Publikationsserver der Universitätsbibliothek Marburg

Titel:Image Segmentation of Bacterial Cells in Biofilms
Autor:Jelli, Eric
Weitere Beteiligte: Drescher, Knut (Prof. Dr.)
Veröffentlicht:2020
URI:https://archiv.ub.uni-marburg.de/diss/z2021/0518
DOI: https://doi.org/10.17192/z2021.0518
URN: urn:nbn:de:hebis:04-z2021-05189
DDC: Physik
Publikationsdatum:2021-12-02
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Biofilm, Confocal Microscopy, Objekterkennung, Biofilm, Image Analysis, Object Detection, Bacillus Subtilis, Bildanalyse, Vibrio cholerae, Image Segmentation, Heubacillus, Software Development, Bildsegmentierung, Vibrio cholerae, Konfokale Mikroskopie, Bacteria, Bakterien, Softwareentwicklung

Summary:
Bacterial biofilms are three-dimensional cell communities that live embedded in a self-produced extracellular matrix. Due to the protective properties of the dense coexistence of microorganisms, single bacteria inside the communities are hard to eradicate by antibacterial agents and bacteriophages. This increased resilience gives rise to severe problems in medical and technological settings. To fight the bacterial cells, an in-detail understanding of the underlying mechanisms of biofilm formation and development is required. Due to spatio-temporal variances in environmental conditions inside a single biofilm, the mechanisms can only be investigated by probing single-cells at different locations over time. Currently, the mechanistic information is primarily encoded in volumetric image data gathered with confocal fluorescence microscopy. To quantify features of the single-cell behaviour, single objects need to be detected. This identification of objects inside biofilm image data is called segmentation and is a key step for the understanding of the biological processes inside biofilms. In the first part of this work, a user-friendly computer program is presented which simplifies the analysis of bacterial biofilms. It provides a comprehensive set of tools to segment, analyse, and visualize fluorescent microscopy data without writing a single line of analysis code. This allows for faster feedback loops between experiment and analysis, and allows fast insights into the gathered data. The single-cell segmentation accuracy of a recent segmentation algorithm is discussed in detail. In this discussion, points for improvements are identified and a new optimized segmentation approach presented. The improved algorithm achieves superior segmentation accuracy on bacterial biofilms when compared to the current state-of-the-art algorithms. Finally, the possibility of deep learning-based end-to-end segmentation of biofilm data is investigated. A method for the quick generation of training data is presented and the results of two single-cell segmentation approaches for eukaryotic cells are adapted for the segmentation of bacterial biofilm segmentation.

Zusammenfassung:
Bakterielle Biofilme sind drei-dimensionale Zellcluster, welche ihre eigene Matrix produzieren. Die selbst-produzierte Matrix bietet den Zellen einen gemeinschaftlichen Schutz vor äußeren Stressfaktoren. Diese Stressfaktoren können abiotischer Natur sein wie z.B. Temperatur- und Nährstoff\- schwankungen, oder aber auch biotische Faktoren wie z.B. Antibiotikabehandlung oder Bakteriophageninfektionen. Dies führt dazu, dass einzelne Zelle innerhalb der mikrobiologischen Gemeinschaften eine erhöhte Widerstandsfähigkeit aufweisen und eine große Herausforderung für Medizin und technische Anwendungen darstellen. Um Biofilme wirksam zu bekämpfen, muss man die dem Wachstum und Entwicklung zugrundeliegenden Mechanismen entschlüsseln. Aufgrund der hohen Zelldichte innerhalb der Gemeinschaften sind die Mechanismen nicht räumlich und zeitlich invariant, sondern hängen z.B. von Metabolit-, Nährstoff- und Sauerstoffgradienten ab. Daher ist es für die Beschreibung unabdingbar Beobachtungen auf Einzelzellebene durchzuführen. Für die nicht-invasive Untersuchung von einzelnen Zellen innerhalb eines Biofilms ist man auf konfokale Fluoreszenzmikroskopie angewiesen. Um aus den gesammelten, drei-dimensionalen Bilddaten Zelleigenschaften zu extrahieren, ist die Erkennung von den jeweiligen Zellen erforderlich. Besonders die digitale Rekonstruktion der Zellmorphologie spielt dabei eine große Rolle. Diese erhält man über die Segmentierung der Bilddaten. Dabei werden einzelne Bildelemente den abgebildeten Objekten zugeordnet. Damit lassen sich die einzelnen Objekte voneinander unterscheiden und deren Eigenschaften extrahieren. Im ersten Teil dieser Arbeit wird ein benutzerfreundliches Computerprogramm vorgestellt, welches die Segmentierung und Analyse von Fluoreszenzmikroskopiedaten wesentlich vereinfacht. Es stellt eine umfangreiche Auswahl an traditionellen Segmentieralgorithmen, Parameterberechnungen und Visualisierungsmöglichkeiten zur Verfügung. Alle Funktionen sind ohne Programmierkenntnisse zugänglich, sodass sie einer großen Gruppe von Benutzern zur Verfügung stehen. Die implementierten Funktionen ermöglichen es die Zeit zwischen durchgeführtem Experiment und vollendeter Datenanalyse signifikant zu verkürzen. Durch eine schnelle Abfolge von stetig angepassten Experimenten können in kurzer Zeit schnell wissenschaftliche Einblicke in Biofilme gewonnen werden.\\ Als Ergänzung zu den bestehenden Verfahren zur Einzelzellsegmentierung in Biofilmen, wird eine Verbesserung vorgestellt, welche die Genauigkeit von bisherigen Filter-basierten Algorithmen übertrifft und einen weiteren Schritt in Richtung von zeitlich und räumlich aufgelöster Einzelzellverfolgung innerhalb bakteriellen Biofilme darstellt. Abschließend wird die Möglichkeit der Anwendung von Deep Learning Algorithmen für die Segmentierung in Biofilmen evaluiert. Dazu wird eine Methode vorgestellt welche den Annotationsaufwand von Trainingsdaten im Vergleich zu einer vollständig manuellen Annotation drastisch verkürzt. Die erstellten Daten werden für das Training von Algorithmen eingesetzt und die Genauigkeit der Segmentierung an experimentellen Daten untersucht.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten