|EG(J) is a proper labeling for G[J ]
by construction. Second, consider the case that v has strong neighbors in X. Then,
by Proposition 5.11, there is exactly one edge in EG({v}, X) that belongs to M
and therefore it is in some strong color class SiL. By the construction of L, all
edges in EG({v}, J) have pairwise distinct strong colors which are all distinct from i
under L. Therefore, the vertex v is not incident with two edges of the same strong
color under L.

123



Chapter 5. Parameterization by Distance to Low-Degree Graphs

Rules 5.2 and 5.3 together with the fact that we can compute a (c+ 1)-approxi-
mation of the minimum order-c component cover in polynomial time [122] give us
the following.

Theorem 5.13. ECS admits a problem kernel with O(c3 · λc) vertices.

Proof. We first describe how to compute the kernel. We compute a (c+ 1)-approxi-
mation D of the minimum oder-c component cover in polynomial time [122]. After-
wards, we apply Rules 5.2 and 5.3. Obviously, one application of Rule 5.2 can be
done in polynomial time if D is known. Moreover, Rule 5.3 can also be applied in
polynomial time due to Proposition 5.11. Since every application of one of these two
rules removes some vertices, we can compute an instance that is reduced regarding
Rules 5.2 and 5.3 from an arbitrary input instance of ECS in polynomial time.

We next consider the number of vertices in a reduced instance (G = (V,E), c, k)
of ECS regarding Rules 5.2 and 5.3. Recall that D ⊆ V is a (c+1)-approximation of
the minimum order-c component cover. Let I := V \D. Since no further application
of Rule 5.3 is possible, we have |I| < c2 · |D|. Therefore, we have |V | = |I| + |D| <
(c2 + 1) · |D| ≤ (c2 + 1) · (c+ 1) · λc ∈ O(c3λc).

Recall that the vertex deletion distance to component size c is a distance from
triviality parameterization since connected components with size at most c can be
colored with c edge colors due to Vizing’s theorem. In this context, a further natural
parameterization is the vertex deletion distance to maximum degree c− 1. Let dc−1

denote this parameter. Observe that dc−1 is never larger than λc. Let D be a min-
imum edge deletion set to maximum degree c − 1. Adapting the approach by the
expansion lemma described above may result in a reduction rule producing an in-
stance (G, c, k), where the number of connected components in G−D is polynomially
bounded in dc−1. However, these components may be arbitrarily large. Thus, to find
a polynomial kernel for ECS parameterized by dc−1+ c, a good starting point might
be to investigate if there is a reduction rule that decreases the size of large connected
components in G−D.

5.2 Kernelization for Multi-STC

We now provide a problem kernelization for Multi-STC parameterized by ξc−1 + c
for instances with c ∈ {1, 2, 3, 4}. To obtain the result for c ∈ {3, 4} we provide
a more general problem kernelization for all c ≥ 3 by considering parameterization
by ξ⌊ c

2
⌋+1 + c. Before we describe the problem kernel, we briefly discuss parameteri-

zation by λc + c. STC does not admit a polynomial kernel if parameterized by the
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e1

e2 e3 e4

C

P

Figure 5.3: Left: A graph where in any STC-labeling with four strong colors and without
weak edges, the edges e1, e2, e3, and e4 are part of the same strong color class. Right:
A no-instance of Multi-STC with c = 4 and k = 0, where Rule 5.1 does not produce an
equivalent instance: The inner rectangles correspond to two copies of the graph on the
left. Observe that all blue edges must have a common strong color, and all red edges must
have a common strong color distinct from the color of the blue edges. Hence, for any
STC-labeling of G[C ∪N(C )] it is not possible to extend the labeling to the dotted edges
without violating STC or using weak edges. However, Rule 5.1 converts this no-instance
into a yes-instance.

number of strong edges ℓ unless NP ⊆ coNP/poly due to Theorem 2.11. In nontrivial
instances, the number of strong edges is bigger than the size of a maximal match-
ing M . Since the vertex cover number is never larger than 2|M |, this implies that
Multi-STC has no polynomial kernel if parameterized by the vertex cover number
unless NP ⊆ coNP/poly. Since λc is never larger than the vertex cover number, we
obtain the following.

Proposition 5.14. Multi-STC parameterized by λc does not admit a polynomial
kernel unless NP ⊆ coNP/poly, even if c = 1.

Next, consider parameterization by ξc−1. Observe that Rule 5.1 which gives a
problem kernel for ECS does not work for Multi-STC; see Figure 5.3 for an exam-
ple: Intuitively, a gadget containing triangles on core vertices propagates conflicts
into the edges of the periphery. For Multi-STC we need a fundamentally new ap-
proach: For STC-labelings the maximum degree and the number of colors are not as
closely related as in ECS, since—for example—all edges inside an arbitrarily large
clique may be labeled with the same strong color. Therefore, Lemma 5.5 might
not be helpful for Multi-STC. Moreover, in the proof of Lemma 5.6 we exploit
that in ECS we may remove weak edges from the instance. This is not safe for
Multi-STC since removing a weak edge may produce P3s. However, as described
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above, the results for ECS parameterized by ξc−1 + c can be lifted to the seem-
ingly harder Multi-STC for c ∈ {1, 2, 3, 4}. We will first discuss the cases c = 1
and c = 2. For the cases c ∈ {3, 4} we show the more general statement that Multi-
STC admits a problem kernel with O(ξ⌊ c

2
⌋+1 · c) vertices. Recall that, given an edge

deletion set Dc−1, the core C is the set of vertices incident with an edge in Dc−1,
and the periphery P is the set of all vertices that are not in C .

If c = 1, the parameter ξc−1 = ξ0 equals the number m of edges in G. Hence,
Multi-STC admits a trivial ξc−1-edge kernel in this case. If c = 2, any input
graph consists of core vertices C , periphery vertices in N(C ) and isolated vertices
and edges. We can compute an equivalent instance in linear time by deleting these
isolated components. The safeness of this rule is obvious. Afterwards, the graph
contains at most 2ξc−1 core vertices. Since each of these vertices has at most one
neighbor outside C , we have a total number of 4ξc−1 vertices.

To extend this result to c ∈ {3, 4}, we now provide a problem kernel for Multi-
STC parameterized by ξ⌊ c

2
⌋+1+c. Throughout this section, let (G, c, k) be an instance

of Multi-STC with edge-deletion set D := D⌊ c
2
⌋+1, and let C and P be the core

and periphery of G with regard to D. Roughly speaking, we obtain our kernelization
by removing specific vertices from P.

This section is organized as follows: In Section 5.2.1, we introduce the term good
periphery component to describe vertex sets in P from which we can safely remove
specific vertices. In Section 5.2.2, we consider the case where the number of strong
colors c is odd, and provide a simple reduction rule leading to a problem kernel for
this case. Finally, in Section 5.2.3 we provide a problem kernelization for even values
of c.

5.2.1 Good Periphery Components

To be more precise when addressing vertex sets in P, we introduce the follow-
ing terms.

Definition 5.15. A subset A ⊆P is called periphery component if it is a connected
component in G[P]. Furthermore, for a periphery component A ⊆P we define the
subset A∗ ⊆ A of close vertices in A as A∗ := N(C ) ∩ A, that is, the set of vertices
of A that are adjacent to core vertices.

Figure 5.4 shows an example of periphery components in the case where c = 4. To
obtain our problem kernel we describe rules to remove non-close vertices from some
periphery components. With the next definition and the following proposition we
identify a property of periphery components that makes it safe to remove non-close
vertices.
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C

P

Rule 5.5 Rule 5.6 Rule 5.7 Rule 5.8

Figure 5.4: Five examples of periphery components for c = 4. The upper part corresponds
to the set of core vertices. The thick edges correspond to the edges within the periphery
components and the thin edges correspond to the edges between the core vertices and the
periphery vertices. In our kernelization, the non-close vertices of the first four periphery
components from the left are removed by the corresponding rules. The rightmost periphery
component is not affected by our reduction rules. We will see that the number of non-close
vertices in such periphery components is bounded by our parameter.

Definition 5.16. Let (G, c, k) be an instance of Multi-STC with core vertices C
and periphery vertices P. A periphery component A ⊆ P is called good, if for
every STC-labeling L = (S1

L, . . . , S
c
L,WL) for G with E(A) ∩WL ̸= ∅ there exists an

STC-labeling L′ = (S1
L′ , . . . , ScL′ ,WL′) for G such that

1. L′|E\E(A) = L|E\E(A), and

2. WL′ ∩ E(A) = ∅.

Intuitively, a good periphery component A is a periphery component where the
edges in E(A) can always be added to some strong color classes of an STC-labeling,
no matter how the other edges of G are labeled.

Proposition 5.17. Let (G, c, k) be an instance of Multi-STC with core vertices C
and periphery vertices P. Furthermore, let A ⊆P with |A| ≥ 2 be a good periphery
component. Then, (G, c, k) is a yes-instance if and only if (G − (A \ A∗), c, k) is a
yes-instance.

Proof. Let ˜︁G = (˜︁V , ˜︁E) := (G− (A\A∗), c, k). We show that G has a c-colored STC-

labeling with at most k weak edges if and only if ˜︁G has a c-colored STC-labeling
with at most k weak edges.

(⇒) Let L = (S1
L, . . . , S

c
L,WL) be a c-colored STC-labeling forG such that |WL| ≤

k. Then, we define by ˜︁L := L| ˜︁E a c-colored labeling for ˜︁G. Obviously, |WL ∩ ˜︁E| ≤ k.
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Moreover, since ˜︁G is an induced subgraph of G, ˜︁L satisfies STC since L is an STC-
labeling.

(⇐) Conversely, let ˜︁L = (S1˜︁L, . . . , Sc˜︁L,W˜︁L) be a c-colored STC-labeling for ˜︁G such

that |W˜︁L| ≤ k. We define a c-colored labeling L := (S1
L, . . . , S

c
L,WL) for G by SjL :=

Sj˜︁L \E(A) and WL := W˜︁L ∪E(A). Note that L|E\E(A) = ˜︁L|E\E(A) and E(A)∩WL ̸=
∅. Then, by the definition of good periphery components there exists an STC-
labeling L′ = (S1

L′ , . . . , ScL′ ,WL′) for G such that L′|E\E(A) = L|E\E(A) = ˜︁L|E\E(A),
and WL′ ∩ E(A) = ∅. We then have WL′ ⊆ W˜︁L and thus, |WL′| ≤ k. Consequently,
L′ is an STC-labeling for G with at most k weak edges.

5.2.2 Problem Kernelization when c is Odd

In the following, we show that for instances (G, c, k) where c ≥ 3 is odd, we can
compute an equivalent instance with O(ξ⌊ c

2
⌋+1c) vertices. In this case, all periphery

components are good as stated in the following proposition.

Proposition 5.18. Let (G, c, k) be an instance of Multi-STC, where c ≥ 3 is odd.
Moreover, let A ⊆P be a periphery component. Then, A is good.

Proof. Let L be an arbitrary STC-labeling for G with E(A) ⊆ WL. We prove that
there is an STC-labeling which is partially equal to L with respect to E \E(A) and
has no weak edges in E(A).

Let L′ be an STC-labeling for G with L′|E\E(A) = L|E\E(A). If WL′ ∩ E(A) = ∅,
nothing more needs to be shown. Thus, suppose E(A) contains a weak edge {u, v}.
Then, deg(u) ≤ ⌊ c

2
⌋ + 1 and deg(v) ≤ ⌊ c

2
⌋ + 1 since u, v ∈ A. Since c is odd, the

edge {u, v} is incident with at most 2 · ⌊ c
2
⌋ < c edges in G. Consequently, there

exists a strong color i ∈ {1, . . . , c}, such that {u, v} can be moved from SiL′ to WL′

without producing any STC violations. This way, we transformed L′ into an STC-
labeling L′′ such that L′′|E\{{u,v}} = L|E\{{u,v}} and |WL′′ | = |WL′| − 1. Applying
this transformation subsequently for every weak edge in E(A) results in an STC-
labeling that has only strong edges in E(A). Since L was arbitrary, the periphery
component A is good.

The Propositions 5.17 and 5.18 guarantee the safeness of the following rule.

Reduction Rule 5.4. If c is odd, then remove A \ A∗ from all periphery compo-
nents A ⊆P.

Proposition 5.19. Let (G = (V,E), c, k) be an instance of Multi-STC where c ≥ 3
is odd. Then, we can compute an instance (G′ = (V ′, E ′), c, k) in O(n + m) time
such that |V ′| ≤ 4 · ξ⌊ c

2
⌋+1 · (⌊ c2⌋+ 1), and |E ′| ∈ O(ξ⌊ c

2
⌋+1 · c2).
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Proof. We compute (G′, c, k) as follows: First, we compute a 2-approximation D′ :=
D′

⌊ c
2
⌋+1 of the minimum edge-deletion set D⌊ c

2
⌋+1 in O(n + m) time using the al-

gorithm behind Proposition 5.3. Let C := C (D′) and P := P(D′). We com-
pute (G′ = (V ′, E ′), c, k) from G by applying Rule 5.4 exhaustively. This can be
done by computing G[C ∪N(C )] in O(n+m) time.

We next analyze the size of C ∪ N(C ). Since |C | ≤ 4ξ⌊ c
2
⌋+1, and every v ∈ C

has at most ⌊ c
2
⌋ + 1 neighbors in P, there are at most 4 · ξ⌊ c

2
⌋+1 · (⌊ c2⌋ + 1) vertices

in V ′. Since |D′| ≤ 2ξ⌊ c
2
⌋+1 and each vertex is incident with at most ⌊ c

2
⌋+ 1 further

edges, we have |E ′| ∈ O(ξ⌊ c
2
⌋+1 · c2).

5.2.3 Problem Kernelization when c is Even

It remains to consider instances where c is an even number and c ≥ 4. In this
case, not every periphery component is good (Figure 5.3 shows an example), so
we need to identify good periphery components more carefully. In summary, we
identify the following periphery components as good: isolated periphery components,
periphery components with low-degree vertices, periphery components that contain
a triangle, and periphery components that contain cycles with at least four vertices.
Figure 5.4 gives an overview of these periphery components and the corresponding
rules that remove the non-close vertices. We first introduce a rule that removes
isolated periphery components.

Reduction Rule 5.5. Remove periphery components A ⊆P with A∗ = ∅ from G.

Rule 5.5 is safe since due to Vizing’s theorem, there is an STC-labeling without
weak edges for G[A] for every isolated periphery component A. Thus, every isolated
periphery component is good.

The proof of Vizing’s theorem as presented in the book by Behzad and Char-
trand [11, Section 15.2] relies on switching colors of so-called ‘maximal alternating
paths’. A maximal alternating paths is an edge-simple path P on which two strong
colors q1 and q2 appear in an alternating manner such that P is maximal under
this property. It is easy to see that—in case of Multi-STC—switching the strong
colors on a maximal alternating path might convert an STC-labeling into a label-
ing that is not an STC-labeling. However, with the next lemma, we provide a
related technique of changing colors on paths in context of Multi-STC. Intuitively,
the small degree of vertices in periphery components can be used to ‘move’ weak
edges inside periphery components. More precisely, if there is an edge-simple path
in a periphery component that starts with a weak edge, we can either move the
weak edge to the end of that path by keeping the same number of weak edges or
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find a labeling with fewer weak edges. We refer to this lemma as moving lemma.
Recall that, given a path P = (P (0), . . . , P (r − 1)), the color sequence QP

L of P
under L as the finite sequence QP

L = (q0, q1, . . . , qr−2) of elements in {0, . . . , c}, such
that {P (i), P (i+ 1)} ∈ SqiL if qi ≥ 1 and {P (i), P (i+ 1)} ∈ WL if qi = 0.

Lemma 5.20 (Moving Lemma). Let A ⊆ P be a periphery component, let L be
an STC-labeling of G, and let e := {v1, v2} ∈ WL ∩ E(A) be a weak edge in E(A).
Furthermore, let P = (v0, v1, . . . , vr−1) be an edge-simple path in G[A] with color se-
quence QP

L = (q0 = 0, q1, q2, . . . , qr−2) under L. Then, there exists an STC-labeling L′

with L′|E\E(P ) = L|E\E(P ) such that

QP
L′ = (q1, q2, . . . , qr−2, 0) or |WL′| < |WL|.

Proof. We prove the statement by induction over the length r of P .
Base Case: r = 2. Then, P = (v0, v1) and Q

P
L = (0). We can trivially define the

labeling L′ by setting L′ := L.
Inductive Step: Let P = (v0, . . . , vr−1) be an edge-simple path with color se-

quence QP
L = (0, q1, . . . , qr−2) under L. Consider the edge-simple subpath P ′ =

(v0, . . . , vr−2). By induction hypothesis, there exists an STC-labeling L′′ for G with
L′′|E\E(P ′) = L|E\E(P ′), such that QP ′

L′′ = (q1, q2, . . . , qr−3, 0) or |WL′′ | < |WL|.
Case 1: |WL′′ | < |WL|. Then, we define L′ by L′ := L′′.
Case 2: |WL′′ | ≥ |WL|. Then, QP ′

L′′ = (q1, q2, . . . , qr−3, 0). Since Q
P ′

L′′ contains the
same elements as QP ′

L and L′′|E\E(P ′) = L|E\E(P ′), we have |WL′′ | = |WL|.
Case 2.1: There exists an edge e ̸= {vr−2, vr−1} with e ∈ S

qr−2

L′′ that is inci-
dent with {vr−3, vr−2}. Since deg(vr−3) ≤ ⌊ c2⌋ + 1 and deg(vr−2) ≤ ⌊ c2⌋ + 1, the
edge {vr−3, vr−2} is incident with at most c other edges of G. Since two of these
incident edges have the same strong color qr−2 under L′′, the edge {vr−3, vr−2} is
incident with at most c − 1 edges of distinct strong colors under L′′. Consequently,
there exists a strong color i ∈ {1, . . . , c} such that {vr−3, vr−2} can safely be moved
from WL′′ to the strong color class SiL′′ without producing any strong P3. This
way, we transformed L′′ into an STC-labeling L′, such that L′|E\E(P ′) = L|E\E(P ′)

and |WL′| < |WL|.
Case 2.2: There is no edge e ̸= {vr−2, vr−1} with e ∈ S

qr−2

L′′ that is incident
with {vr−3, vr−2}. We then define L′ by moving {vr−3, vr−2} from WL′′ to S

qr−2

L′′

and moving {vr−2, vr−1} from S
qr−2

L′′ to WL′′ . This way, we transformed L′′ into a
labeling L′ such that QP

L′ = (q1, q2, . . . , qr−2, 0) and L
′|E\E(P ) = L|E\E(P ). Moreover,

since P is edge-simple, the edge {vr−2, vr−1} does not lie on the path P ′. Therefore,
every edge has exactly one color under L′.

It remains to show that L′ satisfies STC. It suffices to show that there is no
edge e ∈ Sqr−2

L′ forming a P3 with {vr−3, vr−2}. By the condition of Case 2.2, there
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is no edge e ̸= {vr−2, vr−1} with e ∈ Sqr−2

L′′ that is incident with {vr−3, vr−2}. Then,
since L′|E\{{vr−3,vr−2},{vr−2,vr−1}} = L′′|E\{{vr−3,vr−2},{vr−2,vr−1}}, there is no edge e ∈
S
qr−2

L′ forming a P3 with {vr−3, vr−2}.

We now use the moving lemma (Lemma 5.20) to show useful properties of pe-
riphery components. We first show that every periphery component contains at most
one weak edge. The intuition behind the proof is the following: If there are two weak
edges in one periphery component A, we move one of the edges along a path in A to
make the two weak edges incident. This then helps us to define a new labeling that
has fewer weak edges in A.

Proposition 5.21. Let A ⊆ P be a periphery component and let L be an STC-
labeling for G. Then, there exists an STC-labeling L′ with L′|E\E(A) = L|E\E(A)

and |WL′ ∩ E(A)| ≤ 1.

Proof. If |WL ∩E(A)| ≤ 1 the statement already holds for L′ = L. So, assume there
are two distinct edges e1, e2 ∈ WL∩E(A). In this case, we construct an STC-labeling
which is partially equal to L with respect to E \ E(A) and has strictly fewer weak
edges in E(A) than L.

Since periphery components are connected components in G[P], there exists
an edge-simple path P = (v0, . . . , vr−1) in G[A] such that e1 = {v0, v1} and e2 =
{vr−2, vr−1}. Applying the moving lemma (Lemma 5.20) on the edge-simple sub-
path P ′ = (v0, . . . , vr−2) gives us an STC-labeling L′ with L′|E\E(P ) = L|E\E(P ) such
that |WL′ | < |WL| or QP ′

L′ = (q1, q2, . . . , qr−3, 0).
In case of |WL′ | < |WL|, nothing more needs to be shown. So, assume |WL′| =

|WL|. Then, QP ′

L′ = (q1, q3, . . . , qr−3, 0) and therefore QP
L′ = (q1, q2, . . . , qr−3, 0, 0).

Thus, the incident edges {vr−3, vr−2} and e2 are weak under L′. Since deg(vr−2) ≤
⌊ c
2
⌋ + 1 and deg(vr−1) ≤ ⌊ c2⌋ + 1, the edge e2 is incident with at most c edges.

Since at least one of these incident edges is weak, e2 is incident with at most c − 1
edges of distinct strong colors. Consequently, there exists a strong color color i ∈
{1, . . . , c} such that e2 can be moved from WL′ to SiL′ without violating STC. This
way, we transformed L′ into an STC-labeling L′′ such that L′′|E\E(A) = L|E\E(A)

and |WL′′ ∩E(A)| < |WL ∩E(A)|. Applying this transformation as long as there are
at least two weak edges in E(A) results in an STC-labeling that has only one weak
edge in E(A).

Next, we use Proposition 5.21 to identify further good periphery components.

Proposition 5.22. Let A ⊆P be a periphery component where some edge {u, v} ∈
E(A) forms an induced P3 with at most c− 1 other edges in G. Then, A is good.
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Proof. Let L be an arbitrary STC-labeling for G with E(A) ⊆ WL. We prove that
there is an STC-labeling which is partially equal to L with respect to E \E(A) and
has no weak edges in E(A).

Let L′ be an STC-labeling for G with L′|E\E(A) = L|E\E(A). If WL′ ∩ E(A) = ∅,
nothing more needs to be shown. So, let WL′ ∩ E(A) ̸= ∅. By Proposition 5.21
we may assume that there is one unique edge e ∈ WL′ ∩ E(A). Since A is a con-
nected component in G[P], there exists an edge-simple path P = (v0, . . . , vr−1) such
that {v0, v1} = e, and {vr−2, vr−1} = {u, v} with QP

L′ = (0, q1, . . . , qr−2). By the mov-
ing lemma (Lemma 5.20), there exists an STC-labeling L′′ with L′′|E\E(A) = L|E\E(A)

such that |WL′′| < |WL| or QP
L′′ = (q1, . . . , qr−2, 0). In case of |WL′′ | < |WL|, nothing

more needs to be shown. Otherwise, the edge e is weak under L′′. Since e is part of at
most c− 1 induced P3s in G, there exists one strong color i ∈ {1, . . . , c}, such that e
can safely be moved from WL′′ to SiL′′ without violating STC. This way, we trans-
form L′′ into an STC-labeling L′′′ with L′′′|E\E(A) = L|E\E(A) and WL′′′ ∩ E(A) = ∅.
Since L was arbitrary, the periphery component A is good.

We use Proposition 5.22 to show that periphery components with low-degree
vertices and periphery components that contain a triangle are good. Recall that
Figure 5.4 shows examples of all types of periphery components that we consider in
this section.

Proposition 5.23. Let A ⊆ P be a periphery component such that there exists a
vertex v ∈ A with degG(v) < ⌊ c2⌋+ 1. Then, A is good.

Proof. If |A| = 1, then A is obviously good, since E(A) = ∅. Let |A| ≥ 2.
Since A contains at least two vertices and forms a connected component in G[P]
there exists a vertex u ∈ A, such that {u, v} ∈ E(A). Since degG(v) < ⌊ c2⌋ + 1
and degG(u) ≤ ⌊ c2⌋ + 1, the edge {u, v} forms induced P3s with less than c other
edges in G. Consequently, A is good by Proposition 5.22.

Propositions 5.17 and 5.23 guarantee the safeness of the following rule.

Reduction Rule 5.6. If there is a periphery component A ⊆ P with A \ A∗ ̸= ∅
such that there exists a vertex v ∈ A with degG(v) < ⌊ c2⌋ + 1, then delete A \ A∗

from G.

Proposition 5.24. Let A ⊆P be a periphery component such that there exists an
edge {u, v} ∈ E(A) which is part of a triangle G[{u, v, w}] in G. Then, A is good.

Proof. Since u, v ∈ A, we know degG(u) ≤ ⌊ c2⌋ + 1 and degG(v) ≤ ⌊ c2⌋ + 1. Since u
and v are part of a triangle in G, the edge {u, v} forms an induced P3 with less than c
other edges in G. Consequently, A is good by Proposition 5.22.
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Propositions 5.17 and 5.24 guarantee the safeness of the following rule.

Reduction Rule 5.7. If there is a periphery component A ⊆ P with A \ A∗ ̸= ∅
such that there exists an edge {u, v} ∈ A which is part of a triangle G[{u, v, w}] in G,
then delete A \ A∗ from G.

For the rest of this section we consider instances (G, c, k) forMulti-STC that are
reduced regarding Rules 5.5–5.7. Observe that these instances only contain triangle-
free periphery components A where every vertex v ∈ A has degG(v) = ⌊ c

2
⌋ + 1.

Since ECS and Multi-STC are the same on triangle-free graphs one might get the
impression that we can use Vizing’s theorem to prove that all periphery components
in G are good. Consider the example in Figure 5.3 to see that this is not necessarily
the case, since there are might be triangles in the core.

We now continue with the description of the kernel for Multi-STC. Let (G, c, k)
be an instance of Multi-STC that is reduced regarding Rules 5.5–5.7. We consider
the periphery components of G that contain cycles with at least four vertices. In this
context, a cycle (of length r) is an edge-simple path P = (v0, v1, . . . , vr−1, v0) where
the last vertex and the first vertex of P are the same, and all other vertices occur
at most once on P . We will see that the number of vertices in acyclic periphery
components—which are periphery components A where G[A] is a tree—is already
bounded in c and ξ⌊ c

2
⌋+1. To remove the other components, we show that periphery

components with cycles are good. To this end we show two lemmas. The idea behind
the second lemma (Lemma 5.26) is that, given a cycle P such that some edge in E(P )
is labeled with a strong color q, we can transform the labeling in a way that another
edge e′ ∈ E(P ) has the strong color q. Lemma 5.26 is a technical statement that
we need for the proof of Lemma 5.26. The intuitive idea behind its proof is that
we use our technique of moving weak edges along paths to rotate weak and strong
edge-colors in the cycle.

Lemma 5.25. Let A ⊆ P be a periphery component and let L be an STC-labeling
for G. Moreover, let P = (v0, v1, . . . , vr−1, v0) be a cycle in A such thatWL∩E(P ) ̸= ∅
and let QP

L = (q0, q1, . . . , qr−1) be the color sequence of P under L. Then, there exist
STC-labelings L0, L1, L2, . . . , Lr−1 for G such that Li|E\E(P ) = L|E\E(P ) and

QP
Li
(j) = q(i+j) mod r or |WLi

| < |WL|

for all i, j ∈ {0, . . . , r − 1}.

Proof. Without loss of generality, we assume that {v0, v1} ∈ WL and therefore q0 = 0.
We prove the existence of the labelings Li with i ∈ {0, 1, . . . , r − 1} by induction
over i.
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Base Case: i = 0. In this case we set L0 := L.
Inductive Step: By the inductive hypothesis, there is a labeling Li−1 such that

|WLi−1
| < |WL| or

QP
Li−1

(j) = q(i−1+j) mod r.

If |WLi−1
| < |WL|, then we define Li by Li := Li−1 and nothing more needs to be

shown. Otherwise, let P ′ := (vr−i+1, vr−i+2, . . . , vr−1, v0, v1, . . . , vr−i+1). Note that P
′

describes the same cycle as P by rotating the vertices. More precisely,

P (j) = P ′((j + i− 1) mod r).

Therefore, P ′ is edge-simple and has the color sequence QP ′
Li−1

= (q0 = 0, q1, . . . , qr−1).
By the moving lemma (Lemma 5.20), there exists an STC-labeling Li with Li|E\E(P ) =
Li−1|E\E(P ), such that |WLi

| < |WLi−1
| or

QP ′

Li
(j) = q(j+1) mod r.

In case of |WLi
| < |WLi−1

|, nothing more needs to be shown. Otherwise, observe that

QP
Li
(j) = QP ′

Li
((j + i− 1) mod r) = q(j+i) mod r

which completes the inductive step.

Lemma 5.26. Let A ⊆P be a periphery component and let L be an STC-labeling.
Moreover, let P = (v0, v1, . . . , vr−1, v0) be a cycle in A with WL ∩ E(P ) ̸= ∅ and
let e1, e2 ∈ E(P ) with e2 ∈ SqL for some strong color q ∈ {1, . . . , c}. Then, there exists
an STC-labeling L′ with L′|E\E(P ) = L|E\E(P ) such that e1 ∈ SqL′ or |WL′ | < |WL|.

Proof. Let QP
L := (q0, q1, . . . , qr−1). Without loss of generality, we assume that

{v0, v1} ∈ WL and e2 = {vt, vt+1} for some t ∈ {1, . . . , r − 1}. Then, q0 = 0
and qt = q. Furthermore, since e1 ∈ E(P ) we have e1 = {P (j), P (j + 1)} for
some j ∈ {0, 1, . . . , r − 1}.

Consider the STC-labelings L0, L1, L2, . . . Lr−1 from Lemma 5.25. If |WLi
| < |WL|

for one such labeling Li, then nothing more needs to be proven. Otherwise, set i :=
(t− j) mod r. We show that e1 ∈ SqtLi

by proving QP
Li
(j) = qt:

QP
Li
(j) = q(i+j) mod r = q((t−j) mod r)+j) mod r = q(t−j+j) mod r = qt.

We next use Lemma 5.26 to prove that periphery components with cycles are good.
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Proposition 5.27. Let (G = (V,E), c, k) be a reduced instance of Multi-STC
regarding Rules 5.5–5.7, where c ≥ 4 is even. Let A ⊆P be a periphery component
in G such that there is a cycle P := (v0, v1, . . . , vr−1, v0) in G[A]. Then, A is good.

Proof. Without loss of generality, we assume that the cycle P has no chords. Other-
wise, we replace P by the shorter cycle. Furthermore, P has length at least 4, since
the instance is reduced regarding Rule 5.7. Let L be an arbitrary STC-labeling for G
with E(A) ⊆ WL. We prove that there is an STC-labeling which is partially equal
to L with respect to E \ E(A) and has no weak edges in E(A).

Let L′ be an STC-labeling for G with L′|E\E(A) = L|E\E(A). If WL′ ∩ E(A) = ∅,
nothing more needs to be shown. So, let WL′ ∩E(A) ̸= ∅. Then, by Proposition 5.21
we can assume that there exists one unique e ∈ WL′ ∩ E(A). Moreover, by the
moving lemma (Lemma 5.20) we assume without loss of generality that e = {v0, v1}:
If e ̸= {v0, v1} we apply the moving lemma on a path P , where the first edge on P
is e and the last edge on P is {v0, v1}. Then, P is a cycle with E(P ) ∩WL′ ̸= ∅
in G[A].

The idea is to use Lemma 5.26 to transform L′ into an STC-labeling without weak
edges in E(A). To this end, we introduce some notation: For a vertex v ∈ V (P ),
we let out(v) := {i ∈ {1, . . . , c} | ∃e ∈ E \ E(P ) : e ∩ V (P ) = {v} ∧ e ∈ SiL′}
denote the set of strong colors of incident edges of v that are not in E(P ). Note
that |out(v)| ≤ c

2
− 1 for every v ∈ V (P ). Consider the following case distinction.

Case 1: There exists an edge {vj, v(j+1) mod r} ∈ E(P ) that has a strong color q ∈⋃︁
v∈V (P ) out(v) under L. Then, let v ∈ V (P ) be a vertex with q ∈ out(v), and

let e ∈ E(P ) be an edge incident with v. Since {vj, v(j+1) mod r} ∈ SqL′ , Lemma 5.26
guarantees the existence of an STC-labeling L′′ with L′′|E\E(P ) = L′|E\E(P ), such
that e ∈ SqL′′ or |WL′′ | < |WL′ |.

Assume towards a contradiction that e ∈ SqL′′ . Then, since L′′|E\E(P ) = L′|E\E(P )

and q ∈ out(v), the vertex v has two incident edges with the same strong color.
Furthermore, since G is reduced regarding Rule 5.7, no edge in E(A) is part of a
triangle in G. Hence, v is the central vertex of an induced P3 where both edges have
strong color q under L′′. This contradicts the fact that L′′ is an STC-labeling. We
conclude |WL′′| < |WL′|, which implies E(A) ∩WL′′ = ∅. Since L′ was arbitrary, the
periphery component A is good.

Case 2: There is no edge in E(P ) that has a strong color q ∈
⋃︁
v∈V (P ) out(v).

Case 2.1: There is some j ∈ {0, 1, . . . , r− 1} with |out(vj)∪ out(v(j+1) mod r)| <
c−2. In this case, consider the edge-simple subpath P ′ = (v0, v1, . . . , vj, v(j+1) mod r).
Observe that QP ′

L′ (0) = 0, since {v0, v1} ∈ WL′ . By the moving lemma (Lemma 5.20),
there exists an STC-labeling L′′ with L′′|E\E(P ′) = L′|E\E(P ′) such that |WL′′| <
|WL′ | or QP ′

L′′(j) = 0. In case of |WL′′| < |WL′ |, nothing more needs to be shown.
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Figure 5.5: A sketch of Case 2.2 from the proof of Proposition 5.27, where c = 6. The
thick edges correspond to the edges in E(P ). The edge labels correspond to the strong
colors of the edges under L′ and the edge {v0, v1} is weak under L′. There are two out-
sets {3, 4} and {5, 6} that appear in an alternating manner on the vertices on P . The
edge {v0, v1} is incident with edges of the strong colors 1, 3, 4, 5, and 6. Thus, it can be
moved from WL′ to S2

L′ without producing any STC violation.

Otherwise, QP ′

L′′(j) = 0 implies {vj, v(j+1) mod r} ∈ WL′′ . Note that there are at
most 2 + |out(vj) ∪ out(v(j+1) mod r)| < c distinct strong colors of edges incident
with {vj, v(j+1) mod r}. Consequently, we can transform L′′ into an STC-labeling L′′′

with L′′′|E\E(A) = L′′
E\E(A) andWL′′′∩E(A) = ∅. Since L′ was arbitrary, the periphery

component A is good.
Case 2.2: |out(vj) ∪ out(v(j+1) mod r)| = c − 2 for every j ∈ {0, . . . , r − 1}.

We first provide some intuition for this case. Our main goal is to show that the
edges {v1, v2} and {vr−1, v0} both have the same strong color under L′. Then, the
weak edge {v0, v1} is incident with edges of at most c− 1 distinct strong colors and
thus, it can safely be moved to a strong color class. An example of a labeling L′ for
this case is shown in Figure 5.5.

The proof of this case is structured into two claims. The first claim states some
technical properties about out-sets that we use in the rest of this proof. With the
second claim we show that there are only two possible out-sets that appear in an alter-
nating manner on the vertices on P . We then use these two claims to derive a state-
ment about the color sequence QP

L′ which then implies that {v1, v2} and {vr−1, v0}
have the same strong color under L′.

Claim 1. It holds that

a) |out(vj)| = c
2
− 1 for every j ∈ {0, . . . , r − 1},
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b) out(vj) ∩ out(v(j+1) mod r) = ∅ for every j ∈ {0, . . . , r − 1}, and

c) |
⋃︁
v∈V (P ) out(v)| ≤ c− 2.

Proof . Statements a) and b) hold since otherwise there exists some j ∈ {1, . . . , r−1}
with |out(vj) ∪ out(v(j+1) mod r)| < c− 2 contradicting the constraint of Case 2.2. It
remains to show Statement c). Recall that no edge in E(A) is part of a triangle,
since(G, c, k) is reduced regarding Rule 5.7. Then, since L′ satisfies STC, there are at
least two different edges in E(P ) that are labeled with distinct strong colors under L′.
Since no edge in E(P ) has a strong color in

⋃︁
v∈V (P ) out(v) by the condition of Case 2,

we have |
⋃︁
v∈V (P ) out(v)| ≤ c− 2. ♢

We next use Claim 1 to show that, given a vertex on P , both of its neighbors on
the cycle have the same out-set.

Claim 2. Let j ∈ {0, . . . , r − 1}. Then, out(v(j−1) mod r) = out(v(j+1) mod r).

Proof . Assume towards a contradiction that out(v(j−1) mod r) ̸= out(v(j+1) mod r).
Then, the union Z := out(v(j−1) mod r) ∪ out(v(j+1) mod r) contains more than c

2
− 1

elements since |out(v(j−1) mod r)| = |out(v(j+1) mod r)| = c
2
− 1 due to Claim 1 a). By

Claim 1 b), out(vj) is disjoint from Z. Consequently, we have

out(vj) ⊆

⎛⎝ ⋃︂
v∈V (P )

out(v)

⎞⎠ \ Z.
Then, Claim 1 c) implies

|out(vj)| ≤ |
⋃︂

v∈V (P )

out(v)| − |Z|

< (c− 2)− (
c

2
− 1)

=
c

2
− 1,

which contradicts Claim 1 a). ♢

Claim 2 implies that the number |V (P )| of vertices on P = (v0, . . . , vr−1, v0) is
even, since otherwise out(v0) = out(v2) = out(v4) = · · · = out(vr−1) contradicting
the fact that out(vr−1) ∩ out(v0) = ∅ due to Claim 1 b).

Next, by Claim 1 a) and b), the vertices v0 and v1 have two distinct out-sets, each
of size c

2
− 1. By the condition of Case 2, no edge of E(P ) has a strong color that
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appears in one of the out-sets and thus, there are at most two distinct strong colors q1
and q2 on edges in E(P ). Then, since the cycle P has no chords, the strong colors q1
and q2 appear in an alternating manner on the edges of P . Moreover, since |V (P )|
is even, we have QP

L′ = (0, q1, q2, q1, . . . , q1) or Q
P
L′ = (0, q2, q1, . . . , q2). Consequently,

the edges {v1, v2} and {vr−1, v0} both have the same strong color under L′. As
discussed above, the weak edge {v0, v1} is then incident with edges of at most c− 1
distinct strong colors. Therefore, {v0, v1} safely be moved from WL′ to a strong
color class. This way, we transformed L′ into an STC-labeling L′′ with L′|E\E(A) =
L′′|E\E(A) and WL′′ ∩ E(A) = ∅. Since L′ was arbitrary, the periphery component A
is good.

Propositions 5.27 and 5.17 imply the safeness of the final rule which together
with Rules 5.5–5.7 gives the kernel.

Reduction Rule 5.8. If there is a periphery component A ⊆ P such that G[A]
contains a cycle, then delete A \ A∗ from G.

Theorem 5.28. Multi-STC restricted to instances with c ≥ 3 admits a problem
kernel with O(ξ⌊ c

2
⌋+1·c) vertices and O(ξ⌊ c

2
⌋+1·c2) edges that can be computed in O(n+

m) time.

Proof. From Proposition 5.19 we know, that if c ≥ 3 is odd, we can compute a
problem kernel with at most 4 · ξ⌊ c

2
⌋+1 · (⌊ c2⌋+ 1) vertices, and O(ξ · c2) in O(n+m)

time. Let (G = (V,E), c, k) be an instance of Multi-STC, where c ≥ 4 is an even
number. Throughout this proof let ξ ≤ 2ξ⌊ c

2
⌋+1 denote the size of a 2-approximate

set D′ of the minimum edge-deletion set D⌊ c
2
⌋+1. Recall that D′ can be computed

in O(n +m) time due to Proposition 5.3. Let C := C (D′) and P := P(D′). We
compute an instance (G′ = (V ′, E ′), c, k) as follows: We start by applying Rules 5.5
and 5.6 exhaustively. This can be done in O(n+m) time by computing all connected
components of G[P] and checking whether they have close vertices or vertices of low
degree. Afterwards, we apply Rules 5.7 and 5.8 exhaustively. This can also be done
in O(n + m) time by testing if the connected components in G[P] with non-close
vertices contain cycles. Note that at this point it is not important whether a cycle
is a triangle or a cycle of length at least 4.

We next show |V ′| ≤ (c+7) · ξ. Let C be the set of core vertices of G′ and P be
the set of periphery vertices of G′. Since |C | ≤ 2ξ, and every v ∈ C is incident with
at most c

2
+1 edges, there are at most 2ξ+2ξ( c

2
+1) = ξc+4ξ vertices in C ∪N(C ).

It remains to show that there are at most 3ξ non-close vertices in P. Consider the
following family of periphery components.

A := {A ⊆P | A is a periphery component with A \ A∗ ̸= ∅}
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Since G′ is reduced regarding Rules 5.6–5.8, every G[A] with A ∈ A is a tree,
where every vertex v ∈ A has degree degG(v) =

c
2
+ 1 in G. We define a leaf vertex

as a vertex v ∈
⋃︁
A∈AA with degG[P](v) = 1. Note that these vertices are exactly

the leaves of the tree G[A] for some A ∈ A, and all leaf vertices are close vertices
in P, since (G′, c, k) is reduced regarding Rule 5.6. Let p be the number of leaf
vertices. We show that p ≤ 3ξ. Since (G′, c, k) is reduced regarding Rule 5.6, every
vertex v ∈

⋃︁
A∈AA has a degree of degG(v) =

c
2
+ 1. Hence, every leaf vertex has

exactly c
2
neighbors in C . We thus have

p · c
2
≤ |E(C , N(C ))| ≤ 2ξ

(︂ c
2
+ 1
)︂
,

and therefore p ≤ 2ξ + 4ξ
c
≤ 3ξ, since c ≥ 4. Recall that every non-close vertex v

in some tree G[A] satisfies degG[A](v) = c
2
+ 1 > 2. Since a tree has at most as

many vertices with degree at least three as it has leaves, we conclude |(
⋃︁
A∈AA) \

(
⋃︁
A∈AA

∗)| ≤ 3ξ. Consequently, there are at most 3ξ non-close vertices in P.
Then, G′ contains of at most (c + 7) · ξ ∈ O(ξc) vertices, as claimed. Since each
vertex is incident with at most c

2
+ 1 edges, G′ has O(ξc2) edges.

5.3 Concluding Remarks

We studied ECS parameterized by distance to low-degree graphs and analyzed the
parameterized complexity of Multi-STC for similar parameterizations. Recall that
in Chapters 3 and 4 we studied two generalizations of Multi-STC: In VL-Multi-
STC every vertex has a list of strong colors that restrict the possible strong col-
ors of its incident edges and in EL-Multi-STC, every edge has a list of possible
strong colors. Analogously, we can define the generalizations VL-ECS and EL-ECS
of ECS. Unfortunately, all list-variants of ECS and Multi-STC are NP-hard for
every fixed c ≥ 3 even if ξ3 = 0 [78]. Therefore, ξc−1 + c is not a promising param-
eter for the list variants. However, if we consider ξ2 instead of ξc−1, EL-ECS and
EL-Multi-STC admit an 11ξ2-edge and 10ξ2-vertex kernel that can be computed
in O(n2)-time for every c [78].

Open Questions. There are several ways of extending our results that seem inter-
esting topics for future research. In the FPT results of this chapter the value of c is
always part of the parameter and it would be very interesting to understand whether
this is necessary. For example, is ECS fixed-parameter tractable with respect to ξc−1

alone? Moreover, the results presented in this chapter all rely on problem kernel-
izations. One further interesting question is thus to ask for direct algorithms that
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solve Multi-STC and ECS in FPT time for the parameters studied in this chapter.
In this context, we would like to emphasize that even though Multi-STC does not
admit a polynomial kernel when parameterized by λc+c, it is likely that the problem
is FPT for this parameter: Courcelle’s Theorem [36] might imply that Multi-STC
is FPT when parameterized by tw+ c, where tw denotes the so-called treewidth [15]
of the input graph. Intuitively, the treewidth is a parameter that measures how
tree-like a graph is. Since the treewidth is never bigger than λc + O(1), this would
imply that Multi-STC is FPT when parameterized by λc + c.

Our kernel for ECS parameterized by ξc−1+c implies an observation about degree-
one vertices in a proper edge-colored graph. Let G be a graph with at least three
degree-one vertices such that there is a proper edge labeling with c colors and without
weak edges for G. The fact that Rule 5.1 is correct implies that there is a proper
c-labeling L for G with WL = ∅ such that not all edges incident with degree-one
vertices receive the same strong color: if such a graph exists, one could use it to
construct an example instance similar to the one shown in Figure 5.3 where Rule 5.1
fails. As a consequence, given a graph with maximum degree ∆, for every set S of
three or more vertices with degree ∆ − 1, there exists a proper edge labeling such
that not all vertices in S are incident with the same colors. However, it is not clear
whether this observation can be exploited to obtain new algorithmic results for Edge
Coloring or ECS.

In case of Multi-STC, the most obvious open question is if the fixed-parameter
tractability for ξc−1 can be extended to instances with c > 4. Even for c = 5
and ξ4 we believe that one might need a fundamentally new idea since moving weak
edges through paths of low-degree vertices—the core-technique used in Section 5.2—
appears to be more complicated in this case.

Finally, in our parameterization for Multi-STC we use the fact that Multi-
STC is polynomial-time solvable on graphs with maximum degree c − 1. This is a
simple corollary of Vizing’s theorem and the fact that every proper edge labeling is
an STC-labeling. It would be nice to extend the class of tractable instances further in
the following sense: For which superclasses of the graphs with maximum degree c−1
does Multi-STC remain polynomial-time solvable? Surely, our fixed-parameter
algorithms give such superclasses but are there some that can be described with-
out the use of parameters, for example via a characterization of forbidden induced
subgraphs of size at most f(c)? Identifying further polynomial-time solvable cases
of ECS and Multi-STC may motivate the study of new distance-from-triviality
parameterizations for the two problems.

Another interesting direction of research is, to experimentally evaluate the prac-
tical impact of the reduction rules presented in this chapter. In real-world social
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networks, one may assume that there are relatively few vertices with a high degree,
while most of the vertices have a relatively low degree. In terms of core and periph-
ery as defined in this chapter, this might indicate that the core is relatively small in
comparison to the periphery. Furthermore, the parameters ξc−1 and ξ⌊ c

2
⌋+1 are non-

increasing for increasing values of c. Or—in the terms of core and periphery—the
core might get smaller when the number of strong colors increases. However, recall
that the problem kernel for ECS consists of O(ξc−1 · c) vertices and the problem
kernel for Multi-STC consists of O(ξ⌊ c

2
⌋+1 · c) vertices. It is not clear for which

values of c the kernels might be practically relevant.
To obtain the O(ξc−1 · c)-vertex kernel for ECS and the O(ξ⌊ c

2
⌋+1 · c)-vertex kernel

for Multi-STC, we essentially showed that (most of) the edges between low-degree
vertices are always strong. Thus, one may ask how useful the approach of strong
triadic closure with multiple strong colors is to identify weak relationships in a social
network; especially in sparse parts of the network. However, note that besides the
identification of weak relationships, the approach of multiple strong colors helps to
classify the strong relationship types.
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Part III

Bayesian Network Structure
Learning
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“In solving a problem of this sort, the grand thing is to be able to reason back-
wards.” as noted by Sherlock Holmes in the novel A study in scarlet by Arthur
Conan Doyle [47] outlines one of his important skills to solve crime cases. In a tech-
nique called induction, Sherlock Holmes derives the solution of a crime case from
given evidence. As mentioned in “The Book of Why” by Judea Pearl and Dana
Mackenzie [145], automating this process of reasoning from evidence to criminal act
or—more generally—from effect to cause is an important direction of study in the
field of artificial intelligence (AI). One of the basic tools to reason about causality
are Bayesian Networks [144].

In 1985, Judea Pearl [143] introduced Bayesian Networks which were named after
Thomas Bayes who is famous for his well-known theorem about conditional probabili-
ties. Roughly speaking, Bayesian networks are a compact representation of multivari-
ate probability distributions and provide a good trade-off between expressive power
and querying efficiency [160]. Bayesian networks have many applications: Medical
diagnosis systems build a hypothesis for a disease given the set of observed symptoms
of a patient [103]; intelligent tutoring systems based on Bayesian networks emulate a
human tutor [21]; Bayesian networks can be used as a tool for credit rating of com-
panies [70]; and—matching the introductory quote of Sherlock Holmes—in forensic
science Bayesian networks assist reasoning about evidence in legal settings [49]. For a
detailed collection of various applications of Bayesian networks we refer to “Bayesian
Networks: A Practical Guide to Applications” [149].

Formally, a Bayesian Network is a tuple (D,T ) consisting of a directed acyclic
graph (DAG) D and a set T of conditional probability tables. The vertices of D
correspond to the random variables of the conditional probability distribution and
the arcs between these vertices correspond to conditional dependencies. More pre-
cisely, if a vertex v has an incoming arc from a vertex u, then the random variable
corresponding to v depends on the random variable corresponding to u. The set T
contains one conditional probability table for every variable. These tables encode
the distribution of the corresponding variable given the values of its parents in D.

Consider the toy example Bayesian network given in Figure III.1. The network
models a crime story. The vertices of the DAG correspond to the random vari-
ables being friends with the victim (F ), having a conflict with the victim (C), being
the murderer (M), and having a believable alibi (A). In this particular setting all
random variables can be either true (1) or false (0). The most interesting question in
this context might be: What is the chance that a person is the murderer, if we know
that this person had a conflict with the victim and can not produce a believable al-
ibi? Even though this particular probability is not explicitly contained in one of the
conditional probability tables, the information can be extracted from the Bayesian
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F

F = 1 F = 0

0.5 0.5

M

M = 1 M = 0

0.3 0.7

C

F M C = 1 C = 0

0 0 0.6 0.4
0 1 0.8 0.2
1 0 0.4 0.6
1 1 0.9 0.1

A

M A = 1 A = 0

0 0.8 0.2
1 0.1 0.9

Figure III.1: A Bayesian network.

network. This relies on the so-called chain rule of Bayesian networks [40] which tells
us that for each instanciation (F = f, C = c,M = m,A = a) of the random variables,
the probability Pr(f, c,m, a) can be expressed as the product θf · θc|f,m · θm · θm|a,
where the θ-values correspond to entries in the conditional probability tables. The
task of computing such probabilites from a Bayesian network is known as Bayesian
Inference, which is an NP-hard computational problem [40].

Before we may use a Bayesian network to answer such queries, we need to set up
the Bayesian network itself. More precisely, we need to compute the DAG and the
entries of the conditional probability tables from a given set of observed data. It turns
out that the crucial part of this task is to construct the DAG and that the entries
of the conditional probability tables can be computed in a straightforward manner
once the DAG is known [40]. The task of constructing the DAG is called Bayesian
Network Structure Learning (BNSL) which is the topic of this part.

An important approach to learn a Bayesian network structure is the so-called
score-based approach. Here, given a data set (a table containing observed instantia-
tions of the random variables), one aims to construct the best DAG according to some
score function that measures how well the DAG fits the data [89]. In a maximum
likelihood-approach, the score function is decomposable into local scores for each ver-
tex [40]. That is, for each vertex v and each set of potential parent vertices P of v,
there is a value fv(P ) and the score of a particular DAG D := (N,A) is

∑︁
v∈N fv(P

A
v )
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{v, w} 2
{v} 3
{w} 1
∅ 0

P fv(P )

{u,w} 3
{u} 1
{w} 1
∅ 0
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{u} 2
{v} 2
∅ 0

u v

w

fu(P
A1
u )⏞ ⏟⏟ ⏞

=3

+ fv(P
A1
v )⏞ ⏟⏟ ⏞

=1

+ fw(P
A1
w )⏞ ⏟⏟ ⏞

=0

= 4

u v

w

fu(P
A2
u )⏞ ⏟⏟ ⏞

=3

+ fv(P
A2
v )⏞ ⏟⏟ ⏞

=0

+ fw(P
A2
w )⏞ ⏟⏟ ⏞

=4

= 7

Figure III.2: An example of an instance I := (N,F , t) of Vanilla-BNSL where N =
{u, v, w} and t = 7. The upper part shows the family F of local scores. The lower part
shows two arc sets A1 and A2 and the corresponding sums of local scores. Note that A2

is (N,F , t)-valid and thus, I is a yes-instance.

where PA
v denotes the parent set of v in D. The goal is to construct a DAG that

maximizes the sum of the local scores. There are various approaches of computing
such local scores from a given data set [4, 161, 22, 89, 9, 18, 92, 94, 95, 132] that are
constructed to be decomposable. Some of these are well-established scores like AIC,
BIC, or BDe. Besides these established scores there are multiple works that propose
other scores. In the common formulation of the computational problem of BNSL,
pre-computed local scores are part of the input and thus, the problem formulation
is independent from the concrete scoring function.

Problem Definition. The problem definition of BNSL—to which we will refer
as Vanilla-BNSL—has been studied in multiple algorithmic works [141, 69, 113,
112, 131, 65]. Given a vertex set N , we call a family F = {fv : 2N\{v} → N0 | v ∈ N}
a family of local scores forN . Intuitively, for a vertex v ∈ N and some P ∈ 2N\{v}, the
value fv(P ) ∈ N0 represents the score we obtain if we choose exactly the vertices of P
as parents for v, which corresponds to the idea of decomposable scoring functions. As
a shorthand, we define scoreF(A) :=

∑︁
v∈N fv(P

A
v ) for the total score of the network

structure. The following definition and the corresponding computational problem
specify which arc sets we aim to compute.
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Definition III.1. Given a vertex set N , local scores F , and some integer t ∈ N0, an
arc set A ⊆ N ×N is called (N,F , t)-valid if (N,A) is a DAG and scoreF(A) ≥ t.

Bayesian Network Structure Learning (Vanilla-BNSL)
Input: A set of vertices N , local scores F = {fv | v ∈ N}, and an inte-
ger t ∈ N0.
Question: Is there an (N,F , t)-valid arc set A ⊆ N ×N?

Figure III.2 shows an example of a yes-instance of Vanilla-BNSL. Throughout
this work, we let n := |N | denote the number of vertices in a given instance I =
(N,F , t). Furthermore, we assume that for N = {v1, . . . , vn}, the local scores F
are given as a two-dimensional array F := [Q1, Q2, . . . , Qn], where each Qi is an
array containing all triples (fvi(P ), |P |, P ) where fvi(P ) > 0 or P = ∅. Note that
a triple (fvi(P ), |P |, P ) of a non-empty parent set P is only part of the input if its
local score fvi(P ) is not 0. This input representation is known as non-zero represen-
tation [141]. The size |F| is then defined as the number of bits we need to store this
two-dimensional array. As the size of I we define |I| := n+ |F|+ log(t).

Overview of Part III. In Chapter 6, we study the parameterized complexity of
learning a Bayesian network under additional sparsity constraints. Here, the input
consists of an additional integer k and we aim to construct a DAG such that some
structural graph parameter is bounded by k. We study parameterization by k for
several sparsity constraints. Important in this context are sparsity constraints that
are posed on the so-called moralized graph, an undirected graph that is associated
to the Bayesian network structure. Furthermore, we provide a kernel lower bound
for Vanilla-BNSL by proving that there is presumably no polynomial kernel when
parameterized by the number of vertices n.

In Chapter 7, we study a problem called Polytree Learning, which is a ver-
sion of BNSL where one aims to compute a polytree instead of a DAG. A polytree is
a DAG such that the underlying undirected graph (skeleton) is acyclic. For param-
eterization by the number of vertices n we provide the first FPT-algorithm that is
singly-exponential in n. Furthermore, we introduce a new parameter that is poten-
tially smaller than n and show that Polytree Learning is FPT for this parameter
on instances that have a bounded parent set size.

In Chapter 8, we study local search algorithms for BNSL. A natural approach
for a local search algorithm is a hill climbing strategy, where one replaces a given
BNSL solution by a better solution within some pre-defined neighborhood as long
as this is possible. Applying this heuristic approach, there is a chance to get stuck
in a poor local optimum. One way to decrease this chance is to use parameterized
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local search, where one has a pre-defined distance function in the solution space
and asks for the best solution with distance at most r from the given solution for
some search radius r; the parameter r allows to balance between solution quality
and running time of the local search algorithm. In Chapter 8 of this work, we study
ordering-based local search, where a Bayesian network structure is represented by
a topological ordering. We consider four natural distance functions on the space of
vertex orderings and analyze the parameterized complexity of the local search prob-
lem when parameterization by the radius r. The results range from subexponential
FPT-time to W[1]-hardness depending on the distance function. We also outline
the limits of ordering-based local search by showing that it cannot be used for some
common structural constraints on the network.
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Chapter 6

Learning Sparse
Network Structures

When one aims to learn a Bayesian network structure from observed data, the goal
is to represent the observed data as closely as possible. An intuitive idea is to find
a network structure that maximizes the probability of observing the given data set.
Following this approach, it may seem appropriate to learn a DAG that is a tour-
nament. A tournament is a directed graph where every pair of vertices u and v
is connected either by the arc (u, v) or by the arc (v, u). There are, however, sev-
eral reasons why learning a tournament-like DAG should be avoided: First, such a
network gives no information about which variables are conditionally independent.
Second, including too many dependencies in the model makes the model vulnerable
to overfitting. Finally, avoiding tournament-like network structures can lead to a
more efficient inference in the Bayesian network. Recall that the inference problem
on Bayesian networks is NP-hard [34] and thus, it is interesting to learn a network
structure which might lead to an efficient inference. When the network is tree-like,
however, efficient inference algorithms are possible. Intuitively, the treewidth of a
graph [15] is a graph parameter that measures how tree-like the graph is. If the
moralized graph of the network structure has small treewidth, then the inference
task can be solved more efficiently [40]; the moralized graph of a network D is the
undirected graph on the same vertex set that is obtained by adding an edge between
each pair of vertices that is adjacent or has a common child in D. For a detailed
discussion about the disadvantages of tournament-like networks we refer to the book
by Adnan Darwiche [40].

One idea to decrease the chance of learning tournament-like networks is to use
parent scores that reward the choice of smaller parent sets. Many popular scores
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like AIC [4], BIC [161], or BDe [22, 89] try to achieve this as follows: A vertex v
gets a parent set score a− b for a possible set of parents P where a is a measure for
how well the arc set P × v fits to the data and b is a penalty term to favor simpler
models [40]. Intuitively, this means: The bigger the size of P , the bigger the value
of b. Defining parent scores in such a way may lead to smaller parent set sizes which
can be seen as a local sparsity constraint on the network. However, note that global
graph parameters like the treewidth might still be large: For example, a directed
grid network structure might have a large treewidth while the maximum parent set
size is at most 4.

Motivated by the benefits of simpler networks and the efficient inference in sparse
networks, it has been proposed to learn optimal networks under global structural
constraints which guarantee that the network or its moralized graph have a small
treewidth [50, 112, 113, 32, 41, 69]. In this chapter, we continue this line of re-
search, focusing on exact algorithms with worst-case running time guarantees. In
other words, we want to find out for which structural constraints there are fast algo-
rithms for learning optimal Bayesian networks under these constraints and for which
constraints this is presumably impossible.

Related Work. When the network structure is restricted to be a branching, that
is, a directed tree in which every vertex has indegree at most one, then an optimal
network structure can be computed in polynomial time [32, 69]. Furthermore, learn-
ing a network structure that is a directed path is NP-hard [131]. Thus, since every
directed path is a branching, learning a more restricted Bayesian network structure
is not necessarily easier. Learning a network structure where the moralized graph is
restricted to have treewidth at most ω is NP-hard for every fixed ω ≥ 2 and can be
solved in 3nnω+O(1) time [112].

Finally, Korhonen and Parviainen [113] considered a structural constraint that
restricts the treewidth of the moralized graph by restricting the size of its vertex
cover. An optimal network structure where the moralized graph is restricted to have
a vertex cover of size at most k can be done in 4k · n2k · |I|O(1) time [113], where |I|
denotes the total input size. Since having a bounded vertex cover number implies
that the graph has bounded treewidth, the network structures that are learned by
BNSL with bounded-vc moralized graphs allow for fast inference. The XP algorithm
provided by Korhonen and Parviainen can presumably not be improved to an FPT
algorithm, since learning an optimal network structure with vertex cover number k
is W[1]-hard for k [113].

Vanilla-BNSL is NP-hard [29] and can be solved in 2nnO(1) time by dynamic
programming over all subsets of the vertex set [142, 163]. The parameterized com-
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plexity of Vanilla-BNSL has been studied for structural parameters of the so-called
undirected superstructure [141, 65]. The undirected superstructure is an undirected
graph on the input vertex set N where two vertices u and v are adjacent if u is
an element of a potential parent set of v or vice versa. BNSL is XP and W[1]-
hard when parameterized by the treewidth of the undirected superstructure [141],
and it is FPT when parameterized by the feedback edge number of the undirected
superstructure [65].

Our Results. Extending previous work, we provide an almost complete picture
of the parameterized complexity of BNSL with respect to several constraints that
guarantee sparse networks or sparse moralized graphs. Since the constraints are
formulated in terms of undirected graphs, we will refer to the undirected underlying
graph of a network as its skeleton. An overview of our results and previous results
for the considered problems is given in Table 6.1.

The results for BNSL with bounded-vc moralized graphs [113] form the starting
point for our work. We show that BNSL with bounded-vc skeletons can be solved
in XP-time and is W[2]-hard when parameterized by the size k of the vertex cover.
Since the skeleton is a subgraph of the moralized graph, having bounded-vc skeleton
can be seen as a less strict constraint than having a bounded-vc moralized graph.
Note that, given a DAG D, the vertex cover number of M(D) can be arbitrarily
larger than the vertex cover number of S(D): If one vertex v has n − 1 incoming
arcs and there are no further arcs in D, the skeleton of D has vertex cover number 1,
while the moralized graph of D has vertex cover number n − 1. We then consider
further related structural constraints that are related to the vertex cover number in
the following sense: Recall that a graph has a vertex cover of size k if and only if it
can be transformed into a graph with maximum degree 0 by k vertex deletions. Thus,
in BNSL with bounded-vc moralized graphs we learn a network whose skeleton or
moralized graph is close, in terms of the number of vertex deletions, to the sparse
graph class of edgeless graphs. We investigate whether there are further positive
examples for such constrained network learning problems.

We consider the constraint that the skeleton or the moralized graph can be trans-
formed into a graph with maximum degree 1 by at most k vertex deletions. This prop-
erty is also known as having dissociation number at most k and we refer to graphs with
this property as bounded-diss-number graphs in the following. We show that BNSL
with bounded-diss-number moralized graphs can be solved in n3k · kO(k) · |I|O(1) time
and thus in XP-time for k. Observe that moralized graphs with bounded dissocia-
tion number still have bounded treewidth and thus inference on the learned networks
will still be solvable efficiently. On the negative side, we show that the problem is
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Table 6.1: An overview of the parameterized complexity of constrained BNSL problems
where structural parameters of the skeleton or the moralized graph are upper-bounded by
a number k. The distance to degree 2 is the minimum size of a vertex set S such that after
removing S, the maximum degree is 2. The c-component order connectivity (c-COC) is the
minimum size of a vertex set S such that after deleting S, every connected component has
order at most c.

Bounded by k Skeleton Moralized Graph

Treewidth NP-h for k = 1 [41] NP-h for k = 2 [112]

Vertex cover number XP (Thm 6.8) XP [113]
W[2]-h (Thm 6.9) W[2]-h (Cor 6.10)

Dissociation number W[2]-h (Thm 6.9) XP (Thm 6.19)
W[2]-h (Cor 6.10)

Distance to degree 2 NP-h for k = 0 NP-h for k = 0
(Thm 6.20) (Thm 6.20)

c-COC for c ≥ 3 NP-h for k = 0 NP-h for k = 0
(Thm 6.21) (Thm 6.21)

Number of edges FPT (Cor 6.28) XP (Prop 6.29)
no kO(1) kernel (Cor 6.34) W[1]-h (Thm 6.30)

Feedback edge set NP-h for k = 0 [41] W[1]-h (Thm 6.32)

W[2]-hard and thus presumably not FPT for k. The latter hardness result also holds
for BNSL with bounded-diss-number skeletons; we did not obtain a positive result
for this case, however.

We then consider two further constraints that are related to the dissociation
number: We show that learning an optimal network whose skeleton or moralized
graph has maximum degree 2 is NP-hard and that learning an optimal network in
which every component of the skeleton or the moralized graph has at most c vertices
is NP-hard for every c ≥ 3. The latter constraint is related to the dissociation
number since in a graph with maximum degree 1 every connected component has at
most two vertices.

Next, we consider constraints that are formulated in terms of edge sets of the
skeleton or the moralized graph. We show that optimal networks with at most k arcs
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can be found in time 2O(k) · |I|O(1). In contrast, computing an optimal network
whose moralized graph has at most k edges is W[1]-hard. Thus, putting structural
constraints on the moralized graph may make the problem much harder than putting
similar structural constraints on the skeleton. Furthermore, we consider the case
where the edge deletion distance to trees is measured, in other words, the case where
the skeleton or the moralized graph have a feedback edge set of size at most k. BNSL
with tree skeletons is also called Polytree Learning and it is known to be NP-
hard [41]. Thus, the learning problem for skeletons with feedback edge sets of size at
most k is NP-hard even for k = 0. For BNSL with bounded-fes moralized graph, we
obtain a first negative result by proving W[1]-hardness for k; an XP-time algorithm
is however still possible.

Finally, we study problem kernelization for Vanilla-BNSL and BNSL under
sparsity constraints. We show that Vanilla-BNSL does not admit a polynomial
kernel for the number n of vertices unless NP ⊆ coNP/poly. This then implies a
kernel lower bound for all constrained BNSL problems studied in this section when
parameterized by n+ k.

Altogether, our results reveal that the difficulty of the learning problem may differ
depending on whether we put the constraints on the skeleton or the moralized graph.
Moreover, more general networks than those with bounded-vc moralized graphs can
be computed efficiently. The room for generalization seems, however, very limited as
even learning networks with constant degree or constant component size is NP-hard.

6.1 Constrained BNSL Problems

We provide a problem definition that captures BNSL problems for all sparsity con-
straints we consider in this chapter. We state the sparsity constraints in terms of
vertex- or edge deletion distances to sparse graph classes. Recall that a graph class Π
is a set of undirected graphs. Given an integer k ∈ N0, we let

Π + kv := {G = (V,E) | ∃V ′ ⊆ V : (|V ′| ≤ k ∧G− V ′ ∈ Π)}

denote the class of graphs that can be transformed into a graph in Π by performing
at most k vertex deletions. Analogously, we let

Π + ke := {G = (V,E) | ∃E ′ ⊆ E : (|E ′| ≤ k ∧ (V,E \ E ′) ∈ Π)}

denote the class of graphs that can be transformed into a graph in Π by performing
at most k edge deletions. Furthermore, recall that we call Π monotone if Π is closed
under edge- and vertex deletions. If Π is monotone, then Π + kv and Π + ke are
monotone for every integer k.
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6.1.1 Problem Definitions

The sparsity constraints are posed on the skeleton and the moralized graph [50] of the
network. Let D := (N,A) be a DAG. Recall that the skeleton of D is the undirected
graph S(D) := (N,E), with E := {{u, v} | (u, v) ∈ A}. The moralized graph of D is
the undirected graphM(D) := (N,E1∪E2) where the edge set is the union of E1 :=
{{u, v} | (u, v) ∈ A} and E2 := {{u, v} | u and v have a common child in D}. The
edges in E2 are called moral edges. Given a DAG (N,A), we define S(N,A) :=
S((N,A)) and M(N,A) := M((N,A)) for sake of readability. The problems are
defined as follows.

(Π + v)-Skeleton BNSL
Input: A set of vertices N , local scores F , and two integers t, k ∈ N0.
Question: Is there an (N,F , t)-valid arc set A ⊆ N × N such
that S(N,A) ∈ Π+ kv?

(Π + v)-Moral BNSL
Input: A set of vertices N , local scores F , and two integers t, k ∈ N0.
Question: Is there an (N,F , t)-valid arc set A ⊆ N × N such
thatM(N,A) ∈ Π+ kv?

Furthermore, we define the problems (Π + e)-Skeleton BNSL and (Π + e)-
Moral BNSL on the same input and the question is if there exists an (N,F , t)-
valid arc set A such that S(N,A) ∈ Π + ke or M(N,A) ∈ Π + ke, respectively.
Given a graph class Π, we refer to all problems described above as constrained BNSL
problems for Π. For a constrained BNSL problem we refer to the constraint on S
orM as sparsity constraint, since in our application we aim to learn sparse network
structures. Given an instance I of a constrained BNSL problem for some Π, we call
the requested arc set A a solution of I.

Consider the input representation for constrained BNSL problems. Recall that
the family of local scores F for a vertex set N := {v1, . . . , vn} is given in non-zero
representation. That is, F is given as a two-dimensional array F := [Q1, . . . , Qn]
where each Qi is an array containing all triples (fvi(P ), |P |, P ) where fvi(P ) > 0
or P ̸= ∅. As the size of an instance I := (N,F , t, k) of a constrained BNSL
problem, we define |I| := n+ |F|+ log(t) + log(k), where |F| denotes the number of
bits needed to store the two-dimensional array representing F .

In this work we also refer to the so-called superstructures. The directed super-
structure and the undirected superstructure are auxiliary graphs that can be associ-
ated with an instance I of a constrained BNSL problem. These graphs can be used
as tools for designing algorithms for BNSL problems [141, 65]. They are defined as
follows.
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6.1. Constrained BNSL Problems

Definition 6.1. Let N be a vertex set with local scores F . The directed superstruc-
ture of N and F is the directed graph SF⃗ := (N,AF) with

AF := {(u, v) | ∃P ⊆ N \ {v} : fv(P ) > 0 ∧ u ∈ P}.

The undirected superstructure is the skeleton of the directed superstructure.

Note that there exists an arc (u, v) ∈ AF if and only if the two-dimensional
array representing F contains an entry (fv(P ), |P |, P ) with u ∈ P . Given N and F ,
the directed superstructure and the undirected superstructure can be constructed in
linear time.

6.1.2 Basic Observations

Note that if Π is monotone and contains infinitely many graphs and k = n, then the
sparsity constraints S(N,A) ∈ Π+kv andM(N,A) ∈ Π+kv always hold, since the
empty graph belongs to Π. Moreover, if Π is monotone and contains infinitely many
graphs and k = n2, then the sparsity constraints S(N,A) ∈ Π+ ke andM(N,A) ∈
Π + ke always hold, since every edgeless graph belongs to Π. Hence, all problems
considered in this chapter are generalizations of Vanilla-BNSL and thus, the NP-
hardness of Vanilla-BNSL implies the following.

Proposition 6.2. Let Π be a monotone and infinite graph class. Then, the con-
strained BNSL problems for Π are NP-hard.

We next consider the solution structure for constrained BNSL problems. Let I
be a yes-instance of a constrained BNSL problem. We call a solution A of I nice
if fv(P

A
v ) ≤ fv(∅) implies PA

v = ∅. In this work, we consider constrained BNSL
problems for some monotone graph classes Π. For such classes, every yes-instance
has a nice solution A.

Proposition 6.3. Let Π be a monotone graph property, and let (N,F , t, k) be a yes-
instance of a constrained BNSL problem for Π. Then, there exists a nice solution A
for (N,F , t, k).

Proof. Let A be a solution for I := (N,F , t, k) and let v1, . . . , vℓ ∈ N be all vertices
with PA

vi
̸= ∅ and fvi(PA

vi
) ≤ fvi(∅). We set A′ := A \ {(u, vi) | u ∈ N, i ∈ {1, . . . , ℓ}}.

Observe that PA′
vi

= ∅ for all i ∈ {1, . . . , ℓ}. Moreover, fv(P
A′
v ) ≥ fv(P

A
v ) for every v ∈

N and (N,A′) is a DAG. Therefore, A′ is (N,F , t)-valid. Finally, since Π is monotone
and S(N,A) (or M(N,A), respectively) satisfies the sparsity constraint, S(N,A′)
(orM(N,A′), respectively) also satisfies the sparsity constraint.
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Given an instance I := (N,F , t, k) and some v ∈ N , we denote the potential
parent sets of v by PF(v) := {P ⊆ N \ {v} : fv(P ) > 0}∪ {∅}, which are exactly the
parent sets stored in F . If Π is monotone, then we can assume by Proposition 6.3
that in a solution A of I, every vertex v has a parent set PA

v ∈ PF(v). An important
measurement for the running times of our algorithms is the maximum number of
potential parent sets δF which is formally defined by δF := maxv∈N |PF(v)| [141].
Given a vertex v ∈ N , we can iterate over all potential parent sets of v and the
vertices in these sets in O(δF · n) time.

With the next proposition we introduce a normalization of the local scores such
that fv(∅) = 0 for every vertex v. To this end, let I := (N,F , t, k) be an instance
of a constrained BNSL problem for some monotone Π. If

∑︁
v∈N fv(∅) ≥ t, then I

is a trivial yes-instance, since the empty arc set is a solution of I. We next show
that every non-trivial instance can be preprocessed in O(|F|) time into an instance
where fv(∅) = 0 for every vertex v.

Proposition 6.4. Let Π be a graph class, and let I := (N,F , t, k) be an instance of
a constrained BNSL problem for Π where t ≥

∑︁
v∈N fv(∅). Then, there exist F ′ :=

{f ′
v | v ∈ N} with f ′

v(∅) = 0 for every v ∈ N and t′ ∈ N0, such that an arc set A
is a nice solution for I if and only if A is a nice solution for I ′ := (N,F ′, t′, k).
Furthermore, I ′ can be computed in O(|F|) time.

Proof. Let v ∈ N . We define the new local scores f ′
v by setting f

′
v(P ) := fv(P )−fv(∅),

if fv(P ) ≥ fv(∅), and f ′
v(P ) := 0 otherwise. Note that f ′

v(∅) = 0 for all v ∈ N .
Furthermore, we set t′ := t −

∑︁
v∈N fv(∅). Obviously, F ′ and t′ can be computed

in O(|F|) time by iterating over the two-dimensional array representing F . More-
over, t′ ≥ 0 since t ≥

∑︁
v∈N fv(∅). We next show that A ⊆ N ×N is a nice solution

for I if and only if A is a nice solution for I ′.
(⇒) Let A be a nice solution for I. Obviously, (N,A) is a DAG and the sparsity

constraint is satisfied. Furthermore, we have

scoreF ′(A) =
∑︂
v∈N

f ′
v(P

A
v ) ≥

∑︂
v∈N

(fv(P
A
v )− fv(∅)) ≥ t−

∑︂
v∈N

fv(∅) = t′.

It remains to show that A is nice for I ′. To this end, let f ′
v(P

A
v ) ≤ f ′

v(∅). We
conclude f ′

v(P
A
v ) = 0 and therefore fv(P

A
v ) ≤ fv(∅). Since A is nice for I, we

conclude PA
v = ∅. Hence, A is a nice solution for I ′.

(⇐) Conversely, let A be nice for I ′. We show that A is a nice solution for I.
Obviously (N,A) is a DAG and the sparsity constraint is satisfied. Hence, it remains
to show that scoreF(A) ≥ t and that A is nice for I.
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To this end, we first show that f ′
v(P

A
v ) = fv(P

A
v ) − fv(∅) for every v ∈ N .

Assume towards a contradiction that there exists some v ∈ N such that f ′
v(P

A
v ) ̸=

fv(P
A
v )−fv(∅). Then, by the definition of F ′ we have fv(P

A
v ) < fv(∅) and f ′

v(P
A
v ) = 0.

Note that f ′
v(P

A
v ) = 0 implies f ′

v(P
A
v ) ≤ f ′

v(∅) and therefore PA
v = ∅ since A is nice

for I ′. This contradicts the fact that fv(P
A
v ) < fv(∅).

Since f ′
v(P

A
v ) = fv(P

A
v )− fv(∅) for every v ∈ N the sum of the local scores is

scoreF(A) =
∑︂
v∈N

fv(P
A
v ) =

∑︂
n∈N

(f ′
v(P

A
v ) + fv(∅)) ≥ t′ +

∑︂
n∈N

fv(∅) = t.

To show that A is nice for I, let fv(P
A
v ) ≤ fv(∅). By the construction of F , this

implies that f ′
v(P

A
v ) = 0 = f ′

v(∅). Since A is nice for I ′ we conclude PA
v = ∅. Hence, A

is a nice solution for I.

6.2 BNSL with Bounded Vertex Cover Number

We first study the task of learning Bayesian network structures with a bounded
vertex cover number. In the framework of constrained BNSL problems, these are the
problems (Π0 + v)-Skeleton BNSL and (Π0 + v)-Moral BNSL, where Π0 is the
class of edgeless graphs. Note that Π0 is monotone. Korhonen and Parviainen [113]
analyzed the parameterized complexity of (Π0 + v)-Moral BNSL parameterized
by k. In their work, they provided an XP-time algorithm and proved W[1]-hardness.
We adapt their approach to obtain an XP-time algorithm for (Π0 + v)-Skeleton
BNSL. Furthermore, we prove that (Π0+v)-Skeleton BNSL and (Π0+v)-Moral
BNSL are both W[2]-hard when parameterized by k.

6.2.1 An XP-time Algorithm for Skeletons with Small Ver-
tex Cover

The XP-time algorithm for (Π0 + v)-Skeleton BNSL follows the basic idea of
the XP-time algorithm for (Π0 + v)-Moral BNSL [113]: First, iterate over every
possible choice of the vertex cover S and then split the arc set into two parts which
are the arcs between S and the parents of S and the arcs between S and the children
of S. These two arc sets can be learned and combined independently.

Our algorithm for learning a network structure with bounded vertex cover number
in the skeleton differs from the moralized version in one technical point, however.
In the moralized graph, every vertex of a vertex cover S has at most one parent
outside S. For (Π0+v)-Moral BNSL this can be exploited to find the arcs between
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the vertices of S and their parents. However, this does not hold for the skeleton:
Consider a star where all the arcs are directed towards the center. Here, the central
vertex forms a minimum vertex cover but the vertex has many parents. In the
moralized graph, such star becomes a clique and the vertex cover number is large.
Throughout this chapter, we let Q denote the set of parents of S. To overcome the
issue described above, we split the resulting network into three disjoint arc sets: The
incoming arcs of vertices of S, the incoming arcs of parents Q of vertices of S, and
the incoming arcs of the remaining vertices.

In summary, the intuitive idea behind the algorithm is to find the vertex cover S
and all parent sets of vertices of S via brute force. For each choice, we compute two
further arc sets and combine them all to a solution of (Π0+v)-Skeleton BNSL. To
find the incoming arcs of parents of S, we adapt a dynamic programming algorithm
for Vanilla-BNSL [142, 163]. With the next two lemmas, we formalize how our
solution is built from disjoint arc sets.

Lemma 6.5. Let (N,F , t, k) be an instance of (Π0 + v)-Skeleton BNSL, and
let S and Q be disjoint subsets of N . Furthermore, let there be arc sets B1 ⊆
(Q∪ S)× S, B2 ⊆ S ×Q, and B3 ⊆ S × (N \ (S ∪Q)). If D′ := (S ∪Q,B1 ∪B2) is
a DAG where S is a vertex cover of S(D′), then

a) D := (N,A) with A := B1 ∪B2 ∪B3 is a DAG,

b) S is a vertex cover of S(D), and

c)
∑︁

v∈N fv(P
A
v ) =

∑︁
v∈S fv(P

B1
v ) +

∑︁
v∈Q fv(P

B2
v ) +

∑︁
v∈N\(S∪Q) fv(P

B3
v ).

Proof. Consider Statement a). Observe that if (v, w) ∈ B3, then w is a sink in D.
Together with the fact that D′ is a DAG, this implies that D is a DAG. Moreover,
Statement b) holds, since every arc in A has at least one endpoint in S. For State-
ment c), observe that S, Q, and (N \ (S ∪ Q)) form a partition of N , and thus,
every v ∈ N has incoming arcs from either B1, B2, or B3.

Lemma 6.6. Let D := (N,A) be a DAG such that S ⊆ N is a vertex cover in S(D).
Then, there exists a set Q ⊆ N \ S and arc sets B1 ⊆ (Q ∪ S) × S, B2 ⊆ S × Q,
and B3 ⊆ S × (N \ (S ∪Q)) such that

a) B1, B2, and B3 form a partition of A, and

b) every vertex in Q has a child in S.
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Proof. We set Q := {v ∈ N \ S | v has a child in S}. Then, every vertex in Q has a
child in S by definition. Furthermore, we setB1 := ((Q∪S)×S)∩A,B2 := (S×Q)∩A,
and B3 := (S × (N \ (S ∪Q))) ∩ A.

Obviously, B1 ∪ B2 ∪ B3 ⊆ A, and the sets are pairwise disjoint, since S, Q,
and N \ (S∪Q) are disjoint subsets of N . It remains to show that B1∪B2∪B3 ⊇ A.
To this end, let (v, w) ∈ A. If w ∈ S, then v has a child in S. Consequently, v ∈ S∪Q
and therefore, (v, w) ∈ B1. Otherwise, if w ̸∈ S, then v ∈ S, since S is a vertex cover
of S(D). Therefore, (v, w) ∈ B2 ∪B3.

Intuitively, the algorithm works as follows: We iterate over all possible choices
of S, Q, and B1. Then, for each such choice, we compute B2 and B3 that maximize
the sum of local scores for A := B1 ∪ B2 ∪ B3. In the following, we describe how to
compute B2 when S, Q, and B1 are given. This step is the main difference between
this algorithm and the XP-time algorithm for (Π0 + v)-Moral BNSL [113].

Proposition 6.7. Let I := (N,F , t, k) be an instance of (Π0+v)-Skeleton BNSL,
and let S and Q be disjoint subsets of N . Furthermore, let B1 ⊆ (Q ∪ S) × S be
an arc set such that (Q ∪ S,B1) is a DAG and every w ∈ Q has a child in S.
Then, we can compute an arc set B2 that maximizes

∑︁
v∈Q fv(P

B2
v ) among all arc

sets where (Q ∪ S,B1 ∪B2) is a DAG and B2 ⊆ S ×Q in 2|S| · |I|O(1) time.

Proof. We describe a dynamic programming algorithm.
Intuition. Before we present the algorithm, we provide some intuition. Given

a subset S ′ ⊆ S and the set Q′ ⊆ Q containing parents of vertices in S, we want
to compute an arc set B ⊆ S ′ × Q′ such that the sum of local scores for the arc
set B1 ∪ B is maximized. This is done by recursively choosing a vertex v ∈ S ′ that
is a sink in the resulting DAG and letting all w ∈ Q′ whose only child is v choose
their best possible parent set in S ′ \ {v}.

Algorithm. To describe the algorithm, we introduce some notation. Given
some w ∈ Q, we let CB1

w denote the set of children of w in (S ∪ Q,B1). Note
that CB1

w ⊆ S for all w ∈ Q. Given a subset S ′ ⊆ S, we let Q(S ′) := Q∩ (
⋃︁
v∈S′ PB1

v )
denote the set of parents of vertices in S ′ that belong to Q, and D(S ′) denote the
DAG with vertex set S ′ ∪Q(S ′) and arc set B1 ∩ ((S ′ ∪Q(S ′))× S ′). Furthermore,
given S ′ ⊆ S and v ∈ S ′, we let

X(S ′, v) := {w ∈ Q(S ′) | CB1
w ∩ S ′ = {v}}

denote the vertices of Q(S ′) whose only child in S ′ is v. Finally, given S ′ ⊆ S

and w ∈ Q, we define ˆ︁fw(S ′) := maxS′′⊆S′ fw(S
′′) as the best possible score for a
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parent set of w containing only vertices from S ′. The values ˆ︁fw(S ′) for all S ′ ⊆ S
and w ∈ Q can be computed in overall 2|S| · |I|O(1) time [142].

The dynamic programming table T has entries of the type T [S ′] where S ′ ⊆ S.
Each entry stores the score of the best possible arc set B ⊆ S ′×Q(S ′) such that (S∪
Q,B1∪B) is a DAG. For one-element sets {v} ⊆ S, we set T [{v}] :=

∑︁
w∈PB1

v
fw(∅).

Note that, due to Proposition 6.4 we may assume that T [{v}] = 0. The recurrence
to compute an entry for S ′ with |S ′| > 1 is

T [S ′] := max
v∈S′

v is a sink in D(S′)

⎛⎝T [S ′ \ {v}] +
∑︂

w∈X(S′,v)

ˆ︁fw(S ′ \ {v})

⎞⎠ .

The score of the best possible arc set B2 ⊆ S ×Q such that (S ∪Q,B1 ∪B2) is a
DAG can be computed by evaluating T [S]. The corresponding arc set can be found
via traceback. The correctness proof is straightforward and thus omitted.

Running Time. Recall that all values ˆ︁fw(S ′) with S ′ ⊆ S and w ∈ Q can be
computed in 2|S| · |I|O(1) time. The dynamic programming table has 2|S| entries
and each entry can be computed in |I|O(1) time. Thus, the overall running time
is 2|S| · |I|O(1) as claimed.

We now present the XP-time algorithm for (Π0 + v)-Skeleton BNSL. This
algorithm uses the algorithm behind Proposition 6.7 as a subroutine.

Theorem 6.8. (Π0+ v)-Skeleton BNSL can be solved in (nδF)
k · 2k · |I|O(1) time.

Proof. Algorithm. Let I := (N,F , t, k) be an instance of (Π0+v)-Skeleton BNSL.
The following algorithm decides whether I is a yes-instance or a no-instance: First,
consider every possible choice of a vertex set S with |S| ≤ k forming the vertex cover
of the skeleton of the resulting network. For each choice of S consider every choice
of potential parent sets for the vertices of S. Let B1 be the corresponding arc set,
and let Q be the set of parents of S in (N,B1). For each choice of S and B1, do the
following:

• Use the algorithm behind Proposition 6.7 to compute an arc set B2 ⊆ S × Q
that maximizes

∑︁
v∈Q fv(P

B2
v ) among all arc sets where (Q ∪ S,B1 ∪ B2) is a

DAG.

• For every v ∈ N \(S∪Q), compute a potential parent set that maximizes fv(P )
among all potential parent sets with P ⊆ S. Let B3 ⊆ S × (N \ (S ∪ Q)) be
the resulting arc set.
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• If
∑︁

v∈S fv(P
B1
v ) +

∑︁
v∈Q fv(P

B2
v ) +

∑︁
v∈N\(S∪Q) fv(P

B3
v ) ≥ t, then return yes.

If for none of the choices of S and B1 the answer yes was returned, then return no.
Running Time. First, we discuss the running time of the algorithm. Since |S| ≤ k,

there are O(nk) choices for S and O(δFk) choices for B1. For each such choice, the
algorithm behind Proposition 6.7 can be applied in 2k · |I|O(1) time and the choice of
the parent sets of vertices in N \ (S ∪Q) can be done in |I|O(1) time. This gives an
overall running time of (nδF)

k · 2k · |I|O(1) as claimed.
Correctness. Second, we show that the algorithm returns yes if and only if I is a

yes-instance.
(⇒) Suppose the algorithm returns yes. Then, there exist disjoint subsets S

and Q of N , with |S| ≤ k and arc sets B1 ⊆ (S ∪ Q) × S, B2 ⊆ S × Q, and B3 ⊆
S×N \ (S∪Q) such that (Q∪S,B1∪B2) is a DAG. Due to Lemma 6.5, D := (N,A)
with A := B1 ∪ B2 ∪ B3 is a DAG and S is a vertex cover of S(D). Moreover,
scoreF(A) ≥ t and therefore, I is a yes-instance.

(⇐) Let I be a yes-instance. Then, there exists an (N,F , t)-valid arc set A
such that the skeleton of D := (N,A) has a vertex cover S of size at most k. By
Lemma 6.6, there exists a set Q ⊆ N \S and arc sets B1 ⊆ (S∪Q)×S, B2 ⊆ S×Q,
and B3 ⊆ S ×N \ (S ∪ Q) that form a partition of A. Since the algorithm iterates
over all choices of S and B1 with |S| ≤ k, it considers S and B1 at some point. For
this choice of S and B1, the algorithm then computes an arc set B′

2 ⊆ S ×Q with∑︂
v∈Q

fv(P
B′

2
v ) ≥

∑︂
v∈Q

fv(P
B2
v )

and an arc set B′
3 ⊆ S ×N \ (S ∪Q) with∑︂

v∈N\(S∪Q)

fv(P
B′

3
v ) ≥

∑︂
v∈N\(S∪Q)

fv(P
B3
v ).

Then, since the sum of the local scores under A is at least t, the algorithm returns yes.

6.2.2 W[2]-hardness for Skeletons with Small Vertex Cover

We complement the XP-time algorithm from the previous subsection by provingW[2]-
hardness of (Π0 + v)-Skeleton BNSL. Thus, (Π0 + v)-Skeleton BNSL is not
FPT for parameter k unless W[2] = FPT. We show that the hardness also holds
for the task of learning a Bayesian network where the skeleton has a a bounded
dissociation number. Formally, this is (Π1 + v)-Skeleton BNSL, with Π1 := {G |
G has maximum degree 1}. Observe that Π1 is monotone.
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Theorem 6.9. Let Π ∈ {Π0,Π1}. Then, (Π + v)-Skeleton BNSL is W[2]-hard
for k even when the directed superstructure is a DAG, the maximum parent set size
is 1, and every local score is either 1 or 0.

Proof. We give a parameterized reduction from Set Cover which is defined as
follows.

Set Cover
Input: A finite universe U ⊆ N, a family X ⊆ 2U , and an integer ℓ ∈ N.
Question: Is there a subfamily X ′ ⊆ X with |F ′| ≤ ℓ and

⋃︁
X∈X ′ X = U?

Set Cover is W[2]-hard when parameterized by ℓ [38]. We first describe a parame-
terized reduction from Set Cover to (Π0+v)-Skeleton BNSL and afterwards, we
describe how this construction can be modified to obtain W[2]-hardness for (Π1+v)-
Skeleton BNSL.

Construction. Let (U,X , ℓ) be an instance of Set Cover. We describe how to
construct an equivalent instance I := (N,F , t, k) with k = ℓ. First, we set N :=
U ∪ {vX | X ∈ X}. Next, we define the local scores F . All local scores are either 1
or 0. For every u ∈ U we set fu(P ) = 1 if and only if P = {vX} for some X ∈ X
that contains u. Furthermore, for every v ∈ {vX | X ∈ X}, we set fv(P ) = 0 for
every P . To finish the construction, we set k := ℓ and t := |U |.

Observe that for every arc (u, v) of the directed superstructure, we have u ∈ U
and v ∈ {vX | X ∈ X}. Consequently, the directed superstructure is a DAG.
Furthermore, by the construction of F , the maximum parent set size is 1.

Intuition. Before we show the correctness, we provide some intuition. To obtain
a score of t = |U |, every vertex in U has to choose one parent vertex. The chosen
parent vertices correspond to the subfamily X ′ ⊆ X that covers U . The vertex cover
constraint on the network ensures that X ′ has size at most k.

Correctness. We show that (U,X , ℓ) is a yes-instance of Set Cover if and only
if I is a yes-instance of (Π0 + v)-Skeleton BNSL.

(⇒) Let X ′ ⊆ X be a subfamily of size at most k that covers U . Then, for
every u ∈ U , there exists some set Xu ∈ X ′ that contains u. We define A :=
{(vXu , u) | u ∈ U} and show that A is a solution of I.

Consider the skeleton S(N,A). Each connected component of S(N,A) is either
an isolated vertex or a star consisting of a central vertex from {vX | X ∈ X ′}
and leaf vertices from U . Thus, (N,A) is a DAG and {vX | X ∈ X ′} is a vertex
cover of the skeleton. Thus, S(N,A) ∈ Π0 + kv, since |X ′| ≤ k. Moreover, observe
that fu(P

A
u ) = 1 for every u ∈ U . Therefore, A is (N,F , t)-valid.

(⇐) Conversely, let A be an (N,F , t)-valid arc set such that S(N,A) has a vertex
cover of size at most k. Then, since t = |U |, we have fu(P

A
u ) = 1 for every u ∈ U .
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Thus, for every u ∈ U we have PA
u = {vX} for some X ∈ X containing u. We

define X ′ := {X ∈ X | PA
u = {vX} for some u ∈ U}.

Let u be an element of the universe U . Then, PA
u = {vX} for some X containing u

and therefore X ∈ X ′. Thus, X ′ covers U . It remains to show that |X ′| ≤ k.
Assume towards a contradiction that |X ′| > k. Then, there exist pairwise distinct
vertices u1, . . . , uk+1 in U and v1, . . . , vk+1 in {vX | X ∈ X ′} such that (vi, ui) ∈ A
for i ∈ {1, . . . , k+1}. Then, the edges {vi, vi} form a matching of size k+1 in S(N,A).
This contradicts the fact that S(N,A) has a vertex cover of size at most k.

BNSL with bounded Dissociation Number. We now explain how to modify the
construction described above, to obtain W[2]-hardness for (Π1+v)-Skeleton BNSL
when parameterized by k.

In the construction, we set N := U ∪ {vX | X ∈ X} ∪ {wX | X ∈ X}. As
above, for u ∈ U we set fu(P ) := 1 if and only if P = {vX} for some X ∈ X
containing u, and for v ∈ {vX | X ∈ X} we set fv(P ) := 0 for every P . Additionally,
for every wX , we set fwX

(P ) := 1 if and only if P = {vX}. Furthermore, we set k := ℓ
and t := |U |+ |X |

(⇒) Let X ′ ⊆ X be a subfamily with |X ′| ≤ k that covers U . We set A :=
{(vXu , u) | u ∈ U} ∪ {(vX , wX) | X ∈ X}. Then, (N,A) is a DAG and the sum
of the local scores is t. Furthermore, the connected components of S(N,A) are
isolated edges or disjoint stars with central vertex in {vX | X ∈ X ′}. Then, |X ′| ≤ k
implies S(N,A) ∈ Π1 + kv.

(⇐) Let A be a solution of I. Again, we define X ′ := {X ∈ X | PA
u =

{vX} for some u ∈ U}, which covers U by the same arguments as above. Note
that the skeleton of (N,A) contains an edge {vX , wX} for every X ∈ X , since the
sum of local scores under A is at least t. Then, assuming |X ′| > k implies that
there exist k+1 vertex disjoint sets {u, vX , wX} where vX is adjacent with u and wX
in S(N,A). This contradicts the fact that S(N,A) has a dissociation set of size at
most k.

Observe that for a DAG D := (N,A) where each vertex has at most one parent,
the skeleton S(D) and the moralized graphM(D) are the same. Thus, Theorem 6.9
also implies W[2]-hardness if the sparsity constraints are posed on the moralized
graph. Note that a W[1]-hardness for (Π0 + v)-Moral BNSL when parameterized
by k has been shown [113]. Theorem 6.9 now implies a slightly stronger hardness
result with an additional restriction on the maximum parent set size.

Corollary 6.10. Let Π ∈ {Π0,Π1}. Then, (Π + v)-Moral BNSL is W[2]-hard
for k even when the directed superstructure is a DAG, the maximum parent set size
is 1, and every local score is either 1 or 0.
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Consider networks where the maximum parent set size is 1. These networks are
also known as branchings. Learning a branching without further restrictions can be
done in polynomial time [32, 69]. Due to Theorem 6.9 and Corollary 6.10, there is
presumably no such polynomial-time algorithm if we add a sparsity constraint on the
vertex cover size. Thus, learning a branching becomes harder if under this additional
constraint.

6.3 BNSL with Bounded Dissociation Number

We now provide an algorithm for (Π1 + v)-Moral BNSL, that is, for Bayesian
network learning where the moralized graph has dissociation number at most k.
By Corollary 6.10, an FPT algorithm for k is unlikely. We show that (Π1 + v)-
Moral BNSL can be solved in XP-time when parameterized by k. As detailed
in the introduction, this shows that we can find optimal networks for a class of
moral graphs that is larger than the ones with bounded vertex cover number, while
maintaining the highly desirable property that the treewidth is bounded. In fact,
graphs with dissociation number at most k have treewidth at most k + 1 and thus
Bayesian inference can be performed efficiently if k is small [40].

Before we describe the main idea of the algorithm, we make the following simple
observation about Bayesian networks whose moralized graph has a bounded dissoci-
ation number.

Proposition 6.11. Let D = (N,A) be a DAG and let S ⊆ N be a dissociation set
ofM(D). Then, at most 2 · |S| vertices in N \ S have descendants in S.

Proof. Let v ∈ S. We call a vertex w ∈ N \ S is an external ancestor of v if there
exists a path (w,w1, . . . , wℓ, v) in D such that wi ∈ N \ S for all i ∈ {1, . . . , ℓ}. We
show that every vertex in S has at most two external ancestors.

First, assume that v has three distinct parents w1, w2, and w3 outside S. Then,
there are moral edges {w1, w2}, {w2, w3}, and {w3, w1} forming a triangle outside S
in M(D). This contradicts the fact that S is a dissociation set of M(D). Hence,
every v ∈ S has at most two parents outside S. Next, consider the following cases.

Case 1: |PA
v \ S| = 0. Then, v has no external ancestors.

Case 2: |PA
v \ S| = 1. Then, let PA

v \ S = {w}. Since S is a dissociation
set of M(D) we have degM(D)−S(w) ≤ 1. Hence, w has at most one parent w′

outside S. Moreover, since degM(D)−S(w
′) ≤ 1, the vertex w′ has no parent in N \S.

Therefore, v has at most two external ancestors.
Case 3: |PA

v \ S| = 2. Then, let PA
v \ S = {w1, w2}. Note that {w1, w2} is

a moral edge in M(D). Then, since degM(D)−S(w1) ≤ 1 and degM(D)−S(w2) ≤ 1,
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the vertices w1 and w2 do not have parents in N \ S. Therefore, v has exactly two
external ancestors.

The main idea of the algorithm for (Π1 + v)-Moral BNSL presented in this
section is closely related to XP-algorithms for (Π0 + v)-Moral BNSL [113] and
(Π0 + v)-Skeleton BNSL (Theorem 6.8): If we know which vertices form the
dissociation set S and the set Q of vertices that are the ancestors of S, the arcs of
the network can be found efficiently if S and Q are small. Roughly speaking, the
steps of the algorithm are to iterate over every possible choice of S and Q and then
find the arc set of the resulting network respecting this choice. Finding the arc set
can then be done in two steps: First, we find all the arcs between the vertices of S∪Q
and afterwards, we find the remaining arcs of the network. Even though the basic
idea of the algorithm is similar to algorithms for BNSL with bounded vertex cover
number, several obstacles occur when considering Π1 instead of Π0.

First, the arcs between S ∪ Q and the remaining arcs of the DAG cannot be
computed independently, since there might be arcs between vertices of Q and N \
(Q ∪ S). See Figure 6.1 for an example of a DAG D whose moralized graph has a
dissociation set S. We overcome this obstacle by partitioning Q into two sets Q0

and Q1 and by considering arc sets AQ ⊆ (S ∪ Q)× (S ∪ Q) that respect a specific
constraint regarding this partition.

Second, the vertices in N \(S∪Q) cannot choose their parent sets greedily from S,
since they may also choose one parent from N \ S. Thus, we need a new technique
to find this part of the network. To overcome this obstacle, we show that the parent
sets of vertices in N \ (S∪Q) can be found in polynomial time by using an algorithm
that computes a maximum matching [133].

This section is organized as follows: In Section 6.3.1, we introduce the terms
of attic arc sets and basement arc sets, the two parts of the arc set that we later
combine to a solution. In Section 6.3.2, we describe how to find the attic arc set
and in Section 6.3.3, we describe how to find the basement arc set. Finally, in
Section 6.3.4, we show how to solve (Π1 + v)-Moral BNSL in XP-time using the
previous results.

6.3.1 Attic Arc Sets and Basement Arc Sets

In this subsection we formally define attic arc sets and basement arc sets. As men-
tioned above, these are the two parts of the resulting network that our algorithm
finds when the vertices of the dissociation set and their ancestor vertices are known.
The idea behind the names attic arc set and basement arc set is that the dissociation
set S forms the center of the network, the arcs between S and the ancestors of S
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Q
Q0 Q1

S

R

Figure 6.1: A DAG D whose moralized graph has a dissociation set S. The arc set
of D is decomposed into an attic arc set AQ and a basement arc set AR. The thin arrows
correspond to the arcs of AQ and the thick arrows correspond to the arcs of AR. The
dotted edges are the moral edges.

form the upper part of the network (attic) and the remaining arcs form the lower
part (basement) of the network. Figure 6.1 shows a DAG D where the arc set is
decomposed into an attic arc set and a basement arc set.

Throughout this section, we let S denote the set of the vertices that form the
dissociation set and we let Q denote the set of their ancestors. Furthermore, we
assume that Q is partitioned into two sets Q0 and Q1. Intuitively, in the moralized
graph of the resulting network, the vertices in Q0 have no neighbors in Q and the
vertices in Q1 may have one neighbor in Q.

Definition 6.12. Let N be a vertex set and let S, Q0, and Q1 be disjoint subsets
of N . An arc set AQ is called attic arc set of S, Q0, and Q1, if

a) DQ := (S ∪Q0 ∪Q1, AQ) is a DAG,

b) in the moralized graph M(DQ), no vertex of Q0 has neighbors outside S, and
every vertex of Q1 has at most one neighbor outside S.

If S, Q0, and Q1 are clear from the context we may refer to AQ as attic arc
set. Throughout this section we use the following notation as a shorthand for some
vertex sets: Given a vertex set N and disjoint subsets S, Q0, and Q1 of N , we
let Q := Q0 ∪Q1, and we let R := N \ (S ∪Q) denote the remaining vertices of N .
We next define basement arc sets.

Definition 6.13. Let N be a vertex set and let S, Q0, and Q1 be disjoint subsets
of N . An arc set AR ⊆ (S ∪ R ∪ Q0) × R is called basement arc set for S, Q0,
and Q1 if AR contains no self-loops and every w ∈ Q0 ∪R has at most one incident
arc in AR ∩ ((R ∪Q0)×R).
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If S, Q0, and Q1 are clear from the context we may refer to AR as basement
arc set. The idea is that basement arc sets and attic arc sets can be combined to a
solution of (Π1+ v)-Moral BNSL and that a solution can be splitted into an attic
arc set and a basement arc set. With the next two lemmas, we formalize this idea.
First, an attic arc set and a basement arc set can be combined to a DAG where S is
a dissociation set of the moralized graph.

Lemma 6.14. Let N be a vertex set and let S, Q0 and Q1 be disjoint subsets of N .
Furthermore, let AQ be an attic arc set, and let AR be a basement arc set. It then
holds that

a) D := (N,AQ ∪ AR) is a DAG, and

b) S is a dissociation set ofM(D).

Proof. We first show that D is a DAG. Assume towards a contradiction that there is
a directed cycle in D. Since AQ is an attic arc set we conclude from Definition 6.12 a)
that there is no directed cycle in (N,AQ). Thus, the cycle contains an edge (v, w) ∈
AR. Note that w ∈ R and there exists an outgoing edge (w,w′) ∈ AQ ∪ AR that
is also part of the cycle. Since no edge in AQ is incident with vertices of R we
conclude (w,w′) ∈ AR and therefore w′ ∈ R. Note that w′ ̸= w, since AR contains
no self-loops. Since (w,w′) is part of the directed cycle, there exists an edge (w′, w′′) ∈
AR with w′′ ∈ R. Then, w′ is incident with two arcs in AR ∩ ((R ∪Q0)× R) which
is a contradiction to the fact that AR is a basement arc set. Consequently, there is
no directed cycle in D.

It remains to show that S is a dissociation set ofM(D). That is, we show that
every vertex v has degree at most 1 in G :=M(D)− S.

If v ∈ Q1, then v has degree at most one inM(DQ)−S. Then, since no arc in AR
is incident with v, we have degG(v) = 1. Otherwise, v ∈ Q0∪R. Then, there is no arc
in AQ connecting v with a vertex in N \ S. Moreover, by Definition 6.13, there is at
most one arc in AR∩ ((R∪Q0)×R) that is incident with v. To prove degG(v) ≤ 1, it
remains to show that there is no moral edge ofM(D) connecting v with some other
vertex in N \ S.

Assume towards a contradiction that there exists some v′ ∈ N \ S such that v
and v′ have a common child w. If w ∈ S ∪ Q, then v ∈ Q0 and v′ ∈ Q. Con-
sequently, {v, v′} is a moral edge in M(DQ) which contradicts the fact that ver-
tices in Q0 have degree 0 in M(DQ) − S. Hence, we conclude w ∈ R and there-
fore (v, w), (v′, w) ∈ AR. Then, w has two incident arcs in AR ∩ ((R ∪ Q0) ×
R) which contradicts the fact that AR is a basement arc set. Consequently, we
have degG(v) ≤ 1.
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Next, we show that, conversely, the arc set of every DAG whose moralized graph
has a dissociation set S can be partitioned into an attic arc set and a basement arc
set for some Q0 and Q1.

Lemma 6.15. Let D = (N,A) be a DAG, let S ⊆ N be a dissociation set ofM(D),
and let Q ⊆ N be the set of vertices that have at least one descendant in S. Further-
more, let AQ := ((S ∪Q)× (S ∪Q)) ∩ A and let Q be partitioned into

Q0 := {v ∈ Q | v has degree 0 inM(S ∪Q,AQ)− S}, and
Q1 := Q \Q0.

Then, AQ is an attic arc set and A\AQ is a basement arc set. Moreover, |Q| ≤ 2|S|.
Proof. Note that Proposition 6.11 implies |Q| ≤ 2|S|. We first show that Proper-
ties a) and b) from Definition 6.12 hold for AQ. Since D = (N,A) is a DAG, S∪Q ⊆
N , and AQ ⊆ A, it clearly holds that DQ is a DAG. Consequently, Property a) holds.
Consider Property b). By the definition of Q0, no vertex in Q0 has neighbors in Q.
Furthermore, since S is a dissociation set ofM(D), every vertex in Q1 has at most
one neighbor in Q.

It remains to show that A \ AQ is a basement arc set. To this end, we first
show A \ AQ ⊆ (S ∪ R ∪ Q0) × R. Assume towards a contradiction that A \ AQ ̸⊆
(S ∪R ∪Q0)×R. Consider the following cases.

Case 1: There exists an arc (v, w) ∈ A \AQ with w ̸∈ R. Then, w ∈ S ∪Q and
therefore, v is an ancestor of S. Hence, (v, w) ∈ AQ which contradicts the choice
of (v, w).

Case 2: For every arc (u,w) ∈ A\AQ we have w ∈ R. Then, by our assumption,
there exists an arc (v, w) ∈ A\AQ with v ∈ Q1. Since v has degree 1 inM(N,AQ)−S
and an incident arc to some vertex in R we have degM(D)−S(v) ≥ 2 which contradicts
the fact that S is a dissociation set ofM(D). Since Cases 1 and 2 are contradictory,
we have A \ AQ ⊆ (S ∪R ∪Q0)×R.

Finally, we show that Definition 6.13 holds for A \ AQ. Since D is a DAG we
conclude that A \ AQ contains no self-loops. Moreover, since S is a dissociation set
ofM(D) every w ∈ (Q0∪R) has at most one incident edge in (A\AQ)∩ ((R∪Q0)×
R).

In general, if we consider a union A1∪A2 of two disjoint arc sets, one vertex v may
have incoming arcs from A1 and A2. Thus, for the local scores we may have fv(P

A1
v ) ̸=

fv(P
A1∪A2
v ). Given an attic arc set AQ and a basement arc set AR, all arcs in AR

have endpoints in R and all arcs in AQ have endpoints in Q∪ S. Since Q∪ S and R
are disjoint, for every vertex v either all incoming arcs are in AQ or in AR. Thus,
the local scores under AQ ∪ AR can be decomposed as follows.

170



6.3. BNSL with Bounded Dissociation Number

Lemma 6.16. Let (N,F , t, k) be an instance of (Π1+v)-Moral BNSL and let S, Q0,
and Q1 be disjoint subsets of N . Furthermore, let AQ be an attic arc set and let AR
be a basement arc set. Then, the score of A := AQ ∪ AR under F is

scoreF(A) =
∑︂
v∈S∪Q

fv(P
AQ
v ) +

∑︂
v∈R

fv(P
AR
v ).

6.3.2 Finding the Attic Arc Set

Recall that the idea of the XP-time algorithm is to iterate over all possible vertices
that may form the dissociation set and their possible ancestors. Then, for each choice
we find an attic arc set and a basement arc set. In this subsection, we present an
algorithm to efficiently compute the attic arc set when S, Q0, and Q1 are given.

Let I := (N,F , t, k) be an instance of (Π1 + v)-Moral BNSL and let S, Q0,
and Q1 be disjoint subsets of N . An attic arc set AQ is called optimal, if the

sum
∑︁

v∈S∪Q0∪Q1
fv(P

AQ
v ) is maximal among all attic arc sets for S, Q0, and Q1.

Let λ := |S ∪Q0 ∪Q1|. Observe that, by iterating over every possible set of arcs
between the vertices in S ∪ Q0 ∪ Q1, one can enumerate all possible AQ in 2O(λ2) ·
|I|O(1) time. Alternatively, by iterating over all possible parent sets of the vertices
of S ∪Q0∪Q1, one can enumerate all possible AQ in δF

λ · |I|O(1) time. However, this
might be expensive, since δF can be exponentially large in the number of vertices.
We show that an optimal attic arc set can be computed in λO(λ) · |I|O(1) time. The
intuitive idea of this algorithm is to find the connected vertex pairs in Q1 via brute
force and use an algorithm for Vanilla-BNSL as a subroutine to find the arcs
of AQ.

Proposition 6.17. Let I := (N,F , t, k) be an instance of (Π1+ v)-Moral BNSL,
and let S, Q0, and Q1 be disjoint subsets of N . An optimal attic arc set for S, Q0,
and Q1 can be computed in λO(λ) · |I|O(1) time, where λ := |S ∪Q0 ∪Q1|.

Proof. Throughout this proof, let Q := Q0 ∪Q1 and N ′ := S ∪Q. Consider Q1. An
auxiliary graph H is defined as an undirected graph with vertex set Q1, such that
each connected component of H has size at most 2. Note that there are

(︁
λ2

λ

)︁
∈ λO(λ)

many auxiliary graphs, since |Q1| ≤ λ.
Let H be a fixed auxiliary graph. For two vertices w1 ∈ Q1 and w2 ∈ Q1, we

write w1 ∼H w2 if they belong to the same connected component of H. In the
following, we define a family FH of local scores for N ′. To this end, we introduce
the term of feasible parent sets regarding H: First, let v ∈ Q0. A set P ⊆ N ′ \ {v}
is called feasible for v if P ⊆ S. Second, let v ∈ Q1. A set P ⊆ N ′ \ {v} is feasible
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for v if P ∩Q ⊆ {w} where w ∼H v. Finally, let v ∈ S. A set P ⊆ N ′ \{v} is feasible
for v, if |P ∩Q| ≤ 1, or P ∩Q = {w1, w2} for some w1, w2 ∈ Q1 with w1 ∼H w2. We
then define FH by

fHv (P ) :=

{︄
fv(P ) if P is feasible for v, or

0 otherwise.

Note that for every vertex v ∈ N ′, every potential parent set P ∈ PFH (v) is
feasible for v by the definition of FH .

Algorithm. The algorithm to compute an optimal attic arc set for S, Q0, and Q1

can be described as follows: Iterate over all auxiliary graphsH. For every choice of an
auxiliary graphH compute an arc set AH ⊆ N ′×N ′ that maximizes

∑︁
v∈N ′ fHv (PAH

v ).
Finally, return an arc set A that maximizes

∑︁
v∈N ′ fv(P

A
v ) among all arc sets in {AH |

H is an auxiliary graph}.
Running time. We first consider the running time of the algorithm. As mentioned

above, there are λO(λ) possible auxiliary graphs. The auxiliary graphs can be enu-
merated in λO(λ) time. For every auxiliary graph, we compute the arc set AH . This
can be done by solving Vanilla-BNSL for the vertex set N ′ and local scores FH
in 2λ · |I|O(1) time [142, 163]. Thus, the overall running time of the algorithm
is λO(λ) · |I|O(1) as claimed.

Correctness. It remains to show that the algorithm is correct. That is, the
returned arc set A is an optimal attic arc set for S, Q0, and Q1. Note that A = AH
for some auxiliary graph H. Therefore, A is a solution of an instance of Vanilla-
BNSL with vertex set N ′ and local scores FH . By Proposition 6.3, we may assume
that A is nice and therefore, for every v ∈ N ′ the parent set PA

v is feasible for v
regarding H. Consequently, fHv (PA

v ) = fv(P
A
v ) for every v ∈ N .

We first show that A is an attic arc set for S, Q0, and Q1. That is, we show that
Properties a) and b) from Definition 6.12 hold. Since A is a solution of a Vanilla-
BNSL instance with vertex set N ′, the graph (N ′, A) is a DAG. Thus, Property a)
from Definition 6.12 holds. We next check Property b). First, consider v ∈ Q0 and
assume towards a contradiction that v has a neighbor w ̸∈ S inM(N ′, A). If (v, w) ∈
A or (w, v) ∈ A, then either v or w has a non-feasible parent set regarding H. A
contradiction. Otherwise, if {v, w} is a moral edge, then there exists a vertex u ∈ N ′

with {v, w} ∈ PA
u . Then, PA

u is not feasible for u regarding H, a contradiction.
Second, consider v ∈ Q1. Then, by the definition of feasible parent sets, v can only
be adjacent to a vertex w ∈ Q\{v} if v ∼H w. Since the connected components in H
have size at most 2, v has at most one neighbor outside S inM(N ′, A). Therefore,
Property b) from Definition 6.12 holds. Thus, A is an attic arc set.
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We next show that A is optimal. That is, we show that
∑︁

S∪Q fv(P
A
v ) is maximal

among all attic arc sets for Q0, Q1, and S. To this end, let A
′ ̸= A be another attic arc

set. ConsiderM(N ′, A′). Since every vertex inQ1 has at most one neighbor outside S
inM(N ′, A′), the graph H ′ :=M(N ′, A′)[Q1] has connected components of size at
most 2. Consequently, H ′ is an auxiliary graph. To show that

∑︁
S∪Q fv(P

A′
v ) ≤∑︁

S∪Q fv(P
A
v ) we use the following claim.

Claim 1. For every n ∈ N ′, the parent set PA′
v is feasible for v regarding the auxiliary

graph H ′.

Proof . We consider the following cases.
Case 1: v ∈ Q0. Then, v has no neighbors outside S inM(N ′, A′). Thus, v has

only incoming arcs from S. Therefore, PA′
v is feasible for v.

Case 2: v ∈ Q1. Then, v has at most one neighbor w outside S inM(N ′, A′).
Observe that w ∼H′ v by the definition of H ′. Therefore, PA′

v is feasible for v.
Case 3: v ∈ S. Then, if |PA′

v ∩ Q| ≤ 1, PA′
v is feasible for v. Furthermore,

if |PA′
v ∩Q| ≥ 3, the vertices in PA′

v ∩Q have degree at least 2 outside S inM(N ′, A′)
contradicting the fact that A′ is an attic arc set. Thus, it remains to consider the
case where |PA′

v ∩Q| = 2. Let PA′
v ∩Q = {w1, w2}. Then, w1 and w2 are connected

by a moral edge inM(N ′, A′) implying w1 ∼H′ w2. Thus, P
A′
v is feasible for v. ♢

Since every v ∈ N ′ has a feasible parent set underA′ regardingH ′, we have fH
′

v (PA′
v ) =

fv(P
A′
v ). Since the score of A under FH is at least as big as the score of the best

possible DAG under FH′
, we conclude∑︂

S∪Q

fv(P
A′

v ) =
∑︂
S∪Q

fH
′

v (PA′

v ) ≤
∑︂
S∪Q

fHv (PA
v ) =

∑︂
S∪Q

fv(P
A
v ).

6.3.3 Finding the Basement Arc Set

We now show that we can compute a basement arc set with maximal score in polyno-
mial time if S, Q0, and Q1 are given. More precisely, we solve the following problem.

Basement Learning
Input: A set of vertices N , disjoint subsets S, Q0, Q1 of N , local scores F =
{fv | v ∈ N}, and an integer t.
Question: Is there a basement arc set AR for S, Q0, and Q1

with
∑︁

v∈N\(S∪Q0∪Q1)
fv(P

AR
v ) ≥ t?

Proposition 6.18. Basement Learning can be solved in O(n3δF) time.
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Proof. We give a polynomial-time reduction to Maximum Weight Matching.
InMaximum Weight Matching, one is given a graphG = (V,E), edge-weights ω :
E → N, and ℓ ∈ N and the question is if there exists a set M ⊆ E of pairwise non-
incident edges such that

∑︁
e∈M ω(e) ≥ ℓ.

Construction: Let I := (N,S,Q0, Q1,F , t) be an instance of Basement Learn-
ing. Throughout this proof let Q := Q0∪Q1, and let R := N \(S∪Q). We construct
an equivalent instance (G,ω, ℓ) of Maximum Weight Matching. We first de-
fine G := (V,E) with V := Q0∪R∪R′, where R′ := {v′ | v ∈ R}, and E := X∪Y ∪Z,
where

X := {{v, w} | v, w ∈ R, v ̸= w},
Y := {{v, w} | v ∈ R,w ∈ Q0}, and
Z := {{v, v′} | v ∈ R}.

Next, we define edge-weights ω : E → N: For e = {v, v′} ∈ Z, we set

ω(e) := max
S′⊆S

fv(S
′).

Furthermore, for e = {v, w} ∈ Y with v ∈ R and w ∈ Q0, we set

ω(e) := max
S′⊆S

fv(S
′ ∪ {w}).

Finally, for e = {v, w} ∈ X, we set ω(e) := max(φ(v, w), φ(w, v)), where

φ(u1, u2) :=max
S′⊆S

fu1(S
′ ∪ {u2}) + max

S′⊆S
fu2(S

′).

To complete the construction of (G,ω, ℓ), we set ℓ := t.
Intuition: Before we prove the correctness of the reduction we provide some

intuition. A maximum-weight matching M in G corresponds to the parent sets
of vertices in R and therefore to arcs in a solution AR of I. More precisely, an
edge {v, v′} ∈ Z with v ∈ R corresponds to a parent set of v that contains only
vertices from S. An edge {v, w} ∈ Y with v ∈ R corresponds to a parent set of v
that contains w ∈ Q0 and vertices from S. Finally, an edge {v, w} ∈ X means that
either v ∈ PAR

w or w ∈ PAR
v . An example of the construction is shown in Figure 6.2.

Correctness: We now prove the correctness of the reduction, that is, we show
that I is a yes-instance of Basement Learning if and only if (G,ω, ℓ) is a yes-
instance of Maximum Weight Matching.

(⇒) Let AR be a basement arc set of S, Q0, and Q1 with
∑︁

v∈R fv(P
AR
v ) ≥ t.

We define a matching M with
∑︁

e∈M ω(e) ≥ t. To this end, we describe which edges
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Q0

R

S

v1 v2 v3 v4

Q0

R

R′

Figure 6.2: An example of the construction from the proof of Proposition 6.18. The left
side shows the vertex sets Q0, S, and R of an instance of Basement Learning together
with an optimal basement arc set. The right side shows the edges of the corresponding
instance of Weighted Matching where the edges of a solution are labeled with colors
blue, red, and green. The blue edge corresponds to the parent set of v1, the red edge
corresponds to the parent set of v2, and the green edge corresponds to the parent sets of v3
and v4.

of X, Y , and Z we add to M by defining sets MX , MY , and MZ and set M :=
MX ∪MY ∪MZ .

First, for every pair v, w ∈ R with v ∈ PAR
w or w ∈ PAR

v , we add {v, w} ∈ X
toMX . Second, for every pair v, w with v ∈ R, w ∈ Q0, and w ∈ PAR

v , we add {v, w}
toMY . Third, for every v ∈ R that is not incident with one of the edges inMX∪MY ,
we add {v, v′} to MZ . Obviously, MX , MY , and MZ are pairwise disjoint.

We first show that M is a matching by proving that there is no pair of distinct
edges in M that share an endpoint. Consider the following cases.

Case 1: e1, e2 ∈ MZ. Then, if e1 and e2 share one endpoint v ∈ R or v′ ∈ R′,
it follows by the definition of MZ that e1 = e2 = {v, v′}. Thus, there are no distinct
edges e1, e2 ∈MZ that share one endpoint.

Case 2: e1, e2 ∈ MX ∪MY . Then, assume towards a contradiction that e1 =
{u, v} and e2 = {v, w} have a common endpoint v. Now, {u, v} ∈ MX ∪ MY

implies (u, v) ∈ AR or (v, u) ∈ AR. Moreover {v, w} ∈MX ∪MY implies (w, v) ∈ AR
or (v, w) ∈ AR. Then, v ∈ R ∪Q0 is incident with two arcs in AR ∩ ((R ∪Q0)× R)
which contradicts the fact that AR is a basement arc set.

Case 3: e1 ∈ MX ∪MY , e2 ∈ MZ. Then, e1 and e2 can only have a common
endpoint in R which is not possible by the definition of MZ .

By the above,M is a matching. It remains to show that
∑︁

e∈M ω(e) ≥ t. Observe
that every v ∈ R is incident with some edge inM . Conversely, every edge inMY ∪MZ
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has exactly one endpoint in R, and every edge in MX has both endpoints in R.
Given an edge e ∈ MY ∪MZ , we let π(e) denote its unique endpoint in R. By the
construction of MX and the fact that AR is a basement arc set we know that for
every {v, w} ∈ MX it holds that either (v, w) ∈ AR or (w, v) ∈ AR. We let π1(e)
and π2(e) denote the endpoints of e = {v, w} such that (π2(e), π1(e)) ∈ AR. Since
every v ∈ R is incident with some edge in M and M is a matching, the following
sets form a partition of R.

R1 := {π1(e) | e ∈MX}, R2 := {π2(e) | e ∈MX},
R3 := {π(e) | e ∈MY }, R4 := {π(e) | e ∈MZ}.

Observe that by the definitions ofMX ,MY , andMZ all v ∈ R2∪R4 have a parent
set S ′ under AR, where S

′ ⊆ S. Moreover, all π(e) ∈ R3 have parent set PAR

π(e) =

S ′∪(e\{π(e)}) with S ′ ⊆ S, and all π1(e) ∈ R1 have parent sets P
AR

π1(e)
= S ′∪{π2(e)}

with S ′ ⊆ S. For the weight of M it then holds that∑︂
e∈MX

ω(e) +
∑︂
e∈MY

ω(e) +
∑︂
e∈MZ

ω(e)

=
∑︂
e∈MX

max
S′⊆S

fπ1(e)(S
′ ∪ {π2(e)}) +

∑︂
e∈MX

max
S′⊆S

fπ2(e)(S
′)

+
∑︂
e∈MY

max
S′⊆S

fπ(e)(S
′ ∪ (e \ {π(e)})) +

∑︂
e∈MZ

max
S′⊆S

fπ(e)(S
′)

≥
∑︂

v∈R1∪R2∪R3∪R4

fv(P
AR
v ) ≥ t,

and therefore
∑︁

e∈M ω(e) ≥ t.

(⇐) Conversely, let M ⊆ E be a matching of G with
∑︁

e∈M ω(e) ≥ t. Note that
in G, every edge e ∈ E has at least one endpoint in R and consequently every e ∈M
has at least one endpoint in R. Moreover, without loss of generality we can assume
that every vertex of R is incident with an edge ofM : If a vertex v ∈ R is not incident
with an edge ofM , then we replaceM byM ′ :=M ∪{{v, v′}}. Then,

∑︁
e∈M ′ ω(e) ≥

t+ ω({v, v′}) ≥ t and M ′ is still a matching since degG(v
′) = 1.

We define a set AR ⊆ (S ∪ Q0 ∪ R) × R and show that
∑︁

v∈R fv(P
AR
v ) ≥ t and

that AR is a basement arc set. To this end, we define a parent set with vertices
in S ∪Q0 ∪ R for every v ∈ R. First, if v is incident with an edge {v, v′} ∈ M ∩ Z,
we set PAR

v := argmaxS′⊆S fv(S
′). Second, if v is incident with an edge {v, w} ∈

M ∩ Y , then w ∈ Q0 and we set PAR
v := {w} ∪ argmaxS′⊆S fv(S

′ ∪ {w}). Third, it
remains to define the parent sets of vertices in R that are endpoints of some edge
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in M ∩ X. Let {v, w} ∈ M ∩ X, where φ(v, w) ≥ φ(w, v). We then set PAR
v :=

{w} ∪ argmaxS′⊆S fv(S
′ ∪ {w}) and PAR

w := argmaxS′⊆S fw(S
′).

We first show that AR is a basement arc set. Obviously, AR does not contain self-
loops and no v ∈ R has a parent in Q1. It remains to show that every vertex in Q0∪R
has at most one incident arc in AR∩((R∪Q0)×R). Let v ∈ Q0∪R. Assume towards
a contradiction that v is incident with two distinct arcs in AR∩((R∪Q0)×R). Then,
there exists a vertex w1 ∈ Q0 ∪ R with (v, w1) ∈ AR or (w1, v) ∈ AR. Moreover,
there exists a vertex w2 ∈ (Q0 ∪R) \ {w1} with (w2, v) ∈ AR or (v, w2) ∈ AR. Then,
by the definition of AR we conclude {v, w1}, {v, w2} ∈M which contradicts the fact
that no two edges in M share one endpoint. We conclude that AR is a basement arc
set.

It remains to show that
∑︁

v∈R fv(P
AR
v ) ≥ t. To this end consider the following.

Claim 1.

a) If {v, w} ∈M ∩ (Y ∪ Z) with v ∈ R, then ω({v, w}) = fv(P
AR
v ).

b) If {v, w} ∈M ∩X, then ω({v, w}) = fv(P
AR
v ) + fw(P

AR
w ).

Proof . a) If {v, w} ∈ M ∩ Z, then w = v′ and it follows by the definition of AR
that fv(P

AR
v ) = maxS′⊆S fv(S

′) = ω({v, v′}). Otherwise, if {v, w} ∈M∩Y , then w ∈
Q0 and analogously fv(P

AR
v ) = maxS′⊆S fv(S

′ ∪ {w}) = ω({v, w}).
b) If {v, w} ∈M∩X, then v, w ∈ R. We only consider the case φ(v, w) ≥ φ(w, v),

since the other case is analogue. It then follows from the definition of AR, that

fv(P
AR
v ) + fw(P

AR
w )

=max
S′⊆S

fv(S
′ ∪ {w}) + max

S′⊆S
fw(S

′)

=max(φ(v, w), φ(w, v)) = ω({v, w}).
♢

Now, let R̃ ⊆ R be the set of vertices in R that are incident with an edge inM∩X.
We conclude by Claim 1 and the assumption that every v ∈ R is incident with an
edge in M that ∑︂

v∈R

fv(P
AR
v ) =

∑︂
v∈R\R̃

fv(P
AR
v ) +

∑︂
v∈R̃

fv(P
AR
v )

=
∑︂

e∈M∩(Y ∪Z)

ω(e) +
∑︂

e∈M∩X

ω(e)

=
∑︂
e∈M

ω(e) ≥ t.
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Running Time. The constructed instance of Maximum Weight Matching
contains O(n) vertices and O(n2) edges. For each edge e, the edge weight ω(e) can
be computed inO(nδF) time. Hence, we can compute the described instance of Max-
imum Weight Matching from an instance of Basement Learning in O(n3δF)
time. Together with the fact that Maximum Weight Matching can be solved
in O(

√︁
|V | · |E|) time [133], we conclude that Basement Learning can be solved

in O(n3δF) time.

6.3.4 An XP-time Algorithm for (Π1 + v)-Moral BNSL

We now combine the previous results to obtain an XP-time algorithm for (Π1 +
v)-Moral BNSL. Recall that the intuitive idea of the algorithm is to find the
dissociation set S and the ancestors Q = Q0 ∪ Q1 of S via brute force. Then, for
every choice of S, Q0, and Q1 we find an attic arc set and a basement arc set and
combine these arc sets to a solution of (Π1 + v)-Moral BNSL.

Theorem 6.19. (Π1 + v)-Moral BNSL can be solved in n3k · kO(k) · |I|O(1) time.

Proof. We first describe the algorithm. Afterwards, we analyze the running time and
show the correctness.

Algorithm. Let I = (N,F , t, k) be an instance of (Π1 + v)-Moral BNSL. The
following algorithm decides whether I is a yes-instance or a no-instance: First, iterate
over all possible choices of S, Q0, and Q1 where |S| ≤ k and |Q0 ∪ Q1| ≤ 2k. For
each such choice do the following:

• Compute an optimal attic arc set AQ using the algorithm behind Proposi-
tion 6.17.

• Let t′ := t−
∑︁

v∈S∪Q fv(P
AQ
v ) and check if (N,S,Q0, Q1,F , t′) is a yes-instance

of Basement Learning. If this is the case, return yes.

If for none of the choices of S, Q0, and Q1 the answer yes was returned, then
return no.

Running Time. Since |S| ≤ k and |Q0 ∪ Q1| ≤ 2k, there are at most
(︁
n
k

)︁
·(︁

n−k
2k

)︁
∈ O(n3k) choices for S and Q := Q0 ∪ Q1. For each such choice we can

compute all 4k possible partitions of Q into two sets. Hence, we can iterate over
all possible choices of S, Q0 and Q1 in O(n3k · 4k) time. Afterwards, for each such
choice we apply the algorithm behind Proposition 6.17 in kO(k) · |I|O(1) time, and the
algorithm behind Proposition 6.18 in O(n3δF) time. This gives an overall running
time of n3k · kO(k) · |I|O(1) as claimed.
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Correctness. We show the correctness of the algorithm by proving that the algo-
rithm returns yes if and only if I is a yes-instance of (Π1 + v)-Moral BNSL.

(⇒) Suppose that the algorithm returns yes for I. Then, there exist disjoint
sets S, Q0, and Q1 with |S| ≤ k, an attic arc set AQ, and a basement arc set AR
such that ∑︂

v∈S∪Q

fv(P
AQ
v ) +

∑︂
v∈R

fv(P
AR
v ) ≥ t.

By Lemma 6.14, the graph (N,AQ ∪ AR) is a DAG whose moralized graph has
dissociation set S and by Lemma 6.16 its score is the sum of the local scores for AR
and AQ. Consequently, I is a yes-instance.

(⇐) Conversely, let (N,F , t, k) be a yes-instance. Then, there exists an (N,F , t)-
valid arc set A and the moralized graph of (N,A) has a dissociation set S of size at
most k. Then, by Lemma 6.15, there exist disjoint sets Q0, Q1, an attic arc set AQ
and a basement arc set AR such that AR ∪ AQ = A. Furthermore, |Q0 ∪ Q1| ≤ 2k.
Since the algorithm iterates over all possible choices for S, Q0, and Q1 with |S| ≤ k
and |Q0 ∪Q1| ≤ 2k, it considers S, Q0, and Q1 at some point. Since A is (N,F , t)-
valid, the arc set AR satisfies

∑︁
v∈R fv(P

AR
v ) ≥ t −

∑︁
v∈S∪Q fv(P

AQ
v ). Consequently,

the algorithm returns yes.

The running time stated in Theorem 6.19 contains a factor of kO(k). Let us
remark that the constant in the exponent hidden by the O-notation is not too high:
The constant relies on the running time of the algorithm behind Proposition 6.17
where we iterate over the possible auxiliary graphs. Since |Q1| ≤ 2k, the number of

iterations is O(
(︁
(2k)2

2k

)︁
). Thus, the hidden constant is 4. While it seems possible that

this can be improved, it would be more interesting to determine whether the factor
of kO(k) can be replaced by 2O(k).

6.4 Constrained BNSL for Related Graph Classes

We now outline the limits of learning Bayesian networks under sparsity constraints
that are related to bounded vertex cover number and bounded dissociation number.
Recall that a bound of k on the vertex cover number or the dissociation number
implies that the treewidth is not larger than k + O(1), and that is desirable for
efficient inference [40]. In addition to bounded vertex cover number and bounded
dissociation number we now study further graph parameters that provide a similar
upper bound on the treewidth, while, for every k, the network structures satisfying
this constraint form a superclass of the network structures with dissociation number
at most k.
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In terms of graph-classes, the bound on the vertex cover number is formalized as
the graph class Π0+kv and the bound on the dissociation number is formalized as the
graph class Π1+kv. Recall that Π0 is the class of edgeless graphs. Equivalently, Π0 is
the class of graphs with maximum degree 0, or the graphs with maximum connected
component size 1. Analogously, Π1 is the class of graphs with maximum degree 1, or
the class of graphs with maximum connected component size 2. In this section, we
consider two superclasses of Π1 and show that XP-time algorithms for constrained
BNSL problems regarding these superclasses are presumably not possible.

Let Π2 be the class of graphs that have maximum degree 2, and let ΠCOC
c be

the class of graphs where each connected component has size at most c for a fixed
integer c ≥ 3. These graph classes are superclasses of Π1, that is Π1 ⊆ Π2 and Π1 ⊆
ΠCOC
c . Consequently, if a graph G belongs to the graph class Π1+kv for some k ∈ N0,

then there exists some k′ ≤ k such that G ∈ Π2+k
′v and G ∈ ΠCOC

c +k′v. Moreover,
observe that the treewidth of G is not bigger than k′ + O(1). Thus, as described
above, we have a similar treewidth bound as in the case of bounded dissociation
number while considering a larger class of possible network structures.

With the next two theorems, we show that there is little hope that (Π + v)-
Skeleton BNSL or (Π+v)- Moral BNSL with Π ∈ {Π2,Π

COC
3 } has an XP-time

algorithm when parameterized by k. To prove the result for Π2, we use a reduction
from Hamiltonian Path. This construction was already used to show that BNSL
is NP-hard if one adds the restriction that the resulting network must be a directed
path [131]. In the following we show that it also works for (Π2 + v)-Skeleton
BNSL and (Π2 + v)-Moral BNSL.

Theorem 6.20. (Π2 + v)-Skeleton BNSL and (Π2 + v)-Moral BNSL are NP-
hard even if k = 0 and the maximum parent set size is 1.

Proof. We give a polynomial-time reduction from the NP-hard Hamiltonian Path
problem to (Π2 + v)-Skeleton BNSL. Afterwards we show that the reduction is
also correct for (Π2 + v)-Moral BNSL. In Hamiltonian Path one is given an
undirected graph G and the question is whether G has a Hamiltonian path, that is,
a path which contains every vertex of G exactly once.

Construction. Let G = (V,E) be an instance of Hamiltonian Path with n ver-
tices. We describe how to construct an equivalent instance of (Π2 + v)-Skeleton
BNSL where k = 0. We first set N := V . Next, for every v ∈ N we set fv({w}) = 1
if w ∈ NG(v) and fv(P ) = 0 for every other P ⊆ N \ {v}. Finally, we set t := n− 1
and k := 0.

Correctness. We show that G is a yes-instance of Hamiltonian Path if and
only if (N,F , t, 0) is a yes-instance of (Π2 + v)-Skeleton BNSL.
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(⇒) Let P = (v1, v2, . . . , vn) be a Hamiltonian path in G. We set A := {(vi, vi+1) |
i ∈ {1, . . . , n−1}} and show that A is (N,F , t)-valid and that S(N,A) has maximum
degree 2.

Since P is a Hamiltonian path, no vertex appears twice on P . Hence, (N,A)
does not contain directed cycles. Moreover, it holds that vi ∈ NG(vi−1) for ev-
ery i ∈ {1, . . . , n − 1} and therefore scoreF(A) = n − 1 = t. Hence, A is (N,F , t)-
valid. Moreover, observe that S(N,A) = (N, {{vi, vi+1} | i ∈ {1, . . . , n − 1}). Con-
sequently, S(N,A) has maximum degree 2.

(⇐) Conversely, let A be an (N,F , t)-valid arc set such that S(D) has maximum
degree at most 2, where D := (N,A). Since t = n− 1 and every local score is either
1 or 0 we conclude that fv(P

A
v ) = 1 for at least n − 1 vertices. Then, there are at

least n− 1 arcs in A, and thus there are at least n− 1 edges in S(D). Furthermore,
by Proposition 6.3 we may assume that in D no vertex v has a non-empty parent set
with score fv(P

A
v ) = 0. This implies that every vertex has at most one parent in D.

Consequently, S(D) is acyclic.
Since S(D) is acyclic, the maximum degree is 2, and there are at least n − 1

edges, there is a Hamiltonian path P := (v1, . . . , vn) in S(D). We show that P is
a Hamiltonian path in G. Let vi and vi+1 be two consecutive vertices on P . Then,
either (vi, vi+1) ∈ A or (vi+1, vi) ∈ A. By the construction of F we have vi ∈ NG(vi+1)
and thus, {vi, vi+1} ∈ E. Therefore, P is a Hamiltonian path in G.

Moralized Graph. We next argue why the construction described above is also a
correct reduction from Hamiltonian Path to (Π2 + v)-Moral BNSL.

(⇒) For the forward direction, let P be a Hamiltonian path in G and let the
arc set A be defined as above. Since every vertex has at most one incoming arc
from A, the moralized graph M(N,A) has no moral edges and therefore M(N,A)
and S(N,A) have the same set of edges. Thus,M(N,A) has maximum degree 2.

(⇐) For the backwards direction, let A be an (N,F , t)-valid arc set such that the
moralized graphM(N,A) has maximum degree at most 2. Since the edge set of the
skeleton of (N,A) is a subset of the edge set ofM(N,A), we conclude that S(N,A)
has maximum degree at most 2. Then, by the above argumentation, there exists a
Hamiltonian path in G.

Theorem 6.21. Let c ≥ 3. Then, (ΠCOC
c + v)-Skeleton BNSL and (ΠCOC

c + v)-
Moral BNSL are NP-hard even if k = 0.

Proof. We give a polynomial-time reduction from Size-c Clique Cover, which is
NP-hard for every c ≥ 3 [104], to (ΠCOC

c + v)-Skeleton BNSL. Afterwards, we
show that the reduction is also correct for (ΠCOC

c + v)-Moral BNSL. In Size-
c Clique Cover one is given an undirected graph G = (V,E) and the question is
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whether there exists a partition P := {Ki
c | i ∈ {1, . . . ,

|V |
c
}} of the vertex set V ,

where every Ki
c is a clique of size c.

Construction. LetG = (V,E) be an instance of c-Clique Cover with n vertices.
We describe how to construct an equivalent instance of (ΠCOC

c +v)-Skeleton BNSL
where k = 0. We first set N := V . Next, for every v ∈ N we set fv(P ) = 1 if G[P ] is
a Kc−1 and P ⊆ NG(v). Otherwise, we set fv(P ) = 0. Note that F can be computed
in polynomial time since c is a constant. Finally, we set t := n

c
and k := 0.

Correctness. We next show that G is a yes-instance of Size-c Clique Cover if
and only if (N,F , t, 0) is a yes-instance of (ΠCOC

c + v)-Skeleton BNSL.

(⇒) Let P = {Ki
c | i ∈ {1, . . . , nc }} be a packing of vertex-disjoint cliques of size c

that cover G. For each i, let vi be one vertex of Ki
c. We set A :=

⋃︁
i∈{1,...,n

c
}{(u, vi) |

u ∈ Ki
c \{vi}}. Then, D := (N,A) is a union of disjoint stars, where the arcs of each

star point to the center vi. Therefore, D is a DAG and every connected component
of S(D) has order c. Thus, S(D) ∈ ΠCOC

c . Finally, observe that fvi(P
A
vi
) = 1 for each

vertex vi by the definition of F . Consequently, scoreF(A) ≥ n
c
= t.

(⇐) Conversely, let A be an (N,F , t)-valid arc set such that every connected
component of S(N,A) has order at most c. Since t = n

c
and the local scores are

either 0 or 1, there are pairwise distinct vertices v1, . . . , vn
c
with fv(P

A
vi
) = 1 for

every i ∈ {1, . . . , n
c
}. We define P := {Ki := {vi} ∪ PA

vi
| i ∈ {1, . . . , n

c
}} and show

that P is a packing of vertex disjoint size c cliques that cover G.

By the definition of F , each PA
vi

is a clique of size c − 1 that is completely
contained in NG(vi). Thus, every Ki ∈ P is a size-c clique in G. Next, assume
towards a contradiction that there are distinct indices i and j with Ki ∩ Kj ̸= ∅.
Then, since vi ̸= vj it follows that K

i ∪Kj is a connected component of size bigger
than c in S(N,A). This contradicts the choice of A.

Moralized Graph. We next argue why the construction described above is also a
correct reduction from Size-c Clique Cover to (ΠCOC

3 + v)-Moral BNSL.

(⇒) Let P be a packing of vertex disjoint size-c cliques that cover G, and
let A be defined as above. Then, (N,A) is a disjoint union of stars that point
to the center of vi. Thus, M(N,A) is a disjoint union of cliques of size c. Conse-
quentlyM(N,A) ∈ ΠCOC

c .

(⇐) Let A be an (N,F , t)-valid arc set such that every connected component
of M(N,A) has order at most c. Since the edge set of the skeleton of (N,A) is a
subset of the edge set of the moralized graph, we conclude that S(N,A) ∈ ΠCOC

c .
Then, by the above argumentation, G is a yes-instance of c-Clique Cover.

Given a graph class Π, we have Π = Π + 0v = Π + 0e. Thus, Theorems 6.20
and 6.21 imply the following.
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Corollary 6.22. Let Π ∈ {Π2}∪ {ΠCOC
c | c ≥ 3}. Then, (Π+ e)-Skeleton BNSL

and (Π + e)-Moral BNSL are NP-hard even if k = 0.

6.5 BNSL with a Bounded Number of Edges

In this section, we study BNSL, where we aim to learn a network such that the
skeleton or the moralized graph have a bounded number of edges. Formally, we
study (Π0 + e)-Skeleton BNSL and (Π0 + e)-Moral BNSL, where Π0 is the
class of edgeless graphs. Clearly, Π0 is monotone.

First, we consider (Π0 + e)-Skeleton BNSL in Section 6.5.1. We give a sim-
ple dynamic programming algorithm that solves instances with an acyclic directed
superstructure in polynomial time. Then, we provide a randomized algorithm which
shows that (Π0 + e)-Skeleton BNSL is FPT when parameterized by k.

Second, we consider (Π0+ e)-Moral BNSL in Section 6.5.2. We observe that it
has an XP-time algorithm when parameterized by k and we show that it is W[1]-hard
for parameterization by k + t. Thus, putting the constraint of a bounded number
of edges on the moralized graph makes the learning problem harder than putting a
similar constraint on the skeleton.

6.5.1 (Π0 + e)-Skeleton BNSL

We first show that (Π0 + e)-Skeleton BNSL becomes polynomial-time solvable
if the directed superstructure is a DAG. The algorithm uses dynamic programming
over a topological ordering of SF⃗ . Recall that this is an ordering (v1, . . . , vn) of the
vertices of N such that i < j for every arc (vi, vj) of SF⃗ .

Proposition 6.23. (Π0 + e)-Skeleton BNSL can be solved in O(δF · k · n) time
if the directed superstructure is a DAG.

Proof. Let N := {1, . . . , n}, and let (N,F , t, k) be an instance of (Π0+e)-Skeleton
BNSL such that SF⃗ is a DAG. Without loss of generality, let (n, n− 1, . . . , 2, 1) be
a topological ordering of SF . Hence, for every arc (a, b) of SF⃗ it holds that a > b.

The dynamic programming table T has entries of the type T [i, j] for all i ∈
{0, 1, . . . , n} and j ∈ {0, 1, . . . , k}. Each entry stores the maximum sum of local
scores of the vertices (i, . . . , 1) of the topological ordering that can be obtained by
an arc set A of size at most j. For i = 0, we set T [0, j] = 0 for all j ∈ {0, . . . , k}.
The recurrence to compute an entry for i > 0 is

T [i, j] = max
P∈PF (i):|P |≤j

(fi(P ) + T [i− 1, j − |P |]),
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and the result can then be computed by checking if T [n, k] ≥ t. The corresponding
network can be found via traceback. The correctness proof is straightforward and
thus omitted. The size of T is O(n · k) and each entry T [i, j] can be computed
in O(δF) time by iterating over the at most δF triples (fi(P ), |P |, P ) in F for the
vertex i. Therefore, (Π0 + e)-Skeleton BNSL can be solved in O(δF · k · n) time
if SF⃗ is a DAG.

We would like to remark that in Chapter 8 we provide a result that generalizes
Proposition 6.23. In particular, we study a version of BNSL where a potential parent
set P of a vertex v has a parent score s and a parent cost c and one aims to learn a
DAG with maximum score among all DAGs where the sum of parent costs does not
exceed some budget. We show that this version of BNSL can be solved in polynomial
time if the directed superstructure is a DAG. Note that (Π0 + e)-Skeleton BNSL
is the special case where the parent costs are c := |P | for each potential parent set P .

The dynamic programming algorithm behind Proposition 6.23 can be extended
to obtain an FPT algorithm for (Π0 + e)-Skeleton BNSL when parameterized by
the number of arcs k. The algorithm is based on color coding [7]: In a Bayesian
network with at most k arcs, there are at most 2k vertices which are endpoints of
such arcs. The idea of color coding is to randomly color the vertices of N with 2k
colors and find a solution A where all vertices that are incident with arcs of A are
colored with pairwise distinct colors. By repeating this algorithm multiple times
with multiple independently-chosen colorings, one increases the success probability.

To describe the color coding algorithm, we introduce some notation. Let N be
a set of vertices. A function χ : N → {1, . . . , 2k} is called a coloring (of N with 2k
colors). Given a color c ∈ {1, . . . , 2k}, we call χ−1(c) := {v ∈ N | χ(v) = c}
the color class of c. For a subset N ′ ⊆ N , we let χ(N ′) := {χ(v) | v ∈ N ′}, and for
a subset C ⊆ {1, . . . , 2k} we let χ−1(C) :=

⋃︁
c∈C χ

−1(c). In the following, we define
which arc-sets our algorithm finds for a fixed coloring.

Definition 6.24. Let N be a set of vertices and let χ : N → {1, . . . , 2k} be a coloring
of N . An arc set A ⊆ N ×N is called color-ordered for χ if

a) every color class χ−1(c) contains at most one vertex v with PA
v ̸= ∅.

b) there exists an ordering (c1, . . . , c2k) of the colors 1, . . . , 2k such that every
(v, w) ∈ A satisfies v ∈ χ−1(ci) and w ∈ χ−1(cj) for some i < j.

Consider the following auxiliary problem.
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Colored (Π0 + e)-Skeleton BNSL
Input: A set of vertices N , local scores F = {fv | v ∈ N}, two integers t, k ∈
N0, and a coloring χ : N → {1, . . . , 2k}.
Question: Is there an (N,F , t)-valid arc set A ⊆ N ×N of size at most k
that is color-ordered for χ?

Recall that the intuitive idea behind the color coding algorithm is to randomly
color the vertices of N with 2k colors and find a solution A satisfying a constraint
regarding the random coloring. Colored (Π0+e)-Skeleton BNSL is the problem
that we solve after we randomly choose a coloring. The correspondence between (Π0+
e)-Skeleton BNSL and its colored version is stated in the following proposition.

Proposition 6.25. Let I = (N,F , t, k) be an instance of (Π0 + e)-Skeleton
BNSL. If I is a yes-instance of (Π0 + e)-Skeleton BNSL, then there exist at
least (2k)!(2k)(n−2k) colorings χ : N → {1, 2, . . . , 2k} such that (N,F , t, k, χ) is a
yes-instance of Colored (Π0 + e)-Skeleton BNSL.

Proof. Let I be a yes-instance of (Π0 + e)-Skeleton BNSL. Then, there exists
an (N,F , t)-valid arc set A with |A| ≤ k. Observe that |A| ≤ k implies that at
most 2k vertices of N are endpoints of arcs in A.

We define a set X of colorings ofN such that χ ∈ X if χ assigns all vertices incident
with arcs of A to pairwise distinct colors. Since at most 2k vertices are endpoints
of arcs in A, we conclude that |X| ≥ (2k)!(2k)(n−2k). Let I ′ := (N,F , t, k, χ) be an
instance of Colored (Π0 + e)-Skeleton BNSL for some arbitrary χ ∈ X. We
show that A is a solution of I ′. Recall that A is (N,F , t)-valid, so it remains to show
that A is color-ordered for χ.

Since all endpoints of arcs in A have pairwise distinct colors under χ, at most one
vertex in each color class χ−1(c) has a non-empty parent set. LetD′ := (N ′, A) be the
subgraph we obtain when removing all isolated vertices from (N,A). Then, D′ has at
most 2k vertices. Consider a topological ordering τ := (v1, . . . , v|N ′|) of the DAG D′.
Since the vertices of N ′ belong to pairwise different color classes, there exists a color
sequence (c1, . . . , c2k) where vi ∈ χ−1(ci) for all i ∈ {1, . . . , |N ′|}. Let (v, w) ∈ A.
Since τ is a topological ordering of D′ we have v ∈ χ−1(ci) and w ∈ χ−1(cj) for
some i < j Thus, A is color loyal for χ. Consequently, I ′ is a yes-instance of Colored
(Π0 + e)-Skeleton BNSL.

We next show that Colored (Π0 + e)-Skeleton BNSL parameterized by k is
fixed-parameter tractable.

Proposition 6.26. Colored (Π0 + e)-Skeleton BNSL can be solved in O(4k ·
k2n2δF) time.
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Proof. Intuition. Before we present the algorithm, we provide some intuition. Given
a subset C ′ of colors and an integer k′ we want to compute the best color-ordered
arc set on χ−1(C) with at most k arcs. Our algorithm builds the ordering from
Definition 6.24 b) in a bottom-up manner by computing suffixes of the ordering. It
starts with an empty ordering and then adds the next color c ∈ C ′ and finds the
vertex v ∈ χ−1(c) that may choose a non-empty parent set by Definition 6.24 a). We
then combine every possible choice of a parent set P of v with a solution on χ−1(C \
{c}) that has at most k′ − |P | arcs.

Algorithm. Let I = (N,F , t, k, χ) be an instance of Colored (Π0+e)-Skeleton
BNSL and let C := {1, 2, . . . , 2k} denote the set of colors. We fill a dynamic pro-
gramming table T with entries of type T [C ′, k′] where C ′ ⊆ C and k′ ∈ {0, 1, . . . , k}.
Every entry stores the maximum value of the sum

∑︁
v∈χ−1(C′) fv(P

A
v ) over all pos-

sible DAGs D = (N,A), where A ⊆ χ−1(C ′) × χ−1(C ′) is color-ordered for χ
and contains at most k′ arcs. We set T [{c}, k′] :=

∑︁
w∈χ−1(c) fw(∅) = 0 for ev-

ery c ∈ C and k′ ∈ {0, 1, . . . , 2k}. The recurrence to compute the entry for C ′ ⊆ C
with |C ′| > 1 is

T [C ′, k′]

:= max
c∈C′

max
v∈χ−1(c)

max
P∈PF (v)
|P |≤k′

χ(P )⊆C′\{c}

T [C ′ \ {c}, k′ − |P |] + fv(P ) +
∑︂

w∈χ−1(c)\{v}

fw(∅).

The result can be computed by checking if T [C, k] ≥ t. Note that the corresponding
network can be found via traceback. The correctness proof is straightforward and
thus omitted.

Running Time. We next consider the running time. The size of T is O(22k · k).
Note that we may assume

∑︁
w∈χ−1(c)\{v} fw(∅) = 0 by Proposition 6.4. Therefore,

each entry can be computed in O(2k · n2 · δF) time by iterating over all 2k possible
colors c, all O(n) vertices v in the corresponding color class, and all O(δFn) vertices
in possible parent sets of v. Altogether, Colored (Π0 + e)-Skeleton BNSL can
be solved in O(4kk2n2δF) time.

Propositions 6.25 and 6.26 give the following.

Theorem 6.27. There exists a randomized algorithm for (Π0+e)-Skeleton BNSL
that, in O((2e)2k · k2n2δF) time returns no, if given a no-instance and returns yes
with probability at least 1− 1

e
, if given a yes-instance.

Proof. Algorithm. We describe the randomized algorithm applied on an instance I =
(N,F , t, k). Repeat the following two steps e2k times independently:
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1. Color the vertices ofN uniformly at random with colors from the set {1, . . . , 2k}.
Let χ : N → {1, . . . , 2k} be the resulting coloring.

2. Apply the algorithm behind Proposition 6.26 to decide if (N,F , t, k, χ) is a
yes-instance of Colored (Π0 + e)-Skeleton BNSL. If this is the case, then
return yes.

If for none of the e2k applications the answer yes was returned in Step 2, then
return no.

Running Time. We first consider the running time of the algorithm. By Propo-
sition 6.26, one application of the algorithm described above can be performed
in O(22k ·k2n2δF) time. Thus, the overall running time of the algorithm is O((2e)2k ·
k2n2δF) as claimed.

Error Probability. We next analyze the error probability of the algorithm. This
is a standard analysis in context of color coding [7]. Given a no-instance, there ex-
ists no (N,F , t)-valid arc set A with |A| ≤ k and therefore the answer no is always
returned in Step 2. Otherwise, given a yes-instance I, we conclude from Proposi-
tion 6.25 that there exist at least (2k)!(2k)(n−2k) colorings χ such that (N,F , t, k, χ) is
a yes-instance of Colored (Π0+e)-Skeleton BNSL. The probability of randomly
choosing such coloring χ is at least

(2k)!(2k)(n−2k)

(2k)n
≥ e−2k.

Since we repeat the algorithm independently e2k times, the probability that no
is returned is at most

(1− e−2k)e
2k ≤ (e−e

−2k

)e
2k

=
1

e
,

where the first inequality relies on the inequality 1 + x ≤ ex. Consequently, our
algorithm returns yes with probability at least 1− 1

e
.

By repeating the algorithm from Theorem 6.27 c times (for some constant c) and
returning the arc set with maximum score among all resulting arc sets, the error
probability is at most

(︁
1
e

)︁c
. This way, one can solve (Π0+e)-Skeleton BNSL with

an arbitrarily small error probability by keeping a running time bound of O((2e)2k ·
k2n2δF), since c is a constant. It is also possible to derandomize the algorithm by
using standard techniques [136, 38]. This way, one adds a factor of kO(log(k)) to the
running time.

187



Chapter 6. Learning Sparse Network Structures

Corollary 6.28. (Π0+e)-Skeleton BNSL can be solved in (2e)2k ·kO(log(k)) · |I|O(1)

time.

A bound on the number of arcs appears to be not so relevant for practical use.
However, the algorithm might be useful as a heuristic upper bound: If we want to
add a restricted number of dependencies to a given Bayesian network, the result of
(Π0 + e)-Skeleton BNSL gives an upper bound for the profit we can expect from
that modification: Consider a network structure (N,A) and one wants to add up to ℓ
arcs to A to obtain an arc set that has maximum score among all arc sets A′ of size
at most |A|+ℓ with A ⊆ A′. An upper bound for the resulting score can be found by
computing the best possible arc set with |A|+ ℓ arcs by solving (Π0 + e)-Skeleton
BNSL.

Note that the problem described above becomes polynomial-time tractable if we
aim to obtain a score larger than score(A) instead of maximizing the score. This
holds, since the score of A can be increased if and only if the local score of one
parent set PA

v can be increased by replacing it with a vertex set P with PA
v ⊆ P

and |P \ PA
v | ≤ ℓ [141].

6.5.2 (Π0 + e)-Moral BNSL

We now study a version of BNSL where we aim to learn a network whose moralized
graph has a bounded number of edges. Formally, this is the (Π0+ e)-Moral BNSL
problem, where Π0 is the class of edgeless graphs.

Observe that there is a simple XP-time algorithm that solves (Π0 + e)-Moral
BNSL when parameterized by k: Let I = (N,F , t, k) be an instance of (Π0 + e)-
Moral BNSL. If (N,A) is a Bayesian network whose moralized graph has k or less
edges, then |A| ≤ k. We can find A by iterating over all O(n2k) possible arc sets A
with |A| ≤ k. More efficiently, if we consider the directed superstructure SF⃗ =
(N,AF) we can instead iterate over all possible subsets A′ ⊆ AF with |A′| ≤ k.
Afterwards, we check if A′ is (N,F , t)-valid and ifM(N,A′) ∈ Π0+ke. This implies
the following.

Proposition 6.29. (Π0+e)-BNSL can be solved in mk ·|I|O(1) time where m denotes
the number of arcs in the directed superstructure.

To put this simple XP-time algorithm into context, we show that (Π0+e)-BNSL
is W[1]-hard when parameterized by t+ k. Hence, there is little hope that (Π0 + e)-
BNSL is FPT for t+ k.
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x

w{1,3} w{2,3}

w{1,2}

V3

V1 V2

v1

v2

v3

Figure 6.3: An example of the construction given in the proof of Theorem 6.30. The
original instance contains a multicolored clique on the vertices v1 ∈ V1, v2 ∈ V2, and v3 ∈ V3.
The directed edges represent the arcs of a DAG with score 3 such that the moralized graph
contains 15 edges. The dotted edges correspond to the moralized edges.

Theorem 6.30. (Π0+ e)-Moral BNSL is W[1]-hard when parameterized by t+k,
even when SF⃗ is a DAG, the maximum parent set size is 3, and every local score is
either 1 or 0.

Proof. We prove W[1]-hardness by giving a parameterized reduction from Multi-
colored Clique. Recall that inMulticolored Clique one is given a graph G =
(V,E) together with a partition (V1, . . . , Vℓ) of V , where every Vr is an independent
set. The question is if there exists a multicolored clique in G, that is, a clique con-
taining one vertex from each set Vr. Multicolored Clique is W[1]-hard when
parameterized by ℓ [147, 57].

Construction. Let G = (V,E) with partition (V1, . . . , Vℓ) be an instance of Mul-
ticolored Clique. We describe how to construct an equivalent instance I =
(N,F , t, k) of (Π0 + e)-Moral BNSL from G.

First, we define the vertex set N . Every vertex v ∈ V becomes a vertex in N
and for every pair {Vi, Vj} with i ̸= j, we add a vertex w{i,j} to N . Let W be the
set of all such vertices w{i,j}. Moreover, we add a vertex x to N to which we refer as
the central vertex throughout this proof.

Second, we define the local scores F . For every vertex u ∈ V ∪{x} and every P ⊆
N \ {u}, we set fu(P ) := 0. It remains to define the local scores for the vertices
in W . Let i, j ∈ {1, . . . , ℓ} with i ̸= j. We set fw{i,j}({u, v, x}) := 1 if there is an
edge {u, v} ∈ E connecting a vertex u ∈ Vi and v ∈ Vj. For all other sets P , we
set fw{i,j}(P ) := 0. Observe that the value of the local scores is either 0 or 1. We
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complete the reduction by setting t :=
(︁
ℓ
2

)︁
and k := 4

(︁
ℓ
2

)︁
+ℓ. Note that t+k ∈ O(ℓ2).

Observe that the maximum parent set size is 3 and the directed superstructure SF⃗
is a DAG since every vertex in V ∪ {x} has in-degree 0 in SF⃗ and every vertex in W
is a sink in SF⃗ . Figure 6.3 shows an example of the construction.

Intuition. Before we show the correctness of the reduction, we start with some
intuition. To obtain score t =

(︁
ℓ
2

)︁
, every vertex in W must choose a parent set with

score 1. Hence, every w{i,j} chooses a parent set {u, v, x} with u ∈ Vi and v ∈ Vj.
This choice represents the choice of an edge {u, v} ∈ E between the vertices u and v
of a multicolored clique in G. Considering the moralized graph of the resulting
Bayesian network, the bound on the number of edges gives a bound on the number
of moral edges that are incident with the central vertex x. This guarantees that the
chosen edges form a multicolored clique in the following sense: If the parent sets of
vertices in W do not correspond to the edges of a multicolored clique in G, then the
moralized graph has more than k = 4

(︁
ℓ
2

)︁
+ ℓ edges.

Correctness. We show that G is a yes-instance of Multicolored Clique if
and only if (N,F , t, k) is a yes-instance of (Π0 + e)-Moral BNSL.

(⇒) Let S := {v1, . . . , vℓ} with vi ∈ Vi for i ∈ {1, . . . , ℓ} be a multicolored clique
in G. We define the arc set A := {(vi, w{i,j}), (vj, w{i,j}), (x,w{i,j}) | w{i,j} ∈ W}. We
show that A is (N,F , t)-valid and that there are at most k edges inM(N,A).

Since the vertices of S are pairwise adjacent in G, we have fw{i,j}(P
A
w{i,j}

) = 1 for

every w{i,j} ∈ W and therefore scoreF(A) =
(︁
ℓ
2

)︁
= t. Moreover, (N,A) is a DAG

since SF⃗ is a DAG. Thus, A is (N,F , t)-valid.
It remains to check that there are at most k = 4 ·

(︁
ℓ
2

)︁
+ℓ edges inM(N,A). First,

we consider the number of arcs in (N,A). Since every vertex in W has three parents
in (N,A), we conclude |A| = 3 ·

(︁
ℓ
2

)︁
. Next, we consider the moral edges inM(N,A).

Let a, b ∈ N be two vertices that have a common child in (N,A). Observe that all
vertices in V \ S ∪W have out-degree 0 in (N,A). We conclude that a ∈ S ∪ {x}
and b ∈ S ∪ {x}. Then, there are at most |{{a, b} | a ∈ S, b ∈ S ∪ {x}}| =

(︁
ℓ
2

)︁
+ ℓ

moral edges. Hence, there are at most k = 4 ·
(︁
ℓ
2

)︁
+ ℓ edges inM(N,A).

(⇐) Conversely, let A ⊆ N × N be an (N,F , t)-valid arc set such that the
moralized graphM(N,A) has at most k = 4

(︁
ℓ
2

)︁
+ ℓ edges. We show that there exists

a multicolored clique S in G.

Since A is (N,F , t)-valid, we know that scoreF(A) =
(︁
ℓ
2

)︁
and thus fw{i,j}(P

A
w{i,j}

) =

1 for every w{i,j} ∈ W . By the construction of F this implies |PA
w{i,j}
| = 3 for

every w{i,j} ∈ W . We conclude |A| = 3
(︁
ℓ
2

)︁
. Hence, there are at most

(︁
ℓ
2

)︁
+ ℓ moral

edges inM(N,A).

Before we define the multicolored clique S, we take a closer look at the moral
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edges that are incident with vertices of V1, . . . , Vℓ. Let Vi and Vj be distinct color
classes. Then, since PA

w{i,j}
contains one vertex from Vi and one vertex from Vj, there

exists a moral edge between the vertices of Vi and Vj. Hence, there are at least
(︁
ℓ
2

)︁
moral edges between the sets V1, . . . , Vℓ. Now, since the overall number of moral
edges inM(N,A) is at most

(︁
ℓ
2

)︁
+ ℓ, we may conclude that there are at most ℓ moral

edges that are incident with the central vertex x. We use the following claim to
define a multicolored clique S in G.

Claim 1. For every class Vi it holds that |EM(N,A)(Vi, {x})| = 1.

Proof . Consider some class Vi. Note that there is no arc in A connecting x with
some vertices in Vi. So, EM(N,A)(Vi, {x}) contains only moral edges. For every j ∈
{1, . . . , ℓ} with j ̸= i, the vertex w{i,j} has a parent set PA

w{i,j}
containing some v ∈ Vi,

u ∈ Vj and x. Then, there exist moral edges {u, v}, {v, x}, and {u, x}. Therefore,
every class contains a vertex that is adjacent to x by a moral edge. Since there are
at most ℓ moral edges incident with x, we conclude |EM(N,A)(Vi, {x})| = 1. ♢

We now define S := {v1, v2, . . . , vℓ}, where vi is the unique element contained
in EM(N,A)(Vi, {x}). Note that this implies PA

w{i,j}
= {vi, vj, x} for all vi, vj ∈ S

with i ̸= j. We show that S is a multicolored clique in G. Obviously, the vertices
of S are elements of distinct color classes. Thus, it remains to show that the vertices
in S are pairwise adjacent in G. Let vi, vj ∈ S with i ̸= j. Then, PA

w{i,j}
= {vi, vj, x}

and since fw{i,j}(P
A
w{i,j}

) = 1 it follows from the construction of F that there is an

edge {vi, vj} ∈ E. Hence, S is a multicolored clique in G.

6.6 BNSL with a Bounded Feedback Edge Set

We now provide a first step into the study of the parameterized complexity of learning
a Bayesian network whose moralized graph has a feedback edge set of bounded size.
Formally, this is the (ΠF + e)-Moral BNSL problem, where ΠF is the class of
forests. Recall that for efficient inference it is desirable to have a small treewidth
in the moralized graph [40]. As all other parameters considered in this work, the
size of a feedback edge set is an upper bound for the treewidth. Thus, learning a
network where the moralized graph has a bounded feedback edge set is motivated
from a practical point of view.

Before we consider (ΠF+e)-Moral BNSL, we briefly discuss (ΠF+e)-Skeleton
BNSL. When k = 0, this is the problem of learning a Bayesian network with an
acyclic skeleton, also known as polytree. Finding an optimal polytree is NP-hard
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even on instances with maximum parent set size 2 [41]. Consequently, (ΠF + e)-
Skeleton BNSL is NP-hard even if k = 0 is fixed. If we consider the moralized
graph instead of the skeleton, the case k = 0 can be solved efficiently. This can
be seen as follows. Let D := (N,A) be a DAG such that M(D) is acyclic. Then,
each v ∈ N has at most one parent in D, since otherwiseM(D) contains a triangle.
Thus,D := (N,A) is a branching. Consequently, (ΠF+e)-Moral BNSL with k = 0
can be solved by computing an optimal branching which can be done in polynomial
time [32, 69].

Proposition 6.31. (ΠF + e)-Moral BNSL can be solved in polynomial time when
limited to instances with k = 0.

This positive result makes it interesting to study the parameterized complexity
of (ΠF +e)-Moral BNSL when parameterized by k. In the following, we provide a
first step into this parameterized complexity analysis and show that (ΠF+e)-Moral
BNSL is W[1]-hard when parameterized by k. Thus, (ΠF + e)-Moral BNSL is
presumably not FPT for k. However, an XP-time algorithm might still be possible.

Theorem 6.32. (ΠF + e)-Moral BNSL is W[1]-hard when parameterized by k,
even if SF⃗ is a DAG and the maximum parent set size is 4.

Proof. We give a parameterized reduction from (Π0 + e)-Moral BNSL parame-
terized by the number of edges k which is W[1]-hard even on instances where the
directed superstructure is a DAG and the maximum parent set size is 3 due to The-
orem 6.30.

Construction. Let I := (N,F , t, k) be such an instance of (Π0 + e)-Moral
BNSL. We describe how to construct an equivalent instance I ′ := (N ′,F ′, t′, k′)
of (ΠF + e)-Moral BNSL where k′ = k.

We define the vertex set by setting N ′ := N ∪ {x} for some x ̸∈ N . To define
the local scores F ′, we set ℓ+ := 1 +

∑︁
v∈N maxP⊆N\{v} fv(P ). For every v ∈ N

we set f ′
v(P ) = fv(P \ {x}) + ℓ+ if x ∈ P and P \ {x} ∈ PF(v). Otherwise,

we set f ′
v(P ) = 0. For the vertex x, we set f ′

x(P ) = 0 for every P . Finally, we
set t′ := t+ n · ℓ+.

We can obviously compute I ′ from I in polynomial time. Since I is an instance
where SF⃗ is a DAG and the maximum parent set size is 3, we conclude that the
maximum parent set size of I ′ is 4 and that SF ′⃗ is a DAG.

Intuition. Before we prove the correctness of the reduction we provide some
intuition. To obtain an (N ′,F ′, t′)-valid arc set A′, the vertex x must be a parent of
every vertex of N . Hence, for every v ∈ N , there exists an edge {x, v} inM(N ′, A′).
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The idea is thatM(N ′, A′) can be transformed into an acyclic graph by deleting all
edges between the vertices of N .

Correctness. We now prove that I is a yes-instance of (Π0 + e)-Moral BNSL
if and only if I ′ is a yes-instance of (ΠF + e)-Moral BNSL.

(⇒) Let A ⊆ N × N be an (N,F , t)-valid arc set such that M(D) for D :=
(N,A) contains at most k edges. We then define A′ := A ∪ {(x, v) | v ∈ N} and
let D′ := (N ′, A′). We show that A′ is (N ′,F ′, t′)-valid and M(D′) has a feedback
edge set of size at most k.

We first show that A′ is (N ′,F ′, t′)-valid. Since SF ′⃗ is a DAG we conclude that D

is a DAG. Moreover, PA′
v = PA

v ∪ {x} for every v ∈ N and therefore

scoreF ′(A′) =
∑︂
v∈N ′

f ′
v(P

A′

v ) =
∑︂
v∈N

(fv(P
A
v ) + ℓ+) = t+ n · ℓ+ = t′.

Consequently, D′ is (N ′,F ′, t′)-valid. It remains to show thatM(D′) has a feedback
edge set of size at most k. To this end, consider the following claim.

Claim 1. Let v, w ∈ N . Then, {v, w} is a moral edge inM(D) if and only if {v, w}
is a moral edge inM(D′).

Proof . Let {v, w} be a moral edge inM(D). Then, there exists a vertex u ∈ N such
that (v, u) ∈ A and (w, u) ∈ A. Since A ⊆ A′ we conclude that {v, w} is a moral
edge inM(D′).

Conversely, let {v, w} be a moral edge inM(D′). Then, v and w have a common
child u in D′. Since x has no incoming arcs, we conclude u ∈ N and therefore (v, u) ∈
A and (w, u) ∈ A. Thus, {v, w} is a moral edge inM(D). ♢

Claim 1 together with the fact that (N ×N)∩A′ = A implies that v, w ∈ N are
adjacent in M(D) if and only if they are adjacent in M(D′). Hence, if we delete
every edge ofM(D) fromM(D′) we obtain the graph G := (N ′, {{x, v} | v ∈ N})
which is acyclic. Since there are at most k edges inM(D), we conclude that there
exists a feedback edge set of size at most k forM(D′).

(⇐) Conversely, let A′ be an (N ′,F ′, t′)-valid arc set such thatM(D′) for D′ :=
(N ′, A′) has a feedback edge set of size at most k. We define A := (N × N) ∩ A′.
Note that PA

v = PA′
v \ {x} for every v ∈ N .

We first show that D := (N,A) is (N,F , t)-valid. Obviously, D is a DAG since SF⃗
is a DAG. Moreover, it holds that

scoreF(A) =
∑︂
v∈N

fv(P
A
v ) =

∑︂
v∈N

fv(P
A′

v \ {x}) = t′ − n · ℓ+ = t.
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Consequently, D is (N,F , t)-valid. It remains to show that there are at most k edges
in M(D). To this end, observe that x ∈ PA′

v for every v ∈ N : If there exists a
vertex w ∈ N with x ̸∈ PA′

w , then f ′
w(P

A′
w ) = 0 and therefore the sum of the local

scores is smaller than n · ℓ+. This contradicts the fact that A′ is (N ′,F ′, t′)-valid.
Next, assume towards a contradiction that there are at least k edges in M(D).

Then, inM(D′) there are at least k+1 edges between the vertices ofN . Furthermore,
since x ∈ PA′

v for every v ∈ N we conclude that every vertex in N is adjacent to x
inM(D′). Hence,M(D′) consists of n+1 vertices and at least n+k+1 edges which
contradicts the fact thatM(D′) has a feedback edge set of size at most k.

6.7 On Problem Kernelization

We now study problem kernelization for Vanilla-BNSL and constrained BNSL
problems. We show that under the standard assumption NP ̸⊆ coNP/poly,Vanilla-
BNSL does not admit a polynomial problem kernel when parameterized by the num-
ber of vertices. The kernel lower bound even holds for instances where all local scores
are either 0 or 1. Thus, the kernel lower bound is not based on the fact that large
local scores might be incompressible.

We then use the kernel lower bound for Vanilla-BNSL to complement the FPT
result from Corollary 6.28 and show that there is little hope that (Π0+e)-Skeleton
BNSL admits a polynomial problem kernel.

Theorem 6.33. Vanilla-BNSL parameterized by n+t does not admit a polynomial
kernel unless NP ⊆ coNP/poly even when restricted to instances where all local scores
are either 0 or 1.

Proof. We describe a polynomial parameter transformation from Multicolored
Independent Set. Recall that in Multicolored Independent Set one is
given a graph G = (V,E) together with a partition (V1, . . . , Vℓ) of V , where every Vr
is an independent set. The question is, if there exists a multicolored independent set
in G, that is, an independent set containing one vertex from each set Vr. Multicol-
ored Independent Set does not admit a polynomial kernel when parameterized
by
∑︁ℓ−1

r=1 |Vr| due to Proposition 1.4.
Construction. Let G = (V,E) be an instance of Multicolored Independent

Set with the color classes V1, . . . , Vℓ. We describe how to construct an equivalent
instance (N,F , t) of Vanilla-BNSL. First, set N := V1 ∪ V2 ∪ · · · ∪ Vℓ−1 ∪ {x} for
some x ̸∈ V . Second, we define the local scores F as follows: Let i ∈ {1, . . . , ℓ− 1}.
For each v ∈ Vi we set fv(P ) = 1 if P = (Vi\{v})∪(NG(v)\Vℓ)∪{x}. Otherwise, we
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set fv(P ) = 0. For x, we set fx(P ) = 1 if there exists some w ∈ Vℓ with NG(w) = P .
Otherwise, we set fx(P ) = 0. Finally, we set t := ℓ.

Observe that the value of the local scores is either 1 or 0, and that there are
exactly |V | values where fv(P ) = 1. Hence, |F| ∈ O(|V |). We can obviously
compute (N,F , t) in polynomial time from G. Furthermore, recall that |N | = |V1 ∪
· · · ∪ Vℓ−1|+ 1 and therefore, n+ t is polynomially bounded in

∑︁ℓ−1
r=1 |Vr|.

Intuition: Before we show the correctness of the polynomial parameter trans-
formation, we provide some intuition. To reach the score ℓ, exactly one vertex per
color class V1, . . . , Vℓ−1 and the vertex x must learn a parent set with score 1. The
vertices from V1, . . . , Vℓ−1 and the choice of the parent set of x then correspond to
a multicolored set in G. The condition that the resulting directed graph must be a
DAG guarantees that the chosen vertices form an independent set.

Correctness. We show that G contains a multicolored independent set if and only
if (N,F , t) is a yes-instance of Vanilla-BNSL.

(⇒) Let S = {v1, . . . , vℓ} be a multicolored independent set in G with vi ∈ Vi for
all i ∈ {1, . . . , ℓ}. We define the arc set A by defining the parent sets of all vertices
in N : For all v ∈ N \{v1, . . . , vℓ−1} we set PA

v := ∅. Next, for each vi ∈ {v1, . . . , vℓ−1}
we set PA

vi
:= (Vi \ {vi}) ∪ (NG(vi) \ Vℓ) ∪ {x}. Finally, we set PA

x = NG(vℓ). We
now prove that A is (N,F , t)-valid. By the definition of F , we have fv(P

A
v ) = 1 for

every v ∈ {v1, . . . , vℓ−1, x}. Hence, scoreF(A) = t.
It remains to show that D := (N,A) is a DAG. If D contains a directed cy-

cle, all vertices on the directed cycle have incoming and outgoing arcs. Observe
that v1, . . . , vℓ−1, and x are the only vertices with incoming arcs.

We first prove that every v ∈ {v1, . . . , vℓ−1} is a sink in D. Assume towards a
contradiction that there is some v ∈ {v1, . . . , vℓ−1} with an outgoing arc (v, w) ∈
A. Without loss of generality, let v = v1. Since v1 ̸∈ PA

v1
and only the ver-

tices v1, v2, . . . , vℓ−1, x have parents under A, we conclude w ∈ {v2, . . . , vℓ−1, x}.
If w ∈ {v2, . . . , vℓ−1}, then v ∈ PA

w and therefore v ∈ NG(w). Otherwise, if w = x,
then v ∈ PA

x and therefore v ∈ NG(vℓ). Both cases contradict the fact that S is an
independent set in G and therefore every v ∈ {v1, . . . , vℓ−1} is a sink in D.

We conclude that x is the only vertex that may have incoming and outgoing arcs
in D. Then, D is a DAG since x ̸∈ PA

x .
(⇐) Let A be an (N,F , t)-valid arc set. We show that there exists a multicolored

independent set S in G. To this end, consider the following claim.

Claim 1. For every Vi with i ∈ {1, . . . , ℓ − 1} there is exactly one vertex vi ∈ Vi
with fvi(P

A
vi
) = 1.

Proof . Since all local scores are either 0 or 1 and since score(A) = ℓ, there are at
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least ℓ− 1 vertices of V1 ∪ · · · ∪Vℓ−1 that have a parent set of score 1 under A. Next,
assume towards a contradiction that there are distinct vertices u ∈ Vi and v ∈ Vi
with fu(P

A
u ) = fv(P

A
v ) = 1 for some i ∈ {1, . . . , ℓ − 1}. Then, by the construction

of F , we know that Vi\{u} ⊆ PA
u and Vi\{v} ⊆ PA

v . Hence (u, v) ∈ A and (v, u) ∈ A
which contradicts the fact that (N,A) is a DAG. ♢

By Claim 1 there are unique vertices v1, . . . , vℓ−1 with vi ∈ Vi and fvi(PA
vi
) = 1.

Furthermore, since score(A) = ℓ we have fx(P
A
x ) = 1. Then, fx(P

A
x ) = 1 implies that

there exists a vertex vℓ ∈ Vℓ with NG(vℓ) = PA
x . We define S := {v1, . . . , vℓ−1, vℓ}

and show that S is a multicolored independent set in G.
Obviously, the vertices of S are from pairwise distinct color classes. Thus, it

remains to show that no two vertices in S are adjacent in G. Assume towards a
contradiction that there exist v ∈ S and w ∈ S such that {v, w} ∈ E. Without loss
of generality, let v = v1. Consider the following cases.

Case 1: w ∈ {v2, . . . , vℓ−1}. Then, {v, w} ∈ E implies w ∈ NG(v) \ Vℓ
and v ∈ NG(w) \ Vℓ. Together with the fact that fv(P

A
v ) = fw(P

A
w ) = 1 we con-

clude that (v, w) ∈ A and (w, v) ∈ A which contradicts the fact that (N,A) is
a DAG.

Case 2: w = vℓ. Then, {v, w} ∈ E implies v ∈ NG(w) and therefore v ∈
PA
x . Moreover fv(P

A
v ) = 1 implies x ∈ PA

v . Hence, (v, w) ∈ A and (w, v) ∈ A
contradicting the fact that (N,A) is a DAG.

Consequently, S is a multicolored independent set in G.

We may also use Theorem 6.33 to complement the FPT result for (Π0 + e)-
Skeleton BNSL by a kernel lower bound for constrained BNSL problems. Con-
sider an arbitrary constrained BNSL problem for some monotone and infinite graph
class Π. Recall that, if k = n2 the sparsity constraint always holds. Thus, the con-
strained BNSL problem is the same as Vanilla-BNSL on instances with k = n2.
Together with the kernel lower bound from Theorem 6.33, this implies the following.

Corollary 6.34. Let Π be a monotone graph class that contains infinitely many
graphs. Then, each constrained BNSL problem for Π parameterized by n+ k+ t does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

6.8 Concluding Remarks

We have outlined the tractability borderline of Bayesian Network Structure
Learning with respect to several structural constraints on the learned network or
on its moralized graph. In context of this work, this chapter initialized our study of
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BNSL with a broad study on constrained BNSL problems. In the remaining chapters
of this work, we provide a study of further specific variants of BNSL that also fit
into the framework of constrained BNSL problems.

Open Questions. The two most important concrete questions left open by our
work are the following. First, can we compute an optimal network where the skeleton
has dissociation number at most k in XP-time for k? In case of the moralized
graph, our algorithm is based on the observation that every vertex of the dissociation
set has at most two ancestors outside the dissociation set. This does not hold for
the dissociation set of the skeleton. Second, can we compute an optimal network
structure whose moralized graph has a feedback edge set of size at most k in XP-
time for k? Observe that if the moralized graph has a feedback edge set of size
most k, the network structure has at most k vertices with more than one parent.
This fact might be exploited to obtain an XP algorithm. For both open questions we
have shown W[1]-hardness of the corresponding problem which presumably implies
that FPT algorithms do not exist. However, XP algorithms might still exist.

Another interesting topic is to compare the (parameterized) complexity of con-
strained BNSL problems for the skeleton and the moralized graph. We have shown
that restricting the number of edges on the moralized graph may make the problem
harder than putting the same constraints on the skeleton. This is somewhat coun-
terintuitive since the moralized graph is a supergraph of the underlying undirected
graph of the network. On the other side, learning a network where the moralized
graph is acyclic can be done in polynomial time [32, 69], while putting the same
constraint on the skeleton makes the problem NP-hard [41]. It seems interesting
to investigate this issue further, that is, to understand which structural constraints
make the problem harder when putting them on the moralized graph instead of the
skeleton and vice versa.

When it comes to the parameterized complexity of constrained BNSL problems,
one may ask for further interesting parameters besides k. A next step could be to
consider parameters that have previously been studied for Vanilla-BNSL. An in-
teresting class of possible parameters are structural parameters of the directed or
undirected superstructure: recall that Vanilla-BNSL is XP when parameterized
by the treewidth of the undirected superstructure [141], W[1]-hard when parameter-
ized by the vertex cover number of the undirected superstructure, and FPT when
parameterized by the feedback edge number of the undirected superstructure [65].
An open question is, whether the positive results for Vanilla-BNSL can be adapted
for constrained BNSL problems. As an example, consider the problem of learning a
Bayesian network structure with a feedback edge set of size at most k in the skeleton.

197



Chapter 6. Learning Sparse Network Structures

Recall that this problem is NP-hard even if k = 0 [41]. An interesting starting point
might be to investigate whether this version of BNSL is FPT for the feedback edge
number of the superstructure. Let ℓ be the feedback edge number of the undirected
superstructure. If k ≥ ℓ, every potential solution has a feedback edge number of at
most k and thus, one may use the FPT algorithm for Vanilla-BNSL parameterized
by ℓ to handle this case. Furthermore, the problem is FPT for ℓ in case of k = 0 [65].
Thus, it might be interesting to consider cases where 0 < k < ℓ.

The superstructures can be seen as auxiliary graphs that display the structure
of instances of constrained BNSL problems. It is interesting to investigate whether
one can think of further such auxiliary graphs and study structural parameters of
these graphs. Recall that an arc (u, v) in the directed superstructure means that u
is in a potential parent set P of v. However, the directed superstructure provides
no information on which other vertices are elements of P . Such information may be
captured in a bipartite auxiliary graph G = (N∪X,E), where N is the set of vertices
in the BNSL instance and X is the family of all potential parent sets. There is an
edge {v, P} if and only if P contains v. It might be interesting to consider structural
parameters of G as possible parameterizations for constrained BNSL problems. Note
that |X| might be exponential in the number of vertices of the input instance, but
is bounded in the encoding size of the local scores and therefore not bigger than the
total size of an instance.

Finally, it is important to analyze how well the algorithms for (Π0+v)-Skeleton
BNSL and (Π1 + v)-Moral BNSL perform on benchmark data sets. This way,
one could extend the work of Korhonen and Parviainen [113] who experimentally
evaluated the performance of their XP algorithm for (Π0 + v)-Moral BNSL. With
reasonable vertex cover number bounds their algorithm scales up to instances with
about 15 vertices. They also experimentally evaluate an ILP formulation for (Π0+v)-
Moral BNSL which scales up to about 60 vertices for reasonable vertex cover
bounds. Their experiments also showed that network structures with a moderate
vertex cover number (for example 7 or 6) in the moralized graph tend to have higher
scores than optimal branchings. Do network structures with a dissociation number s
in the moralized graph have a significantly higher score than network structures with
vertex cover number s in the moralized graph?
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Learning Optimal Polytrees

Learning Bayesian networks under sparsity constraints is a computationally hard
task even on very restricted instances as we have shown in the previous chapter.
One of the earliest sparsity constraints that has received attention is to require that
the network structure is a branching. A branching is a DAG where every vertex
has at most one parent. In other words, every connected component is a directed
out-tree. Learning a branching and performing Bayesian inference on branchings can
be done in polynomial time [32, 69, 144].

Branchings are, however, very limited in their modeling power since every vari-
able may depend only on at most one other variable. To overcome this problem, a
generalization of branchings called polytrees has been proposed [41]. A polytree is a
DAG whose skeleton is a forest. Recall that the skeleton of a DAG is its underly-
ing undirected graph. On the positive side, polytrees have a higher modeling power
than branchings while the inference task maintains polynomial-time tractable on
them [144, 84]. However, on the negative side, Polytree Learning, the problem
of learning an optimal polytree structure from parent scores is NP-hard [41]. Poly-
trees have been used, for example, in image-segmentation for microscopy data [53].
In this chapter, we study exact algorithms for Polytree Learning.

Related Work. Polytree Learning is NP-hard even if every parent set with
strictly positive score has size at most 2 [41]. Motivated by the contrast between the
NP-hardness of Polytree Learning and the fact that learning a branching has a
polynomial-time algorithm, the problem of optimally learning polytrees that are close
to branchings has been considered. More precisely, it has been shown that the best
polytree among those that can be transformed into a tree by at most k edge deletions
can be found in nO(k)|I|O(1) time [69, 157] where n is the number of variables and |I|
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is the overall input size. Thus, the running time of these algorithms is polynomial for
every fixed k. As noted by Gaspers et al. [69], a brute-force algorithm for Polytree
Learning would need to consider nn−2 · 2n−1 directed trees [25].

Our Results. We obtain an algorithm that solves Polytree Learning in 3n ·
|I|O(1) time. This is the first algorithm for Polytree Learning where the running
time is singly-exponential in the number of vertices n. This is a substantial improve-
ment over the brute-force algorithm mentioned above, thus positively answering a
question of Gaspers et al. [69] on the existence of such algorithms. We then show
that Polytree Learning has—just like Vanilla-BNSL—no polynomial kernel
for n unless NP ⊆ coNP/poly.

We then consider a parameter that is potentially smaller than n and determine
whether Polytree Learning can be solved efficiently when this parameter is small.
The parameter d, which we call the number of dependent vertices, is the number of
vertices v for which at least one entry of fv is strictly positive. The parameter
essentially counts how many variables might receive a nonempty parent set in an
optimal solution. We show that Polytree Learning is XP and W[1]-hard for d.
Consequently, in order to obtain FPT results for the parameter d, one needs to
consider further restrictions on the structure of the input instance. We make a first
step in this direction and consider the case where all parent sets with a strictly
positive score have size at most p. Using this parameterization, we show that every
input instance can be solved in 2ωdp · |I|O(1) time where ω is the matrix multiplication
constant. With the current-best known value for ω [179] this gives a running time
of 5.18dp · |I|O(1). We then consider again data reduction approaches. This time we
obtain a positive result: Any instance of Polytree Learning where p is constant
can be reduced in polynomial time to an equivalent one of size dO(1). Informally, this
means that if the instance has only few dependent variables, the parent sets with
strictly positive score are small, and there are many non-dependent variables, then we
can identify some non-dependent variables that are irrelevant for an optimal polytree
representing the input data. We note that this result is tight in the following sense:
By the kernel lower bound for parameterization by n, it is presumably impossible to
replace each input instance in polynomial time by an equivalent one with (d+ p)O(1)

variables. Thus, the assumption that p is a constant is necessary.

Problem Definition. Given a vertex set N , recall that a family F := {fv :
2N\{v} → N0 | v ∈ N} is a family of local scores for N . Given a directed graph D :=
(N,A) we define scoreF(A) :=

∑︁
v∈N fv(P

A
v ). We may omit the subscript F if the lo-

cal scores are clear from the context. Recall that a polytree is a DAG whose skeleton
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is acyclic. The problem is formally defined as follows.

Polytree Learning
Input: A set of vertices N , local scores F = {fv | v ∈ N}, and an inte-
ger t ∈ N0.
Question: Is there an arc set A ⊆ N × N such that (N,A) is a polytree
and score(A) ≥ t?

Let ΠF be the class of acyclic graphs. Then, speaking in terms of Chapter 6,
Polytree Learning corresponds to (ΠF + v)-Skeleton BNSL on instances
where k = 0. Given an instance I := (N,F , t) of Polytree Learning, an arc
set A is a solution of I if (N,A) is a polytree and score(A) ≥ t.

Analogously to the constrained BNSL problems studied in Chapter 6, we assume
that the local scores F are given in non-zero representation. Thus, fv(P ) is only part
of the input if it is different from 0. For N = {v1, . . . , vn}, the local scores F are
represented by a two-dimensional array [Q1, Q2, . . . , Qn], where each Qi is an array
containing all triples (fvi(P ), |P |, P ) where fvi(P ) > 0. The size |F| is defined as the
number of bits needed to store this two-dimensional array. Given an instance I :=
(N,F , t), we define |I| := n+ |F|+ log(t).

Recall that for a vertex v, the set PF(v) := {P ⊆ N \ {v} | fv(P ) > 0} ∪ {∅} is
the set of potential parents of v. By Proposition 6.4, we may assume without loss of
generality that fv(∅) = 0 for every v ∈ N . Given a yes-instance I := (N,F , t)
of Polytree Learning, there exists a solution A such that PA

v ∈ PF(v) for
every v ∈ N by Proposition 6.3. The running times presentend in this chap-
ter will also be measured in the maximum number of potential parent sets δF :=
maxv∈N |PF(v)| [141].

7.1 Parameterization by the Number of Vertices

We study the complexity of Polytree Learning when parameterized by n, the
number of vertices. Note that there are up to n · 2n−1 entries in F and thus, the
total input size of an instance of Polytree Learning might be exponential in n.
On the positive side, we show that the problem can be solved in 3n · |I|O(1) time. On
the negative side, we complement this FPT algorithm by proving that Polytree
Learning does not admit a polynomial kernel when parameterized by n.

Theorem 7.1. Polytree Learning can be solved in 3n · |I|O(1) time.

Proof. We first describe the algorithm, and afterwards, we analyze the running time.
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P p1 p2 p3 p4 p5

v

S

Figure 7.1: Illustration of an entry T [v, P, S, i] where i = 3. The vertices p4 and p5 are
only incident with the arcs (p4, v) or (p5, v), respectively.

Algorithm. Let I := (N,F , t) be an instance of Polytree Learning. We
describe a dynamic programming algorithm to solve I. We suppose an arbitrary fixed
total ordering on the vertices of N . For every P ⊆ N , and every i ∈ {1, . . . , |P |}, we
denote with pi the ith-smallest element of P according to the total ordering.

The dynamic programming table T has entries of type T [v, P, S, i] with v ∈
N , P ∈ PF(v), S ⊆ N \ (P ∪ {v}), and i ∈ {0, . . . , |P |}. Each entry stores the
maximal score of an arc set A of a polytree on {v} ∪ P ∪ S where

a) v has no children,

b) v learns exactly the parent set P under A, and

c) for each j ∈ {i+ 1, . . . , |P |}, only the arc (pj, v) is incident with pj under A.

Figure 7.1 shows an illustration of a table entry.
We initialize the table T by setting T [v, P, ∅, i] := fv(P ) for all v ∈ N , P ∈ PF(v),

and i ∈ {0, . . . , |P |}. Intuitively, we compute an entry for S ̸= ∅ and i ≥ 1 by
considering every partition of S into S ′ and S \ S ′ and combine the best possible
polytree on the vertex set S ′∪{pi} with the polytree on the vertex set P∪(S\S ′)∪{v}
that corresponds to a table entry with i − 1. Formally, the recurrence to compute
an entry for S ̸= ∅ and i ≥ 1 is

T [v, P, S, i] :=max
S′⊆S

T [v, P, S \ S ′, i− 1]

+ max
v′∈S′∪{pi}

max
P ′∈PF (v′)
P ′⊆S′∪{pi}

T [v′, P ′, (S ′ ∪ {pi}) \ (P ′ ∪ {v′}), |P ′|].
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Note that the two vertex sets P ∪ (S \S ′)∪{v} and P ′∪ (S ′∪{pi})\ (P ′∪{v′})∪
{v′} = S ′ ∪ {pi} share only the vertex pi. Hence, combining polytrees on these two
vertex sets results in a polytree.

In case of i = 0, all vertices pj are only incident with the arc (pj, v). Thus,
the polytree corresponding to an entry T [v, P, S, 0] is the disjoint union of the arc
set P × v and the best polytree on S. The recurrence to compute an entry for S ̸= ∅
and i = 0 is

T [v, P, S, 0] := fv(P ) + max
v′∈S

max
P ′∈PF (v′)
P ′⊆S

T [v′, P ′, S \ (P ′ ∪ {v′}), |P ′|].

Since the two vertex sets P ∪ {v} and S are disjoint, combining the polytree with
edge set P × v and the best polytree on vertex set S results in a polytree.

The result can be computed by checking if T [v, P,N \ (P ∪ {v}), |P |] ≥ t for
some v ∈ N and some P ∈ PF(v). The corresponding polytree can be found via
traceback. The correctness proof is straightforward and thus omitted.

Running Time. For every fixed set S, the dynamic programming table T has at
most δF · n · (n+ 1) entries. Each entry can be computed in O(2|S| · |I|) time. Thus,
all entries can be computed in

∑︁n
i=0

(︁
n
i

)︁
2i ·O(n2 · δF · |I|) = 3n ·O(n2 · δF · |I|) time in

total. To evaluate if there is some v ∈ N and some P ∈ PF(v) such that T [v, P,N \
(P ∪ {v}), |P |] ≥ t can afterwards be done in O(n · δF) time. Consequently, the
algorithm runs in O(3n · |I|O(1)) time.

We also obtain a kernel lower bound for Polytree Learning parameterized
by n. The proof is a slight adaption of the proof the kernel lower bound for Vanilla-
BNSL parameterized by n (Theorem 6.33).

Theorem 7.2. Polytree Learning does not admit a polynomial kernel when
parameterized by n unless NP ⊆ coNP/poly even when restricted to instances where
the directed superstructure is a DAG and all local scores are either 0 or 1.

Proof. We describe a polynomial parameter transformation from Multicolored
Independent Set. Recall that in Multicolored Independent Set one is
given a graph G = (V,E) together with a partition (V1, . . . , Vℓ) of V . Throughout
this proof, we assume without loss of generality that each color class Vi is a clique
in G. The question is, if there exists a multicolored independent set in G, that is,
an independent set containing one vertex from each set Vi. Multicolored Inde-
pendent Set does not admit a polynomial kernel when parameterized by

∑︁ℓ−1
r=1 |Vr|

due to Proposition 1.4.
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V1
v1

V2
v2

V3
v3

x

Figure 7.2: An example of the construction given in the proof of Theorem 7.2. The
original instance contains a multicolored independent set on the vertices v1 ∈ V1, v2 ∈ V2,
v3 ∈ V3, and v4 ∈ V4. The directed edges represent the arcs of a polytree with score 4. The
choice of vertex v4 ∈ V4 is encoded in the parent set of x.

Construction. Let G = (V,E) be an instance of Multicolored Indepen-
dent Set with a partition (V1, . . . , Vℓ). We describe how to construct an equivalent
instance I := (N,F , t) of Polytree Learning. Let V <ℓ := V \ Vℓ. We set

N := V <ℓ ∪ {we | e ∈ EG(V <ℓ)} ∪ {x}.

For each v ∈ V <ℓ, we set Pv := {x} ∪ {w{v,u} | u ∈ NG(v) ∩ V <ℓ} and fv(Pv) := 1.
Moreover, for each v ∈ Vℓ, we set fx(NG(v)∩V <ℓ) := 1. All other local scores are set
to 0. Finally, we set t := ℓ. Observe that |N | is polynomially bounded by

∑︁ℓ−1
r=1 |Vr|,

that the directed superstructure is acyclic, and that the local scores are either 1 or
0. An example of the construction is shown in Figure 7.2.

Intuition. Before we show the correctness of the polynomial parameter transfor-
mation, we provide some intuition. Analogously to the construction for Vanilla-
BNSL from the proof of Theorem 6.33, we obtain score ℓ if one vertex per color
class V1, . . . , Vℓ−1 and the vertex x learn a parent set with score 1. The vertices
from V1, . . . , Vℓ−1 and the choice of the parent set of x then correspond to a multi-
colored set in G. The condition that the resulting directed graph must be a polytree
guarantees that the chosen vertices form an independent set.

Correctness. We show that G has a multicolored independent set if and only if I
is a yes-instance of Polytree Learning.

(⇒) Let S = {v1, . . . , vℓ} be a multicolored independent set in G such that vi ∈ Vi
for every i ∈ {1, . . . , ℓ}. We define the arc set A by defining the parent sets of the
vertices of N under A. We set

PA
vi
:= {x} ∪ {w{vi,u} | u ∈ NG(vi) ∩ V <ℓ}
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for each i ∈ {1, . . . , ℓ − 1} and PA
x := NG(vℓ) ∩ V <ℓ. All remaining vertices have

an empty parent set under A. By construction, fx(P
A
x ) = fvi(P

A
vi
) = 1 for each i ∈

{1, . . . , ℓ− 1}. Thus, score(A) = ℓ.
It remains to show that D := (N,A) is a polytree. To this end, we show that for

each distinct pair u, u′ ∈ {v1, . . . , vℓ−1, x} the sets PA
u ∪ {u} and PA

u′ ∪ {u′} may only
share the vertex x. Note that vi /∈ NG(vℓ) for any i ∈ {1, . . . , ℓ−1} and, thus, vi /∈ PA

x .
Consequently, PA

x is disjoint from all the sets {vi}∪PA
vi
with i ∈ {1, . . . , ℓ−1}. Next,

we show that PA
vi
∪ {vi} and PA

vj
∪ {vj} only share the vertex x for distinct i, j ∈

{1, . . . , ℓ−1}. Since S is an independent set, there is no edge e = {vi, vj} ∈ EG(V <ℓ).
Thus, there is no we ∈ PA

vi
∩ PA

vj
. Hence, PA

vi
∩ PA

vj
= {x} and, thus, D is a polytree.

Consequently, I ′ is a yes-instance of Polytree Learning.
(⇐) Conversely, let A ⊆ N ×N be an arc set such that D := (N,A) is a polytree

with score at least ℓ. We show that there is a multicolored independent set in G. To
this end, consider the following claim.

Claim 1. For every Vi with i ∈ {1, . . . , ℓ − 1} there is exactly one vertex vi ∈ Vi
with fvi(P

A
vi
) = 1.

Proof . Since all local scores are either 0 or 1 and since score(A) = ℓ, there are
at least ℓ − 1 vertices of V <ℓ that have a parent set of score 1 under A. Next,
assume towards a contradiction that there are distinct vertices u ∈ Vi and v ∈ Vi
with fu(P

A
u ) = fv(P

A
v ) = 1 for some i ∈ {1, . . . , ℓ − 1}. Then, since G[Vi] is a

clique, the skeleton of D contains the cycle (x, u, w{u,v}, v) which contradicts the fact
that (N,A) is a polytree. Consequently, the claim holds. ♢

By Claim 1 there are unique vertices v1, . . . , vℓ−1 such that vi ∈ Vi and fvi(PA
vi
) =

1. Furthermore, since score(A) = ℓ we have fx(P
A
x ) = 1. Consequently, there exists

a vertex vℓ ∈ Vℓ with NG(vℓ) = PA
x . We define S := {v1, . . . , vℓ−1, vℓ} and show

that S is a multicolored independent set in G.
Obviously, the vertices of S are from pairwise distinct color classes. Thus, it

remains to show that no two vertices in S are adjacent in G. Assume towards a
contradiction that there exist u ∈ S and v ∈ S such that {u, v} ∈ E. Without loss
of generality, let v = v1. Consider the following cases.

Case 1: u ∈ {v2, . . . , vℓ−1}. Then, there is a vertex w{u,v} with w{u,v} ∈ PA
u ∩PA

v .
Thus, the skeleton of D contains the cycle (x, u, w{u,v}, v) which contradicts the fact
that (N,A) is a polytree.

Case 2: u = vℓ. Then, {u, v} ∈ E implies v ∈ NG(u) and therefore v ∈
PA
x . Moreover fv(P

A
v ) = 1 implies x ∈ PA

v . Hence, (v, w) ∈ A and (w, v) ∈ A
contradicting the fact that (N,A) is a polytree.

Consequently, S is a multicolored independent set in G.
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7.2 Parameterization by the Number of Depen-

dent Vertices

We now introduce a new parameter d called number of dependent vertices. Given an
instance (N,F , t) of Polytree Learning, a vertex v ∈ N is called dependent if
there is a nonempty potential parent set P ∈ PF(v). Thus, a vertex is dependent if
it might learn a nonempty parent set in a solution. A vertex that is not dependent
is called nondependent. Observe that d is potentially smaller than n. We start with
a simple XP-result.

Theorem 7.3. Polytree Learning can be solved in (δF)
d · |I|O(1) time.

Proof. Choose for each dependent vertex vi one of its potential parent sets Pi ∈
PF(vi) and check afterwards if (N,∪di=1Pi× vi) is a polytree of score at least t. This
is the case for some combination of potential parent sets if and only if the instance is
a yes-instance. Since each check can be done in polynomial time and there are (δF)

d

many combinations of potential parent sets, we obtain the stated running time.

We next show that there is little hope for a significant running time improve-
ment on this simple brute-force algorithm. More precisely, we show that Polytree
Learning is W[1]-hard for d. Our reduction also implies a stronger ETH-based
running time bound.

Theorem 7.4. Polytree Learning is W[1]-hard when parameterized by the num-

ber of dependent vertices d. If the ETH holds, then it has no (δF)
o(d) · |I|O(1)-time

algorithm. Both results even hold for instances where the directed superstructure SF
is a DAG.

Proof. To prove W[1]-hardness we give a parameterized reduction from Indepen-
dent Set. Afterwards, we argue why the parameterized reduction also implies the
claimed ETH-based lower bound. Recall that, in Independent Set one is given an
undirected graph G = (V,E) and an integer k and the question is whether there is
a subset S ⊆ V of size at least k such that no two vertices in S are connected by an
edge. We may assume that there are no isolated vertices in G. Independent Set
is W[1]-hard when parameterized by k [46].

Construction. Given an instance (G = (V,E), k) of Independent Set, we de-
scribe how to construct an equivalent instance I = (N,F , t) of Polytree Learning
in polynomial time such that I has at most k dependent vertices. We define

N := {v1, . . . , vk} ∪ {we | e ∈ E} ∪ {x}.
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For every vertex v ∈ V , we define Pv := {w{v,u} | u ∈ NG(v)} ∪ {x} and we
set fvi(Pv) := 1 for each i ∈ {1, . . . , k}. All other local scores are set to 0. Fi-
nally, we set t := k. This completes the construction of I. Note that there are k
dependent vertices v1, . . . , vk and that the directed superstructure is a DAG.

Intuition. Before we show the correctness we provide some intuition. To obtain
a score of k, each dependent vertex v1, . . . , vk must choose a parent set with local
score 1. Each such parent set Pv corresponds to a vertex v ∈ V . Thus, the parent
sets then guarantees that these k vertices of V form an independent set in G.

Correctness. Next, we show that there is an independent set of size k in G if and
only if I is a yes-instance of Polytree Learning.

(⇒) Let S := {u1, . . . , uk} be an independent set of size k in G. We set A :=
∪ki=1Pui × vi and show that D := (N,A) is a polytree with score k. By the definition
of F , we have fvi(P

A
vi
) = 1 for i ∈ {1, . . . , k} and therefore score(A) = k. Further-

more, since S is an independent set there is no edge e ∈ E such that we is contained
in Pui ∩ Puj with i ̸= j. Thus, for every i ̸= j the sets Pui ∪ {vi} and Puj ∪ {vj} only
share the vertex x. Consequently, D is a polytree.

(⇐) Let A ⊆ N × N be an arc set such that D = (N,A) is a polytree with
score at least k. By Proposition 6.3 we may assume that only the vertices v1, . . . , vk
have a nonempty parent set under A. Since the local scores are either 0 or 1,, for
every i ∈ {1, . . . , k} there is some ui ∈ V such that vi learns the parent set Pui
under A.

We show that S := {u1, . . . , uk} is an independent set of size k in G. By con-
struction of the local scores, each Pui contains the vertex x. Since every vertex of G
has degree at least one, each such parent set has size at least two. Hence, the ver-
tices ui and uj are distinct if i ̸= j as, otherwise, the skeleton of D would contain
the cycle (vi, x, vj, we) for each we ∈ Pui \ {v∗}. Moreover, since D is a polytree,
distinct vertices ui and uj are not adjacent in G as, otherwise, the vertex w{ui,uj} is
contained in both parent sets Pui and Puj and, hence, the cycle (vi, x, vj, w{ui,uj}) is
contained in the skeleton of D. Consequently, no two vertices in S are connected by
an edge and therefore S is an independent set in G.

ETH-Based Lower Bound. In the constructed instance I we have d = k and δF =
n+ 1. Unless the ETH fails, Independent Set cannot be solved in no(k) time [26]
and, hence, Polytree Learning cannot be solved in (δF)

o(d) · |I|O(1) time.

Theorem 7.4 points out a difference between Vanilla-BNSL and Polytree
Learning. In Vanilla-BNSL, a nondependent vertex v can be easily removed
from the input instance (N,F , t) by setting N ′ := N \ {v} and modifying the local
scores to f ′

u(P ) := max(fu(P ), fu(P ∪ {v})). Therefore, Vanilla-BNSL is FPT
for d.
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7.3 Dependent Vertices and Small Parent Sets

Due to Theorem 7.4, fixed-parameter tractability for Polytree Learning parame-
terized by d is presumably impossible. However, in instances constructed in the proof
of Theorem 7.4 the maximum parent set size p is not bounded by some computable
function in d. In practice, there are many instances where p is relatively small or
upper-bounded by some small constant [174]. In this section we study parameteri-
zation by d in combination with a bounded parent set size. More precisely, we first
provide an FPT algorithm for the parameter d+ p, the sum of the number of depen-
dent vertices and the maximum parent set size. Second, we provide a polynomial
kernel for the parameter d if the maximum parent set size p is constant. Both results
are based on computing max q-representative sets in a matroid [60, 128].

To apply the technique of representative sets we assume that the input instance
has a solution with exactly d·p arcs and every nonempty potential parent set contains
exactly p vertices. This can be obtained with the following simple modification of any
input instance (N,F , t): For every dependent vertex v we add vertices v1, v2, . . . , vp
to N and set fvi(P ) := 0 for all their local scores. Then, for every potential parent
set P ∈ PF(v) with |P | < p we first set fv(P ∪ {v1, . . . , vp−|P |}) := fv(P ) and
then fv(P ) := 0. Then, the given instance is a yes-instance if and only if the modified
instance has a solution with exactly d · p arcs. Furthermore, note that fv(∅) = 0 for
every dependent vertex and every nonempty potential parent set has size exactly p
after applying the modification.

Before we present the results of this section we introduce the basic concepts
of the technique of representative sets. We first state the important definitions
and theorems and provide some intuition about representative sets in the context
of Polytree Learning.

We first give the formal definition of matroids and representative sets. We also
recall a theorem by Lokshtanov et al. [128] about the efficient computation of rep-
resentative sets. Finally, we define the concrete matroid that we use in this section.
We start with the definition.

Definition 7.5. A pair M = (E, I), where E is a set and I is a family of subsets
of E is a matroid if

a) ∅ ∈ I,

b) if A ∈ I and B ⊆ A, then B ∈ I, and

c) if A,B ∈ I and |A| < |B|, then there is some b ∈ B \ A with A ∪ {b} ∈ I.

208



7.3. Dependent Vertices and Small Parent Sets

Matroids can be seen as an algebraic structure that generalizes the concept of
linear independence in vector spaces. The intuition behind matroids in an algorith-
mic context is, that an input instance of a problem can be assoicated with a finite
matroid (E, I). If one—for example—aims to find an edge set in a graph, the set E
of the matroid corresponds to the edges of the input graph, and the sets in the fam-
ily I can model feasible solutions of the instance or perhaps supersets of feasible
solutions. Many algorithmic results are based on matroids [128, 60, 120, 173, 69].

Given a matroid M = (E, I), the sets in I are called independent sets. A repre-
sentation of M over a field F is a mapping φ : E → V where V is some vector space
over F such that A ∈ I if and only if the restriction φ|A is injective and {φ(a) | a ∈ A}
is linearly independent in V . A matroid with a representation is called linear matroid.
Given a set B ⊆ E, a set A ⊆ E fits B if A ∩B = ∅ and A ∪B ∈ I.

Definition 7.6. Let M = (E, I) be a matroid, let A be a family of subsets of E,

and let w : A → N0 be a weight function. A subfamily ˆ︁A ⊆ A max q-represents A
(with respect to w) if for every set B ⊆ E with |B| = q the following holds: If there

is a set A ∈ A that fits B, there exists some ˆ︁A ∈ ˆ︁A that fits B, and w( ˆ︁A) ≥ w(A).

If ˆ︁A max q-represents A, then we write ˆ︁A ⊆q A.
We refer to a set family A where every A ∈ A has size exactly x ∈ N0 as an x-

family. Our results rely on the fact that max q-representative sets of an x-family
can be computed efficiently as stated in a theorem by Lokshtanov et al. [128] that is
based on an algorithm by Fomin et al. [60]. In the following, ω < 2.373 is the matrix
multiplication constant [179].

Theorem 7.7 ([128]). Let M = (E, I) be a linear matroid whose representation
can be encoded with a k × |E| matrix over the field F2 for some k ∈ N. Let A be
an x-family containing ℓ sets, and let w : A → N0 be a weight function. Then,

a) there exists some ˆ︁A ⊆q A of size
(︁
x+q
x

)︁
that can be computed with

O

(︄(︃
x+ q

x

)︃2

· ℓx3k2 + ℓ

(︃
x+ q

q

)︃ω
kx

)︄
+ (k + |E|)O(1)

operations in F2, and

b) there exists some ˆ︁A ⊆q A of size
(︁
x+q
x

)︁
· k · x that can be computed with

O

(︄(︃
x+ q

x

)︃
· ℓx3k2 + ℓ

(︃
x+ q

q

)︃ω−1

(kx)ω−1

)︄
+ (k + |E|)O(1)

operations in F2.
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We next define the matroid that we use for Polytree Learning. Recall that,
given an instance (N,F , t) of Polytree Learning, the directed superstructure SF
is defined as SF := (N,AF) where AF is the set of arcs that are potentially present
in a solution. We set m := |AF |. In this work we consider the super matroid
MF which we define as the graphic matroid [172] of the super structure. Formally,
MF := (AF , I) where A ⊆ AF is independent if and only (N,A) is a polytree

We provide some intuition for the super matroid and for representative sets in
context of Polytree Learning. We consider families A of arc sets of directed
graphs where some of the dependent vertices receive a parent set of size exactly p.
Assume that one of the arc sets A ∈ A can be extended to a solution of Polytree
Learning. In other words, assume there exists an arc set Q such that (N,A ∪ Q)
is a polytree with maximum score. If we now consider a |Q|-representation ˆ︁A of A,
there also exists an arc set ˆ︁A ∈ ˆ︁A that can be extended to a solution using the
same arc set Q. In other words, if (N,A ∪Q) is a polytree of maximum score, then

there is some ˆ︁A ∈ ˆ︁A such that (N, ˆ︁A ∪ Q) is also a polytree of maximum score.

Speaking in terms of Definition 7.6, the property that ˆ︁A fits Q together with the
definition of independent sets in the super matroid guarantees that (N, ˆ︁A ∪ Q) is a
polytree. Furthermore, the restriction on the weight function guarantees that the
score of ˆ︁A∪Q is maximum. Figure 7.3 shows a sketch of this situation. Summarizing,
if we have a family A that potentially contains partial solutions, it suffices to consider
a representing family ˆ︁A of A. Recall that we consider parameterization by the
number of dependent vertices d in combination with the maximum parent set size p.
Since we assume that every dependent vertex chooses a parent set of size p, a solution
consists of d · p arcs. Thus, if there is a family A that contains a partial solution
where only i < d dependent vertices have a non-empty parent set, every arc set in A
consists of i · p arcs and it suffices to consider a max (d− i) · p-representing family ˆ︁A
of A.

We next show that the super matroid is a linear matroid. The super matroid is
closely related to the acyclicity matroid that has been used for a constrained version
of Polytree Learning [69]. The proof of the following proposition is along the
lines of the proof that the graphic matroid is a linear matroid. We provide it here
for sake of completeness.

Proposition 7.8. Let (N,F , t) be an instance of Polytree Learning. Then,
the super matroid MF is a linear matroid and its representation can be encoded by
an n×m matrix over the field F2.

Proof. We first show that MF is a matroid. Note that ∅ ∈ I since (N, ∅) contains
no cycles. Next, if (N,A) is a polytree for some A ⊆ AF , then (N,B) is a polytree
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(N,A ∪Q) with A ∈ A (N, ˆ︁A ∪Q) with ˆ︁A ∈ ˆ︁A
Figure 7.3: Two optimal polytrees on a vertex set N . The lower part shows the dependent
vertices and the upper part shows the non-dependent vertices. The dotted arcs correspond
to an arc set Q of size 3. The left solution is a union of Q and an arc set A that belongs
to a family A. The right solution is the union of Q and an arc set ˆ︁A that belongs to a
max 3-representation ˆ︁A of A. The fact that ˆ︁A max 3-represents A guarantees the existence
of ˆ︁A.

for every B ⊆ A. Thus, Conditions a) and b) from Definition 7.5 hold.

We next show that Condition 3 holds. Consider A,B ∈ I with |A| < |B|.
Let N ′ ⊆ N be the vertices of a connected component of (N,A). Since (N,B) is a
polytree, the number of arcs in B between vertices of N ′ is at most the number of arcs
in A between the vertices of N ′. Then, since |B| > |A|, there exists some (u, v) ∈
B \ A that has endpoints in two distinct connected components of (N,A). Thus,
(N,A ∪ {(u, v)}) is a polytree. Consequently, MF is a matroid.

We next consider the representation of MF . Let v1, . . . , vn be the elements of N .
We define the mapping φ : AF → F2

n by letting φ((vi, vj)) be the vector where the ith
and the jth entry equal 1 and all other entries equal 0. Note that φ(a1) = φ(a2) for
two arcs a1 and a2 if and only if a1 and a2 share both endpoints. Clearly, φ can be
encoded by an n×m matrix over the field F2.

It remains to show that an arc set A is independent in MF if and only if φ|A is
injective and {φ(a) | a ∈ A} is linearly independent in F2

n.

(⇒) Let A be an independent arc set. Then, (N,A) is a polytree and there-
fore A does not contain two arcs (u, v) and (v, u) that share both endpoints. Conse-
quently, φ|A is injective. We now prove by induction over the size of subsets A′ of A
that {φ(a) | a ∈ A} is linearly independent in F2

n.

Base Case: Let |A′| = 1. Then {φ(a) | a ∈ A′} contains a single vector φ(a) ̸= 0⃗.
Thus, the set is linearly independent.

Inductive Step: Let |A′| > 1. Then, since (N,A′) is a polytree, the skeleton
of (N,A′) contains a leaf vi. Let x ∈ A′ be the unique arc incident with that
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leaf. Then, φ(x) is the unique vector in {φ(a) | a ∈ A′} where the ith entry is
not 0. Consequently,

∑︁
a∈A λa · φ(a) = 0⃗ with coefficients λa ∈ F2 implies λx = 0.

Furthermore, the inductive hypothesis states that {φ(a) | a ∈ A′ \ {x}} is linearly
independent. Therefore,

∑︁
a∈A λa · φ(a) = 0⃗ implies that all coefficients λa are 0.

Consequently, {φ(a) | a ∈ A′} is linearly independent in F2
n.

(⇐) Conversely, let A be an arc set such that φ|A is injective and {φ(a) | a ∈ A} is
linearly independent in F2

n. Assume towards a contradiction that A is an arc set that
is not independent in MF . Then, (N,A) is not a polytree. Furthermore, since φ|A
is injective, there are no two arcs (u, v) and (v, u) in A that share both endpoints.
Consequently, the skeleton of (N,A) contains a cycle. Let a1, . . . , aℓ ∈ A such that
the corresponding edges of the skeleton form this cycle. Then

∑︁ℓ
i=1 φ(ai) = 0⃗, which

contradicts the fact that {φ(a) | a ∈ A} is linearly independent in F2
n.

7.3.1 An FPT algorithm for d+ p

We now use the super matroidMF to show that Polytree Learning can be solved
in 2ωdp · |I|O(1) time where ω is the matrix multiplication constant. The idea of the
algorithm is simple: Let H := {v1, . . . , vd} be the set of dependent vertices, and
for i ∈ {0, 1, . . . , d} let Hi := {v1, . . . , vi} be the set containing the first i dependent
vertices. The idea is that, for every Hi, we compute a family Ai of possible polytrees
where only the vertices from {v1, . . . , vi} learn a nonempty potential parent set. We
use the algorithm behind Theorem 7.7 as a subroutine to delete arc sets from Ai that
are not necessary to find a solution. We next define the operation ⊕. Intuitively,
A⊕v P means that we extend each possible solution in the family A by the arc set
that defines P as the parent set of a vertex v.

Definition 7.9. Let v ∈ N , and let A be an x-family of subsets of AF such that PA
v =

∅ for every A ∈ A. For a vertex set P ⊆ N we define

A⊕v P := {A ∪ (P × v) | A ∈ A}.

Observe that for every A ∈ A, the set P × v is disjoint from A since PA
v = ∅.

Consequently, A ⊕v P is an (x + |P |)-family. The next lemma ensures that some
operations (including ⊕) are compatible with representative sets.

Lemma 7.10. Let w : 2AF → N0 be a weight function with w(A) := score(A). Let A
be an x-family of subsets of AF .

a) If ˆ︁A ⊆q ˜︁A and ˜︁A ⊆q A, then ˆ︁A ⊆q A.
b) If ˆ︁A ⊆q A and B is an x-family of subsets of AF with ˆ︁B ⊆q B, then ˆ︁A∪ ˆ︁B ⊆q A∪B.
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c) Let v ∈ N and let P ⊆ N such that PA
v = ∅ for every A ∈ A. Then, if ˆ︁A ⊆q+|P | A

it follows that ˆ︁A⊕v P ⊆q A⊕v P .
Proof. Statements a) and b) are well-known facts [38, 60]. We prove Statement c).
Let B be a set of size q. Let there be a set A ∪ (P × v) ∈ A⊕v P that fits B. That
is,

B ∩ (A ∪ (P × v)) = ∅, and (7.1)

B ∪ (A ∪ (P × v)) ∈ I. (7.2)

We show that there is some ˆ︁A∪ (P × v) ∈ ˆ︁A⊕v P that fits B and w( ˆ︁A∪ (P × v)) ≥
w(A ∪ (P × v)). To this end, observe that Property (7.1) implies

B ∩ A = ∅, and (7.3)

B ∩ (P × v) = ∅. (7.4)

We define B := B∪(P×v). Observe that Property (7.3) together with A∩(P×v) = ∅
implies B ∩ A = ∅, and that Property (7.2) implies A ∪ B ∈ I. Consequently, A

fits B. Then, since |B| = q + |P | due to Property (7.4) and ˆ︁A ⊆q+|P | A, there exists
some ˆ︁A ∈ ˆ︁A that fits B and w( ˆ︁A) ≥ w(A).

Consider ˆ︁A∪(P×v). Since ˆ︁A fits B it holds that ( ˆ︁A∪(P×v))∪B ∈ I. Moreover,

observe that w( ˆ︁A ∪ (P × v)) = w( ˆ︁A) + fv(P ) ≥ w(A) + fv(P ) = w(A ∪ (P × v)). It
remains to show that ( ˆ︁A ∪ (P × v)) ∩ B = ∅. Since ˆ︁A fits B and B ⊆ B it holds

that ˆ︁A ∩B = ∅. Then, Property (7.4) implies ( ˆ︁A ∪ (P × v)) ∩B = ( ˆ︁A ∩B) ∪ ((P ×
v) ∩B)) = ∅. Thus, ˆ︁A ∪ (P × v) fits B and therefore ˆ︁A⊕v P ⊆q A⊕v P .

We now describe the FPT algorithm. Let I := (N,F , t) be an instance of Poly-
tree Learning. Recall that H := {v1, v2, . . . , vd} denotes the set of dependent
vertices of I, and for i ∈ {0, 1, . . . , d} the set Hi := {v1, . . . , vi} contain the first i
dependent vertices. Observe that H0 = ∅ and Hd = H. We define Ai as the family
of possible directed graphs (even the graphs that are no polytrees) where only the
vertices in Hi learn a nonempty potential parent set. Formally, this is

Ai :=
{︃
A ⊆ AF

⃓⃓⃓⃓
PA
v ∈ PF(v) \ {∅} for all v ∈ Hi

PA
v = ∅ for all v ∈ N \Hi

}︃
.

The algorithm is based on the following recurrence.

Lemma 7.11. If i = 0, then Ai = {∅}. If i > 0, Ai can be expressed as

Ai =
⋃︂

P∈PF (vi)\{∅}

Ai−1 ⊕vi P.

213



Chapter 7. Learning Optimal Polytrees

Algorithm 2 FPT-algorithm for the parameter d+ p

1: Input: (N,F , t) and dependent vertices v1, . . . , vd
2: ˆ︁A0 := {∅}
3: for i = 1 . . . d do
4: ˜︁Ai = ⋃︁P∈PF (vi)\{∅}

ˆ︁Ai−1 ⊕vi P
5: ˆ︁Ai := ComputeRepresentation( ˜︁Ai, (d− i) · p)
6: return ˆ︁A ∈ ˆ︁Ad such that (N, ˆ︁A) is a polytree and score( ˆ︁A) is maximal

Intuitively, Lemma 7.11 states that Ai can be expressed by considering Ai−1 and
combining every A ∈ Ai−1 with every arc set that defines a nonempty potential
parent set of vi. The correctness proof is straightforward and thus omitted.

We next present the FPT algorithm.

Theorem 7.12. Polytree Learning can be solved in 2ωdp · |I|O(1) time, where ω
is the matrix multiplication constant.

Proof. Let I := (N,F , t) be an instance of Polytree Learning with dependent
vertices H = {v1, . . . , vd}, let the families Ai for i ∈ {0, 1, . . . , d} be defined as above,
and let w : 2AF → N0 be defined by w(A) := score(A). All representing families
considered in this proof are max representing families with respect to w. We prove
that Algorithm 2 computes an arc set A such that (N,A) is a polytree with maximal
score.

The subroutine ComputeRepresentation( ˜︁Ai, (d − i) · p) in Algorithm 2 is an
application of the algorithm behind Theorem 7.7 b). It computes a max ((d− i) · p)-
representing family for ˜︁Ai. As a technical remark we mention that the algorithm
as described by Lokshtanov et al. [128] evaluates the weight w(A) for | ˜︁Ai| many arc
sets A. We assume that each such evaluation w(A) is replaced by the computation
of score(A) =

∑︁
v∈H fv(P

A
v ) which can be done in |I|O(1) time. We first prove the

correctness of the algorithm and afterwards, we analyze the running time.
Correctness. We prove the following loop invariant.

Claim 1. The family ˆ︁Ai max ((d− i) · p)-represents Ai and

| ˆ︁Ai| ≤ max(1,

(︃
dp

ip

)︃
· n · i · p).

Proof . The loop invariant holds before entering the loop since ˆ︁A0 := {∅} in Line 2
and A0 = {∅}. Suppose that the loop invariant holds after the (i − 1)th execution
of the loop. We show that the it also holds after the ith execution.
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First, consider Line 4. Since we assume that every nonempty potential parent set
contains exactly p vertices, Lemma 7.10 and Lemma 7.11 imply that ˜︁Ai max ((d −
i) · p)-represents Ai. Note that at this point ˜︁Ai contains up to max(1,

(︁
dp

(i−1)p

)︁
· n ·

(i− 1) · p) · δF sets.
Next, consider Line 5. Since we assume that every nonempty potential parent

set contains exactly p vertices, the family ˜︁Ai is an (i · p)-family. Then, the algorithm

behind Theorem 7.7 computes a ((d− i) · p)-representing family ˆ︁Ai. Then, by Theo-

rem 7.7 b) and Lemma 7.10 a), ˆ︁Ai max ((d−i)·p)-represents Ai and | ˆ︁Ai| ≤ (︁dpip)︁·n·i·p
after the execution of Line 5. ♢

We next show that ˆ︁Ad contains an arc set that defines a polytree with maximum
score and thus, a solution is returned in Line 6. Since we assume that there is an
optimal solution A that consists of exactly d · p arcs, this solution is an element of
the family Ad. Then, since ˆ︁Ad ⊆0 Ad, there exists some ˆ︁A ∈ ˆ︁Ad with ˆ︁A ∪ ∅ ∈ I
and w( ˆ︁A) ≥ w(A). Since ˆ︁A∪∅ ∈ I, the graph (N, ˆ︁A) is a polytree, and since w( ˆ︁A) ≥
w(A) the score of ˆ︁A is maximal.

Running time. We next analyze the running time of the algorithm. For this
analysis, we use the inequality

(︁
a
b

)︁
≤ 2a for every b ≤ a. Let i be fixed.

We first analyze the running time of one execution of Line 4. Since ˆ︁Ai−1 has size
at most

(︁
dp

(i−1)p

)︁
· n · i · p due to Claim 1, Line 4 can be executed in 2dp · |I|O(1) time.

We next analyze the running time of one execution of Line 5. Recall that ˜︁Ai is
an (i · p)-family of size at most

(︁
dp

(i−1)p

)︁
· n · i · p · δF . Furthermore, recall that there

are | ˜︁Ai| many evaluations of the weight function. Considering the parameters x, ℓ,
k, and q from Theorem 7.7, we have

x := i · p, ℓ :=

(︃
dp

(i− 1)p

)︃
· n · i · p · δF ,

k := n, and q := (d− i) · p.

Combining the running time from Theorem 7.7 b) with the time for evaluating w,
the subroutine takes time

O

(︄(︃
dp

ip

)︃(︃
dp

(i− 1)p

)︃
δF(i · p)4n3 +

(︃
dp

(i− 1)p

)︃
δF

(︃
dp

ip

)︃ω−1

(n · i · p)ω
)︄

+ (n+m)O(1) +

(︃
dp

(i− 1)p

)︃
· n · i · p · δF · |I|O(1)⏞ ⏟⏟ ⏞
evaluating w

.
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Therefore, one execution of Line 5 can be done in 2ωdp|I|O(1) time. Since there
are d repetitions of Lines 4–5, and Line 6 can be executed in |I|O(1) time, the algo-
rithm runs within the claimed running time.

7.3.2 A Problem Kernel for d with Constant p

We now study problem kernelization for Polytree Learning parameterized by d
when the maximum parent set size p is constant. We provide a problem kernel
consisting of at most (dp)p+1+d vertices where each vertex has at most (dp)p potential
parent sets. The kernel can be computed in (dp)ωp · |I|O(1) time. Observe that both,
the running time and the kernel size, are polynomial for every constant p. Note also
that, since d+ p ∈ O(n), Theorem 7.2 implies that there is presumably no kernel of
size (d+ p)O(1) that can be computed in (d+ p)O(1) time.

Let v be a dependent vertex. The basic idea of the kernelization is to use the
technique of representing sets to identify those potential parent sets P such that the
arc set P × v can be extended to a solution. Doing this for every dependent vertex
we identify nondependent vertices that are not necessary to find a solution. This
idea is closely related to a problem kernel for d-Set Packing [38].

Theorem 7.13. There is an algorithm that, given an instance (N,F , t) of Poly-
tree Learning computes in time (dp)ωp · |I|O(1) an equivalent instance (N ′,F ′, t)
such that |N ′| ≤ (dp)p+1 + d and δF ′ ≤ (dp)p.

Proof. Let H be the set of dependent vertices of (N,F , t).
Computation of the reduced instance. We describe how to compute a reduced

instance (N ′,F ′, t). We define the family Av := {P×v | P ∈ PF(v)} for every v ∈ H
and the weight function w : Av → N0 by w(P × v) := fv(P ). We then apply the
algorithm behind Theorem 7.7 a) and compute a max ((d − 1) · p)-representing
family ˆ︁Av for every Av.

Given all ˆ︁Av, a vertex w is called necessary if w ∈ H or if there exists some v ∈ H
such that (w, v) ∈ A for some A ∈ ˆ︁Av. We then define N ′ as the set of necessary
vertices. Next, F ′ consists of local score functions f ′

v : 2
N ′\{v} → N0 with f ′

v(P ) :=
fv(P ) for every P ∈ 2N

′\{v}. In other words, f ′
v is the restriction of fv to parent sets

that contain only necessary vertices.

Running Time. Next, consider the running-time of the computation of (N ′,F ′, t).
Since each Av contains at most δF arc sets and we assume that every potential parent
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set has size exactly p, each ˆ︁Av can be computed in time

O

(︄(︃
dp

p

)︃2

· δF · p3 · n2 + δF ·
(︃
dp

p

)︃ω
· n · p

)︄
+ (n+m)O(1).

Observe that we use the symmetry of the binomial coefficient to obtain this
running time from the Running time stated in Theorem 7.7 a). After computing

all ˆ︁Av, we compute N ′ and F ′ in polynomial time in |I|. The overall running time
is (dp)ωp · |I|O(1).

Correctness. We next show that (N,F , t) is a yes-instance if and only if (N ′,F ′, t)
is a yes-instance.

(⇐) Let (N ′,F ′, t) be a yes-instance. Then, there exists an arc set A′ such
that (N ′, A′) is a polytree with score at least t. Since N ′ ⊆ N , f ′

v(P ) = fv(P ) for
every v ∈ N ′ and P ⊆ N ′ \ {v}, we conclude that (N,A′) is a polytree with score at
least t.

(⇒) Let (N,F , t) be a yes-instance. We choose a solution A for (N,F , t) such
that PA

v ⊆ N ′ for as many dependent vertices v as possible. We prove that this
implies that PA

v ⊆ N ′ for all dependent vertices. Assume towards a contradiction

that there is some v ∈ H with PA
v ̸⊆ N ′. Observe that (PA

v × v) ∈ Av \ ˆ︁Av. We
then define the arc set B :=

⋃︁
w∈H\{v} P

A
w × w. Since we assume that all nonempty

potential parent sets have size exactly p, we have |B| = (d − 1) · p. Then, since ˆ︁Av
max ((d − 1) · p)-represents Av and (PA

v × v) ∈ Av fits B we conclude that there

is some (P × v) ∈ ˆ︁Av such that B ∩ (P × v) = ∅, (N,B ∪ (P × v)) is a polytree,
and fv(P ) ≥ fv(P

A
v ). Thus, C := B ∪ (P × v) is a solution of (N,F , t) and the

number of vertices v that satisfy PC
v ⊆ N ′ is larger than the number of vertices v

that satisfy PA
v ⊆ N ′. This contradicts the choice of A.

Bound on the size of |N ′| and δF ′. By Theorem 7.7, each family ˆ︁Ai has size
at most

(︁
(d−1)p+p

p

)︁
=
(︁
dp
p

)︁
. Consequently, δF ′ ≤ (dp)p and N ′ ≤ d ·

(︁
dp
p

)︁
· p + d ≤

(dp)p+1 + d.

Observe that the instance I := (N ′,F ′, t) from Theorem 7.13 is technically not
a kernel since the encoding of the integer t and the values of fv(P ) might not be
bounded in d and thus the size of the instance |I| is not bounded in d. We use the
following lemma [51, 62] to show that Theorem 7.13 implies an actual polynomial
kernel for the parameter d when p is constant.

Lemma 7.14 ([51]). There is an algorithm that, given a vector w ∈ Qr and someW ∈
Q computes in polynomial time a vector w = (w1, . . . , wr) ∈ Zr with maxi∈{1,...,r} |wi| ∈
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2O(r3) and an integer W ∈ Z with total encoding length O(r4) such that w · x ≥ W if
and only if w · x ≥ W for every x ∈ {0, 1}r.

Corollary 7.15. Polytree Learning with constant parent set size p admits a
polynomial kernel when parameterized by d.

Proof. Let (N ′,F ′, t) be the reduced instance from Theorem 7.13. Let r be the num-
ber of triples (P, |P |, fv(P )) in the two-dimensional array representing F ′. Clearly,
r ≤ |N ′| · δF ′ . Let w be the r-dimensional vector containing all values fv(P ) for all v
and P . Applying the algorithm behind Lemma 7.14 on w and t computes a vector w
and an integer t that has encoding length O((|N ′| · δF ′)4) with the property stated
in Lemma 7.14.

Substituting all local scores stored in F ′ with the corresponding values in w and
substituting t by t converts the instance (N ′,F ′, t) into an equivalent instance whose
size is polynomially bounded in d if p is constant.

7.4 Concluding Remarks

With Polytree Learning we have studied the problem of learning Bayesian net-
work structures with an acyclic skeleton. This fits into the line of research on BNSL
under sparsity constraints that were discussed in Chapter 6. In fact, learning a poly-
tree is a sparsity constraint that has been studied from an algorithmical point of
view [29, 69, 157] since it allows for efficient inference [144, 84] and practical applica-
tions specifically ask for a polytree structure [53]. We presented the first algorithm
with singly-exponential running time in the number of vertices, answering a question
of Gaspers et al. [69]. We also introduced the number of dependent vertices d as
a parameter and showed that Polytree Learning is W[1]-hard for d which is a
contrast to Vanilla-BNSL.

Open Questions. Next, one might aim for improved parameterizations. For
example, Theorem 7.3 gives an FPT algorithm for the parameter δF + d. Note
that δF ≤ 2∆in , where ∆in is the maximum in-degree of the directed superstructure.
Can we replace δF or d by smaller parameters? Instead of δF , one could consider
parameters that are small when only few dependent vertices have many potential
parent sets. Ganian and Korchemna [65] showed that Polytree Learning is FPT
for the local feedback edge number of the undirected superstructure. One open ques-
tion is if Polytree Learning is FPT when parameterized by the sum of p and
the vertex cover number s of the undirected superstructure; note that the set of
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dependent vertices forms a vertex cover of the undirected superstructure and thus, s
never exceeds d.

To obtain the positive results for the number of dependent vertices when p is
small, we used the technique of representative sets. There are problems, where using
representative sets leads to an algorithm that is faster than an algorithm based
on color coding [38]. Recall that the FPT algorithm for learning a DAG with a
bounded number of arcs presented in Chapter 6 is based on color coding. Since using
representative sets worked for Polytree Learning, it is a natural question if we
can also use it for other constrained BNSL problems. However, using representative
sets to learn a DAG might differ quite substantially from the approach for polytrees
presented in this chapter: We used the super matroid, where an arc set is independent
if it corresponds to a polytree. Thus, we were able to use a very simple recurrence to
generate all parent sets (Lemma 7.11) since the computation of representative sets
guarantees that the remaining arc sets correspond to polytrees. If we instead consider
a structure M := (AF , I), where an arc set A ⊆ AF belongs to I if it corresponds to
a DAG, Property c) from Definition 7.5 is violated. Thus, one might need another
idea of a matroid where the independence definition includes more arc sets than the
ones corresponding to DAGs. In a uniform matroid of rank r, every subset of the
universe of size at most r is independent [38]. However, using such a matroid to learn
DAGs might mean that the steps of an algorithm using representative sets may be
more complicated than the ones in the algorithm from Section 7.3.1.

We believe that there is potential for practically relevant exactPolytree Learn-
ing algorithms and that this work could constitute a first step. We think that the
algorithm with running time 3n · |I|O(1) might be practical for n up to 20 based on
experience with dynamic programs with a similar running time [108]. A next step
should be to combine this algorithm with heuristic data reduction and pruning rules
to further increase the range of tractable values of n.
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Chapter 8

Learning by Ordering-Based Local
Search

The task of learning the structure of a Bayesian network is NP-hard [29]. In Chap-
ters 6 and 7, we studied multiple variants of BNSL under additional sparsity con-
straints, provided exact algorithms, and outlined the limits of exactly solving con-
strained BNSL problems. Analyzing the complexity borderlines of constrained BNSL
problems helps us to increase our theoretical understanding of the problem and we
believe that there is potential for practically relevant exact algorithms.

However, exact algorithms might become impractical for instances with a large
number of variables. In practice, BNSL is thus often solved using heuristics. One
of the most successful heuristic approaches relies on local search [171]. A natural
approach for a local search algorithm is a hill climbing strategy, where one replaces
a given BNSL solution by a better solution within some pre-defined neighborhood as
long as this is possible. More precisely, in this approach one starts with an arcless
DAG D and adds, removes, or reverses an arc while this results in an increased
network score. More recent local search approaches do not use DAGs as solution
representations but rather orderings of the variables [8, 125, 159]. This approach is
motivated by the fact that given an ordering τ of the variables, one may greedily
find the optimal DAG D among all DAGs for which τ is a topological ordering [141].

In this chapter, we study different versions of local search on variable orderings.
In contrast to previous work that defined the local neighborhood of an ordering
as all orderings that can be reached via one operation, we consider parameterized
local search [59, 129, 68, 56, 141]. Here, one sets a parameter r and aims to find
a better network that can be reached via at most r modifications of the ordering.
Intuitively, r can be seen as the search radius. Then, using a parameterized local
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search algorithm as a hill climbing strategy, one ends up with a solution that is the
best possible solution within a circle of radius r in the search space. The hope is
that, by considering such a larger neighborhood, one may avoid being stuck in a bad
local optimum.

Related Work. The highly competitive MMHC algorithm [171] for learning large
network structures is a local search approach that uses a hill-climbing strategy to
find solutions in a previously defined skeleton. Ordyniak and Szeider [141] studied
a parameterized local search approach, where one is given a network structure D
and an integer r and the question is whether one can perform at most r operations
on D (deleting arcs, inserting arcs, or reversing arcs) such that the resulting network
structure has a higher sum of local scores. They showed that the local search problem
is XP and W[1]-hard when parameterized by r. Furthermore, if one restricts the
possible operations to only deleting arcs or only adding arcs, then the problem can
be solved in polynomial time since it suffices to find one vertex v for which the local
score can be increased by modifying its parent set using the allowed operations [141].
Other approaches use possible topological orderings of the resulting network structure
as the search space for a local search approach [8, 125, 159]. Lee and van Beek [125]
study a local search approach that is based on an operation, where one interchanges
the positions of two consecutive vertices on the ordering as long as this results in
an improvement of the network score. We refer to this operation as an inversion.
Alonso-Barba et al. [8] an insert operation, where one removes a vertex from the
ordering and inserts this vertex at a new position. Scanagatta et al. [159] considered
inversions, insertions, and a further generalized operation where one removes a larger
block of consecutive vertices from the ordering and inserts the block of consecutive
vertices at a new position.

Our Results. We consider three different kinds of operations on orderings in this
work. We first study insertions, where one may move one variable to an arbitrary
position in the ordering and swaps where two arbitrary variables may exchange their
positions. Recall that local search strategies based on one insertion have been studied
previously [8, 159]. We introduce the corresponding local search problem, where,
for a given ordering τ and a search radius r, one aims to find the best possible
network when performing at most r insertions (or swaps, respectively) on τ . We
observe that the corresponding parameterized local search problems are XP for r
and prove W[1]-hardness for r on instances where the maximum parent set size
is 2. Afterwards, we study inversions, which are swaps of adjacent vertices. Our
main result is a randomized FPT algorithm with running time 2O(

√
r·log r) · |I|O(1)
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for deciding for a given variable ordering, whether there is a better ordering that
can be reached via at most r inversions. The distance that measures the minimum
number of inversions needed to transform one ordering in another is also known as the
Kendall tau distance as it is an adaption of Kedall tau rank correlation [101]. We then
introduce a further distance that we call inversion-window distance. Intuitively, given
an ordering τ we find an ordering τ ′ that has inversion-window distance at most r by
partitioning τ into multiple windows of consecutive vertices and performing up to r
inversions inside each window. This new distance extends the number of inversions
in the following sense: Given a search radius r, the search space for orderings with
inversion-window distance r is potentially larger than the number of orderings one
can obtain with at mots r inversions. We provide a randomized algorithm with
running time 2O(

√
r·log r) · |I|O(1) that decides for a given ordering, whether there is a

better ordering that has inversion-window distance at most r. An overview of the
distances studied in this work is shown in Figure 8.1.

Our algorithms work not only for the Vanilla-BNSL but also for some struc-
tural constraints that we may wish to impose on the final DAG. To formulate the
algorithms compactly, we introduce a generalization of BNSL, where each possi-
ble parent set is associated with a score and a weight and the aim is to find the
highest scoring network that does not exceed a specified weight bound. We show
that this captures natural types of structural constraints like a bounded number of
edges in the skeleton which we studied in Chapter 6. As a side result, we show
that a previous polynomial-time algorithm for acyclic directed superstructures [141]
can be generalized to this new more general problem. Note that this generalizes
the polynomial-time algorithm for (Π0 + e)-Skeleton BNSL on instances with an
acyclic directed superstructure that we provided in Proposition 6.23.

Finally, we show that for using an ordering-based local search approach in the
presence of structural constraints it is essentially necessary, that the corresponding
variant of BNSL is polynomial-time solvable on instances where the directed super
structure is acyclic. This implies for several important structural constraints that
ordering-based local search is unlikely to be useful.

Orderings. In this paragraph, we give formal definitions of orderings and distances
between orderings. Given a vertex set N , an ordering of N is an n-tuple τ =
(v1, . . . , vn) containing every vertex of N . For i ≤ n, we let τ(i) denote the ith
vertex appearing on τ . We write u <τ v if the vertex u appears before v on τ .
A partial ordering of τ is an ordering σ of a subset S ⊆ N such that u <τ v if and
only if u <σ v for all u, v ∈ S. Given a vertex set S, we let τ [S] denote the partial
ordering containing exactly the vertices from S, and we let τ −S := τ [N \S] denote
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τ
v1 v2 v3 v4 v5

Swap

σ1
v3 v5 v1 v4 v2

Inversions

σ2
v2 v3 v1 v4 v5

1 2

Insert

σ3
v1 v2 v3 v1 v4 v5 v4

Inversion-Window

σ4
v2 v3 v1 v5 v4

Figure 8.1: Examples of the distances studied in this work. The upper part shows an
ordering τ of the vertices v1, . . . , v5. The lower part shows orderings σ1, . . . , σ4, that have
distance 2 from τ with respect to the swap-, inversions-, insert-, or inversion-window dis-
tance. The dotted arrows correspond to the operations performed to obtain the ordering σi
from τ . In case of the swap distance, σ1 is obtained from τ by swapping the vertex pairs
marked in the figure. To obtain the ordering σ2, a first inversion swapped the positions
of v1 and v2, and afterwards, a second inversion swapped the positions of v1 and v3. In
case of the insert distance, σ3 is obtained by removing the vertices v1 and v4 and inserting
them at new positions. For the inversion-window distance, there are two windows such
that at most two inversions are performed inside each window to obtain the ordering σ4
from τ .

the partial ordering we obtain when removing all vertices of S from τ . For i ≤ j ≤ n
we define τ(i, j) as the partial ordering (τ(i), τ(i + 1), . . . , τ(j)). Given a partial
ordering σ of τ , we let N(σ) be the set of all elements appearing on σ. If σ = τ(i, j),
we may write Nτ (i, j) := N(τ(i, j)).

A distance d of the orderings of N is a mapping that assigns an integer to every
pair of orderings τ and τ ′ of N such that d(τ, τ ′) = d(τ ′, τ) and d(τ, τ) = 0. For an
integer r, we say that an ordering τ ′ is r-close to τ with respect to d if d(τ, τ ′) ≤ r.
If τ and d are clear from the context we may only write τ ′ is r-close.

Let D := (N,A) be a directed graph. An ordering τ of N is a topological ordering
of D if u <τ w for every arc (u,w) ∈ A. A directed graph has a topological ordering
if and only if it is a DAG.

224



8.1. BNSL with Multiweights

8.1 BNSL with Multiweights

We provide parameterized local search algorithms that also work for some gener-
alizations of Vanilla-BNSL like (Π0 + e)-Skeleton BNSL where one aims for
example to find a DAG with a restricted number of edges in the skeleton. To capture
these generalizations we introduce the problem Weighted Bayesian Network
Structure Learning (W-BNSL).

Let N be a set of vertices. A mapping F is a collection of local multiscores for N
if F(v) ⊆ 2N\{v} ×N0 ×N0 for each v ∈ N . Intuitively, if (P, s, ω) ∈ F(v) for some
vertex v ∈ N , then choosing P as the parent set of v may simultaneously give a
local score of s and a local weight of ω. For the same parent set P , there might be
another local multiscore (P, s′, ω′) ∈ F(v) with a different local score and a different
local weight. Throughout this work, we assume that for every vertex v there exists
some s ∈ N0 such that (∅, s, 0) ∈ F(v), that is, every vertex has a local multiscore for
the empty parent set with weight zero. Given v ∈ N and F , the possible parent sets
are defined by PF(v) := {P | (P, s, ω) ∈ F(v) for some integers s and w}. Given N
and F , the directed graph SF := (N,AF) with AF := {(u, v) | u ∈ P for some P ∈
PF(v)} is called the directed superstructure of N and F [141].

We say that an F -valid arc set has weight at most k if for every v ∈ N there
is some (PA

v , sv, ωv) ∈ F(v) such that
∑︁

v∈N ωv ≤ k. For a given integer k and
an F -valid arc set A we define scoreF(A, k) :=

∑︁
v∈N sv as the maximal score one

can obtain from any choice of triples (PA
v , sv, ωv) ∈ Fv, v ∈ N , with

∑︁
v∈N ωv ≤ k.

If F is clear from the context we may write score(A, k) := scoreF(A, k). We now
formally define the problem.

Definition 8.1. Let N be a vertex set, let F be multiscores for N . An arc set A ⊆
N ×N is called F -valid if (N,A) is a DAG and PA

v ∈ PF(v) for all v ∈ N .

Weighted Bayesian Network Structure Learning (W-BNSL)
Input: A set of vertices N , local multiscores F , and two integers t, k ∈ N0.
Question: Is there an F -valid arc set A ⊆ N×N such that score(A, k) ≥ t?

For N = {v1, . . . , vn}, the local multiscores F are given as a two-dimensional ar-
ray F := [Q1, . . . , Qn], where each Qi is an array containing a quadruple (s, ω, |P |, P )
for each (P, s, ω) ∈ F(v). The size of F is the number of bits needed to store this two-
dimensional array. The size of an instance I is defined as |I| := n+|F|+log(t)+log(k).
Throughout this work we assume that k ∈ |I|O(1) for every instance I := (N,F , t, k)
of W-BNSL. Note that this also implies ω ∈ |I|O(1) for each multiscore (P, s, ω).

W-BNSL generalizes Vanilla-BNSL. Recall that in Vanilla-BNSL one is
given a setN of vertices and one local score s for each pair consisting of a vertex v ∈ N
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and a possible parent set P ⊆ N \ {v} and the goal is to learn a DAG such that the
sum of the local scores is maximal. Thus, Vanilla-BNSL can be modeled with local
multiscores F(v) containing triples (P, s, 0). Since Vanilla-BNSL is NP-hard [29]
and the weights ω are not used for this construction, W-BNSL is NP-hard even
if k = 0.

W-BNSL also allows to model the task of Bayesian network structure learning
under additional sparsity constraints: Recall that one example for such a constrained
version is (Π0 + e)-Skeleton BNSL, where one aims to learn a DAG that consists
of at most k arcs for some given integer k. This can be modeled with multiscores
containing triples (P, s, |P |).

A further arguably natural example is Bounded Indegree c-BNSL (BI-c-
BNSL) which we define for every constant c. In BI-c-BNSL one aims to learn a
network that contains at most k vertices that have more than c parents for a given
integer k. This scenario can be modeled with triples (P, s, ω) where ω = 1 if |P | > c
and ω = 0, otherwise. To the best of our knowledge, this is a sparsity constraint
that has not been analyzed so far. Next, we observe that W-BNSL is solvable in
polynomial time if the directed superstructure is a DAG. This generalizes algorithms
for BNSL [141] and (Π0 + e)-Skeleton BNSL (Proposition 6.23).

Theorem 8.2. W-BNSL is solvable in O(k · |I|) time if SF is a DAG.

Proof. Let I = (N,F , t, k) be an instance of W-BNSL where the directed super-
structure SF is a DAG and let τ be a topological ordering of SF . We describe a
dynamic programming algorithm to solve I. The dynamic programming table T
has entries of type T [i, k′] with i ∈ {1, . . . , n + 1} and k′ ∈ {0, . . . , k}. Each entry
stores the maximal score of an arc set A of weight at most k′ where only the vertices
of Nτ (i, n) are allowed to learn a non-empty parent set and only the local multiscores
of the vertices of Nτ (i, n) count towards the score and weight of A. We start to fill
the table T by setting T [n + 1, k′] := 0 for all k′ ∈ {0, . . . , k}. The recurrence to
compute an entry for i ∈ {1, . . . , n} and k′ ∈ {0, . . . , k} is

T [i, k′] := max
(P,s,ω)∈F(v)

ω≤k′

s+ T [i+ 1, k′ − ω].

where v := τ(i). Thus, to determine if I is a yes-instance of W-BNSL, it remains
to check if T [1, k] ≥ t. The corresponding network can be found via traceback. The
formal correctness proof is straightforward and thus omitted.

The dynamic programming table T consists of k + 1 entries for each v ∈ V and
each such entry can be computed in O(|F(v)|) time plus k + 1 entries which can be
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computed in O(1) time. Hence, the total running time is O(k · |I|). Consequently,
the algorithm runs in polynomial time since k ∈ |I|O(1).

Assume we are given an instance I := (N,F , t, k) of W-BNSL and consider an
arbitrary but fixed optimal solution A for I. Suppose, we are given some topological
ordering τ of (N,A) but not the arc set A itself. Then, Theorem 8.2 implies that
we can solve I in polynomial time by restricting the possible parent sets to parent
sets respecting the ordering τ . This gives rise to the ordering-based local search
approach which we study in this work. More precisely, we consider a version of W-
BNSL where one is additionally given an ordering of the vertex set and an integer r
and aims to learn a DAG that has a topological ordering that is r-close to the given
ordering. For any fixed distance d, this problem is formally defined as follows.

d-Local W-BNSL
Input: A set of vertices N , local multiscores F , an ordering τ of N , and
three integers t, k, r ∈ N0.
Question: Is there an F -valid arc set A such that score(A, k) ≥ t and (N,A)
has a topological ordering τ ′ that is r-close to τ with respect to d?

Let I be an instance of d-Local W-BNSL. We call an arc set A feasible for I
if A is F -valid with weight at most k and (N,A) has a topological ordering that
is r-close to τ . For theoretical reasons d-Local W-BNSL is stated as a decision
problem since this allows us to prove the presented conditional lower bounds for some
cases of d. However, the algorithms presented in this chapter solve the corresponding
optimization problem, where the input is an instance I := (N,F , τ, k, r) and the task
is to compute a feasible arc set that maximizes score(A, k). Such an arc set is called
a solution of I. Note that not every feasible arc set is necessarily a solution.

8.2 Preliminary Experiments

To assess whether parameterized local search is in principle a viable approach to
ordering-based Bayesian network structure learning, we perform some preliminary
experiments for the standard BNSL problem with a particularly simple neighbor-
hood. Consider the window-distance Win where Win(τ, τ ′) is the distance r between
the first and last position in which τ and τ ′ differ. Formally, for two orderings of
length n, we define Win(τ, τ ′) := 0 if τ = τ ′ and otherwise

Win(τ, τ ′) := max
j∈{1,...,n}
τ(j)̸=τ ′(j)

j − min
i∈{1,...,n}
τ(i)̸=τ ′(i)

i.

227



Chapter 8. BNSL with Ordering-Based Local Search

Algorithm 3 A local search algorithm combining two simple neighborhoods,
herein scoreF(τ) for an ordering τ denotes maximum score of any DAG D such
that τ is a topological ordering of D.

1: Input: A set of vertices N , local multiscores F , an ordering τ of N and an
integer r.

2: Output An r-optimal ordering τ .
3: currentScore := scoreF(τ)
4: improvable := true
5: while improvable = true do
6: improvable← false
7: for each τ ′ such that τ can be obtained from τ ′ via one insertion do
8: if currentScore < scoreF(τ

′) then
9: currentScore← scoreF(τ

′); τ ← τ ′

10: improvable← true
11: break
12: if improvable = false then
13: for i = 1 to n− r do
14: τi := permutation of τ(i, i+ r) such that

scoreF(τ(1, i− 1) ◦ τi ◦ τ(i+ r + 1, n)) is maximum.
15: τ ′ := τ(1, i− 1) ◦ τi ◦ τ(i+ r + 1, n)
16: if currentScore < scoreF(τ

′) then
17: currentScore← scoreF(τ

′); τ ← τ ′

18: improvable← true
19: break

return τ

We now use a hill-climbing algorithm that combines the window-distance with
insertion operations. That is, we say that two orderings τ and τ ′ are r-close if
Win(τ, τ ′) ≤ r or τ can be obtained from τ ′ via one insertion operation. We say that
an ordering τ is r-optimal if there is no ordering τ ′ that is r-close to τ such that the
best DAG with topological ordering τ ′ achieves a better score than the best DAG
with topological ordering τ .

The algorithm to compute an r-optimal ordering works as follows; see Algorithm 3
for the pseudocode. Given a start ordering τ , we repeat the following steps until no
further improvement was found: First, check if some single insert operation on τ gives
an improvement and apply it if this is the case. Otherwise, slide a window of size r
over the ordering τ and find a permutation for this window that optimizes the score
of the total ordering. Apply the permutation to the window if it leads to an improved
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Table 8.1: Results of the experiments for local search with inserts and with inversions
inside a window of size r. The boldface entries mark the maximal average score obtained
for each instance.

instance r = 3, avg r = 5, avg r = 7, avg r = 9, avg r = 11, avg
alarm-10000 -105308.81 -105300.16 -105300.16 -105300.16 -105300.16
alarm-1000 -11265.42 -11265.16 -11264.91 -11264.96 -11264.60
alarm-100 -1357.26 -1357.26 -1357.26 -1356.33 -1355.77
asia-10000 -22467.52 -22466.40 -22466.40 -22467.52 -22467.52
asia-1000 -2317.49 -2317.49 -2317.49 -2317.49 -2317.49
asia-100 -246.96 -246.30 -245.81 -246.96 -246.96
carpo-10000 -174451.06 -174450.96 -174450.96 -174404.82 -174397.24
carpo-1000 -17747.31 -17745.21 -17746.77 -17746.31 -17739.14
carpo-100 -1844.54 -1844.54 -1844.54 -1843.20 -1842.42
hailfinder-10000 -498133.54 -498133.54 -498133.54 -498099.56 -498099.56
hailfinder-1000 -52508.02 -52508.02 -52508.02 -52508.02 -52507.98
hailfinder-100 -6021.58 -6021.58 -6021.58 -6021.58 -6021.58
insurance-10000 -133108.70 -133086.47 -133086.47 -133055.32 -133055.32
insurance-1000 -13931.21 -13929.06 -13924.03 -13915.04 -13914.44
insurance-100 -1695.65 -1695.46 -1694.27 -1693.40 -1693.91
kredit-family -16702.23 -16702.23 -16700.58 -16697.58 -16698.53
water-1000 -13274.46 -13274.46 -13274.46 -13274.16 -13270.91
water-100 -1502.62 -1502.62 -1502.40 -1502.14 -1501.85

score. Repeat these two steps until no further improvement has been found. To find
the optimal permutation of the window one may try all permutations of the window
entries. We use a more efficient dynamic programming algorithm; since we were not
too interested in a detailed running time evaluations in this preliminary experiment,
we omit further details on this dynamic programming algorithm.

We performed an experimental evaluation of this algorithm on data sets provided
at the GOBNILP [37] homepage.1 Given an instance, we compute 20 random topo-
logical orderings. We ran experiments for each r ∈ {3, 5, 7, 9, 11} using the same 20
random orderings for a fair comparison.

Table 8.1 shows for each instance and each r the average score of the computed r-
optimal orderings; Table 8.2 shows the maximum score of the 20 computed r-optimal
orderings. For most of the instances the best results are obtained for r ∈ {9, 11} in
terms of both average score and maximum score. Thus, the experiments show that it
can be worthwhile to consider larger local search neighborhoods, demonstrated here
for the combination of window distance with parameter r and insertion operation. It
is notable that we see the positive effect of a larger search radius for the window dis-

1https://www.cs.york.ac.uk/aig/sw/gobnilp/
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Table 8.2: Results of the experiments for local search with inserts and with inversions
inside a window of size r. The boldface entries mark the maximal maximum score obtained
for each instance.

instance max r = 5, max r = 7,max r = 9, max r = 11, max
alarm-10000 -105226.51 -105226.51 -105226.51 -105226.51 -105226.51
alarm-1000 -11247.28 -11247.28 -11247.28 -11247.28 -11247.28
alarm-100 -1351.92 -1351.92 -1351.92 -1351.01 -1350.55
asia-10000 -22466.40 -22466.40 -22466.40 -22466.40 -22466.40
asia-1000 -2317.41 -2317.41 -2317.41 -2317.41 -2317.41
asia-100 -245.64 -245.64 -245.64 -245.64 -245.64
carpo-10000 -174269.97 -174269.97 -174269.97 -174137.03 -174139.69
carpo-1000 -17728.98 -17728.98 -17725.29 -17724.56 -17724.05
carpo-100 -1839.16 -1839.16 -1839.16 -1839.16 -1839.16
hailfinder-10000 -497730.35 -497730.35 -497730.35 -497730.35 -497730.35
hailfinder-1000 -52486.74 -52486.74 -52486.74 -52486.74 -52486.74
hailfinder-100 -6019.47 -6019.47 -6019.47 -6019.47 -6019.47
insurance-10000 -132968.58 -132968.58 -132968.58 -132968.58 -132968.58
insurance-1000 -13909.50 -13888.03 -13888.03 -13887.90 -13888.58
insurance-100 -1689.90 -1689.90 -1689.90 -1689.24 -1689.17
kredit-family -16695.67 -16695.67 -16695.67 -16695.67 -16695.67
water-1000 -13263.38 -13263.38 -13263.38 -13263.38 -13263.38
water-100 -1501.26 -1501.26 -1501.26 -1501.19 -1501.03

tance even when the search neighborhood allows for another non-window operation.
This shows that the positive effect of the larger search radius is not due to choosing
a too restrictive search neighborhood in the first place. Finally, we remark that the
running time bottleneck in our preliminary experiments was not the combinatorial
explosion in r but rather the slow implementation of the insert operation.

8.3 Parameterized Local Search for Insert Distance

and Swap Distance

A swap operation on two vertices v and w on an ordering τ interchanges the positions
of v and w. The distance Swap(τ, τ ′) is the minimum number of swap operations
needed to transform τ into τ ′. An insert operation on an ordering τ removes one
arbitrary vertex from τ and inserts it at a new position. We define Insert(τ, τ ′) as the
minimum number of insert operations needed to transform τ into τ ′. This number
can be computed as Insert(τ, τ ′) = |N | − LCS(τ, τ ′), where LCS(τ, τ ′) is the length
of the longest common subsequence of τ and τ ′. That is, if Insert(τ, τ ′) = r, then
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there is a subset S ⊆ V of size r such that τ − S = τ ′ − S and vice versa.
For both distances, local search approaches for BNSL have been studied previ-

ously [8, 125, 159]. We now focus on the parameterized complexity regarding the
parameter r which is the radius of the local search neighborhood. We first prove that
Insert-Local W-BNSL and Swap-Local W-BNSL are XP when parameterized
by r. The algorithm is straight forward and simply computes for each possible order-
ings τ ′ which is r-close to τ a feasible arc set A such that τ ′ is a topological ordering
of (N,A) and score(A, k) is maximal. The latter is done by applying Theorem 8.2
after restricting the local multiscores to those that respect the ordering τ ′.

Theorem 8.3. Insert-Local W-BNSL and Swap-Local W-BNSL are solvable
in nO(r) · |I|O(1) time.

Proof. Given an instance I = (N,F , τ, t, k, r) of Insert-Local W-BNSL, we
compute all subsets S ⊆ V of size r and all orderings τ ′ with τ ′ − S = τ − S
in nO(r) time. For each such τ ′, we compute the instance I ′ = (N,F ′, t, k) of W-
BNSL, where F ′(v) := {(P, s, ω) ∈ F | ∀u ∈ P : u <τ ′ v} for each v ∈ N . Intu-
itively, F ′ is the collection of local multiscores restricted to parent sets that respect
the topological ordering τ ′. Due to Theorem 8.2, each of these instances can be solved
in polynomial time since SF ′ is a DAG. If one of these instances is a yes-instance,
then there is a set of arcs A ⊆ N × N such that scoreF(A, k) ≥ scoreF ′(A, k) ≥ t.
Consequently, I is a yes-instance of Insert-Local W-BNSL. The converse clearly
holds as well since we iterate over all possible choices of S and τ ′.

The algorithm for Swap-Local W-BNSL works analogously: We iterate over
all nO(r) collections of r vertex pairs that swap their positions. For each such choice
we restrict the local multiscores with respect to the corresponding ordering and apply
the algorithm behind Theorem 8.2.

Next we show that there is little hope that this algorithm can be improved to
a fixed-parameter algorithm by showing that both problems are W[1]-hard when
parameterized by r.

Theorem 8.4. Insert-Local W-BNSL and Swap-Local W-BNSL are W[1]-hard
when parameterized by r even if k = 0, |F(v)| ≤ 2 for all v ∈ N , SF is a DAG, and
every potential parent set has size at most 2.

Proof. We describe a parameterized reduction from Clique. In Clique one is given
an undirected graph G together with an integer k and the question is if G contains a
clique of size k, that is, a set of pairwise adjacent vertices. Clique is W[1]-hard when
parameterized by k [46]. We first describe a parameterized reduction from Clique
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to Insert-Local W-BNSL and afterwards, we describe how this construction can
be modified to obtain the desired hardness result for Swap-Local W-BNSL.

Construction. Given an instance I := (G = (V,E), k) of Clique where G
has n vertices and m edges, we compute an equivalent instance I ′ := (N,F , τ, t, k′, r)
of Insert-Local W-BNSL in polynomial time. Let V = {v1, . . . , vn}, and let E =
{e1, . . . , em}. The vertex set N consists of the vertices in V together with vertices wi
and {w1

i , . . . , w
k
i } for every edge ei ∈ E and k additional vertices x1, . . . , xk.

For every ei ∈ E, we set F(wi) := {(ei, k, 0)} and F(wji ) := {({wi}, n9, 0)}
with j ∈ {1, . . . , k}. Further, we set F(xi) := {({xi−1}, n9, 0)} for all i ∈ {2, . . . , k}
and F(v) := {({xk},

(︁
k
2

)︁
−1, 0)} for every vertex v ∈ V . Moreover, for each v ∈ N , we

also add (∅, 0, 0) to F(v). Note that SF is a DAG. Next, we describe the ordering τ
of the instance I ′. For each j ∈ {1, . . . ,m}, we set τj := (wj, w

1
j , w

2
j , . . . , , w

k
j )

and τ := τ1 · τ2 · . . . · τm · (x1, . . . , xk, v1, . . . , vn). Finally, we set r := k, k′ := 0,
and t := (mk + k − 1)n9 + n(

(︁
k
2

)︁
− 1) + k which completes the construction of I ′.

Throughout this proof, we let

A∗ := {(wi, wji ) | ei ∈ E, j ∈ {1, . . . , k}} ∪ {(xi−1, xi) | i ∈ {2, . . . , k}}

denote the set of arcs for parent sets of score n9 and we let ˆ︁A := A∗∪{(xk, vi) | vi ∈ V }
denote the set of all arcs of parent sets with positive score that do not violate the
topological ordering τ . By construction, score( ˆ︁A, 0) = t − k. An example of the
construction is shown in Figure 8.2

Intuition. The idea is that every arc set A of score at least t has to contain all
the arcs of A∗. Moreover, if D = (N,A) has a topological ordering τ ′ which is r-
close to τ , then at most r of the vertices of N change their position. Intuitively,
vertices S ⊆ V should be inserted a the beginning of the new ordering τ ′ so that
for each edges ei ∈ E(S), the vertex wi can learn the parent set ei. To obtain the
maximal score, the number of edges in E(S) should be maximal, which is the case if
and only if S is a clique of size k = r in G.

Correctness. Next, we show that I is a yes-instance of Clique if and only if I ′

is a yes-instance of Insert-Local W-BNSL. Since k′ = 0 and every parent set has
weight 0, we set score(A) := score(A, 0) for ease of notation.

(⇒) Let I be a yes-instance of Clique. Then, there is a clique S ⊆ V of size k
in G. Let τ ′ be the permutation of N obtained by moving all the vertices of S in
an arbitrary ordering to the beginning of τ . Thus, Insert(τ, τ ′) = k = r. Since S
is a clique in G, we have {u, v} ∈ E for all distinct vertices u, v ∈ S. We set A :=

( ˆ︁A \ {(xk, v) | v ∈ S}) ∪ {(u,wi), (v, wi) | ei = {u, v} ∈ E(S)}. By construction, τ ′

is a topological ordering of D = (N,A). Moreover, we have score(A) − score( ˆ︁A) =
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v1

v2

v3

τ
w1 w1

1 w2
1 w2 w1

2 w2
2 x1 x2 v1 v2 v3

τ ′

w1 w1
1 w2

1 w2 w1
2 w2

2 x1 x2 v1v2v3

Figure 8.2: An example of the construction from the proof of Theorem 8.4. The upper
part shows the graph G of a clique instance (G, 2). Below, there are the vertices of the In-
sert-Local W-BNSLinstance I, the ordering τ , and the arc set ˆ︁A. The first six vertices
on τ correspond to the edge set of G and the last three vertices on τ correspond to the
vertex set of G. The lower part shows a 2-close ordering τ ′ together with an optimal arc
set. The parent sets of w1 and w2 correspond to the clique on the vertices v2 and v3 in G.

|E(S)|·k−k(
(︁
k
2

)︁
−1) =

(︁
k
2

)︁
k−k(

(︁
k
2

)︁
−1) = k and, thus, score(A) = t. Consequently, I ′

is a yes-instance of Insert-Local W-BNSL.
(⇐) Let I ′ be a yes-instance of Insert-Local W-BNSL. Consequently, there is an

arc set A ⊆ N×N and a topological ordering τ ′ for D = (N,A) such that score(A) ≥
t = score( ˆ︁A)+k and Insert(τ, τ ′) ≤ r = k. By construction, n·(

(︁
k
2

)︁
−1)+|A∗|·n9+mk

is the sum of all positive scores of potential parent sets and therefore it is an upper
bound of the score one can obtain from any arc set. Observe that A∗ ⊆ A as,
otherwise

score(A) ≤ n · (
(︃
k

2

)︃
− 1) + (|A∗| − 1) · n9 +mk

< n · (
(︃
k

2

)︃
− 1) + |A∗| · n9 = score( ˆ︁A),

which contradicts the fact that score(A) ≥ t.
Since Insert(τ, τ ′) ≤ k, there is a set of vertices S ⊆ N of size at most k such

that τ − S = τ ′ − S. Since score(A) ≥ score( ˆ︁A) + k, there is a nonempty set of
edges E ′ ⊆ E of G such that (u,wi) ∈ A and (v, wi) ∈ A for all ei = {u, v} ∈ E ′.
Hence, wi ∈ S or {u, v} ⊆ S for each ei = {u, v} ∈ E ′. We set S ′ := {u, v | {u, v} ∈
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E ′} and show that S ′ forms a clique of size k in G. To this end, we prove the following
properties of S.

Claim 1. It holds that

a) S ′ ⊆ S, and

b) (xk, v) ̸∈ A for every v ∈ S ′.

Proof . a) Assume towards a contradiction that there is an edge ei = {u, v} ∈ E ′ such
that {u, v} ̸⊆ S. Then, wi ∈ S. Without loss of generality, let u ̸∈ S. Since wi ∈ S
and |S| ≤ k, there is one vertex wji with j ∈ {1, . . . , k} that is not an element of S.
Then, since u ̸∈ S, wji ̸∈ S and wji <τ u, we have w

j
i <τ ′ u. Then, we have w

j
i <τ ′ wi

since u <τ ′ wi due to the fact that ei ∈ E ′. Consequently, (wi, w
j
i ) ̸∈ A contradicting

the fact that A∗ ⊆ A.
b) Assume towards a contradiction that (xk, v) ∈ A for some v ∈ S ′. Then, xk <τ ′

v. Note that v <τ ′ wi where wi is the vertex corresponding to some edge ei ∈ E ′.
Thus, we have xk <τ ′ wi. Since v ∈ S ′ ⊆ S is an element of V and |S| ≤ k, there is
one vertex wji with j ∈ {1, . . . , k} and one vertex xℓ with ℓ ∈ {1, . . . , k} which both
do not belong to S. We thus have wji <τ ′ xℓ, since w

j
i <τ xℓ. If xℓ = xk or xℓ <τ ′ xk

we have wji <τ ′ wi and thus (wi, w
j
i ) ̸∈ A. This contradicts the fact that A∗ ⊆ A.

Otherwise, if xk <τ ′ xℓ, one of the arcs (xi, xi+1) is not an element of A which also
contradicts the fact that A∗ ⊆ A. Since both cases are contradictory, Statement b)
follows. ♢

Due to Claim 1 b), the vertices in S ′ do not have a parent set with score
(︁
k
2

)︁
− 1

under A. Moreover, note that there are |E ′| vertices that have a parent set with
score k. Formally, we have

score(A)− score( ˆ︁A) = |E ′| · k − |S ′|(
(︃
k

2

)︃
− 1)

≤ |EG(S ′)| · k − |S ′|(
(︃
k

2

)︃
− 1)

Since score(A) ≥ score( ˆ︁A) + k and |S ′| ≤ |S| ≤ k by Claim 1 a) we have k ≤
|EG(S ′)| · k − |S ′|(

(︁
k
2

)︁
− 1) which is only possible if |S ′| = k and |EG(S ′)| =

(︁
k
2

)︁
.

Consequently, S ′ forms a clique of size k inG and, thus, I is a yes-instance of Clique.
Hardness for Swap Distance. Next, we describe how we can modify this construc-

tion to obtain the hardness result for Swap-Local W-BNSL. The idea is that we
add k additional vertices at the beginning of the topological ordering that need to
be swapped with the k vertices of a clique S to obtain the required score. We add k
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additional vertices y1, . . . , yk with F2(yj) := {(∅, 0, 0), ({xk}, n8, 0)} for each j ∈
{1, . . . , k} and F2(v) := F(v) for each v ∈ N . Moreover, we set σ = (y1, . . . , yk) · τ
and t2 := t + k · n8. It remains to show that I ′ is a yes-instance of Insert-Local
W-BNSL if and only if I2 := (N2,F2, σ, t2, k

′, r) is a yes-instance of Swap-Local
W-BNSL. By construction and the above argumentation, an arc set A has score
at least t2 − k = score( ˆ︁A) + k · n8 if and only if A∗ ∪ {(xk, yj) | 1 ≤ j ≤ k} ⊆ A.
Consequently, each swap operation has to swap a different vertex from {y1, . . . , yk}
with a vertex which appears after xk in the current topological ordering, that is,
with a vertex of V . Let S be the vertices of V that are swapped with the vertices
of {y1, . . . , yk}. Then, score(A) ≥ t2 if and only if S forms a clique in G.

8.4 Parameterized Local Search for Inversions Dis-

tance

We study parameterized local search for the inversions distance. An inversion on an
ordering is an operation that swaps the positions of two consecutive vertices of the
ordering.

We describe a randomized algorithm to solve Inv-Local W-BNSL. The algo-
rithm has constant error probability and runs in subexponential FPT time for r,
the radius of the local search neighborhood. The algorithm is closely related to a
parameterized local search algorithm for finding minimum weight feedback arc sets
in tournaments by Fomin et al. [59]. A tournament is a directed graph T = (N,A)
where either (u, v) ∈ A or (v, u) ∈ A for every pair of distinct vertices u and v. A
feedback arc set is a subset A′ ⊆ A such that (N,A \ A′) is a DAG. The problem is
defined as follows.

Feedback Arc Set in Tournaments (FAST)
Input: A tournament T := (N,A), a weight function ω : A → N, and an
integer k.
Question: Is there a feedback arc set A′ ⊆ A such that

∑︁
a∈A′ ω(a) ≤ k?

In a local search version of FAST one is given a feedback arc set A′ and aims to find
a feedback arc set A′′ where the sum of the weights is strictly smaller, |A′ \A′′| ≤ r,
and |A′′ \A′| ≤ r for a given search radius r ∈ N0. The approach of Fomin et al. [59]
is ordering-based in the following sense: A feedback arc set A′ is identified with the
unique topological ordering τ of (N,Arev), where Arev results from A by reversing all
directions of arcs in A′. Interchanging the positions of two consecutive vertices on τ
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then corresponds to removing exactly one arc from the current feedback arc set (or
adding it to the feedback arc set, respectively).

FAST and W-BNSL are related, since in both problems we aim to find a DAG.
Furthermore, removing one arc (u, v) in a tournament can be seen as changing the
parent set of v. However, note that the seemingly more general problem W-BNSL
is not an actual generalization of FAST: A parent set of a vertex contains up to n−1
vertices and therefore, to model all possible deletions of its incoming arcs with local
multiscores, there are up to 2n−1 potential parent sets. Thus, modeling an instance
of FAST as an instance of W-BNSL in this natural way takes exponential time and
space. For our algorithm, we adapt the techniques used for FAST and show that we
can use these to obtain a local search algorithm for W-BNSL.

We first introduce some formalism of inversions. Let τ = (v1, . . . , vn) be an
ordering of a set N . An inversion on position i ∈ {1, . . . , n − 1} transforms τ into
the ordering hi(τ) := (v1, . . . , vi−1, vi+1, vi, . . . , vn). A sequence of inversions S =
(s1, . . . , sℓ) is a finite sequence of elements in {1, . . . , n − 1}. Applying S on τ
transforms τ into the ordering S(τ) := hsℓ ◦hsℓ−1

◦· · ·◦hs1(τ). The distance Inv(τ, τ ′)
is the length of the shortest sequence of inversions S such that S(τ) = τ ′. Recall
that the inversions-distance is also known as the Kendall tau distance [101].

The key idea behind the algorithm is as follows: If we know a partition of the
vertex set N into relatively few sets which do not change their relative positions in
the topological ordering, then we have a limited space of possible orderings which
can be obtained by performing at most r inversions. To specify which vertices keep
their relative positions we employ a technique called color coding [7]. Intuitively, we
randomly color all vertices with O(

√
r) colors in a way that vertices of the same color

keep their relative positions. As the local search algorithm for FAST [59], our color
coding algorithm is closely related to a subexponential time algorithm for FAST [6].

To describe the color coding technique, we need some definitions: Let N be a set
of vertices. A function χ : N → {1, . . . , ℓ} is called a coloring (of N with ℓ colors).
For each color i ∈ {1, . . . , ℓ}, we call Zi := {v ∈ N | χ(v) = i} the color class
of i. We next define color-restricted arc sets and color-restricted solutions which are
important for the color coding algorithm.

Definition 8.5. Let I := (N,F , τ, k, r) be an instance of Inv-Local W-BNSL,
let χ : N → {1, . . . , ℓ} be a coloring, and let A be an F-valid arc set. We say
that A is a color-restricted arc set if there is a topological ordering τ ′ of (N,A)
with Inv(τ, τ ′) ≤ r and τ [Zi] = τ ′[Zi] for every color class Zi. A color-restricted arc
set A that maximizes score(A, k) is called a color-restricted solution of I and χ.

We next describe a deterministic algorithm that efficiently finds a color-restricted
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solution.

Proposition 8.6. Given an instance I := (N,F , τ, k, r) of Inv-Local W-BNSL
and a coloring χ : N → {1, . . . , ℓ} for I, a color-restricted solution A can be computed
in (r + 2)ℓ · |I|O(1) time.

Proof. Before we present the algorithm, we provide some intuition.

Intuition. Our algorithm is based on dynamic programming. Every color class
can be seen as a chain of vertices that keep their relative position in the ordering. An
integer vector of length ℓ then describes which prefixes of these chains we consider.
Our dynamic programming algorithm starts with empty chains and then adds the
next vertex of one of the chains and finds a solution of the instance with the extended
prefix vectors.

Notation. To formally describe the algorithm, we introduce some notation. For
every color class Zi consider the sub-ordering τ [Zi] that contains only the vertices
of Zi. Given some integer x ≤ |Zi| we define Zi

x := {zi(1), zi(2), . . . , zi(x)} as the set
of the first x vertices appearing on τ [Zi], where zi(j) denotes the jth vertex on τ [Zi].

Note that Zi
0 = ∅. Given an integer vector p⃗ = (p1, . . . , pℓ) with pi ∈ [0, |Zi|], we

define τ(p⃗) := τ [Z1
p1
∪Z2

p2
∪· · ·∪Zℓ

pℓ
]. As a shorthand, for the set of vertices appearing

on τ(p⃗) we define N(p⃗) := N(τ(p⃗)) and we define Fp⃗ by Fp⃗(v) := {(P, s, ω) ∈ F(v) |
P ⊆ N(p⃗)} for every v ∈ N(p⃗) as the restriction of F to N(p⃗). Note that, given a
partial ordering τ(p⃗), the vertex zi(pi) is the last vertex of color class Zi appearing
on τ(p⃗). Throughout this proof, we let 0⃗ denote the integer vector of length ℓ where
all entries equal 0, and e⃗i the integer vector of length ℓ where the ith entry equals 1
and all other entries equal 0.

Algorithm. The dynamic programming table T has entries of the type T [p⃗, k′, r′]
with k′ ∈ {0, . . . , k} and r′ ∈ {0, . . . , r}. Each entry stores the score of a color-
restricted solution of the Inv-Local W-BNSL instance

I p⃗k′,r′ := (N(p⃗),Fp⃗, τ(p⃗), k′, r′).

The instance I p⃗k′,r′ is an instance obtained by only considering the prefixes of the
chains of color classes which are specified by the vector p⃗. The idea behind this
algorithm is to recursively find the best sink of the current network and combine this
with a color-restricted solution of the remaining network. To specify the contribution
of a sink to the score, we introduce the following definition: For given i ∈ {0, . . . , ℓ},
k′ ∈ {0, . . . , k}, and p⃗, we define the value fp⃗(i, k

′) as the maximal local score of
a parent set P ⊆ N(p⃗) of zi(pi) that simultaneously has weight at most k′. More
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formally,

fp⃗(i, k
′) := max

(P,s,ω)∈F(zi(pi))
P⊆N(p⃗)
ω≤k′

s.

The value of fp⃗(i, k
′) can be computed in |I|O(1) time by iterating over the array

representing F(v).
We next describe how to fill the dynamic programming table. As base case we

set T [0⃗, k′, r′] := 0 for all k′ ∈ {0, . . . , k} and r′ ∈ {0, . . . , r}. The recurrence to
compute entries for p⃗ ̸= 0⃗ is

T [p⃗, k′, r′] := max
k′′≤k′

max
i, pi>0
R(p⃗,i)≤r′

(︂
fp⃗(i, k

′′) + T [p⃗− e⃗i, k′ − k′′, r′ −R(p⃗, i)]
)︂
,

where R(p⃗, i) := |{v ∈ N(p⃗) | zi(pi) <τ(p⃗) v}| is the number of elements that appear
after zi(pi) in τ(p⃗). Intuitively, R(p⃗, i) is the number of inversions that need to be per-
formed to move zi(pi) to the end of the ordering τ(p⃗). The score of a color-restricted
solution of I and χ can be computed by evaluating T [(|Z1|, |Z2|, . . . , |Zℓ|), k, r]. The
corresponding network can be found via traceback.

Correctness. We next show that the dynamic programming recurrence is correct.
That is, we prove the following claim.

Claim 2. The table entry T [p⃗, k′, r′] contains the score of a color-restricted solution
of I p⃗k′,r′ and χ|N(p⃗) for each combination p⃗, k′, and r′.

Proof . We prove the claim by induction over |p⃗| :=
∑︁ℓ

i=1 pi.

Base Case: |p⃗| = 0. Then p⃗ = 0⃗ and I 0⃗k′,r′ is an instance with an empty vertex

set. Thus, the score of a color-restricted solution is 0 = T [0⃗, k′, r′].
Inductive Step: Let the claim hold for all q⃗ with |q⃗| < |p⃗|. Let A be a color-

restricted solution of I p⃗k′,r′ and χ|N(p⃗). We prove

score(A, k′) = T [p⃗, k′, r′].

(≥) We first show score(A, k′) ≥ T [p⃗, r′, k′]. Let i and k′′ be the integers that
maximize the right hand side of the recurrence. Taking the vertex zi(pi) and mov-
ing it to the rightmost position of τ(p⃗) can be done with exactly R(p⃗, i) ≤ r′ in-
versions. Let P be the parent set of the tuple (P, s, ω), that maximizes fp⃗(i, k

′′).
Defining P as the parent set with weight at most k′′ of zi(pi) and combining this
with a color-restricted solution A′′ of I p⃗−e⃗ik′−k′′,r′−R(p⃗,i) defines a color-restricted arc
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set A′ for I p⃗k′,r′ with score(A′, k′) = score(A′′, k′ − k′′) + fp⃗(i, k
′′). The inductive

hypothesis implies score(A′′, k′ − k′′) = T [p⃗ − e⃗i, k
′ − k′′, r′ − R(p⃗, i)]. We thus

have score(A′, k′) = T [p⃗, k′, r′], and therefore score(A, k′) ≥ T [p⃗, k′, r′].

(≤) We next show score(A, k′) ≤ T [p⃗, r′, k′]. Let Y 1, . . . , Y ℓ be the color classes
of χ|N(p⃗). Since A is a color-restricted solution of I p⃗k′,r′ and χ|N(p⃗), there exists a

topological ordering τ ′ of (N(p⃗), A) with Inv(τ(p⃗), τ ′) ≤ r′ and τ(p⃗)[Zi] = τ ′[Y i] for
every color i. It follows that the last vertex appearing on τ ′ is zi(pi) for some color i.
By the inductive hypothesis the entry T [τ(p⃗− e⃗i), k′−k′′, r′−R(p⃗, i)] stores the score
of a color-restricted solution of I p⃗−e⃗ik′−k′′,r′−R(p⃗,i) for each i and k

′. Since we iterate over

every choice of i and k′′, we consider every possible choice of zi(pi) and combine its
best possible parent set with a color-restricted solution of the remaining instance.
Consequently, score(A, k′) ≤ T [p⃗, k′, r′]. ♢

Running Time. We now analyze the running time of the algorithm. The table T
has O(nℓ · (k+ 1) · (r+ 1)) entries. Each entry can be computed in time polynomial
in |I|. This would lead to a running time of nℓ ·|I|O(1). However, we can obtain a run-
ning time of (r+1)ℓ ·|I|O(1) by using a more elaborate analysis similar to the one used
by Fomin et al. [59]. The key idea is to compute the entry T [(|Z1|, |Z2|, . . . , |Zℓ|), k, r]
in a top-down manner using a memoization table to store the results of computed
table entries. To obtain the running time bound, we give a bound on the number
of vectors p⃗ such that an entry T [p⃗, k′, r′] is evaluated by the algorithm in order to
compute the entry T [(|Z1|, |Z2|, . . . , |Zℓ|), k, r]. Throughout the rest of this proof we
call such p⃗ an important vector.

Let p⃗ be an important vector. An index j ∈ {1, . . . , n} is called a hole in τ(p⃗)
if τ(j) ̸∈ N(p⃗) and there exists some j′ > j with τ(j′) ∈ N(p⃗). Given a hole j, we
let Φ(j) denote the set of vertices in N(p⃗) that appear after τ(j) on τ(p⃗).

The intuition behind holes is the following: Throughout the top-down algorithm
we have a ‘budget’ of at most r inversions. A hole at some position j is caused by
a recursive call of the algorithm with some vector p⃗− e⃗i where i corresponds to the
color of the vertex τ(j). Intuitively, this means that the vertex τ(j) is chosen to be
a sink in a possible solution of an instance I p⃗k′,r′ and therefore it is moved to the last
position of the ordering τ(p⃗). For this movement, the vertex τ(j) needs to pass all
the vertices appearing on τ(p⃗) after τ(j). Consequently, this decreases our budget of
inversions by at least |Φ(j)|. We then use the fact that the total budget of inversions
is at most r which implies that the number and the position of holes in τ(p⃗) is
restricted when p⃗ is an important vector. Afterwards, we use this restriction to give
an upper bound on the total number of important vectors. To formally show that
the number of important vectors is bounded, we need the inequality stated in the
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following claim.

Claim 3. If T [p⃗, k′, r′] is an entry that is evaluated by the algorithm, we have∑︂
j is a hole in τ(p⃗)

|Φ(j)| ≤ r.

Proof . Consider a sequence of table entries (T [q⃗ 1, k1, r1], . . . , T [q⃗
s, ks, rs]) such that

T [q⃗ 1, k1, r1] = T [(|Z1|, |Z2|, . . . , |Zℓ|), k, r],
T [q⃗ s, ks, rs] = T [p⃗, k′, r′],

and for each x ∈ {1, . . . , s − 1} the entry T [q⃗ x+1, kx+1, rx+1] has been evaluated
by the algorithm in order to compute the entry T [q⃗ x, kx, rx]. Such sequence exists,
since T [p⃗, k′, r′] is evaluated by the algorithm. Note that

∑︁s−1
x=1(rx − rx+1) ≤ r.

Let j be a hole of τ(p⃗). Then, there is a unique index x ∈ {1, . . . , s − 1}
such that the computation of T [q⃗ x, kx, rx] creates the hole j by recursively call-
ing T [q⃗ x+1, kx+1, rx+1] with q⃗ x+1 = q⃗ x − ei and zi(q

x
i) = τ(j) for some i. By the

recurrence we then have rx = R(q⃗ x, i)+rx+1. Therefore, rx−rx+1 = R(q⃗ x, i) ≥ |Φ(j)|
since τ(p⃗) is an induced subordering of τ(q⃗ x). Thus, we have

∑︂
j is a hole in τ(p⃗)

|Φ(j)| ≤
s−1∑︂
x=1

(rx − rx+1) ≤ r.

♢

We next use Claim 3 to give a bound on the number of important vectors. Let p⃗
be important and let x ∈ {1, . . . , n} such that τ(x) is the last vertex appearing
on τ(p⃗). We show that τ(j) ∈ N(p⃗) for every j ∈ {1, . . . , x− (r+1)−1}. Intuitively,
this means that all holes in τ(p⃗) are close to x. Assume towards a contradiction
that there is some j ∈ {1, . . . , x − (r + 1) − 1} with τ(j) ̸∈ N(p⃗). Note that j is
a hole in τ(p⃗) with τ(x) ∈ Φ(j). Consider an index j′ ∈ {x − (r + 1), . . . , x − 1}.
If τ(j′) ̸∈ N(p⃗), then j′ is a hole in τ(j′) with τ(x) ∈ Φ(j′). Otherwise, if τ(j′) ∈ N(p⃗),
we have τ(j′) ∈ Φ(j). Since there are r+1 possible values for j′, this is a contradiction
to the inequality from Claim 3.

We can specify an important vector p⃗ by specifying the set N(p⃗). By the above,
it suffices to specify which elements of X := {τ(x − (r + 1)), . . . , τ(x − 1)} belong
to N(p⃗). Recall that there are ℓ color classes, and the vertices of each color class Zi

which belong to N(p⃗) are defined by the entry pi. Since X contains r + 1 elements,
for each color class, there are r+2 possible choices of Zi∩X. Thus, there are (r+2)ℓ
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possible important vectors. Consequently, the algorithm computes at most (r+2)ℓ ·
(k + 1) · (r + 1) table entries. Since each entry can be computed in polynomial time
in |I|, the algorithm runs in (r + 2)ℓ · |I|O(1) time.

We now describe how to use the algorithm behind Proposition 8.6 to obtain
a randomized algorithm for Inv-Local W-BNSL. The idea is to randomly color
the vertices with

√
8r colors and use the algorithm from Proposition 8.6 to find a

color-restricted solution. To asses which coloring leads to a solution of Inv-Local
W-BNSL, we define good colorings.

Definition 8.7. Given an instance I of Inv-Local W-BNSL and a coloring χ, a
coloring χ is a good coloring of I if every color-restricted solution of χ and I is a
solution of I.

Note that not every coloring is a good coloring. A trivial example is a random
coloring, where every vertex receives the same color. In this case, a colored solution
has the topological ordering τ since all vertices keep their relative positions. How-
ever, if r ≥ 1, the uncolored instance might have a strictly better solution with a
topological ordering that is r-close to τ .

We next analyze the likelihood of randomly choosing a good coloring when using
only

√
8r colors. For ease of notation, we assume that

√
8r is an integer.

Lemma 8.8. Let I be an instance of Inv-Local W-BNSL and let χ : N →
{1, . . . ,

√
8r} be a coloring that results from assigning a color to each vertex uniformly

at random. Then, χ is a good coloring of I with probability at least (2e)−
√

r/8.

Proof. Let I := (N,F , τ, k, r), let A be a solution of I, and let τ ′ be an r-close
topological ordering of (N,A). Consider the graph G := (N,E), where E := {(u, v) |
u <τ v and v <τ ′ u}. Intuitively, an arc (u, v) ∈ E indicates that in τ ′ the vertices u
and v have another relative position than in τ . Note that, when applying a sequence
of inversions S on an ordering, at most |S| pairs of vertices change their relative
positions. Thus, we have |E| ≤ r since τ ′ is r-close to τ .

A proper vertex coloring of G is a coloring that assigns distinct colors to every
pair of vertices that are connected by an edge. It is easy to see that χ is a good
coloring of I if χ is a proper vertex coloring of G. The probability of randomly
choosing a proper vertex coloring with

√
8r colors for a graph with r edges is at

least (2e)−
√

r/8 [6].

We next describe the randomized algorithm. Recall that for every vertex v we
have (∅, s, 0) ∈ F(v) for some s ∈ N0. Thus, given an instance (N,F , τ, k, r) of Inv-
Local W-BNSL, there always exists the F -valid arc set A := ∅ with weight at
most k such that (N,A) has a topological ordering that is r-close to τ .
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Theorem 8.9. There exists a randomized algorithm for Inv-Local W-BNSL that,
in time 2O(

√
r·log(r)) · |I|O(1) returns an F-valid arc set A with weight at most k

such that (N,A) has a topological ordering that is r-close to τ . With probability
at least 1− 1

e
, the arc set A is a solution.

Proof. Let I be an instance of the Inv-Local W-BNSL. The algorithm can be

described as follows: Repeat the following two steps (2e)
√

8/r times and return the
color-restricted solution with the maximal score.

1. Color the vertices of N uniformly at random with colors from {1, . . . ,
√
8r}.

Let χ : N → {1, . . . ,
√
8r} be the resulting coloring.

2. Apply the algorithm behind Proposition 8.6 and compute a color-restricted
solution of I and χ.

By Lemma 8.8, the probability of choosing a good coloring in Step 1 and therefore

computing a solution of I in Step 2 is at least (2e)−
√

8/r. Thus, by repeating these

steps (2e)
√

8/r times, we obtain a running time of (2e)
√

r/8 · (r + 2)
√
8r · |I|O(1). As a

shorthand, let x :=
√︁

8/r. The probability that the output is not a solution is at most

(1− (2e)−x)(2e)
x ≤ (e−(2e)−x

)(2e)
x

=
1

e
.

The first inequality relies on the inequality (1+y) ≤ ey for all y. Then, the probability
that the output is a solution is at least 1− 1

e
.

8.5 Parameterized Local Search for Inversion-Win-

dow Distance

We now study the inversion-window distance InvWin(τ, τ ′) which is closely related
to the number of inversions. The intuition behind this new distance is the following:
Given an ordering τ , we obtain an r-close ordering by partitioning τ into multi-
ple windows of consecutive vertices and performing up to r inversions inside each
such window. This new distance is an extension of the inversions distance in the
sense that InvWin(τ, τ ′) ≤ Inv(τ, τ ′). In other words, given a search radius r, the
search space of r-close orderings is potentially larger when using InvWin(τ, τ ′) instead
of Inv(τ, τ ′). For this extended distance we also provide a randomized algorithm with
running time 2O(

√
r log(r)) · |I|O(1).
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We now formally define the inversion-window distance. Let τ and τ ′ be orderings
of a vertex set N and let S be a sequence of inversions that transforms τ into τ ′.
A window partition W for S is a partition of the set {1, . . . , n} into windows I1 =
[a1, b1], . . . , Iℓ = [aℓ, bℓ] such that no endpoint bi appears on S. Here, a window [a, b]
with a ≤ b denotes the set {i ∈ N0 | a ≤ i ≤ b}. Note that for each window Ij =
[aj, bj] we have Nτ (aj, bj) = Nτ ′(aj, bj). In other words, given a window partition W ,
applying S on τ does not move any vertex from one window ofW to another window
of W . A window partition always exists since n does not appear on any sequence
of inversions and thus W := {[1, n]} is a window partition. The width of a window
partition W for S is defined as

width(W ) := max
I∈W

∑︂
j∈I

#(S, j),

where #(S, j) denotes the number of appearances of index j on the sequence S.
The number of window inversions WI(S) is then defined as the minimum width(W )
among all window partitions W of S. In other words, WI(S) is the smallest possible
maximum number of inversions inside a window among all possible window parti-
tions. The inversion-window distance InvWin(τ, τ ′) is the minimum number WI(S)
among all sequences S that transform τ into τ ′. Observe that InvWin(τ, τ ′) ≤
Inv(τ, τ ′) since {[1, n]} is a window partition of every sequence S.

Our algorithm is based on the following intuition: If an ordering τ ′ is r-close
to τ , the ordering can be decomposed into windows in which at most r inversions
are performed and the vertices from distinct windows keep their relative positions.
In a bottom-up manner, we compute the best possible ordering of suffixes τ(a, n)
of τ until we find the best possible ordering of τ(1, n) = τ . This is done by finding
the first window on the suffix and combining this with an optimal ordering of the
remaining vertices of this suffix. To find a solution of the first window we use the
algorithm behind Theorem 8.9 for Inv-Local W-BNSL as a subroutine.

The sub-instances on which we apply the algorithm behind Theorem 8.9 contain
the vertices of a window τ(a, b). Changing the ordering in τ(a, b), these vertices
may learn a parent set containing vertices from τ(1, b). For our purpose, only the
new parents in τ(a, b) are important, since the new parents in τ(1, a − 1) are not
important to find an optimal ordering of the suffix τ(a, n). Intuitively, we hide the
parents in τ(1, a− 1). Formally, we define the restricted local multiscores F|ba by

F|ba := {(P ∩Nτ (a, b), s, ω) | (P, s, ω) ∈ F(v) and P ⊆ Nτ (1, b)}.
Theorem 8.10. There exists a randomized algorithm for InvWin-Local W-BNSL
that, in time 2O(log(r)

√
r) · |I|O(1), returns an F-valid arc set with weight at most k.

With probability at least 1− 1
e
, the returned arc set is a solution.
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Proof. Let I := (N,F , τ, k, r) be an instance of InvWin-Local W-BNSL. We de-
scribe the algorithm in two steps. We first describe a deterministic algorithm that
finds a solution of I in polynomial time when using an oracle that gives solutions of
Inv-Local W-BNSL instances where the search radius is at most r. Afterwards, we
describe how to replace the oracle evaluations with the randomized algorithm behind
Theorem 8.9 to obtain a randomized algorithm for InvWin-Local W-BNSLwith
the claimed running time and error probability.

The oracle algorithm. We fill a dynamic programming table T that has entries
of the type T [j, k′] with j ∈ {1, . . . , n + 1} and k′ ∈ {0, k}. The idea is that each
entry T [j, k′] with j ≤ n stores the score of a solution of the InvWin-Local W-
BNSL-instance

I(j, k′) := (Nτ (j, n),F|nj , τ(j, n), k′, r).

Intuitively, a solution of I(j, k′) gives the best possible ordering of the suffix τ(j, n)
corresponding to an arc set of maximum weight k′. We next describe how to fill T .
As base case we set T [n + 1, k′] = 0 for all k′. The recurrence to compute an entry
for j ≤ n is

T [j, k′] := max
p∈{j,...,n}

max
k′′≤k′

(︂
W (j, p, k′′) + T [p+ 1, k′ − k′′]

)︂
,

where W (j, p, k′′) denotes the score of a solution of the Inv-Local W-BNSL-
instance

(Nτ (j, p),F|pj , τ(j, p), k′′, r)

which we obtain by an oracle evaluation. Intuitively, this instance corresponds to
the first window of the suffix τ(j, n). Observe that we evaluate the oracle on Inv-
Local W-BNSL-instances with search radius r. The score of a solution of I can be
computed by evaluating T [1, k]. The ordering of the corresponding network can be
found via traceback. The correctness follows from the fact we consider every possible
position of the endpoint of the first window on the suffix τ(j, n).

Replacing the Oracle Evaluations. We replace the oracle by the randomized al-
gorithm from Proposition 8.6. The dynamic programming table has (n + 1)(k + 1)
entries. Each entry can be computed by using at most n ·k oracle evaluations. Thus,
there are at most x := (n+1)(k+1) ·n ·k ∈ |I|O(1) oracle evaluations. We replace ev-
ery oracle evaluation by applying the algorithm behind Theorem 8.9 exactly x times
and keeping a result with maximum score.

Observe that the algorithm always computes a feasible arc set for I. The proba-
bility that all x repetitions fail to compute a solution of the corresponding Inv-Local
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W-BNSL-instance is at most (1
e
)x. Consequently, the probability that the correct

result of one oracle evaluation is returned is at least 1 − 1
ex
. Therefore, the success

probability of the algorithm is at least (1 − 1
ex
)x ≥ (1 − 1

e
). The inequality holds

since we have equality in the case of x = 1 and the left hand side of the inequality
strictly increases when x ≥ 1 increases.

We next analyze the running time of the algorithm. As mentioned above, the
dynamic programming table has (n + 1)(k + 1) ∈ |I|O(1) entries. For each entry we
apply the algorithm from Theorem 8.9 on x instances of Inv-Local W-BNSL with
search radius r. Since x ∈ |I|O(1) we have total running time 2O(log(r)

√
r) · |I|O(1).

8.6 Limits of Ordering-Based Local Search

In this section we outline the limits of ordering-based local search. In particular,
we observe that ordering-based local search might not be a promising approach to
handle variants of BNSL that are NP-hard on instances with an acyclic directed
superstructure. As mentioned in Section 8.1, W-BNSL can be used to model
Bayesian network learning under additional sparsity constraints like a bounded num-
ber of arcs. However, some important sparsity constraints are unlikely to be modeled
with our framework, for example sparsity constraints that are posed on the skeleton
or on the moralized graph [50] of the resulting network. Recall that the skeleton
of a DAG is the underlying undirected graph, and that the moralized graph of a
DAG D is an undirected graph (N,E1 ∪ E2) with E1 := {{u, v} | (u, v) ∈ A},
and E2 := {{u, v} | u and v have a common child in D}. Furthermore, recall that
the NP-hard task of Bayesian inference can be solved more efficiently if the moralized
graph of the network is treelike, that is, it has small treewidth [40]. Thus, it is well
motivated to learn a Bayesian network structure that satisfies a sparsity constraint
that provides an upper bound on the treewidth of the moralized graph. In Chapter 6,
we studied this task for several sparsity constraints.

For the following constraints, the task of learning a restricted network structure
with score at least t is NP-hard even on instances where the directed superstructure
is a DAG and t is polynomial in the number of vertices:

• Skeleton with bounded treewidth (Theorem 7.4),
Moralized graph with bounded treewidth [112]

• Skeleton with bounded vertex cover number (Theorem 6.9),
Moralized graph with bounded vertex cover number [113]
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• Skeleton with bounded dissociation number (Theorem 6.9),
Moralized graph with bounded dissociation number (Corollary 6.10)

• Moralized graph with a bounded number of edges (Theorem 6.30)

Recall that all parameterized reductions contained in this work run in polynomial
time and thus, we may derive NP-hardness from these W[i]-hardness results.

We now argue that for these variants of BNSL, there is little hope that one can
efficiently find improvements of a given DAG by applying changes on its topological
ordering. Observe that an acyclic directed superstructure has a topological ordering τ
which is then automatically a topological ordering of every DAG where the parent
sets are potential parent sets. Furthermore, observe that all the constraints listed
above are true if the network structure does not contain arcs. Assume one can
find improvements of a given DAG in polynomial time if the radius r of the local
search neighborhood is constant. Then, we can solve instances with acyclic directed
superstructure by setting r = 0, starting with an empty DAG and a topological
ordering of SF , and improve the score t times. This would be a polynomial-time
algorithm for instances where t is polynomial in n and SF is a DAG which would
imply P = NP.

8.7 Concluding Remarks

We initiated the study on parameterized ordering-based local search for the task of
learning a Bayesian network structure. We studied four distances d and classified
for which of these distances d-Local W-BNSL is FPT and for which distances it
is W[1]-hard. Note that there is one big difference between this chapter and the
other chapters of Part III. While in Chapters 6 and 7 we studied the task of exactly
learning a Bayesian network structure, we now proposed local search heuristics that
can be used to find locally optimal network structures. Even though we think that
there is potential for practically relevant exact algorithms, the local search algorithms
described in this chapter might be more relevant in a practical context.

Open Questions. There are several ways of extending our results that seem in-
teresting topics for future research. First, besides the experimental motivation men-
tioned in Section 8.2, this work is purely theoretical. Recall that the running time
bottleneck in the preliminary experiments from Section 8.2 was not the combinato-
rial explosion in the search radius r but rather the slow implementation of the insert
operation. Krambrock [119] provided another implementation of the hill-climbing
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strategy behind the experiments in Section 8.2 and obtained an improved running
time. Thus, one important topic for future work is to investigate how well the the-
oretical algorithms proposed in this work perform in practice when combined with
algorithm engineering tricks like data reduction rules, upper and lower bounds for
the solution size, and restarts.

Besides experimental evaluations and practical improvements of the algorithms
proposed in this chapter, it is also interesting to further study theoretical running
time improvements. Recall that our subexponential-time algorithms for the inver-
sions distance and the inversion-window distance are closely related to an algorithm
for FAST [6]. Feige [54] and Karpinski and Schudy [100] improved the running time

lower bound for FAST by proposing algorithms with running time 2O(
√
k) · nO(1) in-

stead of 2O(
√
k log(k)) · nO(1). Therefore, a natural open question is whether d-Local

W-BNSL for d ∈ {Inv, InvWin} can be solved in 2O(
√
r) · nO(1) time.

The results in this work may be extended by considering further distances. One
example for another distance could be a q-swap distance, where a q-swap for some
fixed integer q is a swap of two vertices on the ordering which positions differ by at
most q. The q-swap distance between two orderings is then the minimum number
of q-swaps needed to transform one ordering into the other. Observe that in a 1-
swap is an inversion. Observe that a q-swap can be simulated by performing at
most q inversions. Consequently, using the algorithm behind Theorem 8.9 we can
compute a solution in 2O(

√
q·r log(q·r)) · |I|O(1) time that is at least as good as the best

solution that can be found by performing at most r q-swaps. One first question might
be if there is a more efficient algorithm for q-swap Local W-BNSL. Analogously
to q-swaps, one may define q-inserts, where one can remove a vertex at position j
and insert it at a new position i with j − q ≤ i ≤ j + q. A hill-climbing strategy
that is based on performing single q-insert operations has previously been studied
by Alonso-Barba et al. [8].

In Section 8.6, we outlined the limits of ordering-based local search. In a nutshell,
we discussed variants of BNSL that are NP-hard even on instances with an acyclic
directed superstructure—in other words—instances, where the topological ordering
of the solution is known. An idea to tackle such variants of BNSL might be to find
parameters ℓ for which these variants are FPT when the directed superstructure is
acyclic. Then, it would be interesting to study ordering-based local search parame-
terized by r + ℓ. Intuitively, there may be efficient algorithms that iterate over all
orderings that are r-close to a given ordering in nf(r) time and then solve the in-
stances respecting each such ordering in g(ℓ) · |I|O(1) time. Maybe it is also possible
that this can be improved to an FPT-algorithm for parameterization by r + ℓ.
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In this work we studied Strong Triadic Closure (STC) and related edge col-
oring problems and multiple variants of Bayesian Network Structure Learn-
ing (BNSL). A detailed summary of our specific results can be found in the cor-
responding chapters. Therefore, we will not restate all these results here. Instead,
we describe on a high level in which way our contributions extend existing results.
Furthermore,some concrete open questions were posed in the concluding remarks of
the corresponding chapters. In this conclusion, we provide a collection of possible
future research projects that are related to the problems but fall beyond the scope
of the chapters of this work.

Strong Triadic Closure

Summary. We studied the problem of partitioning the edge set of a graph into
(multiple) strong and weak classes of edges such that the number of weak edges is
minimized and the strong triadic closure property is satisfied.

Most previous algorithmic work on strong triadic closure has focused on STC,
the problem variant with one strong color. The STC problem was introduced in
2014 [164] and there were results that STC is NP-hard even on restricted graph
classes [164, 110, 111]. Konstantinidis et al. [110] studied the relationship between
STC and Cluster Deletion (CD) to provide a polynomial-time algorithm for
both problems on P4-free graphs. Furthermore, STC is FPT when parameterized by
the number k of weak edges [164] and it admits a linear problem kernel for k [77, 23].

With our work, we extended the knowledge on the relationship between STC
and CD. Furthermore, we initiated the study of the number of strong edges ℓ as
natural parameter for STC and showed that STC is FPT when parameterized by ℓ.
Recall that, independent from our work, the parameter ℓ has been studied by Golo-
vach et al. [71]. We observed the NP-hardness of STC with multiple strong colors
and introduced the list variants as further generalizations of the problem. These
generalizations allow to model further restrictions on the labeling that are arguably
well-motivated in the context of social network analysis. For these list variants, we
provided strong ETH-based lower bounds that are superexponential in the number
of vertices. We also analyzed how the positive results regarding the parameterized
complexity of STC can be lifted to the more general problem variants. Finally, we
outlined the relationship between Multi-STC and classic edge coloring. Based on
this relationship, we observed that Multi-STC can be solved in polynomial time
when the input graphs has low degree. Using this observation, we introduced a
distance-from-triviality parameter that measures the distance of the input graph to
a low-degree graph. We proved thatMulti-STC admits a polynomial problem ker-
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nel when parameterization by the sum of this new parameter and the number of
colors.

Outlook. The strong triadic closure property requires that two agents which have
the same type of strong relationship with a third agent must be connected in the social
network. This is a very simple combinatorial property. Based on the strong triadic
closure property, several works from the data mining community identify strong
relationships in real-world data. Adriaens et al. [1] claimed that when only relying
on the strong triadic closure property, one might fail to capture some strong ties. To
capture more strong relationships, it might thus be motivated to study variants of
STC that are based on a less strict version of the strong triadic closure property.

In the following, we introduce a possible relaxation of STC: An important graph
parameter in context of triadic closure is the so-called closure number cl(G) of a
graph G (also known as c-closure of G). Fox et al. [61] introduced this graph pa-
rameter which is defined as the smallest integer cl(G) such that every pair of two
vertices is connected by an edge if they have at least cl(G) common neighbors. In
recent works on parameterized complexity, cl(G) has been studied as a possible pa-
rameter for classic problems like Independent Set, Dominating Set, or variants
of Vertex Cover [106, 107]. The idea that only multiple common neighbors in-
dicate an adjacency of two vertices gives rise to a problem which we call Strong
α-Closure for some integer α. In Strong α-Closure one is given a graph G
and an integer k and one aims to label the edges of G as strong or weak such that
at most k edges are weak and the strong α-closure property is satisfied. Here, the
strong α-closure property requires that no pair of nonadjacent vertices has α or more
common strong neighbors. Note that STC is the special case where α = 1. In this
sense, for α > 1, Strong α-Closure can be seen as a less strict version of STC.
One interesting observation is, that if an edge-labeling produces a conflict to the
strong α-closure property, one can identify a set of 2α edges from which one edge
must be labeled as weak. Using this observation one can think of a simple (2α)k ·nO(1)

branching algorithm, and thus, Strong α-Closure is FPT when parameterized
by k + α. Is Strong α-Closure FPT when parameterized by k alone? Besides
direct FPT algorithms, one could also aim for kernelizations. Known kernelizations
for STC parameterized by k [77, 23] can not be directly applied for Strong α-
Closure when α > 1. Is it possible to adapt the known kernelizations or do we
need a fundamentally new idea for this new variant of STC?

Another more general direction of research is to further study the correspondence
between graphs and their Gallai graphs. Recall that EL-Multi-STC can be solved
in 3m · nO(1) time by solving List Colorable Subgraph on the Gallai graph of
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the input graph (Proposition II.7). Thus, if List Colorable Subgraph can be
solved in polynomial time on some graph class Π, we can identify a graph class on
which EL-Multi-STC is solvable in polynomial time: the class of all graphs whose
Gallai graph belongs to Π. Since considering the Gallai graph can provide a new view
on the input graph, it seems to be interesting to study which other graph problems
(besides EL-Multi-STC) become tractable when the Gallai graph of the input
graph has a certain structure. To this end, one could further study relations between
the structure of graphs and the structure of their Gallai graphs. For example, when
given a graph class Π, is it possible to characterize the graphs in Π via forbidden
induced subgraphs of their Gallai graphs?

Bayesian Networks

Summary. We studied the problem of finding an optimal DAG structure of a
Bayesian network by using local scores. Many previous algorithmic works focused on
Vanilla-BNSL, where one aims to learn an optimal network structure without ad-
ditional constraints [29, 141, 142, 163, 65]. Other works studied the task of learning
a branching, a path, or learning a polytree [41, 65, 32, 69, 131]. Korhonen and Parvi-
ainen [112, 113] introduced the task where the input has an additional integer k and
one asks for a network structure with treewidth or vertex cover at most k. Extend-
ing the work of Korhonen and Parviainen [112, 113], we introduced the framework
of constrained BNSL problems where one aims to learn a network structure that is
close to a sparse graph class Π. We provided an almost complete picture of the pa-
rameterized complexity of constrained BNSL problems with respect to several graph
classes. This way, we filled complexity gaps left open by previous work. With the
class of graphs with maximum degree one, we identified a larger class such that the
corresponding learning problem is tractable and the inference task can be performed
efficiently on the resulting networks.

Polytree Learning is known to be NP-hard [41]. Gaspers et al. [69] analyzed
the parameterized complexity of Polytree Learning under additional constraints
and posed an open question whether Polytree Learning can be solved singly-
exponential time in n. We positively answered this question and introduced a new
parameter called number of dependent vertices d that is potentially smaller than n.
We showed that Polytree Learning is W[1]-hard for parameterization by d. This
is somewhat surprising since Vanilla-BNSL is obviously FPT for this parameter.
Thus, we discovered a striking difference in the parameterized complexity of Poly-
tree and Vanilla-BNSL.

For Vanilla-BNSL, there are local search approaches that use possible topolog-
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ical orderings of the resulting network structure as the search space [8, 125, 159]. We
extended this line of research by considering parameterized local search approaches
on the space of topological orderings. We analyzed the parameterized complexity of
this approach with regard to four natural neighborhood definitions. Some of these
neighborhood definitions have previously been experimentally evaluated in a nonpa-
rameterized local search framework [8, 125, 159]. We believe that our parameterized
local search algorithms have the potential to be practically relevant. We also outlined
the limits of ordering-based local search by showing that this approach is unlikely to
be efficient for some BNSL problems with, for example, sparsity constraints that are
posed on the moralized graph.

Outlook. In the context of Bayesian networks in machine learning, there are
further interesting research questions regarding the learning task and other well-
motivated problems that should be studied from an algorithmic point of view.

The problem formulation of BNSL studied in this work and in multiple other
algorithmic studies [141, 69, 112, 113] makes no assumptions on the structure of
the local scores. Is it possible that some scores satisfy properties that can be ex-
ploited to find efficient algorithms? This question is motivated by the wide range
of possible local scores that are used to learn Bayesian networks: recall that besides
well-established local scores like AIC, BIC, or BDe [4, 161, 22, 89], proposing new
scoring functions is an important research direction [9, 18, 92, 94, 95, 132]. An exam-
ple of a useful property is a symmetry in case of single-element parents sets: for every
pair of vertices v and w, a vertex v choosing a one-element parent set {w} receives
the same local score as w when choosing the one-element parent set {v}. Chow and
Liu [32] exploited this property and suggested to learn an optimal branching by us-
ing Kruskal’s algorithm [121] to compute a maximum weight spanning tree. Another
example of a useful property is the additivity of local scores. Here, one is given the
local scores fv({w}) of one-element parent sets and an integer q and the local score
of a parent set P is defined by fv(P ) :=

∑︁
w∈P fv({w}) if |P | ≤ q or fv(P ) = 0

if |P | > q. Ganian and Korchemna [65] showed that Vanilla-BNSL is FPT for
the treewidth of the undirected superstructure when the local scores are additive. In
contrast, Vanilla-BNSL is W[1]-hard for the vertex cover number of the undirected
superstructure when we have general local scores [141]. Thus, Vanilla-BNSL pa-
rameterized by the treewidth of the undirected super structure is one example where
the problem becomes easier if we can assume that the local scores are additive. It
would be a well-motivated future project to derive similar properties for concrete lo-
cal scores and to revisit the (parameterized) complexity of BNSL problems for these
more restricted cases. A good starting point might be to revisit hardness reductions
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like the one given in the proof of Theorem 6.9 and to study whether they also work
if the local score satisfies specific properties.

A further approach for the learning problem that does not rely on local scores
is constraint-based Bayesian network structure learning [146]. In this approach, one
uses observed data and performs conditional independence tests between pairs of
variables to determine whether there is an arc between the corresponding vertices in
the network structure. These independence tests do not always deliver the direction
of the arc. The standard algorithm in this context is the PC algorithm that was
introduced by Spirtes et al. [165]. In this algorithm, one starts with a skeleton that
is a clique and removes edges based on conditional independence tests. Most ap-
plications adopt chi-square tests or mutual information tests [160]. The algorithm,
however, is independent from the concrete conditional independence test. It would
be a well-motivated project to study the constraint-based approach from an algo-
rithmic point of view. To the best of our knowledge, there are not many works that
put the constraint-based approach into an algorithmic framework in the sense that
a formal definition of a corresponding optimization or decision problem is given.
Chickering et al. [30] introduced a problem called Learn in which one is given a
probability distribution and a parameter bound d, and the question is whether there
is a Bayesian network representing the probability distribution such that the total
number of entries in the conditional probability tables is at most d. They proved
that Learn is NP-hard even when given an oracle for independence tests. A starting
point for a future project might be to study the parameterized complexity of Learn.
Since the input of Learn does not consist of a graph, it is particularly interesting
and challenging to identify structural parameters for a parameterized complexity
analysis.

One of the most important tasks in the context of Bayesian networks is probabilis-
tic inference. This is the problem of using a Bayesian network to compute posterior
probability distributions of some variables when given evidence of some other vari-
ables. Recall that a Bayesian network is a tuple (D,T ) consisting of the DAG D and
a set of conditional probability tables T which encode the distribution of each vari-
able given the value of its parents in D. In the Positive Inference problem one
is given a Bayesian network (D,T ), a variable X and a value x, and a set of evidence
variables with joint value assignment e. The question is whether Pr(X = x | e) > 0.
Kwisthout et al. [123] provided a strong ETH-based lower bound for this prob-
lem. More precisely, they showed that Positive Inference cannot be solved

in f(M(D)) · |(D,T )|o(
tw(M(D))

log tw(M(D))) time, where f is a computable function, |(D,T )| is
the encoding length of the Bayesian network and tw(M(D)) denotes the treewidth
of the moralized graph of D. Note that this lower bound excludes all structural
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graph parameters as possible candidates for FPT algorithms. In a future project it
might be interesting to analyze the parameterized complexity of Bayesian inference
for parameters that describe the structure of the conditional probability tables.
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[19] Laurent Bulteau, Niels Grüttemeier, Christian Komusiewicz, and Manuel
Sorge. Your rugby mates don’t need to know your colleagues: Triadic clo-
sure with edge colors. In Proceedings of the 11th International Conference
on Algorithms and Complexity (CIAC ’19), volume 11485 of Lecture Notes in
Computer Science, pages 99–111. Springer, 2019.
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