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1 Introduction.

1.1 Abstract.

Since introduced in the late nineties in [FK99], Fomin-Kirillov algebras have earned a
great amount of interest in the field of abstract algebras research.

Their connections to algebra combinatorics have been considered in [BLM16], [MPP14],
[Pos99] and [GR97]. While that to Hopf algebras and Nichols algebras in [Gra], [AM03],
[FP00] and [MS00] among others. Moreover, the algebras have made many interesting
appearances in the field of Quantum groups theory [PV16], noncommutative geometry
as in [Maj17] and [Maj19]. Some very interesting generalization approaches were taken
in [Baz06] and [Lau16], also in what is commonly known as Hecke-Hopf-algebras [BK19].

Motivated by recent discoveries introduced by I. Heckenberger, L. Vendramin [HV18]
and K. Wolf [Wol], this thesis will be addressing the topic of representation theory of
PBW-deformations of Fomin-Kirillov algebras.

In particular, we shall utilize Gabriel Theorem in the purpose of developing an alge-
braic presentation in terms of path algebras for the special case of n = 4.

Furthermore, we dedicate some of our attention to studying the special connections
Fomin-Kirillov subalgebras have with Iwahori-Hecke algebra and examine the consequen-
tial properties this has on other related structures.

1.2 The frame work.

Note 1. Here and throughout this work, K denotes a field of character not equal to 2.
Furthermore, we simply denote the space of n × n K-matrices by Kn.

let n be a positive integer, we denote the permutations group on n letters by Sn.
Further, we set [n] := {1, · · · , n}.

The story so far: A motivation.

In the context of studying Schubert calculus, Fomin and Kirillov introduced En a family
of quadratic K-algebras, that contains a commutative subalgebra isomorphic to the
cohomology ring of a flag manifold. Commonly known as Fomin-Kirillov algebras, the
authors defined:

Definition 1.1 ([FK99] Definition 2.1). Let n ≥ 3 be a positive integer. En is the
quadratic K-algebra generated by xij for distinct i, j ∈ [n], subject the following rela-
tions:

xij + xji = 0 | i, j ∈ [n] distinct, (1a)
x2

ij = 0 | i, j ∈ [n] distinct, (1b)
xijxkl − xklxij = 0 | i, j, k, l ∈ [n] distinct, (1c)

xijxjk + xjkxki + xkixij = 0 | i, j, k ∈ [n] distinct. (1d)
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Remark 1. While on the surface, it is rather straightforward to present En in terms of
generators and relations, some of the structure’s elementary properties remain challeng-
ing to approach, most interesting of such is that of dimensionality, as it is well-known
that:

dimKEn =


2.3! | n = 3,

4!2 | n = 4,

5!24!2 | n = 5.

And conjectured to be infinite otherwise.
Moreover, the nature of En as a braided Hopf algebra over the symmetric group Sn

indicates a strong connection to Nichols algebras over braided vector spaces, as it was
proved that En is a Nichols-algebra for n ≤ 4 in [MS00], and n = 5 in [Gra]. A statement
that is conjectured to be true for n ≥ 6 as well in [MS00], [Maj19].

It is also noteworthy that the algebra En happens to share some distinctive properties
with other types of algebras, most famous of which is that of preprojective type of An−1,
which shares the same number of indecomposable modules with En for n ≤ 5 and is
known to be of infinite representation-type otherwise1.

Remark 2. We highlight that from the point of view of graded algebras, En remains a
highly interesting candidate of an algebraic structure that is both naturally and sym-
metrically graded, moreover, the unique action of the symmetric group Sn on En defined
as:

σ(xy) = (σx)(σy) | x, y ∈ En,

where for all σ ∈ Sn, we have:

σ(xij) = xσ(i)σ(j) | i 6= j,

validates- among other reasons- the study of En from the viewpoint of PBW deformations.
We recall that a PBW deformation of a graded algebra A is a filtered algebra D such
that the associated graded algebra of D is isomorphic to A.

Definition 1.2. Let α1, α2 ∈ K. The deformed Fomin-Kirillov algebra, denoted by
Dn(α1, α2), is the quadratic K-algebra generated by xij for distinct i, j ∈ [n] subject the
following relations:

xij + xji = 0 | i, j ∈ [n] distinct, (2a)
x2

ij = α1 | i, j ∈ [n] distinct, (2b)
xijxkl − xklxij = 0 | i, j, k, l ∈ [n] distinct, (2c)

xijxjk + xjkxki + xkixij = α2 | i, j, k ∈ [n] distinct. (2d)
1We recognize this as Majids’ conjecture, which while not having a precise expression, nonetheless

highlights that the numerology is not accidental, further details can be explored in [BFZ05], [Wil] as
well as in [GLS].
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Remark 3. Computer based calculation has established that the algebra D4(α1, α2) is
4!2-dimensional for all α1, α2.

PBW-deformations and semisimplicity. In 2018, motivated by understanding Nichols
and Fomin-Kirillov algebras by means of PBW-deformations, Heckenberger and Ven-
dramin established a framework objected to the classification and the study of represen-
tation theory of non-semisimple deformations of Fomin-Kirillov algebras. In particular,
the authors proved:

Theorem 1.1. [HV18, Theorem 2.11] The algebra D3(α1, α2) is semi-simple if and only
if:

(3α1 − α2)(α1 + α2) 6= 0,

in this case D3(α1, α2) ∼= (K2)3

Further, solved:

Proposition 1.2. [HV18, Theorems 2.15, 2.16] The following hold:

1. The algebra D3(α, −α) is isomorphic to the product of three copies of the prepro-
jective algebra of type A2.

2. The algebra D3(α, 3α) is isomorphic to the path algebra of the double Kronecker
quiver bounded by the relations of the coinvariant ring of S3.

Later that year, Wolf in [Wol] continued the study by examining the case of D4(α1, α2),
where it was proved that the algebra D4(α1, α2) is semisimple if:

α1(3α1 − α2)(α1 − α2)(α1 + α2) 6= 0.

Further, he conjectured that2:

Conjecture 1.1. [Wol, Corollary 2.32] The algebra D4(α1, α2) is semisimple if and only
if:

(α1 − α2)(α1 + α2) 6= 0.

Remark 4. It has been calculated that the radical of D4(α, −α) is generated by the
commutator, that is, σ[x12, x13] for all σ ∈ S4, while that of D4(α, α) is generated by:

σ(x12x13 + x12x14 + x12x23 + x13x23 + x14x12 + α1) | σ ∈ S4,

where both ideals are of 552-dimensional, and their corresponding quotient algebras are
of 24-dimension.

2We remark here that recent computer based calculations verified Wolf’s conjecture to be true, and
this work assumes so as well.
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The story henceforth: Main results.

After recalling some of the important prerequisites for this thesis in the next chapter,
the body of work is presented and organize in two related but separate parts.

The first part deals with representation theory of non-semisimple D4(α1, α2) and that
of generic n in some cases from the viewpoint of Gabriel theorem.

As seen, we have couple of cases to discuss, first of which is that of Dn(α, −α) which
will be proven to be basic and connected, hence admits an ordinary quiver presentation:

Theorem 3.11. The algebra Dn(α, −α) admits an ordinary quiver presentation of
the form (Q0, Q1, s, t) where:

1. The vertices set is Sn.
2. Let σ, τ ∈ Sn, there exists an arrow from σ to τ if τ = gσ where g denotes a

non-simple transposition of Sn.

This in particular, enable us to discuss the application of Gabriel Theorem in the
special case of n = 4. Indeed we prove that:

Theorem 3.19. The algebra D4(α, −α) admits a projective module decomposition:

D4(α, −α) =
⊕
σ∈S4

eσD4(α, −α),

where each copy of the projective module eσD4(α, −α) is isomorphic to N4 the nil-
Coxeter algebra associated with S4.

Next, we will shift our focus to D4(α, α), which is not as straightforward as the previous
case.

Indeed we start by proving that it is not basic, which as expected, complicates the
discussion of the topic from the quiver point of view. Nonetheless yields Db

4(α, α) an
associated basic algebra, which is by default Morita equivalent to D4(α, α).

We shall show that this associated version is connected and admits an ordinary quiver
presentation of the form:

Theorem 3.28. The algebra Db
4(α, α) admits an ordinary quiver presentation of the

form (Q0, Q1, s, t) where:

1. The vertices set is S3 = 〈s2, s3〉.
2. Let σ, τ ∈ S3, the number of arrows from σ to τ is n where:

n =


1 | τ = s3σ,

2 | τ = s2σ,

0 | otherwise.

Which enables us to propose:
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Proposition 3.33. The algebra Db
4(α, α) admits a projective module decomposition:

Db
4(α, α) =

⊕
σ∈S3

eσDb
4(α, α),

where each copy of the projective module eσDb
4(α, α) is isomorphic to the quotient algebra

K〈s1, s2, s3〉/ker(π), where:

ker(π) = {s2
1 + q1(s1s3s2)2,

s2
2 + q2(s2s3s1s2) + q3(s1s3s2)2,

s2
3 + q4(s1s3s2)2,

s1s3 − s3s1 + q5(s1s3s2)2,

s2s1s2 − s1s2s3 − s3s2s1,

s2s3s2 − s1s2s1 + s3s2s3.}.

For some K-polynomials qi.

The second part is dedicated to the study of some interesting Dynkin graph based
subalgebras of Dn(α1, α2).

Initially, we will consider Λn(α1, α2) the Dn(α1, α2)-subalgebra generated by xij for
(ij) ∈ An the Dynkin quiver of type An, we will prove that:

Theorem 4.2. Let n ≥ 3 be a positive integer. There exists some K-parameter q so
that the following hold:

Λn(α1, α2) ∼= Hq(n),

where Hn(q) denotes the generic Iwahori-Hecke algebra on one parameter.
This result not only highlights the Berenstein and Kazhdan construction of new Hopf

algebras that contain Hecke algebras as (left) coideal subalgebras but further lays the
foundation for the study of other interesting examples of Dn(α1, α2)-subalgebras.

Indeed, we start with formalizing a family of algebras that is isomorphic Λn(α1, α2)
and parameter compatible as well. This enables us to prove that for ∆4(α1, α2) the
D4(α1, α2)-subalgebra generated by xij for (ij) ∈ D4 the Dynkin quiver of type D4:

Proposition 4.22. The algebra ∆4(α1, α2) is semisimple if and only if:

(3α1 − α2)(α2
1 − α2

2) = 0.

1.3 A note for the reader.

This work is mostly suited for an audience fairly familiar with basic notions and tech-
niques of algebras and their representations.

In particular, we assume that the reader has a firm understanding of basic concepts
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such as modules, semisimplicity, decomposability, homological algebras, etc. These con-
cepts will not be repeated for organizational reasons and we highly recommend [IHJ20],
[AY17] and [Pie82] for an excellent source of references.

We further highlight that the theory of symmetric groups and their representations
will play a central role in our discussion, to which we recommend [AB10], [CSST10] and
[KT07] as well.

The first part of this work has been written by utilizing basic elements of representation
theory via quivers and Gabriel’s Theorem. Due to their importance we shall recall them
briefly in the Preliminary chapter. We refer interested readers to [ASA06].

Finally, as one might suspect, some parts of this work are combinatorial by nature
and require computations in low-dimensionality. We make a deliberate effort to verify
every combinatorial claim, but should repetitiveness occurs, we shall provide the reader
with pointers and sketches, to which we thank the reader for their understanding.

1.4 Acknowledgment.
I would like to extend my deepest gratitude to my supervisor Prof. Dr. Istvan Hecken-
berger for his endless support and guidance throughout my journey as a PhD candidate.
His experience and patience proved to be most essential in the success of this work and
I am immensely grateful for everything he taught me.

Further, I would like to express my gratitude to the members of the RG algebraic Lie
theory: Eric Heymann-Heidelberger, Janik Maciejewski, Katharina Schäfer, Kevin Wolf
and Johannes Herrendorf. It has been an honor and a privilege to share the last three
years of my life with you. Your kindness, support and time has been and will always be
greatly appreciated.

Finally, I dedicate this work to my parents: Ghassan and Rim. Your love, faith and
encouragement has never failed me, and I am forever thankful for you.
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2 Preliminary.
By a K-algebra, we mean an associative unital algebra over K. In this section of our
discussion, A denotes a finite-dimensional K-algebra.
Note 2. Let ρ, ρ′ be two A-representations. One may view the space Ext1

A(ρ, ρ′) as
equivalence classes Z1(ρ, ρ′)/B1(ρ, ρ′), where: Z1(ρ, ρ′) denotes the space of (1)-cocycles,
that is:

Z1(ρ, ρ′) = {f : A → HomK(ρ, ρ′) | f(xy) = ρ(x)f(y) + f(x)ρ′(y)}

and B1(ρ, ρ′) denotes the space of coboundaries.
Note 3. We say that a K-algebra A is connected if it is not isomorphic to a direct product
of two non-trivial algebras.

We also denote A’s Jacobson’s radical, that is, the intersection of all maximal ideals
of A by radA.
Note 4. Let Gn denotes the finite group generated by {s1, · · · , sn} subject to the following
set of relations:

s2
i = 1 | i ∈ [n − 1],

sisjsi − sjsisj = 0 | |i − j| = 1,

sisj − sjsi = 0 | |i − j| ≥ 2.

Theorem 2.1. Let n ≥ 2 be a positive integer. There exists a group isomorphism
Gn

∼= Sn.

Definition 2.1. Let n ≥ 2 be a positive integer, by Nn we denote the nil-Coxeter
algebra of type An−1, that is, the K-algebra generated by si for i ∈ [n − 1] subject the
following set of relations:

s2
i = 0 | i ∈ [n − 1],

sisjsi − sjsisj = 0 | |i − j| = 1,

sisj − sjsi = 0 | |i − j| ≥ 2.

Remark 5. The notion of nil-Coxeter algebras is wildly attributed to [FS94] and has
been studied in [Yan15] and generalized in [Kha17].
Note 5. We say that a finite-dimensional K-algebra A is representation-finite if the
number of the isomorphism classes of indecomposable A-module is finite, and A-modules
considered here are finite-dimensional over K. Otherwise, A is said to be representation-
infinite.

Theorem 2.2. [Dro80] Representation-infinite algebras are either tame or wild over
algebraically closed fields.

Lemma 2.3. [Yan15, Theorem 2. III] The algebra Nn is of representation type wild for
n ≥ 4.
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2.1 Elementary algebra.

Graded and filtered algebras.

Definition 2.2. Let A be a filtered algebra, that is, an algebra with a family of subspaces
{Fi+1 ⊆ Fi | i ≥ 0} such that:

1. 1 ∈ F0,
2. FiFj ⊆ Fi+j ,
3. ∪Fn = A.

We define the associated graded algebra of A, denoted by grA by setting (grA)n =
Fn/Fn+1 and grA =

⊕
(grA)n.

Example 2.1. Let A be a finite-dimensional K-algebra. Then A is radically filtered as
follows:

Fr = (radA)r ⊂ · · · ⊂ F2 = (radA)2 ⊂ F = radA ⊂ F0 = A,

where r is the minimal positive integer such that Fr+1 = 03

Note 6. Here and throughout this work grA denotes the associated graded algebra of a
K-algebra A with respect to the radical filtration.

Definition 2.3. Let M, N be filtered algebras, given φ : M → N a filtered homomor-
phism, that is, φ(Mj) ⊆ φ(M) ∩ Nj . If it happens that φ(Mj) = φ(M) ∩ Nj for each j
applicable, then φ is called strict.

Example 2.2. Let N be a filtered algebra. If α : M → N is an arbitrary homomorphism
and M is given the induced filtration Mj = α−(α(M) ∩ Nj) then α is a strict filtered
homomorphism. Similarly, for α surjective and if N is given the induced filtration
Nj = α(Mj), then α is strict as well.

Corollary 1. [MRS01, Corollary 6.14]. Let φ : M → N be a filtered homomorphism.
Then grφ is injective (surjective) if and only if φ is injective (surjective) and φ is strict.

Idempotents and indecomposable decompositions.

Definition 2.4. An element e ∈ A is said to be an idempotent if e2 − e = 0.

Note 7. Let e, e1, e2 ∈ A be idempotents, we say:

1. e is central if xe − ex = 0 for all x ∈ A,
2. e1, e2 are orthogonal if e1e2 = e2e1 = 0,
3. e is primitive if e cannot be written as a sum of nonzero orthogonal A-idempotents.

3such r exists for Jacobson radicals are nilpotent
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Remark 6. Since the algebra A is finite-dimensional, as a module it admits a direct sum
decomposition of the form:

A =
n⊕

i=1
Pi,

where for i ∈ [n], Pi are indecomposable ideals of A.
One may see that Pi = eiA for {ei | i ∈ [n]} are primitive pairwise-orthogonal idem-

potents of A such 1 =
∑n

i=1 ei.
Conversely every set of primitive pairwise-orthogonal idempotents of A induces a

decomposition of such form.
This decomposition is called an indecomposable decomposition of A and such a set is

often called a complete set of primitive pairwise-orthogonal idempotents.

Definition 2.5. Let M be a generic A-module we define the top of M as:

topM := M/radM.

Remark 7. It is well-known that for e an A-idempotent, the A/radA-module top(eA) is
simple and rad(eA) = e(radA) ⊆ eA is the unique maximal proper submodule of eA.

Corollary 2. [ASA06, Corollary 5.17] Suppose that A =
⊕n

i=1
Pi is a decomposition of A

into indecomposable modules. The following hold:

1. Every simple A-module is isomorphic to one of the modules Si = top(eiA) for some
i ∈ n.

2. Every indecomposable projective A-module is isomorphic to one of the modules
Pi = eiA for some i ∈ n. Moreover, eiA ∼= ejA if and only if Si

∼= Sj.

Basic algebras.

Definition 2.6. A finite-dimensional K-algebra A is said to be basic if eiA 6∼= ejA for
all distinct i, j and {ei | i ∈ [n]} a complete set of primitive orthogonal A-idempotents.

Proposition 2.4. [ASA06, Proposition 6.2] The following hold:

1. A finite-dimensional K-algebra A is basic if and only if the algebra A/radA is
isomorphic to a finite product of copies of K.

2. Every simple module over a basic K-algebra is 1-dimensional.

Definition 2.7. Let {ei | i ∈ [n]} be a complete set of primitive orthogonal A-
idempotents. A basic algebra associated with A is defined as:

Ab = eAAeA | eA =
a∑

i=1
eji ,

where eji are chosen in a way such that eji 6∼= ejt for distinct i, t and each module eSA
is isomorphic to one of the modules ejiA for some i ∈ [a].
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Remark 8. One may verify that Ab -the basic algebra associated with A- does not depend
on the choice of the set of A-idempotent.

Lemma 2.5. [ASA06, Corollary 6.10] Let Ab be a basic K-algebra associated with A.
The algebra Ab is basic and its modules category is K-linearly equivalent to that of A.

Remark 9. The previous equivalence between modules categories is often known as
Morita equivalence, which is given by:

modA modAb modA
F

' '
G

where F (respectively, G) is a functor that yields an equivalence, that is:

1. full (respectively faithful), that is, for any two A-modules M1, M2, the map induced
by F:

HommodA(M1, M2) → HommodAb(F(M1),F(M2)),

is surjective (respectively injective).
2. dense, that is, given an modAb-module M , then M is isomorphic to F(M ′) for

some A-module M ′.

In particular, such equivalence preserves simplicity and exactness.

2.2 Quivers and path algebras.
Definition 2.8. A quiver is a quadruple Q = (Q0, Q1, s, t) with Q0 and Q1 finite sets
and two maps s, t : Q1 → Q0. The elements of Q0 and Q1 are called vertices and arrows
of Q respectively. We say an arrow α in Q1 starts in s(α) and terminates in (or targets)
t(α).

Note 8. A quiver Q is said to be finite if both Q0, Q1 are finite sets.

Example 2.3. For n ≥ 2. The Dynkin quiver of type An is of the form:

1 2 · · · n
α1 α2 αn−1

In particular, one sees that s(αi) = i and t(αi) = i + 1 for all i ∈ [n].

Note 9. Let Q be a quiver. A path of length m ≥ 1 in Q is a tuple (α1, · · · , αm) of
arrows of Q such that s(αi) = t(αi+1) for all i ∈ [m − 1], we write such path as α1 · · · αm

if no misunderstanding occurs.
Additionally, for each vertex i of Q there exists a path ei of trivial length such that

s(ei) = t(ei) = i.
Note 10. A path of length m ≥ 1 is called a cycle whenever its source and target coincide.
A cycle of length 1 is called a loop. A quiver is called acyclic if it contains no cycles.

Example 2.4. For n ≥ 1. The n-loop quiver is of the form:
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1
α1

α2

···
αn

Definition 2.9. Let Q be a quiver. The path algebra KQ of Q is the K-algebra whose
underlying K-vector space has as its basis the set of all Q-paths of length l ≥ 0 in Q such
that the product of two basis vectors α1 · · · αm and β1 · · · βm′ is trivial if t(αm) 6= s(β1)
and equal to the composed path α1 · · · αmβ1 · · · βm′ otherwise. The product of basis
elements is then extended to arbitrary elements of KQ by distributivity.

Remark 10. By its definition. There is a direct sum decomposition:

KQ =
⊕
i=1

KQi,

of all K-vector space KQ, where, for each m ≥ 0, KQm is the subspace of KQ generated
by the set Qm of all paths of length m.

It is rather easy to see that:

(KQm1)(KQm2) ⊆ KQm1+m2 | m1, m2 ≥ 0,

as the product in KQ of a path of length m1 by a path of length m2 is either 0 or a
path of length m1 + m2.

This is often expressed by saying that the decomposition defines a grading on KQ or
that KQ is a graded K-algebra.

Lemma 2.6. [ASA06, Lemma 1.4] Let Q be a quiver and KQ be its path algebra. Then
the following hold:

1. KQ is an associative algebra,

2. KQ has an identity element if and only if Q0 is finite,

3. KQ is finite-dimensional if and only if Q is finite and acyclic.

Corollary 3. [ASA06, Corollary 1.5] Let Q be a finite-quiver. Then KQ has an identity
element of the form:

1 =
∑

i∈Q0

ei,

furthermore, the set {ei | i ∈ Q0} of all trivial length paths forms a complete set of
primitive orthogonal idempotents of KQ.

Definition 2.10. Let Q be a finite and connected quiver. The two-sided ideal of the
path algebra KQ generated as an ideal by the arrows of Q is called the arrow ideal of
KQ and denoted by RQ.
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Definition 2.11. A two-sided ideal I of KQ is said to be admissible if there exists some
m ≥ 2 such that:

Rm
Q ⊆ I ⊆ R2

Q.

Note 11. If I is an admissible ideal of KQ, the quotient algebra KQ/I is said to be a
bound quiver algebra.

Definition 2.12. Let Q be a quiver. A relation in Q with coefficients in K is a K-linear
combination of paths of length at least two having the same starting and terminating
vertex.

Lemma 2.7. [ASA06, Lemma 2.10] Let Q be a finite quiver, RQ be the arrow ideal of
KQ, and I an admissible ideal of KQ. Then:

rad(KQ/I) = RQ/I.

Corollary 4. [ASA06, Corollary 2.11] For each m ≥ 1, we have:

(radKQ/I)m = (RQ/I)m.

Gabriel’s theorem and ordinary quivers.

Definition 2.13. Let A be a basic and connected finite-dimensional K-algebra and
{ei | i ∈ [n]} a complete set of primitive orthogonal A-idempotents. The (ordinary)
quiver of A, denoted by QA, is defined as follows:

1. The vertices of QA are numbers {1, · · · , n} which are in bijective correspondence
with the A-idempotents ei for i ∈ [n].

2. Given two vertices i, j ∈ QA, the arrows α : i → j are in bijective correspondence
with the vectors in a basis of the K-vector space ei(radA/radA2)ej .

Theorem 2.8. [ASA06, Theorem 3.7] Let A be a basic and connected finite-dimensional
K-algebra. There exists an admissible ideal I of KQA such that A ∼= KQA/I.

Note 12. The previous theorem is commonly known as Gabriel’s Theorem.
Remark 11. In the purpose of proving Gabriel’s theorem, one sets for each arrow α :
i → j some xα ∈ radA chosen so that {xα + (radA)2 | α : i → j} forms a basis of
ei(radA/(radA)2)ej . To this, one considers two morphisms:

1. φ0 : (QA)0 → A the map defined by:

φ0(i) = ei | i ∈ (QA)0.

2. φ1 : (QA)1 → A the map defined by:

φ1(α) = xα | α ∈ (QA)1.
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The universal property of path algebras implies the existence of a unique K-algebra ho-
momorphism φ : KQA → A that extends two morphisms φ0, φ1, which we call Gabriel’s
theorem morphism.

The theorem is proven once shown that φ is surjective with an admissible kernel.

Lemma 2.9. [ASA06, Lemma 2.12] Let A = KQ/I be a bounded path algebra and let
i, j ∈ Q0. The following hold:

1. There exists an isomorphism of K-vector spaces:

Ext1
A(Si, Sj) ∼= ei(radA/radA2)ej .

2. The number of arrows in Q starting in i terminating in j is equal to the dimension
of Ext1

A(Si, Sj)
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3 On the deformed Fomin-Kirillov-algebras.

3.1 The representation theory of Dn(α, −α)

Note 13. For convenience, we denote Λ := Dn(α, −α), we further normalize the K-
parameter α to 1K .

Lemma 3.1. Let σ ∈ Sn. The algebra homomorphism:

ρσ : Λ → K

xij 7→ ρσ(xij) =
{

+1 | σ(i) < σ(j),
−1 | σ(i) > σ(j).

is a well defined 1-dimensional representation of Λ.

Proof. The proof follows by verifying that subjecting ρσ to the defining relations of Λ
yields no contradictions in K.

Indeed as (2b) and (2c) hold directly, one only has to check that for distinct i, j, k ∈ [n],
then:

−1 = ρσ(xijxjk + xjkxki + xkixij)
= ρσ(xij)ρσ(xjk) + ρσ(xjk)ρσ(xki) + ρσ(xki)ρσ(xij),

which is easily verified as assuming the distinction of i, j, k ∈ [n], implies that the
inequality regarding σ(i), σ(j), σ(k) has exactly one of six possibilities:

σ(i) < σ(j) < σ(k), σ(i) < σ(k) < σ(j),
σ(j) < σ(i) < σ(k), σ(j) < σ(k) < σ(i),
σ(k) < σ(i) < σ(j), σ(k) < σ(j) < σ(i).

Lemma 3.2. Let ρ a 1-dimensional Λ-representation. Then there exists σ ∈ Sn such
that ρ = ρσ.

Proof. Let ρ be a 1-dimensional Λ-representation, (2b) implies that ρ(xij) = ±1.
Furthermore, for distinct i, j, k ∈ [n], then (2d) implies that one of the following

possibilities occurs:

+ρ(xij) = +ρ(xjk) = +ρ(xik) = +1, +ρ(xij) = −ρ(xjk) = +ρ(xik) = +1,

−ρ(xij) = +ρ(xjk) = +ρ(xik) = +1, +ρ(xij) = +ρ(xjk) = −ρ(xik) = +1,

+ρ(xij) = −ρ(xjk) = −ρ(xik) = +1, −ρ(xij) = −ρ(xjk) = −ρ(xik) = +1.

Which in and of itself asserts the claim.
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Remark 12. The previous lemma can be alternatively proven by setting: li := |Li|,
ri := |Ri|, where:

Li := {1 ≤ j ≤ i − 1 | ρ(xji) = −1} ⊆ {0, · · · , i − 1},

Ri := {i + 1 ≤ j ≤ n | ρ(xij) = −1} ⊆ {0, · · · , n − i},

and defining the mapping σ on [n] where σ(i) = i + ri − li, the claim follows by showing
that σ is indeed a permutation such that ρ = ρσ.

Lemma 3.3. Let σ, τ ∈ Sn, then for all x ∈ Λ we have:

ρσ(τ(x)) = ρστ (x).

Proof. Since ρσ, ρτ and the group action of Sn are multiplicative, it is enough to verify
the claim for a generator xij with i, j ∈ [n] distinct, which hold directly since:

ρσ(τ(xij)) = ρσ(xτ(i)τ(j)) = ρστ (xij).

Theorem 3.4. Given σ, τ ∈ Sn. If τ = gσ where g denotes a non-simple transposition
of Sn, then dimKExt1

Λ(ρσ, ρτ ) = 1, and 0 in any other case.

Remark 13. In the purpose of proving Theorem 3.4, we start by utilizing Lemma 3.3,
which implies that we may set σ = e with no further restrictions.

Furthermore, we understand for τ ∈ Sn, that generic elements of the space of exten-
sions Ext1

Λ(ρe, ρτ ) are of the form:

ρ : Λ → K2

xij 7→ ρ(xij) =
[
ρe f(e;τ)
0 ρτ

]
(xij),

such that for fij = f(e;τ)(xij), the following hold:

fij(1 + ρτ (xij)) = 0, (3a)
fij(1 − ρτ (xkl)) − fkl(1 − ρτ (xij)) = 0, (3b)

fij(ρτ (xjk) − 1) + fjk(1 − ρτ (xik)) − fik(1 + ρτ (xij)) = 0, (3c)
fij(1 − ρτ (xik)) + fjk(ρτ (xij) − 1) − fik(ρτ (xjk) + 1) = 0. (3d)

where i < j ∈ [n] in (3a) i < j, k < l ∈ [n] distinct in (3b), and i < j < k ∈ [n] in both
(3c) and (3d).

Proposition 3.5. If τ is a non-simple transposition, then:

dimkExt1
Λ(ρe, ρτ ) = 1.
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Proof. Let 1 ≤ s, t ≤ n, where t > s + 1, and assume that τ = (s, t) a non-simple
transposition, then ρτ (xij) = −1 if and only if:

(i = s and j ≤ t) or (i ≥ s and j = t).

Therefore, for all i < j, (3a) implies that fij = 0 except those of the form:

fs(s+1), · · · , fst and f(s+1)t, · · · , f(t−1)t.

Further, given 1 ≤ r ≤ t − s − 1, then fs(s+r) = f(s+r)t implied by (3c) for (i = s, j =
s + r, k = t).

Similarly, for 2 ≤ r ≤ t − s − 1, one obtains fs(s+1) = fs(s+r) being implied by (3d) for
(i = s, j = s + 1, k = s + r).

Therefore, we are in the situation where:

fs(s+1) = · · · = fs(t−1) = f(s+1)t = · · · = f(t−1)t.

The proof then concludes by observing that up to a base change, one may assume
that fs(s+1) = 0.

Remark 14. Given τ ∈ Sn such that τ 6= g. Then τ has one of the following form:

1. τ = e,
2. τ is a simple transposition,
3. τ is a cycle of length p ≥ 3,
4. τ has at least two disjoint cycles of length p, q ≥ 2.

Proposition 3.6. If τ = e. Then dimkExt1
Λ(ρe, ρτ ) = 0.

Proof. Assuming that τ = e, this would imply that ρτ (xij) = 1 for all distinct 1 ≤ i <
j ≤ n.

Now we have fij = 0 directly via (3a) which in and of itself holds the claim.

Proposition 3.7. If τ is a simple transposition. Then dimkExt1
Λ(ρe, ρτ ) = 0.

Proof. Assuming that τ = (s, s + 1) for s ∈ [n − 1], this would imply that ρτ (xij) = 1
for all 1 ≤ i < j ≤ n except for (i, j) = (s, s + 1).

Now we have fij = 0 for all 1 ≤ i < j ≤ n except for (i, j) = (s, s + 1) directly via (3a.
Up to a base change, one may assume that fs(s+1) = 0, which asserts the claim.

Proposition 3.8. If τ is a cycle of length p ≥ 3. Then dimkExt1
Λ(ρe, ρτ ) = 0.

Proof. Assume that τ = (a1, · · · , ap) is a cycle of length p ≥ 3 where 1 ≤ a1, · · · , ap ≤ n,
ai 6= aj for all i 6= j ordered such that a1 < aj for all 2 ≤ j ≤ p.

Since a1 < ap and τ(ap) = a1 < a2 = τ(a1), we see that ρτ (xa1ap) = −1. We make a
basis change so that fa1ap = 0.

For all k < l such that {a1, ap, k, l} ⊂ [n] distinct, we see by (3b) that fkl = 0.
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For i < a1, we see that τ(i) = i < a2 = τ(a1), which implies that ρτ (xia1) = 1, that
is, fia1 = 0 implied by (3a).

Similarly, τ(i) = i < a1 = τ(ap), which implies that ρτ (xiap) = 1, that is, fiap = 0
implied by (3a).

For ap < i, we see that τ(ap) = a1 < i = τ(i), which implies that ρτ (xapi) = +1, that
is, fapi = 0 implied by (3a). Using this, we see that fa1i = 0 being implied by (3d) for
(i = a1, j = ap, k = i).

Now if ap = a1 + 1, then all possible cases for i has been considered and the claim
follows. If not, then for all a1 < i < ap we have τ(i) > τ(ap) and hence fa1i = fiap via
(3c) for (i = a1, j = i, k = ap).

We have two cases to consider here as well: either ρτ (xa1i) = +1, that is, fa1i = 0 via
(3a), effectively holding the claim, or ρτ (xa1i) = −1 and we have τ(a1) > τ(i) > τ(ap),
in other words:

τ(a1) = a2 > τ(i) > a1 = τ(ap),

and by differentiating possible orderings we have the following cases to discuss:

1. a1 < i < ap < a2. At first, we have ap < a2 where a1 < τ(a2), therefore,
ρτ (xapa2) = +1 and fapa2 = 0 via (3a).
Now if we have τ(a2) < a2, we see that fa1a2 = fiap by (3b) to which applying (3d)
for (i = a1, j = ap, k = a2) yields that fa1a2 = 0, holding the claim.
Otherwise, τ(a2) > a2, in which case ρτ (xa1a2) = +1, so that fa1a2 = 0 via (3a),
this implies that:

fa1i(ρτ (xia2) − 1) = 0,

seen by (3c) for (i = a1, j = i, k = a2).
Now should τ(i) > τ(a2) be, then the claim falls, otherwise, ρτ (xia2) = +1 and
fia2 = 0 via (3a).
By repeating the previous argument finitely many times, one sees that there exists
some 2 ≤ k ≤ p − 1 such that τ(i) > τ(ak) since otherwise we get a contradiction
to τ(ap) = a1 < aj for all 2 ≤ j ≤ p, in which case the claim hold by applying (3c)
for (i = a1, j = i, k = ak).

2. a1 < i < a2 < ap. At first, we have i < a2 to which one concludes that fia2 = 0
being implied by (3b).
If τ(i) > a3 = τ(a2), then (3c) for (i = a1, j = i, k = a2) implies fa1i = 0.
Otherwise, τ(i) < a3 = τ(a2) to which one sees that fia2 = 0 implied by (3b) which
one uses in (3c) for (i = i, j = a2, k = ap) to see fa2ap = fiap , similarly, (3c) for
(i = a1, j = i, k = a2) yield fa1i = fa1a2 .
Finally, (3d) for (i = a1, j = a2, k = ap) imply that:

2fa1a2 + fa2ap(ρτ (xa1a2) − 1) = 0.

17



Now if ρτ (xa1a2) = 1 then the claim follows, otherwise, one argues as before on
the existence of some 3 ≤ k ≤ p − 1 such that a1 < ak and τ(a1) < τ(ak), since
otherwise we get a contradiction to a1 < aj for all 2 ≤ j ≤ p, in which case the
claim hold by applying (3d) for (i = a1, j = ak, k = ap).

3. a1 < a2 < i < ap. At first, we have a2 < i to which we hold that fa2i = 0 via (3b).

If we have τ(a2) = a3 > τ(i) to which one concludes that fiap = 0 via (3d) for
(i = a2, j = i, k = ap).

Otherwise, τ(a2) = a3 < τ(i) to which one holds:

fa1i(1 + ρτ (xa1a2)) = 0,

seen by (3c) for (i = a1, j = a2, k = i), and again, two cases to consider.

Indeed should ρτ (xa1a2) = +1 be, the claim falls directly, otherwise, a2 > a3 to
which one argues as before on the existence of some 3 ≤ k ≤ p − 1 such that
a1 < ak and τ(a1) < τ(ak).

Therefore, with all possible cases considered for τ a cycle of length p ≥ 3 we have
dimkExt1

Λ(ρe, ρτ ) = 0 as claimed.

Proposition 3.9. Let p, q ≥ 2 and τ be given so that it has at least two disjoint cycles
of length p, q. Then dimkExt1

Λ(ρe, ρτ ) = 0.

Proof. Assume that τ has disjoint cycles (a1, · · · , ap), (b1, · · · , bq) for p, q ≥ 2 ordered
such that a1 < aj for 2 ≤ j ≤ p, b1 < bj for 2 ≤ j ≤ q and a1 < b1.

We start with a1 < ap and τ(ap) = a1 < a2 = τ(a1) which implies that ρτ (xa1ap) = −1,
similarly, b1 < bq and τ(bq) = b1 < b2 = τ(b1) which implies that ρτ (xb1bq ) = −1.

For convenience of reference, we denote a1 = s, ap = t, b1 = s′, bq = t′, and consider a
change of basis such that fst = 0.

Moreover, we see that ρτ (xst) = −1 which implies that fkl = 0 for k < l, where
{k, l, s′, t′} ⊂ [n] distinct obtained via (3b), in particular, fs′t′ = 0.

Similarly, we see that ρτ (xs′t′) = −1 which implies that fkl = 0 for k < l, where
{k, l, s′, t′} ⊂ [n] distinct obtained via (3b).

And we are left with the following cases of fss′ , fst′ , fmin(s′,t′)max(s′,t′) and fmin(t′,t)max(t′,t).
For fss′ . If ρτ (xss′) = +1 then fss′ = 0 via (3a), otherwise, ρτ (xss′) = −1 to which

one concludes that fss′ = 0 via (3c) for (i = s, j = s′, k = t′).
Finally, the remaining cases are processed by differentiating possible orderings of

t, s′, t′:

1. If s < s′ < t′ < t, then:

fs′t = 0 via (3c) for (i = s, j = s′, k = t),
ft′t = 0 via (3d) for (i = s′, j = t′, k = t),
fst′ = 0 via (3d) for (i = s, j = t′, k = t).
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2. If s < s′ < t < t′, then we have τ(t) = τ(ap) = a1 < b1 = τ(bq) = τ(t′) which
implies that ρτ (xtt′) = +1. This in particular yield:

ftt′ = 0 via (3a) for (i = t, j = t′),
fs′t = 0 via (3c) for (i = s, j = s′, k = t),
fst′ = 0 via (3d) for (i = s, j = t, k = t′).

3. If s < t < s′ < t′, then we have ρτ (xtt′) = +1 and:

ftt′ = 0 via (3a) for (i = t, j = t′),
fts′ = 0 via (3d) for (i = s, j = t, k = s′),
fst′ = 0 via (3d) for (i = s, j = t, k = t′).

Therefore, given τ an Sn-element such that it has at least two disjoint cycles of length
p, q ≥ 2, we have dimkExt1

Λ(ρe, ρτ ) = 0 as claimed.

Remark 15. We remark that the claim made in Theorem 3.4 has been proved per Propo-
sitions 3.5, 3.6, 3.7, 3.8 and 3.9.

Corollary 5. The algebra Λ is connected.

Proof. This is a natural consequence of Theorem 3.4.

The special case of D4(α, −α)

Note 14. Here and throughout this section, we consider the special case of Λ := D4(α, −α)
where the K-parameter α remains normalized to 1K .

Furthermore, we set t1 = (1, 3), t2 = (1, 4) and t3 = (2, 4) the non-simple transposi-
tions of S4.

Proposition 3.10. The algebra Λ is basic.

Proof. This follows since the Jacobson radical of the finite-dimensional algebra Λ is
generated by the commutator. In particular, the algebra Λ has a complete system of
simple representations: {ρσ | σ ∈ S4}.

Remark 16. The algebra Λ is connected as discussed earlier in Corollary 5.

Theorem 3.11. The algebra Λ admits an ordinary quiver QΛ of the following form:

1. The vertices set are denoted by S4-permutations.

2. There exists an arrow from σ to τ if and only if τ = ti.σ for i ∈ [3].

Proof. This is a natural consequence of Theorem 3.4 and Proposition 3.10.
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Note 15. Given σ ∈ S4. We call the arrow that starts in σ and terminate in tiσ by
α(σ; ti). Furthermore, we interpret the action of the symmetric group S4 on paths
by changing the starting vertex, that is, given r := α(σ; ti)α(tiσ; tj) · · · , then, τr =
α(τσ; ti)α(tiτσ; tj) · · · .
Remark 17. Due to its complexity, drawing the ordinary quiver might be tiresome, we
nonetheless remark that by its definition there exist distinctive sections of said quiver
worthy of highlighting.

Example 3.1. Since t2
i = e, we see that there exist 3 distinctive loops at any given any

vertex σ ∈ S4, that is:

σ

t1σ t2σ t3σ

Example 3.2. Since t1t3 − t3t1 = 0, we see that there exists a distinctive square at any
given any vertex σ ∈ S4, that is:

σ

t1σ t3σ

t1t3σ

Example 3.3. Since titi+1ti − ti+1titi+1 = 0 for i ∈ [2], we see that there exist two
distinctive hexagons at any given any vertex σ ∈ S4, for i = 1 we draw:

t1σ t2t1σ

σ t1t2t1σ

t2σ t1t2σ

Note 16. Denote by φ Gabriel’s theorem morphism associated with Λ. We remind the
reader that Gabriel’s theorem states that ker(φ) is a two-sided admissible ideal of KQΛ
with an associated quotient that is isomorphic to Λ.
Remark 18. We observe that the algebra KQΛ admits an indecomposable decomposition
of the form:

KQΛ =
⊕
σ∈S4

eσKQΛ.

where the action of S4 on KQΛ permutes the indecomposable projectives.
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Definition 3.1. Let Γ denotes the indecomposable projective Λ-representation defined
to be a quotient of KQΓ := eeKQΛ by the kernel of π := φ|ee

.

Note 17. The previous remark implies in particular that from the viewpoint of repre-
sentation theory, the study of Λ can be reduced to that of Γ.

Lemma 3.12. The algebra Γ is 24-dimensional.

Proof. This statement follows by observing that the algebra Λ is basic 4!2-dimensional,
the set {eσ | σ ∈ S4} is complete of primitive orthogonal idempotents, and the action of
S4 on KQΛ, to which one concludes that all indecomposable projective Λ-representation
are of the same dimension.

Note 18. Given σ, τ = tiσ for some i ∈ [3], we proved that the space of extensions
Ext1

Λ(ρσ, ρτ ) is 1-dimensional, viewed as equivalence class of (1)-cocycles up to the space
of coboundaries we shall rename the single generator of such space by f(σ;ti) and omit
the bar notation should no confusion occurs.

Example 3.4. Let i ∈ [3]. We remind the reader that the a generic element of the space
Ext1

Λ(ρe, ρti) takes the form:

ρ : Λ → K2

xst 7→ ρ(xst) =
[
ρe f(e;ti)
0 ρti

]
(xst),

where f(e;ti)(xst) = 0 for all (st) 6= ti. Moreover, one verifies that generic elements of the
space Ext1

Λ(ρti , ρe) are given by:

ρ : Λ → K2

xst 7→ ρ(xst) =
[
ρti f(ti;ti)
0 ρe

]
(xst),

where f(ti;ti)(xst) = 0 for all (st) 6= ti, up to an isomorphism held by a proper change of
basis.

Note 19. We remind the reader that grA denotes the associated graded algebra of a
K-algebra A with respect to the radical filtration.
Remark 19. Path algebras has a natural grading by paths, which in particular enable
us to discuss grΓ -which is 24-dimensional- first by utilizing the notion of extensions
between simple modules up to higher powers of the radical.

Indeed, we shall compute the kernel of the graded morphism grπ which should enable
us to achieve two results:

1. grΓ ∼= N4, the nil-Coxeter algebra associated with S4.
2. Γ ∼= N4.
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Proposition 3.13. The following hold:

r1 := α(e; t1)α(t1; t1) ∈ ker(grπ).

Proof. Assume for a contradiction that r1 6∈ ker(grπ), that is:

grπ(α(e; t1)α(t1; t1)) = π(α(e; t1)α(t1; t1)) + radΛ3,

= f(e;t1)f(t1;t1) + radΛ3 6= 0,

that is, f(e;t1)f(t1;t1) 6∈ radΛ3.
The assumption implies that the space of paths of length 2 such that start and termi-

nate in e is at least 1-dimensional, and at most 3-dimensional by Theorem 3.11, let:

X = {α(e; ti)α(ti; ti) | i ∈ [3]},

be a generating set. We have 3 cases to discuss:
If dimX = 1. Consider the right KQΓ-module defined as a quotient of eeKQΓ by the

right-ideal generated by:

{ee(radKQΓ)3, ee(radKQΓ)2eσ, | e 6= σ ∈ S4}.

Our assumption implies that such module exists and is 5-dimensional graded module
generated by:

{ee, eeα(e; t1), eeα(e; t2), eeα(e; t3), eeα(e; t1)α(t1; t1)}.

that is, there exists a 5-dimensional graded Λ-representation:

ρ =


ρe f(e;t1) f(e;t2) f(e;t3) g(e,e)
0 ρt1 0 0 f(t1;t1)
0 0 ρt2 0 f(t2;t2)
0 0 0 ρt3 f(t3;t3)
0 0 0 0 ρe

 ,

up to the third power of the radical, where g(e,e) is a set of K-parameters determined by
the defining relations of Λ.

If dimX = 2, say with no loss of generality that:

{α(e; t1)α(t1; t1)KQΓ, α(e; t2)α(t2; t2)KQΓ},

is a basis of X.
Consider the KQΓ-module defined as a quotient of eeKQΓ by the right-ideal generated

by:

{ee(radKQΓ)3, ee(radKQΓ)2eσ, eeα(e; t2), | e 6= σ ∈ S4}.
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Our assumption implies that such module exists and is 4-dimensional graded module
generated by:

{ee, eeα(e; t1), eeα(e; t3), eeα(e; t1)α(t1; t1)},

that is, there exists a 4-dimensional graded Λ-representation:

ρ =


ρe f(e;t1) f(e;t3) g(e,e)
0 ρt1 0 f(t1;t1)
0 0 ρt3 f(t3;t3)
0 0 0 ρe

 ,

up to the third power of the radical, where g(e,e) is a set of K-parameters determined by
the defining relations of Λ.

Finally if dimX = 3. Consider the KQΓ-module defined as a quotient of eeKQΓ by
the right-ideal generated by:

{ee(radKQΓ)3, ee(radKQΓ)2eσ, | e 6= σ ∈ S4},

along side:

{eeα(e; ti) | i = 2, 3}.

Consider the KQΓ-module defined as a quotient of eeKQΓ by the right-ideal generated
by:

{ee, eeα(e; t1), eeα(e; t1)α(t1; t1)},

that is, consider the 3-dimensional graded Λ-representation:

ρ =

ρe f(e;t1) g(e,e)
0 ρt1 f(t1;t1)
0 0 ρe

 ,

up to the third power of the radical, where gst(e,e) is a set of K-parameters determined
by the defining relations of Λ.

We observe here that the computations required for the defining relations of the algebra
to hold are very similar in the previous three cases, therefore, we shall showcase them
in the case of dimX = 3 and leave the others as an exercise.
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Indeed one sees that the module described is of the form:

ρ(x12) =

+1 0 g(e;e)(x12)
0 −1 0
0 0 +1

 , ρ(x23) =

+1 0 g(e;e)(x23)
0 −1 0
0 0 +1


ρ(x13) =

+1 f(e;t1)(x13) g(e;e)(x13)
0 −1 f(t1;t1)(x13)
0 0 +1

 ,

to which one computes that:

g(e,e)(xij) =

0 | (i, j) = (1, 2), (2, 3),
− (f(e;t1)f(t1;t1))(x13)

2 | (i, j) = (1, 3),

so that (2b) holds, while for (2d) to hold one must have g(e,e)(x13) = 0 up to the third
power of the radical, that is:

(f(e;t1)f(t1;t1))(x13)) + radΛ3 = 0,

that is, f(e;t1)f(t1;t1) ∈ radΛ3 a contradiction that assures the claim.

Corollary 6. For i ∈ [3] and σ ∈ S4. The following hold:

1. ri := α(e; ti)α(ti; ti) ∈ ker(grπ).

2. σ.ri = α(σ; ti)α(tiσ, ti) ∈ ker(grπ).

Proposition 3.14. The following hold:

r4 := α(e; t1)α(t1; t3) − α(e; t3)α(t3; t1) ∈ ker(grπ).

Proof. Assume for a contradiction that r4 6∈ ker(grπ), that is:

grπ(α(e; t1)α(t1; t3) − α(e; t3)α(t3; t1)) = (f(e;t1)f(t1;t3) − f(e;t3)f(t3;t1)) + radΛ3,

6= 0,

that is, f(e;t1)f(t1;t3) − f(e;t3)f(t3;t1) 6∈ radΛ3.
In other words, we assume that the space of paths of length 2 that start in e and

terminate in t1t3 is 2-dimensional.
Consider the right KQΓ-module defined as the quotient of KQΓ by the right-ideal

generated by:

{ee(radKQΓ)3, ee(radKQΓ)2eσ, eeα(e; t2) | σ 6= t1t3}.

Our assumption implies that such module is a 5-dimensional graded module generated
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by:

{ee, eeα(e; t1), eeα(e; t1)α(t1; t3), eeα(e; t3), eeα(e; t3)α(t3; t1)},

that is, there exists a 5-dimensional graded Λ-representation:

ρ =


ρe f(e;t1) f(e;t3) g(e,t3t1) g(e,t1t3)
0 ρt1 0 f(t1;t3) 0
0 0 ρt3 0 f(t3;t1)
0 0 0 ρt3t1 0
0 0 0 0 ρt1t3

 ,

up to the third power of the radical, where g(e,t1t3) and g(e,t3t1) are sets of K-parameters
determined by the defining relations of Λ. In particular, one computes that up the third
power of the radical:

ρ(x12) =


+1 0 0 g(e;t3t1)(x12) g(e;t1t3)(x12)
0 −1 0 0 0
0 0 +1 0 0
0 0 0 +1 0
0 0 0 0 +1

 ,

along side:

ρ(x34) =


+1 0 0 g(e;t3t1)(x34) g(e;t1t3)(x34)
0 +1 0 0 0
0 0 −1 0 0
0 0 0 +1 0
0 0 0 0 +1

 ,

to which (2b) and (2c) hold if:

0 = g(e;t3t1)(x12) = g(e;t1t3)(x12),
= g(e;t3t1)(x34) = g(e;t1t3)(x34),

while that of:

ρ(x14) =


+1 0 0 g(e;t3t1)(x14) g(e;t1t3)(x14)
0 +1 0 0 0
0 0 +1 0 0
0 0 0 −1 0
0 0 0 0 −1

 ,
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ρ(x23) =


+1 0 0 g(e;t3t1)(x23) g(e;t1t3)(x23)
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 ,

to which (2b) and (2c) hold if:

x = g(e;t3t1)(x14) = g(e;t3t1)(x23),
y = g(e;t1t3)(x14) = g(e;t1t3)(x23),

for some field parameters x, y. Finally:

ρ(x13) =


+1 f(e;t1)(x13) 0 g(e;t3t1)(x13) g(e;t1t3)(x13)
0 −1 0 0 0
0 0 +1 0 f(t1;t3)(x13)
0 0 0 −1 0
0 0 0 0 −1

 ,

ρ(x24) =


+1 0 f(e;t3)(x24) g(e;t3t1)(x24) g(e;t1t3)(x24)
0 +1 0 f(t3;t1)(x24) 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 ,

to which (2b), (2c) and (2d) for (i = 1, j = 2, k = 3) hold if:

g(e,t3t1)(xij) =

x | (i, j) = (1, 3),
x − f(e;t1)f(t1;t3)(x24)

2 | (i, j) = (2, 4).

g(e,t1t3)(xij) =

y | (i, j) = (1, 3),
y + f(e;t3)f(t3;t1)(x24)

2 | (i, j) = (2, 4).

However, for (2d) in case of (i = 1, j = 2, k = 4) to hold one must have:

0 = f(e;t1)f(t1;t3) + radΛ3,

= f(e;t3)f(t3;t1) + radΛ3,

as well, a contradiction which proves that the space of paths of length 2 that start in e
and terminate in t1t3 is not 2-dimensional.

We see that it is 1-dimensional, with a basis of the form:

{α(e; t1)α(t1; t3) = α(e; t3)α(t3; t1)}.
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Which is evident by the existence of the 4-dimensional graded Λ-representation:

ρ =


ρe f(e;t1) f(e;t3) g(e;t1t3)
0 ρt1 0 f(t1;t3)
0 0 ρt3 f(t3;t1)
0 0 0 ρt1t3

 ,

up to the third power of the radical, where g(e;t1t3) is a set of K-parameters that is deter-
mined by the defining relations of Λ. Indeed, one verifies that up to an isomorphism, the
defining relations of the algebra hold with no contradictions once we set g(e;t1t3)(xij) = 0
where:

g(e;t1t3)(x13) =
f(e;t1)(x13)f(t1;t3)(x24) − f(e;t3)(x24)f(t3;t1)(x13)

2 ,

up to the third power of the radical. That is:

(f(e;t1)f(t1;t3) − f(e;t3)f(t3;t1)) + radΛ3 = 0,

that is, grπ(α(e; t1)α(t1; t3) − α(e; t3)α(t3; t1)) = 0, and r4 ∈ ker(grπ) as claimed.

Remark 20. Corollary 6 and Proposition 3.14 imply that the space of KQΓ/grπ-paths
of length 2 that start in e is exactly 5-dimensional with a basis of the form:

{α(e; t1)α(t1; t2), α(e; t3)α(t3; t2), α(e; t1)α(t1; t3), α(e; t2)α(t2; t1), α(e; t2)α(t2; t3)},

up to an isomorphism. In particular, we detail that the existence of the KQΓ/grπ-path
α(e; t1)α(t1; t2) implies that of a 3-dimensional graded Λ-representation:

ρ =

ρe f(e;t1) g(e;t2t1)
0 ρt1 f(t1;t2)
0 0 ρt2t1

 ,

up to the third power of the radical, where g(e;t2t1) is a set of K-parameters. We make
a basis change such that:

g(e;t2t1) : Λ → K,

xij 7→ g(e;t2t1)(xij) =

0 | (i, j) 6= (1, 4),
f(e;t1)(x13)f(t1;t2)(x34)

2 | (i, j) = (1, 4).
(4)

While the existence of the KQΓ/grπ-path α(e; t2)α(t2; t1), implies that of a 3-dimensional
graded Λ-representation:

ρ =

ρe f(e;t2) g(e;t1t2)
0 ρt2 f(t2;t1)
0 0 ρt1t2

 ,
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up to the third power of the radical, where g(e;t2t1) is a set of K-parameters. We make
a basis change such that:

g(e;t1t2) : Λ → K,

xij 7→ g(e;t1t2)(xij) =

0 | (i, j) 6= (1, 3),
f(e;t2)(x14)f(t2;t1)(x34)

2 | (i, j) = (1, 3).
(5)

Corollary 7. Up to an isomorphism, the space of KQΓ/grπ-paths of length 2 that start
in σ is exactly 5-dimensional with a basis of the form:

{α(σ; t1)α(σt1; t2), α(σ; t3)α(σt3; t2), α(σ; t1)α(σt1; t3), α(σ; t2)α(σt2; t1), α(σ; t2)α(σt2; t3)}.

Remark 21. As it plays a role in our discussion, we shall detail that the existence of the
KQΓ/grπ-path α(t1; t2)α(t1t2; t1) implies that of a 3-dimensional graded Λ-representation:

ρ =

ρt1 f(t1;t2) g(t1;t1t2t1)
0 ρt2t1 f(t2t1;t1)
0 0 ρt1t2t1

 ,

up to the third power of the radical, where g(t1;t1t2t1) is a set of K-parameters. We make
a basis change such that:

g(t1;t1t2t1) : Λ → K,

xij 7→ g(t1;t1t2t1)(xij) =

0 | (i, j) 6= (1, 3),
f(t1;t2)(x34)f(t2t1;t1)(x14)

−2 | (i, j) = (1, 3).
(6)

While the existence of the KQΓ/grπ-path α(t2; t1)α(t2t1; t2) implies that of a 3-
dimensional graded Λ-representation:

ρ =

ρt2 f(t2;t1) g(t2;t2t1t2)
0 ρt1t2 f(t1t2;t2)
0 0 ρt2t1t2

 ,

up to the third power of the radical, where g(t2;t1t2t1) is a set of K-parameters. We make
a basis change such that:

g(t2;t2t1t2) : Λ → K,

xij 7→ g(t2;t2t1t2)(xij) =

0 | (i, j) 6= (1, 4),
f(t2;t1)(x34)f(t1t2;t2)(x13)

−2 | (i, j) = (1, 4).
(7)

Proposition 3.15. The following hold:
1. r5 := α(e; t1)α(t1; t2)α(t2t1; t1) − α(e; t2)α(t2; t1)α(t1t2; t2) ∈ ker(grπ),
2. r6 := α(e; t3)α(t3; t2)α(t2t3; t3) − α(e; t2)α(t2; t3)α(t3t2; t2) ∈ ker(grπ).
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Proof. By means of the symmetric group action, the second claim is proven in a similar
way to the first one, which we prove as follows.

Assume for a contradiction that r5 6∈ ker(grπ), that is:

grπ(α(e; t1)α(t1; t2)α(t2t1; t1) − α(e; t2)α(t2; t1)α(t1t2; t2)) 6= 0,

that is:

(f(e;t1)f(t1;t2)f(t2t1;t1) − f(e;t2)f(t2;t1)f(t1t2;t2)) + radΛ4 6= 0,

that is:

(f(e;t1)f(t1;t2)f(t2t1;t1) − f(e;t2)f(t2;t1)f(t1t2;t2)) 6∈ radΛ4.

In other words, we assume that the space of paths of length 3 that start in e and
terminate in t1t2t1 is 2-dimensional.

Consider the right KQΓ-module defined as the quotient of KQΓ by the right-ideal
generated by:

{ee(radKQΓ)4, ee(radKQΓ)3eσ, eeα(e; t3) | σ 6= t1t2t1}.

Our assumption implies that such module is a 7-dimensional graded module generated
by:

{ee,eeα(e; t1), eeα(e; t1)α(t1; t2), eeα(e; t1)α(t1; t2)α(t2t1; t1)
eeα(e; t2), eeα(e; t2)α(t2; t1), eeα(e; t2)α(t2; t1)α(t1t2; t2)}.

That is, there exists a 7-dimensional graded Λ-representation:

ρ =



ρe f(e;t1) f(e;t2) g(e;t2t1) g(e;t1t2) g(e,t1t2t1) g(e,t2t1t2)
0 ρt1 0 f(t1;t2) 0 g(t1;t1t2t1) 0
0 0 ρt2 0 f(t2;t1) 0 g(t2;t2t1t2)
0 0 0 ρt2t1 0 f(t2t1;t1) 0
0 0 0 0 ρt1t2 0 f(t1t2;t2)
0 0 0 0 0 ρt1t2t1 0
0 0 0 0 0 0 ρt2t1t2


,

up to the fourth power of the radical, where g(e;t2t1), g(e;t1t2), g(t1;t1t2t1) and g(t2;t2t1t2) are
the set of K-parameters that has been detailed previously in (4), (5), (6) and (7). While
g(e,t1t2t1) and g(e,t2t1t2) are sets of K-parameters that are determined by the defining
relations of Λ.
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Indeed we see that up to the fourth power of the radical:

ρ(x12) =



+1 0 0 0 0 g(e,t1t2t1)(x12) g(e,t2t1t2)(x12)
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 +1 0
0 0 0 0 0 0 +1


,

along side:

ρ(x23) =



+1 0 0 0 0 g(e,t1t2t1)(x23) g(e,t2t1t2)(x23)
0 −1 0 0 0 0 0
0 0 +1 0 0 0 0
0 0 0 +1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 +1 0
0 0 0 0 0 0 +1



ρ(x24) =



+1 0 0 0 0 g(e,t1t2t1)(x24) g(e,t2t1t2)(x24)
0 +1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 +1 0 0
0 0 0 0 0 +1 0
0 0 0 0 0 0 +1


,

to which (2b) hold if for (i, j) = (1, 2), (2, 3), (2, 4):

0 = g(e,t1t2t1)(xij) = g(e,t2t1t2)(xij),

while that of:

ρ(x13) =



+1 f(e;t1)(x13) 0 0 g(e;t1t2)(x13) g(e,t1t2t1)(x13) g(e,t2t1t2)(x13)
0 −1 0 0 0 g(t1;t1t2t1)(x13) 0
0 0 −1 0 0 0 0
0 0 0 +1 0 0 0
0 0 0 0 −1 0 f(t1t2;t2)(x13)
0 0 0 0 0 +1 0
0 0 0 0 0 0 +1


,
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to which (2b) hold if:

g(e,t1t2t1)(x13) =
f(e;t1)(x13)f(t1;t2)(x34)f(t2t1;t1)(x14)

4 ,

g(e,t2t1t2)(x13) =
f(e;t2)(x14)f(t2;t1)(x34)f(t1t2;t2)(x13)

4 .

and:

ρ(x14) =



+1 0 f(e;t2)(x14) g(e;t2t1)(x14) 0 g(e,t1t2t1)(x14) g(e,t2t1t2)(x14)
0 +1 0 0 0 0 0
0 0 −1 0 0 0 g(t2t1;t1)(x14)
0 0 0 −1 0 f(t2t1;t1)(x14) 0
0 0 0 0 −1 0 0
0 0 0 0 0 +1 0
0 0 0 0 0 0 +1


,

to which (2b) hold if:

g(e,t1t2t1)(x14) =
f(e;t1)(x13)f(t1;t2)(x34)f(t2t1;t1)(x14)

+4 ,

g(e,t2t1t2)(x14) =
f(e;t2)(x14)f(t2;t1)(x34)f(t1t2;t2)(x13)

−4 .

However, should such condition hold, then (2d) for (i = 1, j = 2, k = 3) would hold if:

0 = f(e;t1)(x13)f(t1;t2)(x34)f(t2t1;t1)(x14) + radΛ4,

0 = f(e;t2)(x14)f(t2;t1)(x34)f(t1t2;t2)(x13) + radΛ4.

A contradiction which proves that the space of paths of length 3 that start in e and
terminate in t1t2t1 is not 2-dimensional.

We see that it is 1-dimensional, with a basis of the form:

{α(e; t1)α(t1; t2)α(t2t1; t1) = α(e; t2)α(t2; t1)α(t1t2; t2)}.

Which is evident by the existence of the 6-dimensional graded Λ-representation:

ρ =



ρe f(e;t1) f(e;t2) g(e;t2t1) g(e;t1t2) g(e,t1t2t1)
0 ρt1 0 f(t1;t2) 0 g(t1;t1t2t1)
0 0 ρt2 0 f(t2;t1) g(t2;t1t2t1)
0 0 0 ρt2t1 0 f(t2t1;t1)
0 0 0 0 ρt1t2 f(t1t2;t2)
0 0 0 0 0 ρt1t2t1


,

up to the fourth power of the radical, where g(e;t2t1), g(e;t1t2), g(t1;t1t2t1) and g(t2;t2t1t2)
are the set of K-parameters that has been detailed previously in (4), (5), (6) and (7).
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And g(e,t1t2t1) is a set of K-parameter that is determined by the defining relations of the
algebra.

Indeed one verifies that up to an isomorphism, the defining relations of the algebra hold
with no contradiction once we set g(e,t1t2t1)(xij) = 0 for all (i, j), where g(e,t1t2t1)(x13) =
−g(e,t1t2t1)(x14) equal to:

f(e;t1)(x13)f(t1;t2)(x34)f(t2t1;t1)(x14) − f(e;t2)(x14)f(t2;t1)(x34)f(t1t2;t2)(x13)
4 ,

up to the fourth power of the radical. That is:

(f(e;t1)f(t1;t2)f(t2t1;t1) − f(e;t2)f(t2;t1)f(t1t2;t2)) + radΛ4 = 0,

that is:

grπ(α(e; t1)α(t1; t2)α(t2t1; t1) − α(e; t2)α(t2; t1)α(t1t2; t2)) = 0,

and r5 ∈ ker(grπ).

Corollary 8. Up to a higher power of the radical, the following holds:

{σ.ri | σ ∈ S4, i ∈ [6]} ⊆ ker(grπ).

Remark 22. Corollaries 6, 8 and Propositions 3.14, 3.15 imply that up to a higher power
of the radical, the space of KQΓ/grπ-paths of length 3 that start in e is exactly 6-
dimensional with a basis of the form:

{α(e; t1)α(t1; t2)α(t2t1; t1), α(e; t1)α(t1; t2)α(t2t1; t3),
α(e; t1)α(t1; t3)α(t3t1; t2), α(e; t3)α(t3; t2)α(t2t3; t3),
α(e; t3)α(t3; t2)α(t2t3; t1), α(e; t2)α(t2; t1)α(t1t2; t3)},

up to an isomorphism.

Lemma 3.16. Up to a higher power of the radical, the algebra grΓ is isomorphic to the
nil-Coxeter algebra associated with S4. In particular, we have:

{σ.ri | σ ∈ S4, i ∈ [6]} = ker(grπ).

Proof. This follows by mapping graded paths:

α(e; ti1)α(ti1 ; ti2) · · · α(tij−1 · · · ti1 ; tij ),

to Coxeter words si1 · · · sij−1sij . In particular, such mapping is a surjective algebra
homomorphism, the claim is then asserted by remarking that both of grΓ and N4 are
24-dimensional as seen in Lemma 3.12.

Lemma 3.17. The following hold:
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1. Up to the fifth power of the radical, the space of eeKQΓ/ker(grπ)-paths of length
4 that start in e is 5-dimensional. In particular,:

X := {α(e; t1)α(t1; t2)α(t2t1; t1)α(t1t2t1; t3), α(e; t1)α(t1; t2)α(t2t1; t3)α(t3t2t1; t2),
α(e; t1)α(t1; t3)α(t3t1; t2)α(t2t3t1; t1), α(e; t2)α(t2; t1)α(t1t2; t3)α(t3t1t2; t2),

α(e; t2)α(t2; t3)α(t3t2; t2)α(t2t3t2; t1)},

is a 5-dimensional basis.

2. Up to the sixth power of the radical, the space of eeKQΓ/ker(grπ)-paths of length
5 such that starts in e is 3-dimensional. In particular:

X := {α(e; t1)α(t1; t2)α(t2t1; t1)α(t1t2t1; t3)α(t3t1t2t1; t2)
α(e; t1)α(t1; t2)α(t2t1; t3)α(t3t2t1; t2)α(t2t3t2t1; t1)

α(e; t2)α(t2; t1)α(t1t2; t3)α(t3t1t2; t2)α(t2t3t1t2; t1)},

is a 3-dimensional basis.

3. Up to the seventh power of the radical, the space of eeKQΓ/ker(grπ)-paths of length
6 such that start in e is 1-dimensional generated by a single graded element:

α(e; t1)α(t1; t2)α(t2t1; t1)α(t1t2t1; t3)α(t3t1t2t1; t2)α(t2t3t1t2t1; t1).

4. The space of eeKQΓ/ker(grπ)-paths of length at least 7 such that start in e is
null-dimensional.

Proof. The claims made here are natural consequences of the isomorphism described in
Proposition 3.16. Indeed, one computes that N4 has a basis of the following form:

{1, s1, s2, s3, s1s2, s1s3, s2s1, s2s3, s3s2,

s1s2s1, s1s2s3, s1s3s2, s2s1s3, s2s3s2, s3s2s1,

s1s2s1s3, s1s2s3s2, s1s3s2s1, s2s1s3s2, s2s3s2s1,

s1s2s1s3s2, s1s2s3s2s1, s2s1s3s2s1, s1s2s1s3s2s1},

ordered by degree, to which the claim falls directly.

Remark 23. Alternatively, one may approach Lemma 3.17 without utilizing the theory
of nil-Coxeter algebras, albeit, should such approach be taken, the computations be-
come quite challenging in higher dimensions. In spirit of completion, we shall sketch an
example on such approach as follows.

Proposition 3.18. Up to the fifth power of the radical, the space of eeKQΓ/ker(grπ)-
paths of length 4 that start in e is 5-dimensional.
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Proof. The claim follows once shown that up to the fifth power of the radical:

X := {α(e; t1)α(t1; t2)α(t2t1; t1)α(t1t2t1; t3),α(e; t1)α(t1; t2)α(t2t1; t3)α(t3t2t1; t2),
α(e; t1)α(t1; t3)α(t3t1; t2)α(t2t3t1; t1),α(e; t2)α(t2; t1)α(t1t2; t3)α(t3t1t2; t2),

α(e; t2)α(t2; t3)α(t3t2; t2)α(t2t3t2; t1)},

is a 5-dimensional basis of the described space. That is, to prove that each X-expression
is not in the ker(grπ). As the other expressions are verified in a rather similar fashion,
we only show:

α(e; t1)α(t1; t2)α(t2t1; t1)α(t1t2t1; t3) 6∈ ker(grπ),

to avoid repetitiveness.

Indeed, one observes that such claim is equivalent to that of saying that the space of
eeKQΓ/ker(grπ)-paths of length 4 that start in e and terminate in t3t1t2t1 is exactly
1-dimensional, the following:

{α(e; t1)α(t1; t2)α(t2t1; t1)α(t1t2t1; t3), α(e; t2)α(t2; t1)α(t1t2; t2)α(t2t1t2; t3),
α(e; t1)α(t1; t2)α(t2t1; t3)α(t3t2t1; t1)},

provide a generating set of the described set.

Now Proposition 3.14 implies the linear dependency of the first and third expressions,
while Proposition 3.15 implies linear dependency of the first and second expressions.

Furthermore, as in Proposition 3.14 one sees that the space of paths of length 2 that
starts in t2t1 and terminate in t3t1t2t1 is exactly 1-dimensional, this is evident by the
existence of the graded representation:

ρ =

ρt2t1 f(t2t1;t1) g(t2t1,t3t1t2t1)
0 ρt1t2t1 f(t1t2t1;t3)
0 0 ρt3t1t2t1

 ,

where g(t2t1,t3t1t2t1) is a set of K-parameters that encloses the linearly dependency of
f(t2t1;t1)f(t1t2t1;t3) on f(t1t2;t2)f(t2t1t2;t3) up to the third power of the radical.

Furthermore, one sees that the space of paths of length 3 that starts in t1 and termi-
nate in t3t1t2t1 is exactly 1-dimensional, this is evident by the existence of the graded
representation:

ρ =


ρt1 f(t1;t2) g(t1,t1t2t1) g(t1,t3t1t2t1)
0 ρt2t1 f(t2t1;t1) g(t2t1,t3t1t2t1)
0 0 ρt1t2t1 f(t1t2t1;t3)
0 0 0 ρt3t1t2t1

 ,

where g(t1,t3t1t2t1) is a set of K-parameters determined by the algebras relations.
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Finally, one considers a graded 5-dimensional Λ-representation of the form:

ρ =


ρe f(e;t1) g(e,t2t1) g(e,t1t2t1) g(e,t3t1t2t1)
0 ρt1 f(t1;t2) g(t1,t1t2t1) g(t1,t3t1t2t1)
0 0 ρt2t1 f(t2t1;t1) g(t2t1,t3t1t2t1)
0 0 0 ρt1t2t1 f(t1t2t1;t3)
0 0 0 0 ρt3t1t2t1

 ,

up to the fifth power of the radical, which should exists with no contradictions, therefore
confirming that the generating set is a basis and the claim falls, where the g(e,t3t1t2t1) is
a set of K-parameters determined by the defining relations of Λ.

Theorem 3.19. There exits an algebra isomorphism grΓ ∼= Γ. In particular, the algebra
Γ is isomorphic to the nil-Coxeter algebra associated with S4.

Proof. This is indicated by observing that elements of the ideal ker(grπ) are minimal
and maximal in the precise length sense, that is, there exists no basis vectors of the
space of KQΓ/ker(grπ)-paths such that share the same starting and terminating vertex
and of different length.
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3.2 The representation theory of D4(α, α)
Note 20. Here and throughout this section, we consider the special case of Λ := D4(α, α)
where the K-parameter α remain normalized to 1K .

Proposition 3.20. The algebra Λ is not basic.

Proof. We show this claim by showing that there exists no 1-dimensional Λ-representation,
which is rather a stronger result.

Indeed, assume for a contradiction that ρ is a 1-dimensional Λ-representation say of
the form:

ρ : Λ → K

xij 7→ ρ(xij) = yij .

On one hand, (2b) implies that y2
ij = 1, that is, yij = ±1 for all distinct i, j ∈ [4]. On

the other hand (2d) implies for i < j < k ∈ [4], that:

yijyjk − (yjkyik + yikyij) = 1.

And we have two cases to discuss:

1. The case of yijyjk = +1 implies that yij − yjk = 0 and yjkyik + yikyij = 0.
2. The case of yijyjk = −1 implies that yij + yjk = 0 and yjkyik + yikyij = −2.

A clear contradiction on both cases proving that indeed, there exists no 1-dimensional
Λ-modules and the algebra Λ is not basic.

Remark 24. We recall that the algebra D3(+1, +1) is a proper subalgebra of Λ which is
semisimple with a complete system of simple 2-dimensional modules given as {ρσ | σ ∈
S3} where:

ρσ(xij) =



[
+1 0
0 −1

]
| σ(i, j) = (3, 1),[

0 +1
+1 0

]
| σ(i, j) ∈ {(1, 2), (2, 3)}.

This means in particular that there exists no Λ-modules of odd dimensions.

Proposition 3.21. Given σ ∈ S4. The algebra homomorphism ρσ : Λ → K2 defined by
mapping a generator xij for distinct i, j ∈ [4] to:

ρσ(xij) =



[
+1 0
0 −1

]
| σ(i, j) ∈ {(1, 3), (4, 2)},[

0 +1
+1 0

]
| σ(i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)},
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is a well-defined 2-dimensional simple Λ-representation.

Proof. Should ρ be a well-defined 2-dimensional Λ-representation, the simplicity falls
directly as Λ has no 1-dimensional representations per Proposition 3.20.

Therefore, one must verify that subjecting ρσ to the defining relations does not yield
any contradictions for all σ ∈ S4.

As (2b), and (2c) holds directly, one remarks that (2d) holds by observing that for
distinct σ(i), σ(j), σ(k) ∈ [4], then one of the following situations occurs:

ρσ(xijxjk) = 1, ρσ(xjkxki + xkixij) = 0.

ρσ(xjkxki) = 1, ρσ(xijxjk + xkixij) = 0.

ρσ(xkixij) = 1, ρσ(xijxjk + xjkxki) = 0.

Which implies the claim.

Lemma 3.22. Let τ, σ ∈ S4. Then for all x ∈ Λ we have:

(τ.ρσ)(x) = (ρσ(τ−.x)) = ρσ.τ−(x).

Proof. As ρτ , ρτσ and the group action by S4 are multiplicative, the claim is asserted by
remarking that:

(τ.ρσ)(xij) = (ρσ(τ−.xij)) = ρστ−(xij).

for all xij generating Λ.

Note 21. Denote by V the Klein four-subgroup of the symmetric group S4, that is, the
normal subgroup generated by the permutations ν1 = (1, 3)(2, 4) and ν2 = (1, 4)(2, 3),
further, we set ν3 = ν1ν2.

Furthermore, we remind the reader that S4/V ∼= S3, which for convenience sake we
choose to be generated by s2, s3.

Proposition 3.23. The following hold:

1. Let σ ∈ S4, ρσ
∼= νi.ρσ via conjugation with mσνiσ− for i ∈ [3] where:

mν1 :=
[

0 +1
+1 0

]
, mν2 :=

[
+1 0
0 −1

]
, mν3 :=

[
0 +1

−1 0

]
.

2. Given distinct σ, τ ∈ S3 ∼= S4/V, then ρσ 6∼= ρτ .

Proof. 1. Let σ ∈ S4, consider an arbitrary x ∈ Λ, then:

νi.ρσ(x) = ρσν−
i

(x) = ρσνiσ−σ(x) = σ−.ρσνiσ−(x).

Now σνiσ
− ∈ V since V is a normal subgroup of S4, in other words, σνiσ

− = νj

for some j ∈ [3].
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The claim is then asserted since ρνj
∼= ρe via mνj , that is:

ρνj (x) = mνj .ρe(x).m−
νj

| j ∈ [3].

2. Given distinct σ, τ ∈ S3 ∼= S4/V, say with no loss of generality that σ = e. The
claim is then asserted by verifying that there exists no nonzero homomorphism in
the space of HomK(ρe, ρτ ), that is, there exists no f ∈ K4 such that the following
hold:

ρe(xij)f − fρτ (xij) = 0 | distinct i, j ∈ [4], (8)

Since the different cases are solved in a rather similar fashion, we shall avoid
repetitiveness and solve the claim for τ = s3 and leave the other as an exercise for
interested readers.
Indeed, should τ = s3 be. Then (8) for (i, j) = (1, 2), (3, 4) hold if:[

0 +1
+1 0

]
f = f

[
0 +1

+1 0

]
= f

[
0 −1

−1 0

]
,

that is, f = 0 and the space HomK(ρe, ρs3) is generically null-dimensional, that
is, ρe 6∼= ρs3 .

Proposition 3.24. The following hold:

1. Simple Λ-modules are exactly 2-dimensional.
2. Given ρ a 2-dimensional simple Λ-representation. Then there exists σ ∈ S4 such

that ρ = ρσ.

Proof. The claims are natural consequences of Proposition 3.23 and the fact that the
semisimple quotient of Λ, that is, the quotient of Λ by its radical, is 24-dimensional, to
which one easily concludes that simple Λ-modules are exactly 2-dimensional. Further-
more {ρσ | σ ∈ S3} is a complete system of simple Λ-representations.

Corollary 9. For i ∈ [3]. The following hold:

Ext1
Λ(ρσ, ρτ ) ∼= Ext1

Λ(νiρσ, νiρτ ) | σ, τ ∈ S3.

Theorem 3.25. Given σ, τ ∈ S3. The following hold:

dimKExt1
Λ(ρσ, ρτ ) =


1 | τ = s3σ,

2 | τ = s2σ,

0 | otherwise.

Remark 25. In the purpose of proving Theorem 3.25, we start by utilizing Lemma 3.22,
which implies that we may set σ = e with no further restrictions.
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Furthermore, we see that for τ ∈ S3, generic elements of the space of extensions
Ext1

Λ(ρe, ρτ ) are of the form:

ρ : Λ → K4×4

xij 7→ ρ(xij) =
[
ρe f(e;τ)
0 ρτ

]
(xij) | f(e;τ)(xij) = fij =

[
aij bij

cij dij

]
,

such that the defining relations of the algebra hold.

Note 22. Often in our computations we make basis change of the last two canonical
generating vectors of K4, that is, we say:

e′
3 := λ1e1 + λ2e2 ± e3, e′

4 := λ3e1 + λ4e2 ± e4.

for some field parameters λ1, · · · , λ4.

Example 3.5. One computes that with a basis change of K4 by:

λ1 = +b12, λ2 = +d12, λ3 = +b13,

a generic element of the space Ext1
Λ(ρe, ρe) takes the form:

ρ : Λ → K4×4

xij 7→ ρ(xij) =
[
ρe f(e;e)
0 ρe

]
(xij) | f(e;e)(xij) = fij =

[
aij bij

cij dij

]
,

where:

f12 =
[
a12 0
c12 0

]
, f13 =

[
a13 0
c13 d13

]
,

to which one computes that:

f(x12) = f(x34) = 0,

f(x13) = f(x24) = 0,

f(x14) = f(x23) = 0.

Where the first line is implied by (2b) and (2c), the last two lines are implied by (2b), (2c)
and (2d) for (i = 1, j = 2, k = 3), (i = 1, j = 3, k = 4) and (i = 4, j = 3, k = 1). That is,
generic elements of the space Ext1

Λ(ρe, ρe) are isomorphic to the trivial extension.

Proposition 3.26. Given σ ∈ S3 a non-simple transposition. Then the space of exten-
sions Ext1

Λ(ρe, ρτ ) is of null-dimension.

Proof. As the case of τ = e has already been discussed in the previous example, the
proof is done case by case and is fairly similar as before, we detail the remaining three
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cases for τ by taking:

ρ : Λ → K4×4

xij 7→ ρ(xij) =
[
ρe f(e;τ)
0 ρτ

]
(xij) | f(e;τ)(xij) = fij =

[
aij bij

cij dij

]
,

a generic element of the space Ext1
Λ(ρe, ρτ ).

For τ = s3s2s3. One computes that with a basis change of K4 by:

λ1 = +a24, λ2 = +c13, λ3 = −a12, λ4 = −c12,

implies that generically ρ satisfies:

f12 =
[
0 b12
0 d12

]
, f13 =

[
a13 b13
0 d13

]
, f24 =

[
0 b24

c24 d24

]
.

to which one computes that:

f12 = f34 = 0,

f13 = f24 = f14 = f23 = 0.

where the first line is implied by (2b) and (2c), while the second one is implied by (2b) and
(2d) for the cases of (i = 1, j = 2, k = 3), (i = 1, j = 2, k = 4), and (i = 1, j = 3, k = 4).

Next, for τ = s3s2. One computes that with a basis change of K4 by:

λ1 = a14, λ2 = c23, λ3 = a13, λ4 = c13,

implies that generically ρ satisfies:

f13 =
[
0 b13
0 d13

]
, f14 =

[
0 b14

c14 d14

]
, f23 =

[
a23 b23
0 d23

]
,

to which one computes that:

f13 = f24 = 0,

f12 = f23 = f14 = 0.

Where the first line is implied by (2b), (2c), the second line is implied by (2b), and (2d)
for the cases of (i = 1, j = 2, k = 3), and (i = 4, j = 2, k = 1), finally, f34 = 0 is held by
(2b), and (2d) for the special cases of (i = 1, j = 3, k = 4), and (i = 4, j = 3, k = 2).

Finally, for τ = s2s3. One computes that with a basis change of K4 by:

λ1 = −b24, λ2 = −d24, λ3 = −a13, λ4 = −c13,
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implies that generically ρ satisfies:

f13 =
[
0 b13
0 d13

]
, f24 =

[
a24 0
c24 0

]
,

to which one computes that:

f13 = f24 = 0,

f12 = f34 = 0.

Where the first line is implied by (2b), the second line is implied by (2b), (2c), and
(2d) for (i= 1, j= 2, k= 3), f14 = 0 is implied by (2b), and (2d) for the cases of
(i = 1, j = 2, k = 4), and (i = 4, j = 3, k = 1), finally, f23 = 0 is held by (2b), and (2d)
for the special cases of (i = 2, j = 3, k = 4), and (i = 3, j = 2, k = 1).

That is, and with all possible cases considered, for τ a non-simple transposition, a
generic ρ ∈ Ext1

Λ(ρe, ρτ ) is isomorphic to zero and the space is null-dimensional as
claimed.

Proposition 3.27. The following hold:

dimKExt1
Λ(ρe, ρsi) =

{
1 | i = 3,

2 | i = 2.

Proof. Given ρ ∈ Ext1
Λ(ρe, ρsi) a generic element.

For i = 3. One computes that with a basis change of K4 by:

λ1 = +a14, λ2 = +d12, λ3 = −a13, λ4 = +d12,

implies that the defining relations of the algebra hold if:

fij =
{

0 | (i, j) 6= (3, 4),
c2.diag(+1, +1) | (i, j) = (3, 4).

for some K-parameter c2, that is to say, the space Ext1
Λ(ρe, ρs3) is 1-dimensional.

Finally, for i = 2. One computes that with a basis change of K4 by:

λ1 = +b24, λ2 = +d24, λ3 = +a13, λ4 = +c13,

implies that the defining relations of the algebra hold if:

fij =


0 | (i, j) 6= (1, 4), (2, 3),
c1diag(−1, +1) | (i, j) = (1, 4),
c3diag(+1, +1) | (i, j) = (2, 3).

for some K-parameter c1, c3, that is to say, the space Ext1
Λ(ρe, ρs2) is 2-dimensional.
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Remark 26. We remark that the claim made in Theorem 3.25 has been proved per
Propositions 3.26, and 3.27.
Note 23. Given σ ∈ S3. The space of extensions Ext1

Λ(ρσ, ρs3σ) is 1-dimensional, we say
it is generated by {f2

(σ,s3)}, similarly, the space Ext1
Λ(ρσ, ρs2σ) is 2-dimensional, we say

it is generated by {f i
(σ,s2) | i = 1, 3}.

Theorem 3.28. The algebra Λb(α, α) admits an ordinary quiver presentation of the
form (Q0, Q1, s, t) where:

1. The vertices set is S3.
2. Given σ, τ ∈ S3. The number of arrows from σ to τ is 1 if τ = s3σ, 2 if τ = s2σ

and 0 otherwise.

Proof. The claim follows since Λ and Λb are Morita equivalent, which preserves simplicity
and extensions. In particular, the vertices are indexed by S3 since {ρσ | σ ∈ S3} is a
complete set of simple Λ-modules per Proposition 3.24 up to the isomorphism described
in Proposition 3.23. While the number of arrows follows from Theorem 3.25.

Remark 27. We draw the ordinary quiver of Λb as follows:

s3 s2s3

e s3s2s3

s2 s3s2

Note 24. Given σ ∈ S3. We call the two arrows starting in σ and terminating in s2σ
by βi(σ; s2) for i = 1, 3, furthermore, β2(σ; s3) denotes the single arrow starting in σ
terminating in s3σ.

Moreover, we interpret the action of the symmetric group S3 on paths by changing
the starting vertex.

Furthermore, we denote by φ Gabriel’s theorem morphism associated with Λb.
Finally, we remind the reader that Gabriel’s theorem states that ker(φ) is a two-sided

admissible ideal of KQΛb with an associated quotient that is isomorphic to Λb, which
is by default Morita equivalent to Λ, that is, both modules categories of Λ and Λb are
equivalent.
Remark 28. As seen before, we observe that the algebra KQΛb admits an indecomposable
decomposition of the form:

KQΛb =
⊕
σ∈S3

KQΛb ,

which in particular, reduces the study of Λb to that of Γb, the indecomposable projective
Λb-module understood to be a quotient of KQΓb := eeKQΛb by the kernel of π := φ|ee .
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Lemma 3.29. The algebra Γb is 24-dimensional.

Proof. We start by observing that the algebra Λ is 4!2-dimensional.
Now, the isomorphism given by the Klein four subgroup action -as described in Propo-

sition 3.23- implies that the associated basic algebra Λb is 4!2/4-dimensional, to which
one sees that the set {eσ | σ ∈ S3} is complete of primitive orthogonal idempotents in Λb,
therefore, all indecomposable projective Λb-representation are of the same dimension.

In particular, this yields the claim and show that the graded algebra grΓb is 24-
dimensional as well.

Note 25. Given σ ∈ S3. We proved that:

dimKExt1
Λ(ρσ, ρsiσ) =

{
1 | i = 3,

2 | i = 2.

Viewed as equivalence class of (1)-cocycles up to the space of coboundaries we shall
rename the single generator of such space by {f2

(σ;s3), f i
(σ;s2) | i = 1, 3.} and omit the bar

notation should no confusion occurs.

Remark 29. Since {f2
(σ;s3), f i

(σ;s2)} are 2-dimensional, distinguishing the parameters be-
comes necessary unlike it was in the first part of our discussion. That being said, we
notice that such writing in practice leads to tiresome reading, therefore, we will omit
writing the K-parameters multiplied with f2

(σ;s3), f i
(σ;s2) and once needed, we shall denote

them simply by c2
(σ;s3), ci

(σ;s2), for i = 1, 3.

Proposition 3.30. Let:

ri := βi(e; s2)βi(s2; s2) | i = 1, 3,

r2 := β2(e; s3)β2(s3; s3),
r4 := β1(e; s2)β3(s2; s2) − β3(e; s2)β1(s2; s2).

Then ri ∈ ker(grπ) for i ∈ [4]. In particular, the space of KQΓb/ker(grπ)-paths of
length 2 that start in e is exactly 5-dimensional with a basis of the form:

{β1(e; s2)β3(s2; s2), β1(e; s2)β2(s2; s3), β3(e; s2)β2(s2; s3),
β2(e; s3)β1(s3; s2), β2(e; s3)β3(s3; s2)}.

Proof. The first part of the claim is an alternative interpretation of claiming that the
space of KQΓb/ker(grπ)-paths of length 2 such that start and terminate in e is exactly
1-dimensional with a basis of the form:

{β1(e; s2)β3(s2; s2) = β3(e; s2)β1(s2; s2)},

which we shall show by existence.
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Indeed let:

ρ =


ρe f2

(e;s3) f i
(e;s2) g(e;e)

0 ρs3 0 f2
(s3;s3)

0 0 ρs2 f i
(s2;s2)

0 0 0 ρe

 , (9)

be an 8-dimensional graded (up to the third power of the radical) Λ-map, where g(e;e) is
a set of K2-parameters, of the form:

g(e;e)(xij) =
[
aij bij

cij dij

]
∈ K2.

We see that:

1. Subjecting ρ to (2b) hold once:

diag(g(e;e)(x13)) = diag(g(e;e))(x24) = 0,

along side:

a12 = −d12, b12 = −d12, a14 = −d14,

a23 = −d23, a34 = −d34.

as well as:

c14 = −b14 + c1
(e;s2)c

1
(s2;s2),

c23 = −b23 − c3
(e;s2)c

3
(s2;s2),

c34 = −b34 − c2
(e;s3)c

2
(s3;s3).

2. In addition to (2b), subjecting ρ to (2c) hold once:

d12 = +d34, c13 = −c24, d14 = −d23, b24 = −b13,

along side:

b23 = −b14 − (1/2)
[
−c1

(e;s2)c
1
(s2;s2) + c1

(e;s2)c
3
(s2;s2)

−c3
(e;s2)c

1
(s2;s2) + c3

(e;s2)c
3
(s2;s2)

]
,

b34 = −c12 − (1/2)
[
c2

(e;s3)c
2
(s3;s2)

]
.

3. In addition to (2b), and (2c) subjecting ρ to (2d) for (i = 1, j = 2, k = 4) holds
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once we set:

b14 = c1
(e;s2)c

1
(s2;s2) + c12,

c24 = 2c1
(e;s2)c

1
(s2;s2) − 2d23 + b13

2 ,

d34 = c13 − b14 + d23.

and:

c1
(e;s2)c

1
(s2;s2) = 0,

Furthermore, (2d) for (i = 4, j = 3, k = 1) holds if:

c2
(e;s3)c

2
(s3;s3) = 0,

finally, (2d) for (i = 1, j = 2, k = 3) holds if both:

c3
(e;s2)c

3
(s2;s2) = 0,

c1
(e;s2)c

3
(e;s2) − c3

(e;s2)c
1
(s2;s2) = 0.

With all the other relations satisfied.

In other words, ρ as defined in (9) is actually a graded Λ-representation, if and only if
for i = 1, 3, the following hold:

f i
(e;s2)f

i
(s2;s2) + (radΛ)3 = 0,

f2
(e;s3)f

2
(s3;s3) + (radΛ)3 = 0,

(f1
(e;s2)f

3
(s2;s2) − f3

(e;s2)f
1
(s2;s2)) + (radΛ)3 = 0.

That is, for i = 1, 3, the following paths are in ker(grπ):

βi(e; s2)βi(s2; s2),
β2(e; s3)β2(s3; s3),

β1(e; s2)β3(s2; s2) − β3(e; s2)β1(s2; s2).

Since Λ and Λb -which contains Γb as an indecomposable projective module- are morita
equivalent.

Finally, we see that the space KQΓb/ker(grπ)-paths of length 2 that start in e and
terminate in s3s2 is 2-dimensional with a basis of the form:

{β1(e; s2)β2(s2; s3), β3(e; s2)β2(s2; s3)},
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which corresponds to the existence of a graded Λ-representation:

ρ =

ρe f i
(e;s2) gi

(e;s3s2)
0 ρs2 f2

(s2;s3)
0 0 ρs3s2

 ,

where:

g1(e; s3s2) =

0 | (i, j) 6= (1, 2),
−c1

(e;s2)c2
(s2;s3)

2 .diag(+1, +1) | (i, j) = (1, 2).
(10)

g3(e; s3s2) =

0 | (i, j) 6= (3, 4),
+c3

(e;s2)c2
(s2;s3)

2 .diag(+1, −1) | (i, j) = (3, 4).
(11)

While those of length 2 that start in e and terminate in s2s3 is 2-dimensional with a
basis of the form:

{β2(e; s3)β1(s3; s2), β2(e; s3)β3(s3; s2)},

which corresponds to the existence of a graded Λ-representation:

ρ =

ρe f2
(e;s3) gi

(e;s2s3)
0 ρs3 f i

(s3;s2)
0 0 ρs2s3

 ,

where:

g1(e; s2s3) =

0 | (i, j) 6= (1, 4),
c2

(e;s3)c1
(s3;s2)

2 .diag(+1, +1) | (i, j) = (1, 4).
(12)

g3(e; s2s3) =

0 | (i, j) 6= (2, 3),
c2

(e;s3)c3
(s3;s2)

2 .diag(+1, −1) | (i, j) = (2, 3).
(13)

Corollary 10. The following hold:

{σri | σ ∈ S3} ⊆ ker(grπ).

Example 3.6. Given σ ∈ S3, then there exists two distinct KQΓb-paths of the form:
On one hand:

σ s2σ s3s2σ
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to which one corresponds a graded Λ-representation:

ρ =

ρσ f i
(σ;s2) gi

(σ;s3s2)
0 ρs2σ f2

(s2σ;s3)
0 0 ρs3s2σ

 ,

up to the third power of the radical. In particular, we compute that:

g1(s3; s3s2) =

0 | (i, j) 6= (1, 2),
−c1

(s3;s2)c2
(s2s3;s3)

2 .diag(+1, +1) | (i, j) = (1, 2).
(14)

g3(s3; s3s2) =

0 | (i, j) 6= (3, 4),
+c3

(s3;s2)c2
(s2s3;s3)

2 .diag(−1, +1) | (i, j) = (3, 4).
(15)

On the other hand:

σ s3σ s2s3σ

to which one corresponds a graded Λ-representation:

ρ =

ρσ f2
(σ;s3) gi

(σ;s2s3)
0 ρs3σ f i

(s3σ;s2)
0 0 ρs2s3σ

 ,

up to the third power of the radical. In particular, we compute that:

g1(s2; s2s3) =

0 | (i, j) 6= (1, 4),
c2

(s2;s3)c1
(s3s2;s2)
2 .diag(+1, +1) | (i, j) = (1, 4).

(16)

g3(s2; s2s3) =

0 | (i, j) 6= (2, 3),
c2

(s2;s3)c3
(s3s2;s2)
2 .diag(−1, +1) | (i, j) = (2, 3).

(17)

Proposition 3.31. Let:

r5 :=

−β1(e; s2)β2(s2; s3)β3(s3s2; s2)
−β3(e; s2)β2(s2; s3)β1(s3s2; s2)
+β2(e; s3)β1(s3; s2)β2(s2s3; s3)

 , r6 :=

+β1(e; s2)β2(s2; s3)β1(s3s2; s2)
−β3(e; s2)β2(s2; s3)β3(s3s2; s2)
+β2(e; s3)β3(s3; s2)β2(s2s3; s3)

 .

then ri ∈ ker(grπ) for i = 5, 6.

Proof. The claim falls once we show that the space of KQΓb/ker(grπ)-paths of length 3
such that start in e and terminate in s3s2s3 is exactly 2-dimensional with a basis of the
form:

{β1(e; s2)β2(s2; s3)β3(s3s2; s2), β1(e; s2)β2(s2; s3)β1(s3s2; s2)}.
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Which we shall show by existence.

Indeed let:

ρ =



ρe f i
(e;s2) gi(e; s3s2) f2

(e;s3) gi(e; s2s3) g(e; s3s2s3)
0 ρs2 f2

(s2;s3s2) 0 0 gi(s2; s2s3)
0 0 ρs3s2 0 0 f i

(s3s2;s3)
0 0 0 ρs3 f i

(s3;s2) gi(s3; s3s2)
0 0 0 0 ρs2s3 f i

(s2s3;s3)
0 0 0 0 0 ρ(s3s2s3)


(18)

be a graded (up to the fourth power of the radical), 12-dimensional Λ-map, where
gi(e; s3s2), gi(e; s2s3), gi(s2; s2s3) and gi(s3; s3s2) are the sets of K2-parameters de-
termined in (10), (11), (12), (13), (14), (15), (16) and (17). And g(e; s3s2s3) is a set of
K2-parameters, of the form:

g(e; s3s2s3)(xij) =
[
aij bij

cij dij

]
.

We see that:

1. Subjecting ρ to (2b) hold once set:

a13 = 0, d13 = 0, b24 = 0, c24 = 0,

and:

a12 = d12, a34 = d34, a14 = d14, a23 = d23,

along side:

b12 = c12 −
c1

(e;s2)c
2
(s2;s3)c

1
(s3s2;s2)

2 ,

c14 = b14 +
c1

(e;s2)c
2
(s2;s3)c

1
(s3s2;s2)

2 ,

b23 = c23 +
(−c3

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2) + c2

(e;s3)c
3
(s3;s2)c

2
(s2s3;s3))

2 ,

b34 = c34 +
(+c3

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2) − c2

(e;s3)c
3
(s3;s2)c

2
(s2s3;s3))

2 .

2. In addition to (2b), subjecting ρ to (2c) hold once we set:

a14 = −a23, d12 = +d34,
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along side:

c12 = +c34 + 1/4

+c1
(e;s2)c

2
(s2;s3)c

1
(s3s2;s2) − c1

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2)

−c3
(e;s2)c

2
(s2;s3)c

1
(s3s2;s2) + c3

(e;s2)c
2
(s2;s3)c

3
(s3s2;s3)

+c2
(e;s3)c

1
(s3;s2)c

2
(s2s3;s3) − c2

(e;s3)c
3
(s3;s2)c

2
(s2s3;s3)

 ,

c23 = −b14 + 1/4

−c1
(e;s2)c

2
(s2;s3)c

1
(s3s2;s2) − c1

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2)

−c3
(e;s2)c

2
(s2;s3)c

1
(s3s2;s2) + c3

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2)

+c2
(e;s3)c

1
(s3;s2)c

2
(s2s3;s3) − c2

(e;s3)c
3
(s3;s2)c

2
(s2s3;s3)

 .

3. In addition to (2b), and (2c), subjecting ρ to (2d) for (i = 1, j = 2, k = 3) hold
once we have:

d34 = b13 − c13 − b14 − a23 − c34,

b14 = c13 + 2a23 + (1/2)
[
−c3

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2) + c2

(e;s3)c
3
(s3;s2)c

2
(s2s3;s3)

]
,

d24 = a24 + 2c34 + (1/4)

+c1
(e;s2)c

2
(s2;s3)c

1
(s3s2;s2) − c1

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2)

−c3
(e;s2)c

2
(s2;s3)c

1
(s3s2;s2) + c3

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2)

+c2
(e;s3)c

1
(s3;s2)c

2
(s2s3;s3) − c2

(e;s3)c
3
(s3;s2)c

2
(s2s3;s3)

 .

However, the (2d) for all the other cases hold should:[
+c1

(e;s2)c
2
(s2;s3)c

1
(s3s2;s2) − c3

(e;s2)c
2
(s2;s3)c

3
(s3s2;s2) + c2

(e;s3)c
3
(s3;s2)c

2
(s2s3;s3)

]
= 0,[

+c1
(e;s2)c

2
(s2;s3)c

3
(s3s2;s2) + c3

(e;s2)c
2
(s2;s3)c

1
(s3s2;s2) − c2

(e;s3)c
1
(s3;s2)c

2
(s2s3;s3)

]
= 0.

In other words, ρ as defined in (18) is actually a graded Λ-representation, if and only if:+f1
(e;s2)f

2
(s2;s3)f

1
(s3s2;s2)

−f3
(e;s2)f

2
(s2;s3)f

3
(s3s2;s2)

+f2
(e;s3)f

3
(s3;s2)f

2
(s2s3;s3)

 + (radΛ)4 = 0,

−f1
(e;s2)f

2
(s2;s3)f

3
(s3s2;s2)

−f3
(e;s2)f

2
(s2;s3)f

1
(s3s2;s2)

+f2
(e;s3)f

1
(s3;s2)f

2
(s2s3;s3)

 + (radΛ)4 = 0.

In other words, the following paths are in ker(grπ):−β1(e; s2)β2(s2; s3)β3(s3s2; s2)
−β3(e; s2)β2(s2; s3)β1(s3s2; s2)
+β2(e; s3)β1(s3; s2)β2(s2s3; s3)

 ,

+β1(e; s2)β2(s2; s3)β1(s3s2; s2)
−β3(e; s2)β2(s2; s3)β3(s3s2; s2)
+β2(e; s3)β3(s3; s2)β2(s2s3; s3)

 .

Since Λ and Λb -which contains Γb as an indecomposable projective module- are morita
equivalent.
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Corollary 11. For i = 5, 6. The following hold:

{σri | σ ∈ S3} ⊆ ker(grπ).

Lemma 3.32. Up to a higher power of the radical, the algebra grΓb is isomorphic to
the free associative algebra K〈s1, s2, s3〉 bounded by the ideal J ′ generated by:

ιi := s2
i , | i ∈ [3],

ι4 := s1s3 − s3s1,

ι5 := s2s1s2 − s1s2s3 − s3s2s1,

ι6 := s2s3s2 − s1s2s1 + s3s2s3.

Proof. We start with computing that K〈s1, s2, s3〉/J ′ is 24-dimensional with an ordered
basis:

{1, s1, s3, s2, s1s3, s1s2, s3s2, s2s1, s2s3,

s1s3s2, s1s2s1, s1s2s3, s3s2s1, s3s2s3, s2s1s3,

s1s3s2s1, s1s3s2s3, s1s2s1s3, s3s2s1s3, s2s1s3s2,

s1s3s2s1s3, s1s2s1s3s2, s3s2s1s3s2, (s1s3s2)2}

to which mapping graded paths:

βi1(e; sj1)βi2(sj1 ; sj2) · · · βik
(sjk−1 · · · sj1 ; sjk

),

to words si1 · · · sik−1sik
gives a surjective algebra homomorphism, the claim is then as-

serted by remarking that both of grΓb and K〈s1, s2, s3〉/J ′ are 24-dimensional as seen
in Lemma 3.29.

Corollary 12. The following hold:

1. Up to a fourth power of the radical, the space of KQΓb/ker(grπ)-paths of length 3
that start in e is exactly 6-dimensional with a basis of the form:

{β1(e; s2)β3(s2; s2)β2(e; s3), β1(e; s2)β2(s2; s3)β1(s3s2; s2),
β1(e; s2)β2(s2; s3)β3(s2s3; s2), β3(e; s2)β2(s2; s3)β1(s3s2; s2),
β3(e; s2)β2(s2; s3)β3(s3s2; s2), β2(e; s3)β1(s3; s2)β3(s2s3; s2)}.

2. Up to the fifth power of the radical, the space of KQΓb/ker(grπ)-paths of length 4
that start in e is exactly 5-dimensional with a basis of the form:

{β1(e; s2)β3(s2; s2)β2(e; s3)β1(s3; s2), β1(e; s2)β3(s2; s2)β2(e; s3)β3(s3; s2),
β1(e; s2)β2(s2; s3)β1(s3s2; s2)β3(s2s3s2; s2),
β3(e; s2)β2(s2; s3)β1(s3s2; s2)β3(s2s3s2; s2),
β2(e; s3)β1(s3; s2)β3(s2s3; s2)β2(s3; s3).}.
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3. Up to the sixth power of the radical, the space of KQΓb/ker(grπ)-paths of length
5 that start in e is exactly 3-dimensional with a basis of the form:

{β1(e; s2)β3(s2; s2)β2(e; s3)β1(s3; s2)β3(s2s3; s2),
β1(e; s2)β2(s2; s3)β1(s3s2; s2)β3(s2s3s2; s2)β2(s3s2; s3),
β3(e; s2)β2(s2; s3)β1(s3s2; s2)β3(s2s3s2; s2)β2(s3s2; s3)}.

4. Up to the seventh power of the radical, the space of KQΓb/ker(grπ)-paths of length
6 that start in e is exactly 1-dimensional with a basis of the form:

{β1(e; s2)β3(s2; s2)β2(e; s3)β1(s3; s2)β3(s2s3; s2)β2(s3; s3)}

5. Up to a higher power of the radical, the space of KQΓb/ker(grπ)-paths of length 7
that start in e is null-dimensional.

Note 26. We highlight two previously mentioned (basis elements) paths:

u1 := β2(e; s3)β1(s3; s2)β3(s2s3; s2)β2(s3; s3)
u2 := β1(e; s2)β3(s2; s2)β2(e; s3)β1(s3; s2)β3(s2s3; s2)β2(s3; s3).

which are unique in the sense that both paths start and terminate in e. For i ∈ [2]. Let
vi be the image of ui in K〈s1, s2, s3〉/J ′, that is, let:

v1 := s2s3s1s2, v2 := (s1s3s2)2.

Remark 30. Lemma 3.32 implies that there exits some K-polynomials qi for i ∈ [8] so
that Γb is isomorphic to the free associative algebra K〈s1, s2, s3〉 modulo by the ideal J
generated by:

{ι1 + q1v1 + q2v2, ι2 + q3v1 + q4v2,

ι3 + q5v1 + q6v2, ι4 + q7v1 + q8v2,

ι5, ι6.}.

Now, on one hand we compute:

0 = (s1ι4 − ι1s3)
= −s1(q7v1 + q8v2) − (q1v1 + q2v2)
= q7(s1s2s3s1s2) + q1(s3s2s3s1s2),

also:

0 = (s1ι3 − ι4s3)
= −s1(q5v1 + q6v2) − (q7v1 + q8v2)s3

= q5(s1s2s3s1s2) + q7(s3s2s3s1s2),
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that is, q1 = q5 = q7 = 0. While on the other hand, for any nonzero K-polynomial q,
one has:

(s1 + q(s3s2s3s1s2))2 − (s2
1 + 2qv2) = 0

(s2 + q(s3s1s2))2 − (s2
2 + qv1 + qv2) = 0,

while there exists no basis element v such that:

(s3 + qv)2 − (s2
3 + q′v2) = 0.

Proposition 3.33. The algebra Γb is isomorphic to the free associative algebra K〈s1, s2, s3〉
bounded by the ideal J generated by:

{ι1 + q2v2, ι2 + q3v1 + q4v2,

ι3 + q6v2, ι4 + q8v2, ι5, ι6.}.

for qi some K-polynomials.
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4 On the deformed Fomin-Kirillov-subalgebras.
Note 27. Let Y be a subalgebra of Dn(α1, α2) and let M be a Y-module given generically.
We denote by Mσ the module M under the action of σ an automorphism of Y, that is:

Mσ(x) = M(σx) | x ∈ Y.

Definition 4.1. For any graph G with n-vertices, the deformed Fomin-Kirillov algebra
DG(α1, α2) is the subalgebra of Dn(α1, α2) generated by xij for all (i, j) ∈ G.

Example 4.1. Let Kn denote the complete graph with n vertices. Then Dn(α1, α2) =
DKn(α1, α2).

Note 28. Should no confusion occurs, we denote xii+1 by simply xi.
Remark 31. One may remark that the previous definition cover the special cases of "the
non-deformed" Fomin-Kirillov algebra EG, the subalgebra of En = Dn(0, 0).

4.1 Relation with Iwahori-Hecke algebra
Note 29. By R we denote a commutative ring, we remind the reader that K denotes a
field of character not equal to 2.

Definition 4.2. Given n ≥ 3 a positive integer, Let Hq(n) denotes the one-parameter
Iwahori-Hecke-algebra, that is, the associative unital R-algebra generated by Ti for i ∈
[n − 1] subject to the following set of relations:

T 2
i − (q − 1)Ti + q = 0 | i ∈ [n − 1], (19a)

TiTj − TjTi = 0 | |i − j| ≥ 2, (19b)
TiTi+1Ti − Ti+1TiTi+1 = 0 | |i − j| = 1. (19c)

Lemma 4.1. Given distinct i, j, k ∈ [n]. The following holds in Dn(α1, α2):

xijxjkxij − xjkxijxjk − α2(xij − xjk) = 0.

Proof.

xijxjkxij = (α2 − xjkxki − xkixij)xij ,

= α2xij − xjkxkixij − α1xki,

= α2xij − α1xki − xjk(α2 − xijxjk − xjkxki),
= α2xij − α2xjk + xjkxijxjk,

implying that:

xijxjkxij − xjkxijxjk = α2(xij − xjk),

as claimed.
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Corollary 13. For i ∈ [n − 1]. The following holds in Dn(α1, α2):

xixi+1xi − xi+1xixi+1 − α2(xi − xi+1) = 0.

Proof. This follows from Lemma 4.1 in the special case of j = i + 1.

Definition 4.3. Let Λn(α1, α2) be DG(α1, α2) for G the Dynkin-graph of type An, that
is, the K-algebra generated by xi for i ∈ [n − 1] subject the following set of relations:

x2
i − α1 = 0 | i ∈ [n − 1], (20a)

xixj − xjxi = 0 | |j − i| > 1, (20b)
xixi+1xi − xi+1xixi+1 − α2(xi − xi+1) = 0 | i ∈ [n − 2]. (20c)

Theorem 4.2. Given n ≥ 3 positive integer. There exists some K-parameter q so that
the following hold:

Λn(α1, α2) ∼= Hq(n).

Proof. Given K-parameters a 6= 0, b. We consider xi − ayi − b = 0 a K-linear transfor-
mation.

At first, this would imply that for i ∈ [n − 1], we have:

x2
i − α1 = 0 =⇒ (ayi + b)2 − α1 = 0,

=⇒ a2y2
i + b2 + 2abyi − α1 = 0,

=⇒ y2
i + (2b/a)yi + ((b2 − α1)/a2) = 0.

Further, for |j − i| ≥ 2, we have:

xixj − xjxi = 0 =⇒ yiyj − yjyi = 0,

directly. Finally, for |j − i| = 1, we see that:

xixi+1xi − xi+1xixi+1 − α2(xi − xi+1) = 0,

implies that:

0 = a3(yiyjyi − yjyiyj) + ab2(yj − yi) + aα2(yj − yi),
= a3(yiyjyi − yjyiyj) + a(α2 + b2)(yj − yi).

In other words. The algebra Λn(α1, α2) is the K-algebra generated by yi for i ∈ [n−1]
subject the following set of relations:

y2
i + (2b/a)yi + ((b2 − α1)/a2) = 0 | i ∈ [n − 1],

a3(yiyi+1yi − yi+1yiyi+1) − a(b2 + α2)(yi+1 − yi) = 0 | i ∈ [n − 2],
yiyj − yjyi = 0 | |j − i| ≥ 2.
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to which, setting b =
√

−α2, a = √
α1+

√
−α2 implies an isomorphism to a one parameter

Iwahori-Hecke-algebra parametrized by:

q =
√

α1 −
√

−α2√
α1 +

√
−α2

.

Remark 32. Theorem 4.2 suggests a deeper connection that Iwahori-Hecke-algebras share
with D4(α1, α2)-subalgebras.

Indeed, a further analysis of such algebras inspired by compatibility of parameters has
suggested the consideration of a family of algebras Hn(α1, α2), which enable us to study
the algebra Λn(α1, α2) and other examples of subalgebras of D4(α1, α2) in a more direct
approach.

Definition 4.4. Given n ≥ 3 a positive integer, let α1, α2 be R-parameters. Define
Hn(α1, α2) as the associative unital R-algebra generated by Ti for i ∈ [n − 1] subject to
the following set of relations:

T 2
i − α1 = 0 | i ∈ [n − 1], (21a)

TiTj − TjTi = 0 | 2 ≤ |i − j|, (21b)
TiTjTi + TjTiTj + α2(Ti + Tj) = 0 | 1 = |i − j|. (21c)

Proposition 4.3. The following hold in H3(α1, α2) = 〈T1, T2〉:

1. If α1+α2 6= 0. Let M be a nonzero 1-dimensional H3(α1, α2)-module, then M(T1+
T2) = 0.

2. If 3α1 + α2 6= 0. Let M be a nonzero 2-dimensional H3(α1, α2)-module. Then,
either M(T1 + T2) = 0, or, M(T1T2 + T2T1 + α2 − α1) = 0.

Proof. Let M be a nonzero H3(α1, α2) = 〈T1, T2〉-module:

1. Should α1 + α2 6= 0 be. Assume that dimKM = 1, then:

M(T1 + T2) = 0,

since M(T1T2T1 + T2T1T2 + α2(T1 + T2)) = 0, M(Ti) ∈ K and α1 + α2 6= 0.
2. Should (3α1 + α2 6= 0) be. Assume that dimKM = 2, we start with remarking

that the following hold in H3(α1, α2):

(T1 + T2)3 − (3α1 − α2)(T1 + T2) = 0.

Now either M is an extension of 1-dimensional H3(α1, α2)-module by another,
in which case we see that M(T1 + T2)2 = 0, and since (3α1 + α2 6= 0), we get
M(T1 + T2) = 0, or it has no 1-dimensional H3(α1, α2)-submodule in which case:

M((T1 + T2)2 − (3α1 − α2)) = 0,
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or alternatively, M(T1T2 + T2T1 − α1 + α2) = 0, as claimed.

Proposition 4.4. Let ρ : H3(α1, α2) = 〈T1, T2〉 → A be an algebra map. If α2
1 − α2

2 6= 0
then the following hold:

1. If ρ(T1T2T1 + α2T2) = 0 then α1 = 0.

2. If ρ(T1) is a constant, then so is ρ(T2).

Proof. Assuming that α2
1 − α2

2 6= 0:

1. Assume that ρ(T1T2T1 + α2T2) = 0, then multiplying with T1, T2 implies:

0 = ρ(α1T2T1 + α2T1T2),
= ρ(α1T1T2 + α2T2T1),

that is:

(α1 − α2)ρ(T2T1 − T1T2) = 0

that is, ρ(T2T1) = ρ(T1T2), that is:

(α1 + α2)ρ(T2) = 0

in other words, ρ(T2) = 0 and α1 = 0 as claimed.

2. Assume that ρ(T1) is a constant, then T1T2T1 + T2T1T2 + α2(T1 + T2) = 0 implies
that:

0 = α1ρ(T2) + α1ρ(T1) + α2ρ(T2 + T1) = (α1 + α2)(ρ(T1) + ρ(T2)),

asserting the claim.

Lemma 4.5. Given n ≥ 4 a positive integer, let ρ : Hn(α1, α2) → A be an algebra map.
If α2

1 − α2
2 6= 0 and ρ(T1T2 + T2T1) − (α1 − α2) = 0 then ρ(T1) = ρ(T3).

Proof. For i ∈ [3], set ti = ρ(Ti). Assume that α2
1 − α2

2 6= 0 and t1t2 + t2t1 + α2 − α1 = 0.
We start with:

0 = t3(t1t2 + t2t1 + α2 − α1) − (t1t3 − t3t1)t2,

= t3t2t1 + t1t3t2 + (α2 − α1)t3.
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Now on one hand, we compute that:

0 =t3t2(t3t1 − t1t3) − (t3t2t3 + t2t3t2 + α2t3 + α2t2)t1,

= − t3t2t1t3 − t2t3t2t1 − α2(t3t1 + t2t1),
=t1t3t2t3 + (α2 − α1)t2

3 + t2t1t3t2 + (α2 − α1)t2t3 − α2t1t3 − α2t2t1,

= − t1t2t3t2 − α2t1t3 − α2t1t2 + α1(α2 − α1) + t2t1t3t2

+ (α2 − α1)t2t3 − α2t1t3 − α2t2t1,

=t2t1t3t2 + (α2 − α1)t3t2 − 2α2t1t3 − α2(α1 − α2)
+ α1(α2 − α1) + t2t1t3t2 + (α2 − α1)t2t3,

=2t2t1t3t2 + (α2 − α1)(t2t3 + t3t2) − 2α2t1t3 + (α2
2 − α2

1).

(22)

.

While on the other hand, we see that:

0 =t2t3t2(t3t2t1 + t1t3t2 + (α2 − α1)t3)
− t2(t3t2t3 + t2t3t2 + α2t3 + α2t2)t2t1,

=t2t3t2t1t3t2 + (α2 − α1)t2t3t2t3

− α2
1t3t1 − α2t2t3t2t1 − α1α2t2t1,

= − t2t1t3t2t3t2 − (α2 − α1)t2t2
3t2 − (α2 − α1)t2

2t3t2

− α2(α2 − α1)t2(t2 + t3) − α2
1t1t3 + α2t2t1t3t2

+ α2(α2 − α1)t2t3 − α1α2t2t1,

=α1t2t1t2t3 + α2t2t1t3t2 + α1α22t2t1 + α2
1(α1 − α2)

+ α1(α1 − α2)t3t2 + α1α2(α1 − α2)
+ α2(α1 − α2)t2t3 − α2

1t1t3 + α2t2t1t3t2

+ α2(α2 − α1)t2t3 − α1α2t2t1,

=2α2t2t1t3t2 + α1(α1 − α2)t3t2

+ α1(α1 − α2)t2t3 − 2α2
1t1t3 + α1(α2

1 − α2
2).

(23)

Taking the difference between (23) and (α2(22)) implies that:

0 = (α2
1 − α2

2)(t2t3 + t3t2 − 2t1t3 + (α1 + α2)).

Now, we assume that α2
1 − α2

2 6= 0, therefore, multiplying with t1 from left/right and
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taking the sum yields:

0 =t1(t2t3 + t3t2 − 2t1t3 + (α1 + α2))
+ (t2t3 + t3t2 − 2t1t3 + (α1 + α2))t1,

=t1t2t3 + t1t3t2 − 2α1t3 + (α1 + α2)t1

+ t2t1t3 − t1t3t2 + (α1 − α2)t3 − 2α1t3 + (α1 + α2)t1,

= − 2(α1 + α2)t3 + 2(α1 + α2)t1.

holding the claim.

Definition 4.5. There exists a unique 1-dimensional Λn(α1, α2)-module ξ which we
define as:

ξ : Λn(α1, α2) → K,

xi 7→ ξ(xi) =
√

α1,

that is, a module generated by a vector ξ1 with an action of Λn(α1, α2) given as ξ1xi =√
α1ξ1.

Remark 33. Assume that α1(3α1 − α2) = 0. Let:

Λ4(α1, α2) = DA4(α1, α2) | A4 = 2 → 1 → 3 → 4.

There exists a unique 2-dimensional indecomposable Λ4(α1, α2)-module ε which has a
proper submodule ξ. In particular, should such condition hold, we see that ξ is a proper
submodule of ε.

Example 4.2. If α1 = 0. Then ε may be defined as:

ε(x21) = ε(x13) = ε(x34) =
[

0 0√
α2 0.

]

In other words, ε has a basis of the form {ξ1, ξ2} such:

ξ1(x21) = ξ1(x13) = ξ1(x34) = 0,

ξ2(x21) = ξ2(x13) = ξ2(x34) =
√

α2ξ1.

Example 4.3. If 3α1 − α2 = 0. Then one may define:

ε(x21) = ε(x34) =
[
+√

α1 0
0 −√

α1

]
, ε(x13) =

[
+√

α1 0
+1 −√

α1

]
.

In other words, ε has a basis of the form {ξ1, ξ2} such:

ξ1(x21) = ξ1(x13) = ξ1(x34) =
√

α1ξ1,

ξ2(x21) = ξ2(x34) = −
√

α1ξ2, ξ2(x13) = ξ1 −
√

α1ξ2.
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Lemma 4.6. Given a positive integer n ≥ 3, there exists an algebraic embedding of
Hn(α1, α2) into Dn(α1, α2).

Proof. The claim falls directly by considering that for each k ∈ [n] and each injective
map σ : [k] → [n] there exists an algebra map:

Hσ : Hn(α1, α2) → Dn(α1, α2),
Ti 7→ (−1)ixσ(i)σ(i+1).

Theorem 4.7. Λn(α1, α2) ∼= Hn(α1, α2) for all n ≥ 3.

Remark 34. Naturally, one may observe that in the special case of α1 = −α2, we get an
alternative point of view of what is commonly known in the literature as the 0-Hecke
algebras. We recommend [Car86] for interested readers in such topic.

Example 4.4. As an easy example, we verified that the algebra Λ4(α, −α) admits an
ordinary quiver QΛ4 of the form:

+ − − − + +

+ + + − + − + − + − − −

− − + + + −

α1
β′

1α′
1

α′
2

α
α′

β1

β2α2
β′

2

Furthermore, there exists an isomorphism Λ4(α, −α) ∼= KQΛ4/I for I the two-sided
ideal generated by:

αα′ − αiα
′
i, αα′ − βiβ

′
i, αiα, βiα,

for i ∈ [2]. In particular, the algebra is 4!-dimensional. We corresponds the projective
dimension as follows:

3 3

1 5 5 1

3 3

Application in D3(α1, α2).

Remark 35. Using the result held in Theorem 4.7. We shall demonstrate an alternative
approach of the fact that the algebra D3(α1, α2) is semisimple if and only if:

(3α1 − α2)(α1 + α2) 6= 0.
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Which was proven in [HV18] using direct construction and techniques of Clifford alge-
bras.

Note 30. We remind the reader that the algebra D3(α1, α2) is 12-dimensional.

Definition 4.6. Let S be the D3(α1, α2)-module induced by the Λ3(α1, α2)-module ξ
as defined in Definition 4.5, that is:

S := ξ ⊗Λ3(α1,α2) D3(α1, α2).

Remark 36. One may easily see that S is 2-dimensional with a basis of the form: {1, x13}.
Furthermore, one may easily see that the action of x23 is identical to that of x12.

Example 4.5. The action of D3(α1, α2) is constructed as follows:

ξ1x12 =
√

α1ξ1,

ξ1x31x12 = ξ1(α2 − x12x23 − x23x31),
= (α2 − α1)ξ1 −

√
α1ξ1x31,

ξ1x31 = ξ1x31,

ξ1x31x31 = α1ξ1.

in other words, for sij = S(xij):

s12 = s23 =
[ √

α1 0
α2 − α1 −√

α1

]
, s31 =

[
0 1

α1 0

]
.

Note 31. We remind the reader that if two matrices have a common eigenvector then
their commutator is singular.

Proposition 4.8. If (3α1 − α2)(α1 + α2) 6= 0. Then S is a simple D3(α1, α2)-module.

Proof. We observe that S is simple if and only if there exists a common eigenvector of
s12, s31. One computes that:

det(s12s31 − s31s12) = (3α1 − α2)(α1 + α2).

Therefore, should det(s12s31 − s31s12) 6= 0 then S contains no 1-dimensional subrepre-
sentation and therefore simple.

Proposition 4.9. If (3α1 − α2)(α1 + α2) 6= 0. Then S(1,2), S(2,3) are both simple
D3(α1, α2)-modules pairwise non-isomorphic to S.

Proof. We start the proof by highlighting that in D3(α1, α2), the following hold:

s12s23 + s23s12 − 2α1 = 0.
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Therefore, should a nonzero homomorphism f ∈ HomK(S, S(1,2)) exists, then:

(s12s23 + s23s12 − 2α1)f = (s21s13 + s13s21 − 2α1) = 0,

which one easily computes to be not, in other words, f = 0 and S(1,2) 6∼= S. The other
cases are solved in an identical fashion.

Remark 37. The previous lemma can alternatively be proven by showing that there
exists no nonzero f ∈ K2 such that:

S(xij)f − fS(1,2)(xij) = 0,

S(xij)f − fS(2,3)(xij) = 0.

Corollary 14. If (3α1 − α2)(α1 + α2) 6= 0. Then the algebra D3(α1, α2) is semisimple.

Proposition 4.10. If (3α1 − α2)(α1 + α2) = 0. Then the algebra D3(α1, α2) is not
semisimple.

Proof. We prove the claim by showing that if such condition holds then there exists a
nonzero space of extensions between two simple D3(α1, α2)-modules. That is, by showing
that radD3(α1, α2) is non-trivial.

1. If α1 = −α2. Let ρ+, ρ− be two fixed D3(α1, α2)-representations defined as: ρ+ =
−ρ− = +1. Then one may easily verify that:

dimKExt1
D3(α1,α2)(ρ+, ρ−) = 1.

2. If 3α1 = α2. Let ρ+, ρ− be two D3(α1, α2)-representations defined as:

ρ+(xij) = −ρ−(xij) =
{

+1 | (i, j) = (1, 2), (2, 3),
−1 | (i, j) = (3, 1).

Then one may verify that:

dimKExt1
D3(α1,α2)(ρ+, ρ−) = 2.
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4.2 Γ4(α1, α2). An intermediate algebra.
Lemma 4.11. Given distinct i, j, k ∈ [n]. The following holds in Dn(α1, α2):

xlixikxij − xijxljxjk + xjkxkixkl − xklxjlxli = 0.

Proof. This is a direct consequence of (2d), in particular, one sees:

0 = (α2 − xikxkl − xklxli)xij − xij(α2 − xjkxkl − xklxlj)
+ (α2 − xkixij − xijxjk)xkl − xkl(α2 − xlixij − xijxjl),

to which the claim falls directly.

Corollary 15. Given distinct i, j, k, l ∈ [n]. The following holds in Dn(α1, α2):

xijxjkxkl + xjkxklxli + xklxlixij + xlixijxjk = α2(xij + xjk + xkl + xli).

Proof. One may easily sees that the claim made in Lemma 4.11, can be further developed
via (2d) as:

+xlixikxij = −α2xli + xlixijxjk + xlixjkxki,

−xijxljxjk = −α2xij + xijxjkxkl + xijxklxli,

+xjkxkixkl = −α2xjk + xjkxklxli + xjkxkixik,

−xklxjlxli = −α2xkl + xklxlixij + xklxijxjl.

to which, (2c) implies the claim.

Note 32. Let Γ4(α1, α2) denotes DG(α1, α2) for the special case of:

G = I4=
4 3 2

1

Definition 4.7. The algebra Γ4(α1, α2) is the K-algebra generated by xij for (i, j) ∈ I4,
subject the following set of relations:

xij + xji = 0, (24a)
x2

ij − α1 = 0, (24b)
x12x34 − x34x12 = 0, (24c)

x12x13x12 + x13x12x13 + α2(x12 + x13) = 0, (24d)
x12x14x12 + x14x12x14 + α2(x12 + x14) = 0, (24e)

x13x34 + x34x41 + x41x13 − α2 = 0, (24f)
x34x13 + x41x34 + x13x41 − α2 = 0. (24g)

for (i, j) ∈ I4.
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Remark 38. It was computed in [BLM16] that EI4 is 96-dimensional. Our computations
confirm that Γ4(α1, α2) shares the same dimension as well.
Note 33. Denote by:

u := x12x13 + x13x14 + x14x12,

v := x12x14 + x14x13 + x13x12.

Remark 39. Our calculations using Gröbner basis techniques -in particular, strong nor-
mal forms- via [Gap] and [CK] confirms that:

1. (u + α2)2 = (v + α2)2 = −4α2α2,
2. (u + α2)(v + α2) + (v + α2)(u + α2) = 2(3α2

1 + α2
2).

Proposition 4.12. If α1(α2
1 − α2

2) 6= 0, then Γ4(α1, α2) has no i-dimensional nonzero
modules for i ∈ [2].

Proof. Assume that α1(α2
1 − α2

2) 6= 0. We observe that there exists an embedding of
H3(α1, α2) into Γ4(α1, α2) in the obvious way.

Let M be a 1-dimensional Γ4(α1, α2)-module. Then M |H3(α1,α2) is a 1-dimensional
H3(α1, α2). By Proposition 4.3 we see that M(xij) = 0 for all (i, j) ∈ I4, this in
particular means that α1 = α2 = 0 by the defining relations of the algebra.

Let M be a 2-dimensional Γ4(α1, α2)-module. Since α1 6= 0, [x12, x34] = 0 implies that
both of M(x12), M(x34) are simultaneously diagonalizable.

Should M(x12) be a constant, then so is M(x34) and consequently both of M(x13)
and M(x14) as well implied by the defining relations of the algebra, in other words, M
is a direct sum of two 1-dimensional Γ4(α1, α2)-modules, a clear contradiction.

Therefore- and since dimKM = 2- we see that M(x34) = ±M(x12), say with no loss
of generality that M(x34) = M(x12). This implies that:

0 =M(x12x13x12 + x13x12x13 + α2(x12 + x13)),
=M(x12x31x12 + x31x12x31 + α2(x12 + x31)).

that is:

M(x12x13x12 + α2x13) = 0,

which according to Proposition 4.4 implies that α1 = 0, a contradiction.

Proposition 4.13. If α1 = 0, then Γ4(α1, α2) has no i-dimensional nonzero modules
for i ∈ [2].

Proof. Assume that α1 = 0 6= α2. Clearly (3α1 − α2)(α2
1 − α2

2) 6= 0.
At first, we see that there exists no 1-dimensional Γ4(α1, α2)-module, this is indicated

by Proposition 4.3, similarly as seen in Proposition 4.12
Let M be a 2-dimensional Γ4(α1, α2)-module. We have six possible cases to discuss:
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1. If M |〈x12,x13〉, M |〈x13,x14〉, M |〈x14,x12〉, M |〈x31,x34〉, and M |〈x41,x43〉 are extensions
of 1-dimensional H3(α1, α2)-modules by another. By Proposition 4.3 we see that
M(xij) = 0 for all (i, j) ∈ I4, a contradiction as discussed earlier.

2. If M |〈x12,x13〉, M |〈x13,x14〉, M |〈x14,x12〉, M |〈x31,x34〉 are extensions of 1-dimensional
H3(α1, α2)-modules by another and M |〈x41,x43〉 is a simple H3(α1, α2)-module. By
Proposition 4.3 we see that:

M(x12 + x13) = M(x13 + x14) = M(x14 + x12) = M(x31 + x34) = 0,

M(x41x43 + x43x41 + α2 − α1) = 0,

that is, M(x41) = M(x13) = −M(x34) by the first line, to which the second line
implies that, α2 = 0, a contradiction.

3. If M |〈x12,x13〉, M |〈x13,x14〉, M |〈x14,x12〉 are extensions of 1-dimensional H3(α1, α2)-
modules by another and M |〈x31,x34〉, M |〈x41,x43〉 are simple H3(α1, α2)-module.
Proposition 4.3 implies that:

M(x12) = M(x13) = M(x14) = 0,

M(x31x34 + x34x31 + α2 − α1) = 0,

M(x41x43 + x43x41 + α2 − α1) = 0,

that is, as before, α2 = 0, a contradiction.
4. If M |〈x12,x13〉, M |〈x13,x14〉 are extensions of 1-dimensional H3(α1, α2)-modules by an-

other and M |〈x14,x12〉, M |〈x31,x34〉, M |〈x41,x43〉 are simple H3(α1, α2)-module. Propo-
sition 4.3 implies that:

M(x12 + x13) = M(x13 + x14) = 0,

M(x14x12 + x12x14 + α2 − α1) = 0,

M(x31x34 + x34x31 + α2 − α1) = 0,

M(x41x43 + x43x41 + α2 − α1) = 0,

that is, α2 = 0, a contradiction implied by the first two lines.
5. If M |〈x12,x13〉 is an extensions of 1-dimensional H3(α1, α2)-modules by another

and M |〈x13,x14〉, M |〈x14,x12〉, M |〈x31,x34〉, M |〈x41,x43〉 are simple H3(α1, α2)-module.
Proposition 4.3 implies that:

M(x12 + x13) = 0,

M(x14x13 + x13x14 + α2 − α1) = 0,

M(x14x12 + x12x14 + α2 − α1) = 0,

M(x31x34 + x34x31 + α2 − α1) = 0,

M(x41x43 + x43x41 + α2 − α1) = 0,

that is, α2 = 0, a contradiction held by the first three lines.
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6. If M |〈x12,x13〉, M |〈x13,x14〉, M |〈x14,x12〉, M |〈x31,x34〉, and M |〈x41,x43〉 are simple H3(α1, α2)-
module. Proposition 4.3 implies that:

M(x12x13 + x13x12 + α2 − α1) = 0,

M(x14x13 + x13x14 + α2 − α1) = 0,

M(x14x12 + x12x14 + α2 − α1) = 0,

M(x31x34 + x34x31 + α2 − α1) = 0,

M(x41x43 + x43x41 + α2 − α1) =, 0

recall here that:

(u + α2)2 = (v + α2)2 = −4α1α2 | u = x12x13 + x13x14 + x14x12,

| v = x13x12 + x14x13 + x12x14.

In particular, we see that for u′ := u + α2 and v′ := v + α2, we have

M(u′ + v′) = M(x12x13 + x13x14 + x14x12 + x13x12 + x14x13 + x12x14),
= 3α1 − α2.

This allow us to see that M(v′) = M((3α1 − α2) − u′), to which we write:

M(v′)2 = M((3α1 − α2) − u′)2,

= M(u′)2 − 2(3α1 − α2)M(u′) + (3α1 − α2)2,

that is to say 2M(u′) = (3α1 − α2), similarly, one sees that 2M(v′) = (3α1 − α2).
But should this occur then u′v′ + v′u′ = 2(3α2

1 + α2
2) would imply that:

12α2
1 + 4α2

2 = 2M(u′v′ + v′u′),
= 2M(u′)M(v′) + 2M(v′)M(u′),
= (3α1 − α2)2,

= (9α2
1 + α2

2 − 6α1α2),

that is, 3α2
1 + 3α2

2 + 6α1α2 = 0, in other words:

0 = α2
1 + α2

2 + 2α1α2 = (α1 + α2)2.

A contradiction. To which we conclude the claim.

Note 34. Let:

Λ4(α1, α2) = DA4(α1, α2) | A4 = 2 → 1 → 3 → 4.
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Definition 4.8. Let S be the 4-dimensional Γ4(α1, α2)-module induced by the Λ4(α1, α2)-
module ξ, as defined in Definition 4.5, that is:

S := (ξ ⊗Λ4(α1,α2) Γ4(α1, α2))

Proposition 4.14. If (α2
1 − α2

2) 6= 0, then S is a simple Γ4(α1, α2)-module.

Proof. This is a direct consequence of Propositions 4.12 and 4.13.

Remark 40. One may verify that S has a generating set of the following form:

{ξ1, ξ1x14, ξ1x14x12, ξ1x14x12x13}.

Example 4.6. One may compute the action of x12 on the generating vector ξ1x14x12x13
can be computed as:

(α1 − α2)2(ξ1.1) + (ξ1x14)(
√

α1α2) + (ξ1x14x12)(−α2) + (ξ1x14x12x13)(
√

α1),

to which, one writes:

S :Γ4(α1, α2) → K4,

x12 7→ S(x12) =


−√

α1 0 0 0
0 0 1 0
0 α1 0 0

(α1 − α2)2 √
α1α2 −α2

√
α1

 ,

similarly, we present:

S(x13) =


√

α1 0 0 0
α1 − α2 −√

α1 0 0
0 0 0 1
0 0 α1 0

 ,

S(x14) =


0 1 0 0

α1 0 0 0√
α1α2 −α2

√
α1 0

−α2
2 −√

α1α2 α1 − α2 −√
α1

 ,

S(x34) =


√

α1 0 0 0
α1 − α2 −√

α1 0 0√
α1(α2 − α1) 0 −√

α1 0
α2(α2 − α1) √

α1(3α2 − α1) α2 − α1
√

α1

 .

This in particular, enable us to establish useful expressions such as:

S(x13x14 + x14x13 + α2 − α1) = 0.
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Remark 41. If α1(3α1 − α2) = 0, then ε -as defined in Examples 4.2 and 4.3 , is a
Λ4(α1, α2)-module, which is special in the sense that it has ξ as a proper submodule.

The algebra Γ4(α1, α2) is free on Λ4(α1, α2) which enable us to define an induced
module by ε we call X, that is:

X := (ε ⊗Λ4(α1,α2) Γ4(α1, α2)).

In particular, should such condition hold, then X is not a simple Γ4(α1, α2)-module as
S becomes a proper submodule of X.

Proposition 4.15. If α1(3α1−α2) = 0, then X is an indecomposable Γ4(α1, α2)-module.

Proof. Assume that α1(3α1 − α2) = 0.
If α1 = 0. We start with remarking that X/S ∼= S as X/S is a 4-dimensional quotient

generated by ε/ξ ∼= ξ in α1 = 0. Furthermore, we see that S(x12x34) = 0, while:

ξ2(x12x34) = −ξ2(x21x34) = −α2ξ1 6= 0,

which implies that X does not decompose into a direct sum of S and its complement
should it exists. In other words, X is an indecomposable module.

If 3α1 − α2 = 0. We remark that while X/S 6∼= S, both S and its quotient X/S are
annihilated at x13x14 + x14x13 + 2α1, however, we have:

ξ2(x13x14 + x14x13 + 2α1) = (ξ1 −
√

α1ξ2)x14 − ξ2(x41x13) + 2α1ξ2,

= ξ1x14 +
√

α1ξ1,

6= 0.

effectively showing that X does not decompose into a direct sum of S and its complement
should it exists.

Corollary 16. If α1(3α1 − α2) = 0, then Γ4(α1, α2) is not a semisimple algebra.

Proposition 4.16. If α1(α2
1 − α2

2) 6= 0, then S(3,4) is a simple Γ4(α1, α2)-module non
isomorphic to S.

Proof. If (α2
1 − α2

2) 6= 0, the simplicity of S(3,4) is straightforward.
One may verify that should α1 6= 0, then S is annihilated at (x12 +α1)(x13 +α1)(x14 +

x34), while that of:

S((x12 + α1)(x14 + α1)(x13 + x43)) 6= 0,

essentially showing that the morphism space HomK(S, S(3,4)) is trivial.

Remark 42. The previous lemma can be alternatively proven by showing that there
exists no nonzero f ∈ K4 such that:

S(xij)f − fS(3,4)(xij) = 0.
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Proposition 4.17. If α2
1 − α2

2 6= 0, then there exists no algebra map:

f : Γ(2,4)
4 (α1, α2) → A,

such that f(x13x14 + x14x13 + α2 − α1) = 0 for nonzero A.

Proof. Assume that α2
1 − α2

2 6= 0.
Assume for a contradiction there exists such f , let fij denotes f(xij).
We start with highlighting the algebraic embedding of H4(α1, α2) into Dn(α1, α2)

which maps:

T1 7→ x31, T2 7→ x41, T3 7→ x24.

Lemma 4.5 would imply that f31 = f24. Further, we have:

0 = + f14f24f14 + f24f14f24 + α2(f14 + f24),
= − f14f13f14 + f13f14f13 + α2(f14 − f13).

implying that, 0 = f14f13f14 + α2f13, which we multiply from both right and left with
f14 to get:

0 =α1f13f14 + α2f14f13,

=α2f13f14 + α1f14f13.

Now α2
1 − α2

2 6= 0, implies that:

0 = α1(f13 − f14) = α2(f13 − f14),

that is, f13 = f14 = f24 = 0. The contradiction falls directly at this point by (2b) and
(2d), which effectively hold if and only if α1 = α2 = 0.

Definition 4.9. Let S′ be the Γ(2,4)
4 (α1, α2)-module induced by S, as defined in Defini-

tion 4.8, that is:

S′ := (S ⊗Λ4(α1,α2) Γ(2,4)
4 (α1, α2)).

Our aim at this point is proving the following results:

Proposition 4.18. If (3α1 −α2)(α2
1 −α2

2) 6= 0, then S′ is a simple Γ(2,4)
4 (α1, α2)-module.

Which requires further insights into the star based graph of D4.
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The Dynkin type D4

Lemma 4.19. Given distinct i, j, k, l ∈ [n]. The following holds in Dn(α1, α2):+xijxkjxljxij

+xkjxljxijxkj

+xljxijxkjxlj

 + α2

+xijxkj

+xkjxlj

+xljxij

 + α2(α1 + α2) = 0.

Proof.

xijxkjxljxij =xij(xkjxlj)xij ,

=xij(−xkjxjl)xij ,

= − xij(α2 − xjlxlk − xlkxkj)xij ,

=xij(−α2 + xjlxlk + xlkxkj)xij ,

=xijxjlxlkxij + xijxlkxkjxij − α1α2,

=((xijxjlxij)xlk) + (xlk(xijxkjxij)) − α1α2,

= + (xjlxijxjlxlk + α2(xijxlk − xjlxlk))
+ (−xlkxkjxijxkj − α2(xlkxij + xlkxkj)) − α1α2,

= − α1α2 − α2(xjlxlk + xlkxkj)
+ (xjlxijxjlxlk) − (xlkxkjxijxkj),

= − α1α2 − α2(α2 − xkjxjl)
+ (xjlxij(xjlxlk)) − ((xlkxkj)xijxkj),

= − α1(α1 + α2) + α2xkjxjl

+ (xjlxij(α2 − xlkxkj − xkjxjl))
− ((α2 − xkjxjl − xjlxlk)xijxkj),

= − α1(α1 + α2) + α2xkjxjl

+ (α2xjlxij − xjlxijxkjxjl)
− (α2xijxkj − xkjxjlxijxkj).

Note 35. Let ∆4(α1, α2) denotes DG(α1, α2) for the special case of:

G = D4=
4 3 2

1

in particular, ∆4(α1, α2) is a proper subalgebra of Γ4(α1, α2).

Definition 4.10. The algebra ∆4(α1, α2) is the K-algebra generated by xij for (i, j) ∈
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D4 subject the following set of relations:

xij + xji = 0 | (i, j) ∈ D4, (25a)
x2

12 − α1 = x2
13 − α1 = x2

14 − α1 = 0, (25b)
x12x13x12 + x13x12x13 + α2(x12 + x13) = 0, (25c)
x12x14x12 + x14x12x14 + α2(x12 + x14) = 0, (25d)
x14x13x43 + x13x14x13 + α2(x14 + x13) = 0, (25e)+x12x13x14x12

+x13x14x12x13
+x14x12x13x14

 + α2(

+x14x12
+x13x14
+x12x13

 + α1 + α2) = 0, (25f)

+x12x14x13x12
+x13x12x14x13
+x14x13x12x14

 + α2(

+x14x13
+x13x12
+x12x14

 + α1 + α2) = 0. (25g)

Remark 43. It was computed in [BLM16] that ED4 is 48-dimensional. Our computations
confirm that ∆4(α1, α2) shares the same dimension as well.

Proposition 4.20. If (3α1 − α2)(α2
1 − α2

2) 6= 0, then ∆4(α1, α2) has no i-dimensional
nonzero modules for i ∈ [2].

Proof. This is proven in an identical fashion as in Proposition 4.13.

Note 36. The restriction of the Γ4(α1, α2)-module S onto ∆4(α1, α2) is a 4-dimensional
∆4(α1, α2)-module, we denote it by S|∆ should no confusion occurs.

Corollary 17. If (3α1 − α2)(α2
1 − α2

2) 6= 0, then S|∆ is a simple ∆4(α1, α2)-module.

Proposition 4.21. If S|∆ is simple, then S|σ∆ is a simple ∆4(α1, α2)-module pairwise
non isomorphic to S for σ = (2, 4), (2, 3).

Proof. Assume that (3α1 − α2)(α2
1 − α2

2) 6= 0, the simplicity of S|(2,4)
∆ falls immediately.

Furthermore, S|(2,4)
∆ 6∼= S|∆ is implied since:

S|∆(x31x41 + x41x31) + (α2 − α1) = 0,

while:

S|∆(x31x21 + x21x31) + (α2 − α1) 6= 0.

The other case is solved in a similar fashion.

Remark 44. The previous lemma can be alternatively proven by showing that there
exists no nonzero f ∈ K4 such that:

S(xij)f − fSσ(xij) = 0, | σ = (2, 4), (2, 3).
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Corollary 18. If (3α1 − α2)(α2
1 − α2

2) 6= 0, then ∆4(α1, α2) is semisimple.

Proposition 4.22. ∆4(α1, α2) is semisimple only if:

(3α1 − α2)(α2
1 − α2

2) 6= 0.

Proof. Assume that (3α1 − α2)(α2
1 − α2

2) = 0, since α1 6= 0, we normalize that α1 = 1.
We have three cases to discuss, we see:

1. If α1 +α2 = 0. In this case, we recall that the algebra D4(α, −α)-and consequently
all of its subalgebras- is basic if such condition hold, therefore all simple ∆4(α, −α)-
representation are given by the sign.

In particular, for i ∈ [2], there exists two non-isomorphic fixed simple representa-
tions ρi such that:

ρ1(xij) = −ρ2(xij) = +1 | (i, j) ∈ D4,

where the space of extensions ExtK(ρ1, ρ2) is nonzero up to an isomorphism.

2. If α1 − α2 = 0. The algebra ∆4(α1, α2) is not basic, we present a 2-dimensional
module M of the form:

M(x12) =
[
1 0
0 −1

]
, M(x13) =

[
0 1
1 0

]
, ρ(x14) =

[
0 −1

−1 0

]
,

which is clearly simple as ∆4(+1, +1) has no 1-dimensional modules.

Furthermore, there exists a non-isomorphic simple representations M ′ such that:

M ′(x12) = M(x13), M ′(x13) = M(x12), M ′(x14) = M(x14),

where the space of extensions ExtK(M, M ′) is 1-dimensional up to an isomorphism.

3. If 3α1 = α2 = +3. The algebra ∆4(α1, α2) is again not basic, we present a 2-
dimensional module M of the form:

M(x12) =
[
1 0
0 −1

]
, M(x13) =

[
−1 0
−1 +1

]
, M(x14) =

[
−1 +4
0 +1

]
,

which is clearly simple as ∆4(+1, +3) has no 1-dimensional modules.

Furthermore, there exists a non-isomorphic simple representations M ′ such that:

M ′(x12) = M(x13), M ′(x13) = M(x12), M ′(x14) = M(x14),

where the space of extensions ExtK(M, M ′) is 2-dimensional up to an isomorphism.
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Theorem 4.23. The algebra ∆4(α1, α2) is semisimple if and only if:

(3α1 − α2)(α2
1 − α2

2) 6= 0.

Example 4.7. Interesting examples can be considered in the non semisimple algebra
∆4(α1, α2), in particular, one may verify that ∆4(α, −α) admits an ordinary quiver Q∆4

of the form:

− + + + − −

+ − + − − − + + + − + −

+ + − − − +

x1 x3

x

y1

y2

y
α1,α2
β1,β2

y3

y4

x′

y′

x2 x4

Furthermore, there exists an isomorphism ∆4(α, −α) ∼= KQ∆4/I, where I is the two-
sided ideal generated by:

α1β1, β1α1, xiyi, yixi, α2x1, α1x2, β2y3, β1y4,

α1β2 − α2β1, β1α2 − β2α1, α1x − α2x, β1y′ − β2y′,

α2β1 − α1β2 − α2β2, β2α1 − β1α2 − β2α2,

for | i ∈ [4].

Remark 45. We are now ready to prove Proposition 4.18. We remind the reader that
we claimed that should:

(3α1 − α2)(α2
1 − α2

2) 6= 0,

be, then S′ is a simple Γ(2,4)
4 (α1, α2)-module.

Indeed should such condition hold, then ∆4(α1, α2) is a semisimple proper subalgebra
of Γ(2,4)

4 (α1, α2), and when viewed as a ∆4(α1, α2)-module, S′ decomposes into a direct
sum of two simple ∆4(α1, α2)-modules. The claim then is assured once we prove that
S|∆ does not extend to a Γ(2,4)

4 (α1, α2)-module which is proven to be true by Proposition
4.17.

This in particular, allow us to see that:

Corollary 19. If α1(3α1 − α2)(α2
1 − α2

2) 6= 0, then the algebra Γ4(α1, α2) is semisimple.

our final result.
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5 Appendix

5.1 Conclusion remarks.

From our point of view, the appearance of the Nil-Coxeter algebra in Theorem 3.19 was
surprising, to say the least, especially in contrast to the result of [HV18] where it was
proven that the lower dimension case of the same parameters deformation was given by
the pre-projective algebra of type A2, two algebras with no apparent direct connection.

That being said, the opportunity of examining the theory from quiver theory point
of view was very interesting, as seen, Gabriel theorem introduced an algebra morphism
kernel which was minimal and maximal in the precise length sense, that is, there exists
exactly one non-zero path connecting any two vertices in our quiver, a property that
was not invariant going into the second deformation as seen in Proposition 3.33.

Indeed, the inability to give a precise description of the non-basic non-semisimple
deformation in terms of Gabriel theory highlights above all other things the irregularity
one might face while dealing between what seem to be very similar structures.

From representation theory perspective, it is truly remarkable to have an isomorphism
between the Dynkin based subalgebra and that of Iwahori-Hecke algebras, we highlight
its practicality in advancing the discussion of the topic as doing representation theory
in the classical scene might grow to be tiresome in higher dimensions, something we
encountered previously in our work as well.

We foresee the techniques developed in the second part of our work, that is, the
idea of inducing and restricting- to be highly valuable and productive in the field and
highly recommend it as an alternative should high dimensionality calculations be too
complicated.

Finally, we conclude our work by revising some important literature about En, the
"non-deformed" Fomin-Kirillov algebras and their connections to Nichols algebras.

5.2 Fomin-Kirillov and Nichols algebras.

Via braided vectors spaces.

Definition 5.1. A braided vector space is a pair (V, c), where V is a vector space and
c ∈ GL(V ⊗ V ) is a solution of the braid equation:

(c ⊗ id)(id ⊗ c)(c ⊗ id) = (id ⊗ c)(c ⊗ id)(id ⊗ c).

Example 5.1. Let V be a complex vector space with basis {xi | i ∈ [n]}. Let qij ∈ C×

where i, j ∈ [n] distinct. A braided vector spaces of diagonal type (V, c) is given by:

c(xi ⊗ xj) = qijxj ⊗ xi.

Example 5.2. Let G be a finite group and V = CG the complex vector space with
basis {g | g ∈ G}. Then (V, c) is a braided vector space where:

c(g ⊗ h) = ghg− ⊗ g | g, h ∈ G.
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Definition 5.2. The braid group Bn is given by generators {bi | i ∈ [n]} and relations:

bibi+1bi − bi+1bibi+1 = 0 | i ∈ [n − 1],
bibj − bjbi = 0 | 1 < |i − j|.

Remark 46. There exists a surjection Bn → Sn defined by mapping bi to si.

Lemma 5.1. There exists a set-theoretical section Sn
µ−→ Bn mapping si to bi, such that

µ(xy) = µ(x)µ(y) if l(xy) = l(x) + l(y).

Remark 47. Given n a positive integer. Let (V, c) be a braided vector space. Consider:

ci := idV ⊗(i−1) ⊗ c ⊗ idV ⊗(n−i−1) ∈ Aut(V ⊗n) | i ∈ [n − 1],

that is:

ci(⊗n
j=1vj) = (⊗i−1

j=1vj)c(vi ⊗ vi+1)(⊗n
j=i+2vj).

One may verify that:

ρn : Bn → Aut(V ⊗n),
bi 7→ ρn(bi) = ci,

is a Bn-representation by showing that subjecting {ci | i ∈ [n − 1]} to the defining
relations of Bn holds no contradictions.

Definition 5.3. Let (V, c) be a braided vector space. Define B(V, c) the Nichols algebra
of (V, c) as:

B(V, c) :=
⊕

n

T n(V )/Ker(Sn) = K
⊕

V
⊕
n≥2

V ⊗n/Ker(Sn),

where Sn is the quantum symmetrizer:

Sn :=
∑

σ∈Sn

ρnµ(σ).

Example 5.3. Let V be a complex vector space and let V ⊗V
flip−−→ V ⊗V be the linear

map defined by mapping x ⊗ y to y ⊗ x.

1. The Nichols algebra of the braided vector space (V, flip) is the Symmetric algebra
S(V ).

2. The Nichols algebra of the braided vector space (V, flip−) is the Exteriors algebra∧
(V ).
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Connection with Fomin-Kirillov algebras. Let Vn be the vector space with basis {vij |
1 ≤ i < j ≤ n} and consider the map c ∈ GL(Vn ⊗ Vn) defined by:

c(vσ ⊗ vτ ) = ξ(σ, τ)vστσ− ⊗ vσ | ξ(σ, τ) =
{

+1 | σ(i) < σ(j),
−1 | σ(i) > σ(j).

where σ and τ are transpositions and τ = (ij) with i < j.
Since (Vn, c) is a braided vector space, it is possible to consider the Nichols algebra

B(Vn).
Remark 48. One has a surjective homomorphism of algebras En → B(Vn). It is well
known that the surjection is an isomorphism for n ≤ 5. We refer readers interested in
Nichols algebra to [IHJ20].

Via Quandles.

Definition 5.4. A set X together with a binary operation B is said to be a quandle if
the following hold:

x B x = x,

x B (y B z) = (x B y) B (x B z).

for all x, y, z ∈ X such that for all x ∈ X the (auto)-mapping y 7→ x B y is bijective.

Definition 5.5. Given (X,B) a quandle, the enveloping group of X -denoted by GX - is
the generic group generated by {gx | x ∈ X} subject the defining relation gxgy = gxBygx

for all x, y ∈ X.

Note 37. Given (X,B) a quandle, let VX denote the K-vector space with a basis {vx |
x ∈ X}.

Definition 5.6. Given (X,B) a quandle, a 2-cocycle on X is a map q : X × X → K×

such that:

q(y, z)q(x, y B z) = q(x, z)q(x B y, x B z) | x, y, z ∈ X.

Note 38. Given (X,B) a quandle with q a 2-cocycle, the map c ∈ AutK(VX ⊗ VX),
defined linearly by:

c(vx ⊗ vy) = q(x, y)vxBy ⊗ vx | x, y ∈ X.

is a braiding on VX , that is, (VX , c) is a braided vector space.
Note 39. Given (X,B) a quandle with q a 2-cocycle, denote the Nichols algebra attached
to (VX , c) by BX .
Remark 49. One can show that the mapping c as defined is a braiding if and only if q is
2-cocycle.

75



Example 5.4. Let G be a group and let X ⊆ G be the conjugacy class of an element
on G. Then X becomes a quandle via conjugation, that is:

x B y = xyx− | x, y ∈ X.

Example 5.5. Consider the quandle X = {0, 1, 2, 3}. The 2-cocycle is constant q = −1.
It can be shown that BX is the K-algebra generated by {xi | i ∈ X}, subject to the
following set of relations:

x2
0 = x2

1 = x2
2 = x2

3 = 0,

x1x3 + x3x2 + x2x=x0x3 + x3x1 + x1x0 = 0,

x2x3 + x3x0 + x0x2 = x1x2 + x2x0 + x0x1 = 0,

(x2x1 + x1x0 + x0x2)3 = 0.

In particular, the algebra BX is 72-dimensional. Furthermore, the Hilbert polynomial
of BX is given as: (1 + t)2(1 + t + t2)(1 + t3).

Connection with Fomin-Kirillov algebras. As discussed earlier. The Fomin-Kirillov
algebra En is isomorphic to the Nichols algebra given by the quandle:

X = {(i, j) | 1 ≤ i < j ≤ n} ⊆ Sn | σ B τ = στσ−,

for all σ, τ ∈ X, and the 2-cocycle q defined by:

q(π, (i, j)) =
{

+1 | π(i) < π(j),
−1 | π(i) > π(j).

| 1 ≤ i < j ≤ n, π ∈ X.

Remark 50. While discussing the theory of Nichols algebras over Quandles limits our
ability to realize the structure itself via the many tools braided Hopf-theory offers, it
does give an access to a special class of algebras by discussing alternative 2-cocycles.

Example 5.6. Consider X the quandle of the six 2-cycles of S4, which of which form
a conjugacy class. The 2-cocycle is constant q = −1. It can be shown that BX is the
K-algebra generated by {xij | i < j ∈ [4]}, subject to the following set of relations:

x2
ij = 0 | i, j ∈ [4],

[xij , xkl] = 0 | i, j, k, l ∈ [4] distinct,
x12x13 + x13x23 + x23x12 = x12x14 + x14x24 + x24x12 = 0,

x12x23 + x23x13 + x13x12 = x12x24 + x24x14 + x14x12 = 0,

x13x14 + x14x34 + x34x13 = x13x34 + x34x14 + x14x13 = 0,

x23x24 + x24x34 + x34x23 = x23x34 + x34x24 + x24x23 = 0.

Remark 51. The PBW-deformation of this example along that of X the quandle of the
six 4-cycles of S4 with a the same fixed 2-cocycle has been studied in details in [Wol].
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We refer readers interested in Nichols algebra via quandles to [Gra].

5.3 Miscellaneous

On the representation type of Fomin-Kirillov algebras.

Theorem 5.2. [BLM16, Theorem 6.1] The only minimal relations in EAn are the
quadratic and braid type relations. In other words, we have:

EAn
∼= Nn,

the nil-Coxeter algebra of type An−1.

Corollary 20. The algebra En is of representation type wild for n ≥ 4.

5.4 German summary

Seit die Fomin-Kirillov-Algebren Ende der neunziger Jahre im [FK99] vorgestellt wurden,
haben Sie ein grosses Interesse auf dem Gebiet der abstrakten Algebraforschung geweckt.

Ihre Verbindung zur Algebra-Kombinatorik wurden sowohl in [BLM16], [MPP14],
[Pos99] und [GR97] berücksichtigt, als auch unter Anderem im [Gra], [AM03], [FP00]
und [MS00] zur Hopf und Nichols algebras.

Darüber hinaus haben die Algebren viele interessante Erscheinungen auf dem Ge-
biet der Quantengruppentheorie [PV16], der nichtkommutative Geometrie [Maj17] und
[Maj19] gezeigt. In [Baz06] und [Lau16] wurden einige interessante Verallgemeinerun-
sansätze dieser Algebren behandelt. In [BK19] wurden Sie auch auf die sogenannten
Hecke-Hopf-Algebren angewendet.

Motiviert durch neuere Entdeckungen von I. Heckenberger, L. Vendramin [HV18]
und K. Wolf [Wol], diese Doktorarbeit dem Thema der Darstellungstheorie von PBW-
Deformationen von Fomin-Kirillov-Algebren behandelt.

Diese Arbeit in zwei Teile unterteilt. Im ersten Teil wurde die Darstellungstheorie von
nicht-Halbeinfache D4(α1, α2) und des generischen n in einigen Fällen aus der Sicht des
Gabriel-Theorems entwickelt.

Es zeigte sich, dass zwei Fälle besprochen werden mussten. Der erste Fall war Dn(α, −α)
der sich als basic und connected erwiesen hat, und daher eine graphische Darstellung
wie in Theorem 3.11 beschrieben hat.

Dies ermöglichte die Diskussion der, die Anwendung des Satzes von Gabriel im Spezial-
fall n = 4 zu diskutieren wie in Theorem 3.19 gezeigt.

Als nächstes wurde D4(α, α) betrachtet, das nicht-Basic war und eine zugehörige Basic
Algebra hat, die Morita-äquivalent ist. Es zeigte sich, dass diese zugehörige Version
connected ist und eine graphische Darstellung der in Theorem 3.28 beschriebenen
Form zulässt. Dadurch konnten seine Darstellung in Proposition 3.33 vorgeschlagen
werden.

Der zweite Teil war dem Studium einiger interessanter auf Dynkin-Graphen basieren-
der Unteralgebren von Dn(α1, α2) gewidmet. Insbesondere haben wir Λn(α1, α2), eine
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Unteralgebra von Dn(α1, α2) basierend auf dem Dynkin-Graphen vom Typ An betra-
chtet. Wir haben bewiesen, dass diese bis auf einem Parameter isomorph zur generischen
Iwahori-Hecke-Algebra, siehe Theorem 4.2.

Abschliessend wurde haben wir eine Familie von Algebren betrachtet, die isomorph zu
Λn(α1, α2) und auch parameterkompatibel ist. Dies ermöglichte uns, eine Äquivalenz der
Halbeinfachheit von ∆4(α1, α2) zu finden, einer weiteren Unteralgebra von Dn(α1, α2)
basierend auf dem Dynkin-Graphen vom Typ Dn, wie in Proposition 4.22 diskutiert.

5.5 Declaration
I hereby declare, that I have not made any doctoral attempts prior to this one. I assure,
that I have written this thesis myself and without any external assistance and used no
sources or aids other than those indicated. Moreover I assure, that I have not submitted
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